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Abstract. Given two surfaces in three dimensional euclidean space, one fixed and the
other moved by rigid motions, we consider the total absolute curvature of the intersection
curves. In this paper we investigate the integral of these total absolute curvatures over all
motions. Under some geometric conditions we obtain kinematic formulas, and with weaker
conditions we get upper and lower bounds. Finally, as applications, we obtain upper bounds
for the average number of connected components of the intersections, and we give Hadwiger
conditions for a convex domain to be able to contain another one.

1. Introduction.

Kinematic formulas play a central role in Integral Geometry. For instance let S and S ′ be
two surfaces in R3. Let S ′ be moved by all rigid motions g and consider a geometric quantity
I(S ∩ gS ′) of the intersection. Then kinematic formulas express the integral of I(S ∩ gS ′),
with respect to the invariant measure dg of the group G of motions, in terms of the geometry
of S and S ′. As a concrete example take the length `(S ∩ gS ′) of the intersection curve as
I(S ∩ gS ′). Then the well-known Poincaré formula (cf. [San76]) states∫

G

`(S ∩ gS ′)dg = 2π3AA′, (1)

where A and A′ are the areas of S and S ′.
C.-S. Chen considered in [Che73] the integral of the total square curvature of the intersec-

tion curve as I(S ∩ gS ′), and he obtained∫
G

∫
S∩gS′

κ2(s)ds dg = 2π3

(
A′
∫

S

(3H2 −K)dS + A

∫
S′

(3H ′2 −K ′)dS ′
)

, (2)

where H and K are the mean curvature and the Gauss curvature of S, and similarly for S ′.
Formulas (1) and (2) can be seen as particular instances of a very general kinematic formula

obtained by R. Howard in [How93]. There he solves the case where I is the integral of any
invariant polynomial of the second fundamental form of the intersection. The square curvature
κ2 is such a polynomial but the curvature κ is not. Therefore a kinematic formula for the
total absolute curvature is not covered by R. Howard’s result. In fact, C.-S. Chen [Che73]
already mentioned that this problem is more involved.

In this paper we study precisely this case where I(S ∩ gS ′) is the total absolute curvature
of the intersection curve. Under some geometric hypothesis (such as S, S ′ are strictly convex
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by FEDER/MEC grant number MTM2006-04353. The third author was also supported by the program
Ramón y Cajal, MEC.

1
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and S can roll freely inside S ′) we have the following kinematic formula (see Proposition 1)

IS,S′ :=

∫
G

∫
γg

κ(s) dsdg =
4π2

3

∫
S

(3H2 −K)dS

∫
S′

dS ′
√

K ′
+ 8π2A

∫
S′

H ′dS ′.

Under weaker assumptions we can state inequalities, namely upper and lower bounds for
IS,S′ , see (4), (10) and (14).

As an application, we get upper bounds (15) for the average number of connected compo-
nents of S ∩ gS ′. Also, in the style of Hadwiger, we give sufficient conditions for a convex
domain to contain another one in three dimensional euclidean space.

We remark that kinematic formulas for powers of κ higher than 2 do not exist, because the
integrals diverge, as can be seen from (7).

In higher dimensions one can consider the total absolute Lipschitz-Killing curvature of
intersections of say two hypersurfaces, but corresponding kinematic formulas seem to be
more complicated than ours in this paper.

2. A kinematic formula and upper bounds.

Let S and S ′ be compact smooth oriented regular surfaces, maybe with boundaries, in R3.
We move S ′ by the elements g of the group G of orientation preserving rigid motions in R3

while keeping S fixed. If the intersection of S and gS ′ is non-empty, then S∩gS ′ is generically
a regular curve γg (maybe non-connected) in R3. The total absolute curvature of γg is∫

γg

κ(s) ds

where κ(s) is the curvature of γg in R3 and s is the arc-length parameter. Note that from the
definition of the curvature of space curves we always have κ(s) ≥ 0.

We are interested in kinematic formulas involving these total absolute curvatures, namely
we look for the value of

IS,S′ =

∫
G

∫
γg

κ(s) dsdg (3)

where dg is the kinematic density (i.e. the Haar measure) of G (see for instance [San76]). If
S ∩ gS ′ is empty, then we set the inner integral to zero.

Remark 1. The integral IS,S′ is convergent as can be seen from the following argument. As
κ ≤ κ2 + 1, we have

IS,S′ ≤
∫

G

∫
γg

κ2(s)dsdg +

∫
G

∫
γg

dsdg.

The convergence of the first integral was established by Chen (see (2)) and the existence of
the second one follows from Poincaré’s formula (see (1)).

Proposition 1. Let S and S ′ be compact smooth oriented regular surfaces in R3. Let k′min

denote the minimum of the normal curvatures k′n of S ′.

(i) If k′min > 0 and kn ≥ −k′min for all normal curvatures kn of S, then we have the following
inequality

IS,S′ ≤ 4π2

3

∫
S

(3H2 −K)dS

∫
S′

dS ′
√

K ′
+ 8π2A

∫
S′

H ′dS ′ (4)

where H, H ′ are the mean curvatures, K, K ′ are the Gauss curvatures, dS and dS ′ are
the area elements of the surfaces, and A is the area of S.
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(ii) If k′min > 0 and −k′min ≤ kn ≤ k′min for all normal curvatures kn of S, then we have

IS,S′ =
4π2

3

∫
S

(3H2 −K)dS

∫
S′

dS ′
√

K ′
+ 8π2A

∫
S′

H ′dS ′. (5)

Remark 2. The assumption k′min > 0 means that S ′ is strictly convex. In case of S and S ′

strictly convex the conditions in (i) are fulfilled.
If S, S ′ are strictly convex, the condition in (ii) says kmax ≤ k′min. If moreover they are

closed, then by the Blaschke rolling theorem S ′ can roll freely inside S (see [Bla49]).

Proof. Given g ∈ G and a point p ∈ S ∩ gS ′, let q = g−1(p) ∈ S ′. Let u ∈ T 1
p S be the unit

tangent vector of γg at p, and let v ∈ T 1
q S ′ be the associated unit vector with g∗(v) = u. Let

ϕ denote the angle between the inner normals of S and gS ′ at p. Then the kinematic density
fulfills (see formula (15.35) in [San76]):

ds dg = sin2(ϕ)dϕ dSpdu dS ′
qdv.

From this we have

IS,S′ =

∫
T 1S′

∫
T 1S

∫ π

0

κ(s) sin2(ϕ)dϕ dSpdu dS ′
qdv. (6)

Now we compute κ which is the norm of d2γg/ds2. We try

d2γg

ds2
= αN + βN ′

where N and N ′ are the inner normals of S and gS ′ at p and α, β unknown coefficients. In
order to compute α and β we note that〈

d2γg

ds2
, N

〉
= kn and

〈
d2γg

ds2
, N ′
〉

= k′n

where kn and k′n are the normal curvatures of S and gS ′ at p in direction u. This yields the
expression

d2γg

ds2
=

(kn − k′n cos ϕ)N + (k′n − kn cos ϕ)N ′

sin2 ϕ
. (7)

From (6) and (7) we get

IS,S′ =

∫
T 1S

∫
T 1S′

(∫ π

0

sin ϕ
√

k2
n + k′2n − 2knk′n cos ϕ dϕ

)
dSpdu dS ′

qdv. (8)

The inner integral of (8) gives

J :=

∫ π

0

sin ϕ
√

k2
n + k′2n − 2knk′n cos ϕ dϕ =

|kn + k′n|3 − |kn − k′n|3

3knk′n
.

In particular, by the assumption we get

J ≤ (kn + k′n)3 − (k′n − kn)3

3knk′n
= 2k′n +

2k2
n

3k′n
. (9)

In order to integrate (9) we first take∫
T 1S

∫
T 1S′

k′ndS ′
qdv dSpdu = 2πA

∫
S′

∫ 2π

0

k′n(v)dvdS ′
q = 4π2A

∫
S′

H ′dS ′.
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On the other hand we compute∫
T 1S′

∫
T 1S

k2
n

k′n
dSpdu dS ′

qdv =

(∫
T 1S

k2
ndSpdu

)
·
(∫

T 1S′

1

k′n
dS ′

qdv

)
.

For the first factor we use the Euler formula, and we get∫
T 1S

k2
ndSpdu =

∫
S

∫ 2π

0

(κ1 cos2 θ + κ2 sin2 θ)2dθdSp =

∫
S

(3πH2 − πK)dS.

For the second factor, taking into account the strong convexity of S ′, the integral converges
and gives ∫

T 1S′

1

k′n
dS ′

qdv = 2π

∫
S′

dS ′
√

K
.

Putting all these integrals into (9) and (8) gives the inequality (4).
With the additional assumption of (ii) we have kn ≤ k′n everywhere and therefore equality

in (9). This proves formula (5). �

Corollary 1. If S, S ′ are strictly convex, then we have the following inequality

IS,S′ ≤ 4π2

3

∫
S

(3H2 −K)dS

∫
S′

dS ′
√

K ′
+ 8π2A

∫
S′

H ′dS ′

+
4π2

3

∫
S′

(3H ′2 −K ′)dS ′
∫

S

dS√
K

+ 8π2A′
∫

S

HdS. (10)

The equality holds if and only if S and S ′ are parts of spheres of the same radius.

Proof. From Proposition 1, changing the roles of S and S ′, we get two inequalities. By taking
the arithmetic mean of both we get (10). Finally, the equality case occurs exactly when the
normal curvatures of S and S ′ are constant and coincide. Hence S and S ′ are umbilical and
therefore parts of spheres of the same radius. �

Remark 3. One can improve inequality (10) by using the geometric mean instead of the
arithmetic mean.

Remark 4. Let S be strictly convex and let S ′ be congruent to λS with λ ∈ R+. In particular,
when λ = 1, S ′ is congruent to S. Then the inequality (4) becomes

IS,S′ = IS,λS ≤
4π2λ3

3

∫
S

(3H2 −K)dS

∫
S

dS√
K

+ 8π2λA

∫
S

HdS. (11)

Specially, if the maximum of the normal curvatures kmax and the minimum of the normal
curvatures kmin of S fulfill λ ≤ kmin/kmax then formula (5) gives equality in (11).

Remark 5. Let S be a sphere of radius R. Then the right-hand side of (4) is a polynomial of
degree 2 in R.

Specially, for R ≥ 1/kmin the equality (5) becomes

IS,S′ = 32π3

(
1

3

∫
S′

dS ′
√

K ′
+ R2

∫
S′

H ′dS ′
)

.

If R tends to infinity, normalizing the kinematic measure, we obtain the well known fact that
the measure of planes intersecting S ′ is proportional to the integral of its mean curvature.

If R ≤ 1/kmax, then formula (5) applies in the same line by switching the roles of S and S ′.
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Remark 6. In the style of Howard’s transfer principle (see [How93]), Proposition 1 holds with
the same proof in 3-dimensional spherical and hyperbolic spaces.

Remark 7. Let S and S ′ be closed surfaces (∂S = ∂S ′ = ∅) in 3-dimensional space of constant
curvature ε = −1, 0, 1. Using K = κ1κ2 = Kint − ε, with Kint the intrinsic Gauss curvature
and the Gauss-Bonnet formula ∫

S

KintdS = 2πχ(S)

one can rewrite formulas (4), (5) and (10).

Remark 8. Since H ≥
√

K, Schwartz inequality gives

A2 ≤

(∫
S

√
H√
K

dS

)2

≤
∫

S

HdS ·
∫

dS√
K

Hence we have the following lower bound, sharp for spheres, for the integral of the inverse of
the square root of the curvature ∫

S

dS√
K
≥ A2

M
,

where M is the total mean curvature of S.

3. Lower bounds.

Let now S, S ′ be smooth regular surfaces bounding compact convex domains Ω, Ω′ in R3.
We give here lower bounds for the integral IS,S′ .

By the inequality of Fenchel (see [Fen29]), the total absolute curvature of a closed regular
curve in R3 is always greater than or equal to 2π. The equality holds if and only if the curve
is plane and convex. In our situation, for non-empty intersection curves γg = S ∩ gS ′, we
have ∫

γg

κ(s)ds ≥ 2π. (12)

On the other hand the kinematic formula of Blaschke (see [San76]) states that∫
G

χ(Ω ∩ gΩ′)dg = 8π2(χ(Ω′)V + χ(Ω)V ′) + 2π(AM ′ + A′M), (13)

where V is the volume of Ω, while A, M are the area and the total mean curvature of S and
V ′, A′, M ′ are the analogous quantities for S ′. Here χ is the Euler characteristic, that for
non-empty convex domains is equal to one.

Proposition 2. Let U = {g ∈ G : gΩ′ ⊂ Ω or gΩ′ ⊃ Ω}. We suppose that its measure
m(U) is zero. Then we have the following inequality

IS,S′ ≥ 16π3(V + V ′) + 4π2(AM ′ + A′M). (14)

The equality case holds if and only if S and S ′ are congruent spheres.

Proof. Because of m(U) = 0 we have S ∩ gS ′ 6= ∅ if and only if χ(Ω ∩ gΩ′) = 1 for almost
every g ∈ G. Therefore ∫

γg

κ(s)ds ≥ 2πχ(Ω ∩ gΩ′)
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for almost every g ∈ G. Now we get from formula (3)

IS,S′ ≥ 2π

∫
G

χ(Ω ∩ gΩ′)dg.

And by Blaschke’s formula (13) we get the inequality (14).
The equality case is a consequence of the following lemma. �

Lemma 1. Let S, S ′ be two strictly convex surfaces such that S ∩ gS ′ is a plane curve for
almost all g ∈ G. Then S, S ′ are parts of spheres.

Proof. Take p ∈ S and p′ ∈ S ′ such that at least one of them is not umbilical. Let v1, v2 (resp.
v′1, v

′
2) be principal directions of S at p (resp. S ′ at p′), and 0 < k1 ≤ k2 (resp. 0 < k′1 ≤ k′2)

the principal curvatures with respect to the normal vector n (resp. n′). Take a motion g such
that g(p′) = p, g∗(n

′) = n, and g∗(v
′
2) = v1. We choose cartesian coordinates in R3 so that

p = 0, and n = (0, 0, 1). Then S, gS ′ are locally the graphs of two functions f(x, y), f ′(x, y).

f(x, y) =
k1

2
x2 +

k2

2
y2 + O((x2 + y2)3/2)

f ′(x, y) =
k′2
2

x2 +
k′1
2

y2 + O((x2 + y2)3/2)

Case 1: (k1, k2) ∩ (k′1, k
′
2) 6= ∅. We have (k′2 − k1)(k

′
1 − k2) < 0. Consider the function

h(x, y, z) = z−f ′(x, y) defined on R3. The level sets of h are given by z = a+f ′(x, y), a ∈ R.
Their intersections with the surface S are given by a = f(x, y) − f ′(x, y), i.e. they are the
intersections of S and gS ′−an. Now, p is a non-degenerate critical point of index 1 of h|S, i.e.
locally h(x, y) = f(x, y) − f ′(x, y). Thus, by Morse lemma, we can choose local coordinates
(u, v) on S such that h(u, v) = u2 − v2. Hence there are two different tangent vectors in TpS
of gS ′ ∩ S. Because S is strictly convex, this intersection gS ′ ∩ S is not a plane curve. By
continuity, for a small enough the intersection curve {a = h(u, v)} ⊂ S is still not planar.
Moreover, for small a 6= 0 the surfaces S and gS ′−an intersect transversely (at least near p).
By stability, there is an open neighborhood of g in G such that the associated neighboring
positions of S ′ will intersect S in a non-planar set; a contradiction.

Case 2: (k1, k2) ∩ (k′1, k
′
2) = ∅. We can assume, k1 < k2 ≤ k′1 < k′2. We have

k′2
k1

>
k′1
k2

Analyzing the sections of S, gS ′ with the planes x = 0, y = 0 one can find four points in
S ∩ gS ′of the form(

0,

√
2h

k′1 − k2

+ O(h),
k′1

k′1 − k2

h + O(h2)

)
,

(
0,−

√
2h

k′1 − k2

+ O(h),
k′1

k′1 − k2

h + O(h2)

)
( √

2h

k′2 − k1

+ O(h), 0,
k′2

k′2 − k1

h + O(h2)

)
,

( √
2h

k′2 − k1

+ O(h), 0,
k′2

k′2 − k1

h + O(h2)

)
.

For small values of h, the first pair of points have a bigger third coordinate than the second
pair. Then, it is geometrically clear that these four points are not coplanar; a contradiction.

We are only left with the case k1 = k2 or k′1 = k′2 which can be treated similarly.
Therefore all points of S and S ′ must be umbilical, hence S and S ′ are part of spheres. �



A KINEMATIC FORMULA FOR THE TOTAL ABSOLUTE CURVATURE OF INTERSECTIONS 7

Remark 9. If Ω is congruent to Ω′, then m(U) = 0. In this case

IS,S′ ≥ 8π2(4πV + AM).

Remark 10. Using the monotonicity of the Quermaßintegrale (see [San76]), we get sufficient
conditions for Proposition 2:

V = V ′ =⇒ m(U) = 0,

A = A′ =⇒ m(U) = 0,

M = M ′ =⇒ m(U) = 0.

Remark 11. There is an analog of Fenchel inequality (12) in hyperbolic space (see [Sze68],
[BH74] and [Tsu74]). Therefore Proposition 2 holds there.

4. Applications.

Using the previous results we find upper bounds for the average number of connected curves
of the intersection S ∩ gS ′ of closed, smooth, oriented, regular surfaces S, S ′. We also give
bounds for the average number of components of the intersection Ω ∩ gS ′ of a domain Ω
and a moving surface S ′. Finally we give, in the style of Hadwiger (cf. [Had41]), sufficient
conditions for a convex domain to contain another one in three dimensional euclidean space.

Proposition 3. Let c(g) be the number of connected components of γg = S ∩ gS ′. If S is
closed and S ′ bounds a strictly convex domain, then∫

G

c(g)dg ≤ 2π

3

∫
S

(3H2 −K)dS

∫
S′

dS ′
√

K ′
+ 4πA

∫
S′

H ′dS ′. (15)

The equality holds if and only if S and S ′ are spheres.

Proof. By the Fenchel inequality (12) applied to each connected component of the intersection
γg we have ∫

G

c(g)dg ≤ 1

2π

∫
G

∫
γg

k(s) dsdg.

Now formula (4) yields (15). The equality case comes from the equality case in the Fenchel
inequality and Lemma 1. �

Remark 12. In case both S, S ′ are strictly convex one can also find an upper bound where S
and S ′ play symmetric roles (as in Corollary 1).

Proposition 4. Let n(g) be the number of connected components of Ω∩ gS ′. If the boundary
of Ω is a smooth and regular surface S, and if S ′ bounds a strictly convex domain, then∫

G

n(g)dg ≤ 8π2V + πA′M + 2πAM ′ +
π

3

∫
S

(3H2 −K)dS

∫
S′

dS ′
√

K ′
. (16)

The equality holds if and only if S and S ′ are spheres.

Proof. For almost every g, we have that Ω∩gS ′ is a domain of the topological sphere gS ′. For
such domains one has the following relation between the number of components of Ω ∩ gS ′

and its boundary:

χ(Ω ∩ gS ′) = 2n(g)− c(g). (17)
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The proof of (17) for n(g) = 1 is an elementary exercise using the properties of the Euler
characteristic. The case n(g) > 1 follows then immediately. Applying Blaschke’s formula
(13) to Ω and an ε-tube around S ′, and making ε tend to 0, one gets in the limit∫

G

χ(Ω ∩ gS ′)dg = 8π2χ(S ′)V + 2πA′M.

Combining this with the relation (17), and Proposition 3 we get the result. �

Remark 13. One has a similar inequality in the case where Ω is strictly convex and S ′ is a
topological sphere.

Remark 14. For closed convex surfaces S, S ′ formulas (15) and (16) lead to inequalities for
the expectation values of c and n. Here the measure dg must be normalized by Blaschke’s
formula in order to get the probability measure on the space of intersection positions.

Proposition 5. Let S, S ′ bound strictly convex domains Ω, Ω′. Then the set U = {g ∈ G :
gΩ′ ⊂ Ω or gΩ′ ⊃ Ω} has measure m(U) fulfilling the following inequalities

m(U) ≥ 8π2(V + V ′) + 2π(A′M − AM ′)− 2π

3

∫
S

(3H2 −K)dS

∫
S′

dS ′
√

K ′
, (18)

m(U) ≥ 8π2V ′ + πA′M − π

3

∫
S

(3H2 −K)dS

∫
S′

dS ′
√

K ′
. (19)

In particular if the right hand side of (18) or (19) is positive, then there are positions where
one of the domains contains the other.

Proof. Beginning with ∫
G

χ(Ω ∩ gΩ′)dg ≤ m(U) +

∫
G

c(g)dg,

and using (15) we get (18).
Starting with ∫

G

χ(Ω ∩ gΩ′)dg ≤ m(U) +

∫
G

n(g)dg,

and using (16) we get (19). �

Remark 15. An alternative Hadwiger condition in dimension 3 was given by J. Zhou in
[Zho98]. Our inequality (18) is sharp for spheres, while inequality in [Zho98] is not.
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