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Abstract. There is a well-known rigidity theorem of Y. Ilyashenko ([10]) for
(singular) holomorphic foliations in CP

2 and also the extension given in [7].
We present here a different generalization of the result of Ilyashenko: some
cohomological and (generic) dynamical conditions on a foliation F on a fibred
surface S imply the d-rigidity, i.e. any topologically trivial deformation of F
is also analytically trivial. We particularize this result to the case of ruled sur-
faces. In this context, the foliations not verifying the cohomological hypothesis
above were completely classified in a precedent work by X. Gómez-Mont ([8]).
Hence we obtain a (generic) characterization of non d-rigid foliations in ruled
surfaces. We point out that the widest class of them are Riccati foliations.

1. Introduction and main results

There is a well-known theorem due to Y. Ilyashenko (see [10]) assuring the topo-
logical rigidity of a wide class of foliations on CP

2. Later, X. Gómez-Mont and
L. Ort́ız-Bobadilla generalize this result in [7] to many foliations on arbitrary alge-
braic surfaces admitting an invariant ample curve. We can also cite the results of
[9], [13] and [14] on the existence and description of a versal space of equisingular
unfoldings. Following the same ideas, it is possible to adapt the proof of Ilyashenko
rigidity theorem to many foliations on fibred surfaces admitting an invariant fibre.
More concretely, we present the main result:

Theorem A. Let S be a fibred compact complex surface (i.e. admitting a sub-
mersion over a complex curve) and let F be a holomorphic foliation on S having
reduced singularities and verifying the following conditions:

(a) There is an invariant irreducible fibre F whose holonomy group is rigid and
such that all the singularities of F over F are hyperbolic.

(b) H1(S,OS(TF)) = 0, where TF is the tangent bundle of the foliation F .

Then, F is d-rigid, i.e. any topologically trivial holomorphic deformation Ft of F
is also analytically trivial.

Remark 1.1. The rigidity of the holonomy group G →֒ Diff(C, 0) means that if
ψ : (C, 0) → (C, 0) is a germ of homeomorphism such that for any g ∈ G the
composition ψ∗g := ψ ◦ g ◦ ψ−1 is an element of Diff(C, 0), then ψ is a conformal
or anticonformal mapping. In particular, if ψ preserves the orientation then ψ is a
biholomorphism. There are many situations assuring the rigidity of G, see [4, 10].
For instance, if G is not abelian and the linear parts of the elements in G form a
dense subset of C∗ then G is rigid. Another situation implying rigidity is when G
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is non solvable (see [15]). We point out that this hypothesis on the rigidity of G
was also required in the precedent versions of that theorem [10, 7].

We will particularize the above result to the case of a ruled surface π : S → B. A
complete study of the coholomogy groups H1(S,OS(L)) for any line bundle L→ S

over a ruled surface is done in [8]. It follows from it that if F is a holomorphic
foliation on S with isolated singularities then H1(S,OS(TF)) = 0 except in the
following four exceptional cases:

(i) The foliation F is the fibration π : S → B, which is unique unless for the
product S = CP

1 × CP
1.

(ii) The foliation F is transverse to a the fibration outside a finite number of
invariant fibres, i.e. when F is a Riccati foliation.

(iii) The foliation F is a regular foliation (i.e. without singularities) over a ruled
surface whose base B is an elliptic curve E. Moreover, if a such foliation F is
not in the precedent two cases then S is a non-ramified finite quotient of the
product CP

1 × E. This class includes the turbulent foliations studied by M.
Brunella in [3] and [2].

(iv) The foliations on the first Hirzebruch surface obtained blowing-up a regular
point of certain foliations on CP

2 (see [8]).

From Theorem A and the precedent considerations we immediately deduce:

Corollary B. Let S be a ruled surface and let F be a holomorphic foliation on
S with reduced singularities. Assume that F possesses an invariant fibre F whose
holonomy group is rigid and the singularities of F over F are hyperbolic. If F does
not belong to the classes (i)-(iv) listed above then F is d-rigid.

Thus, we can conclude saying that Riccati foliations form the widest class of non
rigid foliations on ruled surfaces. Hence it is interesting to determine its analytic
moduli space, see [12].

2. Deformations and unfoldings

In order to explain Theorem A, we begin recalling the difference between topolog-
ically trivial deformations and unfoldings and some well-known facts about them.
In order to simplify the exposition we restrict ourselves to the case in that the
parameter space is a disk ∆ ∋ 0, o more precisely, the germ (∆, 0).

Let S be a complex surface and let F be a (singular) holomorphic foliation on S.
A deformation of F is a deformation π : S → ∆ of S and a holomorphic foliation
by curves F∆ on S such that:

- the singular set Σ of F∆ has codimension greater than 1 and none of its
irreducible components is contained in a fibre of π;

- the leaves of F∆ are contained in the fibres of π, π−1(0) = S and F∆
|S = F .

The deformation F∆ is said to be topologically trivial if there exists a homeo-
morphism Φ : S → S × ∆ commuting with the projections over ∆ such that
Φ∗(F triv) = F∆ (i.e. Φ send leaves of F∆ into leaves of the constant foliation
F triv = F × ∆ on S × ∆). An unfolding of F is a holomorphic foliation G of
codimension one on the total space S of some deformation π : S → ∆ such that the
singular set of G has codimension greater than 1, none of its irreducible components
is contained in a fibre of π, π−1(0) = S and G|S = F .
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Each unfolding G of F determines a deformation in the obvious way: its leaves
are the intersections of the leaves of G with the fibres of π. Clearly, a priori, an
unfolding has a more rich structure than a deformation because in the former we
have prescribed how the one-dimensional leaves are put together in order to form
the two-dimensional leaves of the unfolding. In section 4, we recall some known facts
about unfoldings of holomorphic foliations. The hypothesis on the singularities and
the cohomological assumptions in Theorem A will imply that any unfolding of F
is analytically trivial. Hence, the key step in the proof of Theorem A is a partial
converse of the above remark unfolding implies deformation. More concretely, we
have the following result in the spirit of Ilyashenko’s rigidity theorem, although the
proof presented here is inspired by the exposition of [7].

Theorem 2.1. Let F be a holomorphic foliation in a complex surface S admitting
an invariant curve C such that

(a) each irreducible component of C contains a hyperbolic singularity of F and the
holonomy group of each connected component of C∗ = C \ Sing (F) is rigid;

(b) each leaf L of F verifies L∩C∗ 6= ∅, unless maybe a finite set of closed leaves.

Then every topologically trivial deformation of F is underlying to an unfolding.

Proof. Let F∆ be a topologically trivial deformation of F on π : S → ∆. Let Σ be
the singular set of F∆, which is an analytic set of S of dimension ≤ 1. Consider
the open subset S∗ = S \ Σ of S. Since F∆ is topologically trivial there exists a
homeomorphism Φ : S → S × ∆ commuting with the projection over ∆ such that
Φ∗(F triv) = F∆. Let us consider the topological foliation Gtop = Φ∗(F × ∆) on
S∗ of codimension one whose leaves are Φ−1(L × ∆), where L is any leaf of F .
Notice that the deformation induced by the topological unfolding Gtop is just the
holomorphic deformation F∆. We shall see that Gtop is a holomorphic foliation of
codimension one on S∗ which will extend holomorphically to the whole S thanks
to Hartogs’ theorem, concluding in this way the proof.

Let {Ui, ϕi} be a system of distinguished maps of F∆ restricted to S∗, i.e. Ui

are open set of S∗ and ϕi : Ui → Vi ⊂ C2 are submersions defining F∆
|Ui

. Let us

define the local (topological) foliation Gi = (ϕi)∗(G
top) on Vi.

Since F∆ is topologically trivial, without loos of generality we can assume that
Ui

∼= Ui × ∆, Vi = V 0
i × ∆ and ϕi(p, t) = (ϕt

i(p), t). On the other hand, the holo-
morphy of Gtop is a local property. Hence, it suffices to show that Gi is holomorphic
because Gtop

|Ui

= ϕ∗
iGi. In order to show this, we proceed in four steps:

(I) If Ui ∩ C 6= ∅ then the leaf Ci of Gi corresponding to Φ−1(C × ∆) is holo-
morphic. To see this we will use the existence of a hyperbolic singularity of
F on the corresponding connected component of C∗.

(II) Using the rigidity of the holonomy groupG, we will see that Gi is holomorphic
in a neighborhood of Ci.

(III) Hypothesis (b) implies that Gi is holomorphic outside a finite set of closed
leaves.

(IV) Finally, using a variant of Riemann extension theorem we will conclude that
Gi is holomorphic in the whole open set Vi ⊂ C

2.

(I) Let Σi = Σ0
i ×∆ be a transverse section to F∆ in Ui. In fact, we could identify

Σi with Vi through the restriction to Σi of the map ϕi. Consider pi ∈ C ∩ Σi and
ψi : (Σi, pi) → (Σi, pi) the holonomy transformation associated to a loop turning
around a hyperbolic singularity of F on the connected component of C∗ containing
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pi. We can write ψi(z, t) = (ψt
i(z), t) if z ∈ Σ0

i ⊂ C and t ∈ ∆. The hyperbolicity
of that singularity on C∗ implies that

(1)

∣

∣

∣

∣

∂

∂z

∣

∣

∣

z=0
ψt

i(z)

∣

∣

∣

∣

< 1

holds for t = 0, where the coordinates of the point pi are (z, t) = (0, 0). Hence, if
∆ is small enough then (1) also holds for every t ∈ ∆. Let Zi be the fixed set of
ψi. Thanks to (1), we can apply the Implicit Function Theorem to conclude that
Zi is a regular curve in Vi which is locally the graph of a holomorphic function
zi : ∆ → Σ0

i ⊂ C with zi(0) = 0. It is easy to see that Ci = ϕi(Zi) ⊂ Vi and
consequently, the leaf Ci is holomorphic.

(II) Since zi : ∆ → Σ0
i is holomorphic, we can change the coordinates in order

to have zi ≡ 0 and therefore Ci = ϕi({0} × ∆). Let us consider the local homeo-
morphism φ̄t

i : (C, 0) → (C, 0) which makes commutative the following diagram:

Ui ∩ St
φt

−−−−→ Ui

ϕt

i





y





y

ϕ0

i

(C, 0) −−−−→
φ̄t

i

(C, 0)

where St = π−1(t) and φt = Φ|St
. By construction, φ̄t

i is a topological conjugation

of the holonomies of Ct = φ−1
t (C) and C with respect to the foliations by curves

Ft = F∆
|St

and F . Hypothesis (b) implies that φ̄t
i(z) is holomorphic with respect to

the coordinate z. We shall see that φ̄t
i is also holomorphic with respect to the coor-

dinate t ∈ ∆. To prove this, we consider an analytic family of contractive holonomy
diffeomorphisms ψt

i conjugated to ψ0
i by φ̄t

i. Thanks to the Schroeder linearization
theorem for analytic families of diffeomorphism of (C, 0), cf. for instance [7], there
is an analytic family of linearizing coordinates ζt such that φ̄t

i(ζt) = σ(t)ζ0 for some
continuous function σ : ∆ → C∗. Since the holonomy group G is rigid and contains
a contractive element, we deduce that G is non abelian. Therefore, there exists an
element g ∈ G such that g(ζ0) =

∑

akζ
k
0 with ak 6= 0 for some k > 1. Since the

holonomy element

(φ̄t
i)

−1 ◦ g ◦ φ̄t
i =

∞
∑

k=1

ak

σ(t)k−1
ζk
t

depends analytically on t, we conclude that σ is holomorphic and consequently
φ̄t

i also is holomorphic with respect to t. It is easy to see that Gi is defined in a
neighborhood of Ci by the level sets of the map (z, t) 7→ φ̄t

i(z).
(III) Since the hypothesis (ii) is purely topological, it is also verified by (St,Ft, Ct).

Therefore, for every j, the set V ∗
j of points ϕj(p) ∈ Vj such that the leaf of F∆

through p is adherent to C = Φ−1(C ×∆) =
⋃

t∈∆

Ct in regular points is an open set

whose complementary is a finite union of plaques of Gj . Point (II) implies that C is
a holomorphic leaf of the topological foliation Gtop having a neighborhood where it
is holomorphic. Consider (z, t) ∈ V ∗

j and p ∈ Uj such that ϕj(p) = (z, t). Since the

leaf Lt de F∆ through p accumulates Ct in regular points, there exists q ∈ Lt ∩ Ui

close enough to Ct such that Gi is holomorphic in a neighborhood of ϕi(q) ∈ Vi.
Let γ be a path inside Lt joining the points p and q, and consider the holonomy
transformation ψγ : Vj → Vi of the foliation F∆ associated to γ. It is easy to see
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that Gj = ψ∗
γGi and therefore, Gj is holomorphic in a neighborhood of (z, t). Hence

Gj is holomorphic in V ∗
j .

(IV) Finally, we will prove that Gj is holomorphic in the whole Vj . As we have
seen, Gj can be defined by a continuous function f : Vj → C (sending (z, t) into
f(z, t) = φ̄t

i(z)) which is holomorphic in V ∗
j . By construction, there exist positive

constants r2 > r1 > 0 such that K := {z ∈ Σ0
i : r1 < |z| < r2}×∆ ⊂ V ∗

j . For any
r ∈ (r1, r2), the function

f̃(z, t) =
1

2iπ

∫

|ζ|=r

f(ζ, t)

ζ − z
dζ

is holomorphic in z and coincides with f on V ∗
j . On the other hand,

∂f̃

∂t̄
(z, t) =

1

2iπ

∫

|ζ|=r

∂f
∂t̄

(ζ, t)

ζ − z
dζ = 0,

because f is holomorphic in K ⊂ V ∗
j . It follows from Osgood’s lemma that f̃ is

holomorphic in Vj . Since f̃ = f in V ∗
j and f is continuous in Vj , it follows from the

Riemann extension theorem that f = f̃ is holomorphic in the whole Vj . �

Remark 2.2. Thanks to the rigidity of the non-solvable dynamics in Diff(C, 0) and
the density of contractive fixed points (see [15, 1]), we can substitute the hypothesis
(a) in Theorem 2.1 by

(a’) the holonomy group of each connected component of C∗ = C \ Sing (F) is
non solvable.

3. Fibred surfaces

For a fibred complex surface S we mean a surface admitting an analytic locally
trivial fibration π : S → B over a complex curve B. We will use the following
results of R. Gérard and A. Sec in [5], which were originally inspired by the work
of P. Painlevé (cf. [16]).

Definition 3.1 (Gerard-Sec). A foliation F on S is said to be simple with respect to
a map π : S → B if and only if each point p ∈ S has a F-distinguished neighborhood
U such that the plaque through p meets π−1(π(p)) only in the point p.

Remark 3.2. If S is a compact surface and π : S → B is a submersion it follows
from Ehresmann’s Lemma that π is a locally trivial fibration. In this situation,
assume that F is a (singular) holomorphic foliation on S and let us denote by Σ
the union of the singular set of F and the fibres of π invariant by F . Then it is easy
to see that F|S∗ is simple with respect to π|S∗ : S∗ → B∗, where B∗ = B \ π(Σ)

and S∗ = π−1(B∗).

Theorem 3.3 (Gerard-Sec). If π : S → B is an analytic locally trivial fibration and
F is a simple foliation with respect to π then for each path γ : [0, 1] → B and for
each point p ∈ π−1(γ(0)) there exists a lifting γ̃ of γ to the leaf of F passing through
p = γ̃(0). Moreover, the number of liftings is bounded by an integer depending only
on the point p.

We will also need a theorem of E. Ghys generalizing to the non algebraic case
the well known result of J.-P. Jouanolou concerning the finiteness of closed leaves
of holomorphic foliations, see [11, 6].
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Theorem 3.4 (Ghys). If F is a codimension one (possibly singular) holomorphic
foliation on a compact, connected complex manifold, then F has only a finite number
of closed leaves except when F admits a meromorphic first integral, in which case
all leaves are closed.

Now, we proceed to continue with the following step of the proof of Theorem A.

Proposition 3.5. Under the hypothesis of Theorem A, if we put C = F then the
hypothesis of Theorem 2.1 hold.

Proof. First of all, we point out that if a leaf L of F meets all the fibres of π in
a finite number of points then L is compact. Indeed, the restriction of π : S → B

to L is finite and hence it is a proper map. Secondly, we note that the existence
of a meromorphic first integral of F in S is not allowed because the hyperbolicity
of the singularities of F on F . From Theorem 3.4 we deduce that there is a finite
number of compact leaves of F .

Let L be a non compact leaf of F , i.e. L \ L 6⊂ Sing(F). Using the notations
of Remark 3.2, we fix a point b0 in B∗ and a path γ : [0, 1) → B∗ such that
lim
t→1

γ(t) exists and is equal to b1 = π(F ). For each 0 < t < 1 and for each

point p of L ∩ π−1(b0), we consider the lift γ̃t of γ restricted to [0, t] to the leaf
L such that γ̃t(0) = p. The compactness of S implies that the set A(γ) ⊂ F of
accumulation points of γ̃t, when t tends to 1 and p ranges L∩π−1(b0), is nonempty.
The hyperbolicity of the singularities of F along F implies that A(γ) contains
necessarily some regular point of F . �

4. Some facts about versal unfoldings

A holomorphic unfolding G of a singular foliation F (over a parameter space P of
arbitrary dimension) on a complex surface S is an unfolding admitting a reduction
of the singularities with parameters, see for instance [14] for a proper definition. An
unfolding Gver of F over P ver is called versal if it contains any other unfolding G
of F over P . More precisely, if the there exist a map λP : P → P ver such that we
can complete the pull-back diagram, i.e., S ∼= λ∗PS

ver:

S
λ

−−−−→ Sver





y





y

P
λP−−−−→ P ver

and G ∼= λ∗Gver. In [14], a versal equisingular unfolding is constructed for every foli-
ation F , being P ver a (possibly singular) analytic space. Under some cohomological
assumptions (H1(S,OS(TF)) = H2(S,OS(TF)) = 0) there it is showed that P ver

is smooth and naturally identified with the product of local the parameter spaces
P loc

i corresponding to the local equisingular versal unfoldings of the germs of F at
each singular point pi of F (see also [13]).

It only remains to note that under the hypothesis of Theorem A, the parameter
space of the versal equisingular unfolding of F is trivial. This is a consequence of
the works of X. Gómez-Mont, cf. [9] and J.-F. Mattei and M. Nicolau, cf. [13, 14].
Indeed, if all the singularities of F are reduced then P loc

i = 0. This is also the case
if all them have Milnor number equal to one and non vanishing trace, see [9]. If,
in addition, H1(S,OS(TF)) = 0 then we have P ver = 0, i.e. every equisingular
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unfolding is analytically trivial. To finish the proof of Theorem A, we need only
point out that every unfolding of F is equisingular provided that all the singularities
of F are reduced.
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