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Preface

This text centres around notions of Frobenius structure which in recent years
have drawn some attention in topology, physics, algebra, and computer sci-
ence. In topology the structure arises in the category of 2-dimensional oriented
cobordisms (and their linear representations, which are 2-dimensional topolog-
ical quantum field theories) — this is the subject of the first chapter. The main
result here (due to Abrams [1]) is a description in terms of generators and rela-
tions of the monoidal category 2Cob . In algebra, the structure manifests itself
simply as Frobenius algebras, which are treated carefully in Chapter 2. The
main result here is a characterisation of Frobenius algebras in terms of comulti-
plication which goes back to Lawvere [32] and was rediscovered by Quinn [43]
and Abrams [1]. The main result of these notes is that these two categories are
equivalent: the category of 2D topological quantum field theories and the cat-
egory of commutative Frobenius algebras. This result is due to Dijkgraaf [16],
further details of the proof having been provided by Quinn [43], Dubrovin [19],
and Abrams [1]. The notions from category theory needed in order to express
this rigorously (monoidal categories and their linear representations) are devel-
oped from an elementary level in Chapter 3. The categorical viewpoint allows
us to extract the essence of what is going on in the two first chapters, and prove
a natural generalisation of the theorem. To arrive at this insight, we carefully
review the classical fact that the simplex category ∆ is the free monoidal cat-
egory on a monoid. (This means in particular that there is an equivalence of
categories between the category of algebras and the category of ‘linear repre-
sentations’ of ∆.) Now the notion of a Frobenius object in a monoidal category
is introduced, and the promised generalisation of the theorem (main result of
Chapter 3) states that 2Cob is the free symmetric monoidal category on a com-
mutative Frobenius object.

For more details on the mathematical content, see the Introduction.
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The target. The book is based on notes prepared for an intensive two-week
mini-course for advanced undergraduate students, given in the UFPE Sum-
mer School, Recife, Brazil, in January 2002. The prerequisites are modest: the
students of the mini-course were expected to have followed these three stan-
dard courses taught at Brazilian universities: one on Differential Topology, one
on Algebraic Structures (groups and rings) and one Second Course in Linear Al-
gebra. From topology we need just some familiarity with the basic notions of
differentiable manifolds; from algebra we need basic notions of rings and ide-
als, groups and algebras; and first and foremost the reader is expected to be
familiar with tensor products and hom sets. Usually the course Algebraic Struc-
tures contains an introduction to categories and functors, but not enough to get
acquainted with the categorical way of thinking and appreciate it; the expo-
sition in this text is meant to take this into account. The basic definitions are
given in an appendix, and the more specialised notions are introduced with
patience and details, and with many examples — and hopefully the interplay
between topology and algebra will provide the appreciation of the categorical
viewpoint.

In a wider context these notes are targeted at undergraduate students with
a similar background, as well as graduate students of all areas of mathematics.
Experienced mathematicians and experts in the field will sometimes be bored
by the amount of detail presented, but it is my hope the drawings will keep
them awake.

The aim. At an immediate level, the aim of these notes is simply to expose
some delightful and not very well-known mathematics where a lot of figures
can be drawn: a quite elementary and very nice interaction between topology
and algebra — and rather different in flavour from what one learns in a course
in algebraic topology. On a deeper level, the aim is to convey an impression of
unity in mathematics, an aspect which is often hidden from the students until
later in their mathematical apprenticeship. Finally, perhaps the most important
aim is to use this as motivation for category theory, and specifically to serve as
an introduction to monoidal categories.

Admittedly, the main theorem is not a particularly useful tool that the stu-
dents will draw upon again and again throughout their mathematical career,
and one could argue that the time would be better spent on a course on group
representations or distributions, for instance. But after all, this is a summer
school (and this is Brazil!): maximising the throughput is not our main concern
— the wonderful relaxed atmosphere I know from previous summer schools in
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Recife is much more important — I hope the students when they go to the beach
in the weekend will make drawings of 2D cobordisms in the sand! (I think they
wouldn’t take orthogonality relations or Fourier transforms with them to the
beach. . . )

What the lectures are meant to give the students are rather some techniques
and viewpoints, and in the end this categorical perspective reduces the main
theorem to a special case of general principles. A lot of emphasis is placed
on universal properties, symmetry, distinction between structure and property,
distinction between identity and natural isomorphism, the interplay between
graphical and algebraic approaches to mathematics — as well as reflection on
the nature of the most basic operations of mathematics: multiplication and ad-
dition. Getting acquainted with such categorical viewpoints in mathematics is
certainly a good investment.

Finally, to be more concrete, the techniques learned in this course should
constitute a good primer for going into quantum groups or knot theory.

The source — acknowledgements. The idea of these notes originated in a
workshop I led at KTH, Stockholm, in 2000, whose first part was devoted to un-
derstanding the paper of Abrams [1] (corresponding more or less to Chapter 1
and 2 of this text). I am thankful for the contributions of the core participants of
the workshop: Carel Faber, Helge Måkestad, Mats Boij, and Michael Shapiro,
and in particular to Dan Laksov, for many fruitful discussions about Frobenius
algebras.

The more categorical viewpoint of Chapter 3 was influenced by the people I
work with here in Nice; I am indebted in particular to André Hirschowitz and
Bertrand Toen. I have also benefited from discussions and e-mail correspon-
dence with Arnfinn Laudal, Göran Fors, Jan Gorski, Jean-Louis Cathélineau,
John Baez, and Pedro Ontaneda, all of whom are thanked. I am particularly
indebted to Anders Kock, Peter Johnson, and Tom Leinster for many discus-
sions and helpful e-mails, and for carefully reading preliminary versions of the
manuscript, pointing out grim errors, annoying inaccuracies, and misprints.

Israel Vainsencher, Joaquim Roé, Ramón Mendoza, and Sérgio Santa Cruz
also picked up some misprints — thanks. My big sorrow about these notes is
that I don’t understand the physics behind it all, in spite of a great effort by
José Mourão to explain it to me — I am grateful to him for his patience.

During the redaction of these notes I have reminisced about math classes
in primary school, and some of the figures are copied from my very first math
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books. Let me take the opportunity to thank Marion Kuhlmann and Jørgen
Skaftved for the math they taught me when I was a child.

During my work with this subject and specifically with these notes, I have
been supported by The National Science Research Council of Denmark, The
Nordic Science Research Training Academy NorFA, and (currently) a Marie
Curie Fellowship from The European Commission. In neither case was I sup-
posed to spend so much time with Frobenius algebras and topological quantum
field theories — it is my hope that these notes, as a concrete outcome of the time
spent, do it justice to some extent.

I am indebted to my wife Andrea for her patience and support.

Last but not least, I wish to thank the organisers of the Summer School in
Recife — in particular Letterio Gatto — for inviting me to give this mini-course,
which in addition to being a very dear opportunity to come back to Recife —
Voltei, Recife! foi a saudade que me trouxe pelo braço — has also been a welcome
incentive to work out the details of this material and learn a lot of mathematics.

Feedback is most welcome. Please point out mathematical errors or misunder-
standings, misleading viewpoints, unnecessary pedantry, or things that should
be better explained; typos, mispellings, bad English, TEX-related issues. I in-
tend to keep a list of errata on my web site.

Recife, January 2002 — Nice, January 2003 JOACHIM KOCK

kock@math.unice.fr
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General conventions

We consistently write composition of functions (or arrows) from the left to the
right: given functions (or arrows)

X
f

−→ Y
g

−→ Z

we denote the composite f g. Similarly, we put the symbol of a function to the
right of its argument, writing for example

f : X −→ Y

x 7−→ x f .



Introduction

In this Introduction we briefly explain the words of the title of these notes,
give a sketch of what we are going to do with these notions, and outline the
viewpoint we will take in order to understand the structures. In the course of
this introduction a lot of other words will be used which are probably no more
familiar than those they are meant to explain — but don’t worry: in the main
text, all these words are properly defined and carefully explained. . .

0.0.1 Frobenius algebras. A Frobenius algebra is a finite-dimensional algebra
equipped with a nondegenerate bilinear form compatible with the multiplica-
tion. (Chapter 2 is all about Frobenius algebras.) Examples are matrix rings,
group rings, the ring of characters of a representation, and artinian Gorenstein
rings (which in turn include cohomology rings, local rings of isolated hyper-
surface singularities. . . )

In algebra and representation theory such algebras have been studied for a
century, along with various related notions — see Curtis-Reiner [15].

0.0.2 Frobenius structures. During the past decade, Frobenius algebras have
shown up in a variety of topological contexts, in theoretical physics and in com-
puter science. In physics, the main scenery for Frobenius algebras is that of
topological quantum field theory, which in its axiomatisation amounts to a pre-
cise mathematical theory. In computer science, Frobenius algebras arise in the
study of flowcharts, proof nets, circuit diagrams. . .

In any case, the reason Frobenius algebras show up is that it is essentially
a topological structure: it turns out the axioms for a Frobenius algebra can be
given completely in terms of graphs — or as we shall do, in terms of topological
surfaces.

Frobenius algebras are just algebraic representations of this structure — the
goal of these notes is to make all this precise. We will focus on topological
quantum field theories — and in particular on dimension 2. This is by far the
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2 Introduction

best picture of the Frobenius structures since the topology is explicit, and since
there is no additional structure to complicate things. In fact, the main theorem
of these notes states that there is an equivalence of categories between that of
2D TQFTs and that of commutative Frobenius algebras.

(There will be no further mention of computer science in these notes.)

0.0.3 Topological quantum field theories. In the axiomatic formulation (due to
M. Atiyah [5]), an n-dimensional topological quantum field theory is a rule A

which to each closed oriented manifold Σ (of dimension n − 1) associates a vec-
tor space ΣA , and to each oriented n-manifold whose boundary is Σ associates
a vector in ΣA . This rule is subject to a collection of axioms which express that
topologically equivalent manifolds have isomorphic associated vector spaces,
and that disjoint unions of manifolds go to tensor products of vector spaces,
etc.

0.0.4 Cobordisms. The clearest formulation is in categorical terms: first one
defines a category of cobordisms nCob : the objects are closed oriented (n − 1)-
manifolds, and an arrow from Σ to Σ′ is an oriented n-manifold M whose ‘in-
boundary’ is Σ and whose ‘out-boundary’ is Σ′. (The cobordism M is defined
up to diffeomorphism rel the boundary.) The simplest example of a cobordism
is the cylinder Σ × I over a closed manifold Σ — say a circle. It is a cobordism
from one copy of Σ to another.

Here is a drawing of a cobordism from the union of two circles to one circle

Composition of cobordisms is defined by gluing together the underlying mani-
folds along common boundary components; the cylinder Σ × I is the identity
arrow on Σ. The operation of taking disjoint union of manifolds and cobor-
disms gives this category monoidal structure — more about monoidal categories
later. On the other hand, the category Vectk of vector spaces is monoidal under
tensor products.

Now the axioms amount to saying that a TQFT is a (symmetric) monoidal
functor from nCob to Vectk. This is also called a linear representation of nCob .

So what does this have to do with Frobenius algebras? Before we come to
the relation between Frobenius algebras and 2D TQFTs, let us make a couple of
remarks on the motivation for TQFTs.
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0.0.5 Physical interest in TQFTs comes mainly from the observation that TQFTs
possess certain features one expects from a theory of quantum gravity. It serves
as a baby model in which one can do calculations and gain experience before
embarking on the quest for the full-fledged theory, which is expected to be
much more complicated. Roughly, the closed manifolds represent space, while
the cobordisms represent space-time. The associated vector spaces are then the
state spaces, and an operator associated to a space-time is the time-evolution
operator (also called transition amplitude, or Feynman path integral). That the
theory is topological means that the transition amplitudes do not depend on
any additional structure on space-time (like riemannian metric or curvature),
but only on the topology. In particular there is no time-evolution along cylin-
drical space-time. That disjoint union goes to tensor product expresses the com-
mon principle in quantum mechanics that the state space of two independent
systems is the tensor product of the two state spaces.

(No further explanation of the relation to physics will be given — the author
of these notes recognises he knows nearly nothing of this aspect. The reader is
referred to Dijkgraaf [17] or Barrett [11], for example.)

0.0.6 Mathematical interest in TQFTs stems from the observation that they
produce invariants of closed manifolds: an n-manifold without boundary is a
cobordism from the empty (n − 1)-manifold to itself, and its image under A

is therefore a linear map k → k, i.e., a scalar. It was shown by E. Witten how
TQFT in dimension 3 is related to invariants of knots and the Jones polynomial
— see Atiyah [6].

The viewpoint of these notes is different however: instead of developing
TQFTs in order to describe and classify manifolds, we work in dimension 2
where a complete classification of surfaces already exists; we then use this clas-
sification to describe TQFTs!

0.0.7 Cobordisms in dimension 2. In dimension 2, ‘everything is known’:
since surfaces are completely classified, one can also describe the cobordism
category completely. Every cobordism is obtained by composing the following
basic building blocks (each with the in-boundary drawn to the left):

Two cobordisms are equivalent if they have the same genus and the same num-
ber of in- and out-boundaries. This gives a bunch of relations, and a complete
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4 Introduction

description of the monoidal category 2Cob in terms of generators and relations.
Here are two examples of relations that hold in 2Cob :

= = =

(0.0.8)

These equations express that certain surfaces are topologically equivalent rel
the boundary.

0.0.9 Topology of some basic algebraic operations. Some very basic princi-
ples are in play here: ‘creation’, ‘coming together’, ‘splitting up’, ‘annihilation’.
These principles have explicit mathematical manifestations as algebraic opera-
tions:

Principle Feynman diagram 2D cobordism Algebraic operation (in a k-algebra A)

merging multiplication A ⊗ A → A

creation unit k → A

splitting comultiplication A → A ⊗ A

annihilation counit A → k

Note that in the intuitive description there is a notion of time involved
which accounts for the distinction between coming-together and splitting-up
— or perhaps ‘time’ is too fancy a word, but at least there is a notion of start
and finish. Correspondingly, in the algebraic or categorical description the no-
tion of morphism involves a direction: morphisms are arrows, and they have
well-defined source and target.

It is an important observation from category theory that many algebraic
structures admit descriptions purely in terms of arrows (instead of referring to
elements) and commutative diagrams (instead of equations among elements).
In particular, this is true for the notion of an algebra: an algebra is a vector space
A equipped with two maps A ⊗ A → A and k → A, satisfying the associativity
axiom and the unit axiom. Now according to the above dictionary, the left-
hand relation of (0.0.8) is just the topological expression of associativity! Put in
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other words, the associativity equation has topological content: it expresses the
topological equivalence of two surfaces (or two graphs).

It gives sense to other operations, like merging (or splitting) three particles:
it makes no difference whether we first merge two of them and then merge the
result with the third, or whether we merge the last two with the first. From the
viewpoint of graphs, the basic axiom (equivalent to 0.0.8) is that two vertices
can move past each other:

=

0.0.10 Frobenius algebras. In order to relate this to Frobenius algebras the def-
inition given in the beginning of this Introduction is not the most convenient.
It turns out one can characterise Frobenius algebras like this: It is an algebra
(multiplication denoted ) which is simultaneously a coalgebra (comultiplica-
tion denoted ) with a certain compatibility condition between and .
This compatibility condition is exactly the right-hand relation drawn in (0.0.8).
(Note that by the dictionary, this is just a graphical expression of a precise alge-
braic requirement). In fact, the relations that hold in 2Cob correspond precisely
to the axioms of a commutative Frobenius algebra. This comparison leads to
the main theorem:

0.0.11 Theorem. There is an equivalence of categories

2TQFT ' cFA,

given by sending a TQFT to its value on the circle (the unique closed connected 1-
manifold).

So in this sense, we can say, if we want, that Frobenius algebras are the same
thing as linear representations of 2Cob .

The idea of the proof is this: let A be the image of the circle, under a TQFT
A . Now A sends each of the generators of 2Cob to a linear map between ten-
sor powers of A, just as tabulated above. The relations which hold in 2Cob are
preserved by A (since A by definition is a monoidal functor) and in its target
category Vect they translate into the axioms for a commutative Frobenius alge-
bra! (Conversely, every commutative Frobenius algebra can be used to define
a 2-dimensional TQFT.)
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6 Introduction

0.0.12 Monoidal categories. As mentioned, just in order to define the category
TQFT we need the notion of monoidal categories. In fact, monoidal categories
is the good framework to understand all the concepts described above. The no-
tion of associative multiplication with unit is precisely what the abstract con-
cept of monoid encodes — and monoids live in monoidal categories.

The prime example of a monoidal category is the category Vectk of vector
spaces and tensor products, with the ground field as neutral object. In general a
monoidal category is a category equipped with some sort of ‘product’ like ⊗ or
ä, satisfying certain properties. This ‘product’ serves as background for defin-
ing the multiplication maps, i.e., defining monoids: a monoid in (Vectk,⊗, k) is
precisely a k-algebra A, since the multiplication map is described as a k-linear
map A ⊗ A → A, etc. Another example of a monoid is the circle in 2Cob . . .

0.0.13 The simplex category ∆ and what it means to monoids and algebras.
There is a little monoidal category which bears some similarity with 2Cob : the
simplex category ∆ is roughly the category of finite ordered sets and order-
preserving maps. It is a monoidal category under disjoint union. To be more
precise, the objects of ∆ are n = {0, 1, 2, . . . , n − 1}, one for each n ∈ N, and the
arrows are the maps f : m → n such that i ≤ j ⇒ i f ≤ j f . There are several
other descriptions of this important category — one is in graphical terms, and
reveals it as a subcategory of 2Cob . The object 1 is a monoid in ∆, and in a
sense ∆ is the smallest possible monoidal category which contains a nontrivial
monoid. In fact the following universal property is shown to hold: every monoid
in any monoidal category V is the image of 1 under a unique monoidal functor ∆ → V.
This is to say that ∆ is the free monoidal category containing a monoid. In
particular, k-algebras can be interpreted as ‘linear representations’ of ∆.

Observing that ∆ can be described graphically, we see that this result is of
exactly the same type as our Main Theorem.

0.0.14 Frobenius objects. Once we have taken the step of abstraction from k-
algebras to monoids in an arbitrary monoidal category, it is straightforward
to define the notion of Frobenius object in a monoidal category: it is an object
equipped with four maps as those listed in the table, and with the compatibility
condition expressed in 0.0.8. In certain monoidal categories, called symmetric,
it makes sense to ask whether a monoid or a Frobenius object is commutative,
and of course these notions are defined in such a way that commutative Frobe-
nius objects in Vectk are precisely commutative Frobenius algebras.
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0.0.15 Universal Frobenius structure. With these general notions, it is im-
mediate to generalise the Theorem: all the arguments of the proof do in fact
carry over to the setting of an arbitrary (symmetric) monoidal category, and we
find that 2Cob is the free symmetric monoidal category containing a commuta-
tive Frobenius object. This means that every commutative Frobenius object in any
symmetric monoidal category V is the image of the circle under a unique symmetric
monoidal functor from 2Cob.

Since the proof of this result is the same as the proof of the original theo-
rem, this is the natural generality of the statement. The interest in this gener-
ality is that it actually includes many natural examples of TQFTs which could
not fit into the original definition. For example, in our treatment of Frobenius
algebras in Chapter 2 we will see that cohomology rings are Frobenius alge-
bras in a natural way, but typically they are not commutative but only graded-
commutative. For this reason they cannot support a TQFT in the strict sense.
But if instead of the usual symmetric monoidal category Vect we take for exam-
ple the category of graded vector spaces with ‘super-symmetry’ structure, then
all cohomology rings can support a TQFT (of this slightly generalised sort).

It is the good generalised version of the main theorem that makes this clear.
In many sources on TQFTs, the questions of symmetry are swept under the
carpet and the point about ‘super-symmetric’ TQFTs is missed.

In these notes, the whole question of symmetry is given a rather privileged
rôle. The difficult thing about symmetry is to avoid mistaking it for identity!
For example, for the cartesian product × (which is an important example of a
monoidal structure), it is not true that X ×Y = Y × X. What is true is that there
is a natural isomorphism between the two sets (or spaces). Similar observations
are due for disjoint union ä, and tensor product ⊗. . . While it requires some
pedantry to treat symmetry properly, it is necessary in order to understand the
super-symmetric examples just mentioned.

0.0.16 Organisation of these notes. The notes are divided into three chapters
each of which should be read before the others! The first chapter is about topol-
ogy: cobordisms and TQFTs; Chapter 2 is about algebra — Frobenius algebras;
and Chapter 3 is mostly category theory. The reader is referred to the Table of
Contents for more details on where to find what.

Although the logical order of the material is not completely linear, hope-
fully the order is justified pedagogically: We start with geometry! — the con-
crete and palpable — and then we gradually proceed to more abstract subjects,
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(or should we say: more abstract aspects of our subject), helped by drawings
and intuition provided by the geometry. With the experience gained with these
investigations we get ready to try to understand the abstract structures behind.
The ending is about very abstract concepts and objects with universal prop-
erties, but we can cope with that because we know the underlying geometry
— in fact we show that this very abstract thing with that universal property is
precisely the cobordism category we described so carefully in Chapter 1.

0.0.17 Exercises. Each section ends with a collection of exercises of varying
level and interest. Most of them are really easy, and the reader is encourages to
do them all. A few of them are considered less straightforward and have been
marked with a star.

0.0.18 Further reading. My big sorrow about these notes is that I don’t un-
derstand the physical background or interpretation of TQFTs. The physically
inclined reader must resort to the existing literature, for example Atiyah’s book
[6] or the notes of Dijkgraaf [17]. I would also like to recommend John Baez’s
web site [8], where a lot of references can be found.

Within the categorical viewpoint, an important approach to Frobenius struc-
tures which has not been touched upon is the 2-categorical viewpoint, in terms
of monads and adjunctions. This has recently been exploited to great depth by
Müger [39]. Again, a pleasant introductory account is given by Baez [8], TWF
174 (and 173).

Last but not least, I warmly recommend the lecture notes of Quinn [43],
which are detailed and go in depth with concrete topological quantum field
theories.
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