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Abstract

We give several characterizations of semilocal rings and deduce that
rationally closed subrings of semisimple artinian rings are semilocal,
that artinian modules have semilocal endomorphism rings, and that
artinian modules cancel from direct sums.

Throughout, let R be a ring, associative with 1. We write U(R) for the
group of units of R, and J(R) for the Jacobson radical of R. The ring R is
said to be semilocal if R/J(R) is semisimple artinian.

The results in this article were motivated by work of Menal, cf [11], [5],
and are briefly summarized as follows.

Theorem 1 below gives various characterizations of semilocal rings,
showing, in particular, that R is semilocal if and only if there is a homo-
morphism from R to a semisimple artinian ring S taking non-units of R to
non-units of S. Thus, if R is a subring of a semisimple artinian ring S, then
R will be semilocal provided the units of R consist precisely of the units of
S which lie in R. This proves a conjecture of Menal.

Corollary 4 shows that if R is a subring of a left artinian ring S such
that S/R is artinian as left R-module, then R is semilocal.
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Corollary 6 verifies two other conjectures of Menal: if M is an artinian
right R-module then EndRM is semilocal, and, for all right R-modules A, B,
if M ⊕A ∼= M ⊕B then A ∼= B. In contrast, indecomposable artinian mod-
ules need not have local endomorphism rings; in fact, by Theorem 3.5 of [5],
any commutative noetherian semilocal ring can occur as the endomorphism
ring of an artinian module, so any indecomposable commutative noetherian
semilocal ring can occur as the endomorphism ring of an indecomposable
artinian module.

Theorem 7 is a recent result of F. Cedó that classical quotient rings with
the maximum condition on left and right annihilators are semilocal.

We have made no attempt to give a detailed history, since a large num-
ber of results have been obtained in this area, and the literature is quite
extensive, cf [1], [2],[3],[5], [6],[7], [8], [10], [11], [12], [13], [14], [15] and [16].

In order to state our results it will be convenient to have the following
terminology and notation.

A homomorphism of rings S → R is said to be local if it carries non-units
to non-units, that is, the image of S \ U(S) lies in R \ U(R). A rationally
closed subring of R is a subring S such that U(S) = S ∩ U(R), which is
equivalent to the inclusion map S → R being a local homomorphism.

Let M be an abelian group and A a set of subgroups of M . Given X, Y, Z
in A such that X ⊕ Y = Z, we say that X, Y are A-summands of Z. The
set A is said to satisfy the maximum condition with respect to summands if
every nonempty subset B of A contains an element which is an A-summand
of no other element of B. This is the maximum condition for the partial
order on A consisting of equality together with the transitive closure of the
relation of being a proper A-summand.

Let M be a right R-module. For r ∈ R we write l.annM (r) =
{m ∈ M |mr = 0}. Let A= { l.annM (r) | r ∈ R}. If A satisfies the
maximum condition with respect to summands we say that in M the left
annihilators of elements of R satisfy the maximum condition with respect
to summands. There are many common situations where this occurs. For
example, it holds if M satisfies the maximum condition for left annihila-
tors of elements of R. It holds also if there exists a ring S such that M
is an S-R-bimodule and l.u.dimSM is finite, where l.u.dimSM denotes the
uniform dimension of M as left S-module, that is, the supremum of the
cardinalities of independent sets of nonzero S-submodules of M . The left-
right dual notion will be denoted r.u.dim. If R is semisimple artinian then
l.u.dimRR = r.u.dimRR, and we denote the common value by u.dimR.

We can now give our characterizations of semilocal rings.
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Theorem 1 For any ring R the following are equivalent:
(a) R is semilocal.
(b) There exists a local homomorphism from R to a semisimple artinian

ring.
(c) There exists a ring S and an S-R-bimodule M such that l.u.dimSM is

finite and l.annM (r) 6= 0 for all r ∈ R \ U(R).
(d) There exists a right R-module M such that in M the left annihilators of

elements of R satisfy the maximum condition with respect to summands,
and l.annM (r) 6= 0 for all r ∈ R \ U(R).

(e) There exists a non-negative integer n, and a function d : R → {0, . . . , n}
such that for all a, b ∈ R, d(1− ab) + d(a) = d(a− aba), and if d(a) = 0
then a ∈ U(R).

(f) There exists a partial order ≥ on R satisfying the minimum condition,
such that for all a, b ∈ R, if 1− ab ∈ R \ U(R) then a > a− aba.

(c∗),(d∗),(e∗),(f ∗) The left-right duals of (c), (d), (e), (f).

Moreover, if these equivalent conditions hold then, in (c),
u.dimR/J(R) ≤ l.u.dimSM , and, in (e), u.dimR/J(R) ≤ n.

Proof. We shall show (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (f) ⇒ (a), and
(c) ⇒ (e) ⇒ (f).

(a) ⇒ (b) If R is semilocal then R → R/J(R) is a local homomorphism
from R to a semisimple artinian ring.

(b) ⇒ (c) Suppose that f:R → S is a local homomorphism and S is
semisimple artinian. Let M be S viewed as S-R-bimodule, so l.u.dimSM
is finite. Also, if r ∈ R \ U(R) then f(r) ∈ S \ U(S), so f(r) is a right
zerodivisor in S, so l.annM (r) 6= 0.

(c) ⇒ (d) Suppose that (c) holds. Then {l.annM (r) | r ∈ R} is a set of
left S-submodules of M , so satisfies the maximum condition with respect to
summands. Thus (d) holds.

(d) ⇒ (f) Suppose that (d) holds and let A = {l.annM (r) | r ∈ R}. On
A, the transitive closure of the relation is-a-proper-A-summand-of is an ir-
reflexive transitive relation, which we shall denote <. For a, b ∈ R, set a > b
in R if l.annM (a) < l.annM (b) in A. On R, the relation > is irreflexive
and transitive, so we have a partial order ≥ on R. It satisfies the mini-
mum condition because A satisfies the maximum condition with respect to
A-summands. Moreover, if a, b ∈ R such that 1 − ab ∈ R \ U(R), then
l.annM (1− ab) 6= 0 and l.annM (1− ab) ⊕ l.annM (a) = l.annM (a− aba), so
a > a− aba.
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(f) ⇒ (a) Suppose that (f) holds.
Let R̄ denote R/J(R), and for r ∈ R let r̄ denote r + J(R).
Added January, 2010. We now give a simplification of the original proof

of (f) ⇒ (a) incorporating an argument of Camillo-Nielsen [4]. Suppose
that we are given a maximal proper right ideal of R̄ and let it be expressed
in the form Ī where I is a right ideal of R which contains J(R). Let a be
an element of R \ I that is minimal with respect to the given partial order
≥. Consider an arbitrary element of āR̄ ∩ Ī and let it be expressed in the
form āb̄ where b ∈ R. Then ab ∈ I. Consider an arbitrary c ∈ R. Then
abca ∈ I and, hence, a − abca ∈ R \ I. It follows from the minimality of a
that 1− abc ∈ U(R). This shows that ab ∈ J(R), and, hence, āb̄ = 0̄. This
shows that āR̄ ∩ Ī = {0̄}. It then follows from the maximality of Ī that āR̄
is a simple right ideal of R̄. The foregoing discussion shows that no proper
right ideal of R̄ contains every simple right ideal of R̄. It follows that R̄ is
semisimple artinian, and, hence, R is semilocal.

(c) ⇒ (e) Suppose that (c) holds. Set n = l.u.dimSM , and define
d : R → {0, . . . , n} by d(r) = l.u.dimS(l.annM (r)) for all r ∈ R. It is
straightforward to verify that for all a, b ∈ R, d(1− ab) + d(a) = d(a− aba),
and if d(a) = 0 then a ∈ U(R).

(e) ⇒ (f) Suppose that (e) holds. For a, b ∈ R, set a > b if d(a) < d(b).
This defines a partial order ≥ on R and (f) is readily verified.

Added January, 2010. Now suppose all the equivalent conditions hold.
Let R̄ denote R/J(R), let m = u.dimR/J(R), and for r ∈ R let r̄ denote
r + J(R). By (a), there exists some sequence b1, . . . , bm in R such that
b̄1, . . . , b̄m is a sequence of mutually orthogonal nonzero idempotents in R̄.
Let a1 = b1+b2+ · · ·+bm, and, for each i = 1, . . .m, let ai+1 = ai−aibiai. It
is not difficult to see that for each i = 1, . . . , m, āi = b̄i + b̄i+1 + · · ·+ b̄m and,
hence, 1̄− āib̄i = 1− b̄i, and, hence, 1̄− āib̄i is idempotent and 1̄− āib̄i 6= 1̄;
in particular, 1−aibi ∈ R \U(R), and, hence, ai > ai+1. Thus, with respect
to the partial order in (f), there exists a chain in R of length m.

By the proof of (e) ⇒ (f), we may assume that, with respect to the
partial order in (f), every chain in R has length at most n. Hence, m ≤ n.

By the proof of (c) ⇒ (e), we may assume that (e) holds with n =
l.u.dimSM and then l.u.dimSM = n ≥ m.
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Corollary 2 If R → S is a local homomorphism of rings and S is
semilocal then R is semilocal, and u.dimR/J(R) ≤ u.dimS/J(S).

In particular, rationally closed subrings of semisimple artinian rings are
semilocal.

Proof. Let M be S/J(S) viewed as S-R-bimodule. By Theorem 1
(c) ⇒ (a), R is semilocal, and by the last part of Theorem 1,
u.dimR/J(R) ≤ l.u.dimSM = u.dimS/J(S).

For example, suppose that R is a subring of a ring S such that R is
a direct summand of S as left R-module. Here every element of R which
has a right inverse in S already has a right inverse in R, so R is rationally
closed in S; thus if S is semilocal then R is semilocal, as was first proved in
[13], and moreover u.dimR/J(R) ≤ u.dimS/J(S).

A consequence of the previous paragraph is that if G is a group
such that the group ring RG is semilocal then for any subgroup H
of G, RH is semilocal, as observed in [13], and moreover
u.dimRH/J(RH) ≤ u.dim RG/J(RG).

The following gives another criterion for recognizing semilocal subrings.

Theorem 3 Let R be a ring in which every non-unit is a right
zerodivisor, such that in R the left annihilators of elements of R satisfy
the maximum condition with respect to summands. Then R is semilocal and
u.dimR/J(R) ≤ l.u.dimRR.

Moreover, if S is a subring of R such that in R/S the left annihilators
of elements of S satisfy the maximum condition with respect to summands,
then S is semilocal and u.dimS/J(S) ≤ l.u.dimRR + l.u.dimSR/S.

Proof. It suffices to prove only the second part, since the first part is
then obtained by taking S = R. Let M be R ⊕ (R/S) viewed as (R×S)-S-
bimodule. The hypotheses ensure that in M the left annihilators of elements
of S satisfy the maximum condition with respect to summands. Consider
any s ∈ S \ U(S). If s ∈ S \ U(R) then s is a right zerodivisor in R, so
l.annM (s) 6= 0; if s ∈ U(R) then s−1 + S is a nonzero element of R/S
which is right annihilated by s, so l.annM (s) 6= 0. Thus in any event
l.annM (s) 6= 0. By Theorem 1 (d) ⇒ (a), S is semilocal. To see that
u.dimS/J(S) ≤ l.u.dimR×S(R ⊕ (R/S)), we can assume that the right-
hand side is finite, and apply the inequality concerning (c) in the last part
of Theorem 1.
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We emphasize one particular case of the above result.

Corollary 4 If S is a subring of a left artinian ring R and l.u.dimSR/S is fi-
nite, then S is semilocal, and u.dimS/J(S) ≤ l.u.dimRR+ l.u.dimSR/S.

We turn now to consequences for endomorphism rings.
Recall that 1 is in the stable range of R if whenever ax + b = 1 in R,

there exists c ∈ R such that a + bc ∈ U(R). Also, a right R-module M
cancels from direct sums if for all right R-modules A, B, if M ⊕A ∼= M ⊕B
then A ∼= B.

Theorem 5 Let M be a right R-module such that every injective
R-linear endomorphism of M is bijective, and such that the
set of R-submodules {Ker f | f ∈ EndR(M) } satisfies the maximum
condition with respect to summands. Then EndRM is semilocal, 1 is in
the stable range of EndRM , and the right R-module M cancels from direct
sums. Moreover u.dim ((EndRM)/J(EndRM)) ≤ r.u.dimRM .

Proof. Consider M as an EndRM -R-bimodule. In M the right an-
nihilator of an element f of EndRM is precisely Ker f , and f is a unit if
and only if f is bijective. Now Theorem 1 (d∗) ⇒ (a) shows that EndRM
is semilocal. By a result of Bass, 1 is then in the stable range of EndRM ,
cf p.313 of [9]. By a result of Evans, M then cancels from direct sums, cf
p.315 of [9].

To see that u.dim ((EndRM)/J(EndRM)) ≤ r.u.dimRM , we can as-
sume that the right-hand side is finite, and apply the left-right dual of the
last part of Theorem 1.

The following answers Question 16 of [11] in the affirmative.

Corollary 6 Let M be an artinian right R-module. Then
EndRM is semilocal, 1 is in the stable range of EndRM ,
and the right R-module M cancels from direct sums. Moreover
u.dim ((EndRM)/J(EndRM)) ≤ r.u.dimRM .

Added October, 1992. Recall that R is said to be its own classical quotient
ring if every non-unit of R is a zerodivisor, that is, either a right zerodivisor
or a left zerodivisor.

F. Cedó has found an elegant application of Theorem 1 to obtain the
following generalization of Stafford’s result, Corollary 2.7 (i ) of [14], that
a noetherian ring which is its own classical quotient ring is semilocal. The
theorem also generalizes Proposition 2.4 of [5], since it shows that the rings

6



considered in that proposition are actually semilocal; indeed, this was the
original motivation for the result.

Theorem 7 (Cedó) Suppose that R is its own classical quotient ring, and
that in R both the set of left annihilators of elements of R, and also the set
of right annihilators of elements of R, satisfy the maximum condition with
respect to summands. Then R is semilocal.

In particular, if R is its own classical quotient ring and R satisfies the
maximum condition for both left annihilators of elements and for right an-
nihilators of elements then R is semilocal.

Proof. Let A = {l.annR(r) | r ∈ R} and B = {r.annR(r) | r ∈ R}. On A
the transitive closure of the relation is-a-proper-A-summand-of determines
a partial order ≤ which satisfies the maximum condition. Similarly, on B
the transitive closure of the relation is-a-proper-B-summand-of determines
a partial order, which we again denote ≤, and which also satisfies the max-
imum condition. For a, b ∈ R, set a > b if l.annR(a) < l.annR(b) in A, or
l.annR(a) = l.annR(b) and r.annR(a) < r.annR(b) in B. This gives a partial
order ≥ on R satisfying the minimum condition.

Now suppose that a, b ∈ R such that 1 − ab ∈ R \ U(R). By
Theorem 1 (f) ⇒ (a), it suffices to show that a > a− aba.

Here R is its own classical quotient ring and 1−ab is a non-unit, so 1−ab is
a zerodivisor, that is, either l.annR(1−ab) 6= 0 or r.annR(1−ab) 6= 0. Hence
either l.annR(1− ab) 6= 0 or r.annR(1− ba) 6= 0, since left multiplication by
a determines a right R-linear isomorphism r.annR(1−ba) → r.annR(1−ab),
with inverse given by left multiplication by b. Now, from the usual equali-
ties l.annR(a − aba) = l.annR(a) ⊕ l.annR(1 − ab) and r.annR(a − aba) =
r.annR(a)⊕ r.annR(1− ba), and the definition of the partial order on R, we
see that a > a− aba.

In Example 6.4 of [14], Stafford constructs a right noetherian ring which
is its own classical quotient ring, but which is not semilocal; hence the two-
sided conditions in Theorem 7 cannot be weakened to one-sided conditions.

As often happens, in the case of rings satisfying polynomial identities,
one-sided conditions suffice: by Proposition 2.11 of [14], if R satisfies a poly-
nomial identity, and has the maximum condition on annihilator ideals, and
is its own classical quotient ring, then R is semilocal. This result does not
seem to follow immediately from any of our characterizations, although there
is a connection which can be seen as follows. Stafford first shows that if R
satisifies a polynomial identity and has the maximum condition on annihila-
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tor ideals, then there is a finite set of prime ideals P1, . . . , Pn of R such that
the natural map R → R/P1× · · · ×R/Pn sends zerodivisors to zerodivisors.
As is well-known, R/P1×· · ·×R/Pn embeds in a semisimple artinian ring Q,
so if R is its own classical quotient ring, then we have a local homomorphism
from R to Q, and by Corollary 2 above, R is semilocal.
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