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Abstract. In this paper we study the period function of centers of planar polynomial differential
systems. With a convenient compactification of the phase portrait, the boundary of the period annulus
of the center has two connected components: the center itself and a polycycle. We are interested in the
behaviour of the period function near the polycycle. The desingularization of its critical points gives
rise to a new polycycle (monodromic as well) with hyperbolic saddles or saddle-nodes at the vertices.
In this paper we compute the first terms in the asymptotic development of the time function around
any saddle that may come from this desingularization process. In addition, we use these developments
to study the bifurcation diagram of the period function of the dehomogenized Loud’s centers. More
generally, the tools developed here can be used to study the return time function around a monodromic
polycycle. This work is a continuation of the results in [7, 8].

1 Introduction and setting of the problem

The present paper deals with planar polynomial differential systems and our goal is to develop tools in order
to study the qualitative properties of the period function of a center. Although this is perhaps the most
natural framework of our work, it will be clear later that the results can be applied in more general settings.
Recall that a critical point p of a planar differential system is a center if it has a punctured neighbourhood
that consists entirely of periodic orbits surrounding p. The largest punctured neighbourhood with this
property is called the period annulus of the center and in what follows it will be denoted by P. The period

function of the center assigns to each periodic orbit in P its period. Questions related to the behaviour of
the period function have been extensively studied. Let us quote, for instance, the problems of isochronicity
(see [4, 5, 6]), monotonicity (see [1, 2, 11]) or bifurcation of critical periods (see [3, 10, 13]).

Compactifying the phase portrait in RP
2, the boundary of P has two connected components: the center

itself and a polycycle. We call them respectively the inner and outer boundary of the period annulus. In
this paper we are interested in the behaviour of the period function near the outer boundary. The vertices
of the outer boundary are critical points with a hyperbolic sector inside P and, in case of unbounded period
annuli, some of them are located at infinity. Note in addition that the polycycle may have degenerated
critical points and then it is necessary to desingularize them by means of a blow-up process. One obtains
in this way a desingularized polycycle with hyperbolic saddles or saddle-nodes at its vertices. This allows
to reduce the study of the period function to a local problem, namely the time function associated to the
passage around a saddle or a saddle-node. In this paper we consider the time function around any saddle
that may come from this blow-up process. Taking local coordinates on the separatrices of such a saddle,
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the desingularized vector field writes as

X(x, y) =
1

xmyn
(
xP (x, y)∂x + yQ(x, y)∂y

)

with m,n ∈ Z. The result that we obtain extends a previous one [7] that treats the case m = 0 and n ∈ N,
which is useful basically to study only those period annuli such that its outer boundary has all the vertices
at infinity and being hyperbolic saddles (in particular, such that no blow-up process is needed). As in
that paper and since it will be important for subsequent applications, we suppose that the vector field X
depends on a parameter µ ∈ Λ ⊂ R

k. Most part of this paper is devoted to compute the first terms in the
asymptotic development of the time function (see Figure 2) associated to the passage around the saddle of
the family {Xµ, µ ∈ Λ}. The development that we obtain is uniform with respect to the parameter and
this is important to remark because this property is essential to investigate the bifurcation diagram of the
period function in a family of centers.

The above study was motivated by the necessity of such a development for the investigation of the period
function of the dehomogenized Loud’s centers, namely

(1)

{
ẋ = −y + xy,

ẏ = x+Dx2 + Fy2.

At this point, in order to put our study in context, we must recall the results in [8] and to this end some
definitions are needed. The period function of a center is monotonous increasing (respectively, decreasing)
if for any pair of periodic orbits inside P, say γ1 and γ2 with γ1 ⊂ Int(γ2), we have that the period of γ2 is
greater (respectively, smaller) than the one of γ1. (Here by Int(γ) we mean the bounded connected component
of R

2 \ {γ}.) It is important to note that the period function is defined on the set of periodic orbits in P. So
usually the first step is to parametrize this set, let us say {γs}s∈(0,1), and then one can study the qualitative
properties of the period function by means of the map s 7−→ period of γs, which is smooth on (0, 1). The
critical periods are the critical points of this function and its number, character (maximum or minimum)
and distribution do not depend on the particular parametrization of the set of periodic orbits used. In case
that the differential system depends on a parameter µ ∈ Λ, as it occurs with (1), then the problem is to
obtain the bifurcation diagram of the period function of the center. That is, to decompose the parameter
space as Λ=∪Vi in such a way that if µ1 and µ2 belong to the same set Vi then the corresponding period
functions are qualitatively the same. (With this we mean that their critical periods are equal in number,
character and distribution.) The bifurcation values are the boundaries of the sets Vi (roughly speaking,
those parameters µ0 ∈ Λ for which some critical period emerges or disappears as µ tends to µ0) and there
are three different cases to consider:

(a) Bifurcations of critical periods from the inner boundary (i.e., the center).

(b) Bifurcations of critical periods from the interior of the period annulus.

(c) Bifurcations of critical periods from the outer boundary (i.e., the polycycle).

The interested reader is referred to [8] for precise definitions. Chicone and Jacobs [3] described completely
the bifurcation of critical periods from the inner boundary for the whole quadratic family. The bifurcations
from the outer boundary for the subfamily (1) are studied in [8]. Let us recall the main result in that paper
and to this end denote by ΓU the union of dotted straight lines in Figure 1. Consider also the bold curve ΓB .
(Here the subscripts B and U stand for bifurcation and unspecified respectively.) Note in particular that ΓB
is a Jordan curve. We can consider therefore the bounded and unbounded components of R

2 \ ΓB , which
we denote by DB and IB (for decreasing and increasing) respectively. With this notation, the main result
in [8] is the following:
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Figure 1: Bifurcation diagram of the period function at the outer boundary

Theorem 1.1 (Mardešić-Maŕın-Villadelprat). Denoting µ = (D,F ), let {Xµ, µ ∈ R
2} be the family

of vector fields in (1) and consider the period function of the center at the origin. Then the open set

R
2 \ {ΓB ∪ ΓU} corresponds to regular values of the period function at the outer boundary of the period

annulus. In addition,

(a) If µ0 ∈ IB \ ΓU then the period function of Xµ0
is monotonous increasing near the outer boundary.

(b) If µ0 ∈ DB \ ΓU then the period function of Xµ0
is monotonous decreasing near the outer boundary.

Finally, the parameters in ΓB are bifurcation values of the period function at the outer boundary of the

period annulus.

The curve ΓU corresponds, except for the segment
(
−1,− 1

2

)
×{ 1

2}, to parameters for which the corre-
sponding period annulus has degenerate critical points at its outer boundary. The blow-up process of these
critical points leads to hyperbolic saddles, but the tools developed in [7] are not general enough to study
the associated time functions. We conjectured however that the parameters in ΓU are not bifurcation values
except for the the segment {0}×

[
0, 1

2

]
. The results obtained in the present paper allow us to show that this

is indeed the case for half of the segment. More concretely, we prove the following:

Theorem A. Denoting µ = (D,F ), let {Xµ, µ ∈ R
2} be the family of vector fields in (1) and consider the

period function of the center at the origin.

(a) If µ0 ∈ {0}×
(
0, 1

4

)
then the period function of Xµ0

is monotonous increasing near the outer boundary.

(b) If µ0 ∈ {0}×
(

1
4 ,

1
2

)
then the period function of Xµ0

is monotonous decreasing near the outer boundary.

Moreover the parameters in {0}×
[
1
4 ,

1
2

]
are bifurcation values of the period function at the outer boundary

of the period annulus.
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It remains of course to show that the segment {0}×
[
0, 1

4

]
consists of bifurcation values as well and, even

more difficult, that the rest of the parameters in ΓU are not. The machinery developed here will be very
useful to tackle this second issue because the key point to verify that a parameter is not a bifurcation value
(i.e., it is a regular value) is to use developments that are uniform with respect to parameters.

The paper is organized in the following way. Section 2 is devoted to prove Theorem 2.7, which provides
the first order development of the time function around a hyperbolic saddle. This result contemplates all
the possible cases, in the sense that we consider any saddle that may come from the desingularization of a
monodromic polycycle. We introduce moreover the notation and definitions used henceforth. In Section 3
we obtain higher order developments of this time function, but only those cases required for the proof of
Theorem A are considered. More precisely, Teorems 3.1 and 3.3 give respectively the second and third order
developments. Finally in Section 4 we prove Theorem A.

2 First order development

Let W be an open set of R
k and consider an analytic family of meromorphic vector fields {Xµ, µ ∈ W} of

the form

(2) Xµ(x, y) =
1

xmyn
(
xP (x, y;µ)∂x + yQ(x, y;µ)∂y

)

with m,n ∈ Z. We also assume that P and Q are analytic functions on V×W, where V is an open set of R
2

containing the origin, and that verify P (x, 0;µ) > 0 and Q(0, y;µ) < 0. Note then that, for each µ ∈ W,
xmynXµ(x, y) is an analytic vector field on V that has a hyperbolic saddle at the origin with hyperbolicity

ratio given by

λ(µ) := −Q(0, 0;µ)

P (0, 0;µ)
> 0.

The family {Xµ, µ ∈ W} can be thought as a single vector field Y defined on V ×W ⊂ R
2+k whose

trajectories lie on the submanifolds {µ = const}. Let σ : I ×W −→ Σσ and τ : I ×W −→ Στ be two
analytic transverse sections to Y defined by

σ(s;µ) =
(
σ1(s;µ), σ2(s;µ);µ

)
and τ(s;µ) =

(
τ1(s;µ), τ2(s;µ);µ

)

such that σ1(0;µ) = 0 and τ2(0;µ) = 0. (Here I stands for a small interval of R containing 0.) We denote
the Dulac and time mappings between the transverse sections Σσ and Στ by R and T respectively. More
precisely (see Figure 2), if ϕ

(
t, (x0, y0);µ

)
is the solution of Xµ passing through (x0, y0) at t = 0, for each

s > 0 we define R(s;µ) and T (s;µ) by means of the relation

(3) ϕ
(
T (s;µ), σ(s);µ

)
= τ

(
R(s;µ)

)
.

Definition 2.1 We say that {Xµ, µ ∈W} verifies the family linearization property (FLP in short) if there
exist an open set U ⊂ R

2 containing the origin and an analytic local diffeomorphism Φ : U ×W → V ×W
of the form Φ(x, y;µ) =

(
x+ h.o.t., y + h.o.t., µ

)
such that

Xµ = Φ∗

(
1

f(x, y;µ)

(
x∂x − λ(µ)y∂y

))
,

where f is an analytic function on U×W. �

Remark 2.2 Since, by assumption, the invariant manifolds of the saddle point are located on the axes,
from Definition 2.1 it follows easily that

Φ1(x, y;µ) = xψ1(x, y;µ) and Φ2(x, y;µ) = yψ2(x, y;µ)
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Figure 2: Definition of T in Theorem 2.7.

with ψi(0, 0;µ) ≡ 1. In addition, f(x, y;µ) = xmyng(x, y;µ) where g is an analytic function verifying that
g(0, 0;µ) 6= 0. �

Remark 2.3 It is easy to show that the family of meromorphic vector fields {Xµ, µ ∈ W} defined in (2)
verifies FLP if it has a Darboux first integral

Hµ(x, y) = f1(x, y;µ)β1(µ) · · · fk(x, y;µ)βk(µ),

where fj ∈ Cω(U×W ) for some open set U ⊂ R
2 containing the origin and βj ∈ Cω(W ). �

Definition 2.4 Let W be any open subset of R
k. We denote by I(W ) the set of germs of analytic functions

h(s;µ) defined on (0, ε) ×W for some ε > 0 such that

lim
s→0

h(s;µ) = 0 and lim
s→0

s
∂h(s;µ)

∂s
= 0

uniformly (on µ) on every compact subset of W. We denote moreover by I0(W ) the set of germs of analytic
functions h(s;µ) defined on (−ε, ε) ×W for some ε > 0 verifying that h(0;µ) ≡ 0. �

Remark 2.5 It is clear that I(W ) is closed under the addition and product. Moreover, I0(W ) ⊂ I(W ).
Note finally that if f ∈ I(U) ∩ I(V ), where U and V are two open subsets of R

k, then f ∈ I(U ∪ V ). �

Definition 2.6 The function defined for s > 0 and α ∈ R by means of

ω(s;α) =

{
sα−1−1
α−1 if α 6= 1,

log s if α = 1,

is called the Roussarie-Ecalle compensator [9]. �

In order to simplify the expressions that appear in the statement of the next result we introduce the
functions

L(u;µ) := exp

(∫ u

σ2(0)

(
P (0, y)

Q(0, y)
+

1

λ

)
dy

y

)
,

M(u;µ) := exp

(∫ u

0

(
Q(x, 0)

P (x, 0)
+ λ

)
dx

x

)
,
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and the covering of the parameter space W given by the open subsets

W1 :=
{
µ ∈W : m− λ(µ)n < 0

}
,

W2 :=
{
µ ∈W : m− λ(µ)n > 0

}
,(4)

W3 :=
{
µ ∈W : −1 < m− λ(µ)n < λ(µ)

}
.

Theorem 2.7 (First order development). Let {Xµ, µ ∈W} be the family of vector fields defined in (2)
and assume that it verifies the FLP. Let T be the time function associated to the transverse sections Σσ and

Στ as introduced in (3). Then the following holds:

(a) If µ ∈W1 then T (s;µ) = sm
(
∆1(µ) + I(W1)

)
, where

∆1(µ) = σ′
1(0)mσ2(0)

m
λ

∫ 0

σ2(0)

L(x)mxn−
m
λ

Q(0, x)

dx

x
.

(b) If µ ∈W2 then T (s;µ) = sλn
(
∆2(µ) + I(W2)

)
, where

∆2(µ) =
(
σ′

1(0)λσ2(0)L(0)λ
)n ∫ τ1(0)

0

M(x)nxm−λn

P (x, 0)

dx

x
.

(c) If µ ∈ W3 then T (s;µ) = sλn
(
∆3(µ)ω(s;m + 1 − λn) + ∆4(µ) + I(W3)

)
, where ∆3(µ) and ∆4(µ) are

analytic on W3. Furthermore, if m− λ(µ0)n = 0 then

∆3(µ0) = −
(
σ′

1(0)λL(0)λσ2(0)
)n

P (0, 0)
.

In many situations henceforth we shall study the expansion of the composition or product of two given
functions. By applying the next result (see [7]) we shall obtain the corresponding remainder terms.

Lemma 2.8. Let a, k and r be analytic functions on W and let f(s;µ) and g(s;µ) be analytic functions

on (0, ε)× W for some ε > 0. Assume furthermore that a(µ) and r(µ) are positive on W and define

ϕ(s;µ) := sr(µ)
(
a(µ) + f(s;µ)

)
.

(a) If f ∈ I and g ∈ I0 then g◦f ∈ I.
(b) If f ∈ I (respectively I0) then sk◦ ϕ− akskr belongs to skrI (respectively skrI0).

(c) If f, g ∈ I then (skg)◦ ϕ belongs to skrI.
(d) If g ∈ I0 then gω(s; r) ∈ I.
(e) If g ∈ I0 then

(
sω(s; r)

)
◦
(
s(a+ g)

)
= s
(
arω(s; r) + aω(a; r) + I

)
.

In the statement of the above result in [7] it is also required that k is positive. Let us remark however
that the proof follows exactly the same way without this assumption. This is not the case of the following
result, that will be applied several times in what follows.

Corollary 2.9. Let k and r be analytic functions on W. If k(µ) > 0 and k(µ)+r(µ) > 1 then skω(s; r) ∈ I.

Proof. An easy manipulation shows that

skω(s; r) = 1
k s

kω
(
sk; r+k−1

k

)
= 1

k

(
sω(s; r+k−1

k )
)
◦ sk.

Therefore skω(s; r) = h(sk) with h(s;µ) := 1
ksω

(
s; r+k−1

k

)
, which belongs to I by (d) in Lemma 2.8 since

by assumption it holds r+k−1
k > 0. Accordingly, skω(s; r) = h ◦ ϕ with h ∈ I and, taking f(s;µ) ≡ 0,

ϕ(s;µ) := sk
(
1 + f(s;µ)

)
. Since it is obvious that f ∈ I, by (c) in Lemma 2.8 with k = 0 we conclude that

skω(s; r) = h ◦ ϕ belongs to I.
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Consider next an analytic family of meromorphic vector fields of the form

Yµ =
1

xmynG(x, y;µ)

(
x∂x − λ(µ)y∂y

)
,

where m,n ∈ Z, G is an analytic function and λ(µ) > 0 for all µ ∈W. Let V (s;µ) be the time that spends
the solution of Yµ passing through (s, 1) ∈ R

2 with s > 0 to reach {x = 1}. It is clear that

V (s;µ) =

∫

C
xmynG(x, y;µ)

dx

x
,

where C(s,µ) := {(x, y) : y = (s/x)λ(µ), s ≤ x ≤ 1}. The following result provides the first order development
of V (s;µ) at s = 0 for µ ∈ W and the expression of its leading coefficient. In addition, since it will be
necessary for the subsequent application, we also give the second order expansion for the case µ ∈ W1

(see (4) for the definition). With this aim in view we introduce the covering of W1 given by the open subsets

W11 :=
{
µ ∈W1 : λ(µ)n−m > 1

}
,

W12 :=
{
µ ∈W1 : λ(µ)n−m < 1

}
,(5)

W13 :=
{
µ ∈W1 : 2 > λ(µ)n−m > 1 − λ(µ)

}
.

Proposition 2.10. With the above definitions, the following holds:

(a) If µ ∈ W1 then V (s;µ) = sm
(
a1(µ) + f1(s;µ)

)
, where f1 ∈ I(W1) and a1(µ) =

∫ 1

0
uλn−mG(0, uλ)duu .

Moreover the remainder term is given by

f1(s;µ) =





s
(
a11(µ) + I(W11)

)
if µ ∈W11,

sλn−m
(
a12(µ) + I(W12)

)
if µ ∈W12,

s
(
a13(µ)ω(s;λn−m) + a14(µ) + I(W13)

)
if µ ∈W13.

(b) If µ ∈W2 then V (s;µ) = sλn
(
a2(µ) + I(W2)

)
, where a2(µ) =

∫ 1

0
um−λnG(u, 0)duu .

(c) If µ ∈ W3 then V (s;µ) = sλn
(
a3(µ)ω(s;m + 1 − λn) + a4(µ) + I(W3)

)
, where a3 and a4 are analytic

functions on W3. Moreover, if m− λ(µ0)n = 0 then a3(µ0) = −G(0, 0).

Proof. The idea to show this is to take advantage of a similar result proved in [7] that holds for m = 0 and
n > 0. Let us consider first the case µ ∈ W1, i.e., λ(µ)n−m > 0. To apply the above-mentioned result we
write the function as

V (s;µ) =

∫

C
xmynG(x, y;µ)

dx

x
= sm

∫

C
yn−m/λG(x, y;µ)

dx

x
.

(Here we use that y = (s/x)λ on C.) Then by applying Theorem 3.3 in [7] with n̂ = n − m/λ, which is
positive due to µ ∈W1, it follows that

V (s;µ) =





sm
(
a1(µ) + a11(µ)s+ sf11(s;µ)

)
if µ ∈W11,

sm
(
a1(µ) + a12(µ)sλn−m + sλn−mf12(s;µ)

)
if µ ∈W12,

sm
(
a1(µ) + a13(µ) sω(s;λn−m) + a14(µ)s+ sf13(s;µ)

)
if µ ∈W13,

where f1i ∈ I(W1i) for i = 1, 2, 3 and a1(µ) =
∫ 1

0
uλn−mG(0, uλ)duu . The “second order” coefficients also

follow from that result. For instance,

a12(µ) =
G(0, 0)

m− λn
+

∫ 1

0

G(u, 0) −G(0, 0)

uλn−m
du

u
.
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We claim that V (s;µ) = sm
(
a1(µ)+I(W1)

)
and note that (a) will follow once we prove this. The fact that s

and sλn−m belong to I(W1) is obvious and, by (d) in Lemma 2.8, this is also the case of sω(s;λn −m).
Finally, since f1i ∈ I(W1i) and W1 = W11 ∪W12 ∪W13, the claim follows from Remark 2.5.

Let us consider next (b), which corresponds to µ ∈ W2, i.e., m − λ(µ)n > 0. It follows by applying (a)

to the vector field Ŷµ := −ϕ∗
(
Yµ
)

with ϕ(x, y) = (y, x). Indeed, following the obvious notation, it turns

out that V (s;µ) = V̂ (sλ;µ) and one can check that Ĝ(x, y) = 1
λ G(y, x),

(
m̂, n̂

)
= (n,m) and λ̂ = 1/λ.

Accordingly, since λ̂n̂− m̂ = m/λ− n is positive for µ ∈W2, we can take advantage of (a) to conclude that

V̂ (s;µ) = sn
(
â1(µ) + f(s;µ)

)
with f ∈ I(W2) and

â1(µ) =
1

λ

∫ 1

0

um/λ−nG
(
u1/λ, 0

)du
u

=

∫ 1

0

um−λnG(u, 0)
du

u
.

Hence, due to f(sλ;µ) ∈ I(W2) by (c) in Lemma 2.8, we have that V (s;µ) = V̂ (sλ;µ) = sλn
(
â1(µ)+I(W2)

)
.

To prove (c) we take two analytic functions G1 and G2 so that G(x, y) = G(0, 0)+xG1(x, y)+yG2(x, y).
This enables us to decompose the function under consideration as V (s;µ) = V0(s;µ) + V1(s;µ) + V2(s;µ),
where V2(s;µ) :=

∫
C x

myn+1G2(x, y)
dx
x , V1(s;µ) :=

∫
C x

m+1ynG1(x, y)
dx
x and

(6) V0(s;µ) := G(0, 0)

∫

C
xmyn

dx

x
= G(0, 0)sλn

∫ 1

s

xm−λn dx

x
= −G(0, 0)sλnω(s;m+ 1 − λn).

Note that we can apply (b) with
(
m̂, n̂

)
= (m+ 1, n) to study V1 since m+ 1 − λn > 0 for µ ∈W3. Hence

(7) V1(s;µ) = sλn
(
b1(µ) + I(W3)

)
.

On the other hand, since m − λ(n + 1) < 0 for µ ∈ W3, we can apply (a) with
(
m̂, n̂

)
= (m,n + 1) to

study V2. We obtain in this way V2(s;µ) = sm
(
b2(µ) + I(W3)

)
. However the first order development of V2

does not suffices for our purpose because we need to show that

(8) V2(s;µ) = b2(µ)sm + sλng(s;µ) with g ∈ I(W3).

The expression of g follows by applying the second part of (a) with
(
m̂, n̂

)
= (m,n+ 1). Indeed, setting

W31 =
{
µ ∈W3 : λ(µ)(n+ 1) −m > 1

}
,

W32 =
{
µ ∈W3 : λ(µ)(n+ 1) −m < 1

}
,

W33 =
{
µ ∈W3 : 2 > λ(µ)(n+ 1) −m > 1 − λ(µ)

}
,

one can verify that it is given by

g(s;µ) =





sm+1−λn(b21(µ) + I(W31)
)

if µ ∈W31,

sλ
(
b22(µ) + I(W32)

)
if µ ∈W32,

sm+1−λn(b23(µ)ω(s;λ(n+ 1) −m) + b24(µ) + I(W33)
)

if µ ∈W33.

The first row in the above equality shows that g ∈ I(W31) because sm+1−λn ∈ I(W3) and W31 ⊂ W3.
Clearly from the second one it turns out that g ∈ I(W32). Finally the third one shows that g ∈ I(W33).
To see this it suffices to check that sm+1−λnω

(
s;λ(n + 1) − m

)
∈ I(W33), and this follows by applying

Corollary 2.9 with k = m+1−λn (which is positive on W3) and r = λ(n+1)−m because k+r = λ+1 > 1.
Thus, due to W3 = W31 ∪W32 ∪W33, by Remark 2.5 we can assert that g ∈ I(W3). This shows the validity
of (8). Now, using that sm = sλn

(
1 + (m− λn)ω(s;m+ 1 − λn)

)
, the expansion in (8) yields to

V2(s;µ) = sλn
(
(m− λn)b2(µ)ω(s;m+ 1 − λn) + b2(µ) + I(W3)

)
.
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Figure 3: Transverse sections in Lemma 2.12.

Finally, the combination of this with the expansions in (6) and (7) shows that

V (s;µ) = V0(s;µ) + V1(s;µ) + V2(s;µ) = sλn
(
a3(µ)ω(s;m+ 1 − λn) + a4(µ) + I(W3)

)

with a3(µ) =
(
m− λn

)
b2(µ) −G(0, 0) and a4(µ) = b1(µ) + b2(µ). This concludes the proof of the result.

Remark 2.11 With the notation introduced in Proposition 2.10, we have shown in its proof that

a12(µ) =
G(0, 0)

m− λn
+

∫ 1

0

G(u, 0) −G(0, 0)

uλn−m
du

u
.

�

Let us consider a family of vector fields of the form

(9) Xµ =
1

yn
(
f(x, y;µ)∂x + yg(x, y;µ)∂y

)
,

where n ∈ Z and µ ∈W. The functions f(x, y;µ) and g(x, y;µ) are assumed to be analytic on a neighbour-
hood of {y = 0} and depending also analytically on the parameter µ. We also consider (see Figure 3) two
analytic transverse sections ξ( · ;µ) : I −→ Σµ and ζ( · ;µ) : I −→ Πµ to the integral curve {y = 0}. The next
result (see [7]) provides the first nontrivial term of the Poincaré and time mappings between Σµ and Πµ.
More concretely, denoting by ϕ

(
t, (x0, y0);µ

)
the solution of (9) with initial condition (x0, y0), we define

R(s;µ) and T (s;µ) by means of ϕ
(
T (s), ξ(s)

)
= ζ
(
R(s)

)
.

Lemma 2.12. If f(x, 0) 6= 0 for all x ∈ [ξ1(0), ζ1(0)], then

(a) R(s;µ) = s
(
ρ(µ) + I0(W )

)
with

ρ(µ) =
ξ′2(0)

ζ ′2(0)
exp

(∫ ζ1(0)

ξ1(0)

g(x, 0)

f(x, 0)
dx

)
.

(b) T (s;µ) = sn
(
∆1(µ) + I0(W )

)
with

∆1(µ) = ξ′2(0)n
∫ ζ1(0)

ξ1(0)

exp

(
n

∫ x

ξ1(0)

g(u, 0)

f(u, 0)
du

)
dx

f(x, 0)
.

Moreover, if n = 0 then T (s;µ) = ∆1(µ) + ∆2(µ)s+ sI0(W ) with

∆2(µ) =
ζ ′1(0)ρ(µ)

f
(
ζ(0)

) − ξ′1(0)

f
(
ξ(0)

) − ξ′2(0)

∫ ζ1(0)

ξ1(0)

fy(x, 0)

f(x, 0)2
exp

(∫ x

ξ1(0)

g(u, 0)

f(u, 0)
du

)
dx.

9



Figure 4: Auxiliary sections in the proof of Theorem 2.7.

Proof of the Theorem 2.7. For the sake of simplicity in the formulas we shall omit the parameter de-
pendence when there is no risk of ambiguity.

Take δ > 0 and ε > 0 small enough so that the points (0, δ) and (ε, 0) belong to the linearizing domain U
(recall Definition 2.1). Thus, taking advantage of the linearizing local diffeomorphism Φ, we define two
auxiliary transverse sections Σδ and Σε to X parameterized by s 7−→ Φ(s, δ) and s 7−→ Φ(ε, s) respectively
(see Figure 4). Next we consider the Dulac and time mappings between Σσ and Σδ. To this end we use
the parametrization of the corresponding transverse sections. More precisely, if ϕ

(
t, (x0, y0);µ

)
denotes the

solution of Xµ passing through (x0, y0) at t = 0, we define R1(s;µ) and T1(s;µ) by means of the relation

ϕ
(
T1(s;µ), σ(s)

)
= Φ

(
R1(s;µ), δ

)
.

We also consider the mappings between Σδ and Σε, say R2(s;µ) and T2(s;µ), and the ones between Σε and
Στ , say R3(s;µ) and T3(s;µ). Exactly as before, these mappings are defined by means of

ϕ
(
T2(s;µ),Φ(s, δ)

)
= Φ

(
ε,R2(s;µ)

)
and ϕ

(
T3(s;µ),Φ(ε, s)

)
= τ

(
R3(s;µ)

)
.

Now according to these definitions we can split up the Dulac and time mappings as

R(s;µ) = R3

(
R2(R1(s))

)
and T (s;µ) = T1(s) + T2

(
R1(s)

)
+ T3

(
R2(R1(s))

)
.

It is to be pointed out that Ti(s) depend on δ and ε but that T (s) as a whole does not. This will be the
key point in order to compute its first nontrivial coefficient.

Lemma 2.12 provides us the expansions of the (regular) mappings from Σσ to Σδ and from Σε to Στ .
Indeed, one can show in this way that

(10) R1(s) = s
(
ρ1 + I0(W )

)
, T1(s) = sm

(
a1 + I0(W )

)
and T3(s) = sn

(
c1 + I0(W )

)
.

Let us remark here that in order to study R1 and T1 by means of Lemma 2.12 it is first necessary to perform
the coordinate transformation (x, y) 7−→ (y, x). Taking this into account, some computations yield to

ρ1(µ) =
σ′

1(0)

ψ1(0, δ)
exp

(∫ δψ2(0,δ)

σ2(0)

P (0, u)

Q(0, u)

du

u

)
=
σ′

1(0)L
(
δψ2(0, δ)

)

ψ1(0, δ)

(
σ2(0)

δψ2(0, δ)

) 1
λ

(11)
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and

a1(µ) = σ′
1(0)m

∫ δψ2(0,δ)

σ2(0)

exp

(
m

∫ x

σ2(0)

P (0, u)

Q(0, u)

du

u

)
xn−1dx

Q(0, x)
(12)

= σ′
1(0)mσ2(0)

m
λ

∫ δψ2(0,δ)

σ2(0)

L(x)mxn−
m
λ

Q(0, x)

dx

x
.

In both equalities above we used that

exp

(∫ x

σ2(0)

P (0, u)

Q(0, u)

du

u

)
= exp

(∫ x

σ2(0)

(
P (0, u)

Q(0, u)
+

1

λ

)
du

u

)
exp

(
1

λ

∫ σ2(0)

x

du

u

)
= L(x)

(
σ2(0)

x

)1/λ

.

Note moreover that R2(s) = δ(s/ε)λ by the FLP. Thus, by (b) in Lemma 2.8, from (10) it follows that

R2

(
R1(s)

)
= sλ

(
ρ2 + I0(W )

)
with ρ2 = δε−λρλ1 .

Therefore, on account of the expansion of T3 in (10) and by applying Lemma 2.8 again, it turns out that

(13) T3

(
R2(R1(s))

)
= sλn

(
ρn2 + I0(W )

)(
c1 + I(W )

)
= sλn

(
c1ρ

n
2 + I(W )

)
.

It remains to study T2(s;µ) and this will be done by means of Proposition 2.10. Since in this result
the transverse sections are assumed to be on {y = 1} and {x = 1}, we must compose the linearizing

diffeomorphism Φ with (x, y) 7−→ (εx, δy). We thus consider Φ̃(x, y) := Φ(εx, δy) and then from Remark 2.2
it follows that

Xµ = Φ̃∗

(
1

xmynG(x, y)

(
x∂x − λy∂y

))
with G(x, y) := εmδng(εx, δy).

(Recall that the existence of g is a consequence of Definition 2.1.) Hence we have that T2(s;µ) = V (s/ε;µ),
where V (s;µ) is the function considered in Proposition 2.10 taking G(x, y) as above.

At this point we can begin with the proof of (a). So assume that µ ∈ W1, i.e., λ(µ)n −m > 0. In this
case from (a) in Proposition 2.10 it turns out that

(14) T2(s;µ) = V (s/ε;µ) = sm
(
b1 + I(W1)

)
, where b1(µ) = δn

∫ 1

0

uλn−mg(0, δλuλ)
du

u
,

and then, taking (10) into account, the application of Lemma 2.8 shows that T2

(
R1(s)

)
= sm

(
b1ρ

m
1 +I(W1)

)
.

Note on the other hand that sλn = smsλn−m ∈ smI(W1) and so, from (13), we can assert that T3

(
R2(R1(s))

)

belongs to smI(W1). Therefore, gathering this with the expression of T1 in (10) yields to

T (s) = T1(s) + T2

(
R1(s)

)
+ T3

(
R2(R1(s))

)
= sm

(
a1 + b1ρ

m
1︸ ︷︷ ︸

∆1

+I(W1)
)
.

This shows the validity of the expansion of the time function in (a). In order to compute ∆1 explicitly note
first that it does not depend on δ or ε. Using the expression of the coefficients in (11), (12) and (14), one
can easily verify that

∆1 = a1 + b1ρ
m
1 = σ′

1(0)mσ2(0)
m
λ

∫ δψ2(0,δ)

σ2(0)

L(x)mxn−
m
λ

Q(0, x)

dx

x

+ δn−
m
λ

(
σ′

1(0)L
(
δψ2(0, δ)

)

ψ1(0, δ)

)m(
σ2(0)

ψ2(0, δ)

)m
λ
∫ 1

0

uλn−mg(0, δλuλ)
du

u
.
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Consequently, since λ(µ)n−m > 0 for µ ∈W1 and ψi(0, 0) = 1, we can assert that

∆1 = lim
δ−→0

(a1 + b1ρ
m
1 ) = σ′

1(0)mσ2(0)
m
λ

∫ 0

σ2(0)

L(x)mxn−
m
λ

Q(0, x)

dx

x

and this concludes the proof of (a).

Let us turn now to prove (b). So assume that µ ∈ W2, i.e., m − λ(µ)n > 0. Consider X̂µ := −ϕ∗(Xµ)

with ϕ(x, y) = (y, x) and note that then, following the obvious notation, T (s;µ) = T̂
(
R(s;µ);µ

)
. Moreover

X̂µ =
1

xm̂yn̂
(
xP̂ (x, y;µ)∂x + yQ̂(x, y;µ)∂y

)
,

where P̂ (x, y) = −Q(y, x), Q̂(x, y) = −P (y, x),
(
m̂, n̂

)
= (n,m) and λ̂ = 1/λ. Since λ̂n̂ − m̂ = m/λ − n is

positive on W2 we can apply the previous case. Accordingly T̂ (s;µ) = sn
(
∆̂1(µ) + I(W2)

)
with

(15) ∆̂1(µ) = −τ ′2(0)nτ1(0)λn
∫ 0

τ1(0)

L̂(x)nxm−λn

P (x, 0)

dx

x
=
τ ′2(0)nτ1(0)λn

M
(
τ1(0)

)n
∫ τ1(0)

0

M(x)nxm−λn

P (x, 0)

dx

x
.

Here we took σ̂(s) =
(
τ2(s), τ1(s)

)
and τ̂(s) =

(
σ2(s), σ1(s)

)
into account and we used that

L̂(x) = exp

(∫ 0

τ1(0)

(
Q(u, 0)

P (u, 0)
+ λ

)
du

u
+

∫ x

0

(
Q(u, 0)

P (u, 0)
+ λ

)
du

u

)
=

M(x)

M(τ1(0))
.

On the other hand, since the Dulac map depends only on the foliation, by applying Theorem A in [7] to the
vector fields xmynXµ we get that R(s;µ) = sλ

(
ρ(µ) + I(W )

)
with

(16) ρ(µ) =
σ′

1(0)λσ2(0)

τ ′2(0)τ1(0)λ
L(0)λM

(
τ1(0)

)
.

Consequently by using (b) and (c) in Lemma 2.8 it follows that

T (s) = T̂
(
R(s)

)
= sλn

(
ρ+ I(W )

)n(
∆̂1 + I(W2)

)
= sλn

(
ρn∆̂1︸ ︷︷ ︸

∆2

+I(W2)
)
.

Finally, from (15) and (16), an straightforward simplification shows that

∆2 = ρn∆̂1 =
(
σ′

1(0)λσ2(0)L(0)λ
)n ∫ τ1(0)

0

M(x)nxm−λn

P (x, 0)

dx

x

and this completes the proof of the assertion in (b).

Let us show next (c). Assume therefore that µ ∈W3, i.e., −1 < m− λ(µ)n < λ(µ). Note first of all that
the substitution sm = sλn

(
1 + (m− λn)ω(s;m+ 1 − λn)

)
in the expression of T1 in (10) yields to

T1(s) = sλn
(
1 + (m− λn)ω(s;m+ 1 − λn)

)(
a1 + I0(W )

)

= sλn
(
a1(m− λn)ω(s;m+ 1 − λn) + a1 + I(W3)

)
.

In the second equality above we use that, since m + 1 − λn > 0 on W3, ω(s;m + 1 − λn)I0(W ) ∈ I(W3)
by (d) in Lemma 2.8. Recall on the other hand that T2(s;µ) = V (s/ε;µ), where V (s;µ) is the function
studied in Proposition 2.10 taking G(x, y) = εmδng(εx, δy). Hence, by applying (c) in Proposition 2.10,
V (s;µ) = sλn

(
a3(µ)ω(s;m + 1 − λn) + a4(µ) + I(W3)

)
, where a3(µ0) = −G(0, 0) for those µ0 ∈ W3 such

that λ(µ0)n−m = 0. Thus, on account of (10) and applying Lemma 2.8, one can verify that

T2

(
R1(s)

)
= V

(
s(ε−1ρ1 + I0(W ))

)
= sλn

(
a3ε

−mρm1 ω(s;m+ 1 − λn) + ã4 + I(W3)
)
.
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In addition from (13) it follows that T3

(
R2(R1(s))

)
= sλn

(
c1ρ

n
2 + I(W )

)
. The combination of these expan-

sions gives

T (s;µ) = T1(s) + T2

(
R1(s)

)
+ T3

(
R2(R1(s))

)
= sλn

(
∆3(µ)ω(s;m+ 1 − λn) + ∆4(µ) + I(W3)

)
,

where ∆3(µ) = a1(m − λn) + a3ε
−mρm1 and ∆4(µ) = a1 + ã4 + c1ρ

n
2 . Consider finally some µ0 ∈ W3 such

that m − λ(µ0)n = 0. Then, since a3(µ0) = −G(0, 0) = −εmδng(0, 0) and taking (11) into account, we
obtain

∆3(µ0) = −g(0, 0)δnρλn1 = −g(0, 0)
σ′

1(0)λnL
(
δψ2(0, δ)

)λn

ψ1(0, δ)λn
σ2(0)n

ψ2(0, δ)n
,

which tends to −g(0, 0)
(
σ′

1(0)λL(0)λσ2(0)
)n

as δ −→ 0 due to ψi(0, 0) = 1. Consequently this shows that

∆3(µ0) = −g(0, 0)
(
σ′

1(0)λL(0)λσ2(0)
)n

because ∆3 does not depend on δ. We claim that

(17) g(0, 0) =
1

P (0, 0)

and note that the result will follow once we prove this. To show the claim note first that, from Remark 2.2,

Xµ

(
Φ(x, y)

)
=

1

xmyng(x, y)

(
Φ1x Φ1y

Φ2x Φ2y

)(
x

−λy

)
.

Since Φ1(x, y) = xψ1(x, y) and Φ2(x, y) = yψ2(x, y), taking the first component of the vectors above one
can easily conclude that

g(x, y) =
ψm1 ψ

n
2

P
(
Φ(x, y)

)
(

1 +
xψ1x − λyψ1y

ψ1

)
,

which on account of ψi(0, 0) = 1 proves (17). This completes the proof of the result.

We conclude this section with the following result about the Dulac map. For the sake of convenience it
refers to the family Xµ in (2) but, since it is clear that this map depends only on the foliation, one may

consider X̃µ= xP (x, y;µ)∂x + yQ(x, y;µ)∂y instead.

Lemma 2.13. Let {Xµ, µ ∈W} be the family of vector fields defined in (2) and assume that it verifies the

FLP. Let R be the Dulac map from Σσ to Στ as introduced in (3). Then R(s;µ) = sλ
(
ρ1(µ) + f(s;µ)

)
with

f ∈ I(W ) and

ρ1(µ) =
σ′

1(0)λσ2(0)

τ ′2(0)τ1(0)λ
L(0)λM

(
τ1(0)

)
.

Moreover, in case that λ(µ) < 1 for all µ ∈W, the remainder term is given by f(s;µ) = sλ
(
ρ2(µ) + I(W )

)

where ρ2 is an analytic function on W.

Proof. The first part of the result follows by applying Theorem A in [7]. In order to prove the assertion
concerning the remainder term we take advantage of the fact that Xµ verifies the FLP and introduce the
auxiliary transverse sections as in the proof of Theorem 2.7 (see Figure 4). Accordingly

R(s;µ) = R3

(
R2(R1(s))

)
,

where R1 and R3 are analytic diffeomorphisms by (a) in Lemma 2.12 and R2(s) = δ(s/ε)λ. Thus we have
that R1(s) = s

(
a1 + I0(W )

)
and hence, from (b) in Lemma 2.8,

R2

(
R1(s)

)
= sλ

(
b1 + I0(W )

)
= sλ

(
b1 + b2s+ sI0(W )

)

for some bi ∈ Cω(W ). Finally, since R3(s) = c1s+ c2s
2 + s2I0(W ), by Lemma 2.8 once again we obtain that

R(s) = c1s
λ
(
b1 + b2s+ sI0(W )

)
+ c2s

2λ(b21 + I0(W )) + s2λI(W )

= ρ1s
λ + ρ2s

2λ + s2λI(W )

where ρ1 = b1c1 and ρ2 = b21c2. In the second equality above we take the hypothesis λ < 1 into account to
conclude that sλ+1 = s2λs1−λ = s2λI(W ). This shows the validity of the result.
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3 Higher order developments

In the previous section we obtained the first order development of T (s;µ) at s = 0 for any µ ∈ W and we
computed its leading coefficient. In the present section we study higher order developments but we restrict
ourselves to those cases that are strictly necessary for the subsequent application, namely µ ∈W1, see (4).

3.1 Second order developments

Theorem 3.1 (Second order development). Let {Xµ, µ ∈ W} be the family of vector fields defined

in (2) and assume that it verifies the FLP. Let T be the time function associated to the transverse sections

Σσ and Στ as introduced in (3). Finally assume that µ ∈W1 with λ(µ)n−m 6= 1.

(a) If µ ∈W11 then T (s;µ) = sm
(
∆1(µ) + ∆11(µ)s+ sI(W11)

)
, where ∆11 is an analytic function on W11.

(b) If µ ∈W12 then T (s;µ) = sm
(
∆1(µ) + ∆12(µ)sλn−m + sλn−mI(W12)

)
, where

∆12(µ) =
(
σ′

1(0)λL(0)λσ2(0)
)n
{

τ1(0)m−λn

P (0, 0)(m− λn)
+

∫ τ1(0)

0

1

u

(
M(u)n

P (u, 0)
− M(0)n

P (0, 0)

)
du

uλn−m

}
.

Proof. By means of the same auxiliary transverse sections used in the proof of Theorem 2.7 we split up
the time function as

T (s;µ) = T1(s) + T2

(
R1(s)

)
+ T3

(
R2(R1(s))

)
.

The first and third terms in the above expression were already computed in the proof of Theorem 2.7. Let
us take advantage of them for the sake of shortness. Thus, (10) and (13) show respectively that

T1(s) = sm
(
a1 + I0(W )

)
and T3

(
R2(R1(s))

)
= sλn

(
c1ρ

n
2 + I(W )

)
, where ρ2 = δε−λρλ1 .

Let us prove (a) first. So assume that µ ∈W11, i.e., λ(µ)n−m > 1. From (a) in Proposition 2.10 it follows
that T2(s) = V (s/ε) = sm

(
b1 + b2s+ sI(W11)

)
with bi ∈ Cω(W11). Hence, since R1(s) = s

(
ρ1 +I0(W )

)
due

to (a) in Lemma 2.12,

T2

(
R1(s)

)
= sm

(
ρm1 + I0(W )

)(
b1 + b2(ρ1 + I0(W ))s+ sI(W11)

)

= sm
(
b̂1 + b̂2s+ sI(W11)

)

for some b̂i ∈ Cω(W11). (In the first equality above we used Lemma 2.8 to get the remainder terms.) Note
on the other hand that T3

(
R2(R1(s))

)
= sλn

(
c1ρ

n
2 + I(W )

)
= sm+1I(W11) because sλn ∈ sm+1I(W11) due

to λn > m+ 1. Finally the combination of the three developments gives

T (s) = sm
(
a1 + a2s+ sI0(W )

)
︸ ︷︷ ︸

T1

+ sm
(
b̂1 + b̂2s+ sI(W11)

)
︸ ︷︷ ︸

T2

+ sm+1I(W11)︸ ︷︷ ︸
T3

= sm
(
∆1 + ∆11s+ sI(W11)

)
,

where ∆1 = a1 + b̂1 and ∆11 = a2 + b̂2, and this completes the proof of (a).

Let us turn now to the assertion in (b). So assume that µ ∈ W12, i.e., 0 < λ(µ)n − m < 1. Setting
G(x, y) := εmδng(εx, δy), from (a) in Proposition 2.10 it turns out that T2(s) = V (s/ε) where

V (s) = sm
(
b0 + b2s

λn−m + sλn−mI(W12)
)
.

In addition, see Remark 2.11,

b2 =
G(0, 0)

m− λn
+

∫ 1

0

G(u, 0) −G(0, 0)

uλn−m
du

u
= εmδn

(
g(0, 0)

m− λn
+ ελn−m

∫ ε

0

g(u, 0) − g(0, 0)

uλn−m
du

u

)
.
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Recall on the other hand that R1(s;µ) = s
(
ρ1(µ) + I0(W )

)
, where ρ1 is given explicitly in (11). Therefore

T2

(
R1(s)

)
= V

(
s
(
ρ1ε

−1 + I0(W )
))

= sm
(
ρm1 ε

−m + I0(W )
)(
b0 +

(
ρλn−m1 εm−λn + I0(W )

)
b2s

λn−m + sλn−mI(W12)
)

= sm
(
b0ρ

m
1 ε

−m + b2ρ
λn
1 ε−λnsλn−m + sλn−mI(W12)

)
,

where in the second equality we use Lemma 2.8 and in the third one that I0(W ) ⊂ sλn−mI(W12). This
inclusion follows from the fact that if g ∈ I0(W ) then g(s) = sĝ(s) with ĝ analytic on s = 0, and hence we
can write it as g(s) = sλn−msm+1−λnĝ(s) = sλn−mI(W12) because m+ 1 − λn > 0 on W12. Similarly

T3

(
R2(R1(s))

)
= sλn

(
c1ρ

n
2 + I(W )

)
= sm

(
c1ρ

n
2 s
λn−m + sλn−mI(W )

)
,

where recall that ρ2 = δε−λρλ1 . Now the combination of the three developments yields to

T (s) = sm
(
a1 + b0ρ

m
1 ε

−m
︸ ︷︷ ︸

∆1

+ ρλn1 ε−λn
(
b2 + c1δ

n
)

︸ ︷︷ ︸
∆12

sλn−m + sλn−mI(W12)
)
,

where we used I0(W ) ⊂ sλn−mI(W12) again, and this proves the assertion in (b) concerning the expansion
of the time function. Our next goal is to compute ∆12 explicitly. To this end note first that, by applying
Lemma 2.12 to

1

yn

(
f(x, y)∂x + yg(x, y)∂y

)
with f(x, y) =

P (x, y)

xm−1
and g(x, y) =

Q(x, y)

xm
,

we obtain the leading coefficient of T3(s) = sn
(
c1 + I0(W )

)
, namely

c1 = ψ2(ε, 0)n
∫ τ1(0)

εψ1(ε,0)

exp

(
n

∫ x

εψ1(ε,0)

Q(u, 0)

P (u, 0)

du

u

)
xm−1dx

P (x, 0)
.

As usual the key point will be the fact that ∆12 does not depend on δ or ε. Therefore to obtain a simpler
expression we can take limits when both parameters tend to zero. To do this we must first rewrite c1 in
terms of M(u) as follows. With this aim in view observe first that

∫ x

εψ1(ε,0)

Q(u, 0)

P (u, 0)

du

u
=

∫ x

εψ1(ε,0)

(
Q(u, 0)

P (u, 0)
+ λ

)
du

u
− ln

(
x

εψ1(ε, 0)

)λ
,

and hence

exp

(
n

∫ x

εψ1(ε,0)

Q(u, 0)

P (u, 0)

du

u

)
=

(
εψ1(ε, 0)

x

)λn
M(x)n

M
(
εψ1(ε, 0)

)n .

Consequently

c1 =
ψ2(ε, 0)nελnψ1(ε, 0)λn

M
(
εψ1(ε, 0)

)n
∫ τ1(0)

εψ1(ε,0)

M(u)num−λn

P (u, 0)

du

u
.

Thus, since ∆12 = ρλn1 ε−λn
(
b2 + c1δ

n
)
, gathering the expressions of ρ1 in (11), b2 and c1 together, and

taking (17) into account, some easy simplifications show that

∆12 =
σ′

1(0)λnL
(
δψ2(0, δ)

)λn
σ2(0)n

ψ1(0, δ)λnψ2(0, δ)n

{
εm−λn

P (0, 0)(m− λn)
+

∫ ε

0

g(u, 0) − g(0, 0)

uλn−m
du

u

+
ψ2(ε, 0)nψ1(ε, 0)λn

M
(
εψ1(ε, 0)

)
∫ τ1(0)

εψ1(ε,0)

M(u)num−λn

P (u, 0)

du

u

}
.
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The first factor in the above expression does not depend on ε and it tends to
(
σ′

1(0)λL(0)λσ2(0)
)n

as δ −→ 0
since ψi(0, 0) = 1. Similarly, the second one does not depend on δ, but its limit as ε −→ 0 is more delicate.
This factor consists of the addition of three terms, say κ1, κ2 and κ3 respectively. One can easily see that
κ2 −→ 0 as ε −→ 0. Concerning the other two we claim that

lim
ε−→0

(
κ1 + κ3

)
=

τ1(0)m−λn

P (0, 0)(m− λn)
+

∫ τ1(0)

0

1

u

(
M(u)n

P (u, 0)
− M(0)n

P (0, 0)

)
du

uλn−m

and notice that (b) will follow once we prove this. In order to show the claim we introduce the function

N(u) :=





1
u

(
M(u)n

P (u,0) − M(0)n

P (0,0)

)
if u 6= 0,

d
du

(
M(u)n

P (u,0)

)∣∣∣
u=0

if u = 0.

Then
∫ τ1(0)

εψ1(ε,0)

M(u)num−λn

P (u, 0)

du

u
=

∫ τ1(0)

εψ1(ε,0)

(
M(u)n

P (u, 0)
− M(0)n

P (0, 0)

)
um−λndu

u
+
M(0)n

P (0, 0)

∫ τ1(0)

εψ1(ε,0)

um−λn du

u

=

∫ τ1(0)

εψ1(ε,0)

N(u)um−λndu+
M(0)n

P (0, 0)

τ1(0)m−λn −
(
εψ1(ε, 0)

)m−λn

m− λn
.

Therefore, due to M(0) = ψi(0, 0) = 1,

κ1 + κ3 =
εm−λn

P (0, 0)(m− λn)
+
ψ2(ε, 0)nψ1(ε, 0)λn

M
(
εψ1(ε, 0)

)
∫ τ1(0)

εψ1(ε,0)

M(u)num−λn

P (u, 0)

du

u

=
ψ2(ε, 0)nψ1(ε, 0)λn

M
(
εψ1(ε, 0)

)
(
M(0)n

P (0, 0)

τ1(0)m−λn

m− λn
+

∫ τ1(0)

εψ1(ε,0)

N(u)um−λndu

)

+
εm−λn

P (0, 0)(m− λn)

(
1 − ψ1(ε, 0)mψ2(ε, 0)n

M
(
ε, ψ1(ε, 0)

)n

)

︸ ︷︷ ︸
εO(ε)

,

which tends to
τ1(0)m−λn

P (0, 0)(m− λn)
+

∫ τ1(0)

0

N(u)um−λndu

as ε −→ 0 because m + 1 − λn > 0 on W12 and N(u) is analytic at u = 0. So the claim is true and (b)
follows. This completes the proof of the result.

3.2 Third order developments for m = 0

The rest of the present section is devoted to study the case m = 0 and n ∈ N. Assuming this, our aim is to
obtain the third order development of the time function of Xµ for µ ∈ W12 =

{
µ ∈ W : λ(µ) < 1

n

}
, cf. (5).

To this end we introduce, following the usual notation,

W121 :=
{
µ ∈W : 1

n+1 < λ(µ) < 1
n

}
and W122 :=

{
µ ∈W : λ(µ) < 1

n+1

}
.

Proposition 3.2. With the notation in Proposition 2.10 and the above assumptions, if µ ∈W122 then

V (s;µ) = a1(µ) + a12(µ)sλn + a122(µ)sλ(n+1) + sλ(n+1)I(W122),

where the coefficients are analytic functions on W122.
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Proof. Let G1 be the analytic function verifying that G(x, y) = G(0, y) + xG1(x, y). Then

V (s) =

∫

C
ynG(0, y)

dx

x
+ V1(s) where V1(s) :=

∫

C
xynG1(x, y)

dx

x
.

Taking yxλ = sλ into account, an straightforward computation shows that

∫

C
ynG(0, y)

dx

x
=

1

λ

∫ 1

sλ

ynG(0, y)
dy

y
(18)

=
1

λ

∫ 1

0

ynG(0, y)
dy

y︸ ︷︷ ︸
a1

− 1

λ

∫ sλ

0

ynG(0, y)
dy

y︸ ︷︷ ︸
F (sλ)

.

Note that a1 is the coefficient in Proposition 2.10 and that x 7−→ F (x) is an analytic function on x = 0 with

F (x) = G(0,0)
λn xn +

Gy(0,0)
λ(n+1) x

n+1 + o(xn+1).

In order to study V1 we consider the analytic function G2 with G1(x, y) = G1(x, 0) + yG2(x, y). Then

(19) V1(s) =

∫

C
xynG1(x, 0)

dx

x
+ V2(s) where V2(s) :=

∫

C
xyn+1G2(x, y)

dx

x
.

By applying (a) in Proposition 2.10 with (m̂, n̂) = (0, n+ 1) and Ĝ(x, y) = xG2(x, y) it turns out that

(20) V2(s) = â1 + â12s
λ(n+1) + sλ(n+1)I(W122)

because λn̂− m̂ < 1 on W122. Note that in fact â1 = 0 due to Ĝ(0, y) ≡ 0. On the other hand,

∫

C
xynG1(x, 0)

dx

x
= sλn

∫ 1

s

G1(x, 0)
dx

xλn
= sλn

(∫ 1

0

G1(x, 0)
dx

xλn︸ ︷︷ ︸
c1

−
∫ s

0

G1(x, 0)
dx

xλn︸ ︷︷ ︸
f(s)

)

and we claim that f ∈ sλI(W122). To show this take a compact subset K of W122 and let M be a positive
constant such that |G1(x, 0)| 6 M for x ≈ 0. Then, if µ ∈ K,

∣∣∣∣s
−λ
∫ s

0

G1(x, 0)
dx

xλn

∣∣∣∣ 6 M
s1−λ(n+1)

1 − λn
−→ 0 as s −→ 0

uniformly on K since 1 − λ(n+ 1) > 0. On the other hand
∣∣∣∣s
d

ds

(
s−λ

∫ s

0

G1(x, 0)
dx

xλn

)∣∣∣∣ 6 λs−λ
∫ s

0

|G1(x, 0)| dx
xλn

+ s1−λ(n+1)|G1(s, 0)|

6 λM
s1−λ(n+1)

1 − λn
+ s1−λ(n+1)|G1(s, 0)| −→ 0 as s −→ 0

uniformly on K. Therefore the claim is true and thus, from (19) and (20), it follows that

V1(s) = c1s
λn + â12s

λ(n+1) + sλ(n+1)I(W122).

Finally, taking also (18) into account,

V (s) = a1 +
(
c1 − G(0,0)

λn

)
sλn +

(
â12 − Gy(0,0)

λ(n+1)

)
sλ(n+1) + sλ(n+1)I(W122),

and this completes the proof of the result. (Note that the coefficients a1 and a12 = c1 − G(0,0)
λn are the ones

in Proposition 2.10 with m = 0.)
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Theorem 3.3 (Third order development). Let {Xµ, µ ∈W} be the family of vector fields defined in (2)
with m = 0 and n ∈ N. Assume that it verifies the FLP and let T be the time function associated to the

transverse sections Σσ and Στ as introduced in (3). Finally assume that µ ∈ W12 =
{
µ ∈ W : λ(µ) < 1

n

}

with λ(µ) 6= 1
n+1 .

(a) If µ ∈W121 then T (s;µ) = ∆1(µ) + ∆12(µ)sλn + ∆121(µ)s+ sI(W121), where

∆121(µ) =
σ′

1(0)σ2(0)n

n− 1/λ

Qx(0, 0)L(0)

Q(0, 0)2
− σ′

2(0)σ2(0)n−1

Q(0, σ2(0))

+ σ′
1(0)σ2(0)1/λ

∫ σ2(0)

0

(
Qx(0, v)L(v)

Q(0, v)2
− Qx(0, 0)L(0)

Q(0, 0)2

)
vn−1dv

v1/λ
.

(b) If µ ∈ W122 then T (s;µ) = ∆1(µ) + ∆12(µ)sλn + ∆122(µ)sλ(n+1) + sλ(n+1)I(W122), where ∆122 is an

analytic function on W122.

Proof. Concerning the assertion in (a), we shall not compute the explicit expression of the coefficient ∆121.
This follows by means of the same approach as the preceding cases but the computations involved are even
longer. Thus, for the sake of shortness, we prefer not to include it here. Moreover we can obtain the
development of T (s;µ) at s = 0 in a very short way by means of a previous result. Indeed, Theorem A
in [7] shows that if µ ∈ U :=

{
µ ∈W : 1

n+1 < λ(µ) < 2
n

}
then

T (s;µ) = ∆̄0(µ) + ∆̄3(µ)sω(s;λn) + ∆̄4(µ)s+ sI(U),

where ∆̄i are some analytic functions on U. Note that if λ(µ) 6= 1
n then sω(s;λn) = sλn−s

λn−1 . Accordingly,
since W121 ⊂ U, if µ ∈W121 then

T (s) = ∆̄0 + ∆̄3
sλn−s
λn−1 + ∆̄4s+ sI(W121) = ∆̄0 + ∆̄3

λn−1 s
λn +

(
∆̄4 − ∆̄3

λn−1

)
s+ sI(W121).

Setting ∆1 = ∆̄0, ∆12 = ∆̄3

λn−1 and ∆121 = ∆̄4 − ∆̄3

λn−1 , which are analytic functions on W121, this clearly
shows the validity of the expansion in (a).

Finally let us prove (b). So assume that µ ∈ W122 and note that then, in particular, λ(µ) < 1. Exactly
the same way as in the proof of Theorem 2.7, the FLP enables us to split up the time function as

T (s;µ) = T1(s) + T2

(
R1(s)

)
+ T3

(
R2(R1(s))

)
,

where T2 is the time associated to the passage through the saddle between “normalized” transverse sections.
From Proposition 3.2 it follows that

T2(s) = V (s/ε) = b0 + b1s
λn + b2s

λ(n+1) + sλ(n+1)I(W122)

for some bi ∈ Cω(W122). Thus, since R1(s) = s
(
ρ1 + I0(W )

)
by (a) in Lemma 2.12,

T2

(
R1(s)

)
= b0 + b1

(
ρλn1 + I0(W )

)
sλn + b2

(
ρ
λ(n+1)
1 + I0(W )

)
sλ(n+1) + sλ(n+1)I(W122)

= b̂0 + b̂1s
λn + b̂2s

λ(n+1) + sλ(n+1)I(W122).

In the first equality above we use (c) in Lemma 2.8 to obtain the remainder term and in the second one the
fact that I0(W ) ⊂ sλI(W122) due to λ < 1. On the other hand, by applying (b) in Lemma 2.12,

T1(s) = a1 + I0(W ) and T3(s) = sn
(
c1 + c2s+ sI0(W )

)
.
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Figure 5: Phase portrait of the restricted Loud family (21).

Note moreover that R2

(
R1(s)

)
= sλ

(
ρ2 +I0(W )

)
because R2(s) = δ

(
s/ε
)λ
. Then, by Lemma 2.8 and using

again that I0(W ) ⊂ sλI(W122),

T3

(
R2(R1(s))

)
= c1s

λn
(
ρn2 + I0(W )

)
+ c2s

λ(n+1)
(
ρn+1
2 + I0(W )

)
+ sλ(n+1)I(W )

= ĉ1s
λn + ĉ2s

λ(n+1) + sλ(n+1)I(W122).

Finally, since I0(W ) ⊂ sλ(n+1)I(W122) due to λ(n+ 1) < 1, gathering the three developments together we
conclude that

T (s) = a1 + b̂0︸ ︷︷ ︸
∆1

+
(
b̂1 + ĉ1

)
︸ ︷︷ ︸

∆12

sλn +
(
b̂2 + ĉ2

)
︸ ︷︷ ︸

∆122

sλ(n+1) + sλ(n+1)I(W122)

and this completes the proof of (b).

4 Proof of Theorem A

This section is devoted to study the period function of the center at the origin of the vector field

(21) XF (x, y) := y(x− 1)∂x + (x+ Fy2)∂y with F ∈
(
0, 1

2

)
.

Note that this is precisely the subfamily of Loud’s centers (1) that Theorem A refers to. Since the period
annulus is unbounded, it is first of all necessary to compactify R

2 and to this end we use the real projective
plane RP

2 = R
2 ∪L∞. The outer boundary of the period annulus in RP

2 (see Figure 5) is a polycycle made
up with the straight line L1 = {x = 1} and a piece of the line at infinity L∞. Taking (x0, y0) = (1 − x, y),
let us consider the coordinates of RP

2 given by

(x1, y1) =
(

1
y0
, x0

y0

)
and (x2, y2) =

(
1
x0
, y0x0

)
.

It is easy to check that the expression of the vector field in these coordinates is

XF (x1, y1) =
1

x1

(
x1(−F − x2

1 + x1y1)∂x1
+ y1(1 − F − x2

1 + x1y1)∂y1
)
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and

XF (x2, y2) =
1

x2

(
−x2y2∂x2

+ (−x2 + x2
2 + (F − 1)y2

2)∂y2
)

respectively. Note that (x1, y1) = (0, 0) is a hyperbolic saddle of x1XF . However (x2, y2) = (0, 0) is a
degenerate singularity of x2XF and so we must perform a blow-up. The blow-up of RP

2 at this singularity
has an ambient space S1 that can be described topologically as the connected sum of two copies of RP

2.
We can cover a neighbourhood of the exceptional divisor (that can be identified with RP

1) with two charts
coordinated by (t1, x2) and (s1, y2), where y2 = t1x2 and x2 = s1y2. Then one can easily verify that the
pull-back of XF in S1 is given by

XF (t1, x2) =
1

x2

(
(−1 + x2 + Ft21x2)∂t1 − t1x

2
2∂x2

)

and

XF (s1, y2) =
1

s1y2

(
s1(s1 − Fy2 − s21y2)∂s1 + y2(−s1 + (F − 1)y2 + s21y2)∂y2

)

respectively. Notice that x2XF (t1, x2) has not any singularity along the exceptional divisor x2 = 0. In the
second chart, s1y2XF (s1, y2) still has a degenerate singularity at (s1, y2) = (0, 0) and so we must blow-up
again. We obtain in this way a new algebraic surface S2, topologically equivalent to the connected sum of
three projective planes, where the singularities of the pull-back of the foliation determined by XF are all
hyperbolic saddles. Indeed, we can cover a neighbourhood of the second exceptional divisor with two new
charts coordinated by (s1, t2) and (s2, y2) so that y2 = t2s1 and s1 = s2y2. The expression of XF in these
charts is given by

XF (s1, t2) =
1

s1t2

(
s1(1 − Ft2 − s21t2)∂s1 + t2(−2 + (2F − 1)t2 + 2s21t2)∂t2

)

and

XF (s2, y2) =
1

s2y2

(
s2(1 − 2F + 2s2 − 2s22y

2
2)∂s2 + y2(F − 1 − s2 + s22y

2
2)∂y2

)

respectively. At this point we rename the new coordinates in order to unify the notation and we also give
their expressions in terms of the original (x, y) coordinates:

(u0, v0) = (y0, x0) = (y, 1 − x) (u3, v3) = (s1, t2) =
(

1
y ,

y2

1−x

)

(u1, v1) = (y1, x1) =
(

1−x
y , 1

y

)
(u4, v4) = (t1, x2) =

(
y, 1

1−x

)

(u2, v2) = (s2, y2) =
(

1−x
y2 ,

y
1−x

)

Moreover, to study the period function associated to the center of (21), we introduce several auxiliary
transverse sections (see Figure 6) at the desingularized polycycle, namely σi : I −→ Σi for i = 0, 1, . . . , 5.
To make easier the application of the tools developed in the preceding sections, setting

XF (ui, vi) =
1

umi

i vni

i

(
uiPi(ui, vi)∂ui

+ viQi(ui, vi)∂vi

)
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Figure 6: Desingularization of the outer boundary.

for i = 1, 2, 3, we summarize the relevant information for the passage through each saddle as follows:

P1(u, v) = 1 − F + uv − v2 (m1, n1) = (0, 1) σ1(s) =
(
s
η ,

1
η

)

Q1(u, v) = −F + uv − v2 λ1 = F
1−F τ1(s) = (1, s)

(22)

P2(u, v) = 1 − 2F + 2u− 2u2v2 (m2, n2) = (1, 1) σ2(s) = (s, 1)

Q2(u, v) = F − 1 − u+ u2v2 λ2 = 1−F
1−2F τ2(s) = (1, s)

(23)

P3(u, v) = 1 − Fv − u2v (m3, n3) = (1, 1) σ3(s) = (s, 1)

Q3(u, v) = −2 + (2F − 1)v + 2u2v λ3 = 2 τ3(s) =
(

1
η , s
)(24)

These expressions, where we took an arbitrary η > 0, will be used to study the time function from Σ1 to Σ2,
the one from Σ2 to Σ3 and the one from Σ3 to Σ4 respectively. Note in particular that τ i = σi+1. On the
other hand, setting

XF (ui, vi) =
1

vni

i

(
fi(ui, vi)∂ui

+ vigi(ui, vi)∂vi

)
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for i = 0 and i = 4, we have that

f0(u, v) = 1 − v + Fu2 σ0(s) = (0, s) n0 = 0

g0(u, v) = u τ0(s) = (η, s)
(25)

f4(u, v) = −1 + v + Fu2v σ4(s) = (η, s) n4 = 1

g4(u, v) = −uv τ4(s) = (0, s)
(26)

These expressions will be used to study the time function associated to the regular passage from Σ0 to Σ1

and the one from Σ4 to Σ5.

Let us turn now to the study of the period function of the center. Note first that to this end it is enough
to consider the time function from Σ0 to Σ5. Indeed, this is so because it gives half of the period of each
periodic orbit due to the symmetry of XF with respect to {y = 0}. However, for the sake of convenience, we
shall compute this function with respect to the transverse section Σ1. With this aim in view, let us denote
by T0 the time function for −XF from Σ1 to Σ0. Moreover, for i = 1, 2, 3, 4, denote the Dulac and time
mappings for XF from Σi to Σi+1 by Ri and Ti respectively. According to these definitions, it is clear that
the period of the periodic orbit of XF passing through the point (1− s, η) ∈ Σ1 is precisely 2T (s;F ), where

T (s) = T0(s) + T1(s) + T2

(
R1(s)

)
+ T3

(
(R2◦R1)(s)

)
+ T4

(
(R3◦R2◦R1)(s)

)
.

As we said before, we shall apply the results of the preceding sections to study the mappings Ri and Ti. To
do so we first define J :=

(
0, 1

2

)
and set J \ { 1

3} = J1 ∪ J2 with

J1 :=
(

1
3 ,

1
2

)
and J2 :=

(
0, 1

3

)
.

Let us consider first the passage from Σ1 to Σ2. Thus, taking (22) into account, the direct application of
Theorem 3.3 and Lemma 2.13 yield to the following:

Lemma 4.1. Set λ1 = F
1−F . If F ∈ J then R1(s;F ) = sλ1

(
ρ1
1+ρ1

2s
λ1 +sλ1I(J )

)
with ρ1

1 =
(

F
1+η2F

) 1
2(1−F )

.

Moreover, setting

∆1
1 = 1√

F
arctan

(
1

η
√
F

)
and ∆1

12 = − 1
F

(
F

1+η2F

) 1
2(1−F )

,

the following holds:

(a) If F ∈ J1 then T1(s;F ) = ∆1
1 + ∆1

12s
λ1 + ∆1

121s+ sI(J1) with

∆1
121 =

(
1 + η2F

)− 1
2F

∫ 1/η

0

(F + x2)
1

2F
−2 dx

x
1
F
−2
.

(b) If F ∈ J2 then T1(s;F ) = ∆1
1 + ∆1

12s
λ1 + ∆1

122s
2λ1 + s2λ1I(J2).

It is important to mention that the family of vector fields under consideration verifies the FLP because it
has a Darboux first integral (see [12] for instance). To study the passage from Σ2 to Σ3 we apply Theorem 3.1
and Lemma 2.13. From (23) it easily follows:

Lemma 4.2. Set λ2 = F−1
2F−1 . If F ∈ J then R2(s;F ) = sλ2

(
ρ2
1 +I(J )

)
with ρ2

1 =
(

2F−1
2F−3

) 1
4F−2

. Moreover,

setting ∆2
1 = 1

F , the following holds:

(a) If F ∈ J1 then T2(s;F ) = ∆2
1s+ ∆2

11s
2 + s2I(J1).
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(b) If F ∈ J2 then T2(s;F ) = ∆2
1s+ ∆2

12s
λ2 + sλ2I(J2) with

∆2
12 = − 1

F
+

1

1 − 2F

∫ 1

0

((
1 +

2x

1 − 2F

) 4F−1
2−4F

− 1

)
dx

x
F−1
2F−1

.

It remains only the passage from Σ3 to Σ4. In this case for our purpose it suffices the first order expansion
of the time function. Thus, on account of (24), Theorem 2.7 and Lemma 2.13 show that:

Lemma 4.3. Set λ3 = 2. If F ∈ J then R3(s;F ) = sλ3
(
ρ3
1 + I(J )

)
and T3(s;F ) = s

(
∆3

1 + I(J )
)
, where

∆3
1 = (3 − 2F )

1
4F−2

∫ 1

0

(
2 + (1 − 2F )x

) 4F−1
2−4F dx√

x
.

We can now gather all this to obtain the expansion of the period function. This is done in the following
result, which refers to the time function T. Recall that T (s;F ) is precisely half of the period of the periodic
orbit of XF passing through the point (1 − s, η) ∈ Σ1.

Proposition 4.4. Setting ∆1 = π
2
√
F
, the following holds:

(a) If F ∈ J1 then T (s;F ) = ∆1 + ∆2s+ sI(J1) with

∆2 =
1

2

√
π

F

Γ
(

3F−1
2F

)

Γ
(

4F−1
2F

) .

(b) If F ∈ J2 then T (s;F ) = ∆1 + ∆3s
F

1−2F + s
F

1−2F I(J2) with

∆3 =
F

1
2−4F

1 − 2F

∫ ∞

0

((
1 +

2x

1 − 2F

) 4F−1
2−4F

− 1

)
dx

x
F−1
2F−1

.

Proof. By means of the transverse sections introduced after the desingularization of the polycycle we can
split up the time function as

T (s) = T0(s) + T1(s) + T2

(
R1(s)

)
+ T3

(
R2(R1(s))

)
+ T4

(
R̂3(s)

)
,

where R̂3 := R3◦ R2◦ R1. Let us point out that T depends only on F but Ti and Ri depend on η as well.
This will be the key point in order to simplify the leading coefficient of its expansion.

The mappings T1, T2 and T3 are associated to the passage through saddles, whereas T0 and T4 correspond
to “regular” passages. The expansion of the latter ones at s = 0 follows by applying Lemma 2.12. Indeed,
taking (25) and (26) into account we obtain

(27) T0(s) = ∆0
1 + ∆0

2s+ sI0(J ) and T4(s) = s
(
∆4

1 + I0(J )
)

respectively. Lemma 2.12 provides also the concrete expression of ∆0
1, ∆

0
2 and ∆4

1 but this is not relevant for
our purposes. We shall use however that these coefficients tend to zero as η −→ 0. (This is so because then
Σ1 collapses to Σ0 and Σ4 collapses to Σ5.) On the other hand, Lemma 4.1, 4.2 and 4.3 provide respectively
the developments of R1, R2 and R3. Taking them into account, by applying Lemma 2.8 we obtain

(28) R2

(
R1(s)

)
= sλ1λ2

(
ρ2
1(ρ

1
1)
λ2 + I(J )

)
and R̂3(s) = s2λ1λ2

(
ρ̂+ I(J )

)
with ρ̂ = ρ3

1(ρ
2
1)

2(ρ1
1)

2λ2 .

By using Lemma 2.8 once again, the first equality above and Lemma 4.3 yield to

(29) T3

(
R2(R1(s))

)
= sλ1λ2

(
∆3

1ρ
2
1(ρ

1
1)
λ2 + I(J )

)
.
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Let us consider the case F ∈ J1 first. Then, due to R1(s) = sλ1
(
ρ1
1+ρ1

2s
λ1 +sλ1I(J )

)
= sλ1

(
ρ1
1+I(J )

)
,

taking (a) in Lemma 4.2 into account we get

T2

(
R1(s)

)
= ∆2

1s
λ1
(
ρ1
1 + ρ1

2s
λ1 + sλ1I(J )

)
+ ∆2

11s
2λ1
(
(ρ1

1)
2 + I(J )

)
+ s2λ1I(J1)

= ∆2
1ρ

1
1s
λ1 +

(
∆2

1ρ
1
2 + ∆2

11(ρ
1
1)

2
)
s2λ1 + s2λ1I(J1)

= ∆2
1ρ

1
1s
λ1 + sI(J1).

Here we use Lemma 2.8 in the first equality and the fact that 2λ1 > 1 for F ∈ J1 in the third one. On the
other hand from (29) it follows that T3

(
R2(R1(s))

)
= sI(J1) because one can easily verify that λ1λ2 > 1

for F ∈ J1. Therefore, using also the expansion of T1 given by (a) in Lemma 4.1 and the ones in (27),

T (s) =∆0
1 + ∆0

2s+ sI0(J )︸ ︷︷ ︸
T0

+∆1
1 + ∆1

12s
λ1 + ∆1

121s+ sI(J1)︸ ︷︷ ︸
T1

+ ∆2
1ρ

1
1s
λ1 + sI(J1)︸ ︷︷ ︸
T2

+ sI(J1)︸ ︷︷ ︸
T3

+ s
(
∆4

1 + I0(J )
)

︸ ︷︷ ︸
T4

=∆0
1 + ∆1

1︸ ︷︷ ︸
∆1

+
(
∆1

12 + ∆2
1ρ

1
1

)
sλ1 +

(
∆0

2 + ∆1
121 + ∆4

1

)
︸ ︷︷ ︸

∆2

s+ sI(J1).

This shows the validity of the expansion for F ∈ J1 because, from Lemma 4.1 and 4.2, one can easily check
that ∆1

12 + ∆2
1ρ

1
1 = 0. Recall on the other hand that T (s;F ) does not depend on η and so neither do the

coefficients ∆1 and ∆2. Thus, since ∆0
1, ∆0

2 and ∆4
1 tend to zero as η −→ 0,

∆1 = lim
η−→0+

(∆0
1 + ∆1

1) = lim
η−→0+

1√
F

arctan

(
1

η
√
F

)
=

π

2
√
F

and

∆2 = lim
η−→0+

(∆0
2 + ∆1

121 + ∆4
1) = lim

η−→0+

(
1 + η2F

)− 1
2F

∫ 1/η

0

(F + x2)
1

2F
−2 dx

x
1
F
−2

=

∫ +∞

0

(F + x2)
1

2F
−2 dx

x
1
F
−2

=
1

2

√
π

F

Γ
(

3F−1
2F

)

Γ
(

4F−1
2F

) .

This completes the proof of (a). Let us turn now to the assertion in (b) and so assume that F ∈ J2. In this
case, by (b) in Lemma 4.2 and using again that R1(s) = sλ1

(
ρ1
1 + ρ1

2s
λ1 + sλ1I(J )

)
= sλ1

(
ρ1
1 + I(J )

)
, we

obtain

T2

(
R1(s)

)
= ∆2

1s
λ1
(
ρ1
1 + ρ1

2s
λ1 + sλ1I(J )

)
+ ∆2

12s
λ1λ2

(
(ρ1

1)
λ2 + I(J )

)
+ sλ1λ2I(J2)

= ∆2
1ρ

1
1s
λ1 + ∆2

12(ρ
1
1)
λ2sλ1λ2 + s2λ1

(
ρ1
2 + I(J )

)
+ sλ1λ2I(J2)

= ∆2
1ρ

1
1s
λ1 + ∆2

12(ρ
1
1)
λ2sλ1λ2 + sλ1λ2I(J2).

Here we used Lemma 2.8 in the first equality and that s2λ1 ∈ sλ1λ2I(J2), due to λ2 < 2 for F ∈ J2, in the
third one. Gathering this with the expansion of T1 given by (b) in Lemma 4.1 and the ones in (27) and (29)
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we obtain

T (s) = ∆0
1 + ∆0

2s+ sI0(J )︸ ︷︷ ︸
T0

+∆1
1 + ∆1

12s
λ1 + s2λ1

(
∆1

122 + I(J2)
)

︸ ︷︷ ︸
T1

+ ∆2
1ρ

1
1s
λ1 + sλ1λ2

(
∆2

12(ρ
1
1)
λ2 + I(J2)

)
︸ ︷︷ ︸

T2

+ sλ1λ2
(
∆3

1ρ
2
1(ρ

1
1)
λ2 + I(J )

)
︸ ︷︷ ︸

T3

+ s
(
∆4

1 + I0(J )
)

︸ ︷︷ ︸
T4

= ∆0
1 + ∆1

1︸ ︷︷ ︸
∆1

+
(
∆1

12 + ∆2
1ρ

1
1

)
sλ1 + (ρ1

1)
λ2
(
∆2

12 + ∆3
1ρ

2
1

)
︸ ︷︷ ︸

∆3

sλ1λ2 + sλ1λ2I(J2).

In the second equality above we use that s and s2λ1 belong to sλ1λ2I(J2) due to the fact that λ1λ2 < 2λ1 < 1
for F ∈ J2. This proves the validity of the development for F ∈ J2 because λ1λ2 = F

1−2F and we showed

previously that ∆1
12 +∆2

1ρ
1
1 = 0. Consequently it only remains to compute the coefficient ∆3. With this aim

in view notice first that, from Lemma 4.2 and 4.3,

∆2
12 + ∆3

1ρ
2
1 = − 1

F
+

1

1 − 2F

∫ 1

0

((
1 +

2x

1 − 2F

) 4F−1
2−4F

− 1

)
dx

x
F−1
2F−1

+ (1 − 2F )
1

4F−2

∫ 1

0

(
2 + (1 − 2F )x

) 4F−1
2−4F dx√

x

= − 1

F
+

1

1 − 2F

∫ 1

0

((
1 +

2x

1 − 2F

) 4F−1
2−4F

− 1

)
dx

x
F−1
2F−1

+
1

1 − 2F

∫ +∞

1

(
1 +

2y

1 − 2F

) 4F−1
2−4F dy

y
F−1
2F−1

=
1

1 − 2F

∫ +∞

0

((
1 +

2x

1 − 2F

) 4F−1
2−4F

− 1

)
dx

x
F−1
2F−1

,

where the second equality follows after performing the change y = 1/x in the second integral and the last

one by using that 1
F = 1

1−2F

∫∞
1
x−

F−1
2F−1 dx. Finally, since (ρ1

1)
λ2 −→ F

1
2−4F as η −→ 0, the result follows.

Proof of Theorem A. Let us prove the assertions in (a) and (b) first. More concretely, we have to show
that if F ∈ (0, 1

4 ) (respectively, F ∈ ( 1
4 ,

1
2 )) then the period function of the center at the origin of (21) is

monotonous increasing (respectively, decreasing) near the outer boundary of its period annulus. To this
end, since the vector field (21) is symmetric with respect to {y = 0}, it suffices to study the time function
considered in Proposition 4.4. This is so because the period of the periodic orbit of (21) passing through
the point (1 − s, η) ∈ R

2 is precisely 2T (s;F ). Note in addition that this periodic orbit approaches to the
outer boundary of the period annulus as s decreases to zero. Taking this into account, we must prove that
if F ∈ (0, 1

4 ) (respectively, F ∈ ( 1
4 ,

1
2 )) then there exists ε > 0 such that T ′(s;F ) is negative (respectively,

positive) for s ∈ (0, ε).

Let us assume first that F ∈ J2 = (0, 1
3 ). In this case, setting λ = F

1−2F , from (b) in Proposition 4.4 it

follows that T (s;F ) = ∆1 + ∆3s
λ + sλf(s;F ), where f ∈ I(J2) and

∆3(F ) =
F

1
2−4F

1 − 2F

∫ ∞

0

((
1 +

2x

1 − 2F

) 4F−1
2−4F

− 1

)
dx

x
F−1
2F−1

.

Accordingly T ′(s;F ) = λ∆3s
λ−1 + λsλ−1f(s;F ) + sλf ′(s;F ) and then, taking Definition 2.4 into account,

T ′(s;F )

sλ−1
= λ∆3 + λf(s;F ) + sf ′(s;F ) −→ λ∆3 as s −→ 0.
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Due to λ > 0, this shows that if s ≈ 0 then T ′(s;F ) has the same signum as ∆3(F ). Since one can easily
check that ∆3(F ) < 0 for F ∈ (0, 1

4 ) and ∆3(F ) > 0 for F ∈ ( 1
4 ,

1
3 ), this proves the result for F ∈ (0, 1

3 )\{ 1
4}.

(Note that ∆3(
1
4 ) = 0 because F = 1

4 corresponds to an isochronous center.)

Let us consider now the case F ∈ J1 = (1
3 ,

1
2 ). Then, by applying (a) in Proposition 4.4, we can assert

that T (s;F ) = ∆1 + ∆2s+ sg(s;F ), where g ∈ I(J1) and

∆2(F ) =
1

2

√
π

F

Γ
(

3F−1
2F

)

Γ
(

4F−1
2F

) .

Thus T ′(s;F ) = ∆2 +g(s;F )+sg′(s;F ) and hence, on account of Definition 2.4, T ′(s;F ) −→ ∆2 as s tends
to 0. Since it is clear that ∆2(F ) > 0 for F > 1

3 , this shows that T ′(s;F ) is positive for s ≈ 0.

It remains to consider F = 1
3 . This case follows from the results of Zhao [14]. In that paper the author

studies the period function of a subfamily of quadratic centers that intersects the one in (21) at F = 1
3 .

Taking advantage of his result we can assert that the period function for F = 1
3 is globally (i.e., in the whole

period annulus) monotonous decreasing. This completes the proof of (a) and (b).

We can now prove the last assertion in the statement. To this end consider the period function of the
center at the origin of the differential system (1), which depends on the parameter µ := (D,F ) ∈ R

2. Recall
that system (21) corresponds to µ ∈ {0}×

(
0, 1

2

)
. Fix some µ̂ ∈ {0}×

[
1
4 ,

1
2

]
, see Figure 1, and let us show that

it is a bifurcation value of the period function at the outer boundary. To this end it is enough to verify that
any neighbourhood U ⊂ R

2 of µ̂ contains two parameters µ+ and µ− such that the corresponding period
functions have different behaviour near the outer boundary, let us say increasing for µ+ and decreasing
for µ−. The existence of µ+ is guaranteed by (a) in Theorem 1.1 (see Figure 1), whereas the existence of µ−
follows precisely from (b) in the present result, which has already been proved.
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