Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions

Joan Bosa Puigredon
(Universitat Autònoma de Barcelona)
26 de Setembre de 2013
Table of Contents

1 Introduction

2 The Cuntz Semigroup of Continuous Fields of C*-algebras

3 The geometry of Dimension Functions

4 Local triviality for Continuous Fields of C*-algebras
Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions

Joan Bosa Puigredon

Introduction

Table of Contents

1 Introduction
 • C*-algebras
 • Dimension theory for C*-algebras
 • Classification of C*-algebras
 • The Cuntz Semigroup

2 The Cuntz Semigroup of Continuous Fields of C*-algebras

3 The geometry of Dimension Functions

4 Local triviality for Continuous Fields of C*-algebras
A C*-algebra A is a complex Banach algebra (with a submultiplicative norm) with:
Definition

A C*-algebra A is a complex Banach algebra (with a submultiplicative norm) with:

- An involution $a \mapsto a^*$, for $a \in A$.
- The property that $\|aa^*\| = \|a\|^2$ for all a in A.

A C*-algebra A is a complex Banach algebra (with a submultiplicative norm) with:
- An involution $a \mapsto a^*$, for $a \in A$.
- The property that $\|aa^*\| = \|a\|^2$ for all a in A.

A is *unital* if it has a multiplicative identity 1_A.
A C*-algebra A is a complex Banach algebra (with a submultiplicative norm) with:

- An involution $a \mapsto a^*$, for $a \in A$.
- The property that $\|aa^*\| = \|a\|^2$ for all a in A.

A is **unital** if it has a multiplicative identity 1_A.

Let A, B be C*-algebras. A *-*homomorphism $\varphi : A \to B$ is a

- linear and multiplicative map,
- $\varphi(a^*) = \varphi(a)^*$ for all a in A
Definition

A C*-algebra A is a complex Banach algebra (with a submultiplicative norm) with:

- An involution $a \mapsto a^*$, for $a \in A$.
- The property that $\|aa^*\| = \|a\|^2$ for all a in A.

A is *unital* if it has a multiplicative identity 1_A.

Let A, B be C*-algebras. A *-homomorphism $\varphi : A \to B$ is a

- linear and multiplicative map,
- $\varphi(a^*) = \varphi(a)^*$ for all a in A

If A and B are unital and $\varphi(1_A) = 1_B$, then φ is called *unital*.
Definition

A C*-algebra A is a complex Banach algebra (with a submultiplicative norm) with:

- An involution $a \mapsto a^*$, for $a \in A$.
- The property that $\|aa^*\| = \|a\|^2$ for all a in A.

A is *unital* if it has a multiplicative identity 1_A.

Let A, B be C*-algebras. A *-homomorphism $\varphi : A \to B$ is a

- linear and multiplicative map,
- $\varphi(a^*) = \varphi(a)^*$ for all a in A

If A and B are unital and $\varphi(1_A) = 1_B$, then φ is called *unital*.

Figure: Sea Star
Examples

1. \(\mathbb{C} \) is a C*-algebra where

\(\mathbb{C} \) is the field of complex numbers, where the involution is given by the complex conjugation and the norm is the module of a complex number.
Examples

1. \(\mathbb{C} \) is a \(\mathcal{C}^* \)-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.
Examples

1. \(\mathbb{C} \) is a \(\mathbb{C}^* \)-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.
2. \(B(\mathcal{H}) \) (the set of bounded linear operators on a Hilbert space \(\mathcal{H} \)) is a \(\mathbb{C}^* \)-algebra, where
Examples

1. \mathbb{C} is a C^*-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.

2. $\mathcal{B}(\mathcal{H})$ (the set of bounded linear operators on a Hilbert space \mathcal{H}) is a C^*-algebra, where
 - the involution is given by the adjoint operator,
Examples

1. \mathbb{C} is a C*-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.

2. $\mathcal{B}(\mathcal{H})$ (the set of bounded linear operators on a Hilbert space \mathcal{H}) is a C*-algebra, where
 - the involution is given by the adjoint operator,
 - the norm is the operator norm, that is $\|T\| = \sup_{\|x\| \leq 1} \|Tx\|$.
Examples

1. \(\mathbb{C} \) is a C*-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.

2. \(\mathcal{B}(\mathcal{H}) \) (the set of bounded linear operators on a Hilbert space \(\mathcal{H} \)) is a C*-algebra, where
 - the involution is given by the adjoint operator,
 - the norm is the operator norm, that is \(\| T \| = \sup_{\| x \| \leq 1} \| Tx \| \).

3. Any *-closed and norm-closed subalgebra of \(\mathcal{B}(\mathcal{H}) \).
Examples

1. \(\mathbb{C} \) is a C*-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.

2. \(B(\mathcal{H}) \) (the set of bounded linear operators on a Hilbert space \(\mathcal{H} \)) is a C*-algebra, where
 - the involution is given by the adjoint operator,
 - the norm is the operator norm, that is \(\| T \| = \sup_{\| x \| \leq 1} \| Tx \| \).

3. Any *-closed and norm-closed subalgebra of \(B(\mathcal{H}) \).

4. \(M_n := M_n(\mathbb{C}) \cong B(\mathbb{C}^n) \) is also a C*-algebra where
Examples

1. \mathbb{C} is a C*-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.

2. $\mathcal{B}(\mathcal{H})$ (the set of bounded linear operators on a Hilbert space \mathcal{H}) is a C*-algebra, where
 - the involution is given by the adjoint operator,
 - the norm is the operator norm, that is $\|T\| = \sup_{\|x\| \leq 1} \|Tx\|$.

3. Any *-closed and norm-closed subalgebra of $\mathcal{B}(\mathcal{H})$.

4. $M_n := M_n(\mathbb{C}) \cong \mathcal{B}(\mathbb{C}^n)$ is also a C*-algebra where
 - the involution of a matrix is given by its transpose conjugate on \mathbb{C},
Examples

1. \(\mathbb{C} \) is a C*-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.

2. \(\mathcal{B}(\mathcal{H}) \) (the set of bounded linear operators on a Hilbert space \(\mathcal{H} \)) is a C*-algebra, where
 - the involution is given by the adjoint operator,
 - the norm is the operator norm, that is \(\| T \| = \sup_{\| x \| \leq 1} \| Tx \| \).

3. Any *-closed and norm-closed subalgebra of \(\mathcal{B}(\mathcal{H}) \).

4. \(M_n := M_n(\mathbb{C}) \cong \mathcal{B}(\mathbb{C}^n) \) is also a C*-algebra where
 - the involution of a matrix is given by its transpose conjugate on \(\mathbb{C} \),
 - the norm is the operator norm.
Examples

1. \(\mathbb{C} \) is a C*-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.

2. \(B(\mathcal{H}) \) (the set of bounded linear operators on a Hilbert space \(\mathcal{H} \)) is a C*-algebra, where
 - the involution is given by the adjoint operator,
 - the norm is the operator norm, that is \(\|T\| = \sup_{\|x\| \leq 1} \|Tx\| \).

3. Any *-closed and norm-closed subalgebra of \(B(\mathcal{H}) \).

4. \(M_n := M_n(\mathbb{C}) \cong B(\mathbb{C}^n) \) is also a C*-algebra where
 - the involution of a matrix is given by its transpose conjugate on \(\mathbb{C} \),
 - the norm is the operator norm.

5. Let \(C(X) := \{ f : X \to \mathbb{C} \mid f \text{ is continuous } \} \), where \(X \) be a compact Hausdorff space. Then it is a C*-algebra:
Examples

1. \mathbb{C} is a C*-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.

2. $\mathcal{B}(\mathcal{H})$ (the set of bounded linear operators on a Hilbert space \mathcal{H}) is a C*-algebra, where
 - the involution is given by the adjoint operator,
 - the norm is the operator norm, that is $\|T\| = \sup_{\|x\| \leq 1} \|Tx\|$.

3. Any *-closed and norm-closed subalgebra of $\mathcal{B}(\mathcal{H})$.

4. $M_n := M_n(\mathbb{C}) \cong B(\mathbb{C}^n)$ is also a C*-algebra where
 - the involution of a matrix is given by its transpose conjugate on \mathbb{C},
 - the norm is the operator norm.

5. Let $C(X) := \{ f : X \to \mathbb{C} \mid f \text{ is continuous } \}$, where X be a compact Hausdorff space. Then it is a C*-algebra:
 - With pointwise addition and multiplication.
Examples

1. \mathbb{C} is a C*-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.

2. $\mathcal{B}(\mathcal{H})$ (the set of bounded linear operators on a Hilbert space \mathcal{H}) is a C*-algebra, where
 - the involution is given by the adjoint operator,
 - the norm is the operator norm, that is $\|T\| = \sup_{\|x\| \leq 1} \|Tx\|$.

3. Any *-closed and norm-closed subalgebra of $\mathcal{B}(\mathcal{H})$.

4. $M_n := M_n(\mathbb{C}) \cong B(\mathbb{C}^n)$ is also a C*-algebra where
 - the involution of a matrix is given by its transpose conjugate on \mathbb{C},
 - the norm is the operator norm.

5. Let $C(X) := \{f : X \to \mathbb{C} \mid f \text{ is continuous} \}$, where X be a compact Hausdorff space. Then it is a C*-algebra:
 - With pointwise addition and multiplication.
 - the involution is induced by complex conjugation ($f^*(x) = \overline{f(x)}$).
Examples

1. \mathbb{C} is a C*-algebra where
 - the involution is given by the complex conjugation and the norm is the module of a complex number.

2. $\mathcal{B}(\mathcal{H})$ (the set of bounded linear operators on a Hilbert space \mathcal{H}) is a C*-algebra, where
 - the involution is given by the adjoint operator,
 - the norm is the operator norm, that is $\|T\| = \sup_{\|x\| \leq 1} \|Tx\|$.

3. Any *-closed and norm-closed subalgebra of $\mathcal{B}(\mathcal{H})$.

4. $M_n := M_n(\mathbb{C}) \cong B(\mathbb{C}^n)$ is also a C*-algebra where
 - the involution of a matrix is given by its transpose conjugate on \mathbb{C},
 - the norm is the operator norm.

5. Let $C(X) := \{f : X \to \mathbb{C} \mid f \text{ is continuous }\}$, where X be a compact Hausdorff space. Then it is a C*-algebra:
 - With pointwise addition and multiplication.
 - the involution is induced by complex conjugation ($f^*(x) = \overline{f(x)}$)
 - the norm is the supremum norm (i.e., $\|f\| = \sup_{x \in X} |f(x)|$).
Theorem

1. Any unital commutative C*-algebra is isomorphic to $C(X)$ for some compact space X.
Theorem

1. Any unital commutative C*-algebra is isomorphic to \(C(X) \) for some compact space \(X \).

2. Let \(A \) be a finite dimensional C*-algebra. Then there exist \(n_1, \ldots, n_r \in \mathbb{N} \) such that

\[
A \cong M_{n_1}(\mathbb{C}) \oplus \ldots \oplus M_{n_r}(\mathbb{C}).
\]
Theorem

1. Any unital commutative C^*-algebra is isomorphic to $C(X)$ for some compact space X.

2. Let A be a finite dimensional C^*-algebra. Then there exist $n_1, \ldots, n_r \in \mathbb{N}$ such that

$$ A \cong M_{n_1}(\mathbb{C}) \oplus \ldots \oplus M_{n_r}(\mathbb{C}). $$

3. (Gelfand, Naimark) Every C^*-algebra is isomorphic to a sub-C^*-algebra of $B(H)$.
Any unital commutative C*-algebra is isomorphic to $C(X)$ for some compact space X.

Let A be a finite dimensional C*-algebra. Then there exist $n_1, \ldots, n_r \in \mathbb{N}$ such that

$$ A \cong M_{n_1}(\mathbb{C}) \oplus \ldots \oplus M_{n_r}(\mathbb{C}). $$

(Gelfand, Naimark) Every C*-algebra is isomorphic to a sub-C*-algebra of $B(\mathcal{H})$.

Property: The category of C*-algebras has inductive limits.
Introduction

C*-algebras

Theorem

1. Any unital commutative C*-algebra is isomorphic to $C(X)$ for some compact space X.

2. Let A be a finite dimensional C*-algebra. Then there exist $n_1, \ldots, n_r \in \mathbb{N}$ such that

 $$A \cong M_{n_1}(\mathbb{C}) \oplus \ldots \oplus M_{n_r}(\mathbb{C}).$$

3. (Gelfand, Naimark) Every C*-algebra is isomorphic to a sub-C*-algebra of $B(H)$.

Property: The category of C*-algebras has inductive limits.

Example

AF-algebras is the class of C*-algebras built as inductive limits of finite-dimensional C*-algebras. An important subclass of them are UHF-algebras.
Dimension theory for C*-algebras

Dimension theory for C*-algebras

For C*-algebras there are two well-known notions of dimension called
stable rank (Rieffel, 83) and
real rank (Brown, Pedersen, 91).

Definition

We say that a unital C*-algebra A has
stable rank one, $sr(A) = 1$, if the set of
invertibles in A is dense in A. And A has
real rank zero, $RR(A) = 0$, if the set of
self-adjoint ($a = a^*$) and invertible elements is dense in A.

Examples

If $A = C(X)$ for a compact zero-dimensional space X, it follows that
$RR(A) = 0$, and $sr(A) = 1$.

If $A = M_n(C)$, then $RR(A) = 0$. And, furthermore,
$RR(B) = 0$ for any
AF-algebra B since real rank zero is preserved by inductive limits.
Dimension theory for C*-algebras

For C*-algebras there are two well-known notions of dimension called stable rank (Rieffel, 1983) and real rank (Brown, Pedersen, 1991).

Definition

We say that a unital C*-algebra A has stable rank one, $sr(A) = 1$, if the set of invertibles in A is dense in A. And A has real rank zero, $RR(A) = 0$, if the set of self-adjoint ($a = a^*$) and invertible elements is dense in A.

Examples

If $A = C(X)$ for a compact zero-dimensional space X, it follows that $RR(A) = 0$, and $sr(A) = 1$.

If $A = M_n(C)$, then $RR(A) = 0$. And, furthermore, $RR(B) = 0$ for any AF-algebra B since real rank zero is preserved by inductive limits.
Dimension theory for C*-algebras

For C*-algebras there are two well-known notions of dimension called stable rank (Rieffel, 83) and real rank (Brown, Pedersen, 91).
For C^*-algebras there are two well-known notions of dimension called \textbf{stable rank} (Rieffel, 83) and \textbf{real rank} (Brown, Pedersen, 91).

Definition

We say that a unital C^*-algebra A has \textbf{stable rank one}, $sr(A) = 1$, if the set of invertibles in A is dense in A. And A has \textbf{real rank zero}, $RR(A) = 0$, if the set of self-adjoint ($a = a^*$) and invertible elements is dense in A_{sa}.
For C*-algebras there are two well-known notions of dimension called **stable rank** (Rieffel, 83) and **real rank** (Brown, Pedersen, 91).

Definition

We say that a unital C*-algebra A has **stable rank one**, $\text{sr}(A) = 1$, if the set of invertibles in A is dense in A. And A has **real rank zero**, $\text{RR}(A) = 0$, if the set of self-adjoint ($a = a^*$) and invertible elements is dense in A_{sa}.

Examples

- If $A = C(X)$ for a compact zero-dimensional space X, it follows that $\text{RR}(A) = 0$, and $\text{sr}(A) = 1$.
- If $A = M_n(\mathbb{C})$, then $\text{RR}(A) = 0$. And, furthermore, $\text{RR}(B) = 0$ for any AF-algebra B since real rank zero is preserved by inductive limits.
Classification of C*-algebras
Classification of C*-algebras

We look for a functor $F(_)$ from the category of C*-algebras to a suitable category such that it is complete, i.e.,
Classification of C*-algebras

We look for a functor $F(_)$ from the category of C*-algebras to a suitable category such that it is complete, i.e.,

- if $\phi : F(A) \cong F(B)$ for two C*-algebras A, B,
Classification of C*-algebras

We look for a functor $F(-)$ from the category of C*-algebras to a suitable category such that it is complete, i.e.,

- if $\phi : F(A) \cong F(B)$ for two C*-algebras A, B,
- then there exists $\varphi : A \cong B$ such that $F(\varphi) = \phi$.
Classification of C*-algebras

Classification

We look for a functor $F(_)$ from the category of C*-algebras to a suitable category such that it is complete, i.e.,

- if $\phi : F(A) \cong F(B)$ for two C*-algebras A, B,
- then there exists $\varphi : A \cong B$ such that $F(\varphi) = \phi$.

Another important question is the range that this invariant has.
Classification of C*-algebras

Classification

We look for a functor $F(_)$ from the category of C*-algebras to a suitable category such that it is complete, i.e.,

- if $\phi : F(A) \cong F(B)$ for two C*-algebras A, B,
- then there exists $\varphi : A \cong B$ such that $F(\varphi) = \phi$.

Another important question is the range that this invariant has.

Examples

- (Glimm, 1960) Classification of UHF-algebras by using some equivalence relation in the set of projections.
Classification of C*-algebras

Classification

We look for a functor $F(_)$ from the category of C*-algebras to a suitable category such that it is complete, i.e.,

- if $\phi : F(A) \cong F(B)$ for two C*-algebras A, B,
- then there exists $\varphi : A \cong B$ such that $F(\varphi) = \phi$.

Another important question is the range that this invariant has.

Examples

- (Glimm, 1960) Classification of UHF-algebras by using some equivalence relation in the set of projections.
- (Elliott, 1976) Generalizes the above classification to AF-algebras using the ordered group K_0 as invariant.
Classification of C*-algebras

Classification

We look for a functor $F(_)$ from the category of C*-algebras to a suitable category such that it is complete, i.e.,

- if $\phi : F(A) \cong F(B)$ for two C*-algebras A, B,
- then there exists $\varphi : A \cong B$ such that $F(\varphi) = \phi$.

Another important question is the range that this invariant has.

Examples

- (Glimm, 1960) Classification of UHF-algebras by using some equivalence relation in the set of projections.
- (Elliott, 1976) Generalizes the above classification to AF-algebras using the ordered group K_0 as invariant.

The range of the above invariant consists of the class of dimension groups (Effros-Handelman-Shen)
Classification of C*-algebras

Conjecture (Elliott, circa 1989-Elliott Program)

There is a complete functor F from the category of separable, simple and nuclear C*-algebras which is constructed from K-theory and the simplex of traces $\mathcal{T}(A)$.

Usual form of the invariant:

$\text{Ell}(A) = (\langle K_0(A), K_0(A) + \mathbb{Z}, [1_A] \rangle, K_1(A), \mathcal{T}(A), r_A)$

where $r_A : \mathcal{T}(A) \times K_0(A) \rightarrow \mathbb{R}$ is the pairing between $K_0(A)$ and $\mathcal{T}(A)$ given by evaluation of a trace on a K_0-class.
Conjecture (Elliott, circa 1989-Elliott Program)

There is a complete functor F from the category of separable, simple and nuclear C^*-algebras which is constructed from K-theory and the simplex of traces $T(A)$.

Usual form of the invariant:
Conjecture (Elliott, circa 1989-Elliott Program)

There is a complete functor F from the category of separable, simple and nuclear C^*-algebras which is constructed from K-theory and the simplex of traces $T(A)$.

Usual form of the invariant:

$$\text{Ell}(A)$$
Introduction

Classification of C*-algebras

Conjecture (Elliott, circa 1989-Elliott Program)

There is a complete functor F from the category of separable, simple and nuclear C*-algebras which is constructed from K-theory and the simplex of traces $\mathcal{T}(A)$.

Usual form of the invariant:

$$\Ell(A) = ((K_0(A), K_0(A)^+, [1_A])$$
Introduction

Classification of C*-algebras

Conjecture (Elliott, circa 1989-Elliott Program)

There is a complete functor F from the category of separable, simple and nuclear C*-algebras which is constructed from K-theory and the simplex of traces $T(A)$.

Usual form of the invariant:

$$\text{Ell}(A) = ((K_0(A), K_0(A)^+, [1_A]), K_1(A))$$
Conjecture (Elliott, circa 1989-Elliott Program)

There is a complete functor F from the category of separable, simple and nuclear C^*-algebras which is constructed from K-theory and the simplex of traces $T(A)$.

Usual form of the invariant:

$$\text{Ell}(A) = ((K_0(A), K_0(A)^+, [1_A]), K_1(A), T(A))$$
Conjecture (Elliott, circa 1989-Elliott Program)

There is a complete functor F from the category of separable, simple and nuclear C^*-algebras which is constructed from K-theory and the simplex of traces $T(A)$.

Usual form of the invariant:

$$\text{Ell}(A) = ((K_0(A), K_0(A)^+, [1_A]), K_1(A), T(A), r_A),$$
Conjecture (Elliott, circa 1989-Elliott Program)

There is a complete functor F from the category of separable, simple and nuclear C*-algebras which is constructed from K-theory and the simplex of traces $T(A)$.

Usual form of the invariant:

$$\text{Ell}(A) = ((K_0(A), K_0(A)^+, [1_A]), K_1(A), T(A), r_A),$$

where $r_A : T(A) \times K_0(A) \to \mathbb{R}$ is the pairing between $K_0(A)$ and $T(A)$ given by evaluation of a trace on a K_0-class.
Introduction

Classification of C*-algebras

Some achievements of Elliott’s program

Classification (Stably finite)
Some achievements of Elliott’s program

Classification (Stably finite)

stably finite : in $M_n(A)$, if $xy = 1$, then $yx = 1$.
Some achievements of Elliott’s program

Classification (Stably finite)

- (Elliott, 1997) Classification of \mathbb{AT}-algebras.

stably finite: in $M_n(A)$, if $xy = 1$, then $yx = 1$.
Some achievements of Elliott’s program

Classification (Stably finite)

- (Elliott, 1997) *Classification of AT*-algebras.
- (Gong, 2002 and Elliott-Gong-Li, 2007) *Classification of simple unital AH*-algebras with slow dimension growth.*

stably finite: in $M_n(A)$, if $xy = 1$, then $yx = 1$.

Kirchberg Algebras: unital, purely infinite, simple, separable and nuclear C*-algebras.

unital, purely infinite, simple: $\forall a \neq 0 \in A \exists x, y \in A$ such that $xay = 1$.

Non-stably finite and simple $\Rightarrow \mathcal{T}(A) = \emptyset$, but is non-stably finite=purely infinite? (simple case)
Some achievements of Elliott’s program

Classification (Stably finite)

- (Elliott, 1997) *Classification of AT*-algebras.
- (Gong, 2002 and Elliott-Gong-Li, 2007) *Classification of simple unital AH*-algebras with slow dimension growth.*

Classification (Non-stably finite)

- (Kirchberg-Phillips, 2000) *Classification of Kirchberg Algebras (UCT) by*

 \[(K_0(A), [1_A]), K_1(A)) \]

Stably finite: in \(M_n(A) \), if \(xy = 1 \), then \(yx = 1 \).
Some achievements of Elliott’s program

Classification (Stably finite)

- (Elliott, 1997) *Classification of AT*-algebras.*
- (Gong, 2002 and Elliott-Gong-Li, 2007) *Classification of simple unital AH-algebras with slow dimension growth.*

Classification (Non-stably finite)

- (Kirchberg-Phillips, 2000) *Classification of Kirchberg Algebras (UCT) by*

\[((K_0(A), [1_A]), K_1(A)) \]

Moreover, this invariant exhausts all pairs of abelian groups.

stably finite: in \(M_n(A) \), if \(xy = 1 \), then \(yx = 1 \).
Some achievements of Elliott’s program

Classification (Stably finite)

- (Elliott, 1997) *Classification of AT*-algebras.
- (Gong, 2002 and Elliott-Gong-Li, 2007) *Classification of simple unital AH*-algebras with slow dimension growth.*

Classification (Non-stably finite)

(Kirchberg-Phillips, 2000) *Classification of Kirchberg Algebras (UCT) by*

\[((K_0(A), [1_A]), K_1(A)).\]

Moreover, this invariant exhausts all pairs of abelian groups.

stably finite: in \(M_n(A)\), if \(xy = 1\), then \(yx = 1\).

Kirchberg Algebras: unital, purely infinite, simple, separable and nuclear C*-algebras.
Some achievements of Elliott’s program

Classification (Stably finite)

- (Elliott, 1997) *Classification of AT*-algebras.
- (Gong, 2002 and Elliott-Gong-Li, 2007) *Classification of simple unital AH-algebras with slow dimension growth.*

Classification (Non-stably finite)

(Kirchberg-Phillips, 2000) *Classification of Kirchberg Algebras (UCT) by*

\[(K_0(A), [1_A]), K_1(A))\].

Moreover, this invariant exhausts all pairs of abelian groups.

stably finite: in $M_n(A)$, if $xy = 1$, then $yx = 1$.

Kirchberg Algebras: unital, purely infinite, simple, separable and nuclear C*-algebras.

unital, purely infinite, simple: $\forall a \neq 0 \in A \ \exists x, y \in A$ such that $xay = 1$.

- [Back to the top](#)
Some achievements of Elliott’s program

Classification (Stably finite)

- (Elliott, 1997) *Classification of AT*-algebras.*
- (Gong, 2002 and Elliott-Gong-Li, 2007) *Classification of simple unital AH-algebras with slow dimension growth.*

Classification (Non-stably finite)

(Kirchberg-Phillips, 2000) *Classification of Kirchberg Algebras (UCT) by*

\[(K_0(A), [1_A]), K_1(A)).\]

Moreover, this invariant exhausts all pairs of abelian groups.

Stably finite: in \(M_n(A)\), if \(xy = 1\), then \(yx = 1\).

Kirchberg Algebras: unital, purely infinite, simple, separable and nuclear C*-algebras.

unital, purely infinite, simple: \(\forall a \neq 0 \in A \exists x, y \in A\) such that \(xay = 1\).

Non-stably finite and simple \(\implies T(A) = \emptyset\), but

is non-stably finite = purely infinite? (simple case)
Counterexamples

Example (Rørdam, 2003)
Counterexamples

Example (Rørdam, 2003)

A simple, nuclear C-algebra which is neither stably finite nor purely infinite. (Contains a finite and an infinite projection.)*
Counterexamples

Example (Rørdam, 2003)

A simple, nuclear C*-algebra which is neither stably finite nor purely infinite. (Contains a finite and an infinite projection.)

By the range result for Kirchberg Algebras, \(\text{Ell}(\mathcal L) \) does not distinguish non-isomorphic nuclear, unital, separable, simple non-stably finite C*-algebras.
Counterexamples

Example (Rørdam, 2003)

A simple, nuclear C*-algebra which is *neither stably finite nor purely infinite*. (Contains a finite and an infinite projection.)

By the range result for Kirchberg Algebras, Ell(\(__\)) *does not distinguish* non-isomorphic nuclear, unital, separable, simple non-stably finite C*-algebras.

Example (Toms, 2008)
Counterexamples

Example (Rørdam, 2003)

A simple, nuclear C*-algebra which is neither stably finite nor purely infinite. (Contains a finite and an infinite projection.)

By the range result for Kirchberg Algebras, Ell(·) does not distinguish non-isomorphic nuclear, unital, separable, simple non-stably finite C*-algebras.

Example (Toms, 2008)

Two unital simple C*-algebras that agree on: Elliott invariant,
Counterexamples

Example (Rørdam, 2003)

A simple, nuclear C*-algebra which is neither stably finite nor purely infinite. (Contains a finite and an infinite projection.)

By the range result for Kirchberg Algebras, Ell(-) does not distinguish non-isomorphic nuclear, unital, separable, simple non-stably finite C-algebras.*

Example (Toms, 2008)

Two unital simple C*-algebras that agree on: Elliott invariant, real rank, stable rank and other continuous isomorphism invariants.
Counterexamples

Example (Rørdam, 2003)

A simple, nuclear C*-algebra which is neither stably finite nor purely infinite. (Contains a finite and an infinite projection.)

By the range result for Kirchberg Algebras, $\text{Ell}(-)$ does not distinguish non-isomorphic nuclear, unital, separable, simple non-stably finite C*-algebras.

Example (Toms, 2008)

Two unital simple C*-algebras that agree on: Elliott invariant, real rank, stable rank and other continuous isomorphism invariants.
But they are non-isomorphic.
Counterexamples

Example (Rørdam, 2003)

A simple, nuclear C^*-algebra which is *neither stably finite nor purely infinite*. (Contains a finite and an infinite projection.)

By the range result for Kirchberg Algebras, $\text{Ell}(_)$ *does not distinguish* non-isomorphic nuclear, unital, separable, simple non-stably finite C^*-algebras.

Example (Toms, 2008)

Two unital simple C^*-algebras that agree on: *Elliott invariant*, real rank, stable rank and other continuous isomorphism invariants.

But they are non-isomorphic.

These algebras were distinguished by their Cuntz semigroup $W(_)$.
Introduction

The Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup $V(A)$.

Definition (V(A)-The Murray-von Neumann semigroup)

Let A be a C*-algebra and denote by $P_n(A) = \{p \text{ a projection in } M_n(A)\}$. p is M.-v.N. equivalent to q in $P_n(A)$ ($p \sim_0 q$) if there exists $v \in M_n(A)$ such that $p = vv^*$ and $q = v^*v$.

Extending this relation to $P_\infty(A) = \bigcup_{n=1}^{\infty} P_n(A)$, one defines the Murray-von Neumann semigroup of A as $V(A) = P_\infty(A)/\sim_0$.

Denote the equivalence classes by $[p]$. The operation and order are given by $[p] + [q] = [p \circ 0 q]$, $[p] \leq [q]$ if $p \sim_0 p' \leq q$ (i.e. $p'q = p'$).

The order in $V(A)$ is algebraic. (i.e. if $[p] \leq [q] = \Rightarrow \exists [r]$ s.t. $[p] + [r] = [q]$.)
It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup $V(A)$.
It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup $V(A)$.

Definition (V(A)-The Murray-von Neumann semigroup)

Let A be a C*-algebra and denote by $P_n(A) = \{ p \text{ a projection in } M_n(A) \}$.

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup $V(A)$.

Definition (V(A)-The Murray-von Neumann semigroup)

Let A be a C*-algebra and denote by $\mathcal{P}_n(A) = \{p \text{ a projection in } M_n(A)\}$.

p is M.-v.N. equivalent to q in $\mathcal{P}_n(A)$ ($p \sim_0 q$)
It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup $V(A)$.

Definition (V(A)-The Murray-von Neumann semigroup)

Let A be a C*-algebra and denote by $\mathcal{P}_n(A) = \{p \text{ a projection in } M_n(A)\}$.

\[
p \text{ is M.-v.N. equivalent to } q \text{ in } \mathcal{P}_n(A) \ (p \sim_0 q) \quad \iff \quad \exists v \in M_n(A) \text{ such that } p = vv^* \text{ and } q = v^*v.
\]
It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup $V(A)$.

Definition (V(A)-The Murray-von Neumann semigroup)

Let A be a C^*-algebra and denote by $P_n(A) = \{p \text{ a projection in } M_n(A)\}$.

p is $M.$-v.N. equivalent to q in $P_n(A)$ ($p \sim_0 q$) $\iff \exists v \in M_n(A)$ such that $p = vv^*$ and $q = v^*v$.

Extending this relation to $P_\infty(A) = \bigcup_{n=1}^{\infty} P_n(A)$, one defines the \textit{Murray-von Neumann semigroup} of A as

$$V(A) = P_\infty(A)/ \sim_0.$$
Introduction

The Cuntz Semigroup

It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup $V(A)$.

Definition (V(A)-The Murray-von Neumann semigroup)

Let A be a C*-algebra and denote by $\mathcal{P}_n(A) = \{p \text{ a projection in } M_n(A)\}$.

p is M.-v.N. equivalent to q in $\mathcal{P}_n(A)$ ($p \sim_0 q$) if

\[
\exists v \in M_n(A) \text{ such that } p = vv^* \text{ and } q = v^*v.
\]

Extending this relation to $\mathcal{P}_\infty(A) = \bigcup_{n=1}^\infty \mathcal{P}_n(A)$, one defines the *Murray-von Neumann semigroup* of A as

\[V(A) = \mathcal{P}_\infty(A)/\sim_0. \]

Denote the equivalence classes by $[p]$. The operation and order are given by

\[[p] + [q] = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}, \quad [p] \leq [q] \text{ if } p \sim_0 p' \leq q \text{ (i.e. } p'q = p'). \]
It was introduced by Cuntz in 1978 modelling the construction of the Murray-von Neumann semigroup $V(A)$.

Definition (V(A)-The Murray-von Neumann semigroup)

Let A be a C*-algebra and denote by $\mathcal{P}_n(A) = \{ p \text{ a projection in } M_n(A) \}$.

p is M.-v.N. equivalent to q in $\mathcal{P}_n(A)$ ($p \sim_0 q$) if $\exists v \in M_n(A)$ such that $p = vv^*$ and $q = v^*v$.

Extending this relation to $\mathcal{P}_\infty(A) = \bigcup_{n=1}^{\infty} \mathcal{P}_n(A)$, one defines the **Murray-von Neumann semigroup** of A as

$$V(A) = \mathcal{P}_\infty(A)/\sim_0.$$

Denote the equivalence classes by $[p]$. The operation and order are given by

$$[p] + [q] = [(p \ 0) \begin{pmatrix} 0 & 0 \\ 0 & q \end{pmatrix}], \quad [p] \leq [q] \text{ if } p \sim_0 p' \leq q \text{ (i.e. } p'q = p').$$

The order in $V(A)$ is algebraic. (i.e. if $[p] \leq [q] \implies \exists [r]$ s.t. $[p] + [r] = [q]$.)
Definition (W(A)-The Cuntz semigroup)

Let A be a C^*-algebra and $a, b \in A_+$.

a is Cuntz subequivalent to b
($a \less b$)
Definition (W(A)-The Cuntz semigroup)

Let A be a C*-algebra and $a, b \in A_+$.

| a is *Cuntz subequivalent* to b $(a \lesssim b)$ | \exists a sequence (x_n) in A such that $\|x_n b x_n^* - a\| \to 0$ |

$a \sim b$ if $a \lesssim b$ and $b \lesssim a$.
Definition (W(A)-The Cuntz semigroup)

Let A be a C*-algebra and $a, b \in A_+$.

- a is Cuntz subequivalent to b ($a \preceq b$) if there exists a sequence (x_n) in A such that $\|x_n b x_n^* - a\| \to 0$.

a and b are Cuntz equivalent if $a \preceq b$ and $b \preceq a$ (denoted $a \sim b$).
Introduction

The Cuntz Semigroup

Definition (W(A)-The Cuntz semigroup)

Let A be a C^*-algebra and $a, b \in A_+$.

- a is *Cuntz subequivalent* to b
 \[a \preceq b \]

 \iff \exists a sequence (x_n) in A such that
 \[\|x_n bx_n^* - a\| \to 0 \]

- a and b are *Cuntz equivalent* if $a \preceq b$ and $b \preceq a$ (denoted $a \sim b$).

Extending this relation to $M_\infty(A)_+ = \bigcup_{n=1}^{\infty} M_n(A)_+$, one defines the Cuntz semigroup

\[W(A) = M_\infty(A)_+/\sim. \]
Definition (W(\(A\))-The Cuntz semigroup)

Let \(A\) be a C*-algebra and \(a, b \in A_+\).

\[a \text{ is Cuntz subequivalent to } b \quad (a \preccurlyeq b) \iff \exists \text{ a sequence } (x_n) \text{ in } A \text{ such that } \|x_nbx_n^* - a\| \to 0 \]

\(a\) and \(b\) are Cuntz equivalent if \(a \preccurlyeq b\) and \(b \preccurlyeq a\) (denoted \(a \sim b\)).

Extending this relation to \(M_\infty(A)_+ = \bigcup_{n=1}^\infty M_n(A)_+\), one defines the Cuntz semigroup

\[W(A) = M_\infty(A)_+ / \sim. \]

Denote the equivalence classes by \(\langle a \rangle\). The operation and order are given by

\[\langle a \rangle + \langle b \rangle = \langle \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \rangle, \quad \langle a \rangle \leq \langle b \rangle \text{ if } a \preccurlyeq b. \]
Let A be a C*-algebra and $a, b \in A_+$.

\[
\begin{align*}
\text{a is Cuntz subequivalent to b} & \quad \iff \quad \exists \text{ a sequence } (x_n) \text{ in } A \text{ such that } \|x_n b x_n^* - a\| \to 0 \\
\end{align*}
\]

a and b are Cuntz equivalent if $a \preceq b$ and $b \preceq a$ (denoted $a \sim b$).

Extending this relation to $M_\infty(A)_+ = \bigcup_{n=1}^\infty M_n(A)_+$, one defines the Cuntz semigroup

\[
W(A) = M_\infty(A)_+/\sim.
\]

Denote the equivalence classes by $\langle a \rangle$. The operation and order are given by

\[
\langle a \rangle + \langle b \rangle = \langle \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \rangle, \quad \langle a \rangle \leq \langle b \rangle \text{ if } a \preceq b.
\]

The order in $W(A)$ is usually not the algebraic order.
Relation between $V(A)$ and $W(A)$
Relation between $V(A)$ and $W(A)$

Remark

- There is a natural map $V(A) \to W(A)$ defined by $[p] \mapsto \langle p \rangle$, which is injective if A is stably finite.
- When A is finite dimensional, it follows that $W(A) = V(A)$.
Remark

- There is a natural map $V(A) \to W(A)$ defined by $[p] \mapsto \langle p \rangle$, which is injective if A is stably finite.
- When A is finite dimensional, it follows that $W(A) = V(A)$.

Definition

If we consider the Grothendieck group construction, we have the following:

$$G(V(A)) = K_0(A) \text{ (unital case)} \quad G(W(A)) = K_0^*(A).$$
Ell(A) and W(A), are they related?
Ell(A) and W(A), are they related?

Theorem (Brown-Perera-Toms, ’08)

The Cuntz semigroup can be recovered from the Elliott invariant for a large class of C*-algebras.
Ell(A) and W(A), are they related?

Theorem (Brown-Perera-Toms, ’08)

The Cuntz semigroup can be recovered from the Elliott invariant for a large class of C*-algebras.

In fact, for simple, unital and finite C*-algebras A that are exact and \(\mathcal{Z} \)-stable, where \(\mathcal{Z} \) is the Jiang-Su algebra, it was proved that...
Ell(A) and W(A), are they related?

Theorem (Brown-Perera-Toms, '08)

The Cuntz semigroup can be recovered from the Elliott invariant for a large class of C-algebras.*

In fact, for simple, unital and finite C*-algebras A that are exact and \mathcal{Z}-stable, where \mathcal{Z} is the Jiang-Su algebra, it was proved that

$$W(A) \cong V(A) \sqcup \text{LAff}(T(A))^{++}.$$
Ell(A) and W(A), are they related?

Theorem (Brown-Perera-Toms, '08)

The Cuntz semigroup can be recovered from the Elliott invariant for a large class of C*-algebras.

In fact, for simple, unital and finite C*-algebras A that are exact and \(\mathcal{Z} \)-stable, where \(\mathcal{Z} \) is the Jiang-Su algebra, it was proved that

\[
W(A) \cong V(A) \sqcup \text{LAff}(T(A))^{++}.
\]

Theorem (Antoine-Dadarlat-Perera-Santiago, '13, Tikuisis, '12)

The Elliott invariant can be recovered from the Cuntz semigroup after tensoring with the circle for the same class of C*-algebras as above.
Introduction

The Cuntz Semigroup

Continuity of $W(A)$
Continuity of $W(A)$

- If A is a C*-algebra of the form $A = \lim(A_i)$, then in general $W(A) \neq \lim W(A_i)$.
Continuity of $W(A)$

- If A is a C*-algebra of the form $A = \varinjlim (A_i)$, then in general $W(A) \neq \varinjlim W(A_i)$.

Remark

The assignment $A \mapsto W(A)$ does not preserve inductive limits
Continuity of $W(A)$

- If A is a C*-algebra of the form $A = \lim (A_i)$, then in general $W(A) \neq \lim W(A_i)$.

Remark

The assignment $A \mapsto W(A)$ does not preserve inductive limits.

Coward-Elliott-Ivanescu in 2008 defined $Cu(A)$ for any C*-algebra, which is a modified version of the Cuntz semigroup. In fact, $Cu(A)$ can be identified with $W(A \otimes K)$.
Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions

Joan Bosa Puigredon

Introduction

The Cuntz Semigroup

Continuity of $W(A)$

- If A is a C*-algebra of the form $A = \lim_{i \to \infty} (A_i)$, then in general $W(A) \neq \lim_{i \to \infty} W(A_i)$.

Remark

The assignment $A \mapsto W(A)$ does not preserve inductive limits.

Coward-Elliott-Ivanescu in 2008 defined $Cu(A)$ for any C*-algebra, which is a modified version of the Cuntz semigroup. In fact, $Cu(A)$ can be identified with $W(A \otimes K)$.

Properties

- $Cu(A)$ belongs to a category of semigroups called Cu that admits inductive limits that are not algebraic.
- The assignment $A \mapsto Cu(A)$ is sequentially continuous.
The category \mathcal{Cu}
The category \mathbf{Cu}

Definition

Let a, b be elements in a partially ordered set S. Then, we will say that $a \ll b$ (way-below) if for any increasing sequence $\{y_n\}$ with supremum in S such that $b \leq \sup(y_n)$, there exists m such that $a \leq y_m$.
The category Cu

Definition

Let a, b be elements in a partially ordered set S. Then, we will say that $a \ll b$ (way-below) if for any increasing sequence $\{y_n\}$ with supremum in S such that $b \leq \sup(y_n)$, there exists m such that $a \leq y_m$.

Definition (Cu)

An object of Cu is a partially ordered semigroup with zero element S such that:

- The order, in S, is compatible with the addition, i.e., if $x_i \leq y_i$, $i \in \{1, 2\}$ then $x_1 + x_2 \leq y_1 + y_2$,
- every increasing sequence in S has a supremum,
- for all $x \in S$ there exists a sequence $\{x_n\}$ such that $x = \sup(x_n)$ where $x_n \ll x_{n+1}$,
- the relation \ll and suprema are compatible with addition.

The maps of Cu are those morphisms which preserve the order, the zero, the suprema of increasing sequences and the relation \ll.
Remark

In fact, $\langle (a - \varepsilon)_+ \rangle \ll \langle a \rangle$ in Cu(A) for all $\varepsilon > 0$ and for all $a \in A_+$.
Remark

In fact, $\langle (a - \varepsilon)_+ \rangle \ll \langle a \rangle$ in $\text{Cu}(A)$ for all $\varepsilon > 0$ and for all $a \in A_+$.

Example

Let X be a compact metric space. Then, if $\mathcal{O}(X)$ is the set of open sets in X ordered by inclusion, it follows that $\mathcal{O}(X) \in \text{Cu}$. In this, we have that $U \ll V$ for $U, V \in \mathcal{O}(X)$, if there exists a compact subset $K \subseteq X$ such that $U \subseteq K \subseteq V$.
Remark

In fact, $\langle (a - \varepsilon)_+ \rangle \ll \langle a \rangle$ in $\text{Cu}(A)$ for all $\varepsilon > 0$ and for all $a \in A_+$.

Example

- Let X be a compact metric space. Then, if $\mathcal{O}(X)$ is the set of open sets in X ordered by inclusion, it follows that $\mathcal{O}(X) \in \text{Cu}$. In this, we have that $U \ll V$ for $U, V \in \mathcal{O}(X)$, if there exists a compact subset $K \subseteq X$ such that $U \subseteq K \subseteq V$.

- Let X be a finite-dimensional compact metric space, then $\text{Lsc}(X, \overline{\mathbb{N}}) \in \text{Cu}$, where $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$.
Remark

In fact, $\langle (a - \varepsilon)_+ \rangle \ll \langle a \rangle$ in $\text{Cu}(A)$ for all $\varepsilon > 0$ and for all $a \in A_+$.

Example

- Let X be a compact metric space. Then, if $\mathcal{O}(X)$ is the set of open sets in X ordered by inclusion, it follows that $\mathcal{O}(X) \in \text{Cu}$. In this, we have that $U \ll V$ for $U, V \in \mathcal{O}(X)$, if there exists a compact subset $K \subseteq X$ such that $U \subseteq K \subseteq V$.

- Let X be a finite-dimensional compact metric space, then $\text{Lsc}(X, \overline{\mathbb{N}}) \in \text{Cu}$, where $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$.

Remark

The main difference between the classical and the stabilized Cuntz semigroup is that $W(A)$ is not necessarily closed with respect to suprema of increasing sequences.
1 Introduction

2 The Cuntz Semigroup of Continuous Fields of C*-algebras
 - Continuous Fields
 - Sheaves of semigroups
 - The sheaves on Cu
 - The sheaf $Cu_A(_)$

3 The geometry of Dimension Functions

4 Local triviality for Continuous Fields of C*-algebras
Continuous Fields of C*-algebras, their Cuntz Semigroup and the Geometry of Dimension Functions

The Cuntz Semigroup of Continuous Fields of C*-algebras

C(X)-algebras

Definition

Let X be a compact metric space. A unital $C(X)$-algebra is a C*-algebra A together with a unital $*$-homomorphism $\theta: C(X) \to \mathbb{Z}(A)$, where $\mathbb{Z}(A)$ is the center of A.

Remark

A $C(X)$-algebra has the structure of $C(X)$-module. In particular, we write $f_\theta a$ instead of $\theta(f)a$ where $f \in C(X)$ and $a \in A$.

Notation

If $U \subset X$ is an open set, we denote $A(U) = C_0(U)A$, which is a closed ideal of A. (Cohen)

If $Y \subseteq X$ is a closed set, $A(Y)$, is the quotient of A by the ideal $A(X \setminus Y)$, which becomes a $C(Y)$-algebra. The quotient map is denoted by π_Y.

If Y reduces to a point x, we write A_x, denote by π_x the quotient map. The C*-algebra A_x is called the fiber of A at x.

C(X)-algebras

Definition

Let X be a compact metric space. A unital $C(X)$-algebra is a C^*-algebra A together with a unital *-homomorphism $\theta: C(X) \to Z(A)$, where $Z(A)$ is the center of A.
Definition

Let X be a compact metric space. A unital $\mathcal{C}(X)$-algebra is a C^*-algebra A together with a unital \ast-homomorphism $\theta : \mathcal{C}(X) \rightarrow Z(A)$, where $Z(A)$ is the center of A.

Remark

A $\mathcal{C}(X)$-algebra has the structure of $\mathcal{C}(X)$-module. In particular, we write fa instead of $\theta(f)a$ where $f \in \mathcal{C}(X)$ and $a \in A$.
C(X)-algebras

Definition
Let X be a compact metric space.
A unital $C(X)$-algebra is a C^*-algebra A together with a unital *-homomorphism $\theta : C(X) \to Z(A)$, where $Z(A)$ is the center of A.

Remark
A $C(X)$-algebra has the structure of $C(X)$-module. In particular, we write $f a$ instead of $\theta(f)a$ where $f \in C(X)$ and $a \in A$.

Notation
- If $U \subset X$ is an open set, we denote $A(U) = C_0(U)A$, which is a closed ideal of A. (Cohen)
- If $Y \subseteq X$ is a closed set, $A(Y)$, is the quotient of A by the ideal $A(X \setminus Y)$, which becomes a $C(Y)$-algebra. The quotient map is denoted by π_Y.
- If Y reduces to a point x, we write A_x, denote by π_x the quotient map. The C^*-algebra A_x is called the fiber of A at x.
Lemma (Blanchard)

Let A be a $C(X)$-algebra and $a \in A$. Then the following conditions are satisfied:

(i) $\|a\| = \sup_{x \in X} \|a_x\|.$

(ii) The map $x \mapsto \|a_x\|$ is upper semicontinuous.
Continuous Fields

Lemma (Blanchard)

Let A be a $C(X)$-algebra and $a \in A$. Then the following conditions are satisfied:

(i) $\|a\| = \sup_{x \in X} \|a_x\|.$

(ii) The map $x \mapsto \|a_x\|$ is upper semicontinuous.

Definition

A $C(X)$-algebra such that the map $x \mapsto \|a_x\|$ is continuous for all $a \in A$ is called a continuous field of C^*-algebras.
Continuous Fields

Lemma (Blanchard)

Let A be a $C(X)$-algebra and $a \in A$. Then the following conditions are satisfied:

(i) $\|a\| = \sup_{x \in X} \|a_x\|$.
(ii) The map $x \mapsto \|a_x\|$ is upper semicontinuous.

Definition

A $C(X)$-algebra such that the map $x \mapsto \|a_x\|$ is continuous for all $a \in A$ is called a **continuous field of C*-algebras**.

A continuous field is called **trivial** if there exists a C*-algebra D such that $A \cong C(X, D)$.
Sheaves of semigroups

Definition (Presheaves)

A **presheaf** over \(X \) is a contravariant functor \(S: \mathcal{V}_X \to C \)

where \(\mathcal{V}_X \) is the **category of closed sets of** \(X \) **with non-empty interior** and \(C \) is a subcategory of the category of sets which is **closed under sequential inductive limits**.
Sheaves of semigroups

Definition (Presheaves)

A **presheaf** over X is a contravariant functor $S : \mathcal{V}_X \to \mathcal{C}$ where \mathcal{V}_X is the category of closed sets of X with non-empty interior and \mathcal{C} is a subcategory of the category of sets which is closed under sequential inductive limits.

Definition (Sheaves)

A presheaf is a **sheaf** if for all $V, V' \in \mathcal{V}_X$ such that $V \cap V' \in \mathcal{V}_X$, the map

$$\pi^V_{V \cup V'} \times \pi^{V'}_{V \cup V'} : S(V \cup V') \to \{(f, g) \in S(V) \times S(V') \mid \pi^V_{V \cap V'}(f) = \pi^{V'}_{V \cap V'}(g)\}$$

is bijective.
A presheaf (respectively a sheaf) is **continuous** if for any decreasing sequence \((V_i)_{i=1}^{\infty}\) in \(\mathcal{V}_X\) whose intersection \(\cap_{i=1}^{\infty} V_i = V\) belongs to \(\mathcal{V}_X\), the limit \(\lim_{\longrightarrow} S(V_i)\) is isomorphic to \(S(V)\).
A presheaf (respectively a sheaf) is **continuous** if for any decreasing sequence $(V_i)_{i=1}^\infty$ in \mathcal{V}_X whose intersection $\bigcap_{i=1}^\infty V_i = V$ belongs to \mathcal{V}_X, the limit $\lim_{\to S} (V_i)$ is isomorphic to $S(V)$.

Definition

Let S be a continuous presheaf over X. For any $x \in X$, we define the fiber of S at x as

$$S_x := \lim_{x \in V_n} S(V_n),$$

with respect to the restriction maps, where $\{V_n\}_{n}$ is any decreasing sequence in \mathcal{V}_X such that $\bigcap_{n=1}^\infty V_n = \{x\}$.
A presheaf (respectively a sheaf) is **continuous** if for any decreasing sequence $(V_i)_{i=1}^\infty$ in \mathcal{V}_X whose intersection $\bigcap_{i=1}^\infty V_i = V$ belongs to \mathcal{V}_X, the limit $\lim \rightarrow_{\mathcal{V}_X} S(V_i)$ is isomorphic to $S(V)$.

Definition

Let S be a continuous presheaf over X. For any $x \in X$, we define the fiber of S at x as

$$S_x := \lim_{x \in V_n} S(V_n),$$

with respect to the restriction maps, where $\{V_n\}_n$ is any decreasing sequence in \mathcal{V}_X such that $\bigcap_{n=1}^\infty V_n = \{x\}$.

Examples

Let X be a compact metric space, and let A be a $C(X)$-algebra. Then:
A presheaf (respectively a sheaf) is **continuous** if for any decreasing sequence $(V_i)_{i=1}^\infty$ in \mathcal{V}_X whose intersection $\bigcap_{i=1}^\infty V_i = V$ belongs to \mathcal{V}_X, the limit $\lim_{\to} S(V_i)$ is isomorphic to $S(V)$.

Definition

Let S be a continuous presheaf over X. For any $x \in X$, we define the fiber of S at x as

$$S_x := \lim_{x \in V_n} S(V_n),$$

with respect to the restriction maps, where $\{V_n\}_n$ is any decreasing sequence in \mathcal{V}_X such that $\bigcap_{n=1}^\infty V_n = \{x\}$.

Examples

Let X be a compact metric space, and let A be a $C(X)$-algebra. Then:

$$\text{Cu}_A : \mathcal{V}_X \to \text{Cu}$$

$$U \mapsto \text{Cu}_A(U) = \text{Cu}(A(U))$$

$$\mathcal{V}_A : \mathcal{V}_X \to \mathcal{V}_A(U) = \mathcal{V}(A(U))$$

$$\text{Sg}_A : \mathcal{V}_X \to \mathcal{Sg}$$

are continuous presheaves.
Sheaf of sections
Sheaf of sections

What is a sheaf of sections?
Sheaf of sections

What is a sheaf of sections?

Let S be a sheaf over a space X.

Sheaf of sections

What is a sheaf of sections?

Let S be a sheaf over a space X and define $F_S = \bigsqcup_{x \in X} S_x$ and $r : F_S \to X$ be the natural projection taking elements in S_x to x.
Sheaf of sections

What is a sheaf of sections?

Let S be a sheaf over a space X and define $F_S = \bigcup_{x \in X} S_x$ and $r : F_S \rightarrow X$ be the natural projection taking elements in S_x to x.

We shall call section any map $f : V \subseteq X \rightarrow F_{S(V)}$ such that $r \circ f = 1_V$.
Sheaf of sections

What is a sheaf of sections?

Let S be a sheaf over a space X and define $F_S = \bigcup_{x \in X} S_x$ and $r : F_S \to X$ be the natural projection taking elements in S_x to x.

We shall call section any map $f : V \subseteq X \to F_{S(V)}$ such that $r \circ f = 1_V$.

For each $s \in S(V)$, define the set function $\hat{s} : V \to F_{S(V)}$ by letting $\hat{s}(x) = s_x$ for each $x \in V$.

Sheaf of sections

What is a sheaf of sections?

Let S be a sheaf over a space X and define $F_S = \bigcup_{x \in X} S_x$ and $r : F_S \to X$ be the natural projection taking elements in S_x to x.

We shall call section any map $f : V \subseteq X \to F_S(V)$ such that $r \circ f = 1_V$.

For each $s \in S(V)$, define the set function $\hat{s} : V \to F_S(V)$ by letting $\hat{s}(x) = s_x$ for each $x \in V$.

Note that $r \circ \hat{s} = 1_V$.
Sheaf of sections

What is a sheaf of sections?

Let S be a sheaf over a space X and define $F_S = \bigcup_{x \in X} S_x$ and $r : F_S \to X$ be the natural projection taking elements in S_x to x.

We shall call section any map $f : V \subseteq X \to F_{S(V)}$ such that $r \circ f = 1_V$.

For each $s \in S(V)$, define the set function $\hat{s} : V \to F_{S(V)}$ by letting $\hat{s}(x) = s_x$ for each $x \in V$.

Note that $r \circ \hat{s} = 1_V$.

Taking $\{\hat{s}(U)\}$, where U is open in V and $s \in S(V)$, as a basis for the topology of $F_{S(V)}$, all the functions \hat{s} are continuous.
Sheaf of sections

What is a sheaf of sections?

Let S be a sheaf over a space X and define $F_S = \bigcup_{x \in X} S_x$ and $r : F_S \to X$ be the natural projection taking elements in S_x to x.

We shall call **section** any map $f : V \subseteq X \to F_{S(V)}$ such that $r \circ f = 1_V$.

For each $s \in S(V)$, define the set function $\hat{s} : V \to F_{S(V)}$ by letting $\hat{s}(x) = s_x$ for each $x \in V$.

Note that $r \circ \hat{s} = 1_V$.

Taking $\{\hat{s}(U)\}$, where U is open in V and $s \in S(V)$, as a basis for the topology of $F_{S(V)}$, all the functions \hat{s} are continuous.

One can define $\Gamma(V, F_{S(V)}) = \{ f : V \to F_{S(V)} \mid f \text{ is a continuous section} \}$.
Relation between a sheaf and the sheaf of sections
Relation between a sheaf and the sheaf of sections

Theorem (Classical Result)

Let S be an algebraic sheaf over X. Then,

$$S \text{ and } \Gamma(-, F_{S(-)}) \text{ are isomorphic sheaves.}$$
Relation between a sheaf and the sheaf of sections

Theorem (Classical Result)

Let S be an algebraic sheaf over X. Then,

$$S \text{ and } \Gamma(-, F_{S(-)}) \text{ are isomorphic sheaves.}$$
Relation between a sheaf and the sheaf of sections

Theorem (Classical Result)

Let S be an algebraic sheaf over X. Then,

$$S \text{ and } \Gamma(-, F_{S(-)}) \text{ are isomorphic sheaves.}$$

algebraic sheaf = Inductive limits in the target category are algebraic limits.
The Cuntz Semigroup of Continuous Fields of C*-algebras

Relation between a sheaf and the sheaf of sections

Theorem (Classical Result)

Let S be an algebraic sheaf over X. Then,

$$S \text{ and } \Gamma(_ , F_{S(_)})$$

are isomorphic sheaves.

algebraic sheaf = Inductive limits in the target category are algebraic limits.

Problem

The inductive limits in the category Cu are not algebraic.
Relation between a sheaf and the sheaf of sections

Theorem (Classical Result)

Let S be an algebraic sheaf over X. Then,

$$S \text{ and } \Gamma(-, F_{S(-)})$$

are isomorphic sheaves.

algebraic sheaf = Inductive limits in the target category are algebraic limits.

Problem

The inductive limits in the category Cu are not algebraic.

Example

Let $A = C([0, 1], \mathbb{C})$ and $\{U_m = [\frac{1}{2} - \frac{1}{m}, \frac{1}{2} + \frac{1}{m}]\}_{m \geq 2}$, which is a sequence of decreasing closed subsets of $[0, 1]$ whose intersection is $\{1/2\}$.

It follows $Cu(A) \cong Lsc([0, 1], \overline{N})$, where $\overline{N} = \mathbb{N} \cup \{\infty\}$. So one has

$$\lim Lsc(U_n, \overline{N}) = \lim Cu(A(U_n)) = Cu(\lim A(U_n)) = Cu(A(1/2)) = \overline{N}.$$

However, the computation of the above direct limit in Sg is not \overline{N}.
The sheaves of sections on Cu
The sheaves of sections on \mathcal{Cu}

Question

How do we recover S on \mathcal{Cu} from the sheaf of sections $F_S \to X$?
The sheaves of sections on $\mathcal{C}u$

Question

How do we recover S on $\mathcal{C}u$ from the sheaf of sections $F_S \to X$?

Let $S : \mathcal{V}_X \to \mathcal{C}u$ be a sheaf on $\mathcal{C}u$ and X be a compact metric space.
The sheaves of sections on \mathcal{Cu}

Question

How do we recover S on \mathcal{Cu} from the sheaf of sections $F_S \to X$?

Let $S : \mathcal{V}_X \to \mathcal{Cu}$ be a sheaf on \mathcal{Cu} and X be a compact metric space.

- We define a topology on F_S generated by

 $$U_s^{\ll} = \{y \in F_S \mid \hat{s}(x) \gg y \text{ for some } x \in U\}. $$

 The induced sections are continuous with this topology.
The sheaves of sections on $\mathcal{C}u$

Question

How do we recover S on $\mathcal{C}u$ from the sheaf of sections $F_S \to X$?

Let $S : \mathcal{V}_X \to \mathcal{C}u$ be a sheaf on $\mathcal{C}u$ and X be a compact metric space.

- We define a topology on F_S generated by

 $$U_s \ll = \{ y \in F_S \mid \hat{s}(x) \gg y \text{ for some } x \in U \}.$$

 The induced sections are continuous with this topology.

- We equip the set of sections with pointwise addition and order. Moreover, the set of sections is closed under pointwise suprema of increasing sequences (by properties of $\mathcal{C}u$).
The sheaves of sections on \(\text{Cu} \)

Question

How do we recover \(S \) on \(\text{Cu} \) from the sheaf of sections \(F_S \rightarrow X \)?

Let \(S : \mathcal{V}_X \rightarrow \text{Cu} \) be a sheaf on \(\text{Cu} \) and \(X \) be a compact metric space.

- We define a topology on \(F_S \) generated by
 \[
 U_s^{\ll} = \{ y \in F_S \mid \hat{s}(x) \gg y \text{ for some } x \in U \}.
 \]
 The induced sections are continuous with this topology.

- We equip the set of sections with pointwise addition and order. Moreover, the set of sections is closed under pointwise suprema of increasing sequences (by properties of \(\text{Cu} \)).

Theorem

Let \(X \) be a one-dimensional compact metric space, and let \(S : \mathcal{V}_X \rightarrow \text{Cu} \) be a surjective sheaf. Then \(\Gamma(X, F_S) \) is a semigroup in \(\text{Cu} \).
When do we have a sheaf on Cu?
When do we have a sheaf on Cu?

Theorem

For a continuous field A over a one-dimensional compact metric space X whose fibers have no K_1 obstructions, the presheaves

$$
\text{Cu}_A(_): \mathcal{V}_X \to \text{Cu} \\
U \mapsto \text{Cu}_A(U) = \text{Cu}(A(U))
$$

$$
\mathcal{V}_A: \mathcal{V}_X \to \text{Sg} \\
U \mapsto \mathcal{V}_A(U) = V(A(U))
$$

are sheaves.
When do we have a sheaf on Cu?

Theorem

For a continuous field A over a one-dimensional compact metric space X whose fibers have no K_1 obstructions, the presheaves

$$\text{Cu}_A(_): \mathcal{V}_X \rightarrow \text{Cu} \quad \forall_A: \mathcal{V}_X \rightarrow \text{Sg}$$

$$U \mapsto \text{Cu}_A(U) = \text{Cu}(A(U)) \quad U \mapsto \forall_A(U) = V(A(U))$$

are sheaves.

Definition

A C*-algebra A is said to have no K_1 obstructions, if $sr(A) = 1$ and $K_1(I) = \{0\}$ for any ideal I of A.
When do we have a sheaf on Cu?

Theorem

For a continuous field A over a one-dimensional compact metric space X whose fibers have no K_1 obstructions, the presheaves

\[
\text{Cu}_A(-) : \mathcal{V}_X \to \text{Cu} \quad U \mapsto \text{Cu}_A(U) = \text{Cu}(A(U))
\]

\[
\nabla_A : \mathcal{V}_X \to \text{Sg} \quad U \mapsto \nabla_A(U) = V(A(U))
\]

are sheaves.

Definition

A C*-algebra A is said to have no K_1 obstructions, if $sr(A) = 1$ and $K_1(I) = \{0\}$ for any ideal I of A.

Examples

- If $sr(A) = 1$, A is simple and $K_1(A) = \{0\}$, then A has no K_1 obstructions.
When do we have a sheaf on Cu?

Theorem

For a continuous field A over a one-dimensional compact metric space X whose fibers have no K_1 obstructions, the presheaves

$$
\begin{align*}
Cu_A(_): \mathcal{V}_X & \rightarrow Cu \\
U & \mapsto Cu_A(U) = Cu(A(U))
\end{align*}
$$

$$
\begin{align*}
\mathcal{V}_A: \mathcal{V}_X & \rightarrow Sg \\
U & \mapsto \mathcal{V}_A(U) = V(A(U))
\end{align*}
$$

are sheaves.

Definition

A C*-algebra A is said to have no K_1 obstructions, if $sr(A) = 1$ and $K_1(I) = \{0\}$ for any ideal I of A.

Examples

- If $sr(A) = 1$, A is simple and $K_1(A) = \{0\}$, then A has no K_1 obstructions.
- (Lin) If $sr(A) = 1$, $RR(A) = 0$ and $K_1(A) = \{0\}$, then A has no K_1 obstructions.
The sheaf $\mathcal{C}u_A(_)$
The sheaf $\mathcal{Cu}_A(_)$

Theorem

Let X be a one-dimensional compact metric space, and let A be a continuous field over X whose fibers have no K_1 obstructions. Consider the functors

$$
\mathcal{Cu}_A(_): \mathcal{V}_X \rightarrow \mathcal{Cu} \quad \text{and} \quad \Gamma(_, F_{\mathcal{Cu}_A(_)}) : \mathcal{V}_X \rightarrow \mathcal{Cu}
$$

$V \mapsto \mathcal{Cu}(A(V)) \quad \text{and} \quad V \mapsto \Gamma(V, F_{\mathcal{Cu}_A(V)})$.

Then, $\mathcal{Cu}_A(_)$ and $\Gamma(_, F_{\mathcal{Cu}_A(_)})$ are isomorphic sheaves.
Relation between $\text{Cu}(A)$ and the sheaves $\text{Cu}_A(-)$, $\mathcal{V}_A(-)$

Considering an induced action of $\text{Cu}(C(X))$ on $\text{Cu}(A)$, we obtained that:
Relation between \(\text{Cu}(A) \) and the sheaves \(\text{Cu}_A(-) \), \(\mathbb{V}_A(-) \)

Considering an induced action of \(\text{Cu}(C(X)) \) on \(\text{Cu}(A) \), we obtained that:

Theorem

Let \(X \) be a compact metric space, and let \(A \) and \(B \) be \(C(X) \)-algebras such that all fibers have stable rank one. Consider the following conditions:

1. \(\text{Cu}(A) \cong \text{Cu}(B) \) preserving the action of \(\text{Cu}(C(X)) \),
2. \(\text{Cu}_A(-) \cong \text{Cu}_B(-) \),
3. \(\mathbb{V}_A(-) \cong \mathbb{V}_B(-) \).

Then (i) \(\implies \) (ii) \(\implies \) (iii). If \(X \) is one-dimensional, then also (ii) \(\implies \) (i). If, furthermore, \(A \) and \(B \) are continuous fields such that for all \(x \in X \) the fibers \(A_x \), \(B_x \) have real rank zero and \(K_1(A_x) = K_1(B_x) = \{0\} \), then (iii) \(\implies \) (ii) and so all three conditions are equivalent.
Classification result (Dadarlat-Elliott-Niu)

Theorem

Let A, B be separable unital continuous fields of AF-algebras over $[0, 1]$. Any isomorphism $\tilde{\phi} : Cu(A) \to Cu(B)$ that preserves the action by $Cu(C(X))$ and such that $\tilde{\phi}(\langle 1_A \rangle) = \langle 1_B \rangle$ lifts to an isomorphism $\phi : A \to B$ of continuous fields of C^*-algebras.
Classification result (Dadarlat-Elliott-Niu)

Theorem

Let A, B be separable unital continuous fields of AF-algebras over $[0, 1]$. Any isomorphism $\tilde{\phi} : \text{Cu}(A) \to \text{Cu}(B)$ that preserves the action by $\text{Cu}(C(X))$ and such that $\tilde{\phi}(\langle 1_A \rangle) = \langle 1_B \rangle$ lifts to an isomorphism $\phi : A \to B$ of continuous fields of C^*-algebras.

Question

Can the above result be extended when the fibers are simple AI-algebras?
1 Introduction

2 The Cuntz Semigroup of Continuous Fields of C*-algebras

3 The geometry of Dimension Functions
 - Stable rank of Continuous Fields of C*-algebras
 - The Blackadar-Handelman conjectures

4 Local triviality for Continuous Fields of C*-algebras
In the case of trivial fields:
Stable rank of Continuous Fields

In the case of trivial fields:

Theorem (Nagisa, Osaka, Phillips, 2001)

Let A be a C^*-algebra.

1. If $K_1(A) = \{0\}$, $sr(A) = 1$, $RR(A) = 0$, then $sr(C([0,1], A)) = 1$.

2. If $sr(C([0,1], A)) = 1$, then $K_1(A) = \{0\}$ and $sr(A) = 1$.
Stable rank of Continuous Fields

In the case of trivial fields:

Theorem (Nagisa, Osaka, Phillips, 2001)

Let A be a C*-algebra.

1. If $K_1(A) = \{0\}$, $\text{sr}(A) = 1$, $\text{RR}(A) = 0$, then $\text{sr}(C([0, 1], A)) = 1$.

2. If $\text{sr}(C([0, 1], A)) = 1$, then $K_1(A) = \{0\}$ and $\text{sr}(A) = 1$.

$(\text{Lin}) \implies A$ has no K_1 obstructions.
In the case of trivial fields:

Theorem (Nagisa, Osaka, Phillips, 2001)

Let A be a C^*-algebra.

1. If $K_1(A) = \{0\}$, $\text{sr}(A) = 1$, $RR(A) = 0$, then $\text{sr}(C([0,1], A)) = 1$.

2. If $\text{sr}(C([0,1], A)) = 1$, then $K_1(A) = \{0\}$ and $\text{sr}(A) = 1$.

(Lin) \implies A has no K_1 obstructions.

(N-O-P) shows that condition $RR(A) = 0$ is not always necessary.
Stable rank of Continuous Fields

In the case of trivial fields:

Theorem (Nagisa, Osaka, Phillips, 2001)

Let A be a C*-algebra.

1. If $K_1(A) = \{0\}$, $\text{sr}(A) = 1$, $\text{RR}(A) = 0$, then $\text{sr}(C([0, 1], A)) = 1$.
2. If $\text{sr}(C([0, 1], A)) = 1$, then $K_1(A) = \{0\}$ and $\text{sr}(A) = 1$.

(Lin) \implies A has no K_1 obstructions.

(N-O-P) shows that condition $\text{RR}(A) = 0$ is not always necessary.

Is no K_1 obstructions the optimal hypothesis to obtain \iff ?
Trivial fields

Theorem

Let A be any C*-algebra and X be a compact metric space. Then

$$\text{sr}(C(X, A)) = 1 \iff A \text{ has no } K_1 \text{ obstructions and } \dim(X) \leq 1.$$
Trivial fields

Theorem

Let A be any C*-algebra and X be a compact metric space. Then

$$\text{sr}(C(X, A)) = 1 \iff A \text{ has no } K_1 \text{ obstructions and } \dim(X) \leq 1.$$

Corollary

Let A be a simple C*-algebra with $\text{sr}(A) = 1$ and $K_1(A) = \{0\}$. Then

$$\text{sr}(C(X, A)) = 1.$$
Trivial fields

Theorem

Let A be any C*-algebra and X be a compact metric space. Then

$$sr(C(X, A)) = 1 \iff A \text{ has no } K_1 \text{ obstructions and } \dim(X) \leq 1.$$

Corollary

Let A be a simple C*-algebra with $sr(A) = 1$ and $K_1(A) = \{0\}$. Then

$$sr(C(X, A)) = 1.$$

Corollary

Let A be a C*-algebra with no K_1 obstructions. Then the stable rank of $A \otimes \mathbb{Z}$ is one.
Trivial fields

Theorem

Let A be any C^*-algebra and X be a compact metric space. Then

$$\text{sr}(C(X, A)) = 1 \iff A \text{ has no } K_1 \text{ obstructions and } \dim(X) \leq 1.$$

Corollary

Let A be a simple C^*-algebra with $\text{sr}(A) = 1$ and $K_1(A) = \{0\}$. Then

$$\text{sr}(C(X, A)) = 1.$$

Corollary

Let A be a C^*-algebra with no K_1 obstructions. Then the stable rank of $A \otimes \mathcal{Z}$ is one.

Is $\text{sr}(A \otimes \mathcal{Z}) = 1$ when $\text{sr}(A) = 1$?

M. Rørdam : A is simple.
L. Santiago : A is commutative.
Non-trivial continuous fields
Non-trivial continuous fields

Theorem

Let X be a one-dimensional, compact metric space, and let A be a continuous field over X such that each fiber A_x has no K_1 obstructions. Then $sr(A) = 1$.

In this case, we provide an example which shows that the converse is not true.

Example

There is a continuous field A over $[0,1]$ such that $sr(A) = 1$ and $K_1(A_x) \neq \{0\}$ for x in a dense subset of $[0,1]$.

Non-trivial continuous fields

Theorem

Let X be a one-dimensional, compact metric space, and let A be a continuous field over X such that each fiber A_x has no K_1 obstructions. Then $\text{sr}(A) = 1$.

In this case, we provide an example which shows that the converse is not true.
Non-trivial continuous fields

Theorem

Let X be a one-dimensional, compact metric space, and let A be a continuous field over X such that each fiber A_x has no K_1 obstructions. Then $\text{sr}(A) = 1$.

In this case, we provide an example which shows that the converse is not true.

Example

There is a continuous field A over $[0, 1]$ such that $\text{sr}(A) = 1$ and $K_1(A_x) \neq \{0\}$ for x in a dense subset of $[0, 1]$.
The Blackadar-Handelman conjectures
The Blackadar-Handelman conjectures

What are the dimension functions?
The Blackadar-Handelman conjectures

What are the dimension functions?

Definition

The set of **dimension functions** is $\text{St}(W(A), \langle 1_A \rangle)$ (normalized positive linear functionals), denoted by $\text{DF}(A)$.

We denote by $\text{LDF}(A)$ the subset of $\text{DF}(A)$ such that the dimension functions are **lower semicontinuous**.

(If $a_n \to a$ in $M_\infty(A)_+$, then $d(\langle a \rangle) \leq \lim \inf d(\langle a_n \rangle)$ for $d \in \text{LDF}(A)$)
The Blackadar-Handelman conjectures

What are the dimension functions?

Definition

The set of **dimension functions** is $St(W(A), \langle 1_A \rangle)$ (normalized positive linear functionals), denoted by $DF(A)$.

We denote by $LDF(A)$ the subset of $DF(A)$ such that the dimension functions are lower semicontinuous.

(If $a_n \to a$ in $M_\infty(A)_+$, then $d(\langle a \rangle) \leq \lim \inf d(\langle a_n \rangle)$ for $d \in LDF(A)$)

Remark

It follows by the construction of the Grothendieck group that $St(W(A), \langle 1_A \rangle) = St(K_0^(A), [1_A])$.*
The Blackadar-Handelman conjectures

What are the dimension functions?

Definition

The set of **dimension functions** is $\text{St}(\mathcal{W}(A), \langle 1_A \rangle)$ (normalized positive linear functionals), denoted by $\text{DF}(A)$.

We denote by $\text{LDF}(A)$ the subset of $\text{DF}(A)$ such that the dimension functions are **lower semicontinuous**.

(If $a_n \to a$ in $M_\infty(A)_+$, then $d(\langle a \rangle) \leq \lim \inf d(\langle a_n \rangle)$ for $d \in \text{LDF}(A)$)

Remark

It follows by the construction of the Grothendieck group that $\text{St}(\mathcal{W}(A), \langle 1_A \rangle) = \text{St}(K_0^*(A), [1_A])$.

Theorem (Blackadar, Handelman, 1982)

There is an affine bijection between the set of traces of A and $\text{LDF}(A)$, when A is exact.
Blackadar-Handelman conjectures (1982)

1. The set $\text{DF}(A)$ of dimension functions is a simplex.
The Blackadar-Handelman conjectures (1982)

1. The set $DF(A)$ of dimension functions is a simplex.
2. The set $LDF(A)$ of lower semicontinuous dimension functions is dense in $DF(A)$.
Blackadar-Handelman conjectures (1982)

1. The set $DF(A)$ of dimension functions is a simplex.
2. The set $LDF(A)$ of lower semicontinuous dimension functions is dense in $DF(A)$.

History

- (1997): Perera proved that 1rst conjecture holds for unital C*-algebras with stable rank one and real rank zero.
- (2008): Brown-Perera-Toms proved both conjectures hold for all unital simple exact and \mathcal{Z}-stable C*-algebras.
Proof 1st conjecture (Strategy)

- We study when $\left(K_0^*(A), [1_A] \right)$ is an interpolation group.
Proof 1st conjecture (Strategy)

- We study when \((K^*_0(A), [1_A])\) is an interpolation group.

\[
\begin{array}{cccc}
 x_1 & y_1 \\
 \leq & \Rightarrow & \exists \ z & | \ x_i \leq z \leq y_j \ \text{for} \ i, j = 1, 2 \\
 x_2 & y_2
\end{array}
\]
Proof 1st conjecture (Strategy)

- We study when \((K_0^*(A), [1_A])\) is an interpolation group.

\[
\begin{array}{c c c c}
& x_1 & y_1 \\
\le & \iff & \exists \ z \ | \ x_i \le z \le y_j & \text{for } i, j = 1, 2 \\
& x_2 & y_2
\end{array}
\]

- (Goodearl-Handelman-Lawrence) If \((G, u)\) is an interpolation group with an order-unit \(u\), then \(St(G, u)\) is a Choquet simplex.
Proof 1st conjecture (Strategy)

1. We study when \((K_0^*(A), [1_A])\) is an interpolation group.
 \[
 x_1 \leq y_1 \quad \Rightarrow \quad \exists \ z \mid x_i \leq z \leq y_i \text{ for } i, j = 1, 2
 \]

2. (Goodearl-Handelman-Lawrence) If \((G, u)\) is an interpolation group with an order-unit \(u\), then \(St(G, u)\) is a Choquet simplex.

Question

When \((K_0^*(A), [1_A])\) is an interpolation group?
Theorem

Let X be a compact metric space, and let A be a unital continuous field over X. Then, $(K_0^*(A), [1_A])$ is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for all $x \in X$, A_x has stable rank one, trivial K_1, and is either of real rank zero or simple and \mathcal{Z}-stable.
Let X be a compact metric space, and let A be a unital continuous field over X. Then, $(K_0^*(A), [1_A])$ is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for all $x \in X$, A_x has stable rank one, trivial K_1, and is either of real rank zero or simple and \mathbb{Z}-stable.

(ii) If X is finite dimensional and $A = C(X, B)$, where B is a unital, simple, non-type I, ASH algebra with slow dimension growth.
Let X be a compact metric space, and let A be a unital continuous field over X. Then, $(K_0^*(A), [1_A])$ is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for all $x \in X$, A_x has stable rank one, trivial K_1, and is either of real rank zero or simple and \mathbb{Z}-stable.

(ii) If X is finite dimensional and $A = C(X, B)$, where B is a unital, simple, non-type I, ASH algebra with slow dimension growth.

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.
Theorem

Let X be a compact metric space, and let A be a unital continuous field over X. Then, $(K_0^*(A), [1_A])$ is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for all $x \in X$, A_x has stable rank one, trivial K_1, and is either of real rank zero or simple and \mathbb{Z}-stable.

(ii) If X is finite dimensional and $A = C(X, B)$, where B is a unital, simple, non-type I, ASH algebra with slow dimension growth.

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)
Theorem

Let X be a compact metric space, and let A be a unital continuous field over X. Then, $(K_0^*(A), [1_A])$ is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for all $x \in X$, A_x has stable rank one, trivial K_1, and is either of real rank zero or simple and \mathbb{Z}-stable.

(ii) If X is finite dimensional and $A = C(X, B)$, where B is a unital, simple, non-type I, ASH algebra with slow dimension growth.

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

- If $W(A)$ has interpolation, then $K_0^*(A)$ does.
Theorem

Let X be a compact metric space, and let A be a unital continuous field over X. Then, $(\mathbb{K}^*(A), [1_A])$ is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for all $x \in X$, A_x has stable rank one, trivial K_1, and is either of real rank zero or simple and \mathbb{Z}-stable.

(ii) If X is finite dimensional and $A = C(X, B)$, where B is a unital, simple, non-type I, ASH algebra with slow dimension growth.

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

- If $W(A)$ has interpolation, then $\mathbb{K}^*(A)$ does.
- If $Cu(A)$ has interpolation and $W(A) \subseteq Cu(A)$ is hereditary, then $W(A)$ has interpolation.
Theorem

Let X be a compact metric space, and let A be a unital continuous field over X. Then, $(K_0^*(A), [1_A])$ is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for all $x \in X$, A_x has stable rank one, trivial K_1, and is either of real rank zero or simple and \mathbb{Z}-stable.

(ii) If X is finite dimensional and $A = C(X, B)$, where B is a unital, simple, non-type I, ASH algebra with slow dimension growth.

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

- If $W(A)$ has interpolation, then $K_0^*(A)$ does.
- If $Cu(A)$ has interpolation and $W(A) \subseteq Cu(A)$ is hereditary, then $W(A)$ has interpolation.

$sr(A) = 1$
Theorem

Let X be a compact metric space, and let A be a unital continuous field over X. Then, $(K_0^*(A), [1_A])$ is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for all $x \in X$, A_x has stable rank one, trivial K_1, and is either of real rank zero or simple and \mathbb{Z}-stable.

(ii) If X is finite dimensional and $A = C(X, B)$, where B is a unital, simple, non-type I, ASH algebra with slow dimension growth.

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

- If $W(A)$ has interpolation, then $K_0^*(A)$ does.
- If $Cu(A)$ has interpolation and $W(A) \subseteq Cu(A)$ is hereditary, then $W(A)$ has interpolation.

$sr(A) = 1 \quad Cu(A) = \Gamma(X, \bigsqcup_{x \in X} Cu(A_x))$
Let X be a compact metric space, and let A be a unital continuous field over X. Then, $(K_0^*(A), [1_A])$ is an interpolation group in the following cases:

(i) If X is a one-dimensional and A is a continuous field over X such that, for all $x \in X$, A_x has \textit{stable rank one}, \textit{trivial K_1}, and is either of \textit{real rank zero} or \textit{simple and \mathbb{Z}-stable}.

(ii) If X is finite dimensional and $A = C(X, B)$, where B is a unital, \textit{simple}, non-type I, ASH algebra with slow dimension growth. ($\implies \mathbb{Z}$-stable)

Moreover, in the above cases, the set of dimension functions is a Choquet Simplex.

Proof: (Sketch)

- If $W(A)$ has interpolation, then $K_0^*(A)$ does.
- If $Cu(A)$ has interpolation and $W(A) \subseteq Cu(A)$ is hereditary, then $W(A)$ has interpolation.

$sr(A) = 1$ \hspace{1cm} $Cu(A) = \Gamma(X, \bigsqcup_{x \in X} Cu(A_x))$

either $sr(A_x) = 1$ and $RR(A_x) = 0$ or A_x is simple and \mathbb{Z}-stable.
Blackadar-Handelman conjectures

1. The set $\text{DF}(A)$ of dimension functions is a simplex.
2. The set $\text{LDF}(A)$ of lower semicontinuous dimension functions is dense in $\text{DF}(A)$.
Theorem

Let X be a finite dimensional, compact metric space, and let A be a unital, separable infinite dimensional and exact C^*-algebra of stable rank one such that $T(A)$ is a Bauer simplex. Then $\text{LDF}(\text{C}(X, A))$ is dense in $\text{DF}(\text{C}(X, A))$ in the following cases:

1. $\dim X \leq 1$, A is simple with $K_1(A) = 0$ and $W(A)$ is almost unperforated.
2. A is a non-type I, simple, unital ASH algebra with slow dimension growth.
1 Introduction

2 The Cuntz Semigroup of Continuous Fields of C^*-algebras

3 The geometry of Dimension Functions

4 Local triviality for Continuous Fields of C^*-algebras
 - Nowhere locally trivial continuous fields
 - Local triviality
Nowhere locally trivial continuous fields

Definition

A point $x \in X$ is called singular for A if $A(U)$ is nontrivial for any open set U that contains x (i.e. $A(U)$ is not isomorphic to $C_0(U, D)$ for some C*-algebra D).
Nowhere locally trivial continuous fields

Definition

A point $x \in X$ is called **singular** for A if $A(U)$ is nontrivial for any open set U that contains x (i.e. $A(U)$ is not isomorphic to $C_0(U, D)$ for some C*-algebra D).

If all points of X are singular for A we say that A is **nowhere locally trivial**.
Definition

A point $x \in X$ is called **singular** for A if $A(U)$ is nontrivial for any open set U that contains x (i.e. $A(U)$ is not isomorphic to $C_0(U,D)$ for some C*-algebra D).

If all points of X are singular for A we say that A is **nowhere locally trivial**.

Recall that:
Nowhere locally trivial continuous fields

Definition

A point \(x \in X \) is called **singular** for \(A \) if \(A(U) \) is nontrivial for any open set \(U \) that contains \(x \) (i.e. \(A(U) \) is not isomorphic to \(C_0(U, D) \) for some C*-algebra \(D \)).

If all points of \(X \) are singular for \(A \) we say that \(A \) is **nowhere locally trivial**.

Recall that:

Kirchberg Algebras: purely infinite, simple, separable and nuclear C*-algebras.
Nowhere locally trivial continuous fields

Definition

A point \(x \in X \) is called **singular** for \(A \) if \(A(U) \) is nontrivial for any open set \(U \) that contains \(x \) (i.e. \(A(U) \) is not isomorphic to \(C_0(U, D) \) for some C*-algebra \(D \)).

If all points of \(X \) are singular for \(A \) we say that \(A \) is **nowhere locally trivial**.

Recall that:

Kirchberg Algebras: purely infinite, simple, separable and nuclear C*-algebras.

Kirchberg Algebras (UCT) are classified by \(((K_0(A)), K_1(A))\).
Nowhere locally trivial continuous fields

Definition

A point \(x \in X \) is called singular for \(A \) if \(A(U) \) is nontrivial for any open set \(U \) that contains \(x \) (i.e. \(A(U) \) is not isomorphic to \(C_0(U, D) \) for some C*-algebra \(D \)).

If all points of \(X \) are singular for \(A \) we say that \(A \) is nowhere locally trivial.

Recall that:

Kirchberg Algebras: purely infinite, simple, separable and nuclear C*-algebras.
Kirchberg Algebras (UCT) are classified by \(((K_0(A)), K_1(A))\).

Cuntz Algebras \(\mathcal{O}_n \)

If \(n \geq 2 \). The **Cuntz Algebras** are defined as the universal C*-algebras generated by isometries \(s_1, \ldots, s_n \) with orthogonal ranges such that \(\sum_{i=1}^{n} s_is_i^* = 1 \).
Local triviality

Example (Dadarlat, Elliott-’08)

A nowhere locally trivial continuous field over $[0,1]$ (finite-dimensional) such that its fibers are the same Kirchberg algebra (UCT) with infinitely generated K-theory.
Local triviality

Example (Dadarlat, Elliott-’08)

A nowhere locally trivial continuous field over \([0, 1]\)
(finite-dimensional) such that its fibers are the same Kirchberg algebra (UCT) with infinitely generated \(K\)-theory.

Example (Dadarlat-’09)

A nowhere locally trivial continuous field over Hilbert cube (infinite-dimensional) such that its fibers are the same Kirchberg algebra (UCT) with finitely generated \(K\)-theory.
Local triviality

Example (Dadarlat, Elliott-’08)

A nowhere locally trivial continuous field over $[0,1]$ (finite-dimensional) such that its fibers are the same Kirchberg algebra (UCT) with infinitely generated K-theory.

Example (Dadarlat-’09)

A nowhere locally trivial continuous field over Hilbert cube (infinite-dimensional) such that its fibers are the same Kirchberg algebra (UCT) with finitely generated K-theory.

Theorem

Let X be a finite dimensional compact metric space, and let D be a stable Kirchberg algebra that satisfies the UCT and such that $K_j(D)$ is finitely generated for $j = 0,1$. Let A be a separable continuous field C^*-algebra over X such that $A(x) \cong D$ for all $x \in X$. Then there exists a dense open subset U of X such that $A(U)$ is locally trivial.
Corollary

Fix $n \in \mathbb{N} \cup \{\infty\}$. Let X be a finite dimensional compact metrizable space and A be a continuous field over X such that $A(x) \cong O_n \otimes K$ for all $x \in X$. Then there exists a closed subset V of X with nonempty interior such that $A(V) \cong C(V) \otimes O_n \otimes K$.
Corollary

Fix $n \in \mathbb{N} \cup \{\infty\}$. Let X be a finite dimensional compact metrizable space and A be a continuous field over X such that $A(x) \cong \mathcal{O}_n \otimes \mathcal{K}$ for all $x \in X$. Then there exists a closed subset V of X with nonempty interior such that $A(V) \cong \mathcal{C}(V) \otimes \mathcal{O}_n \otimes \mathcal{K}$.

Example

If $F \subset X$ is a closed nowhere dense set, we provide a continuous field C*-algebra A with all fibers isomorphic to a fixed Cuntz algebra $\mathcal{O}_n \otimes \mathcal{K}$, $3 \leq n \leq \infty$, and such that the set of singular points of A coincides with F.
Corollary

Fix \(n \in \mathbb{N} \cup \{\infty\} \). Let \(X \) be a finite dimensional compact metrizable space and \(A \) be a continuous field over \(X \) such that \(A(x) \cong \mathcal{O}_n \otimes \mathcal{K} \) for all \(x \in X \). Then there exists a closed subset \(V \) of \(X \) with nonempty interior such that \(A(V) \cong C(V) \otimes \mathcal{O}_n \otimes \mathcal{K} \).

Example

If \(F \subset X \) is a closed nowhere dense set, we provide a continuous field C*-algebra \(A \) with all fibers isomorphic to a fixed Cuntz algebra \(\mathcal{O}_n \otimes \mathcal{K} \), \(3 \leq n \leq \infty \), and such that the set of singular points of \(A \) coincides with \(F \).

Our result is in a certain sense **OPTIMAL!**.
Bibliography

Bibliography

Thanks!