Homotopy Theory and Higher Categories

WORKSHOP ON CATEGORICAL GROUPS

Categorical groups and [n, n+1]-types of exterior spaces

Aurora Del Río Cabeza, L.Javier Hernández Paricio and M. Teresa Rivas Rodríguez

Departament of Mathematics and Computer Sciences University of La Rioja

1. Introduction

Proper homotopy theory

Classification of non compact surfaces

B. Kerékjártó, Vorlesungen uber Topologie , vol.1, Springer-Verlag (1923). Ideal point

H. Freudenthal, Über die Enden topologisher Räume und Gruppen, Math. Zeith. 53 (1931) 692-713. End of a space

L.C. Siebenmann, *The obstruction to finding a boundary for an open manifold of dimension greater than five*, Tesis, 1965.

Proper homotopy invariants at one end represented by a base ray

H.J. Baues, A. Quintero, *Infinite Homotopy Theory*, K-Monographs in Mathematics, 6. Kluwer Publishers, 2001.

Invariants associated at a base tree

One of the main problems of the proper category is that there are few limits and colimits.

Pro-spaces

J.W. Grossman, *A homotopy theory of pro-spaces*, Trans. Amer. Math. Soc.,201 (1975) 161-176.

T. Porter, *Abstract homotopy theory in procategories*, Cahiers de topologie et geometrie differentielle, vol 17 (1976) 113-124.

A. Edwards, H.M. Hastings, *Every weak proper homotopy equivalence is weakly properly homotopic to a proper homotopy equivalence*, Trans. Amer. Math. Soc. 221 (1976), no. 1, 239–248.

Exterior spaces

J. García Calcines, M. García Pinillos, L.J. Hernández Paricio, *A closed model category for proper homotopy and shape theories*, Bull. Aust. Math. Soc. 57 (1998) 221-242.

J. García Calcines, M. García Pinillos, L.J. Hernández Paricio, *Closed Simplicial Model Structures for Exterior and Proper Homotopy Theory*, Applied Categorical Structures, 12, (2004), pp. 225-243.

J. I. Extremiana, L.J. Hernández, M.T. Rivas, *Postnikov factorizations at infinity*, Top and its Appl. 153 (2005) 370-393.

n-types J.H.C. Whitehead, *Combinatorial homotopy. I , II* , Bull. Amer. Math. Soc., 55 (1949) 213-245, 453-496. *Crossed complexes and crossed modules*

proper *n***-types** L. J. Hernández and T. Porter, *An embedding theorem for proper n-types*, Top. and its Appl., 48 n°3 (1992) 215-235.

L. J. Hernández y T. Porter, *Categorical models for the n-types of pro*crossed complexes and \mathcal{J}_n -prospaces, Lect. Notes in Math., n° 1509, (1992) 146-186 2. Proper maps, exterior spaces and categories of proper and exterior [n,n+1]-types

A continuous map $f : X \to Y$ is said to be *proper* if for every closed compact subset K of Y, $f^{-1}(K)$ is a compact subset of X.

Top topological spaces and continuous maps

P spaces and proper maps

P does not have enough limits and colimits

Definition 2.1 Let (X, τ) be a topological space. An externology on (X, τ) is a non empty collection ε of open subsets which is closed under finite intersections and such that if $E \in \varepsilon$, $U \in \tau$ and $E \subset U$ then $U \in \varepsilon$. An exterior space $(X, \varepsilon \subset \tau)$ consists of a space (X, τ) together with an externology ε . A map $f : (X, \varepsilon \subset \tau) \to (X', \varepsilon' \subset \tau')$ is said to be exterior if it is continuous and $f^{-1}(E) \in \varepsilon$, for all $E \in \varepsilon'$.

The category of exterior spaces and maps will be denoted by \mathbf{E} .

 $\begin{array}{ll} \mathbb{N} & \mbox{non negative integers, usual topology, cocompact externology} \\ \mathbb{R}_+ & [0,\infty), \mbox{ usual topology, cocompact externology} \\ \mathbf{E}^{\mathbb{N}} & \mbox{ exterior spaces under } \mathbb{N} \\ \mathbf{E}^{\mathbb{R}_+} & \mbox{ exterior spaces under } \mathbb{R}_+ \\ (X,\lambda) \mbox{ object in } \mathbf{E}^{\mathbb{R}_+} \ , \ \lambda \colon \mathbb{R}_+ \to X \mbox{ a base ray in } X \\ \mbox{ The natural restriction } \lambda|_{\mathbb{N}} \colon \mathbb{N} \to X \mbox{ is a base sequence in } X \end{array}$

 $\mathbf{E}^{\mathbb{R}_+} o \mathbf{E}^{\mathbb{N}}$ forgetful functor

X, Z exterior spaces, Y topological space $X \overline{\times} Y$, Z^Y exterior spaces Z^X topological space (box \supset topology $Z^X \supset$ compact-open)

 S^q q-dimensional (pointed) sphere:

 $Hom_{\mathbf{E}}(\mathbb{N}\bar{\times}S^{q},X) \cong Hom_{\mathbf{Top}}(S^{q},X^{\mathbb{N}})$ $Hom_{\mathbf{E}}(\mathbb{R}_{+}\bar{\times}S^{q},X) \cong Hom_{\mathbf{Top}}(S^{q},X^{\mathbb{R}_{+}})$

Definition 2.2 Let (X, λ) be in $\mathbf{E}^{\mathbb{R}_+}$ and an integer $q \ge 0$. The q-th \mathbb{R}_+ -exterior homotopy group of (X, λ) :

$$\pi_q^{\mathbb{R}_+}(X,\lambda) = \pi_q(X^{\mathbb{R}_+},\lambda)$$

The q-th \mathbb{N} -exterior homotopy group of (X, λ) :

$$\pi_q^{\mathbb{N}}(X,\lambda|_{\mathbb{N}}) = \pi_q(X^{\mathbb{N}},\lambda|_{\mathbb{N}})$$

Definition 2.3 An exterior map $f:(X,\lambda) \rightarrow (X',\lambda')$ is said to be a weak [n, n + 1]- \mathbb{R}_+ -equivalence (weak [n, n + 1]- \mathbb{N} -equivalence) if $\pi_n^{\mathbb{R}_+}(f), \pi_{n+1}^{\mathbb{R}_+}(f)$ ($\pi_n^{\mathbb{N}}(f), \pi_{n+1}^{\mathbb{N}}(f)$) are isomorphisms.

 $\Sigma_{\mathbb{R}_+}^{[n,n+1]}$ class of weak [n, n+1]- \mathbb{R}_+ -equivalences $\Sigma^{[n,n+1]}_{\scriptscriptstyle{\mathbb{N}}}$ class of weak [n, n+1]- \mathbb{N} -equivalences

The category of *exterior* \mathbb{R}_+ -[n, n+1]-types is the category of fractions

 $\mathbf{E}^{\mathbb{R}_+}[\Sigma_{\mathbb{R}_+}^{[n,n+1]}]^{-1},$

the category of *exterior* \mathbb{N} -[*n*,*n*+1]-types

 $\mathbf{E}^{\mathbb{R}_+}[\Sigma_{\mathbb{N}}^{[n,n+1]}]^{-1}$

and the corresponding subcategories of proper [n, n+1]-types

$$\mathbf{P}^{\mathbb{R}_+}[\Sigma_{\mathbb{R}_+}^{[n,n+1]}]^{-1}, \quad \mathbf{P}^{\mathbb{R}_+}[\Sigma_{\mathbb{N}}^{[n,n+1]}]^{-1}.$$

Two objects X, Y have the same type if they are isomorphic in the corresponding category of fractions

type(X) = type(Y).

3. Categorical groups

A monoidal category $\mathbb{G} = (\mathbb{G}, \otimes, a, I, l, r)$ consists of a category \mathbb{G} , a functor (tensor product) $\otimes : \mathbb{G} \times \mathbb{G} \to \mathbb{G}$, an object I (unit) and natural isomorphisms called, respectively, the associativity, left-unit and right-unit constraints

$$a = a_{\scriptscriptstyle \alpha,\beta,\omega} : (\alpha \otimes \beta) \otimes \omega \xrightarrow{\sim} \alpha \otimes (\beta \otimes \omega) \ ,$$

$$l = l_{\scriptscriptstyle \alpha} : I \otimes \alpha \xrightarrow{\sim} \alpha \quad , \quad r = r_{\scriptscriptstyle \alpha} : \alpha \otimes I \xrightarrow{\sim} \alpha \ ,$$

which satisfy that the following diagrams are commutative

A categorical group is a monoidal groupoid, where every object has an inverse with respect to the tensor product in the following sense: For each object α there is an inverse object α^* and canonical isomorphisms

$$(\gamma_r)_{\alpha} : \alpha \otimes \alpha^* \to I$$
$$(\gamma_l)_{\alpha} : \alpha^* \otimes \alpha \to I$$

CG categorical groups

A categorical group \mathbb{G} is said to be a *braided categorical group* if it is also equipped with a family of natural isomorphisms $c = c_{X,Y} : X \otimes Y \to Y \otimes X$ (the braiding) that interacts with a, r and l such that, for any $X, Y, Z \in \mathbb{G}$, the following diagrams are commutative:

BCG braided categorical groups

A braided categorical group (\mathbb{G}, c) is called a *symmetric categorical group* if the condition $c^2 = 1$ is satisfied.

SCG symmetric categorical groups

4. The small categories $\mathcal{C} = E(E(\overline{4}) \times EC(\Delta/2)), \mathcal{BC} \text{ and } \mathcal{SC}$

Objectives:

-To give a more geometric version of the well known equivalences between [1,2]-types and categorical groups up to weak equivalences, and similarly for [2,3]-types, [n, n+1]-types ($n \ge 3$) and braided categorical groups, symmetric categorical groups, respectively

-To obtain an adapted version for exterior [n, n+1]-types

(exterior spaces)

(pointed spaces) adjunction (presheaves) adjuntion (categorical groups)

The category $C = E(E(\bar{4}) \times EC(\Delta/2))$:

 $\Delta/2$ is the 2-truncation of the usual category Δ whose objects are ordered sets $[q] = \{0 < 1 \dots < q\}$ and monotone maps.

Now we can construct the pushouts

$$\begin{array}{cccc} [0] & \xrightarrow{\delta_{1}} [1] & [1] & \xrightarrow{\operatorname{in}_{l}} [1] +_{[0]} [1] \\ & \delta_{0} \downarrow & \downarrow \operatorname{in}_{r} & \operatorname{in}_{r} \downarrow & \downarrow \\ [1] & \xrightarrow{} [1] +_{[0]} [1] & [1] +_{[0]} [1] - \xrightarrow{} [1] +_{[0]} [1] +_{[0]} [1] \end{array}$$

 $C(\Delta/2)$ is the extension of the category $\Delta/2$ given by the objects [1] +_[0] [1], [1] +_[0] [1] +_[0] [1]

and all the natural maps induced by these pushouts.

In order to have vertical composition and inverses up to homotopy we extend this category with some additional maps and relations:

$$\begin{split} V: [2] &\to [1] \text{, } V\delta_2 = \mathrm{id} \text{, } V\delta_1 = \delta_1 \epsilon_0 \text{, } (V\delta_0)^2 = \mathrm{id}, \\ K: [2] &\to [1] +_{[0]} [1] \text{, } K\delta_2 = \mathrm{in}_l \text{, } K\delta_0 = \mathrm{in}_r, \\ A: [2] &\to [1] +_{[0]} [1] +_{[0]} [1] \text{, } A\delta_2 = (K\delta_1 + \mathrm{id})K\delta_1 \text{, } A\delta_1 = (\mathrm{id} + K\delta_1)K\delta_1, \\ A\delta_0 &= A\delta_1\delta_0\epsilon_0. \end{split}$$
The new extended category will be denoted by $EC(\Delta/2)$.

With the objective of obtaining a tensor product with a unit object and inverses, we take the small category $\overline{4}$ generated by the object 1 and the induced coproducts 0, 1, 2, 3, 4, all the natural maps induced by coproducts and three additonal maps:

 $e_0: 1 \to 0, \ \nu: 1 \to 1 \text{ and } \mu: 1 \to 2.$ This gives a category $E(\bar{4})$. Consider the product category $E(\bar{4}) \times EC(\Delta/2)$.

The object (i, [j]), and morphisms $id_i \times g$, $f \times id_{[j]}$ will be denoted by i[j] and g, f, respectively.

We extend again this category by adding new maps: $a: 1[1] \rightarrow 3[0]$, $r: 1[1] \rightarrow 1[0]$, $l: 1[1] \rightarrow 1[0]$, $\gamma_r: 1[1] \rightarrow 1[0]$, $\gamma_l: 1[1] \rightarrow 1[0]$, $t: 1[2] \rightarrow 2[0]$, $p: 1[2] \rightarrow 4[0]$, satisfying adequate relations to induce asociativity, identity and inverse isomorphisms for the associated categorical group structure. The commutativity of the pentagonal and triangular diagrams of a categorical group will be a consequence of the maps and properties of p and t.

The new extended category will be denoted by

 $\mathcal{C} = E(E(\bar{4}) \times EC(\Delta/2))$

The small-braided category \mathcal{BC} :

The small category C above can be extended with a new map $c: 1[1] \rightarrow 2[0]$ such that $c\delta_0 = \mu$ and $c\delta_1 = \tau \mu$, where if $i_l, i_r: 1 \rightarrow 2$ are the canonical inclusions, then $\tau = i_r + i_l$ (id₂ = $i_l + i_r$).

In order to have the properties of the braided structure we also need two maps

 $h_l: 1[2] \rightarrow 3[0]$, $h_r: 1[2] \rightarrow 3[0]$ satisfying adequate relations to induce the commutativity of the usual hexagonal diagrams of the braided structure.

The small-symmetric category \mathcal{SC} : Finally a new extension of \mathcal{BC} can be considered by taking a map $s: 1[2] \rightarrow 2[0]$ such that $s\delta_2 = \mu\epsilon_0$, $s\delta_1 = (\tau c + c)K\delta_1$, $s\delta_0 = s\delta_1\delta_0\epsilon_0$. 5. The functors $S \wedge \Delta^+ : \mathcal{C} \to \operatorname{Top}^*$, $S^2 \wedge \Delta^+ : \mathcal{BC} \to \operatorname{Top}^*$ and $S^n \wedge \Delta^+ : \mathcal{SC} \to \operatorname{Top}^*$ $(n \ge 3)$

Now we take the covariant functors:

 $S: E(4) \to \operatorname{Top}^*$, preserving coproducts and such that $S(1) = S^1$, $S(\mu): S^1 \to S^1 \vee S^1$ is the co-multiplication and $S(\nu): S^1 \to S^1$ gives the inverse loop.

 $\Delta: \Delta/2 \to \mathbf{Top}$ is given by $\Delta[p] = \Delta_p$ and extends to $C(\Delta/2)$ preserving pushouts, $\Delta([1] +_{[0]} [1]) = \Delta_1 \cup_{\Delta_0} \Delta_1$, et cetera.

We also consider adequate maps: $\Delta(V)$, $\Delta(K)$, $\Delta(A)$ that will give vertical inverses, vertical composition and associativity properties. Then, one has an induced functor $\Delta: EC(\Delta/2) \to \mathbf{Top}$.

Taking the functors $()^+: \mathbf{Top} \to \mathbf{Top}^*$, $X^+ = X \sqcup \{*\}$, and the smash $\wedge: \mathbf{Top}^* \times \mathbf{Top}^* \to \mathbf{Top}^*$, we construct an induced functor

$$S \wedge \Delta^+ : E(\bar{4}) \times EC(\Delta/2)) \to \mathbf{Top}^*.$$

Finally, we can give maps $(S \wedge \Delta^+)(a)$, $(S \wedge \Delta^+)(r)$, $(S \wedge \Delta^+)(l)$, $(S \wedge \Delta^+)(\gamma_l)$, $(S \wedge \Delta^+)(\gamma_l)$, $(S \wedge \Delta^+)(p)$, $(S \wedge \Delta^+)(t)$ to obtain the desired functor

 $S \wedge \Delta^+ : \mathcal{C} = E(E(\bar{4}) \times EC(\Delta/2)) \to \mathbf{Top}^*.$

 $S \wedge \Delta^{+}(1[0]) \qquad \qquad S \wedge \Delta^{+}(1[1]) \qquad \qquad S \wedge \Delta^{+}(1[2])$

We note that it is not possible to find a map $\tilde{c}: S^1 \wedge \Delta_1^+ \to S^1 \vee S^1$ such that $\tilde{c}\tilde{\delta}_0 = \tilde{\mu}$ and $\tilde{c}\tilde{\delta}_1 = \tilde{\tau}\tilde{\mu}$ since the canonical commutator $aba^{-1}b^{-1}$ is not trivial in $\pi_1(S^1 \vee S^1)$ where a and b denote the canonical generators. However one can choose a canonical map $\tilde{c}: S^2 \wedge \Delta_1^+ \to S^2 \vee S^2$ such that $\tilde{c}\tilde{\delta}_0 = \tilde{\mu}$ and $\tilde{c}\tilde{\delta}_1 = \tilde{\tau}\tilde{\mu}$, since $\pi_2(S^2 \vee S^2)$ is abelian and now the canonical commutator $aba^{-1}b^{-1}$ is trivial. Therefore one can define a functor

$$S^2 \wedge \Delta^+ : \mathcal{BC} \to \mathbf{Top}^*, \quad S^2 \wedge \Delta^+(1[q]) = S^2 \wedge \Delta_q^+$$

such that the following diagram is commutative

$$\mathcal{C} \longrightarrow \mathcal{BC} \ \downarrow_{S^1 \wedge \Delta^+} \qquad \downarrow_{S^2 \wedge \Delta^+} \ \mathbf{Top}^* \longrightarrow \mathbf{Top}^*$$

Similarly for $n \ge 3$, we have a canonical map $\tilde{s}: S^n \land \Delta_2^+ \to S^n \lor S^n$ and the induced functors

$$S^n \wedge \Delta^+ : \mathcal{SC} \to \mathbf{Top}^*, \quad S^n \wedge \Delta^+(1[q]) = S^n \wedge \Delta_q^+$$

such that the following diagram is commutative

Remark 5.1 Given an object X in Top^* the existence of functors from C, BC, SC to Top^* such that 1[0] is carried into X depends if this object admits the structure of an (braided, symmetric) categorical cogroup object in the Gpd-category Top^* . A. R. Garzón, J. G. Miranda, A. Del Río, Tensor structures on homo-

topy groupoids of topological spaces, *International Mathematical Journal* 2, 2002, pp. 407-431.

6. Singular and realization functors. The categorical group of a presheaf

 $S \wedge \Delta^+$: $\mathcal{C} = E(E(\bar{4}) \times EC(\Delta/2)) \to \mathbf{Top}^*$ induces a pair of adjoint functors

 $\begin{array}{l} \mathsf{Sing:} \mathbf{Top}^* \to \mathbf{Set}^{\mathcal{C}^{op}} \\ |\cdot|: \mathbf{Set}^{\mathcal{C}^{op}} \to \mathbf{Top}^* \end{array}$

We will denote by

 $\mathbf{Set}_{pp}^{\mathcal{C}^{op}}$

the category of presheaves $X: \mathcal{C} = (E(E(\bar{4}) \times EC(\Delta/2)))^{op} \rightarrow \mathbf{Set}$ such that X(i, -) transforms the pushouts of $C(\Delta/2)$ in pullbacks and X(-, [j]) transforms the coproducts of $\bar{4}$ in products.

Given a presheaf X in $\mathbf{Set}_{pp}^{\mathcal{C}^{op}}$ one can define its fundamental categorical group G(X) as a quotient object. This gives a functor

$$G: \mathbf{Set}_{pp}^{\mathcal{C}^{op}} \to \mathbf{CG}$$

Proposition 6.1 The functor $G: \mathbf{Set}_{pp}^{\mathcal{C}^{op}} \to \mathbf{CG}$ is left adjoint to the forgetful functor $U: \mathbf{CG} \to \mathbf{Set}_{pp}^{\mathcal{C}^{op}}$.

The composites $ho_2 = G \operatorname{Sing}$, $B = |\cdot| U$

 $\rho_2: \mathbf{Top}^* \to \mathbf{CG}$

 $B: \mathbf{CG} \to \mathbf{Top}^*$

will be called the *fundamental categorical group* and *classifying* functors.

Theorem 6.1 The realization functor $|\cdot|$: $\mathbf{Set}_{pp}^{\mathcal{C}^{op}} \to \mathbf{Top}^*$ satisfies that $\pi_0(X) \cong \pi_1(|X|)$ and $\pi_1(X) \cong \pi_2(|X|)$

induce equivalence of categories of [1, 2]-types, [2, 3]-types and [n, n + 1]types $(n \ge 3)$ of pointed spaces and the categories of categorical groups, braided categorical groups and symmetric categorical group ut to weak equivalences, respectively.

Remark 6.1 For other descriptions of the functors ρ_n for pointed spaces or Kan simplicial sets, you can see some papers of Carrasco, Cegarra, Garzón, etc. For example, see:

Carrasco, P., Cegarra, A.M., Garzón A.R. The homotopy categorical crossed module of a CW-complex, Topology and its Applications 154 (2007) 834–847.

Remark 6.2 Note that $\rho_{q+2}(X) \cong \rho_2(\Omega^q(X))$.

7. The categorical groups $\rho_2, \rho_2^{\mathbb{N}}, \rho_2^{\mathbb{K}_+}$ and long exact sequences

For a given pointed topological space X, we can consider its fundamental categorical group

$$\rho_2(X) = G\operatorname{Sing}(X)$$

An alternative description of its higher dimensional analogues is given by

$$\rho_{q+2}(X) = \rho_2(\Omega^q(X)),$$

where Ω is the loop functor.

Given an object (X, λ) in the category $\mathbf{E}^{\mathbb{R}_+}$, one has the pointed spaces $(X^{\mathbb{R}_+}, \lambda)$, $(X^{\mathbb{N}}, \lambda|_{\mathbb{N}})$ and the restriction fibration res: $X^{\mathbb{R}_+} \to X^{\mathbb{N}}$, res $(\mu) = \mu|_{\mathbb{N}}$. The fibre is the space

$$F_{\rm res} = \{ \mu \in X^{\mathbb{R}_+} | \ \mu|_{\mathbb{N}} = \lambda|_{\mathbb{N}} \}$$

Denote $\mu_i = \mu|_{[i,i+1]}$. The maps $\varphi: (F_{res}, \lambda) \to \Omega(X^{\mathbb{N}}, \lambda)$, $\phi: \Omega(X^{\mathbb{N}}, \lambda) \to (F_{res}, \lambda)$, given by $\varphi(\mu) = (\mu_0 \lambda_0^{-1}, \mu_1 \lambda_1^{-1}, \cdots)$ for $\mu \in F_{res}$ and $\phi(\alpha) = (\alpha_0 \lambda_0, \alpha_1 \lambda_1, \cdots)$ for $\alpha \in \Omega(X^{\mathbb{N}}, \lambda)$, determine a pointed homotopy equivalence.

Therefore, the pointed map $\operatorname{res}:X^{\mathbb{R}_+}\to X^{\mathbb{N}}$ induces the fibre sequence

$$\cdots \to \Omega^2(X^{\mathbb{N}}) \to \Omega^2(X^{\mathbb{N}}) \to \Omega(X^{\mathbb{R}_+}) \to \Omega(X^{\mathbb{N}}) \to \Omega(X^{\mathbb{N}}) \to X^{\mathbb{R}_+} \to X^{\mathbb{N}}$$

We define the \mathbb{R}_+ -fundamental exterior categorical group by

$$\rho_2^{\mathbb{R}_+}(X) = \rho_2(X^{\mathbb{R}_+})$$

and the \mathbb{N} -fundamental exterior categorical group by

$$\rho_2^{\mathbb{N}}(X) = \rho_2(X^{\mathbb{N}}).$$

In the obvious way we have the higher analogues and we can consider fundamental groupoids for the one dimensional cases

$$\rho_1^{\mathbb{R}_+}(X) = \rho_1(X^{\mathbb{R}_+}), \quad \rho_1^{\mathbb{R}_+}(X) = \rho_1(X^{\mathbb{R}_+}).$$

All these exterior homotopy invariants are related as follows:

Theorem 7.1 Given an exterior space X with a base ray $\lambda: \mathbb{R}_+ \to X$ there is a long exact sequence

$$\cdots \to \rho_q^{\mathbb{R}_+}(X) \to \rho_q^{\mathbb{N}}(X) \to \rho_q^{\mathbb{N}}(X) \to \rho_{q-1}^{\mathbb{R}_+}(X) \to$$
$$\cdots \to \rho_3^{\mathbb{R}_+}(X) \to \rho_3^{\mathbb{N}}(X) \to \rho_3^{\mathbb{N}}(X) \to \rho_2^{\mathbb{R}_+}(X) \to \rho_2^{\mathbb{N}}(X) \to \rho_2^{\mathbb{N}}(X) \to$$
$$\rho_1^{\mathbb{R}_+}(X) \to \rho_1^{\mathbb{N}}(X)$$

which satifies the following properties:

- 1. $\rho_1^{\mathbb{N}}(X)$, $\rho_1^{\mathbb{R}_+}(X)$ have the structure of a groupoid.
- 2. $\rho_2^{\mathbb{N}}(X)$, $\rho_2^{\mathbb{R}_+}(X)$ have the structure of a categorical group.
- 3. $\rho_3^{\mathbb{N}}(X)$, $\rho_3^{\mathbb{R}_+}(X)$ have the structure of a braided categorical group.
- 4. $\rho_q^{\mathbb{N}}(X)$, $\rho_q^{\mathbb{R}_+}(X)$ have the structure of a symmetric categorical group for $q\geq 4$.

The notion of exactness considered in Theorem above is the given in

E.M. Vitale, *A Picard-Brauer exact sequence of categorical groups*, J. Pure Applied Algebra, 175 (2002), 383-408.

To obtain a proof we can take the exact sequence of categorical groups associated to the fibration $X^{\mathbb{R}_+} \to X^{\mathbb{N}}$, see:

A. R. Garzón, J. G. Miranda, A. Del Río, *Tensor structures on homo-topy groupoids of topological spaces*, International Mathematical Journal 2, 2002, pp. 407-431.

8. Exterior \mathbb{R}_+ -[n, n + 1]-types and the \mathbb{R}_+ -fundamental exterior categorical group

Consider the functor

$$p: \mathbf{Top}^* \to \mathbf{E}^{\mathbb{R}_+} \quad p(X) = \mathbb{R}_+ \bar{\times} X$$

and its rigtht adjoint

$$(\cdot)^{\mathbb{R}_+} : \mathbf{E}^{\mathbb{R}_+} \to \mathbf{Top}^*, \quad Y \to Y^{\mathbb{R}_+}$$

Lemma 8.1 Suppose that $f: X \to X'$ is a map in \mathbf{Top}^* and $g: Y \to Y'$ is a map in $\mathbf{E}^{\mathbb{R}_+}$. Then

(i) if π_q(f) is an isomorphism, then π_q^ℝ(p(f)) is an isomorphism,
(ii) if π_q^ℝ(g) is an isomorphism, then π_q(g^ℝ) is an isomorphism,
(iii) the unit X → (X × ℝ₊)^ℝ and the counit ℝ₊ × Y^ℝ → Y are weak equivalences.

The functor p induces a covariant functor

$$p(S \wedge \Delta^+): \mathcal{C} \to \mathbf{E}^{\mathbb{R}_+}$$

and the corresponding singular an realization functors

$$\operatorname{Sing}^{\mathbb{R}_{+}}: \mathbf{E}^{\mathbb{R}_{+}} \to \mathbf{Set}_{pp}^{\mathcal{C}^{op}} \\ |\cdot|^{\mathbb{R}_{+}}: \mathbf{Set}_{pp}^{\mathcal{C}op} \to \mathbf{E}^{\mathbb{R}_{+}}$$

On the other hand, we also have the adjunction

$$G: \mathbf{Set}_{pp}^{\mathcal{C}^{op}} \to \mathbf{CG}$$
$$U: \mathbf{CG} \to \mathbf{Set}_{pp}^{\mathcal{C}op}$$

Taking the composites $GSing^{\mathbb{R}_+} \cong \rho_2^{\mathbb{R}_+}$ and $B^{\mathbb{R}_+} = |\cdot|^{\mathbb{R}_+}U$, one has that

Theorem 8.1 The functors $\rho_2^{\mathbb{R}_+}$ and $B^{\mathbb{R}_+}$ induce an equivalence of categories

$$\mathbf{E}^{\mathbb{R}_{+}}[\Sigma_{\mathbb{R}_{+}}^{[1,2]}]^{-1} \to \mathbf{CG}[\Sigma]^{-1}$$

where Σ is the class weak equivalences (equivalences) in CG .

Similarly one has

Theorem 8.2 The functors $\rho_3^{\mathbb{R}_+}$ and $\rho_n^{\mathbb{R}_+}$ of the following diagrams: **Top**^{*} $\xrightarrow{\text{Sing}}$ $\text{Set}_{pp}^{\mathcal{BC}^{op}}$ $\text{Top}^* \xrightarrow{\text{Sing}}$ $\text{Set}_{pp}^{\mathcal{SC}^{op}}$ $(\cdot)^{\mathbb{R}_+} \downarrow p \xrightarrow{\rho_3} U \downarrow G \quad (\cdot)^{\mathbb{R}_+} \downarrow p \xrightarrow{\rho_n} U \downarrow G$ $\mathbf{E}^{\mathbb{R}_+} \xrightarrow{\mathcal{B}} \mathbf{BCG} \quad \mathbf{E}^{\mathbb{R}_+} \xrightarrow{\mathcal{B}} \mathbf{SCG}$

induce category equivalences of \mathbb{R}_+ -[2,3]-types and \mathbb{R}_+ -[n, n+1]-types ($n \ge 3$) of rayed exterior spaces and the categories of categorical groups, braided categorical groups and symmetric categorical group ut to weak equivalences, respectively.

9. Exterior \mathbb{N} -[1,2]-types and the \mathbb{N} fundamental exterior categorical group

Consider the functor $c: \mathbf{Top}^* \to \mathbf{E}^{\mathbb{R}_+}$ given by

$$c(X) = (\mathbb{R}_+ \sqcup (\sqcup_0^\infty X))/n \sim *_n$$

where $n \ge 0$ is a natural number and $*_n$ denotes the base point of the corresponding copy of X. Its rigtht adjoint is given by

$$(\cdot)^{\mathbb{N}}: \mathbf{E}^{\mathbb{R}_+} \to \mathbf{Top}^*, \quad Y \to Y^{\mathbb{N}}$$

Lemma 9.1 Suppose that $f: X \to X'$ is a map in \mathbf{Top}^* and $g: Y \to Y'$ is a map in $\mathbf{E}^{\mathbb{R}_+}$. Then

(i) if $\pi_q(f)$ is an isomorphism, then $\pi_q^{\mathbb{N}}(c(f))$ is an isomorphism,

(ii) if $\pi_q^{\mathbb{N}}(g)$ is an isomorphism, then $\pi_q(g^{\mathbb{N}})$ is an isomorphism.

Note that in this case, in general the unit $X \to (c(X))^{\mathbb{N}}$ and the counit $c(Y^{\mathbb{N}}) \to Y$ are not weak equivalences.

induce functors from the categories of \mathbb{N} -[1, 2]-types, \mathbb{N} -[2, 3]-types and \mathbb{N} -[n, n + 1]-types ($n \ge 3$) of rayed exterior spaces to the categories of categorical groups, braided categorical groups and symmetric categorical group ut to weak equivalences, respectively.

Take an exterior rayed space X (for example, $X = \mathbb{R}_+ \bar{\times} S^1$) such that $\liminf \pi_1 \varepsilon(X) \neq 1$

We can prove that the space $B\rho_2^{\mathbb{N}}(X)$ satisfies that

 $\operatorname{limtow} \pi_1 \varepsilon(B\rho_2^{\mathbb{N}}(X)) = 1$

This implies that X and $B\rho_2^{\mathbb{N}}(X)$ have different $\mathbb{N}\text{-}1\text{-type}$ and then different $\mathbb{N}\text{-}[1,2]\text{-type}.$

Open question: Is it possible to modify the notion of categorical group to obtain an new algebraic model for \mathbb{N} -[1, 2]-types?

Perhaps, a partial answer can be obtained by taking a monoid \mathbb{M} of endomorphisms of the exterior space $\mathbb{R}_+ \sqcup (\sqcup_0^\infty S^1))/n \sim *_n$, and a new extension of the category $\overline{4}$ obtained by adding an arrow for each element of the monoid. This gives a new type of presheaf that will induce a categorical group enriched with an action of the monoid \mathbb{M} .

We think that the new enriched categorical group and the new corresponding functors will give an equivalence of a large class of exterior \mathbb{N} -[1, 2]-types and the corresponding \mathbb{M} -categorical groups. This class of exterior \mathbb{N} -[1, 2]-types contains the subcategory of proper \mathbb{N} -[1, 2]-types. Consequently, we will obtain a category of algebraic models for proper \mathbb{N} -[1, 2]-types.

- [BQ01] H.J. Baues, A. Quintero, *Infinite Homotopy Theory*, K-Monographs in Mathematics, 6. Kluwer Publishers, 2001.
- [Bo94] F. Borceux, Handbook of categorical algebra 1,2. Cambridge University Press, 1994.
- [Be92] L. Breen, Théorie de Schreier supérieure. Ann. Scient. Éc. Norm. Sup. **1992**, 4^e série, 25, 465-514.
- [CMS00] P. Carrasco, A.R. Garzón, J.G. Miranda, Schreier theory for singular extensions of categorical groups and homotopy classification, Communications in Algebra 2000, 28 (5), 2585-2613.
- [CCG07] Carrasco, P., Cegarra, A.M., Garzón A.R. The homotopy categorical crossed module of a CW-complex, Topology and its Applications 154 (2007) 834–847.
- [EH76] A. Edwards, H.M. Hastings, Every weak proper homotopy equivalence is weakly properly homotopic to a proper homotopy equivalence, Trans. Amer. Math. Soc. 221 (1976), no. 1, 239–248.

[EHR05] J. I. Extremiana, L.J. Hernández, M.T. Rivas , *Postnikov factor-izations at infinity*, Top and its Appl. 153 (2005) 370-393.

- [F31] H. Freudenthal, Uber die Enden topologisher R\u00e4ume und Gruppen, Math. Zeith. 53 (1931) 692-713.
- [GGH98] J. García Calcines, M. García Pinillos, L.J. Hernández, A closed model category for proper homotopy and shape theories, Bull. Aust. Math. Soc. 57 (1998) 221-242.
- [GI01] A.R. Garzón, H. Inassaridze, Semidirect products of categorical groups, Obstruction theory. Homology, Homotopy and its applications 2001, 3 (6), 111-138.
- [GMD02] A. R. Garzón, J. G. Miranda, A. Del Río, *Tensor structures on homotopy groupoids of topological spaces*, International Mathematical Journal 2, 2002, pp. 407-431.

[GGH04] M. García Pinillos, J. García Calcines, L.J. Hernández Paricio, Closed Simplicial Model Structures for Exterior and Proper Homotopy Theory, Applied Categorical Structures, 12, (2004), pp. 225-243.

- [G75] J.W. Grossman, A homotopy theory of pro-spaces, Trans. Amer. Math. Soc., 201 (1975) 161-176.
- [HP92A] L. J. Hernández and T. Porter, *An embedding theorem for proper n-types*, Top. and its Appl., 48 n°3 (1992) 215-235.
- [HP92B] L. J. Hernández y T. Porter, *Categorical models for the n-types of pro-crossed complexes and* \mathcal{J}_n *-prospaces*, Lect. Notes in Math., n° 1509, (1992) 146-186.
- [JS91] A. Joyal, R. Street, *Braided tensor categories*, Advances in Math. **1991**, *82*(1), 20-78.
- [K64] G.M. Kelly, On Mac Lane's conditions for coherence of natural associativities, commutativities, etc. J. of Algebra 1964, 1, 397-402.
- [K23] B. Kerékjártó, Vorlesungen uber Topologie, vol.1, Springer-Verlag (1923).
- [M63] S. Mac Lane, *Natural associativity and commutativity*, Rice University Studies **1963**, *49*, 28-46.
- [MM92] S. MacLane, I. Moerdijk, *Sheaves in geometry and logic*, Springer-Verlag, 1992.

- [S75] H.X. Sinh, Gr-catégories. Université Paris VII, Thèse de doctorat, 1975.
- [P73] T. Porter, Čech homotopy I, J. London Math. Soc. 6 (1973), 429– 436.
- [P76] T. Porter, Abstract homotopy theory in procategories, Cahiers de topologie et geometrie differentielle, vol 17 (1976) 113-124.
- [P83] T. Porter, Čech and Steenrod homotopy and the Quigley exact couple in strong shape and proper homotopy theory, J. Pure and Appl. Alg. 24 (1983), 303–312.
- [Quig73] J.B. Quigley, An exact sequence from the n-th to the (n 1)-st fundamental group, Fund. Math. **77** (1973), 195–210.

- [Q67] D. G. Quillen, Homotopical Algebra, Lect. Notes in Math., no. 43, Springer-Verlag, New York, 1967.
- [S65] L.C. Siebenmann, *The obstruction to finding a boundary for an open manifold of dimension greater than five*, Tesis, 1965.
- [V02] E.M. Vitale, A Picard-Brauer exact sequence of categorical groups, J. Pure Applied Algebra, 175 (2002), 383-408.
- [W49] J.H.C. Whitehead, *Combinatorial homotopy. I , II* , Bull. Amer. Math. Soc., 55 (1949) 213-245, 453-496.