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Abstract. In this paper we study the period function of centers of planar polynomial differential
systems. With a convenient compactification of the phase portrait, the boundary of the period annulus
of the center has two connected components: the center itself and a polycycle. We are interested in the
behaviour of the period function near the polycycle. The desingularization of its critical points gives
rise to a new polycycle (monodromic as well) with hyperbolic saddles or saddle-nodes at the vertices.
In this paper we compute the first terms in the asymptotic development of the time function around
any saddle that may come from this desingularization process. In addition, we use these developments
to study the bifurcation diagram of the period function of the dehomogenized Loud’s centers. More
generally, the tools developed here can be used to study the return time function around a monodromic
polycycle. This work is a continuation of the results in [7, 8].

1 Introduction and setting of the problem

The present paper deals with planar polynomial differential systems and our goal is to develop tools in order
to study the qualitative properties of the period function of a center. Although this is perhaps the most
natural framework of our work, it will be clear later that the results can be applied in more general settings.
Recall that a critical point p of a planar differential system is a center if it has a punctured neighbourhood
that consists entirely of periodic orbits surrounding p. The largest punctured neighbourhood with this
property is called the period annulus of the center and in what follows it will be denoted by P. The period
function of the center assigns to each periodic orbit in P its period. Questions related to the behaviour of
the period function have been extensively studied. Let us quote, for instance, the problems of isochronicity
(see [4, 5, 6]), monotonicity (see [1, 2, 11]) or bifurcation of critical periods (see [3, 10, 13]).

Compactifying the phase portrait in RP?, the boundary of P has two connected components: the center
itself and a polycycle. We call them respectively the inner and outer boundary of the period annulus. In
this paper we are interested in the behaviour of the period function near the outer boundary. The vertices
of the outer boundary are critical points with a hyperbolic sector inside P and, in case of unbounded period
annuli, some of them are located at infinity. Note in addition that the polycycle may have degenerated
critical points and then it is necessary to desingularize them by means of a blow-up process. One obtains
in this way a desingularized polycycle with hyperbolic saddles or saddle-nodes at its vertices. This allows
to reduce the study of the period function to a local problem, namely the time function associated to the
passage around a saddle or a saddle-node. In this paper we consider the time function around any saddle
that may come from this blow-up process. Taking local coordinates on the separatrices of such a saddle,



the desingularized vector field writes as

1
X(z,y) = pr (zP(x,9)0: + yQ(x,y)dy)

with m,n € Z. The result that we obtain extends a previous one [7] that treats the case m =0 and n € N,
which is useful basically to study only those period annuli such that its outer boundary has all the vertices
at infinity and being hyperbolic saddles (in particular, such that no blow-up process is needed). As in
that paper and since it will be important for subsequent applications, we suppose that the vector field X
depends on a parameter 1 € A C R*. Most part of this paper is devoted to compute the first terms in the
asymptotic development of the time function (see Figure 2) associated to the passage around the saddle of
the family {X,,, u € A}. The development that we obtain is uniform with respect to the parameter and
this is important to remark because this property is essential to investigate the bifurcation diagram of the
period function in a family of centers.

The above study was motivated by the necessity of such a development for the investigation of the period
function of the dehomogenized Loud’s centers, namely

(1)

T =—y+zy,

Y =x+ Dx? + Fy?.
At this point, in order to put our study in context, we must recall the results in [8] and to this end some
definitions are needed. The period function of a center is monotonous increasing (respectively, decreasing)
if for any pair of periodic orbits inside P, say 1 and v2 with 1 C Int(v2), we have that the period of ~, is
greater (respectively, smaller) than the one of v, . (Here by Int(y) we mean the bounded connected component
of R?\ {~}.) It is important to note that the period function is defined on the set of periodic orbits in P. So
usually the first step is to parametrize this set, let us say {7s}se(0,1), and then one can study the qualitative
properties of the period function by means of the map s — period of 7, which is smooth on (0,1). The
critical periods are the critical points of this function and its number, character (maximum or minimum)
and distribution do not depend on the particular parametrization of the set of periodic orbits used. In case
that the differential system depends on a parameter u € A, as it occurs with (1), then the problem is to
obtain the bifurcation diagram of the period function of the center. That is, to decompose the parameter
space as A=UV; in such a way that if p; and po belong to the same set V; then the corresponding period
functions are qualitatively the same. (With this we mean that their critical periods are equal in number,
character and distribution.) The bifurcation values are the boundaries of the sets V; (roughly speaking,
those parameters pg € A for which some critical period emerges or disappears as p tends to ug) and there
are three different cases to consider:

(a) Bifurcations of critical periods from the inner boundary (i.e., the center).
(b) Bifurcations of critical periods from the interior of the period annulus.
(c) Bifurcations of critical periods from the outer boundary (i.e., the polycycle).

The interested reader is referred to [8] for precise definitions. Chicone and Jacobs [3] described completely
the bifurcation of critical periods from the inner boundary for the whole quadratic family. The bifurcations
from the outer boundary for the subfamily (1) are studied in [8]. Let us recall the main result in that paper
and to this end denote by 'y the union of dotted straight lines in Figure 1. Consider also the bold curve I'g.
(Here the subscripts B and U stand for bifurcation and unspecified respectively.) Note in particular that T'g
is a Jordan curve. We can consider therefore the bounded and unbounded components of R? \ T'g, which
we denote by Dp and Zg (for decreasing and increasing) respectively. With this notation, the main result
in [8] is the following:
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Figure 1: Bifurcation diagram of the period function at the outer boundary

Theorem 1.1 (Mardesi¢-Marin-Villadelprat). Denoting u = (D, F), let {X,, p € R*} be the family
of wector fields in (1) and consider the period function of the center at the origin. Then the open set
R2\ {T'g UTy} corresponds to regqular values of the period function at the outer boundary of the period
annulus. In addition,

a o € Ip \ 'y then the period function of X,, is monotonous increasing near the outer boundary.
If po € Ip \ 'y then th jod ti Xyt t 3 ; th ter bound

o € Dp \ I'y then the period function o is monotonous decreasing near the outer boundary.
b) If uo € Dp \ T'y then th jod ti Xy t d ; th ter bound

Finally, the parameters in I'g are bifurcation values of the period function at the outer boundary of the
period annulus.

The curve I'y corresponds, except for the segment (—17 —%) X {%}, to parameters for which the corre-

sponding period annulus has degenerate critical points at its outer boundary. The blow-up process of these
critical points leads to hyperbolic saddles, but the tools developed in [7] are not general enough to study
the associated time functions. We conjectured however that the parameters in I'y; are not bifurcation values
except for the the segment {0} x [0, %] The results obtained in the present paper allow us to show that this
is indeed the case for half of the segment. More concretely, we prove the following:

Theorem A. Denoting u = (D, F), let {X,,, u € R*} be the family of vector fields in (1) and consider the
period function of the center at the origin.

(a) If po € {0} x (0, %) then the period function of X, is monotonous increasing near the outer boundary.

(b) If po € {0} x (i, %) then the period function of X, is monotonous decreasing near the outer boundary.

Moreover the parameters in {0} x [i, %] are bifurcation values of the period function at the outer boundary
of the period annulus.



It remains of course to show that the segment {0} x [07 i] consists of bifurcation values as well and, even

more difficult, that the rest of the parameters in I'yy are not. The machinery developed here will be very
useful to tackle this second issue because the key point to verify that a parameter is not a bifurcation value
(i.e., it is a regular value) is to use developments that are uniform with respect to parameters.

The paper is organized in the following way. Section 2 is devoted to prove Theorem 2.7, which provides
the first order development of the time function around a hyperbolic saddle. This result contemplates all
the possible cases, in the sense that we consider any saddle that may come from the desingularization of a
monodromic polycycle. We introduce moreover the notation and definitions used henceforth. In Section 3
we obtain higher order developments of this time function, but only those cases required for the proof of
Theorem A are considered. More precisely, Teorems 3.1 and 3.3 give respectively the second and third order
developments. Finally in Section 4 we prove Theorem A.

2 First order development

Let W be an open set of R¥ and consider an analytic family of meromorphic vector fields {X u b€ W} of
the form

1
(2) X, (z,y) = p (zP(x,y; 1)z + yQ(z, y; 1) dy)

with m,n € Z. We also assume that P and @ are analytic functions on V x W, where V is an open set of R?
containing the origin, and that verify P(z,0; ) > 0 and Q(0,y; ) < 0. Note then that, for each u € W,
z™y" X, (z,y) is an analytic vector field on V' that has a hyperbolic saddle at the origin with hyperbolicity

ratio given by
Q(0,0; p)

The family {X,, o € W} can be thought as a single vector field Y defined on V x W C R*** whose
trajectories lie on the submanifolds {yt = const}. Let 0 : I x W — X, and 7 : I x W — X, be two
analytic transverse sections to Y defined by

o(s;p) = (01(s; ), 02(s; ); 1) and 7(s; ) = (71(55 1), 7255 )5 1)

such that o1(0; ) = 0 and 72(0; 1) = 0. (Here I stands for a small interval of R containing 0.) We denote
the Dulac and time mappings between the transverse sections ¥, and ¥, by R and T respectively. More
precisely (see Figure 2), if gp(t, (20, Y0); u) is the solution of X,, passing through (zo,y0) at t = 0, for each
s > 0 we define R(s;u) and T'(s; ) by means of the relation

(3) @(T(s;11),0(5); 1) = 7(R(s; 1))

Definition 2.1 We say that {X,,, u € W} verifies the family linearization property (FLP in short) if there
exist an open set U C R? containing the origin and an analytic local diffeomorphism ® : U x W — V x W
of the form ®(x,y; ) = (x + h.o.t.,y + h.o.t.,u) such that

1
! (f(%y;u) ( )y y)>
where f is an analytic function on U x W. g

Remark 2.2 Since, by assumption, the invariant manifolds of the saddle point are located on the axes,
from Definition 2.1 it follows easily that

@y (z,y; 1) = wip1(z,y; 1) and o (x,y; 1) = yapa(,y; 1)
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Figure 2: Definition of 7" in Theorem 2.7.
with ;(0,0; ) = 1. In addition, f(z,y;u) = 2™y"g(z,y; ) where g is an analytic function verifying that
9(0,0; 1) # 0. O

Remark 2.3 It is easy to show that the family of meromorphic vector fields {X,, u € W} defined in (2)
verifies FLP if it has a Darboux first integral

Hy(z,y) = fi(a,y; )W o frola,ys p)Pe ),

where f; € C*(U xW) for some open set U C R? containing the origin and 3; € C*(W). O

Definition 2.4 Let TV be any open subset of R¥. We denote by Z(W) the set of germs of analytic functions
h(s; i) defined on (0,¢) x W for some & > 0 such that

. _Oh(s;p)

iljr(l) h(s;p) =0 and Sllirg)s 5 0
uniformly (on p) on every compact subset of W. We denote moreover by Zo(W) the set of germs of analytic
functions h(s; u) defined on (—e,e) x W for some € > 0 verifying that h(0; u) = 0. O

Remark 2.5 It is clear that Z(W) is closed under the addition and product. Moreover, Zo(W) C Z(W).
Note finally that if f € Z(U)NZ(V), where U and V are two open subsets of R*, then f € ZUUV). O

Definition 2.6 The function defined for s > 0 and a € R by means of

sa—1_q

DN — if a#1,
w(s; ) { log s ifa=1,

is called the Roussarie-Ecalle compensator [9]. O

In order to simplify the expressions that appear in the statement of the next result we introduce the

functions
Y (P(0,y) 1> dy
L(u;p) = exp / ( +-1—=1,
( u) ( o2(0) Q(an) A Y

o[/ (3254)%)




and the covering of the parameter space W given by the open subsets
Wii={peW :m—Au)n <0},

(4) Wai={peW:m—Au)n >0},
Wii={peW:=1<m—Aun < Au)}.

Theorem 2.7 (First order development). Let {X,,, u € W} be the family of vector fields defined in (2)
and assume that it verifies the FLP. Let T be the time function associated to the transverse sections ¥, and
Y. as introduced in (3). Then the following holds:

(a) If p € Wy then T(s; ) = s™(A1(p) + Z(Wh)), where

L(z)™z"™ % dx
x

0
SCRLCREURY e e

(b) If p € Wa then T(s; p) = s (Ag(p) + Z(W2)), where

71(0) xnxmf)\n T
Az(p) = (04(0) a2 (0)L(0))" / M(P)<o>dx

(c) If p € Wy then T(s;p) = s™ (As(p)w(s;m + 1 — An) + Ag(p) + Z(W3)), where Ag(p) and Ay(p) are
analytic on W3. Furthermore, if m — A(uo)n = 0 then
(o1 (0)*L(0)*a2(0))"

A3(:U/0) = P(O 0)

In many situations henceforth we shall study the expansion of the composition or product of two given
functions. By applying the next result (see [7]) we shall obtain the corresponding remainder terms.

Lemma 2.8. Let a,k and r be analytic functions on W and let f(s;pn) and g(s;un) be analytic functions
on (0,e) x W for some € > 0. Assume furthermore that a(u) and r(u) are positive on W and define

p(s; )= s"0 (a(p) + f(sip)).

(a) If f €T and g € Ty then gof € T.

(b) If f € T (respectively Iy) then s¥o o — a¥s*" belongs to s*"T (respectively s*"Ip).
(¢) If f,g € T then (s*g)o ¢ belongs to s*"T.

(d) If g € Iy then gw(s;r) € T.

(e) If g € Iy then (sw(s;r))o(s(a+g)) = s(a"w(s;r) + aw(a;r) + I).

In the statement of the above result in [7] it is also required that k is positive. Let us remark however
that the proof follows exactly the same way without this assumption. This is not the case of the following
result, that will be applied several times in what follows.

Corollary 2.9. Let k and r be analytic functions on W. If k(i) > 0 and k(u)+r(u) > 1 then sfw(s;r) € T.

Proof. An easy manipulation shows that

sfw(s;r) = 1 shw(sh; TEE=L) = 1 (s (s; =L))o sk

Therefore s*w(s;r) = h(s*) with h(s; ) := Esw(s; “£=1) | which belongs to Z by (d) in Lemma 2.8 since
by assumption it holds LZ_I > 0. Accordingly, s*w(s;7) = h oy with h € T and, taking f(s;u) = 0,
o(s;p) = sk(l + f(s; ,u)) Since it is obvious that f € Z, by (¢) in Lemma 2.8 with £ = 0 we conclude that

skw(s;r) = h o ¢ belongs to T. [ |




Consider next an analytic family of meromorphic vector fields of the form

1

Y, = —
O amyn G,y )

(‘Taﬂc - )‘(M)yay) )

where m,n € Z, G is an analytic function and A(u) > 0 for all u € W. Let V (s; 1) be the time that spends
the solution of Y, passing through (s,1) € R? with s > 0 to reach {z = 1}. It is clear that

dx

V(S;u):/wmy”G(fc,y;u) ,
C xr

where C(, )= {(z,y) 1y = (s/z) M s < 2 < 1}. The following result provides the first order development
of V(s;u) at s = 0 for p € W and the expression of its leading coefficient. In addition, since it will be
necessary for the subsequent application, we also give the second order expansion for the case u € Wy
(see (4) for the definition). With this aim in view we introduce the covering of W; given by the open subsets

Wipi={p e Wi: ANp)n —m > 1},
(5) Wig:={p € Wi: Ap)n —m < 1},
Wiz:i={peWi:2> Apu)n—m >1—\u)}.
Proposition 2.10. With the above definitions, the following holds:

(a) If p € Wy then V(s;p) = s™(ay () + fi(s;p)), where fi € Z(Wy) and ay(p) = fol TG0, ut) L,
Moreover the remainder term is given by

s(a11(p) + Z(Wh1)) if p € Wi,

fils;p) = 7™ (ara(p) + Z(Wha)) if p € Wia,
s(alg(p)w(s; An—m) + a1a(p) + I(ng)) if p € Was.

(b) If p € Wy then V(s;p) = 2 (az(p) + Z(W2)), where az(p) = fol um’A"G(u,O)%‘.

(c) If p € Wy then V(s;pu) = s™ (ag(p)w(s;m + 1 — An) + aq(p) + Z(W3)), where a3 and ay are analytic
functions on W3. Moreover, if m — A(po)n = 0 then as(po) = —G(0,0).

Proof. The idea to show this is to take advantage of a similar result proved in [7] that holds for m = 0 and
n > 0. Let us consider first the case p € Wy, i.e., A(u)n —m > 0. To apply the above-mentioned result we
write the function as

dz —m dz
Visin) = [ a9 Gl =™ [y 6 -
c T c T
(Here we use that y = (s/x)* on C.) Then by applying Theorem 3.3 in [7] with 7 = n — m/\, which is
positive due to p € W1, it follows that
s™ (a1 (p) 4 ar1(p)s + sfi1(s;p)) if p € Wiy,
Visip) = s™(a1(p) + ara(u)s™ =™ + s fro(s; p)) if p € Wia,
s™ (a1 (p) + ar(p) sw(s; An —m) + ara(p)s + sfiz(s;p) if p € Wi,

where fi; € Z(Wy;) for i = 1,2,3 and a1 (p) = fol u=mG(0,ut) 2. The “second order” coefficients also
follow from that result. For instance,

oy = CO0 [ G0 GO0

m—An yAn—m U



We claim that V (s; 1) = s™ (a1(n) +Z(W1)) and note that (a) will follow once we prove this. The fact that s
and s*"~™ belong to Z(W}) is obvious and, by (d) in Lemma 2.8, this is also the case of sw(s;An —m).
Finally, since fli S I(Wh) and W1 = W11 U W12 U ng, the claim follows from Remark 2.5.

Let us consider next (b), which corresponds to p € W, i.e., m — A(u)n > 0. It follows by applying (a)
to the vector field }A/u = —¢,(Y,) with ¢(z,y) = (y,). Indeed, following the obvious notation, it turns
out that V(s;p) = V(s;1) and one can check that G(z,y) = 1 G(y,z), (M,A) = (n,m) and X = 1/
Accordingly, since ANi—m= m/A —n is positive for u € Wy, we can take advantage of (a) to conclude that
V(s;p) = 5™ (@1 (n) + f(s3 1)) with f € Z(W2) and

~ N du ! A du
al(u):X/Ou/A G(u 1//\0) /O MG, )u.

Hence, due to f(s*; 1) € Z(W3) by (c) in Lemma 2.8, we have that V (s; p) = V(s A1 @y (u)+Z(Wa)).
)

To prove (c) we take two analytic functions G; and G5 so that G(z,y) = G(0, O) —l—xGl (x,y) +yGa(z,y).
This enables us to decompose the function under consideration as V( w) = Vo(s; ) + Vi(s; ) + Va(s; ),
where Va(s; p) = [, ™y" G (2, y) %, Vi(sip):= [, 2™ 1y Gi(z,y) % and

d ! d
(6) Vo(s; ) := G(0,0) / xmy"% = G(0,0)s’\”/ xm_’\"% = —G(0,0)sMw(s;m + 1 — An).
C s
Note that we can apply (b) with (7, 7) = (m + 1,n) to study V; since m + 1 — An > 0 for u € W3. Hence

(7) Vi(sip) = 5™ (bi(n) + Z(Wa)).

On the other hand, since m — A(n + 1) < 0 for u € W3, we can apply (a) with (m,n) = (m,n + 1) to
study Va. We obtain in this way Va(s; 1) = s™ (ba(u) + Z(W3)). However the first order development of V;
does not suffices for our purpose because we need to show that

(8) Va(s; ) = ba(p)s™ + " g(s; ) with g € T(Ws).
The expression of g follows by applying the second part of (a) with ('ﬁl, ﬁ) = (m,n + 1). Indeed, setting

W= {n € Ws: A(u)(n+1) —m > 1},

Wao={p e Ws: A(p)(n+1)—m <1},

Waz={pneWs:2>Xu)(n+1) —m>1-Au},
one can verify that it is given by

gmtl—An (bgl(,u) +I(W31)) if ue W317
g(sip) = 8™ (baa () + Z(Wa2)) if p € Wag,
ST (hog ()w(s; A(n + 1) — m) 4 boa (1) + Z(Was)) if p € Was.

The first row in the above equality shows that g € Z(Ws;) because s™+1=*" € T(W3) and W3 C Ws.
Clearly from the second one it turns out that g € Z(Wss). Finally the third one shows that g € Z(Ws3).
To see this it suffices to check that s™™'=*"w(s;\(n + 1) —m) € Z(Wa3), and this follows by applying
Corollary 2.9 with k = m+1— An (which is positive on W3) and r = A(n+1) —m because k+r = A+1 > 1.
Thus, due to W5 = W31 U W30 U W33, by Remark 2.5 we can assert that g € Z(W3). This shows the validity
of (8). Now, using that s™ = s*" (14 (m — An)w(s;m + 1 — An)), the expansion in (8) yields to

Va(s; 1) = ™ ((m = An)ba(p)w(s;m + 1= An) + by (n) + Z(W3)).



Figure 3: Transverse sections in Lemma 2.12.

Finally, the combination of this with the expansions in (6) and (7) shows that
V(si 1) = Volsi ) + Vi (s: ) + Valss 1) = ™ (as (u)eo(ssm + 1 — An) + aa(j0) + Z(Wa))
with ag(p) = (m — An)ba(n) — G(0,0) and as(p) = by (1) + ba(p). This concludes the proof of the result. m

Remark 2.11 With the notation introduced in Proposition 2.10, we have shown in its proof that

a1a( /G 00)du
12(1) m — )\n yrn—m i

Let us consider a family of vector fields of the form
1
(9) Xu= yfn(f(z,y;u)ax +yg(@,y; 1)0y),

where n € Z and p € W. The functions f(z,y;u) and g(x,y; 1) are assumed to be analytic on a neighbour-
hood of {y = 0} and depending also analytically on the parameter u. We also consider (see Figure 3) two
analytic transverse sections &(-;p): I — 3, and ((-;u): I — II,, to the integral curve {y = 0}. The next
result (see [7]) provides the first nontrivial term of the Poincaré and time mappings between X, and II,.
More concretely, denoting by cp(t, (z0,Y0); /L) the solution of (9) with initial condition (z,yo), we define

R(s;p) and T(s; i) by means of ¢(T'(s),£(s)) = ¢(R(s)).
Lemma 2.12. If f(z,0) # 0 for all x € [£1(0),1(0)], then

(@) Risip) = s(p() + To(W)) with

A0 “O g(z,0)
P =0 0) &P (/&(0) £(z,0) dx) '

(b) T(s ) = 5" (Aa(p) + To(W)) with

T ¢1(0) * g(u,0) dx
Aal) =&(0) /51(0) op (n /51(0) f(u,0) . f(z,0)

Moreover, if n =0 then T(s; n) = A1 (p) + Ag(p)s + sZo(W) with

GO GO o (4O L0 ([ o)
2400 = S0 = 760~ 4O Loy T p</51(0) Fw0) )d'




Figure 4: Auxiliary sections in the proof of Theorem 2.7.

Proof of the Theorem 2.7. For the sake of simplicity in the formulas we shall omit the parameter de-
pendence when there is no risk of ambiguity.

Take 6 > 0 and € > 0 small enough so that the points (0,4) and (&, 0) belong to the linearizing domain U
(recall Definition 2.1). Thus, taking advantage of the linearizing local diffeomorphism ®, we define two
auxiliary transverse sections Y5 and . to X parameterized by s — ®(s,0) and s — ®(g, s) respectively
(see Figure 4). Next we consider the Dulac and time mappings between ¥, and X5. To this end we use
the parametrization of the corresponding transverse sections. More precisely, if (p(t, (20, Y0); u) denotes the
solution of X, passing through (zo,y0) at ¢t = 0, we define Ry (s; 1) and T4 (s; 1) by means of the relation

o(Ti(s;p),0(s)) = ®(Ri(s;p),0).

We also consider the mappings between X5 and ¥, say Ra(s; 1) and To(s; u), and the ones between ¥, and
Y., say Rs(s;u) and T3(s; u). Exactly as before, these mappings are defined by means of

¢(To(s; 1), ®(s,0)) = (e, Ra(s5 1)) and o (T3(s; ), ®(e, ) = 7(Ra(s: 1))
Now according to these definitions we can split up the Dulac and time mappings as
R(s; ) = R3(R2(R1(s))) and T(s;p) =Ti(s) + To(Ri(s)) + T3 (Ra2(Ri(s))).

It is to be pointed out that T;(s) depend on § and ¢ but that T'(s) as a whole does not. This will be the
key point in order to compute its first nontrivial coefficient.

Lemma 2.12 provides us the expansions of the (regular) mappings from ¥, to X5 and from X, to 3.
Indeed, one can show in this way that

(10) Ri(s) = s(p1 + Zo(W)), Ti(s) = s™ (a1 + Zo(W)) and Ts(s) = s™(c1 + Zo(W)).

Let us remark here that in order to study R; and 77 by means of Lemma 2.12 it is first necessary to perform
the coordinate transformation (x,y) — (y, z). Taking this into account, some computations yield to

A =200 p(0,u)du o4 (0)L(592(0,6) [ 0(0) \3
(11) p1(p) = exp (/02(0) Q(0,u) u ) - ¥1(0,6) (51/12(075))
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and

892(0.9) ¢ P(0,u)du ) 2" tdx
12 au:or'()m/ exp m/ it
( ) 1( ) 1( ) o2(0) o2(0) Q(O,U) u Q(O,l‘)
w (00200 [(gymgn=% dy
= (0)"05(0 7/ -7 = @
1( ) 2( ) o2(0) Q(O,Jf) T

In both equalities above we used that

ool [ anas) = G e 3) ) (G ) e (22)

Note moreover that Ry(s) = §(s/e)* by the FLP. Thus, by (b) in Lemma 2.8, from (10) it follows that

Ry(Ri(s)) = s™(p2 + Zo(W)) with ps = e p7.
Therefore, on account of the expansion of T3 in (10) and by applying Lemma 2.8 again, it turns out that

(13) T3(Ra(R1(s))) = 8™ (05 + Zo(W)) (c1 + Z(W)) = ™ (c1ph +Z(W)).

It remains to study Ta(s; ) and this will be done by means of Proposition 2.10. Since in this result
the transverse sections are assumed to be on {y = 1} and {z = 1}, we must compose the linearizing
diffeomorphism ® with (z,y) — (ez, 6y). We thus consider ®(z,y):= ®(cz,dy) and then from Remark 2.2
it follows that

& 1 . men
X, =9, <xmy"G(ac,y) (20, — Ay%)) with G(z,y):=e™d"g(ex, dy).
(Recall that the existence of g is a consequence of Definition 2.1.) Hence we have that Ts(s; u) = V(s/e; ),
where V(s; p) is the function considered in Proposition 2.10 taking G(z,y) as above.

At this point we can begin with the proof of (a). So assume that p € Wy, i.e., A(u)n —m > 0. In this
case from (a) in Proposition 2.10 it turns out that

1
(14) To(s;p) = V(s/e; ) = s™(by +Z(W1)), where by (u) = 5"/ u’\"_mg(O,(S’\u)‘)@7
0 u

and then, taking (10) into account, the application of Lemma 2.8 shows that T3 (R (s)) = s™ (b1 pT"+Z(W1)).
Note on the other hand that s*™ = s™s*"~™ € s™Z(W;) and so, from (13), we can assert that T3 (R2(Ri(s)))
belongs to s™Z(W1). Therefore, gathering this with the expression of T} in (10) yields to

T(S) = Tl(s) + T2 (R1 (S)) + T3 (RQ(Rl (8))) =s" (a1 + b1p71n +I(W1))
——
Ay
This shows the validity of the expansion of the time function in (a). In order to compute A; explicitly note

first that it does not depend on § or €. Using the expression of the coefficients in (11), (12) and (14), one
can easily verify that

392(0,9) L(l,)mxn—% dx

m

Ay = ay +bipl" = 01(0)"02(0) ¥ /

0 QOx) w
X o1 (0)L(57j)2 ©, 5)) " 02 (0) e ™ Aut @
0 < $1(0,0) ) (¢2(0,5)) /0 9(0,6%u™) o

11



Consequently, since A(p)n —m > 0 for u € Wi and ;(0,0) = 1, we can assert that

/0 L(x)mxn—% d_.T
o2(0) Q(ngj) €z

>3

Al = 6lim0 (a1 + blp’i”) = O'Il (0)m0'2<0)

and this concludes the proof of (a).
Let us turn now to prove (b). So assume that u € Wa, i.e., m — A(u)n > 0. Consider )?u = —p (X))
with ¢(z,y) = (y,x) and note that then, following the obvious notation, T'(s; 1) = T (R(s; y1); j1). Moreover

s 1

Ru= (xP(x, y; )0 + yQ(, y; 1)),

where P(z,y) = —Q(y, ), Q(z,y) = —P(y, z), (m,n) = (n,m) and X =1/ Since A\i — i = m/A — n is
1)

positive on Wy we can apply the previous case. Accordingly f(s =s" (ﬁl(u) + I(Wz)) with

0 E(.Z‘)nl‘m_And_I B Té(O)nT1(O)>‘n /71(0) de
0

(15 Biw) = 0" 0™ [ Pe0) @

no)  P,0) =z B M(T1(0))n

Here we took 7(s) = (72(s),71(s)) and 7(s) = (02(s),01(s)) into account and we used that

0 T
L(z) = exp / ( +A)—+ +A)— | =—F~—7F~.
m(0) \P(u,0) u Jo \P(u,0) u M (71(0))
On the other hand, since the Dulac map depends only on the foliation, by applying Theorem A in [7] to the
vector fields ™y™ X, we get that R(s;p) = s*(p(u) + Z(W)) with

AORAO)
(16) pln) = Wuoﬁwn(o».

Consequently by using (b) and (¢) in Lemma 2.8 it follows that

T(s) = T(R(s)) = s*" (p+ Z(W))" (A1 + Z(W2)) = s ( ﬁg +Z(Wa)).
Ag

Finally, from (15) and (16), an straightforward simplification shows that
~ 71(0) M(z)"z™ = dg
Ay = p"Ay = (a1(0)* OLo”/ —_—
2 P 1 (Ul( ) 02( ) ( ) ) 0 P(IL’,O) T

and this completes the proof of the assertion in (b).
Let us show next (¢). Assume therefore that p € Ws, i.e., =1 < m — A(u) n < A(u). Note first of all that
the substitution s™ = s*" (1 + (m — An)w(s;m + 1 — An)) in the expression of T} in (10) yields to
Ti(s) = ™™ (1 + (m — An)w(s;m + 1 — An)) (a1 + Zo(W))
= s (ar1(m — An)w(s;m + 1 — An) + a1 + Z(W3)).
In the second equality above we use that, since m + 1 — An > 0 on W3, w(s;m + 1 — An)Zo(W) € I(Ws)
by (d) in Lemma 2.8. Recall on the other hand that Ta(s;pu) = V(s/e; ), where V(s; ) is the function
studied in Proposition 2.10 taking G(z,y) = ™d"g(ex,dy). Hence, by applying (c¢) in Proposition 2.10,

V(sip) = s™ (as(p)w(s;m + 1 — An) + as(p) + Z(W3)), where ag(pg) = —G(0,0) for those po € W3 such
that A(ug)n —m = 0. Thus, on account of (10) and applying Lemma 2.8, one can verify that

To(Ri(s)) = V(s(e ' o1 + To(W))) = P (aze™™pl'w(s;m + 1 — An) + ag + Z(W3)).
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In addition from (13) it follows that T3 (R2(R1(s))) = s*"(c1p5 +Z(W)). The combination of these expan-
sions gives

T(s; 1) = Ti(s) + To(Ru(s)) + Ts(Ra(Ri(5))) = s (As(p)w(sim + 1 = An) + Ay(p) + Z(Ws)),

where As(p) = a1(m — An) + aze™™p" and Ay(p) = a1 + ag + c1p4. Consider finally some pg € W3 such
that m — A(uo)n = 0. Then, since az(pg) = —G(0,0) = —™0™g(0,0) and taking (11) into account, we
obtain \
ot (0L (512(0,6))™" oa(0)"
A = —¢(0,0)5"p}" = —g(0,0)— ’ ,
3(ko) = —9(0,0)d" py 9(0,0) 0 (0,0) 7 (0,0)7
which tends to —g(0,0) (0} (0)*L(0)*02(0))" as § — 0 due to 1;(0,0) = 1. Consequently this shows that
As(po) = —g(0,0) (a1 (0)*L(0)*a2(0)) " because Az does not depend on §. We claim that
1
1 - -
(1) 90.9) = 555

and note that the result will follow once we prove this. To show the claim note first that, from Remark 2.2,

_ 1 ‘I)lx ‘I)ly €T
Xu(®(,9) = zmyng(z,y) (‘I’Zm Doy )\ —Ay )

Since ®1(z,y) = z1(z,y) and Po(z,y) = yo(x,y), taking the first component of the vectors above one
can easily conclude that

V1YY ( TP, — )\yl/hy)
g(z,y) = 1+ ;
(@9) P(®(z,y)) 1
which on account of ;(0,0) = 1 proves (17). This completes the proof of the result. [ |

We conclude this section with the following result about the Dulac map. For the sake of convenience it
refers to the family X, in (2) but, since it is clear that this map depends only on the foliation, one may

consider )ZM: zP(z,y; 1)0r + yQ(x,y; )0y instead.

Lemma 2.13. Let {X,, p € W} be the family of vector fields defined in (2) and assume that it verifies the
FLP. Let R be the Dulac map from S, to $. as introduced in (3). Then R(s;p) = s*(p1(p) + f(s; 1)) with
feI(W) and

a1 (0)*a2(0)
73(0)m1(0)*
Moreover, in case that X(p) < 1 for all i € W, the remainder term is given by f(s; ) = s*(p2(p) + Z(W))
where py is an analytic function on W.

p1(p) = L(0)*M (71(0)).

Proof. The first part of the result follows by applying Theorem A in [7]. In order to prove the assertion
concerning the remainder term we take advantage of the fact that X, verifies the FLP and introduce the
auxiliary transverse sections as in the proof of Theorem 2.7 (see Figure 4). Accordingly

R(s; ) = R3(Ra(R1(s))),

where R; and Rj3 are analytic diffeomorphisms by (@) in Lemma 2.12 and Ra(s) = 6(s/¢)*. Thus we have
that Ry(s) = s(a1 +Zo(W)) and hence, from (b) in Lemma 2.8,

Ry(Ri(s)) = 8™ (by + Zo(W)) = 5™ (by + bos + sTo(W))
for some b; € C¥(W). Finally, since R3(s) = c¢15+ ca5? + 52Zo(W), by Lemma 2.8 once again we obtain that
R(s) = c18™ (b1 + bas + sTo(W)) + cas® (b7 + Zo(W)) + s> Z(W)
= 15 + pas® + sPAT(W)

where p; = bic; and ps = b3ca. In the second equality above we take the hypothesis A < 1 into account to
conclude that s’ = s22s1=A = s2AZ(W). This shows the validity of the result. [
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3 Higher order developments

In the previous section we obtained the first order development of T'(s; ) at s = 0 for any u € W and we
computed its leading coefficient. In the present section we study higher order developments but we restrict
ourselves to those cases that are strictly necessary for the subsequent application, namely pu € Wy, see (4).

3.1 Second order developments

Theorem 3.1 (Second order development). Let {X,, n € W} be the family of vector fields defined
in (2) and assume that it verifies the FLP. Let T be the time function associated to the transverse sections
Y, and ¥, as introduced in (3). Finally assume that p € Wy with AM(p)n —m # 1.

(a) If p € Wiy then T(s; ) = s™ (A1 (k) + A11(p)s + sZ(Wh)), where Ay is an analytic function on Wiy,
(b) If p € Wia then T(s;p) = s™ (A1 (1) + Ag2(p)s? ™™ + sA"="I(Wy3)), where

o n 71 (0)" A" O M@ MO\ du
Asz() = (o1(0)*L(0) 02(0)) {P(oo)(m—An) A <p<u,o> ) P(0,0)> e }

Proof. By means of the same auxiliary transverse sections used in the proof of Theorem 2.7 we split up
the time function as

T(S;M) = Tl(S) + T (Rl(S)) + T3 (RQ(Rl(S)))

The first and third terms in the above expression were already computed in the proof of Theorem 2.7. Let
us take advantage of them for the sake of shortness. Thus, (10) and (13) show respectively that

Ti(s) = s™ (a1 + Zo(W)) and T3(Ra(Ri(s))) = s (c1ph + Z(W)), where py = de=*p7.

Let us prove (a) first. So assume that g € Wiy, i.e., A(u)n—m > 1. From (a) in Proposition 2.10 it follows
that To(s) = V(s/e) = s™ (bl +b25+sI(Wll)) with b; € C¥(W11). Hence, since Ry (s) = s(p1 JrIo(W)) due
to (a) in Lemma 2.12,

Ty(Ri(s)) = ™ (0" + Zo(W)) (b1 + ba(pr + To(W))s + sT(Wn))
= 5’”(31 +/b\28 + SI(Wll))

for some b; € C*(Wy1). (In the first equality above we used Lemma 2.8 to get the remainder terms.) Note
on the other hand that T3(R2(R1(s))) = s’ (c1p5 +Z(W)) = s™ T I(W11) because s*™ € s I(Wyy) due
to An > m + 1. Finally the combination of the three developments gives

T(S) =g (a1 + ass + SIO(W)) + Sm(gl —‘rZQS =+ SI(WH)) + 8m+1Z(W11)
Ty T T3

= s (Al + AHS + SI(WM)),

where A; = a; —1—31 and A1 = ay —&—327 and this completes the proof of (a).

Let us turn now to the assertion in (b). So assume that p € Wig, ie., 0 < A(p)n —m < 1. Setting
G(z,y):=¢e"d"g(ex, dy), from (a) in Proposition 2.10 it turns out that Tx(s) = V(s/e) where

V(s)=s™ (bo + by 4 sM_mI(ng)).
In addition, see Remark 2.11,
1 _ £ _
0 U 0

m— \n u)\n—m u)\n—m u

m—An
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Recall on the other hand that Ry (s; ) = s(p1(p) +Zo(W)), where p; is given explicitly in (11). Therefore
Ty (Rl(s)) = V(s(pls_l —l—Io(W)))
= (o= + To(W) (bo + (AN 4 Ty(W))bas T + T I(Wh))

— Sm(bop;nsfm + b2pi\n57/\ns)\n7m + S)\nfmI(WIQ)),

where in the second equality we use Lemma 2.8 and in the third one that Zo(W) C s*~™Z(Wjy). This
inclusion follows from the fact that if g € Zo(W) then g(s) = sg(s) with g analytic on s = 0, and hence we
can write it as g(s) = s "MsMH1=AG(5) = s TMT(Wyy) because m + 1 — An > 0 on Wy,. Similarly

T3(Ra(R1(s))) = 8™ (c1ph + Z(W)) = 8™ (c1p58™ ™™ + s ™I(W)),
where recall that py = e~ *p}. Now the combination of the three developments yields to

T(S) _ Sm(al 4 bop{ng—m_i_pi\n&_—)\n(bz 4 016n) S)\n—m 4 SAn—mI(le))’

Ay Aqz

where we used Zo(W) C s’ ~™Z(W2) again, and this proves the assertion in (b) concerning the expansion
of the time function. Our next goal is to compute Ao explicitly. To this end note first that, by applying
Lemma 2.12 to

1 : P(z,y) Qz,y)

i (P00 +yg(a,9)9, ) with f(z,y) = T and gla,y) = ,

xm

we obtain the leading coefficient of T3(s) = s™(c1 + Zo(W)), namely

() “ Q(u,0) du \ 2™ dx
c1=¢25,0”/ exp n/ /7 )
(¢,0) o) cor(e0) P(@,0) u | P(,0)
As usual the key point will be the fact that Aj5 does not depend on § or . Therefore to obtain a simpler

expression we can take limits when both parameters tend to zero. To do this we must first rewrite ¢; in
terms of M (u) as follows. With this aim in view observe first that

" Q0)du _ [* (Q(u,o) A)d_u_l ( x )A
/51/)1(5,0) P(u,0) u /ewl(s,o) P(u,0) - u N e (g, 0) ’

oo (o [F QuuO)ydu) _ (ea(e, 00\ M)
(L ) - () e

Vo (e,0)"e N (£, 0) / "m0 M@re T du
M(Ewl (57 O))n et (e,0) P(u, 0) u

Thus, since Ay = pie " (b2 + 01(5”), gathering the expressions of p; in (11), by and ¢; together, and
taking (17) into account, some easy simplifications show that

a1 (0" L(81(0,8)) ™" 72(0)" { gmn / 9(u,0) — 9(0,0) du
1(0,0)>455(0, 8)" P(0,0)(m —An) " o

and hence

Consequently

Cc1 =

Aqg =

u)\nfm m

L (60" (e, 0 /ﬁ(” M<u>umdu}
M(eti(e,0)  Jepieoy  Pw,0)  w )
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The first factor in the above expression does not depend on ¢ and it tends to (¢ (0)*L(0)*02(0))" as § — 0
since 1;(0,0) = 1. Similarly, the second one does not depend on 4, but its limit as e — 0 is more delicate.
This factor consists of the addition of three terms, say x1, ko and k3 respectively. One can easily see that
kg — 0 as € — 0. Concerning the other two we claim that

() +/On(o>1(M(u)” M(O)") du

P(0,0)(m — An) uw \ P(u,0)  P(0,0)

s@o(ml + I€3) = uIn—m

and notice that (b) will follow once we prove this. In order to show the claim we introduce the function

M(u)" M(0)" .
v (p&}n - P((O,)O)) if u # 0,

£ (45)
du \ P(u,0)

N(u):=
if u=0.

u=0

Then
/n(m M) um > du /n<0> ( M ()" M(O)”) unNdu - M(0)" /“‘0) = du
€ & &

ey Pw0) u o (e,0) \P(w,0)  P(0,0) u P(0,0) Jey, (c,0) u
71(0) M(0)™ 0 m—An __ 0 m—An
:/ N(u) u™ M du + (0" 71(0) (51/}1(5, )) .
e (e,0) P(O, 0) m—n
Therefore, due to M(0) = ¢,;(0,0) =1,
oty T ¥a(e, 0" (e O /ﬁ“)) M ()" u =" du
P(O’ 0) (m - An) M(Edjl (57 O)) e (g,0) P(”v O) U

- o (6, 0)”1?1 (6, O)A" M(O)" T O)m—An 71(0) o
R M(&/)l (8’ 0)) (P(O’ 0) m—An " /swl (g,0) N(U) ! du

_|_

L 1_ 1/11 (57 O)mq/}2 (57 O)n
P(0,0)(m — An) M (e, ¢1(e,0))" )

eO(¢e)

which tends to

7_1 (O)mf)\n /71(0) Y
S Y EE—— N mTAnd
P(0,0)(m — ) T/, ()™ du
as € — 0 because m +1 — An > 0 on Wiy and N(u) is analytic at w = 0. So the claim is true and (b)
follows. This completes the proof of the result. ]

3.2 Third order developments for m = 0

The rest of the present section is devoted to study the case m = 0 and n € N. Assuming this, our aim is to
obtain the third order development of the time function of X, for p € Wia= {p € W: A(n) < 2}, cf. (5).
To this end we introduce, following the usual notation,

Wigr:={peW: %—H < Ap) < 2} and Wiga:= {pn € W: A(u) <

1

n+1J°

Proposition 3.2. With the notation in Proposition 2.10 and the above assumptions, if u € Wiqo then
V(sin) = ar(p) + ara()s™™ + aroo(p) ¥ + AT (W),

where the coefficients are analytic functions on Wias.

16



Proof. Let G; be the analytic function verifying that G(z,y) = G(0,y) + 2G1(x,y). Then
dx d:z:
V(s) = [ G005 +Va(s) where Vi()i= [ 297 Ga(a)
C C

Taking y2* = s* into account, an straightforward computation shows that

(18) [reonT =3 /

A
dy 1/S dy
—_— nG(0, - nG(0, y)—2
/\/0 ( y)y N, Y ( y)y

F(s*)

Note that a; is the coefficient in Proposition 2.10 and that x — F'(x) is an analytic function on = 0 with

G(0, n 0,0 n n
Fz) = S0 gn 4 SeO0 gotl 4 o(zntt),

In order to study Vi we consider the analytic function G with G1(x,y) = G1(z,0) + yGa(z,y). Then

(19) Vi(s) = /ny”Gl(%O)d?x + Va(s) where Va(s):= /ny”+1G2(x y)dm

By applying (a) in Proposition 2.10 with (m,n) = (0,n 4+ 1) and G(z,y) = ©Gs(z,y) it turns out that
(20) Va(s) = @1 + Q1" 4 SAFUT (W)

because \io — m < 1 on Wiss. Note that in fact @3 = 0 due to é(O, y) = 0. On the other hand,

n de o, [* dx ! dx s dx
/ny ¢, 0% =5 /SGl(:c,O)W & (/0 G, 0) o /Gl(x 0 )

o £(s)

and we claim that f € s*T (Wia2). To show this take a compact subset K of Wias and let M be a positive
constant such that |G1(z,0)| < M for x ~ 0. Then, if 4 € K,

7/\/ GlfL'O

uniformly on K since 1 — A(n + 1) > 0. On the other hand

d s d
( _)‘/ G1(z,0) - )‘ < )\s_)‘/ |G1(m,0)\Tl;L + 5172 D1G (5, 0)
0 x

s1=A(n+1)

< )\MW +817)\(n+1)|G1(S,0)| —0as s—0

uniformly on K. Therefore the claim is true and thus, from (19) and (20), it follows that

s1=A(n+1)
< — 0 as s—0

1—An

Vi(s) = 18N + A1 D s)‘(”H)I(WlQQ).
Finally, taking also (18) into account,
V(S) —a + (Cl _ G()\OT,LO)> gAn + (612 _ f(yé%?))) s>\(n+1) + 8)\(7L+1)I<W122)7
and this completes the proof of the result. (Note that the coefficients a; and a;2 = ¢1 — w are the ones
in Proposition 2.10 with m = 0.) ]
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Theorem 3.3 (Third order development). Let {X,,, n € W} be the family of vector fields defined in (2)
with m = 0 and n € N. Assume that it verifies the FLP and let T be the time function associated to the
transverse sections Y, and Y. as introduced in (3). Finally assume that p € Wis = {u e W: Au) < %}

with A(p) # %_H
(a) If p € Wiy then T(s;u) = Aq(p) + Ara(p)s™™ + Aqar (1)s + sT(Wia1), where

_ 91(0)02(0)" Qu(0,0)L(0) _ 55(0) 02(0)" "
Aq21(p) = n—1/x Q(0, 0)2 - Q(0, 02(0))
: ia [0 (Qe(0,0)L(v)  Q:(0,0)L(0) vt
+ 01(0)o2(0) /)\/0 < Q(0,v)? o Q(0,0)2 ) /X

(b) If i € Wiag then T(s; ) = Aq(p) + Ara(p)s™ + Aqog(p)s* D 4 AEDT(Wao), where Aqgy is an
analytic function on Wiaa.

Proof. Concerning the assertion in (a), we shall not compute the explicit expression of the coefficient A1a;.
This follows by means of the same approach as the preceding cases but the computations involved are even
longer. Thus, for the sake of shortness, we prefer not to include it here. Moreover we can obtain the
development of T'(s; ) at s = 0 in a very short way by means of a previous result. Indeed, Theorem A
in [7] shows that if p € U= {pn e W : n%_l < A(p) < 2} then

T(s; 1) = Do(p) + Az(p)sw(s; An) + Ay(p)s + sZ(U),

An

where A; are some analytic functions on U. Note that if A(u) # + then sw(s;An) = 5——=. Accordingly,
since Wio1 C U, if p € Wio; then

T(s) = Do + 5378}:::{9 + Ays + sT(Wiar) = Ao + )\531 M+ (Ag — 5527 )s + sT(Wia).

Setting A1 = Ay, Ajp = % and Ajg; = Ay — %, which are analytic functions on Wiay, this clearly
shows the validity of the expansion in (a).

Finally let us prove (b). So assume that p € Wia and note that then, in particular, A(u) < 1. Exactly
the same way as in the proof of Theorem 2.7, the FLP enables us to split up the time function as

T(s;p) = T1(s) + Ta(Ri(s)) + Ts(Ra(Ru(s))),

where T5 is the time associated to the passage through the saddle between “normalized” transverse sections.
From Proposition 3.2 it follows that

TQ(S) = V(S/é‘) = bo + bls)‘” + 625/\(”+1) + S)\(n+1)I(W122)

for some b; € C¥(Wi22). Thus, since Ry(s) = s(p1 —|—IO(W)) by (a) in Lemma 2.12,

Tg (Rl(s)) = bo + b1 (p%” + Zo(W))SAn + bg (pi‘(nﬂ) + ZQ(W))SA(H+1) + S)\(n+1)I(W122)
= 30 -|-/b\18>\n +/b\28>\(n+1) + 8/\(n+1)I(W122).

In the first equality above we use (¢) in Lemma 2.8 to obtain the remainder term and in the second one the
fact that Zo(W) C s*Z(Wia2) due to A < 1. On the other hand, by applying (b) in Lemma 2.12,

Ti(s) = ay +Zo(W) and T3(s) = s"(c1 + cos + sTo(W)).
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Figure 5: Phase portrait of the restricted Loud family (21).

Note moreover that Ry (R1(s)) = s*(p2 +Zo(W)) because Ry(s) = 5(3/5)/\. Then, by Lemma 2.8 and using
again that Zo(W) C s*T(Wia2),

T5(Ra(Ru(s))) = c15™ (05 + Zo(W)) + o™ (o5 + Ty (W) + s FHZ(W)
_ /c\lsAn + /c\zsA(n,+1) + Sk(n+1)I(WI22).
Finally, since Zo(W) C s DI (Wig9) due to A(n + 1) < 1, gathering the three developments together we
conclude that R N R
T(s) =ay + by + (bl + /0\1) FIAUNE (bg + /0\2) AnFD 4 S/\(n+1)I(W122)
S ~—-

———r
Ay A1s A1z

and this completes the proof of (b). [ |

4 Proof of Theorem A

This section is devoted to study the period function of the center at the origin of the vector field
(21) Xp(z,y):=y(x —1)d, + (z + Fy*)9, with F €(0,3).

Note that this is precisely the subfamily of Loud’s centers (1) that Theorem A refers to. Since the period
annulus is unbounded, it is first of all necessary to compactify R? and to this end we use the real projective
plane RP? = R2U L. The outer boundary of the period annulus in RP? (see Figure 5) is a polycycle made
up with the straight line Ly = {z = 1} and a piece of the line at infinity L. Taking (zo,y0) = (1 — ,y),
let us consider the coordinates of RP? given by

(l‘layl) = (y%7 z—g) and (l‘z’y2) = (%7 g_(:,) .
It is easy to check that the expression of the vector field in these coordinates is

1
Xrp(z1,y1) = ;(xl(—F — 2]+ 2191)00, + (1= F — a3 +$1y1)8y1)
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and
1 2 2
Xrp(z2,y2) = x—Q(—Myzam + (22 + 23 + (F — 1)y3)dy,)

respectively. Note that (z1,31) = (0,0) is a hyperbolic saddle of 21 Xr. However (x2,y2) = (0,0) is a
degenerate singularity of zoXp and so we must perform a blow-up. The blow-up of RP? at this singularity
has an ambient space S; that can be described topologically as the connected sum of two copies of RP?.
We can cover a neighbourhood of the exceptional divisor (that can be identified with RP') with two charts
coordinated by (t1,z2) and (s1,y2), where yo = t129 and x2 = s1y2. Then one can easily verify that the
pull-back of X in Sy is given by

1
XF(tl, IQ) = ;2 ((71 —+ 2o + Ft%l?g)atl — tﬂ%@z?)

and

1
Xr(s1,y2) = @(81(81 — Fys — s1y2)0s, +y2(—s1+ (F — L)ya + 5%92)6112)

respectively. Notice that 9 X g (t1,z2) has not any singularity along the exceptional divisor o = 0. In the
second chart, s1ysXp(s1,y2) still has a degenerate singularity at (s1,y2) = (0,0) and so we must blow-up
again. We obtain in this way a new algebraic surface S, topologically equivalent to the connected sum of
three projective planes, where the singularities of the pull-back of the foliation determined by X are all
hyperbolic saddles. Indeed, we can cover a neighbourhood of the second exceptional divisor with two new
charts coordinated by (s1,t2) and (s2,y2) so that y2 = t2s1 and s = says. The expression of X in these
charts is given by

1
XF(817t2) = F(Sl(l — Fty — S%tg)asl + tz(—Q + (2F — 1)t2 + 28%752)(9152)
142

and

1
Xr(s2,92) = %(82(1 — 2F 4 255 — 25593)0s, + y2(F — 1 — $2. 4 535)0y,)

respectively. At this point we rename the new coordinates in order to unify the notation and we also give
their expressions in terms of the original (z,y) coordinates:

2

(10, v0) = (30, 70) = (1 ) (us, vs) = (s1,12) = (3, 155
(ur,v1) = (y1,21) = (1—737’ %) (ug,v4) = (t1,72) = (97 ﬁ)

(uz,v2) = (s2,92) = ( y2 7ﬂ)

Moreover, to study the period function associated to the center of (21), we introduce several auxiliary
transverse sections (see Figure 6) at the desingularized polycycle, namely o*: I — 3; for i = 0,1,...,5.
To make easier the application of the tools developed in the preceding sections, setting

1
XF(Ui,U,*) = W(uzpz(uuvz)(?m + viQi(ui,vi)&,i)

2 7
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Figure 6: Desingularization of the outer boundary.

for i = 1, 2,3, we summarize the relevant information for the passage through each saddle as follows:

Pi(uo) =1=Ftuw—v?  (mim)=(0.1)  o'(s)=(51)
(22)
Q1(u,v) = —F + uv — v? A =55 (s) = (1, s)

Py(u,v) =1 — 2F + 2u — 2u?v? (ma,n9) = (1,1) o%(s) = (s, 1)

(23)
Q2(u,v) = F — 1 —u+u?v? Ao = =L 2(s) = (1, s)
P3(u,v) =1— Fv —u?v (m3,n3) = (1,1) o3(s) = (s,1)
(24)
Q3(u,v) = =2+ (2F — 1)v + 2u?v Az =2 3(s) = (%,s)

These expressions, where we took an arbitrary n > 0, will be used to study the time function from ¥; to X,
the one from ¥y to X3 and the one from X3 to X4 respectively. Note in particular that 7¢ = ¢**t!. On the
other hand, setting

1
X (ug,v;) = W(fi(uivvi)aui + v;9:(u, v;) 0y, )

2
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for i = 0 and i = 4, we have that

fo(u,v) =1 —v+ Fu? a%(s) = (0, s) ng =0

25
% go(u,v) = u (s) = (0, s)

fa(u,v) = =1+ v+ Fu?v at(s) = (n,s) ng =1
(26)

g4(u,v) = —uww T4(s) = (0, 5)

These expressions will be used to study the time function associated to the regular passage from ¥ to 3
and the one from ¥4 to Xs.

Let us turn now to the study of the period function of the center. Note first that to this end it is enough
to consider the time function from ¥y to 5. Indeed, this is so because it gives half of the period of each
periodic orbit due to the symmetry of X with respect to {y = 0}. However, for the sake of convenience, we
shall compute this function with respect to the transverse section ¥;. With this aim in view, let us denote
by Ty the time function for —Xp from 31 to ¥g. Moreover, for i = 1,2, 3,4, denote the Dulac and time
mappings for X from ¥; to X,41 by R; and T; respectively. According to these definitions, it is clear that
the period of the periodic orbit of Xz passing through the point (1 —s,7n) € ¥ is precisely 27'(s; F'), where

T(S) = TO(S) + T1 (8) + TQ (Rl(s)) + T3((R20 Rl)(s)) + T4((R30 R20 Rl)(S))

As we said before, we shall apply the results of the preceding sections to study the mappings R; and T;. To
do so we first define J:= (0, %) and set 7 \ {3} = J1 U J> with

Fii= (5,3) and Toe= (0.3).

Let us consider first the passage from X; to . Thus, taking (22) into account, the direct application of
Theorem 3.3 and Lemma 2.13 yield to the following:

1
Lemma 4.1. Set \y = tZ5. If F € J then Ry(s; F) = s (pi+pss* +sMI(J)) with p} = (ﬁ) e

Moreover, setting

1
1_ 1 1 1 9 1 F 200-F)
Al = — arctan (n _F> and Ajy = — % (1+,72F) )

the following holds:

(a) If F € Jy then T1(s; F) = Al + Al,s™ + Al s+ sT(J1) with

1 2\~ 2F 1/n oyt—o dT
A121:(1“‘77F) ; (F +ax)2rF

(b) If F € Jo then Ty(s; F) = A + Alys™ + ALy, s 4 s2MT(().

It is important to mention that the family of vector fields under consideration verifies the FLP because it
has a Darboux first integral (see [12] for instance). To study the passage from Y5 to X3 we apply Theorem 3.1
and Lemma 2.13. From (23) it easily follows:

1

Lemma 4.2. Set Ay = ;;,;_11 IfF € J then Ry(s; F) = s*? (p%—l—I(J)) with p3 = <§§:§> e Moreover,

setting A3 = %7 the following holds:

(a) If F € Jq then Ty(s; F) = A2s + A2, 5% + s°T(Th).
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(b) If F € Jo then Ty(s; F) = A2s + A2,5™2 + s*2T(Jo) with

, 1 I o |\ i dz
A, = —— 1 1| —=.
12 F+1—2F/0 (+1—2F> pIFoT

It remains only the passage from X3 to X4. In this case for our purpose it suffices the first order expansion
of the time function. Thus, on account of (24), Theorem 2.7 and Lemma 2.13 show that:

Lemma 4.3. Set A3 =2. If F € J then Rs(s; F) = s*(p} + Z(J)) and T3(s; F) = s(AY + Z(J)), where
4F—1
2-9F dx

v

We can now gather all this to obtain the expansion of the period function. This is done in the following
result, which refers to the time function 7. Recall that T'(s; F') is precisely half of the period of the periodic
orbit of X passing through the point (1 — s,n) € 3.

A = (3—2F)7 /01<2 +(1- 2F):z:>

Proposition 4.4. Setting A = ﬁ, the following holds:

(a) If F € J1 then T(s; F) = Ay + Ags + sZ(J1) with
1 /7 T (357)
Be =\ 7 7oy
L (%)
(b) If F € Jy then T(s; F) = Ay + AgsT7F + sTFI(J,) with

prw e 20\ d
2—4F €T - X
Ay = 1 —1) .
3 1—2F/0 <(+1—2F) )xi—

Proof. By means of the transverse sections introduced after the desingularization of the polycycle we can
split up the time function as

T(s) =To(s) + Ti(s) + Tn (R1 (S)) + T3 (RQ(R1 (8))) + Ty (Eg(s)),

where Eg := R3o Rgo R;. Let us point out that T' depends only on F' but T; and R; depend on 7 as well.
This will be the key point in order to simplify the leading coefficient of its expansion.

The mappings 717, T» and T3 are associated to the passage through saddles, whereas Ty and T} correspond
to “regular” passages. The expansion of the latter ones at s = 0 follows by applying Lemma 2.12. Indeed,
taking (25) and (26) into account we obtain

(27) To(s) = AY + As + sTo(J) and Tu(s) = s(AT + Zo(T))

respectively. Lemma 2.12 provides also the concrete expression of A{, A9 and A} but this is not relevant for
our purposes. We shall use however that these coefficients tend to zero as n — 0. (This is so because then
%1 collapses to X and X4 collapses to X5.) On the other hand, Lemma 4.1, 4.2 and 4.3 provide respectively
the developments of Ry, Re and R3. Taking them into account, by applying Lemma 2.8 we obtain

(28)  Ro(Ru(s)) = £ (1) + I(T)) and Ra(s) = s (5+ I(T)) with p= ph(p2)2(p}) 2.
By using Lemma 2.8 once again, the first equality above and Lemma 4.3 yield to

(29) T3(Ra(Ri(s))) = s (Api(p))™2 + 2()).
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Let us consider the case F' € 7; first. Then, due to Ry (s) = s* (p} +pss* +sMI(T)) = s* (p1 +Z(T)),
taking (a) in Lemma 4.2 into account we get

To(Ra(s)) = A2 (o) 1 phs™ + M) + AL (1) + T(T)) + M)
= Alpis™ + (A1P2 + A% (p1)? )s M4 $PNI(Th)
— A2l 4 ST,

Here we use Lemma 2.8 in the first equality and the fact that 2A\; > 1 for F € J; in the third one. On the
other hand from (29) it follows that T5(Ra(Ri1(s))) = sZ(J1) because one can easily verify that A\jAs > 1
for F' € J7. Therefore, using also the expansion of 77 given by (a) in Lemma 4.1 and the ones in (27),

T(s) = A(f + Ags + sZo(J) + Al + A125 + A%le + sZ(J)
To Tl
+ Alpis™ + ST(Jh) + sT(Jh) + s(A] + To(T))
N—— S———
Ts T3 Ty
=AY+ A+ (Al + Afpl)s™ + (A + Afy, + AY) s+ sI(J1).

Ay Az

This shows the validity of the expansion for F' € [J; because, from Lemma 4.1 and 4.2, one can easily check
that Al, + A2p1 = 0. Recall on the other hand that T'(s; F) does not depend on 7 and so neither do the
coeﬂiments Ay and Ay. Thus, since A}, A and A} tend to zero as n — 0,

1 T
Ay = lim (A2 +AD) = lim —— arctan () = ——
! 77%0*( ! ) n—0t / F nF 2V F

and

_1 fim d
77—>0+ n*)OJr 0 ;I;F*Q

oo de 1 [x (37
_ ——2 N 2F
_/O (F+x) T2 3 FI‘(4I;I;1)'

This completes the proof of (a). Let us turn now to the assertion in (b) and so assume that F' € J5. In this
case, by (b) in Lemma 4.2 and using again that Ry(s) = s (p} + p3s* + sMI(T)) = s™ (pl +Z(T)), we
obtain

Ty (Ru(s)) = ATs™ (p1 + pys™ + sMI(T)) + ATs™2 ((01)™ + () + sM 2 I(Ta)
= Alpls™ + Aly(p1) 2122 + 57 (o5 + T(T)) + s I(T2)
= Alpis™ + Afy(p1) 2N + SMNT(T).

Here we used Lemma 2.8 in the first equality and that $2M e s>‘1’\21'(j2), due to Ay < 2 for F' € Js, in the
third one. Gathering this with the expansion of T given by (b) in Lemma 4.1 and the ones in (27) and (29)
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we obtain

T(s) =AY + Ads + sTo(T) + Al + Afys™ + 22 (Alyy + I(J))

To T
+ Afpls 4+ M (AL (p) + (o)) + M2 (AT pT (o) + () + s(AT + To(T))
T2 T3 T4
=AY+ AL+ (Al + ATpr)s™M + (p1)2 (A2, + Alp]) sM72 4+ MBI ).
———
Ay Az

In the second equality above we use that s and s2*t belong to sM*2Z(7,) due to the fact that Ay Ay < 2X\; < 1
for F' € J,. This proves the validity of the development for F' € [J, because A1 Ay = % and we showed

previously that Al, + A2pl = 0. Consequently it only remains to compute the coefficient Az. With this aim
in view notice first that, from Lemma 4.2 and 4.3,

4F—1
1 1 ! 2x 2-4F dx
A+ A3 =— = / 1 —1| —=
e e AT 1 2F o
1 B d
+(1—2F)4F1—z/ <2+(12F)x> @
0
1 35
1 n 1 14 2x 1 dx
- F ' 1-2F ), 1—2F pIFoT
4F—1
1 +eo 2y \* 7 dy
1
+172F/1 (+12F> yIF=T

4F—1
1 Foo 2x 2-4F dx
1+ 1| —,
1-2F J, 1-2F r3IF-T

where the second equality follows after performing the change y = 1/x in the second integral and the last

one by using that % = ﬁ floo a2 g, Finally, since (p})*? — [ as 1n — 0, the result follows. &

Proof of Theorem A. Let us prove the assertions in (a) and (b) first. More concretely, we have to show
that if F € (0, §) (respectively, F' € (1,3)) then the period function of the center at the origin of (21) is
monotonous increasing (respectively, decreasing) near the outer boundary of its period annulus. To this
end, since the vector field (21) is symmetric with respect to {y = 0}, it suffices to study the time function
considered in Proposition 4.4. This is so because the period of the periodic orbit of (21) passing through
the point (1 — s,7) € R? is precisely 27'(s; F'). Note in addition that this periodic orbit approaches to the
outer boundary of the period annulus as s decreases to zero. Taking this into account, we must prove that
if F € (0,%) (respectively, F € (4, 3)) then there exists € > 0 such that T”(s; F) is negative (respectively,
positive) for s € (0,¢).

Let us assume first that F € 7> = (0, 3). In this case, setting A = —£—, from (b) in Proposition 4.4 it
follows that T'(s; F) = A1 + Ags™ + s* f(s; F), where f € Z(J2) and

1 4F—1
Frmr [ 9r \Fir dz
As(F) = 1 -1 ——.
3(F) 1—2F/0 (( +1—2F> )x—

Accordingly T'(s; F) = M35 1 + As* 1 f(s; F) + s* f'(s; F) and then, taking Definition 2.4 into account,

T'(s; F)
A1

=AM\3 + Af(s;F) +sf'(s; F) — Az as s — 0.
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Due to A > 0, this shows that if s & 0 then T"(s; F') has the same signum as Agz(F’). Since one can easily

check that Ag(F) < 0for F € (0, %) and Az(F) > 0 for F € (§, 3), this proves the result for F € (0, )\ {3}
(Note that Az(%) = 0 because F' = 1 corresponds to an isochronous center. )

Let us consider now the case F' € J; = (%, %) Then, by applying (a) in Proposition 4.4, we can assert

that T'(s; F) = A1 + Ags + sg(s; F), where g € Z(J1) and

1 /o T 3}27—_1
A2(F):§\/;—FE4FF1;'

2F

Thus T"(s; F) = Ay +g(s; F) + sg’(s; F') and hence, on account of Definition 2.4, T"(s; F) — Ay as s tends
to 0. Since it is clear that Ay(F) > 0 for F > £, this shows that T’(s; F) is positive for s ~ 0.

It remains to consider F' = % This case follows from the results of Zhao [14]. In that paper the author
studies the period function of a subfamily of quadratic centers that intersects the one in (21) at F = %
Taking advantage of his result we can assert that the period function for F' = % is globally (i.e., in the whole
period annulus) monotonous decreasing. This completes the proof of (a) and (b).

We can now prove the last assertion in the statement. To this end consider the period function of the
center at the origin of the differential system (1), which depends on the parameter p:= (D, F) € R?. Recall
that system (21) corresponds to u € {0}x(0, 3). Fix some fi € {0}x[{, 1], see Figure 1, and let us show that
it is a bifurcation value of the period function at the outer boundary. To this end it is enough to verify that
any neighbourhood U C R? of [i contains two parameters py and pu_ such that the corresponding period
functions have different behaviour near the outer boundary, let us say increasing for py and decreasing
for p_. The existence of u4 is guaranteed by (a) in Theorem 1.1 (see Figure 1), whereas the existence of p_

follows precisely from (b) in the present result, which has already been proved. [ |
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