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Abstract We study the stability of subcritical multi-class queueing networks
with feedback allowed and a work-conserving head-of-the-line service disci-
pline. Assuming that the fluid limit model associated to the queueing network
satisfies a state space collapse condition, we show that the queueing network is
stable provided that any solution of an associated linear Skorokhod problem is
attracted to the origin in finite time. We also give sufficient conditions ensur-
ing this attraction in terms of the reflection matrix of the Skorokhod problem,
by using an adequate Lyapunov function. State space collapse establishes that
the fluid limit of the queue process can be expressed in terms of the fluid limit
of the workload process by means of a lifting matrix.
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1 Introduction

We consider a multi-class queueing network endowed with J stations that
serve K different customer classes, with K ≥ J ≥ 1. Each customer class can
be served at only one station, and each station has a single server and an
infinite-capacity buffer where customers to be served wait. We allow feedback
and assume a work-conserving (or non-idling) HL (head-of-the-line) service
discipline, that is, servers cannot be idle while there are customers waiting
to be served, customers at each station are ordered taking into account their

R. Delgado
Departament de Matemàtiques. Universitat Autònoma de Barcelona. Edifici C- Campus de
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arrival times, and service is restricted to the oldest customer in each nonempty
class. External inter-arrival times and service times are assumed to be i.i.d.
and mutually independent.

For such a network, we study the question of its stability, that is, the posi-
tive Harris recurrence of the underlying Markov process describing the network
dynamics. It is known that sub-criticality (or light-traffic), that is, traffic in-
tensity strictly less than one at each station, is not sufficient in the general
setting, although necessary, for the stability of a multi-class queueing network.
There has been several attempts to find sufficient conditions in different par-
ticular situations, but the problem in general is not yet completely solved. For
an interesting account of literature on the stability of queueing networks we
refer the reader to [8] and [9] and references therein, and to the monograph
[6].

Our approach is quite standard and consists in establishing the stability
of the fluid limit model associated to the queueing network, which allows to
reduce the initial stochastic problem to a deterministic one, based on the
result due to Rybko and Stolyar [17] generalized by Dai (Theorem 4.2 [10]):
“a queueing network is stable if its corresponding fluid limit model is stable”.
For stability of the fluid limit model it is understood that the fluid limit of the
queue process reaches zero in a finite amount of time and stays there, regardless
of the initial inventory levels. Dai [10] uses a Lyapunov function to obtain the
stability of the fluid limit model via the solution of a Skorokhod problem, for
the generalized Jackson network (K = J) and for the single multi-class station
(J = 1).

Inspired by [10], the present work describes the relationship between the
stability of the queueing network and that of an associated linear Skorokhod
problem (meaning that any solution of the problem is attracted to the origin
in finite time). This relationship has also been studied by Chen and Zhang
[9], which link the stability of a queueing network under a priority service
discipline to the feasibility of a set of linear inequalities defined by network
parameters (that is, to the stability of a linear Skorokhod problem). In our
paper this connection has been made explicit for the first time in the general
context, and it has been established through a kind of state space collapse con-
dition, stated in terms of the fluid limit model associated to the network. In
his works on FIFO and HLPPS (head-of-the-line proportional processor shar-
ing) queueing networks [2] and [3], Bramson relates the stability of a network
with the convergence to equilibria (which is the terminology he uses there for
state space collapse in fluid limits) but using a different approach based on an
entropy function.

The phenomenon of state space collapse had been first established by Whitt
[19] for the single multi-class station but the term was first introduced by
Reiman [16]. This kind of condition has proved to be a key ingredient in the
proof of heavy-traffic limits (when the traffic intensity goes to one) for multi-
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class queueing networks in the light-tailed environment. For references, see for
instance [7] or the introduction of [12].

In a rather informal way, we can introduce state space collapse as follows:
let Wj(t) be the total quantity of time server j needs to complete the service
of all customers in queue (or being served) at station j at time t, and Zk(t)
be the quantity of class k customers in queue (or being served) at time t. If
we scale the queue process Z and the workload process W by a factor r, we
prove in Proposition 1 that both (fluid) limits (u.o.c.)

Z̄(t) = lim
r→∞

Z(r t)

r
and W̄ (t) = lim

r→∞

W (r t)

r
exist almost surely, (1)

and since Z and W satisfy the queueing network equations, then Z̄ and W̄ are
also solution of the deterministic analog of these equations, named the fluid
model equations. State space collapse (in fluid limits) condition is a restriction
on process Z̄(t) in the sense that some relationship between those components
corresponding to customer classes served at the same station must be satisfied,
which is equivalent to say that a deterministic “lifting” operator ∆ from R

J

to R
K exists such that

Z̄ = ∆ W̄ . (2)

Roughly speaking, this assumption means that with the knowledge of the
workload process we do not need any additional information about the queue
process, that is, for each customer class, we can recover the corresponding
queue from the workload at the station at which this class is served, even if
more than one customer class is served at the same station.

State space collapse condition appearing in previous works in relation with
heavy-traffic limit theorems can be stated as

Z∗ = ∆W ∗

where Z∗ and W ∗ are the typically the diffusion limits

Z∗(t) = lim
r→∞

Z(r2 t)

r
and W ∗(t) = lim

r→∞

W (r2 t)

r
.

The heavy-traffic limit establishes that in the light-tailed environment, W ∗ is a
semi-martingale reflecting Brownian motion (SRBM), that is, it is a solution of
a Skorokhod problem on the positive orthant associated to a Brownian motion
process (see [21]). This result is proved under heavy-traffic assumption (the
convergence to 1 of the traffic intensity at each station), state-space collapse
Z∗ = ∆W ∗, and the assumption of the completely-S condition on the reflec-
tion matrix of the Skorokhod problem. The relationship between heavy-traffic
limit theorems for a queueing network and its associated fluid limit model has
been already considered in several works. See for instance [7] and references
therein. In that paper a heavy-traffic limit theorem is proved whose proof
uses the uniform convergence of the critically loaded fluid model associated to
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the queueing network; more specifically, the authors prove that under heavy-
traffic, uniform convergence of the fluid model implies state space collapse
Z∗ = ∆W ∗ . State space collapse has shown to be a key ingredient in proving
heavy-traffic limit theorems in other scenarios too, as is the case of [12], where
it is proved that assuming the other hypotheses hold, state space collapse is
not only sufficient but necessary to obtain a heavy-traffic limit result.

In this paper we discuss in a general setting the connection between stabil-
ity of a network, which must be always considered in the subcritical case, and
stability of the associated linear Skorokhod problem, through the phenomenon
of state space collapse. More specifically, Theorem 1 shows that under any
work-conserving HL service discipline, a subcritical multi-class queueing net-
work satisfying state space collapse (in fluid limits) is stable provided that its
associated linear Skorokhod problem is stable. Theorem 2 gives general con-
ditions on the reflecting matrix of a linear Skorokhod problem under which
it is stable, and as an immediate consequence of both results, Corollary 1
establishes that

“The subcritical queueing network satisfying state space collapse (in fluid
limits) is stable provided that the reflection matrix of the associated linear
Skorokhod problem is a completely-S matrix.”

The crucial fact in the proof of Theorem 1 is that W̄ turns out to be part
of a solution of a linear Skorokhod problem, while in [10] a similar fact for Z̄ is
used instead. Workload seems to be better adapted to the use of the methodo-
logy of the Skorokhod problems than the queue process, and this gave us the
opportunity to make explicit the relationship between the stability of a multi-
class queueing network and that of the linear Skorokhod problem, through
state space collapse (in fluid limits). On the other hand, a key point in the proof
of Theorem 2 is the adequate choice of what is named a Lyapunov function.
Lyapunov functions are commonly used to prove the stability of queueing
systems, and the one introduced in Theorem 2 has proved its usefulness for
this objective.

Proposition 2 shows that stability of the fluid limit model (which implies
sub-criticality) yields that d

d t
D̄k(t) = λk for any fluid class k , D̄ being the

fluid limit of the departure process associated to the network and λk being the
long run customer class k rate into and out of the corresponding station. As
can be seen in Proposition 3, this condition is not only necessary but sufficient
for the stability of the fluid limit model associated to any subcritical queueing
network under FIFO service discipline.

Besides this, in Theorem 3 we prove that condition (5.3) in [6]: “ε > 0
exists such that d

d t
D̄k(t) ≥ λk + ε for any k if Z̄(t) > 0”, is sufficient for

the stability of any subcritical multi-class HL queueing network. This result is
similar to Theorem 5.2 [6] and we provide a brief proof of it using a different
Lyapunov function, by following the ideas of Theorem 2.

The organization of the paper is as follows: in Section 2 we introduce
general notations and the definitions of the linear Skorokhod problem and of
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its stability. Section 3 introduces the multi-class queueing network we deal with
and the queueing network equations that govern the processes associated to the
network. Section 4, where our main results are stated and proved, is devoted
to the study of the stability of the network: Subsection 4.1 introduces the
fluid limit model associated to the network and in Subsection 4.2 we introduce
state space collapse (in fluid limits) and our main results, which give sufficient
conditions for the stability of the queueing network. Finally, Section 5 considers
three particular cases: the FIFO service discipline, the generalized Jackson
network (K = J) and the

∨−system (J = 1), and two illustrating examples:
a tandem queue and a two parallel-server system.

2 Notations and basic definitions

Vectors will be column vectors, v′ means the transpose of a vector (or a matrix)
v, and vector inequalities must to be interpreted componentwise. For any d ≥
1, given v = (v1, . . . , vd)

′ ∈ R
d, hereafter we let diag(v) (or, equivalently, by

diag(v1, . . . , vd) ) stand for the d × d diagonal matrix with diagonal elements
v1, . . . , vd . Let R

d
+ = { v ∈ R

d : v ≥ 0 } be the d−dimensional positive
orthant, and write I for the d−dimensional identity matrix, whatever d ≥ 1
be. Let Z

d
+ = { v = (v1, . . . , vd)

′ ∈ R
d : vi ∈ Z+ } .

For a d−dimensional vector, v = (v1, . . . , vd)
′ , let |v| =

∑

1≤i≤d

|vi| . We will

say that a sequence of d−dimensional vectors {vn}n converges to a d−dimen-
sional vector v if |vn − v| → 0 as n tends to ∞ (this convergence is equivalent
to the convergence in the componentwise sense), and we will denote it simply
by lim

n→∞
vn = v .

For n ≥ 1, let ωn : [0, ∞) → R
d be right continuous functions having limits

on the left on (0, ∞), and let ω : [0, ∞) → R
d be continuous. We will say that

ωn converges to ω as n → ∞ uniformly on compacts (u.o.c.) if for any T ≥ 0,

||ωn(·) − ω(·)||T = sup
t∈[0,T ]

|ωn(t) − ω(t)| → 0 ,

and it is customary to write lim
n→∞

ωn = ω .

For any process X = {X(t), t ≥ 0} and state x, Xx denotes the process
X starting from x (that is, conditioned to X(0) = x).

A square matrix R is called S matrix if there exists a vector u > 0 such that
R u > 0, and it is called completely-S matrix if all of its principal submatrices
are S matrices.

A non-singular square matrix is called M matrix if all its off-diagonal en-
tries are non-positive, all its diagonal entries are positive and has non-negative
row sums with at least one of them positive. It is known that any M matrix
has inverse and its inverse has all entries non-negative.
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Definition 1 (Linear Skorokhod problem)
For any T ≥ 0, R a J × J matrix, θ ∈ R

J and x ∈ R
J
+, we say that the pair

of J−dimensional stochastic processes defined on the same probability space
(W, Y ) with continuous paths, is a solution of the linear Skorokhod problem
LSP(θ, x, R) in the positive orthant R

J
+ restricted to [T, +∞) if:

(i) W (t) ∈ R
J
+ for all t ≥ T ,

(ii) W (t) = x + θ(t − T ) + R (Y (t) − Y (T )) a.s. , t ≥ T ,
(iii) Y has non − decreasing paths on [T, +∞) and for any j = 1, . . . , J ,

Yj increases only when W is on face {w ∈ R
J
+ : wj = 0} , that is ,

∫ ∞

T
Wj(t) d Yj(t) = 0 .

(Then, x = W (T ) ≥ 0 .) R is called the reflection matrix of the Skorokhod
problem.

Remark 1 In the one-dimensional case, the existence of a solution of the Sko-
rokhod problem with reflection matrix R is assured if R > 0 for any θ and
x (see Theorem I.1.2 [14]). For the J−dimensional case, Theorem 2 [1] shows
that the completely-S property is a sufficient assumption on matrix R (also
necessary in some cases) for the existence of the Skorokhod problem. Proposi-
tion 4.2 [20] shows that under a stronger assumption on R, there exists strong
path-wise uniqueness of the solution (see Remark 6 below).

Definition 2 (Stability of a linear Skorokhod problem)
We say that a linear Skorokhod problem LSP(θ, x, R) in the positive orthant
R

J
+ restricted to [T, +∞) and with R being a completely-S matrix, is stable if

tR ≥ 0 exists such that for any solution pair (W, Y ) of the problem,

W (t) = 0 ∀t ≥ T + tR |x| .

Informally speaking, we say then that W is attracted to the origin in a finite
time.

3 The multi-class queueing network

In this section we introduce the multi-class queueing network we deal with.
Although it can be found in the literature (see [5], [6], [10] and [21], among
others), we state here definitions and notations for the convenience of the
reader.

We consider an open network composed of J ≥ 1 single-server stations
labeled j = 1, . . . , J , which give some service to the customers. Each station
has an infinite-capacity buffer where customers wait for service. We distinguish
among customers of classes k = 1, . . . , K, with K ≥ J . Each customer class
can be served at only one station but at each station more than one customer
class can be served, and s denotes the many-to-one map from customer classes
to stations, s : {1, . . . , K} −→ {1, . . . , J}, s(k) being the station where class k
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customers are served. We also introduce the J×K (deterministic) constituency
matrix C =

(

Cjk

)

j,k
by

Cjk =

{

1 if j = s(k)

0 otherwise

For any j, s−1(j) is the constituency of station j, that is, the set of customer
classes served at this station. Let αk ≥ 0 be the arrival rate (from outside)
for class k customers and α = (α1, . . . , αK)′. Let mk > 0 be the mean service
time for class k customers, m = (m1, . . . , mK)′ and M = diag(m) .

Although it is not considered any specific distribution for the inter-arrival
times nor the service times, we assume the standard mild regularity conditions
(which are automatically accomplished by the exponential distribution). See
for instance (1.2) − (1.5) in [10].

Customers at each station are served in a head-of-the-line (HL) and work-
conserving (or non-idling) discipline. Upon being served at station s(k), with
probability Pkℓ a class k customer leaving station s(k) goes next to station

s(ℓ) to be served there as a class ℓ customer. We assume
∑K

ℓ=1 Pkℓ ≤ 1 for

any k . Then, 1−∑K
ℓ=1 Pkℓ ≥ 0 is the probability that upon service at station

s(k), a class k customer goes outside the network. Thus, P = (Pkℓ)
K
k,ℓ=1 is

a sub-stochastic matrix. It is called the “flow” or “routing” matrix of the
network, and it is assumed to have spectral radius strictly less than one. Hence,

Q =
(

I − P ′
)−1

= I + P ′ + (P ′)2 + · · · is well defined (that is, the network
is open since all customers eventually leave the network after receiving service
at a finite number of stations).

We define λ to be the unique K−dimensional vector solution to the traffic
equation λ = α + P ′ λ (= Q α ) . Then, λk can be interpreted as the long run
class k customers rate into and out of station s(k). We also define the fluid
traffic intensity for station j as

ρj =
∑

k∈s−1(j)

λk mk

(

or ρ = C M λ
)

. (3)

Sub-criticality (light-traffic) condition is: ρj < 1 for any j = 1, . . . , J or in
vector form, ρ < e, with e = (1, . . . , 1)′ .

The exogenous arrival process and the process of served customers are re-
spectively defined by: Ek(t) is the cumulative amount of class k customers
arrived to the system from outside up to time t, and Sk(t) is the cumulative
number of class k customers served at station s(k) up to time t if server
s(k) devotes all attention to class k. The cumulative service time process
Υ = {Υ (n) }n∈NK is defined by: Υk(nk) is the total amount of service required
for the first nk class k customers in being served (including the remaining
service time at time 0 for the first one). Then, E(0) = S(0) = Υ (0) = 0 . Fi-
nally, the routing process Φ = {Φ(n) }n∈N is defined by: Φk(n) =

∑n
i=1 φk(i) ,

where φk(i) = {φk
ℓ (i), ℓ = 1, . . . , K} varying i ∈ N, are i.i.d. random vectors
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(independent of the inter-arrival and service time processes), at most with one
component equal to 1, the others being 0; the nonzero component corresponds
to the class to which the ith class k customer is converted next, with φk(i) = 0
indicating the departure of the customer from the network.

The following descriptive processes, A, D, T, Z, W and Y , will be used to
measure the performance of the queueing network: Ak(t) is the cumulative
number of arrivals (from outside and by feedback) by time t to customer class
k and Dk(t) is the cumulative number of departures from class k (to other
classes or to outside). Tk(t) is the cumulative amount of service time spent
on customer class k by time t. Zk(t) is the amount of customers of class k in
the network (in queue or being served) at time t. Wj(t) denotes the workload
or amount of time required by server at station j to complete service of all
customers in queue or being served at time t, and Yj(t) is the cumulative
amount of time that the server at station j has been idle in the interval [0, t].
By definition, T and Y are nondecreasing processes which depend on the
service discipline, and A(0) = D(0) = T (0) = Y (0) = 0. These processes are
related by means of the following queueing network equations:

A(t) = E(t) +

K
∑

k=1

Φk (Dk(t)) , (4)

Z(t) = Z(0) + A(t) − D(t) , (5)

Dk(t) = Sk (Tk(t)) for any k = 1, . . . , K , (6)

C T (t) + Y (t) = e t , (7)
∫ ∞

0

Wj(t) d Yj(t) = 0 for any j = 1, . . . , J , (8)

W (t) = C Υ (Z(0) + A(t)) − C T (t) . (9)

Equation (7) is nothing but the statement that “total time can be split into
working time plus idle time”. Equation (8) expresses that idle time Yj can
only increase when workload Wj is zero; this is exactly the definition of the
assumed non-idling or work-conserving discipline. Equations (4), (5), (6) and
(9) are self-explained.

As we assume throughout this work that the service discipline is head-of-
the-line (HL), that is, only the oldest customer of each class can receive service,
we have the additional queueing network equation:

Υ (D(t)) ≤ T (t) < Υ (D(t) + e) . (10)

The previous equations do not specify the service discipline. For each partic-
ular HL discipline we would have one more queueing network equation. For
example, in the special case of a FIFO (first-in-first-out) discipline, the addi-
tional equation is:

Dk(t + Ws(k)(t)) = Zk(0) + Ak(t) for any k = 1, . . . , K . (11)
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Corresponding equations for the GHLPPS (generalized-head-of-the-line pro-
portional processor sharing) and SBP (static buffer priority) disciplines can
be found in (4.12) and (4.14) [7], respectively.”

Let us denote by Ψ the process Ψ(·) =
(

A(·), D(·), T (·), Z(·), W (·), Y (·)
)

.

4 Stability of a network

By definition, a queueing network is stable if the associated underlying (stron-
gly) Markov process is positive Harris recurrent (see [6], among others, for
details). The main criterion for the positive Harris recurrence of a Markov
process is the limit in Theorem 3.1 [10], which borrow from Theorem 2.1(ii)
[15]. Unfortunately this limit is not easy to check directly, so in order to make
it practical we will use the standard fluid approximation, which is based in
the introduction of the fluid limit model associated to the queueing network.
It is known that the queueing network is stable (that is, the limit in Theorem
3.1 [10] holds) whenever the corresponding fluid limit model is stable (see
Theorem 4.2 [10]). Then, in order to obtain conditions ensuring the stability
of the network we can reduce ourselves to the research of sufficient conditions
for the stability of the fluid limit model.

4.1 The fluid limit model

Next proposition is analogue to Theorem 4.1 [10] (see also Lemma 3.1 in [11]),
and it makes it legitimate the definition of the fluid limit associated to a
queueing network. A initial state for process Ψ(·) will be determined by the
initial number of customers of each class in the system, say z ∈ Z

K
+ , since for

the other components of Ψ(·), the initial state can be assumed to be 0, except
for the workload, whose initial state is a function of z.

Proposition 1 If ρ < e, for almost all sample paths and any sequence of
initial states {zn}n ⊂ Z

K
+ with limn→∞ |zn| = +∞, a subsequence {znj

}j ⊢
{zn}n with limj→∞ |znj

| = +∞, a vector z̄ ∈ R
K
+ , and stochastic processes

Ā, D̄, T̄ , Z̄, W̄ and Ȳ exist, such that

lim
j→+∞

1

|znj
| Ψznj (|znj

|t) = Ψ̄(t) (u.o.c.) and Z̄(0) = z̄ (12)

with Ψ̄(·) =
(

Ā(·), D̄(·), T̄ (·), Z̄(·), W̄ (·), Ȳ (·)
)

. Furthermore, these processes
satisfy the following equations, which are the deterministic analogs of the
queueing network equations (4)-(10) obtained by replacing the random vectors
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governing the system (E, S, Υ and Φ) by their respective means:

Ā(t) = α t + P ′ D̄(t) , (13)

Z̄(t) = z̄ + Ā(t) − D̄(t) (14)

= z̄ + α t − (I − P ′)M−1 T̄ (t) , (15)

D̄(t) = M−1 T (t) , (16)

C T̄ (t) + Ȳ (t) = e t , (17)
∫ ∞

0

W̄j(t) d Ȳj(t) = 0 for all j = 1, . . . , J , (18)

W̄ (t) = C M (z̄ + Ā(t)) − C T̄ (t) . (19)

If the service discipline is FIFO, we have from (11) the additional equation:

D̄k(t + W̄s(k)(t)) = z̄k + Āk(t) for any k = 1, . . . , K . (20)

Fluid model equations (13)-(19) (and (20) for the FIFO case) may not
have in general a unique solution and can be thought as the “limit” of the
corresponding queueing network equations.

Definition 3 (The fluid limit)
Any limit

(

z̄, Ψ̄(·)
)

in (12) is called a fluid limit associated to the queueing
network.

With this definition, Proposition 1 establishes that any fluid limit satis-
fies the fluid model equations (13)-(19) (and additionally (20) if the service
discipline is FIFO).

We now introduce the standard definition of stability of a fluid limit model.
The idea is that the fluid limit model is stable if the component Z̄(·) of any
fluid limit reaches zero in a finite amount of time, for any initial state of the
system.

Definition 4 (Stability of the fluid limit model)
We say that the fluid limit model associated to a queueing network is stable if
t1 ≥ 0, which only depends on α, m and P exists, such that for any fluid limit
(

z̄, Ψ̄(·)
)

, its Z̄(·) component satisfies

Z̄(t) = 0 ∀t ≥ t1 |z̄| . (21)

If restricted to [T, +∞) with T ≥ 0,

Z̄(t) = 0 ∀t ≥ T + t1 |Z̄(T )| .

Remark 2 Taking into account that from (19), (14) and (16) we have

W̄ (t) = C M
(

z̄ + Ā(t) − M−1 T̄ (t)
)

= C M Z̄(t) (22)
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that can be written for any j as W̄j(t) =
∑

k∈s−1(j)

mk Z̄k(t) , and mk > 0 , we

see that (21) is equivalent to

Z̄(t) = 0 ∀t ≥ t2 |w̄| ,

w̄ being defined as W̄ (0), with t2 ≥ 0 only dependent on α, m and P . Indeed,
this is an immediate consequence that for any j, w̄j =

∑

k∈s−1(j)

mk z̄k and then,

(

min
k=1,..., K

mk

)

|z̄| ≤ |w̄| ≤
(

max
k=1,..., K

mk

)

|z̄| .

By following the same reasoning, we see that in (21) it is equivalent to write
Z̄(·) = 0 or W̄ (·) = 0 since Z̄(t) = 0 ⇔ W̄ (t) = 0 .

Remark 3 Definition 4 corresponds to strong stability. Weaker notions, which
can be found for instance in [8], may also be of interest, such as that of weak
stability or pathwise stability: we say that the fluid limit model associated to
the queueing network is weakly stable if Z̄(t) ≡ 0 when z̄ = 0, while pathwise
stability means that the fluid limit of the departures process, D̄(t), must be
almost surely equal to the fluid limit of the arrivals process, Ā(t), plus the
initial value z̄ . It is obvious that (strong) stability implies weak stability.

The next result shows that if the fluid limit model associated to a queueing
network under any work-conserving HL service discipline is stable, then the
fluid model equations have a unique solution starting from some time that
depends on the initial state. In particular, we obtain that (strong) stability
implies pathwise stability. It could be stated restricted to any parameter set
[T, +∞) with T ≥ 0, although we have chosen T = 0 for simplicity.

Proposition 2 If the fluid limit model associated to the queueing network is
stable, then there exist t1 ≥ 0 which only depends on α, m, and P , such that
the fluid model equations (13)-(19) have a unique solution for any t ≥ t1 |z̄| ,
which is given by:

D̄(t) = Q z̄ + λ t ,

Ā(t) = P ′ Q z̄ + λ t ,

Z̄(t) = W̄ (t) = 0 ,

T̄ (t) = M Q z̄ + M λt ,

Ȳ (t) = −C M Q z̄ + (e − ρ) t .

As a consequence, ∀t ≥ t1 |z̄| , D̄(t) = Ā(t) + z̄ (pathwise stability) and

D̄(t + s) − D̄(t) = λ s ∀s ≥ 0 ∀t ≥ t1 |z̄| , (23)

which is equivalent to d
d t

D̄(t) = λ .
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Proof: Stability implies sub-criticality and by (15) and (16) and the defini-
tion of matrix Q, we have that

Z̄(t) = z̄ + α t − Q−1 D̄(t) ,

and t1 ≥ 0 only depending on α, m and P exists such that for any t ≥ t1 |z̄| ,

0 = Z̄(t) = z̄ + α t − Q−1 D̄(t) ⇒ D̄(t) = Q z̄ + λ t , (24)

which is due to the fact that λ = Q α . On the other hand, by (13) and (24),

Ā(t) = α t + P ′ D̄(t) = α t + P ′ Q z̄ + P ′ λ t = P ′ Q z̄ + λ t ,

since I + P ′ Q = Q . By (22), W̄ = C M Z̄(t) = 0 for any t ≥ t1 |z̄| , and by
(16) and (24),

T̄ (t) = M D̄(t) = M Q z̄ + M λt .

Finally, this last expression and (17) give that Ȳ (t) = e t−C T̄ (t) = (e−ρ) t−
C M Q z̄ . �

Remark 4 It is straightforward to deduce from Proposition 2 that also

Ā(t + s) − Ā(t) = λ s
(

⇔ d

d t
Ā(t) = λ

)

.

With analogous reasoning we have that if ρ < e , the fluid limit model
is weakly stable and z̄ = 0, therefore the unique solution of the fluid model
equations is given by:

D̄(t) = Ā(t) = λ t , Z̄(t) = W̄ (t) = 0 ,

T̄ (t) = M λt , Ȳ (t) = (e − ρ) t , ∀t ≥ 0 .

4.2 Sufficient conditions for stability

For any fluid limit (z̄, Ψ̄(·)) associated to the queueing network, by (22) we
have seen how can be expressed the workload limit W̄ in terms of the limit
number of customers Z̄ . In the next definition we introduce state space collapse
(in fluid limits), which establishes that Z̄(t) in its turn can be expressed in
terms of W̄ (t) by means of a “lifting” deterministic operator.

Definition 5 (State space collapse)
We say that the fluid limit model associated to a queueing network (or that the
network itself) satisfies state space collapse with “lifting” matrix ∆ =

(

∆kj

)

(∆kj ≥ 0 for any k, j ) if t∆ ≥ 0 exists such that for any fluid limit
(

z̄, Ψ̄(·)
)

,
its W̄ (·) and Z̄(·) components satisfy that

Z̄(t) = ∆ W̄ (t) for any t ≥ t∆ .



13

Remark 5 The matrix ∆ typically depends on the structure of the network
and/or on the service discipline as can be seen in [7], where the uniform con-
vergence with lifting matrix ∆ for a fluid model is introduced. This concept
is similar to the state space collapse introduced here in the above definition.
In the proof of Theorems 3.1-3.3 [7], where three different HL service disci-
plines are assumed, the authors show that for a single station and if ρ = 1,
the fluid model converge uniformly with lifting matrices dependent on the
service discipline each one. The disciplines considered are: FIFO (first-in-first-
out), GHLPPS (generalized-head-of-the-line proportional processor sharing)
and SBP (static buffer priority).

State space collapse is not generally an easy condition to check. In [7] the
authors say literally that “checking uniform convergence of a fluid model may
involve entropy arguments (for FIFO networks of Kelly type and HLPPS net-
works), comparisons with Markov chains (for single FIFO and GHLPPS net-
works) and piecewise linear Lyapunov functions (for SBP networks)”. More-
over, we can not say much in general on the structure of the lifting matrix,
but by (22) we have that state space collapse with “lifting” matrix ∆ implies
that (I − C M ∆) W̄ (t) = 0 and therefore I = C M ∆ if W̄ (t) 6= 0 for some t .
As a consequence, ∆kj = 0 if j 6= s(k), and if δk stands for ∆k s(k), we obtain
that

∑

k∈s−1(j)

δk mk = 1 for all j = 1, . . . , J . (25)

In particular, if s−1(j) = {k} for some station j, δk must be equal to 1
mk

. The

consistency of expression (25) is guaranteed since by (3), δk = λk

ρs(k)
satisfy it.

From the previous remark, loosely speaking we can say that state space
collapse assumption expresses that class-k customers contribute with a pro-
portion δk to the workload fluid limit W̄ at the station at which this class is
served. That is, the customer classes served at any station are mixed in a fixed
way in the station’s queue (there is a fixed concentration of customer classes
throughout each queue).

It can be easily seen that state space collapse is a necessary condition for
stability of the fluid limit model: if Z̄(t) = 0 (then, W̄ (t) = 0), obviously we
have that Z̄(t) = ∆ W̄ (t) (with any “lifting” matrix ∆). Our objective now is
to find conditions that jointly with state space collapse and sub-criticality be
sufficient for the stability. In Theorem 1 we give such a condition: the stability
of a linear Skorokhod problem associated to the fluid limit model. Theorem 2
gives sufficient conditions on the reflection matrix for the stability of the linear
Skorokhod problem.

Theorem 1 Assume that the fluid limit model associated to a subcritical queue-
ing network under a HL work-conserving discipline, satisfies state space col-
lapse for some “lifting” matrix ∆ .
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Then, the queueing network is stable provided that the associated linear
Skorokhod problem LSP(θ, x, R) restricted to [t∆, +∞) is stable, where R =
(C M Q ∆)−1, θ = R (ρ − e) and x ∈ R

J
+ is arbitrary.

Proof of Theorem 1:
Fix a fluid limit (z̄, Ψ̄(·)) . By isolating D̄(t) from (14) we obtain

D̄(t) = z̄ + Ā(t) − Z̄(t) ,

which can be substituted into (13), and isolating Ā(t) from the resulting ex-
pression we have that

Ā(t) = λ t + Q P ′ z̄ − Q P ′ Z̄(t) . (26)

By state space collapse assumption we can replace Z̄(t) by ∆ W̄ (t) in (26) for
any t ≥ t∆ ≥ 0, and by substituting into (19) we obtain that for any t ≥ t∆ ,

W̄ (t) − W̄ (t∆) = C M λ (t − t∆) − C M Q P ′ ∆
(

W̄ (t) − W̄ (t∆)
)

− e (t − t∆) + Ȳ (t) − Ȳ (t∆) ,

by using (17). And by isolating W̄ (t)− W̄ (t∆) in its turn from this expression
and taking into account that I + C M Q P ′ ∆ = C M Q ∆ and ρ = C M λ , we
have finally that

W̄ (t) − W̄ (t∆) = R (ρ − e) (t − t∆) + R
(

Ȳ (t) − Ȳ (t∆)
)

or

W̄ (t) = W̄ (t∆) + R (ρ − e) (t − t∆) + R
(

Ȳ (t) − Ȳ (t∆)
)

(27)

with R = (C M Q ∆)−1 .
Then, we have showed that the pair of processes (W̄ (·), Ȳ (·)) is a solution

of the LSP(θ, x, R) restricted to [t∆, +∞) on the positive orthant, where
θ = R (ρ − e) ∈ R

J and x = W̄ (t∆) ∈ R
J
+ . By the hypothesis of stability

of the linear Skorokhod problem, tR ≥ 0 exists such that W̄ (t) = 0 for all
t ≥ t∆ + tR |W̄ (t∆)| , and the same applies for Z̄ :

Z̄(t) = 0 for all t ≥ t∆ + t1 |Z̄(t∆)|

with t1 = tR |C M e| ≥ 0 , since W̄ = C M Z̄ , which implies that |W̄ (t∆)| ≤
|C M e| |Z̄(t∆)| .

Then, the fluid limit model is stable restricted to [t∆, +∞) (t1 is indepen-
dent of the fixed fluid limit). And finally, as usual, application of Theorem 4.2
[10] ensures the stability of the queueing network. �

Theorem 2 The linear Skorokhod problem LSP(θ, x, R) with parameter set
[T, +∞) for any T ≥ 0, θ = R (ρ − e) (with ρ < e) and x ∈ R

J
+, is stable

provided that R is an invertible completely-S matrix such that all entries of
R−1 are non-negatives.

The proof of this result relies on two previous lemmas.
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Lemma 1 Assume that ρ < e. Let (W, Y ) any solution of LSP(θ, x, R) on
the positive orthant restricted to some interval [T, +∞), T ≥ 0, with R an
invertible completely-S matrix such that all entries of R−1 are non-negative.
Therefore,

Y (t + s) − Y (s) ≤ (e − ρ) t for all s ≥ T, t ≥ 0 ,

and hence for any j,
d

d s
Yj(s) ≤ 1 − ρj if Y (·) is differentiable at s .

Proof of Lemma 1: this result is analogous to Lemma 5.1 [10] restricted to
the particular case of a linear Skorokhod problem, and can be proved restricted
to any parameter set [T, +∞) in a similar way, by using the non-negativeness
of the elements of matrix R−1 (= C M Q ∆ here, = M Q in [10]), and the fact
that

−R−1
(

R (ρ − e)
)

t = (e − ρ) t . �

Lemma 2 [Lemma 5.2 [10]] Let T ≥ 0 and f : [T, +∞) −→ [0, +∞) be a
nonnegative function that is absolutely continuous and let κ > 0 be a constant.
Suppose that for almost surely all points t of differentiability of f(·), we have
that d

d t
f(t) ≤ −κ whenever f(t) > 0. Then f is non-increasing and f(t) = 0

for any t ≥ T + f(T )
κ

.
(Actually, Lemma 5.2 [10] is enounced with T = 0, but the elementary

proof of this result is analogous in our setting.)

Proof of Theorem 2:
Lemma 1 can be applied to any solution (W (·), Y (·)) of the LSP(θ, x, R)

restricted to [T, +∞) and then for any j ,

d

d s
Yj(s) ≤ 1 − ρj (28)

if Y is differentiable at point s > T .

We introduce the Lyapunov function

g(t) = e′ R−1 W (t) (≥ 0) for t ≥ T , (29)

to which we apply Lemma 2. By using that W (t) = W (T )+θ (t−T )+R
(

Y (t)−
Y (T )

)

and substituting it into (29),

g(t) = e′ R−1 W (T ) + e′ (ρ − e) (t − T ) + e′
(

Y (t) − Y (T )
)

= g(T ) +

J
∑

j=1

(

(ρj − 1) (t − T ) +
(

Yj(t) − Yj(T )
)

)

,
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and thus the points of differentiability of Yj(·) are the points of differentiability
of g(·), and if t > T is one of these points,

d

d t
g(t) =

J
∑

j=1

(

(ρj − 1) +
d

d t
Yj(t)

)

, (30)

being d
d t

g(t) non positive by (28).

Let t > T be a point such that g(t) > 0 (if any). By definition of g given by
(29) and using that all elements of R−1 are nonnegative, some i ∈ {1, . . . , J}
exists such that Wi(t) > 0. Then,

∫ ∞

T

Wi(t) dYi(t) = 0 implies that d
d t

Yi(t) =

0 since W has continuous paths, and by (30) we have that

d

d t
g(t) ≤ ρi − 1 ≤ max

j=1,...,J
ρj − 1 ( < 0 because ρ < e ) . (31)

We have then proved that with κ = 1 − max
j=1,...,J

ρj > 0, d
d t

g(t) ≤ −κ at any

point t > T of differentiability of g(·) such that g(t) > 0 . Lemma 2 ensures in

this situation that g(·) is non-increasing and g(t) = 0 for any t ≥ T + g(T )
κ

.

Finally it only remains to take into account that

g(T ) = e′ R−1 W (T ) ≤ e′ R−1 e |W (T )| ,

and therefore,

g(t) = 0 for any t ≥ T + tR |W (T )| , with tR =
e′ R−1 e

1 − maxj=1,...,J ρj

> 0

independent of the chosen solution of the LSP(θ, x, R), (W (·), Y (·)) . As a
consequence of (29) and the non-negativeness of the elements of R−1, we de-
duce that also W (t) = 0 for any t ≥ T + tR |W (T )| and the linear Skorokhod
problem in [T, ∞) is proved to be stable. �

From Theorems 1 and 2, we derive the following immediate corollary since
R = (C M Q ∆)−1 (assuming that C M Q ∆ is invertible), and all entries of
R−1 = C M Q ∆ are non-negative, which implies that the linear Skorokhod
problem LSP(θ, x, R) with θ = R (ρ−e), ρ < e, is stable if R is a completely-S
matrix:

Corollary 1 The subcritical queueing network satisfying state space collapse
(in fluid limits) with “lifting” matrix ∆ , is stable provided that R = (C M Q ∆)−1

is a completely-S matrix.

Remark 6 We can find in the literature different sufficient conditions for the
completely-S assumption on matrix R:
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a) (HR) condition:

R can be expressed as IJ + Θ, with Θ a J × J matrix such

that |Θ|, that is the matrix obtained from Θ by replacing all the

entries in Θ by their absolute values, has spectral radius less than 1 .

In Proposition 4.2 of [20] it is showed that (HR) (condition (II) there),
which is stronger than completely-S, ensures the strong pathwise unique-
ness of the solution of the Skorokhod problem with reflection matrix R.

b) A non-singular M matrix is completely-S (see Lemma 3.1 [8]), and more-
over it is invertible and its inverse has all of its entries non-negative.

c) A lower triangular matrix whose inverse exists and is non-negative is com-
pletely-S . (See Lemma 3.2 [8].)

Theorem 3 below asserts that condition (5.3) in Bramson’s book [6] (see
also condition (4.9) in [4]) is a sufficient condition for the stability. This result
is similar to Theorem 5.2 [6] but we provide a shortener proof which uses a
different Lyapunov function and follows the ideas of the proof of Theorem 2
here, although state space collapse assumption is not needed at all. Condition
(5.3) is not easy to check as shows Theorem 5 [4], where this is done for one
of the two families of fluid models considered in the paper.

Theorem 3 Under each HL work-conserving discipline, a subcritical multi-
class queueing network is stable provided that for any fluid limit (z̄, Ψ̄(·)) as-
sociated to the network, its D̄(·) and Z̄(·) components satisfy that some ε > 0
exists such that if t is a point of differentiability of D̄(·) for which Z̄(t) > 0,
then

d

d t
D̄k(t) ≥ λk + ε for any k = 1, . . . , K .

Proof: Fix a fluid limit (z̄, Ψ̄(·)) associated to the queueing network, and
introduce the Lyapunov function

h(t) = e′ C M Q Z̄(t) (≥ 0) ∀t ≥ 0 ,

to which we will apply Lemma 2. By (15) and (16), we can write the Lyapunov
function in the following way:

h(t) = e′ C M Q z̄ + e′ C M λ t − e′ C M D̄(t) = h(0) + e′ ρ t − e′ C M D̄(t) .

Thus, the points of differentiability of D̄(·) are the same as that of h(·), and
if t is one of these points,

d

d t
h(t) = e′ ρ − e′ C M

d

d t
D̄(t) .

If in addition h(t) > 0 (which implies Z̄(t) > 0 by definition of function h(·)
and the non-negativeness of the elements of C M Q), some ε > 0 exists by
hypothesis such that

d

d t
h(t) ≤ e′ ρ − e′ C M λ − e′ C M e ε = −e′ C M e ε = −κ ,
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with κ = e′ C M e ε > 0 . By Lemma 2 we obtain that h(·) is a non-increasing

function and that h(t) = 0 for all t ≥ h(0)
κ

. Taking into account that h(0) =
e′ C M Q z̄, this implies that

h(t) = 0 for any t ≥ t1 |z̄| , with t1 =
e′ C M Q e

e′ C M e ε
> 0 .

Then, the same applies for Z̄(t), and this concludes the proof. �

5 Particular cases and examples

5.1 FIFO service discipline

Theorem 1 shows the stability of the fluid limit model associated to any sub-
critical multi-class HL queueing network satisfying state space collapse, pro-
vided that stability of a particular linear Skorokhod problem holds. Stability
of the fluid limit implies in turn (23) by Proposition 2. We will show now that
reciprocally, condition (23) yields stability of the fluid limit model associated
to any subcritical multi-class queueing network under FIFO discipline (and as
a consequence, also stability of the queueing network).

Proposition 3 Under a FIFO service discipline, any subcritical multi-class
queueing network is stable if for any fluid limit (z̄, Ψ̄(·)) associated to the
network, its D̄(·) component satisfies (23).

Proof: By (14) and (20), under FIFO service discipline we have that for
any fluid limit (z̄, Ψ̄(·)), its components satisfy that for any k = 1, . . . , K ,

Z̄k(t) = z̄k + Āk(t) − D̄k(t) = D̄k(t + W̄s(k)(t)) − D̄k(t) , (32)

and assuming (23), t1 ≥ 0 exists such that for any t ≥ t1 |z̄| and for any
k = 1, . . . , K ,

D̄k(t + W̄s(k)(t)) − D̄k(t) = λk W̄s(k)(t) .

Substituting this expression into (32) yields

Z̄k(t) = λk W̄s(k)(t)

and we conclude from Remark 5 and (25) that

ρj =
∑

k∈s−1(j)

λk mk = 1 for all j ∈ {1, . . . , J}

if W̄ (t) 6= 0 for some t ≥ t1 |z̄| , which contradicts sub-criticality. Consequently,
W̄ (t) (and Z̄(t)) must be equal to zero for any t ≥ t1 |z̄| , which finishes the
proof. �
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5.2 The generalized Jackson network (K=J)

Since when K = J the queueing network considered in this paper has the same
structure as the one introduced by Jackson [13], by only differing in the fact
that we allow general inter-arrival and service time distributions, which do
not have to be necessarily exponentials, it is usually referred as “generalized
Jackson network”.

For such a network we can easily see that state space collapse assumption
is accomplished. Indeed, if we assume without loss of generality that s(j) = j
for any j = 1, . . . , J , then C = I, (22) is W̄ = M Z̄ (W̄k = mk Z̄k for any k),
and we can isolate Z̄ = M−1 W̄ and trivially obtain state space collapse with
“lifting” matrix ∆ = M−1 (customer class k contributes with a proportion 1

mk

to the workload fluid limit W̄s(k)). Then,

R = (C M Q ∆)−1 = I − M P ′ M−1

satisfies condition (HR) in Remark 6, since M P ′ M−1 has the same spectral
radius than matrix P , assumed to be < 1 .Then, R is a completely-S matrix
and by Corollary 1, under each HL work-conserving discipline,

ρ < e =⇒ stability of the network ,

which is a well known result (see Theorem 5.1 [10]).

5.3 The
∨

−system (J=1)

Proposition 4 In the particular case J = 1 (a multi-class station or
∨−sys-

tem), sub-criticality assumption ρ < 1 is sufficient for the stability of the
queueing network.

Proof: We can also derive this known result (see Theorem 6.1 [10]) from our
approach, by following the reasoning of Theorem 1 but without using state
space collapse assumption, with the obvious modifications. So, instead of (27)
we have in this particular case that the components of any fluid limit (z̄, Ψ̄(·))
satisfy that

W̄ (t) = C M Z̄(t) = C M z̄ + (ρ − 1) t + Ȳ (t) + C M Q P ′ z̄ − C M Q P ′ Z̄(t) ,

and using that I + Q P ′ = Q, we have that

C M Q Z̄(t) = C M Q z̄ + (ρ − 1) t + Ȳ (t) .

This implies that (C M Q Z̄(·), Ȳ (·)) is a solution to the LSP(θ, x, R) on
[0, +∞) with θ = ρ − 1, R = 1 and x = C M Q z̄ ∈ R+ . Theorem 2 en-
sures the stability of the Skorokhod problem. Therefore, tR ≥ 0 exists such
that C M Q Z̄(t) = 0 for all t ≥ tR C M Q z̄ . Taking into account that C M Q
is a K−dimensional vector with all its elements positive (because matrix Q
cannot have a column with all of its entries equal to zero), we then have that

Z̄(t) = 0 for all t ≥ t1 |z̄| , with t1 = tR |C M Q| ≥ 0 . �
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5.4 A tandem queue of Kelly type with feedback

Consider a tandem queue in a network with two stations (J = 2) and three
customer classes (K = 3). Class 1 customers enter the system from outside
(at rate α1 > 0) and are served at station 1. After being served (at rate 1/m1)
these customers go into station 2 as class 3 customers, where they are served
at rate 1/m3. After that, with probability q ∈ (0, 1], they go outside the
network and with probability p = 1− q they go back to station 1 to be served
again, now as class 2 customers, at service rate 1/m2, and then go again to
station 2 as class 3 customers, and so on. This model, which is a two-stage
queueing system, is adequate for situations in which there is recycling, that
is, quality control inspection is performed after first stage at the second one,
and customers (or items) that do not meet quality standards are sent back to
station 1 to be served (or reprocessed) again, at a possible different service
rate. The flow of customers through the system is depicted in Fig. 1.

Station 1 Station 2

p

q
m1

m2

α
1

m3

Fig. 1 a tandem queue with feedback

To simplify, we consider the particular case m1 = m2 (Kelly type). In that
scenario, α1 > 0 but α2 = α3 = 0 (the system only allows external arrivals of
class 1 customers). Constituency and flow matrices are, respectively,

C =

(

1 1 0
0 0 1

)

and P =





0 0 1
0 0 1
0 p 0





(note that P is a sub-stochastic matrix with spectral radius
√

p, which is
strictly less than 1). Fluid traffic intensity is ρ = (ρ1, ρ2)

′, with ρ1 = λ1 m1 +
λ2 m2 and ρ2 = λ3 m3 , being λ = Q α. Taking into account that Q = (I −
P ′)−1, we have that

Q =
1

q





q 0 0
p 1 p
1 1 1
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and thus

λ1 = α1 , λ2 =
p

q
α1 and λ3 =

1

q
α1 .

Then, sub-criticality condition ρ < e is reduced to condition

q > α1 (m2 ∨ m3) .

State space collapse assumption can be expressed as:

Z̄1 = δ1 W̄1 , Z̄2 = δ2 W̄1 with δ1 + δ2 =
1

m2

(

⇔ δ2 Z̄1 = δ1 Z̄2

)

(33)

On the other hand,

∆ =





δ1 0
δ2 0
0 δ3



 and C M Q ∆ =
1

q

(

1 p m2

m3
m3

m2
1

)

,

which turns out to be an invertible matrix since q > 0 . Condition (HR) in
Remark 6 holds because

R =
(

CMQ∆
)−1

= I + Θ, with Θ =

(

0 −p m2

m3

−m3

m2
0

)

Therefore, as a consequence of Corollary 1 we have:

Corollary 2 Assume an HL work-conserving discipline that satisfies state
space collapse. Then, the subcritical tandem queue of Kelly type is stable.

(Compare this result with Lemma 1 [18] when the HL service discipline is
assumed to be FIFO and the inter-arrival and service times are exponentially
distributed.)

5.5 A two parallel-server system of Kelly type with feedback

Consider now the system with two parallel servers (J = 2) whose structure is
showed in Fig. 2 below. Class 1 customers, which arrive from outside at rate
α1 > 0, are served by server 1, while server 2 serves class 2 customers, arrived
from outside at rate α2 > 0. After finishing service at station 1, any customer
goes with probability p1 next to station 2 as a class 3 customer while with
probability q1 = 1 − p1 exits the system.

After finishing service at station 2, independently of its class, any customer
goes with probability p2 next to station 1 as a class 4 customer, while with
probability q2 = 1 − p2 exits the system.
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Station 1 Station 2

q1 q2

m2m1

α
1 α

2

p1

p2

Fig. 2 a two parallel-server system with feedback

We have then K = 4 customer classes with α3 = α4 = 0, and the con-
stituency and the fluid matrices are, respectively,

C =

(

1 0 0 1
0 1 1 0

)

and P =









0 0 p1 0
0 0 0 p2

0 0 0 p2

0 0 p1 0









.

Assume that 0 ≤ p1, p2 ≤ 1 but p1 p2 < 1 (to ensure that the spectral
radius of P is strictly less than 1). Then, matrix Q = (I − P ′)−1 is

Q =
1

1 − p1 p2









1 − p1 p2 0 0 0
0 1 − p1 p2 0 0
p1 p1 p2 1 p1

p1 p2 p2 p2 1









and thus

λ = Q α = (α1, α2,
p1 α1 + p1 p2 α2

1 − p1 p2
,

p2 α2 + p1 p2 α1

1 − p1 p2
)′

The mean service rates, assumed to depend only on the server (and not on
the class), are m1 > 0 for server 1 and m2 > 0 for server 2.

Sub-criticality condition ρ < e can be written as two symmetric conditions,
by using that ρ1 = (λ1 + λ4)m1 and ρ2 = (λ2 + λ3)m2 :

{

α1 + p2 α2 < 1−p1 p2

m1

α2 + p1 α1 < 1−p1 p2

m2
.
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State space collapse assumption can be expressed as

δ4 Z̄1 = δ1 Z̄4 , δ3 Z̄2 = δ2 Z̄3 with δ1 + δ4 =
1

m1
, δ2 + δ3 =

1

m2
(34)

Then,

∆ =









δ1 0
0 δ2

0 δ3

δ4 0









and C M Q ∆ =
1

1 − p1 p2

(

1 m1

m2
p2

m2

m1
p1 1

)

which has determinant 1
1−p1 p2

6= 0. Moreover,

R =
(

CMQ∆
)−1

= I + Θ, with Θ =

(

0 −m1

m2
p2

−m2

m1
p1 0

)

and the spectral radius of the matrix obtained from Θ by replacing its elements
by their absolute values is

√
p1 p2 < 1, so condition (HR) in Remark 6 is

accomplished without restriction on the parameters of the network. Corollary
1 then gives:

Corollary 3 Assume an HL work-conserving discipline that satisfies state
space collapse. Then, the subcritical two parallel-server queue of Kelly type
is stable.
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