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w O. Introduction 

Parabolic cohomology groups of congruence subgroups of SL2(Z ) have been 
utilized as an effective tool in the study of (i) the Hecke algebras on the space 
of cusp forms, (ii) the Galois representations of cusp forms, and (iii) the special 
values of their zeta functions. The utility of this type of cohomology groups 
was first found by Eichler, and their arithmetic applications have been chiefly 
studied by Shimura (e.g. 1-20, 23, 24 and 25, ch. 8]; see also Ohta [17]). In the 
present paper, we shall study these three subjects in the framework of p-adic 
modular forms and their Hecke algebras. We shall deduce all the main results 
of this paper from a key theorem (Theorem 3.1) on the structure of the 
parabolic cohomology groups of ~(Np r) for a fixed prime p. Assume through- 
out the paper that p>5.  We have defined in our previous paper [13] an 
universal Hecke algebra t~(N;Zp), for each positive integer N prime to p, as a 
subalgebra of the endomorphism algebra of the space of p-adic cusp forms of 
level N, topologically generated by Hecke operators. Then, the ordinary part 
/~~ of ~(N;Zp) is proven to be finite and flat over the Iwasawa algebra 
A = Z v [ [ X ] ]  of the topological group F=I+pZv.  Let f2 be a p-adic com- 
pletion of an algebraic closure of Qv. Then the evaluation of power series in A 
at the point e(u)u k -  1 ( u = l  +peF) gives an algebra homomorphism of A into 
~2 for each finite order character e of F into f2 • and for each integer k. Let Pk_~ 
be the prime ideal of A which is the kernel of this morphism. We denote by Q 
the algebraic closure of Q in C and we fix throughout this paper an embedding 
of (~ into f2. We shall take an irreducible component of A~ This is 
equivalent to fixing a (non-trivial) A-algebra homomorphism 2 of ~~ 
into an integral domain finite over A. For simplicity, suppose that N =  1 and 
that 2 is a morphism of/;~ into A itself. We denote by A(n;X)eA the 
image of the Hecke operator T(n) under 2. Define a formal q-expansion by 
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J~,~= ~ A(n;e.(u)uk--1)q '' ( u = l  +p) 
n - 1  

for each finite order character e: F ~ t 2  and for each integer k. When e. is trivial, 
we write simply fk for fk,~. Then, the first main result is 

Theorem I. For each integer k > 2, fk.~ gives a complex q-expansion of a common 
eigenform of all Hecke operators T(n) in Sg(F l(pr)) where r is defined by Ker(e) 
= 1 +prZp (Corollary 1.3). 

This means that the value A(n;e(u)uk--1) is in fact an algebraic number in 
Q, and if one considers it as a complex number, then it gives the n-th q- 
expansion coefficient of the modular form. This generalizes the result in [13, 
Cot. 3.7] and is deduced from structure theorems (Theorems 1.1 and 1.2 in the 
text) of the universal Hecke algebra. We note that Jk.~. is minimal; namely, it is 
not a twist by any Dirichlet character of any modular form of smaller level 
than that of f (see the remark after Cot. 10.2 in the text). In particular, Jk.~ is 
not a twist of fk by a. 

As already shown by Deligne [4], one can attach to J~.~ an irreducible 
Galois representations n(fk,~) of Gal (0 /Q)  into GLz(Q ). Then the main result 
as for the Galois representations is 

Theorem II. One can attach to 2 a unique Galois representation z~(2) of 
Gal((~/Q) into GL2(A ) such that the reduction of ~(2) modulo Pk,,: is equivalent 
to ~Z(fk,~) for each integer k > 2 and for each character e. of F (Theorem 2.1). 

Let ~(fg,~) be the contragredient representation of ~(fk,~)" It is then well 
known that in the tensor product z~(fk,~)| there is a unique three 
dimensional subrepresentation ~(fk,~): GaI(Q/Q)- 'GL3(~) .  Then, we can define 
the L-function D(S,fk,~ ) attached to this Galois representation Mfk,~) in a 
standard manner. It is shown by Shimura [22] that D(S,fk,, ) is holomorphic at 
s = k  and is proven by Gelbart and Jacquet [7] that this L-function is as- 
sociated with an automorphic representation of GL(3), which is the base 
change lift of the representation of GL(2) corresponding to fk.~" On the other 
hand, in [13, (3.9b)], we have defined Iwasawa modules cg and ~ ,  associated 
with 2, with the properties that cg is isomorphic to A / H A  with a non-trivial 
power series 1-1(X)eA and ~ is pseudo-null. The module JV] is conjectured to 
be null and its vanishing can be shown under not so restrictive conditions (cf. 
[13, Prop. 3.9]). In w we shall define a canonical transcendental factor 
U~(k,e)sC • of the special value D(k,fk,~ ). The main result as for the value 
D(k,fk,~ ) is 

Theorem |If.  I f  the character of J'2 is non-trivial and ~A/~ = O, then we can find a 
p-adic unit Up(2, e)6(2 such that 

D(2,fz,~)/U~(2,e)Up(2,e)=H(e(u)u2-1) (u= l  +p~F)  

for each finite order character e of F (Corollary 10.6). 

In fact, we shall prove in w 10 the equality of p-adic absolute values: 

[H(e(u)u 2 - 1)]p= [D(2,fz,~)/U~(2,e)[ p. 
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Thus our  me thod  gives only  the existence of the p-adic  unit Up(2, e) dependen t  
upon the choice of the power  series H (up to unit  factors in A), and the na ture  
of Up(2,e) remains  unclear  yet. The  same type of asser t ion as Theorem III  is 
expected to be true for all pairs (k,e) with k > 2 ,  and we shall  prove this for 
much more  general  k in the text when ~ is trivial.  As is clear  from these resuIts, 
the Hecke  algebras,  the Ga lo i s  representa t ions  of m o d u l a r  forms and the zeta 
function of the Ga lo i s  represen ta t ion  in ter twine  each o ther  myster iously .  The  
clar if icat ion of the reason of this in terac t ion  may  lead us to a non-abe l i an  
genera l iza t ion  of  lwasawa ' s  theory (for cyc lo tomic  fields). 

Contents 

w Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  545 
w Results on the Hecke algebras for ordinary forms . . . . . . . . . . . . . . . . . . . .  548 
w Galois representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  556 
w A result on cohomology groups of modular curves . . . . . . . . . . . . . . . . . . .  561 
w Parabolic cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  562 
w Eisenstein series and cohomology groups at cusps . . . . . . . . . . . . . . . . . . . .  575 
w Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  584 
w Proof of Theorems 1.1 and 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  591 
w Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  594 
w Structure of j2 [p~] as r ; Zv)-modules . . . . . . . . . . . . . . . . . . . . . . . .  598 

w Special values of L-functions of GL(3) . . . . . . . . . . . . . . . . . . . . . . . . . .  603 

Notations 

We shall  use the no ta t ion  in t roduced  in our  previous  papers  [12] and [13]. 
Especially,  for any congruence  subgroup  A of  SL2(Z), we denote  by ~'k(A) 
(resp. Sk(A)) the space of h o l o m o r p h i c  m o d u l a r  forms (resp. h o l o m o r p h i c  cusp 
forms) for A. If  0 is a charac te r  of  A such that  Ke r (0 )  is aga in  a congruence  
subgroup,  we put  

,////k(A, I]/)----- { fe~k(Ker(~9) )  fJk)' = 0 ( 7 ) f  for ?,eA}, 
and 

Sk(A, ~ ) =  Sk(Ker(0))  ~ Jgk(A, t)), 

( a z + b ]  (cz+d)_k" Each e lement  f of ,/elk(A) has a 

Four i e r  expans ion  of the form:  

f = ,~-0= a exp (2 ~ i n z/M) 

for a sui table  integer M > 0 .  W h e n  one can take  1 as M (for example ,  when A 
=F~(N)  or  Fo(N ) for an integer  N > 0 ) ,  we wri te  q=exp(27ciz) and  the Fou r i e r  

expans ion  of f wri t ten as ~ a(n,f)q" will be called the q-expansion of f F o r  
n = 0  

any subr ing A of C, we put  
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and 

d/la(A, ~b ; A) = ~ k  (Ker (~O); A) c~ ~Ia(A , tp) 

Sk(A ; A) = SClk(A ; A) n SR(A ) 

Sk(A , tp ; A) = ~k(A, ~b ; A) ~ Sk(Ker (q,)). 

We write f~ for the p-adic completion of an algebraic closure of Qp and 
throughout this paper, we fix an embedding: 0~--~2. Thus, the algebraic closure 
0 of Q in C is also considered as a subfield of (2. Any extension of Qp will be 
considered in fl. / 

The normalized p-adic absolute value of xe~? is denoted by ]xlp [the 

normalization means that ]ple=~). 
\ 

w 1. Results on the Hecke algebras for ordinary forms 

We begin by recalling the definitions of spaces of p-adic modular forms given 
in [12, w and [13, w Let p > 5  be a prime number and fix a positive integer 

N prime to p. For each power series f =  ~ a(n,f)q" with coefficients in fl, we 
define its p-adic norm by ,=o 

(1.1) ]f  Ip = Sup la(n,f)[p. 
n 

Especially we can speak of the norm of each modular form f in 
Jgk(Fl(Np');(~) through its q-expansion (see Notation for the symbols without 
any definition). Then the norm [flp is known to be finite. Take a subfield K 0 of 

and let K be the closure of K o in f2. Let ~: Z ~ K  o be a Dirichlet character 
modulo Np" (0<reZ)  with values in K o. Put, for each integer r>0 ,  

./gk (F1 (N p'); K)= ~itk(F ~ (N pr); Ko) | K, 

SR(F ~ (Np'); K)= Sk(F ~ (Np'); Ko) | K, 

Jllk(Fo( N p'), tp ; K)= J/[g(Fo(N P'), ~b ; Ko) @Ko K, 

I ~ 1  r . _ _  r , sd o(Np ), ~, K ) -  Sk(F o (Np ), ~, Ko)| K. 

Then these spaces are finite dimensional and are independent of the choice of 
the dense subfield K o of K. By definition, each element f of S/gk(F~(Np');K) 

has a unique q-expansion, which will be written as ~ a(n,f)q"EK[[q]]. Con- 
n = O  

versely, f ~s uniquely determined by its q-expansion. More generally, for each 
congruence subgroup cb of SLE(Z) and for each character ~b of �9 whose kernel 
is also a congruence subgroup, the spaces d/k(q' ,r  and Sk(eb,~b;K) can be 
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l h  defined. For example, we will later deal with the group q~, -Fl(Np)nFo(p r) and 
x a character of ~b 1~ given as follows: Let F =  1 + p Z  r be the subgroup of Zp 

consisting of p-adic units congruent to 1 modulo p. For each character e of F 

pr, one can define a character of q~r by putting e (  a_ ~ t=e(d)  modulo for 

(~ bd)~Cb ~. Of course, the space 1 
\c 

J/k(q~;,e;f~) can be further decomposed into 

the sum of the spaces of usual "Neben typus" ~lk(Fo(NP~),O;f2) over Dirichlet 
characters 0 modulo Np r with ~91r=e. 

Let Z = Z p  x (Z/NZ) • and write each element zcZ as z=(zp, Zo) for zpeZ~ 
and Zoe(Z/NZ) • We let the topological group Z act on J/Ik(Fl(Np~);~2) as 

follows" Choose an element a ~ S L 2 ( Z ) s o  that a ~ - ( ;  ; )  modNp~, and define 

f]z=zkl,(f[ka~) for fE./Clk(Fl(Np~);O). 

Any integer l prime to Np can be naturally considered as an element of Z. For 
each prime l, the Hecke operators T(l) and T(l,l) on Jgk(Fl(Np');O) are defined 
as follows: 

~a(nl,f)+l-~a ~,fll for l~/gp, 
a(n'flT(1))=(a(nl,J) for llgp, 

a(n,f[T(l, 1))={l 0 2a(n'f[l) for l.g N p, 
for lINp. 

Let (9 K be the ring of p-adic integers of K and let A denote one of the rings K, 
(9 K and K 0. Then it is known that the Hecke operators T(l) and T(I,l) preserve 
the space of A-rational modular forms (for details, see [13, w For  each 
subring A of K, let us define an A-algebra ~k(Fl(Npr);A) (resp. ~k(~, O;A)) by 
the A-subalgebra of the algebra of K-endomorphisms of Sk(FI(Npr);K) (resp. 
Sk(~,~,;K)) generated over A by the Hecke operators T(l) and T(l,l) for all 
primes I. We can similarly define the Hecke algebras ~k(FI(Np*);A) and 
~k(q~,~O;K) for the spaces ~Ik(F~(Npr);K) and ,/~'k(tP,~t,K). Put (gKo=Ko~6J r. 
Then, if A is one of the rings (gKo, OK, K o and K, the algebra ~k(F~(N);A) acts 
faithfully on the A-rational space Sk(FI(Npr);A). For each couple of integers 
r > s > 1, we have a commutative diagram: 

Sk(F l(Nps); K) ~ Sk(F ~ (Npr); K) 

I T ( l ) ( r e s p .  T (I,I)) T ( l ) ( r e s p ,  T (l,l)) 

Sk(F~(NpS);K) ~- --} Sk(F~(Np");K), 

where the horizontal arrows are the natural inclusion. 
Thus, the restriction of operators in ,~k(F~(Npr); (gK) to Sk(Fl(NpS); K) gives 

a surjective (gr-algebra homomorphism of ~k(Fl(Npr); OK) onto ~k(Fl(NpS); (gr). 
Thus we can form the limits: 
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(1.2) Sk(NP~176 for A = K  and C~; 
r = l  

g 

The algebra Ak(Np| thus defined acts on Sk(Np~;A) for A=C K and K, 
uniformly continuously under the norm (1.1). Let ~ok(Np~;A) be the com- 
pletion of Sk(NP_~;A) for the norm (1.1). Then the action of Ak(NP~;(gK) can 
be extended to Sk(Np~;A) by the uniform continuity. 

So far, we have considered the Hecke algebra defined by growing the level 
for a fixed weight k. Now we shall define the Hecke algebra for a fixed level 
Np ~ but varying weight. For each positive integer j, put 

J 
SJ(N p" ; K)= @ Sk(F ~ (Np~); K). 

k - 1  

Naturally we can imbed Si(Np~; K) into K[[q] ] .  Then we define 

SJ(N p~ ; CK)= SJ(N p" ; K)~ CK[[q]] = { f  eSJ(N p" ; K)[ Ifl  _-< 1/. 

Let A denote either of K or CK, and take the injective limit: 

S ~ (Np~;A) = ~SJ(Np~;  A), 
J 

inside the formal power series ring A[[q]] .  Let S(Np~;A) be the completion of 
S~(Np';A) under the norm (1.1). Then, as seen in [13, (1.19a)], we have 

(1.3) S(Npr for every r>0 .  

The space SJ(Npr;A) for each j is stable under the Hecke operators T(1) and 
T(1,1) for all primes I if r > l .  We shall define an A-algebra d2(Np';A) by the A- 
subalgebra of End.4(SJ(Np~;A)) generated over A by T(1) and T(l,l) for all 
primes 1. For each couple of integers i > j > 0 ,  we have a commutative diagram: 

SJ(Npr;(_gK) ~ -  , Si(Np';CK) 

T(l)(resp. T(I, l)) T(l)(resp. T(l,t)) 

S~(Np ~" 6u) - , S~(Nff; (gK); 

where the horizontal maps are the natural inclusion. 
Thus we have the restriction morphism of di(Npr; CK) onto dJ(Npr;(fK). Put 

d(N p' ; ff K)= li_mmdi(N pr ; (g K), 
J 

which acts faithfully on S~(Npr;(gtr and also on S(Npr;(gK). Then we know 
from (1.3) that 

(1.4) d(Npr;CK)=d(Np;6)K) in End(S(N;(gK) ) for every r > l  
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(cf. [13, (1.19b)]). By (1.3), there is a natural inclusion of Sk(F~(Np~);A) into 
S(N;A), and therefore, 

(1.5) Sk(Np~;A) is contained in S(N;A) for A=C K and K 

(In fact, the space Sk(Np~176 coincides with S(N;A) in A[[q]]  if k > 2 ;  so it is 
independent of the weight k, but we will not need this fact later). The restric- 
tion of operators in ~(Np;e/K) to the subspace Sk(FI(Np~);CK) of S(N;CK) 
induces a morphism of CK-algebras 

Pr, k: ~(NP;(~)K)--~k(I ' I(Npr);(gK),  

which is surjective, because both the algebras are topologically generated by 
T(l) and T(l,l). The projective limit of morphisms P.,k relative to r gives a 
surjective algebra homomorphism 

P~o,k: ~(NP;(~K)--~FZk(NP~176 . 

As seen in [12, (4.3)] and [13, (1.17a, b)], one can attach an idempotent e in 
~(Np;CK) and /~k(Np~;CK) to the Hecke operator T(p). When one restricts e 
to ~/(Np~; (gK) or ~k(F~(Np~); (gK), one has the following explicit expression of e: 

e=limT(p) p'~ps-I~ in dJ(Npr;CK) and dk(FI(Np~);CK) 

for a suitable positive integer f Another characterization of e may be given as 
follows: Write R for d;(Npr;CK) or ~k(F~(Npr);(gK). Then R is a semi-local 
complete ring. Thus, if we write R,, for the localization of R for each maximal 
ideal m of R, we have a decomposition of algebras: 

R = @ R  m. 
m 

Then the image eR of e is given by (~ R m. Thus eR is the maximal factor of 
m ~ T ( p )  

R on which T(p) acts as an automorphism. By this characterization, e does not 
depend on the choice of the positive integer f The idempotent e in ~(Np~;CK) 
(resp. /~(Np~ is defined to be the projective limit of the idempotent in 
each algebra ~J(Npr;CK) (resp. ~k(FI(Npr);(gK)). We shall define the ordinary 
parts of the Hecke algebras by ~~ and ~~ 
=e~k(NP~;CK). For any module M over ~(Np;CK) or ~k(Np~;CK), we write 
M ~ for eM. We call M ~ the ordinary part of M. Then the morphism P~,k 
induces a surjection 

(1.6) Po~,k: ~~176 �9 

Theorem 1.1. The morphism P~,,k induces an algebra isomorphism of ~~ 
0 oe onto ~k(NP ;CK) for each k>2,  which takes the Hecke operators T(l) and 

T(1, l) of ~~ to the corresponding ones in ~~ 

The proof of this theorem given in w is based on an isomorphism between 
the parabolic cohomology groups Hip (F 1 (N p); L, (Z/p ~ Z)) and 
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H~(F 1 (Np'), Z / p  r Z) due to an unpublished work [24] of Shimura. We shall give 
a construction of this morphism in w and prove this theorem in w One can 
even prove a much more general fact: 

(1.7) t~(NP;OK)~--~k(NP~;(gK) for each k>2,  

by using a result in [24] which is already appeared in Ohta [17, Th. 3.1.3]. 
This guarantees the fact that Sk(Np~;(gK)=S(N;(gK) for k->_2. However, we 
shall content ourselves with Theorem 1.1, because it is much easier to prove 
and we do not need the general fact (1.7) for our later application. 

Hereafter we identify ~~ with ~~ for all k>2,  and we 
denote this universal Hecke algebra by ~~ We shall say that a common 

eigenform f =  ~ a(n,f)q" in Jgk(F~(Npr)) of all operators r(l) is normalized if 
n = O  

f lT( l )=a(l , f ) f  (and f#:0)  for all l>  1. 

To each normalized eigenform f, one can associate a unique primitive form 
which has the same eigenvalues as f for T(l) for almost all I. The smallest 
possible level of the associated primitive form is called the conductor of f. A 
normalized eigenform f is called ordinary if one of the following two equiva- 
lent conditions are satisfied: 

(1.8 a) f i e = f ;  

(1.8b) la(p,f)lv= 1 and the level of f is divisible by p. 

At first glance, the condition (1.8b) gives an impression that primitive forms in 
Jgk(Fl(N)) with la(p,f)lp=l are not included in the ordinary forms, but in fact, 
if k>  2, one can associate to each primitive form with this property a unique 
ordinary form fo in J/gk(F1 (Np)) by the following condition 

(1.9) folr(n)=a(n,f)fo for all n prime to p. 

Indeed, fo coincides with f i e  up to the multiple of p-adic units (cf. [-12, 
Lemma 3.3]). 

As seen in [13, w one can regard naturally ~~ as an algebra over 
the Iwasawa algebra AK=(gK[[F]] of the p-profinite group F=l+pZp,  and 
therefore, A~ is equipped with a continuous F-action. One can specify a 
AK-algebra structure on ~~ so that the prime l with l = 1 m o d N p  as an 
element of F acts on ~~ through the multiplication of the Hecke 
operator 12T(l,l). Indeed, in [13, w an action of a bigger group Z = Z ;  
x ( Z / N Z )  • on ~~ is discussed, and each prime 1 outside Np as an 

element of Z acts on ~~ via the operator 12(T(l,l)). Fix a topological 
generator u of F (for example, one can choose 1 +p  as u). By definition, there is 
a tautological character ,: F~(gK[[F] ]  , which takes u to itself in A K. For  each 
character )~: F~(9~,  the element Pz=~(u)-)~(u) of A r is a prime element, and 
AK/P~A K is the maximal quotient of A K on which F acts via Z. We have a 
canonical isomorphism: AK/PzAK~--(9 K SO that ~(u) corresponds to )~(u). If X(7) 
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=~ke(7) for an integer k and a finite order character e of F, we write Pk,~ for P~, 
and when e is trivial, we write simply Pk for Pk,~. As seen in [13, Th. 3.1, 
Cor. 3.2], 

(1.10a) ~~ is free of finite rank over A~, 

(1.lOb) The morphism Pl,k induces an isomorphism of (or-algebras: 

~~176176 for each k>2,  

where we denote by ~~ the ordinary part e~k(FI(Np);(OK) of 
~k(F~(Np);(OK). Put F~=l+p~Zp and ~)~=F~(Np)c~Fo(p ~) for each positive in- 
teger r. Then we have the following generalization of (1.10b). 

Theorem 1.2. Let e be a character of finite order of F with values in (OK, and 
define a positive integer r by F~=Ker(e). Then, for each weight k> 2, the 
morphism P~,k induces an isomorphism: 

~O(N ; o - r, o 1 . (OD/Pk, j~ (N, (OK) ~-,~k (4~, ~, (OK), 

where o ~k (~r, ~; (OK) is the ordinary part e~k(q)~, e; (OK)" This isomorphism takes the 
Hecke operator T(1) in ~~ to T(1) in o 1 . ~k (~,,  e, (OK) for each integer I. 

Here are some remarks about this theorem. Without assuming that k_>_2, 
the restriction of operators of N~ to the subspace Sk(~,s of 
S(N;(gK) yields a surjective (gK-algebra homomorphism 

0 . O . O 1 . Pk,~: ~ (N,(OK)/Pk,~ (N,(~K)--'~k(q~r,~,(gK) - 

Thus the theorem shows that Pk,~ is in fact an isomorphism when k>2.  Put 
~%~=[IPk,~eAK, where the product is taken over all characters s of F/F~. Note 

e 

that mk,~ is in fact contained in A = A Q .  Then, by Theorem 1.2, one can easily 
conclude that for each k>  2 

~o (N; (oK)/a)k,, ~0 (N; (OK)----- ~0 (F~ (Np') ; (OK). 

As for this assertion, (OK is arbitrary; i.e., we do not have to assume that a 
character of F with kernel F~ has values in (Or. 

Let ~ r  denote the quotient field of A K and put r176174 
which is an artinian algebra of finite dimension over ~r -  Let ~ be a local 
ring of ~(N;K);  thus, ~ is a direct summand of r Let ~(N') be the 
projected image of ~~ in K. We shall use the terminology "prime 
divisors of AK" exclusively for prime ideals of A r of height l. For each prime 
divisor P of A~(, we denote by ~(J~)p the localization of ,4(o,~f ") at P. Define the 
free closure ~(ov/') of ~(~f'~) by the intersection N ~(3f)e in ~ ,  where P runs 

P 

over all prime divisors of A r. Then ~(Js is an algebra free of finite rank over 
A~, and the quotient ,8(~f')/~(~) is a pseudo-null At-module; namely, it has 
only finitely many elements. Thus for each k and for each character ~: F~(Or 
with Ker(~)=F~, ~(~fQ/P~,~(~") is a flat (oK-algebra. The natural projection of 
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~~ into ~ ( ~ )  induces an (gK-algebra homomorphism 

2k,~ : ~ o (N ; (9 K)/Pk,~ ~0 (N ; (9 K) ~ ~ (JU)/Pk,~ ~ (Jl). 

On the other hand, there is a well known bijection between (gK-algebra mor- 
phisms 2 of o 1 �9 r~ ~k(~r,e,6K) into f2 and ordinary forms f in S~ e; (2), which 
satisfy 

f ]h=2(h ) f  for every h~~  

Terminology. We say that an ordinary form f (or the corresponding (gK-algebra 
homomorphism 2) belongs to ~U if there is an (gK-algebra homomorphism 2' of 
~(~) /Pk ,~(J{ )  into (2 which makes the following diagram commutative: 

(1.11) ~O(N;(gK)/Pk,~ o ~.~ ~ ~ (N ; (g K)--------, ~(Jt)/Pk,,:~(~,U) 

o 1 2 
~ k ( ~ , e ;  (gK) , Q. 

By definition, every ordinary form in ~ �9 Sk(~ ~, e, (gK) belongs to some local ring of 
~(N;K).  

Corollary 1.3. Assume JT" to be primitive in the sense of [13, w and write d for 
the dimension of ~ff over ~K" Then, for each k>2  and for each character ~: 
F--.(9 K with F~=Ker(e), the (gK-algebra ~(J~ff)/Pk,~(3(() can be canonically re- 
garded as an (9r-subalgebra of o 1 . ~k(q~,e,K), and there exist exactly d ordinary 
forms in Sk(~x,e;f2) belonging to JT~ Moreover the primitive Jorm associated 
with each ordinary form belonging to ~ff has conductor divisible by N, and the 
original ordinary form is obtained by the process (1.9). Conversely, if f is an 
ordinary form in Sk(4)~,e;Q ) for k> 2 and if f is associated with a primitive 
form with conductor divisible by N via (1.9), then the local ring to which f 
belongs is a field and is unique and primitive. 

One can deduce this from Theorem 1.2 by applying the same argument in 
[13, w which proves Corollary 3.7 there. We thus omit the proof of this 
corollary. The following warning may be necessary: Put F=(~(~)/Pk,~[~(a~f')) 
|162 What we know for F is only the semi-simplicity (when k>2),  and thus 
F may not be a field. When d = l ,  F is obviously a field isomorphic to K. 
Actually, there is an example of a local ring ~" with d = 2  (cf. [14]) which is 
defined over Qp. Thus, from this example, one can find a Pk.~ SO that F is no 
longer a field. 

Let J(" be a primitive local ring of 9~(N;K) and let J ( Y )  be the integral 
closure of A K in ~ Then J ( ~ ' )  is an integrally closed noetherian domain of 
Krull dimension 2. We have the following inclusion relations: 

and ~(~V) /~( f )  is pseudo-null, and J(aT)/~(~ff) is a finite torsion AK-module, 
but not necessarily pseudo-null. We now state Corollary 1.3 in a different 
formulation. 
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Corollary 1.4. Let the notation be as in Corollary 1.3. For each k > 2 and e, the 
discrete valuation of 5a K attached to the prime divisor Pk.~ of A x is unramified in 

Proof. By Corollary 1.3, F=(Z(Jf)/Pk.,~(Jg'))| is a direct summand of 
0 1 1 . ,~k(4)r,e,;K) which annihilates all the old forms in Sk((b,,e, K). Then, by [12, 

(4.4c)], F is semisimple. Thus the localizations of ~(X)  and J(ag') at Pk.~ 
coincide, and therefore, Pk.~ is unramified in J ( J f ) .  

As a consequence of Corollary 1.4, one has 

Corollary 1.5. Assume that k > 2. To each ordinary Jbrm feSk(cbl,e;f2) belonging 
to J{; one can attach a unique C K-algebra homomorphism 

such that 2y(T(n))=a(n,f) for all n>0.  

Le t /~={(eZ~  I(P-1 = 1}. Then, the group Z is a product of F and the finite 
group G = g  x (Z/NZ) • Thus the Iwasawa algebra CK[[Z]] of Z is isomorphic 
to AK| ]. Since the Hecke algebra is an algebra over CK[[Z] ], f/(N; K) 
is decomposed accordingly to the decomposition of K [G]. Assume that all the 
characters of G have values in K. Then K[G] is a product of copies of K on 
which G acts via each character of G. This induces a decomposition of •K- 
algebras 

r ; K ) = ( ~ r  O ; K), 

where ~k runs over all characters of G and 

r 0 ; K ) = { h e r  h[g=0(g)h  for each geG}. 

Since G is naturally isomorphic to (Z/NpZ) • each character ~ of G may be 
regarded as a Dirichlet character modulo Np. 

Terminology. Let ~ be a local ring of q(N;K) and ~ be a Dirichlet character 
modulo Np. We say that ~p is the character of Y if J{" is a direct factor of 

(N, O;K). By definition, each local ring aug has a unique character tp. 

Corollary 1.6. Let ~ be a local ring of ~ (N;K) and ~ be the character of OK. 
Let e be a character of F of .finite order with F~= Ker(e). Then, if an ordinary 
form f of Sk((b~,e;f2) belongs to ~ ,  then f is an element of Sk(Fo(NP~),~bw-k). 
Furthermore, if Of" is primitive and if the restriction of eOco k to ( z / p r z )  x is 
non-trivial, then f itself is primitive. 

The first assertion is an easy consequence of Corollary 1.3 and the defini- 
tion of the character of f , ,  and the second follows from [12, Lemma 3.3]. Even 
if the restriction of e O~o k t o  ( Z / p r Z )  x is trivial, it can happen that the 
ordinary form f belonging to ~ff is primitive, but this is possible only when the 
weight k is equal to 2 by [12, Lemma 3.2]. By Corollary 1.6, it is evident that 
the character 0 of any local ring of ~(N;K) is even; i.e., ~ ( -  1)= 1. 

For each weight k > 2  and for each character e: F---,K of finite order with 
Ker(e) = F~, put 
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F = (~ (0ff)/Pk.~ ~ (iF)) | K 

as a subalgebra of/~k(tb~,5; K), and decompose 

o 1 ~k (~r, 5; K) = F @ A as an algebra direct sum. 

Define /~(F) (resp. ~(A)) by the projection of o /~k(q),,5;(gK) in F (resp. A), and 
put 

(1.12) Ck,~( ffF ) = (~(F) @ ~(A))//~~ e; (gK). 

Then, in exactly the same manner as in the proof of [13, Cor. 3.8], we can 
verify 

Corollary l.7. Let J~ff be a primitive local ring of ~t(N;K), and let cg(~ff;K) 
(resp. A/~(JF;K)) be the torsion Iwasawa module (resp. the pseudo-null module) 
associated with ~t ~ defined in [13, (3.9b)]. Then, for each finite order character 
5: F ~ K  • and for each weight k>2,  we have a canonical exact sequence: 

0 ~  Ck,~(sC)-~cd (gV ; K)/Pk,fd(Jl ; K ) ~ ( ~  ; K)/Pk,~ ~/~(X ; K)~0.  

Terminology. We say that a primitive local ring ~ of r  is defined over 
K if the algebraic closure of Qp inside 9V coincides with K. 

If 9V is defined over K, as seen in [13, Th. 3.6], J (  |  remains a field 
and gives a primitive local ring of r 1 6 2 1 7 4  for each finite 
extension M / K .  Especially, we know that cd(JT"|174 A M 
and the degree of the local ring over ~K does not change by scalar extension 
of ground fields over a field of definition. 

w 2. Galois representations 

Let N be a positive integer prime to p. To each primitive form f of 
Sk(Fo(Npr),4J), one can attach a simple representation n = ~ ( f )  of the absolute 
Galois group ~ = Gal(0/Q) into GL2(O ), which is characterized by the follow- 
ing properties: 

(2.1a) ~ ( f )  is unramified outside Np;  

(2.1 b) Let a t be the Frobenius element of  ffJ for each prime l outside N p. Then 
we have that 

det(1 - ~t(az) X ) = 1 - a(l,J) X + r162 k- 1 X 2. 

When k = 2, the existence of ~(f)  follows from the Eichler-Shimura congruence 
relation [25, Th. 7.9]. More generally, this is shown by Deligne [4J for each 
weight k > 2  and by Deligne and Serre [5] for k=  1. A proof of the simplicity 
of g( f )  can be found in Ribet [18]. 

Let 3(  be a primitive local ring of ~t(N;K) and let J(~ff) be the integral 
closure of A r in ~ .  
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Terminology. We say that a representation ~ of 15 into G L 2 ( Y  ) is continuous if 

(i) ~z can be realized on a two dimensional ~ff-vector space V with a J(Y{')- 
lattice L (in the sense of [1, VII.4.1]) stable under t5, 

(ii) ~: 15--*Autj(x)(L ) is continuous, where Autj ix)(L ) is equipped with the 
topology of the projective limit 

Autj~x)(L) = l im Aut (L/m r L) 
J 

for the maximal ideal nt of ~r 

We say a prime ideal P of J(Yd) a prime divisor if P is of height 1. For 
each prime divisor P of J ( ~ ) ,  the localization J (Yl)p  of J ( c g )  at P becomes 
a discrete valuation ring, and hence, the localization Lp=L|  is free 
of rank 2 over or Let K(P) be the residue field or Thus ~ induces 
a representation 

~: 15~GLz(J(J~)p) .  

The reduction ~ m o d P  is defined to be the semi-simplification of the com- 
bination of rc with the reduction map: G L z ( J ( Y ) p ) ~ G L 2 ( K ( P )  ). The re- 
duction ~ m o d P  does not depend on the choice of the lattice L. If ~ m o d P  is 
simple, then n m o d P  coincides with the combination of ~ and the reduction 
map. 

Let q~ be the character of : f  and let e: P~g2 be a character of finite order 
with Ker(e)=F~. Let feSk(Fo(NPr),eOc~ k) be an ordinary form belonging to X. 
We denote by ~(f),  with an abuse of notation, the Galois representation as 
above associated with the primitive form corresponding to f via (1.9). By 
Corollary 1.5, one can attach to f a non-trivial (gr-algebra homomorphism 2 s 
of J (Yf )  into O. Put 

P~=Ker(2i) and ~(o~ff)=Spec(~r 

Then Pr is a f2-valued point of X(oul); i.e., PceSf(~)(g2). The subset of ~(o~ff)(f2) 
of the points obtained from ordinary forms is dense under the Zariski topology 
on 5~ (~ff)(f2). 

Theorem 2.1. Let Off be a primitive local ring of r  Then there exists a 
continuous representation of 15 into GLz(Jf" ) characterized by the following 
properties: 

(2.2a) ~ is simple; 

(2.2b) n is unramified outside Np; 

(2.2c) For each ordinary .form f of weight k > 2 belonging to ~ ,  the reduction 
~ m o d P  I is equivalent to r~(f) as a Galois representation into GLE(Y2). 

Here are some remarks about the theorem, whose proof will be given in w 
Firstly, the uniqueness of rc is obvious since the point set {PI} for ordinary 
forms belonging to f is Zariski dense in ~r(oU)(O). Secondly, if we denote by 
t(l) and t(l,l) for the images of T(I) and T(l,l) in ~ ,  then the assertion (2.2c) 
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shows that for the Frobenius element a t at each prime l outside Np, we have 

det(1 - rr (crl) X) = 1 - t(l) X + It(l, 1) X 2. 

Let F~ be the unique Zp-extension of Q unramified outside p. Then, by class 
field theory, F is canonically identified with Gal(F~,/Q) via the cyclotomic 
character. Thus, one may regard the tautological character t: F ~ A  K as a 
character of ffL By the definition of the character ~ of s((; one has that 

lt(l,l)=@)~ l(a~)t(ai)eAK for each l, 

where Z: ~-~Z~ is the cyclotomic character of (~ defined by Z(al)=l and ~: 
ffi~(9~ is the finite order character whose value at a z is given by O(l). Thus 
det(g) coincides with the character ~ Z- 1. t. 

As a final remark, we add that the construction of g will be done without 
using any result of Deligne [4]. Thus our proof gives a different method for 
constructing 7z(f) as in (2.1) for ordinary forms. This method of constructing 
Galois representations goes back to the paper of Shimura [24], where he 
showed the existence of g ( f )  in a weaker form than (2.1a, b) but even for 
modular forms for certain quaternion algebras over totally real fields. Recently, 
by combining Shimura's idea with the theory of etale cohomology, Ohta [17] 
has shown the conditions (2.1) for the Galois representations of Shimura. 

When the local ring 3(  comes from an imaginary quadratic field as de- 
scribed in [13, w there is another and a much simpler construction of the 
representation as in Theorem 2.1. We shall explain this here. We begin by 
recalling the construction of the local ring. Let M be an imaginary quadratic 
field and denote by R its ring of algebraic integers. Assume that 

(2.3) the fixed prime p is decomposed into the product of two distinct prime 
ideals in the ring R. 

We specify one of the factors of p in R by 

p = { x E R I I x l p < l } .  

Fix an ideal c of R prime to p. For  each prime ideal 1 of R, put 

RI=li_mmR/VR, UI=R, • 
n 

UI(c ) = {x~ U lix = 1 mod cR1}, 

u(c)= H u,(c). 

For the infinite place ~ of M, let M~---C be the completion of M at ~ .  We 
define a topological group W(c) by 

W ( c ) = M ~ / M  • M s U(c), 

where M~ is the idele group of M and the closure M • M s U(c) is taken in the 
topological group M~. The natural inclusion of Z into R induces an isomor- 
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(2.4a) 

and 

(2.4b) 

phism of F onto U~(p), and thus, we have an embedding of F into W(c). Let us 
fix a maximal p-pro finite torsion free subgroup Wo(c ) of W(c) containing F, and 
let W~(c) be the maximal finite subgroup of W(c). 

Lemma 2.2. Wo(c ) is independent of c. More precisely, for any ideals c and c' 
prime to p, there is an isomorphism of p-profinite groups between Wo(c ) and 
Wo(c' ) which induces the identity on F. Especially, if the class number of M is 
prime to p, then Wo(r ) coincides with E 

Proof By construction, we have a natural surjection: W(c)-,W(1). The kernel 
of this morphism is a finite group, and therefore, it induces an isomorphism of 
Wo(c ) onto Wo(1), which shows the first assertion. The index [Wo(1):F ] divides 
the class number of M; hence the second assertion follows. 

Hereafter, we identify W0(c ) with WoO ) and write it as W o. For each divisor 
c' of c, there is a natural group homomorphism of Wt(c ) onto W~(c'). A 
character Z of Wt(c ) is said to be primitive if Z is not a pull-back of any 
character of Wt(c' ) for any proper divisor c' of c. 

Let K be a finite extension of Qv and by C(W(c);K), we denote the Banach 
space of all continuous functions on W(c) with values in K. Let I be the set 
consisting of all ideals of R prime to pc. For each a~I, take x=(xOEM a such 
that a = ~ x l R  ~ in M and x l = l  for llpc. Then X - 1  mod U(c)M • M~, is uniquely 

1 

determined by ael. This correspondence gives an inclusion i: I~W(c).  Hereaf- 
ter, by this isomorphism, we regard I as a subset of W(c). Then we define a 
linear form 

O: C(W(c);K)---,S(Nr(c)d;K) 
by 

0(4') = ~ 4'(a)q N'("', 
IIEI 

where Nr(a) denotes the norm of the ideal a and - d  is the discriminant of the 
extension M/Q. Let the Iwasawa algebra Zv[[W(c)] ] act on C(W(c); K) via the 
translation of the elements of W(c); i.e., (Olw)(w')=O(ww') for OsC(W(c);K). 
For each prime ideal 1 in I, let l denote the prime number in Z divisible by I. 
Then, we have that 

O(4')lr(1)= [O(r ifif Nl=ll'r(1) =14=il 2 and 1, i-eI, 

[0(4,11) if l= l  2, or I=I1, 14=1 and 1r 

O(4')[z=zO(4'lz) for z~E 

This shows that 0 induces an algebra homomorphism: 

(2.5) q~: A~ (gK)--*(PK[[W(c)] ]. 

As seen in [13, Th. 7.1] and [28, Th. 4.3], ~o is generically surjective (namely, it 
becomes surjective after tensoring ~K)' We know that 

(~,< [ [W(c) ] ]  ~_ (~,< [ [  % ] ]  | [w,(c)], 
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and each primitive character of Wt(c) with valued in K determines a unique 
irreducible component of (gK[[W(c)] ] on which Wt(c ) acts via g. It is shown by 
Weil (e.g. [11, w 1]) that there is a bijection between Hecke (ideal) characters 
with values in C satisfying 

2((a))=a J if aeK and a = l m o d c p f o r a n i n t e g e r j  

and continuous characters ~" of W(c) with values in f2 satisfying 

2(a)=a ~ for a~Up(~)(~-F). 

If ~" corresponds to 2, the values of 2 and ~, coincide on 1. 
Fix a Hecke character 2 such that 2((a))=a if a - l m o d p  (such 2 exists 

because p>5), and denote by 21 the restriction to W o of the corresponding f2- 
valued character. Via the natural surjection: W(c)~W(1), we may regard 21 as 
a character of W(c). Define, for each 0 < j ~ Z ,  a character 2 /  W(c)~f2 by 2j(w) 
= (21(w)) j. Then (2.5) shows the following refinement of [13, Th. 7.11: 

Proposition 2.3. For each primitive character Z of W~(c) with values in K, there is 
a unique primitive local ring ~ of r characterized by the following 
properties: 

(2.6a) The morphism (2.5) induces an isomorphism: 

~ - ~  (~KEEW0]] | 

(2.6b) For each character of finite order ~: Wo--,f2 with F,=Fc~Ker(e) and for 
each non-negative integer j, the theta series 0(eZ2j) in S j+ l(Fl (N r(c)dp')) belongs 
to K. 

Now we shall construct the representation g as in Theorem 2.1 for the local 
ring ~,~ given in Proposition 2.3. By definition, there is a tautological character 

'P: Wo--,(~K [[Wo]] 

given by cb(w)=w~(gK[[Wo]] for w~W o. Since )~ has values in O K, we can 
define another character ~, ~: W(c)--*(9~ [[Wo]] by Z" cb(w) 
=21(Wo)-lZ(w,)~(Wo) where we write w=(Wo, Wt)~W(c ) with woeW o and 
wteWt(c ). Let e: Wo-*K be a character of finite order. Then for each integer j, 
the ideal pj,, of (_gK[[Wo] ] generated by cb(w)-e2j(w) for w e W  o is a prime 
divisor of (r over the prime element Pj,~, of A~ for e '=elr .  By defini- 
tion, Z.~bmodpj+l,~ coincides with e)~)~ as a character of W(c). By class field 
theory, the group M~/M • M~ is isomorphic to the Galois group over M of 
the maximal abelian extension M,b in 0 of M. Thus ~. cb can be regarded as a 
character of the Galois group 15M= Gal(()/M). Let g be the induced represen- 
tation of )~. ~ to 15= Gal(I)/Q); then, we have a two dimensional representa- 
tion 

re: 15~GLz(60K [[Wo]]). 

By definition, rc modpi  + ~,, gives the induced representation of e)(2j from (5 M to 
(5. Note that the representation 1t(0(e)~2~)) as in (2.1) is nothing but the induced 
representation of e)~2j from 15M to 15. Thus we have 
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Theorem2.4. The induced representation of Z.qo from (5~t to (5 gives the 
representation 7z as in (2.2) attached to the local ring ~r of ~(Nr(c)d;K) given in 
Proposition 2.3. 

Here are some remarks about this theorem: Firstly, the induced representa- 
tion of X" ~ to (5 is simple, because the inner automorphism of (5 induced by 
complex conjugation changes the character Z" 4. Secondly, the construction of 
the induced representation can be carried out even for primes p = 2  or 3 with 
minor modification. 

w 3. A result on cohomology groups of modular curves 

Fix a positive integer N prime to p. It is well known (e.g. [9, p. 240]) that the 
group Ft(Np" ) has no torsion if Np'>3. We always consider F~(Np r) for 
positive r with p > 5 ;  so, this condition is automatically satisfied in our case. 
Put, for the upper half complex plane .~ 

Y, = 8/F, (N p') 

as a complex manifold, and let X, denote its smooth compactification. We 
consider usual sheaf cohomology groups 

Hi(yr, m) and Hi(Xr, m) 

of each constant sheaf M of Z-modules. We can identify canonically HI(X, ,R)  
with the de Rham cohomology group on X, with coefficients in R Then, the 
correspondence: f~---,Re(fdz) gives an R-linear isomorphism 

(3.1) S 2 (/] (N p')) ~- H 1 (X~, R). 

As given in Shimura [25, Chap. 8], one can define a natural action of Hecke 
operators T(I) and T(I,I) on HI(Xr, M) and H I ( y , M )  (for details, see the 
following section). Then, the morphism (3.1) is compatible with the action of 
Hecke operators on both sides. It is well known that 

HI(X,,M)=HA(X,,Z)@z M and H'(Y .M)=H'(Y , ,Z) |  

Thus, the Hecke algebra ~z(I](Npr);Z) acts on H~(X~,Z) because of (3.1), and 
therefore, ~2(F~(Nff);Zfl acts on Ha(Xr, Qp), HI(X~,Zp) and Hl(Xr, Tp) for Tp 
= Qp/Zp. If U denotes either of X. or Y. we have 

(3.2) H'(U, Tfl~-H'(U, Zp)| Tp~-H'(U, Qp)/H~(U, Zfl. 

We simply write 
~f~ = H1 (X~, Tp) and W~ = H~ (Y,, Tp). 

By (3.2), ~ and ~ are p-divisible modules and their Zp-corank are finite. Thus 
End(~U~) and End(W~) are free of finite rank over Zp, and therefore, we can 
define the idempotent attached to T(p) in E n d ( ~ )  and End(W~) by the p-adic 
limit 

G = lim T(p) p'"O,'- 1) 
n ~ o o  
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for a suitable positive integer t. We shall define the ordinary parts of ~f) and 
~//~ by 

~ o  = e~ ~ and ~q/~o = e~ #~. 

Naturally, ,r is a module over d~ Since Yo(NP ~) normalizes 
FI(Np ~) and the quotient Fo(Npr)/Fl(Np ~) is isomorphic to (Z/Np~Z) • this 
finite group acts on ~ o  and ~r We specify this isomorphism by 

Fo(Np")~ (~ bd)v--~dmodNp~(Z/NprZ)• 

and we take the limit: 

r r r r 

and 
- -  Z p  Z=lie~m(Z/NprZ )• ~ • x (Z /NZ )  • 

r 

where the first four injective limits are taken with respect to the restriction 
morphisms of cohomology groups. Then, the topological group Z naturally 
acts on ~ f-0, ~ and ~/~o. We regard F as a subgroup of Z. Then these 
modules become continuous modules over the Iwasawa algebra A = Zp[ [F] ]  if 
we equip with them the discrete topology. Let V ~ and W ~ be the Pontryagin 
dual modules of •o and fg-0; i.e., 

V~176  and W~176 

Then V ~ and W ~ are compact A-modules. 

Theorem 3.1. Let F~ denote the subgroup 1 +prZp of E Then we have 
(i) For each integer r>0 ,  the restriction morphism of cohomology groups 

induces an isomorphism of the module ~ o  (resp. ~/r onto the module (~.o)i; 
(resp. (~o)rr)  of all F~-invariants of ~o  (resp. ~r 

(ii) The A-modules V ~ and W ~ are free of finite rank over A. 
(iii) ranka(V~ = 2- ranka( /9(N;  Zp)) and 

ranka(W~176 �89 ~, ~o(t)~o(N/t), 
0 < t i N  

where ~p denotes the Euler function and t runs over all divisor of N. 

As will become clear in the proof of Theorem 3.1, which will be given in w 
the restriction morphism of ~ into ~ has fairly big kernel, and thus, the 
assertion similar to Theorem 3.1 for the whole ~/U is false. 

w 4. Parabolic cohomology 

In this and next section, we gather some results on the cohomology groups of 
F~(Npr), which play a central role in the proof of Theorem 3.1. Let GLz(R ) act 
on the upper half complex plane .~ in the following manner: For ~ G L z ( R )  
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with det(~)>0, we let e act on .~ through the linear fractional transformation, 

and f~ e=(10 _01) we let ~: act ~ -~ bY ~(z)=-Z.  Then this gives a well 

defined (real analytic) action of GLz(R ) on .~. Let z: M2(R)--*Mz(R ) be the 
main involution defined by e+cd=Tr(c0,  and let A be a semi-group in 
GL2(Q). Define another semi-group A' by the image of A under 1. Let M be a 
Z-module with left A'-action and ~b be a congruence subgroup of SL2(Z ) 
contained in A and A'. Thus M becomes a left ~b-module. We can define the 
abstract Hecke ring R(qh A) by giving the multiplication law as in [25, 3.1] on 
the free Z-module generated by double cosets q~eq~ for all eeA. We shall 
consider the usual cohomology group H 1 (q), M) and the parabolic cohomology 
group H~(eb, M) defined as follows: Let U be any unipotent subgroup of 
SL2(Q ) and put cbv= {_+ 1} U ~ b .  Then we have the restriction map 

resv: H 1 fib, M)--~H 1 (~v, M). 
We shall define 

(4.1 a) H~(qh M)= {cell I (q~, M)I resv(c)=0 for all unipotent subgroups U}. 

Let U~ be the standard unipotent subgroup {(10 --J~)ueQt'- Then, every 

unipotent subgroup U of SL2(Q) is written as ~ U~e -1 with eeSL/(Z). The 
correspondence: u~--,c~(oo)ePl(Q)=QU{oo} gives a bijection between uni- 
potent subgroups and cusps for SL2(Z); so, for each cusp sEPI(Q), we may 
write U~ for the corresponding unipotent subgroup. We write q~s for q~v~. 
Another description of q~s is given by 

4's= {~e4~l~(s)= s}. 

Let C(45) be a representative set for the q~-equivalence classes of cusps, which is 
a finite set. Then for each cusp sePl(Q), we can find 7e4~ and soeC(eb ) so that 
?,~),-~ =4~o. Thus it is sufficient to consider the restriction map resv, only for 
cusps in C(45) in order to define the parabolic cohomology group. This sim- 
plified definition gives an exact sequence: 

(4.1b) O--*H~(Cb, M)~HI(cb, M)~  @ HI(~s,M), 
sEC(q~) 

where the last arrow sends each cohomology class to the sum of its restriction 
to q~. Put G~(4~,M)= @ H~(eb~,M). We shall define the action of the abstract 

seC(~) 

Hecke ring R(cb, A) on H~(dl),M), H~(cl),M) and G~(cb, M) by following [25, 
8.3]. Let u: q~--*M be a 1-cocycle; thus, u satisfies the relation: u(e/~)=eu(/~) 
+u(e) for all e, /3e~b. Let q~' be another congruence subgroup of SLz(Z ) 
contained in A and A'. We shall define an operator [~bc~4)']: 
Ha(eb, M)~H~(cb',M) for each double coset 4~c~q~' in A. Decompose the double 
coset 4~eq~' into a disjoint union of left cosets ~ c q .  Then the number of left 

cosets in ~e4~' is finite and for each 7e~b', by definition we can find 7~e~b so 
that 7 ~ = ~  for some c~. Then we can define a map v: cb'~M by v(V) 
=~c(~. u(v~). One can check that v is a 1-cocycle, and the cohomology class of 

i 
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v depends only on the cohomology  class of u. Thus this correspondence:  u~-~v 
gives a morphism 

[ ~ q ~ ' ]  : H'(cb, M)--*H'(cb',M). 

By definition, [~c~(b'] takes parabolic cocycles into themselves and defines an 
action of [~c~4~'] on H~(cb, M). By applying this argument to the special case: 
�9 = ~ ' ,  the abstract Hecke ring R(~,A) acts on HI(O,M) and H~(cb, M). Simi- 
larly, we can define an opera tor  

[q~ c~ qr : H~176 

by putt ing x][Cbc(rb']=~c(i.x for each 4~-invariant xeM. Via this action, 
i 

R(~,A) acts on Hi(q),M) for i=0 ,  1 functorially. We shall now introduce an 
action of  R(q~,A) on Gi(~,M). If the number  of left ~bt-cosets in 4~ta~' S for 
teC(~) and seC(~') is finite, we can define a morphism 

[q~tc~(b's]: Hi(q)t,M)~H'(qYs, M) for i = 0 , 1  

in the same manner  as above. Fix s~ C(~')  and write, as disjoint unions, 

(4.2a) q~c~ '=?q~f l ,~ ; , .  

(4.2b) q~fli~'s= U4~flircj with rcfi~ '  s for each fli in (4.2a). 
J 

Lemma4 .1 .  Let t=fl i (s  ) in pa(Q). Then the union Q).~tflirtj coincides with 
3 

�9 tfliq)'s and is disjoint. Especially, the number of left cosets in cI)tfli~' ~ is finite. 

Proof. For  each 6~(btfli~' ~, write 6=6tfl~6 ~ with 6t~(b ~ and dise(b' s. Since ~/?iq~'s 
= U 4)fl~rcj, we can find j and y ~  so that 6=yfl~rcj. Then  we know that 

J 

and thus ~-~ 6t(t)=t. This shows that ;~4~ t, and we have 

J 

Since q~t fi~ ~t~ ~ (b/3i ~t~, it is disjoint. 
Now we are ready to introduce a morphism 

[4~c~qr G~(rb, M)~G'(cb',M) for i=0 ,1 .  

For  a given smC(q)'), decompose  ~ c ~ '  as in (4.2a). By definition, we can find 
y~(b so that yfli(s)m C(~). Thus, we may  assume that fl~(s)~ C(~) by substituting 
Yfli for fl~ if necessary. Then, by L e m m a  4.1, we can define a morphism 

[~tfl,~'~]: H'(q~t,M)~H'(~'s,M ) for t=fl~(s). 

For  ceGi(q~,M) (resp. Gi(~' ,M)),  let us write c t (resp. c~) for the component  of c 
in Hi(~t, M)(resp. Hi(~'~, M)). Then, we shall define 

(4.3) (cl [ 4  ~ qY ]).~ = ~ ca,(~)l [cI)a,(s)fli ~'] 
i 
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Proposition 4.2. The operator defined by (4.3) depends only on the double coset 
~cb' ,  and via this action, the module GI(~,M) becomes a R(cI),A)-module. 
Furthermore, the exact sequence (4.1b) gives that of R(cb, A)-modules. 

Proof. We shall show only that the operator (4.3) is well defined, since the 
other assertions follow from the definition and the result in [25, 3.1]. If 
flEcbflitb's, then we can write fl=Yfli];s with 7 s ~  and Yse~'s. Moreover, if t=fl(s) 
=fli(s), then t=[3(s)=vfliTs(s)=Tfli(s)=v(t), which shows that 7e4~ t and ~tfl~', 
=~fli~'~. This shows that the operator [q~c~'] does not depend on the choice 
of fli and is determined only by the double coset 4~ e q~'. 

Now we shall relate the cohomology groups Ht(cI),M) and H1p(tP, M) with 
those of certain sheaves on 4~\~. Assume that 

(4.4) �9 has no non-trivial finite subgroup 

Later, we will be chiefly concerned with the groups F~(Np ~) with p >5  and 
r__> 1, and this condition is automatically satisfied in this case. Write Y for the 
complex (open) manifold 4~\~. We give the A'-module M the discrete topology 
and define F(M) = cb\(~ x M). Then F(M) is an 6tale covering of Y, and we can 
consider the sheaf of continuous sections of F(M) over Y, which we denote by 
the same symbol F(M). When we have to indicate that F(M) is a sheaf on Y, 
we write F(M)Iy instead of F(M). Then, we consider the usual cohomology 
group H 1(Y,F(M)) and that of compact support HI(y,F(M)). We shall define 
the parabolic (sheaf) cohomology group H~(Y,,F(M)) by the natural image of 
H~(Y,F(M)) in HI(Y,F(M)). Then, there are well known isomorphisms (e.g. [9, 
Prop. 1.1]), which make the following diagram commutative: 

(4.5) H' (Y, F(M))~- H ~ (q~, M) 

H~(Y, F (M)) ~ H~ (cb, M). 

We now recall the action of double cosets on sheaf cohomology groups (e.g. 
[9, w Let q~' be another congruence subgroup of SL2(Z) satisfying (4.4) and 
contained in A and A'. Put for each e tA,  

and 
Y'= ~ ' \ ~ ,  Y~ = 45"\.~, Y~ = ~,\ .~.  

Then the map e: .q'oxM--*~xM defined by c~(z,v)=(e-l(z),e'v) induces a 
morphism [e]: F(M)Iy,---,F(M)Iy,, which gives rise to a morphism [ct]: 
Hi(y',F(M))--,Hi(Y,,F(M)). Since YJY' is an etale covering, we have the trace 
map 

Trr , / r  : H'(Y,, F(M))---,H'(Y', F(M)) 

and the restriction map 

resr~/y: H'(Y, F(M))~ H'(Y', F(M)). 
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We shall define the action of double coset 

[qb m qb'] : Hi(y,F(M))~H'(Y',F(M)) 
by Trr~/r,o [~]oresr~/r. In exactly the same manner, we define the action of 
[q~c~'] on HIc(Y,F(M)) and HI(Y,F(M)). This action is compatible with the 
isomorphism (4.5). 

Let us now give some examples of modules M, which will be dealt with 
later. Firstly, we consider the column vector space Ln(Z)=Z "+1 for each non- 
negative integer n. Let t(x, y) be a variable vector in L 1 (Z) and define 

L,,(Z). 

We let M2(Z ) act on Ln(Z ) through the symmetric n-th tensor representation 
explicitly specified by r 

For any Z-module A, put L,(A)=Ln(Z)| which is equipped with the 
natural left action of M2(Z ). For 4~=Fl(Npr), we take M2(Z)c~GL2(Q) as the 
semi-group A. Then the Hecke ring R(~, A) acts on the cohomology groups for 
L,(A). For each prime l, the Hecke operators T(l) and T(1,1) on the cohomolo- 
gy groups are given by the action of double cosets: 

(4.6 a) T(I)= [4~ ( ;  ~)4~] 

T(l'l)={~ ~hyt~] ifif llNff ,l"~Nff ' 

(; *t where a t is an element of SL2(Z ) such that a z-  modNp  r. We define the 
operator T(1, n) for positive integer n by 1 

(4.6 b) T(1,n)= [ ~  (10 ~ ) ~ ] .  

Next, we shall introduce another module. Let p be the fixed prime and N be a 
positive integer prime to p. For integers r>_s>0, put 

~ : = { ( :  bd)ESL2(Z)c=OmodNpr, a=d-lmodNpS } 

A : = { ( :  bd)~M2(Z)ad-bc>O,c=-OmodNpr, a-lmodNpS }. 
For each integer j, let (A~)' act on Z/prZ by 
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Write this (A~)'-module by Z/prZ(j). Then the Hecke ring R(q)~,A~) acts on the 
cohomology groups for this module. Especially, we can define Hecke oper- 
ators T(l), T(l,l) and T(1,n) for the cohomology groups of Z/prZ(j) by (4.6a, 
b). For our later use, we shall cite a result of [25, Chap. 3]: 

Lemma 4.3. 

(i) We have an equality of double cosets: ~b: ( ;  O,,)qi:=~b: (~ O ) q):_,, .for 

each r, s and m satisfying r - s > m > O  and s> 1; especially, 

(ii) Let r, s and m be as above. Take %eMz(Z) for each ueZ  so that 

% - ( ;  pUm) modNpm"'"'~'  and det(c~,)=p". 

Then we have a disjoint decomposition" 

ebr ~ -  ~ cb r%. 
u m o d  p m 

and 

(iii) For each prime l, we have disjoint decompositions: 

if l,(Np, 

if lINp, 

cb~lal~=qg~ltr t if llNp, 

a t is an element of SL2(Z ) satisfying ,71==- (;  ~ )modNp ' .  where 

Take 6eSL2(Z ) such that 6==-( 0 !~modpZr and 6 - = l m o d N  2. Then (iv) 
we have a disjoint decomposition: \ - 1  O! 

0(; 
6~br= U ~br6 

u m o d p  r 

The assertions (i), (ii) and (iii) follow from [-25, 3.3] by a straight forward 
calculation, and (iv) is well known (e.g. [10, p. 235]); so, we omit the proof. 

We now relate the cohomology groups for L,(Z/p'Z) and Z/p'Z(n). Define 
maps 

it: L,(Z/prZ)--*Z/p"Z(n) and Jr: (Z/PrZ)(-n)--*L,(Z/P rZ) 

by ir('(x o .... ,x , ) )=x ,  and jr(x)=t(x,O . . . . .  0). We write simply 4~ r and A r for ~b ~ 
and A ~ Then i r and ,Jr are morphisms of q~r-modules, and thus, they covariantly 
induce morphism of cohomology groups 
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(it) , : H 1 (49, L, ( Z/f f  Z))~ H 1 ( q)r, ZIP r Z (n)), 

(Jr). : HI(~r,Z/PrZ(-n))-+HI(~r,L,(Z/PrZ)), 

which also induce morphism of parabolic cohomology groups. Next, we choose 

z~M2(Z) such that det(z)=ff,  z -  r modp/r  and r--  modN 2. 
Then, z~rz-1 =4~r and 

z C bd) z-l=- (d* : ) m o d p '  for (~ bd)e~ ~. 

Let ~o denote the isomorphism of Z-modules: Z / f f Z ( n ) ~ Z / f f Z ( - n )  which 
induces the identity to the underlying Z-module Z/prZ. For each 1-cocycle u: 
4 ~ Z / f f Z ( n ) ,  define a map ul[z]: q ) ~ Z / f f Z ( - n )  by u][z](ct)=q)(u(zctz-1)). 
Then u l[z] is a 1-cocycle, and this correspondence induces an isomorphism: 

[z]: H l ( ~ , Z / f f  Z(n))~- Hl(cb, Z/prZ(-n)), 

which induces an isomorphism on the parabolic cohomology subgroup. 

Definition. Now we define important morphisms 

~ :  H ~ ( ~ ,  Z / p  r Z(n))--, H ~ (r L.(Z/p ~ Z)), 

t~: HI(~r, L,(Z/ff  Z))~ H'(cI), Z/prZ(n)) 

by gr=[~br6~br]o(]r),o[z] and Zr=(ir),, where 6 is an element of SL2(Z) 
defined in Lemma 4.3, (iv). 

Of course, the morphisms ~r and z r respect the parabolic cohomology 
subgroup. We now state the following generalization of [10, Th. 3.2]: 

Theorem 4.4. We have the following identity for each positive integer r: 

7z~o l~= T(1,ff) on Hl(cb, L,(Z/ffZ)), 

Go ~ =  T(1,ff) on HI(~,Z/ f fZ(n)) .  
Moreover, t, is equivariant under the action of T(1) and T(1,1) for all primes l. 

Proof. Firstly, we shall show the equivariance of z, under the Hecke operators. 
Write T for either of T(l) or T(l,l). By Lemma 4.3, we can decompose T as a 
disjoint union of left cosets: 

T=?~b~c~ i with ~i-(10 ~)modpL 

Thus, on L,(Z/prZ)=(Z/prZ) "+1, cd i acts via a matrix of the form: 

, eM,+l(Z/ffZ).  



Galois representations into GL2(Ze[[X]] ) attached to ordinary cusp forms 569 

Thus, for each l-cocycle u :  ~r---~Ln(Z/prZ), we know that 

id(ul Y)(7)) = i , (~  ~'~. u(),i) ) = Z i,(u(Ti)) = (i~ o u [ T)(7) 
i i 

(7 e 4~), 

where ~ 6 ~ r  is defined by the relation e~7=7~7j for some j. Thus, we have the 
desired equivariance of  tr. 

Next, we shall prove the relation: nrOt,=T(1,p~) .  For  each 1-cocycle u" 
4)r~L,,(Z/p~Z),  we have by definition 

pr-- 1 

(TZr~ /r  ( / ' / ) ) ( ) ' ) =  Z (~'a'.jr(ir(U('CTa "c - l ) ) )  for y e ~ b , ,  
a = O  

where 6 . : 3  ( ;  ; ) f o r  6 as in L e m m a 4 . 3 ,  (iv), and yoe~r for each a is defined 

by 3 .7=7~6  b for some b with O < b < p  ~. Note  that 

"c'. x = t(x,, 0 . . . . .  O) = j~(i,(x)) 

for x = t ( x  o . . . . .  x , ) e L , ( Z / p ' Z ) .  Then, we know from this formula that 

p ' -  1 

((~r o ~,)(U))(?')= ~ (~ . ) '  U(~V~ 1). 
a = 0  

We write % for r6o and 7'o for rT, r -~. Then we see that 

(; ~ % - mod  N p', p" 

Then, Lemma 4.3(ii) shows that 

r ~t d e t ( % ) = p  and O~a])= jaO~b 

pr_ 1 
T(1,pr)= ~ qbr~ o (disjoint), 

a = 0  

and we have the identity: nrOl~=T(1 ,p  ~) on HI(c l ) , ,L , (Z / f fZ ) ) .  Finally, we 
shall show that  trO n r = T(1,pr) on H 1 ( ~ ,  Z /p 'Z(n) ) .  For  di a as above, we know 

that ,5' a -  m o d y ;  therefore, b'a acts on L. (Z /p~Z)  via a matrix of the 

following form : 

( _ 1 ) .  -~ 
6 M , +  l (Z /p  ~ Z). 

Thus, for x e Z / p ' Z ,  we know that ir(b',,j,(x))=x. 
For  each 1-cocycle u: cI) / - ,Z/p 'Z(n) ,  a simple calculation shows that for 

p r  1 

((tro n,)(u))(7 ) = ~ ir(6 ,j,(u(y'o))) = ~,u(7',) = (u] T(1, P'))(7)" 
a = O  a 

This finishes the proof. 
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Let  A be ei ther  of Z/prZ or Z v. Let  e be the idempo ten t  a t tached  to T(p) 
on Ha(~r,L,(A)) and Hl(q)r,Z/prZ(n)) (in the sense of [10, p. 236]). 

Coro l la ry  4.5. We have isomorphisms for each r > s > 0: 

res: eHI(cb~,L,(A))~_eHX(FI(NpS),L,(A)), 

res: eHI(~I,L,(A))~-eHI(~r,L,(A)) ,  

l~ ores : e H 1 (cb 1, L, (Z/p" Z)) ~- e H 1 (q), Z/pr Z (n)), 

where A denotes either of Z/prZ or Z v. These assertions also hold for parabolic 
cohomology groups. 

Proof Note  that  T (1 ,p r )=  T(p) r on these cohomology  groups.  Thus, as seen in 
[10, p. 236], we can find a posi t ive integer  m so tha t  e =  l im T(1,pr) vm"(vm- 1) on 
these c ohomology  groups.  ,~o~ 

By Theo rem 4.4, we have a commuta t ive  d i ag ram:  

H'  ( ~ ,  L . ( Z / p ~ Z ) ) - -  '~ , H 1 ( ~ ,  Z/p ~ Z(n)) 

n~(4)r,  L . ( Z / p  ~ Z))-- ,r , n l(~,r, Z/pr  Z(n)). 

This yields ano the r  one:  

eH~(~r,L,(Z/p~Z)) '~ -~ eHl(4)~, Z/p'Z(n)) 

e H ~ ( ~ ,  L. (Z/ff  Z)) - - ~  e H ~ (4~, Z/p ~ Z (n)). 

Since T(1, pr) gives a u t o m o r p h i s m s  on e H 1 (~r, L,(Z/P ~ Z)) and 
eHl(~ , ,  Z/p~Z(n)), we ob ta in  the desired i somorph i sm 

tr: eHl(q)~, L,(Z/p~Z)) ~-eHl(cl)~, Z/prZ(n)). 

By L e m m a  4.3 (i) and  (ii), we have a commuta t i ve  d i ag ram:  

H a (I'~ (Np~), L , ( A ) ) ~  H t(cl)~, L,(A)) / "  
T(1,pr-S) ~ T(1,pr s) 

H 1 (F~ (gp~), L , ( A ) ) - - ~  H ~ (q~, L,(A)). 

In the same manne r  as above,  this yields an i s o m o r p h i s m  

res: eH~(F~(Np~),L.(A))~-eHt(~;L,(A)) for s>O.  

Similar ly,  one has 
res: eHI(el)I,L.(A))~_eHI(4)~,L,(A)). 
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This proves the result for the usual cohomology groups. All the arguments as 
above still hold for parabolic cohomology groups and thus the lemma follows. 

Let e o be the idempotent attached to T(p) on HI(F~(N),L,(Zp)). (Note that 
e and e o are different, since T(p) of level N and that of level N p  r with r > 1 are 
not equal). 

Lemma 4.6. Let 49~=Fl(NpS)C~Fo(p r) .for r>s>O,  and let 49 be either of  49~ or 
FI (N p r) with r > 1. Then, the modules eoHl(Fa (N), L,(Zp)) and e Hl  (49,L,(Zp)) are 
Zp-free for each n > O. 

Proof. Firstly, we prove the lemma for eHl(49,L,(Zr)). The cohomology se- 
quence coming from the exact sequence: O-*L,(Zp)-~L,(Qp)~L,(Tp)~O yields 
another exact sequence: 

0 = H~ L,(Q,,))~H~ L,(Tp))~ H ~ (49, Ln(Zp))---~H 1 (49, L,(Qp)). 

Thus, what we have to prove is the vanishing 

e H~ (49, L.(T.))=0. 

The operator T(p) acts by definition on L,(Tp) by 

x IT(p) = ~.= �9 x (cf. Lemma 4.3 (iv)). 

The action of o n  Ln(Zp)= Z;  +1 can be expressed matricially as 

fl,. 
p - - 1  

It is easy to verify that ~ i m - 0 m o d p  when m = 0  or m ~ g 0 m o d p - l .  Thus as a 
i = 0  

matrix acting on L,(Z/pZ) ,  we have that 

n 1 

T(p) = l '  

and T(p) 2 annihilates L,(Z/pZ) .  Thus e annihilates L.(Tp). Next, we shall take 
care of the case of level N. In this case, T(p) acts on L , ( Z )  as follows: 

~-1(~0 - "  t' ( (~ 0 t' xly(p)=i~= ~ pl . x +  1 )a  .x  

(; o) 
where ~r can be any element of SLy(Z) with a -  modN.  Since N is prime 

P 
to p, we may assume that a---1 modp. Then similarly to the above argument, if 
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one expresses T ( p )  2 o n  L,(Z/pZ)  as a matrix, one knows that only the first row 
of T(p) 2 is possibly non-zero, and thus eL,(Z/pZ)  is contained in 

{'(x, o . . . . .  o) e L .  ( Z /p  Z) I x e Z/p  Z }. 

( 0  10) modp" Then, for However, there is 6eFt(N) such that 6=  - 1  

x ee L,(Z/p Z), 6 x = x is impossible except when x = 0. This shows that 

e L,(Z/p Z) r'(m~ - {xee L.(Tp) r'(mlp x =0} =0,  

and hence, eH~ L,(Tp))=0. Q.E.D. 

Proposition 4.7. For each integer r > 0  and for each n>0,  the restriction map 
combined with e gives isomorphisms : 

e o H 1 (F 1 (N), L,(Zp)) ~- e H 1 (45,, L,(Zp)), 

e o H~.(F 1 (N), L, (Zp)) "-" e H~,(45r, L, (Zp)). 

Proof. By Corollary 4.5, we may assume that r =  1. Let A be either of Z/pZ or 
Zp. Since the map Trr,(N)/~, o resr,(N)/~L coincides with the multiplication by p 
+1 on HI(Fj(N),L,(A)), the restriction morphism gives an isomorphism of 
HI(FI(N),L,(A)) into H1(451,L,(A)). It is well known that for any congruence 
subgroup 45, 

H'(45, L,(Zp))|  (e.g. [10, (1.10a)]). 

By [10, Cor. 3.3], we have that 

e o H 1 (F~ (U), L, (Zp)) | Z/p Z ~_ e o H a (F~ (U), L, (Zip Z)) ~- e H a (451, Zip Z (n)). 

By Corollary 4.5, we have that 

eHX(451,Z/pZ(n))~-eHl(45~,L,(Z/pZ))~-eHl(45~,L,(Zp))| Z/pZ.  

Thus, the morphisms e ores and e o o Tr give an isomorphism: 

e o H 1 (F~ (U), L. (Zfl) | Z/p Z ~- e H 1 (451, L, (Zp)) |  Z/p Z. 

Thus, by Nakayama's lemma, e ores induces a surjection 

e o H I(Fa (N), L,(Zp)) ~ e H 1 (451, L, (Zp)). 

This morphism is injective since the both sides are Zp-free of the same rank (cf. 
Lemma 4.6). The isomorphism in each direction is explicitely given by eores 
and eoo Tr, which preserve parabolic cohomology classes. Thus, the assertion 
for the parabolic cohomology groups is also shown. 

Let 45 be either of F~(Np') or 45t r for r>t>O. Then the stabilizer 45s in 45 for 
each cusp se C(45) is either an infinite cyclic group or a product of an infinite 
cyclic group and {+1}. We fix an element ~=~s in SL2(Z ) for each seC(45) 
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such that e ( ~ ) = s .  Then we can choose a generator n=n S of the torsion free 

part of q)s so that ~-1 n:~= + (10 ~) with u>0.  

Terminology. W h e n c ~ - l n ~ = - ( l o  ~), we say that the cusp s (or the parabolic 

element n) is irregular, and otherwise, we say that s (or n) is regular (cf. [25, 
2.1]). 

Lemma 4.8. 7he ordinary part e o G 1 (F 1 (N), L,(Zp)) is Zp-free. 

Proof. We have the following exact sequence: 

G~ ~ , G~ L,(Tv) ) -~G'(F~(N),L,(Zfl)-~G'(F~(N),L,(Qp)). 

Thus, what we have to show is the vanishing: 

e o (G o (F~ (n); L, (Tp))/6 (G o (['1 ( i ) ;  L, (Qfl)) = 0. 

We choose GeSL2(Z) for each saC(FI(N)) so that ~s(oo)=s and fix a generator 
1 1 u . . G of a torsion free part of FI(N) ~ by ctj G G =  + ( ]. Since N is prime to p, 

- \ 0  l /  '1 u '  

we may assume ~s -  1 modp 3 and (u ,p)=l .  Thus, G -  -+(0, 1) m o d p 2 ,  and by 
Lemma 4.3 (iii), we can decompose 

F~(N) (10 Op ) FI ( N ) = FI ( N ) fl FI ( N ) s ~ FI ( N ) (10 Op ) FI ( N ) s , 

where f leM2(Z ) satisfies det(fl)=p and fl=-(0 01)m~ and fl-(10 0p)moaN. 

We now choose 70 and 71 in FI(N ) so that t=7ofl(s)~C(Fl(N)) and v 

--(l N O)(s)~C(FI(N)).- As seen in the proof of Lemma 4.1, this is possible. = ] ) 1  . v  p 
/ 

Write n for G or n 2 according as s is regular or not. Then, by definition, T(p) 
acts on G~ L.(Tv) ) by 

(xlr(P)),=(])ofl)"xt+ ~ ])t p nl "xv, 
i = 0  

where x t indicates the component of x in H~ L,(Tfl). 
Since G = l m o d p  a, we see that ])o, ])IEFo(p2) �9 As seen in the proof of 

Lemma 4.6, if px=O and if x is of the form x=t(Xo, Xl .... , x ,_ l ,0  ) (])'lx, is also 
of the same form), then 

i~i (])1 (; ~)lT'i)l'Xv "-~0" 
t t t t If we write (x[T(p))~ as (x o .... ,x.), then x ,=0 .  Thus if px=O, 

(xlT(p)2)~ {'(a,O ..... O) a~ (~ Z/Z)  }= X, 
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In 0\  
since f l ~ / o  1~ m~ We now show that  X is conta ined i n t h e  image of 8. If 

t is irregular and n is odd, then we know that  

L.  (Tp)r, (N)~ = H~  (F 1 (N)t, L.  (Tfl) = O. 

(l o = ~21 rc2 ~t = , then In fact, if xeL , (T f l  is fixed by n' 2 

xC(1,O,...,O)TpcL,(Tp) since 2u' is pr ime to p. On x as above,  ~t- l~,et  acts 
as mult ipl icat ion by - 1. Since p > 5, one sees that  x must  be 0 if x = - x. Thus 
in this case, x t = 0 ;  so we may  assume that  t is regular  when n is odd. Let U 

{(; w e k n o w t h a t  

L,  (Qp)r~m~_ L,(Qp)U ~ t(1, 0 . . . . .  O) Qp. 

~ t.U 

X ~ ~ t -  1 X. 

Since ~ t = l  modp ,  any element in X is contained in the image of 8. Since 
G~ is p-divisible, the image of ~ is also p-divisible. Thus  one can 
decompose  

G 0 (F 1 (N); L,  (Tp))= 6 (G O (F~ (N), L,  (Qfl) Q M 

for a Zp-modnle  M. Thus  for any x e M  with px=O, we know that  
xIT(p)2mod6(G~ L , ( Q f l ) ) = 0  by the above  argument .  Then by 
N a k a y a m a ' s  lemma,  the T(p) is topological ly  ni lpotent  on the quotient  
G~ L,(Tv))/6(G~ Thus e o annihilates this space, Q.E.D. 

We obtain  the following general izat ion of [9, Th. 1.2]: 

Theorem 4.9. Let 4 be either of Fa(N ) or 4 r for r >O. Then the quotient module 

e H a (4, L,(Zp))/e H~(4, L,(Zp) ) = e(H a (4, L,(Zp))/H~,(4, L, (Eft)) 

is Zp-free. 

Proof. The assert ion for n > 0  follows f rom L e m m a  4.8 and Cor. 4.5 combined 
with the exact sequence (4.1b). The  assert ion in the case where n = 0  is well 
known (cf. [10, w or else, see w 

Corollary 4.10. Let 4 be as in Theorem 4.9. Let A be either of Z/pmZ or Tp. 
Then the natural map of eH~,(4,L,(Zfl) |  A into e H~,(4, L,(A)) is injective (we 
will see later  that  this m o r p h i s m  is in fact a surjective isomorphism).  

Proof. We have an exact  sequence: 

O~e U ~,( 4, L,(Zp))-oe U 1 (4, L,(Z f l )~e(U 1 (4, L,(Zv))/ H ~( 4, L,(Zp)))-*0. 

Since the last module  in the above sequence is Zp-free, the induced map :  

e H I ( 4 ,  L,  (Zp)) |  A-~ e H a (4, L,  (Zp)) |  A 
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is injective. However, it is well known (e.g. [9, (1.10a)]) that 

HI  (~, L, (Zp)) |  A ".. H ~ (cI), L.(A)). 

Thus the above injection factors through H1p(r and proves the corol- 
lary. 

w Eisenstein series and cohomoiogy groups at cusps 

Let Y~ denote the complex analytic space Fa(Npr)\.~ for each non-negative 
integer r and X r be the smooth compactification at cusps of Yr- If N > 3  or 
r > l ,  Yr and X r are smooth. The representative set C(FI(Npr)) of Fl(Npr) - 
equivalence classes of cusps is naturally isomorphic to X r -  Yr- 

Terminology. Let cb be a congruence subgroup of FI(N). Let se  C(q') and soeX o 
be the image of s in C(F I(N)). We say that s is unramified if s is unramified 
over s o as a point of the smooth compactification of 4 ' \ 9 .  

Lemma 5.1. The number of unramified cusps of Xr is given by 

�89 �9 ~ qo(t) q)(N/t) for each r>=l, 
0<t in  

where q) denotes the Euler function. Furthermore, every unramified cusp of Xr 
can be represented by e(oQ).for c~eFo(p" ) for each given m>r. 

Proof Define a subset M of the additive group (Z/NprZ) 2 by 

m = { v ~ (Z/N pr Z)2 I the order of v is equal to N p~}. 

For each v=t(ff, y)~M, we choose x, y e Z  so that  

x=_~YmodNp r and y = y m o d N p  r. 

Then the point (x ,y)ePl (Q)  can be regarded as a cusp of FI(Np~). This 
correspondence induces a bijection (cf. [25, 1.6]) 

C(F~ (N pr)) ~ - U \  M, 

where U is a subgroup of Aut(M) defined matricially by 

We can choose a coprime pair as (x,y) above. Then, we will find a, b s Z  so 

that e - -  eSL2(Z ) and we know that e ( o o ) = - .  On the other hand, for the 
y Y 

principal congruence subgroup F(p'), the compactified curve Z of 
!F(p r) c~ F 1 (N)) \~  is a Galois covering of X 0, and one has 

G . . . . . .  [PSL2(Z/p~Z) if N =  l or 2 

aI~L/~~ if N > 2 .  
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Let be the image of u zJprz} in Oa, ZJXo, Then we can a 

cusp on Z with inertia group Up over each cusp of X o. The inertia group of the 
x 

cusp s = -  over X o is given by ~ U f i  -1 for the image ~ of ~ in SL2(Z/prZ). 
Y 

Note that Gal(Z/Xr) is given by Up. Thus, for the unramifiedness of s over Xo, 
it is necessary and sufficient to have an inclusion: 5 U f i - l c  Up, i.e. ~Fo(p ,  ). In 

x 
other words, s = -  is unramified if and only if y = 0 m o d p  r. We may choose y so 

Y 
that y=_0modp m for arbitrarily large m>r.  The cardinality of the set: 

U\\~( : )~My=-Omodf f~canbeeas i ly~- -  " ~ - J -  J calculated and is equal to the number 

as in the lemma. 

Definition. For each subalgebra A of t2 or C, we define 

~k(F1 (UPS); A)= ~/'k (Fx (Npr); A)/Sk(I" 1 (Npr); A). 

For a pair of positive divisors u and v of N p  ~ with uv[Nff ,  let ;~ and ~ be 
Dirichlet characters modulo u and v, respectively. Put, formally for each 
0 < t ~ Z ,  

E k ( z , ~ ; t ) = b ( t # ) L ( 1 - k , z ) +  ~ ( ~ x(d)t#(n/d)dk-~)q'"~(~[[q]], 
n= 1 0 <din 

where 
i f ,  is the identity 

(o otherwise 

and L(s,z) is the Dirichlet L-series with character Z. We write Ek(Z,~) for 
Ek(Z, ~h; 1). 

Lemma 5.2. (i) Ek(Z, ql; t) gives the q-expansion of an element of ~/~k(I'l (Np')) if 
the following conditions are satisfied: 

(a) Z ~ ( - 1 ) = ( - 1 )  k, and tuv is a divisor of Np~; 

(b) Z and t~ are primitive modulo u and v, respectively, if k > 2 ;  

(c) Suppose that k =2. Either X and ~b are primitive or trivial. I f  X and ~ are 
primitive modulo u and v, then at least one of them is non-trivial, and if both 7. 
and ~ are trivial, then u is a prime and v = 1. 

(ii) Ek(Z,~;t ) with Z, ~ and t satisfying (a), (b) and (c) spans the space 
gk(Fl(Np');(~) for each k > 2 and r> 1. 

Proof. This fact may be well known and a proof may be found in Doi-Miyakc 
[6, w but we shall give a sketch of a proof because [6] is written in 
Japanese. For each integer M and for each pair (a ,b)~(Z/MZ) 2, Hecke defined 
in [8, w167 1 and 2] an Eisenstein series by 

Gk(Z;a,b;m)= ~. (cz+d)-klc2 -2s +dl I~=o. 
(c,d) ==_(a,b)modM 

(c,d) * O 



Galois  represen ta t ions  into G L 2 ( Z p [ [ X ] ]  ) a t tached to o rd inary  cusp forms 577 

We write z~.~ as x+]f~l-ly with x, y~R. Then, the Fourier expansion of this 
series is given there as 

Gk(Z;a,b; M) 

= - 6  2 7t/M 2 y+ 6(a) ~(k, b; m)-~ 

where 

mk(k-1)e  ~ nk_lsgn(n) e b n nz , 
mn>O 

m=_amodM 

e(z) = exp(2 r t ~ -  1 z), 2 = ( ~0 
if k = 2  6 ( a )=~ l  if a = 0  

otherwise, ]0 otherwise, 

and ~(s,b;M)= ~ n-'. Assume that Z is primitive modulo u. If k > 2  or if 
n ~ bmodM 

n > 0  
one of Z and ~ is non-trivial, a simple calculation shows that Ek( Z, q/) coincides, 
up to constant factor, with 

E~(Z,~k)= ~ ~ ql(a)~(b)Gk(Z;au, b;uv)~,gk(Fl(uv)). 
a = l  b = l  

Thus, in this case, the first assertion has been proven. Let z denote the trivial 
character (modulo 1). When k=2 ,  what we know is that if we denote the linear 
combination as above for X=f f=z  by E'2(l,t), then E'2(t , t ) -cy- l=dEz(t ,O 
with non-zero constants c and d. Let t u be the trivial character modulo u for a 
prime u. Then, we see from this formula that 

E'kO, O--U EkO, t)l [U] =dEk(t ., t), 

where we write f[[u](z)=f(uz) for each function f on .~. This shows the 
assertion (i). To prove (ii), we shall calculate the cardinality of the set A 
consisting of triples (~,~,t) satisfying the following condition: (i) X and ~ are 
primitive Dirichlet characters modulo u and v, respectively, and (ii) t is a 
positive integer such that tuv divides a given positive integer M. Let B be the 
set consisting of pairs of characters (~',q/) such that Z': (Z/u'Z) • ~ C  • and ~': 
(Z/v'Z) • ~ C  • for integers u' and v' with u'v'=M. For the element (~',~') of B, 
we shall not impose primitiveness on the characters Z' and ~'. The cardinality 
of B is obviously given by the number d(M)= ~ q~(u)qg(M/u). We shall 

0 < u l M  
construct a bijection between A and B. For  (X,~,t)~A, we define an element 
(Z',q/)~B as follows: Z' is the restriction of Z modulo M/tv and ~b' is the 
restriction of ~b modulo tv. Conversely, if (X',~0')~B is given, let u and v be the 
conductor of each Z' and if' and let ;~ and ~ be primitive characters which 
induce X' and if'. Since u' v '= M, we define t by t v = v'. Then the triple (X, ~9, t) 
belongs to A. This shows that the cardinality of A is equal to d(M). The linear 
independence of Ek(z, ff;t) for X, ~, t with (a) and (b) is plain, and thus, for 
each k>2,  the subspace 8 of Sk(FI(Npr);C) spanned by Ek(z, qJ;t) has dimen- 
sion a d'N "" t p),  since an additional condition of parity: ~ ( - 1 ) = ( - 1 )  k is im- 
posed. As is clear from the proof of Lemma 5.1, the number of cusps on X, is 
exactly given by �89 therefore, dimcgk(q(Npr); C)=�89 if k>2.  This 
shows (ii) when k > 2. When k = 2, it is known by Hecke (e.g. 1-25, Th. 2.23, 2.24 
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and 2.25]) that dimcNk(Fl(Np');C)=�89 There is only one linear re- 
lation between EkO u, t ; t) and thus, (ii) can be shown similarly. 

Lemma 5.3. Let e be the idempotent attached to T(p) on gk(Fl(Npr); (2). Suppose 
that r > 0  and k > 2. Then, the subspace gk(Fl(Npr);Q) of ,~k(Fl(Npr);s is stable 
under the action of  e, and we have that 

dimQegk(F~(Np~);Q)=�89 �9 ~ q~(t)q~(N/t). 
0<t iN 

Proof. We begin by showing the following dimension formula: 

dimo(egk(F~(Upr); s189 )-" ~0(t) q)(N/t). 
O<tlN 

Let I be any positive integer and r be a Dirichlet character modulo I. We 
write ~1 for the restriction of r modulo Ip, if I is prime to p, and if p divides 1, 
we simply put ~ 1 = 4. By definition, we have that 

Ek (X, 0)1T(p) = (~b (p) + Z (P) pk- 1) Ek(Z, 0) 

and (O(p)--X(p)pk-1)Ek(X,~,)=tfi(P)Ek()~l,O)--X(p)pk-XEk(X,~O. Thus, by [12, 
Lemma 4.2], we know that 

{~ - -~ - - lZ (p )pk - -1 ) - - lE k (X l , 0 ) i fO(P)4 :0  
Ek(X'tk)le= if ~(p)=0.  

Write f ]  It] for f(q') for each power series f(q)~O[[q]].  
Since ( f][p])[T(p)=f  for f~J//k(Fl(Npr);s we have that if t= top  ~ with 

(t o, p) = 1, then 

Ek(X, ql; t)[e = (E k (X, ~)1 [t]) ] e - ~(p)S(E k (Z, ~) [ e)[ [to]. 

Thus, in order to get a basis of egk(Fl(Npr);s out of Ek(X,~O;t), we may 
only consider triples (Z,~O,t) satisfying the following conditions: (i) X is a 
primitive character modulo u, (ii) ~ is a primitive character modulo v, (iii) v 
and t are prime to p and tuv divides Np ~, and (iv) Z t f i ( - 1 ) = ( - 1 )  k. For these 
triples (Z,~,t), the Eisenstein series Ek(Xl, tfi;t) are linearly independent and 
gives a basis of egk(Fl(Npr); (2). 

The number of triples (Z, 0, t) satisfying (i),-, (iv) can be calculated in a 
similar manner as in the proof of Lemma5.2 and is equal to 
�89 ~ (p(t)q)(N/t). The above formulae of the action of e on Ek(X, tP;t ) 

0 < t i n  
show that O~k(FI(Np~);Q) is stable under e, by Lemma 5.2 (ii). Let cr~Gal(Q/Q) 

act on ~'k(Fl(Np~);t~) by a(n)q ~ = a(n)~q ~. Then we see that 
\ t l ~ 0  I n=0  

(Ek(Z,~;t)le)=EkOcO,r for each a~Gal((~/Q), 

where ff(m)=x(m)* and ~U(m)=~(m)" for all m. This shows that gk(Fa(Np");Q) 
is stable under e. Then, the desired dimension formula follows since 

G (Fa (N p~); ~) = G (F~ (N p'); Q) |  Q" 
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Lemma 5.4. Let ~b be a congruence subgroup of  SL2(Z ) and K be a field of  
characteristic O. Consider the q~-module L , (K)  for each integer n>O. Put ~s 
={7~4~lT(s)=s} for each cusp sePl(Q).  Assume that n is even iJ" - l s c b .  Then 
we have 

0, if n is odd and s is an irregular cusp of cb, 
HI(cb~'L"(K))~-- K, otherwise�9 

Proof. Choosing c~eSLz(Z ) so that s=~(oo), we know that c~ -1 q~sc~c { + 1} Uo~ 

for Uo~={(;  ~ ) u e Q } . I [  - leq~s,  then the restriction and inflation sequence 

yields an exact sequence 

O-}HX (g~ff{ 4- a} ,L , (K) ) -~H' (cb~ ,L , (K) )~HI({  +_ 1},L,(K)) =0. 

Thus, we may assume that q~ is an infinite cyclic group by substituting 
cbff{+l} for q)s if necessary. Since a as above induces an isomorphism: 
Hx(~ ,Lz (K) )~-HX(~- lq )~a ,L , (K) ) ,  we may assume that ~ s c { •  Let 
be a generator of ~ .  Then it is well known that 

H 1 ( ~ ,  L,(K))  ~- L,(K)/(n - 1) L,(K). 

if re=+(10- U)l , t h e n r c a c t s o n L , ( K )  via a matrix of the form : 

(_+1)" 

0 (+l)  

Thus, i f g = - ( 1 0  ~)(i.e., s is irregular)and n is odd, ~ - 1  is an automorphism 

of L.(K),  and thus, HI(cb~,L.(K))=O. 
Otherwise the K-linear map ~ - 1 "  L.(K)---,L.(K) is of rank n, and hence 

L,(K)/(~ - 1) L, (K)  ~ - K. 

Remark. If r > s > O  and p=>3, every cusp of q~ and FI(Np r) is regular. In fact, if 

(Np~) or ~b~ and if c~-l~c~= - (10 ~) with c~SLz(Z), then cc lzcp~ = 
k 

- 1  modp and thus zff_= - 1  modp. This is a contradiction, since nPEF 1 (Np). On 
the other hand, F~(4) has one irregular cusp and two regular ones (for F~(N), if 
N4=4, all the cusps of Fa(N ) is regular (cf. [6, Th. 4.2.10])). 

Let ~b be either of F~(Np ~) or 4~ for r>s>O.  For each non-negative integer 
n, take f~'n+2(~) and put 

Z n 

..... ,,) 

as L,(C)-valued differential form. For each z e ~  and 7e~b, define a map 

6(f)z: ~b~L,(C) 
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by 
~(z) 

6(f)~(?)= ~ co(f)eL,(C). 
z 

As shown in [25, 8.2], 8(f)~ is a 1-cocycle of q) with values in the (b-module 
L,(C). The cohomology class 5(f) of 5(f)z is independent of the choice of the 
point ze.~, and thus, one has a morphism of Jg,+2(q)) into H'(q),L,(C)). It is 
proved by Shimura [25, Th. 8.4] that the real part of 8 induces an isomor- 
phism 

(5.1a) q~: Sn+2(~)'.~H1p(q), L,(R)), 

or equivalently, if we write S,+2(q)) for the complex conjugate of the image of 
S,+z(~ ) under 6 in H~(qhL,(C)), we have 

(5.1 b) S,+ 2(q)) �9 S,+ 2 (q)) -~ H~P(q), L,(C)). 

For each saC(q)), choose a generator n = x  s of q)s and ~=c~6SL2(Z ) so that 

~ - ' r t ~ =  + (10 ~) with u >0. By Lemma 5.4, 

L , ( C ) / ( _ l n e _ I ) L , ( C ) ~ O  i f n i s  odd ands  is irregular for q), 

lc otherwise, 

and this isomorphism is induced by the projection of L,(C) onto C given by 
�9 (Xo,...,x,)w-,x, if the quotient is non-trivial. Naturally, a induces an isomor- 
phism 

L,(C)/(ct- 1 ~ ~ _ 1) L,(C) ~ ,  L,(C)/(~ - 1) L,(C)-~ H 1 (q)s, L,(C)). 

Write 6~ for the combined morphism: 

6~: .~/[,+ 2(q)) ~ ~ HI(q),L,(C)) ~ ' n~(q)~,L,(C)) 

,L , (C) / (cc1~c~- I )L , (C)~  . 

A simple calculation yields that 

z + u  ~(z) 

6(f)~(u)=a.  ~ o~(fI ,+zot)+(u-1 ) ~ o~(f). 
g z 

Thus, we know that 

(5.2) 5, (f) = a (0,f ], + 2 ~) ~ C. 

If s is irregular and n is odd, it is well known that a(0,f l ,+200=0 (cf. [25, 
p. 29]) and thus, this is compatible with Lemma 5.4. Let us put, for any 
subalgebra A of C or Q, 

dk(q); A) = M4k(4); A)/Sk(q); A), 

ff ((/); L.(A)) = H 1 (4); L,,(A))/H~,(q); L.(A)). 
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Lemma 5.5. The morphism ~ induces an isomorphism of the modules over the 
Hecke ring R(~, A): 

~n+ z(CI);C)~(@;Ln(C)) for each n>O. 

Proof Let r (resp. i) be the number of regular (resp. irregular) cusps of C(cb). It 
is well known (e.g. [-25, Th. 2.23, 2.24 and 2.25]) that 

i + r if n > 0 and n is even, 

dimc~,+2(4~;C)= r if n is odd, 
[ i + r - 1  if n=0. 

By the exact sequence (4.2), (r is a subspace of GI(~,L,(C)). By 
Lemma 5.4, we know that 

dimcG,(~,L,(C))={i+r if n i s i f  n is even,odd. 

The fact (5.2) shows that 6 induces an injection of g,+2(tb; C) into ~(~;L,(C)), 
which proves the assertion for n>0.  It is known and will be shown later that 
dimc~(q~; C)= i + r - 1  (see 5.4). Thus, the lemma remains true even for n =0. 

Corollary 5.6. Let ,g{: be the Q-subalgebra of End(~,+z(~;Q)) generated over Q 
by the Hecke operators T(l) and T(l,l) for all primes 1. Then, there is an 
isomorphism of ~:-modules : 

~,+2(@;Q)---~(@;L,(Q)) Jor each n>__O, 

and the idempotent attached to T(p) is contained in ~.  

Proof Since tb is either <b~ or Fl(Npr), the space ~,+2(~;C) is spanned by the 
image of Ek(z,~b;t ) for suitable Z, ~b and t. Since Ek(z,~b;t)"=Ek(ff,~b~;t) for 
any aEGal((~/Q), the space ocn+2(~;Q) is also spanned by the image of Eisen- 
stein series with Q-rational Fourier coefficients, which are linear combinations 
of the above type of series. Thus we may identify ocn+2(qb;Q) with the subspace 
of J/g,+2(cb;Q) spanned by these Q-rational Eisenstein series, which is stable 
under Hecke operators T(n). Write the q-expansion of each element 
f s  .g,+ 2(cb; C) as 

~ a(n,J)q". 
n = O  

Then the pairing 
( , ) :  ~'~ • d,+2(~;Q)-~Q 

defined by (h , f )=a(1 , f jh)  induces a perfect duality over Q (cf. [13, 
Prop. 2.1]). Thus we know that 

r  and r174 C) 

as 0~'~-modules. Since ~ ( ~ ; L , ( C ) ) = ~ ( ~ ; L , ( Q ) ) |  and the action of 
leaves ~(~;L,(Q))  stable, we know from Lemma 5.5 that 

~+2(~;Q)~_~(~;L, (Q))  as ~ -modu le  (non canonically). 
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By Lemma 5.3, e leaves ~'n+2(~;Q) stable. Thus e induces a homomorphism of 
~,Uf-module HomQ(~, Q) into itself. Thus e must be contained in ~ .  

Now we shall concentrate on the cohomology groups with constant coef- 
ficients. 

Proposition 5.7. Let ~ be either of Fx(Np r) or ~t Jor r >t >=O, and let A be either 
of Zp, Z/piZ or any field of characteristic O. Let s be an unramified cusp of 
C(eb) and Ps: G I ( ~ , A ) ~ H I ( ~ s , A  ) be the projection map. Then for any 
ceff(~,A),  we have that p~(c]e)=ps(c), where e denotes the idempotent attached 
to T(p). 

Proof. By Corollary 5.6, e is contained in ~ .  Thus, e acts on ff(q~;A) even for a 
field A of characteristic 0, since ~(q~; A)=(~(~; Q)|  Let n be a generator of 
the free part of q~s. Then, the evaluation of 1-cocycle at n zs yields an isomor- 
phism (because of (p, 2N) = 1) 

HI(eb ~,A)~ A. 
Thus we know 

H a (q~, A) = H1 (~s, Z) |  A. 

Thus we may assume that A = Zp to prove the result. Take an integer m > r so 
that p"---1 modN. By replacing s by another cusp in the oh-equivalence class of 
s if necessary, we may suppose that a(c~)=s with aeFo(P m) since s is unramified 

(cf. the proof of Lemma 5.1). Then ~ - l n ~ =  + (10 ~ ) w i t h u p r i m e t o p .  Sincep 
/ 1  

is odd, one has a - l r t Z a =  [~, ~") ,  and 2u is prime t o p .  We shall choose a 
disjoint decompositions : 

\u 1 ]  

(*) �9 = U 4~flj and ~,f lo4~= Q) 4~fl~ 
j = O  j = O  

J'flj+ a if 0 < j < p m - -  1, 
such that (i) fli(s)=s for all j and (ii) fljn2~= [n2ufi0 if j=p"--1 .  

Let us admit this decomposition for a while. Then, the definition (4.3) of the 
action of T(p =) on ff(~, A) shows that 

m _ p~(cl T(p ) ) -  p~(c)t E ~ ~flo CI)s] 

and for each 1-cocycle q): q)~--+A, we have by the condition (ii) 

(**) ~ol 2N 2N E~flo~3(~ )=~(~ ). 

Thus, we know from (**) that 

ps(c[T(p"))=p~(c) and hence p~(cle)=ps(c). 

Thus what we have to show is the decomposition as in (,). Put 
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Then obviously, f l ) = l m o d N  and thus, if we put flj=afi~a -~, then 
f i j -  l n o d  N. 

Since c~eF0(pm), we know that 

flj= ( ;  fm) modp ~ and det(flj)=p m 

andj 'runsover aUresiduesmodulop'~.Then, byLemma4.3 (ii),cI)(lo ; ) 4 )  
pro_ 1 

= ~ 4~fij and this gives obviously a decomposition satisfying (,). 
j = 0  

Remark. Proposition 5.7 does not necessarily mean that the subgroup H~(4)~, A) 
of Gt(~,A) is stable under T(p ~) or e even if s is unramified. In fact, it can 

happen that for someflc4)(lo ; )c I )andsome ramified cusp t, fi(t) gives the 

unramified cusp s. Then, by (4.3), the component of clT(p m) in H~(4),,A) for 
ceH~(dP~,A) may not be trivial. As a concrete example, we take Fo(p ) as 4~. 

Then for f i = ( l  0 ; ) ,  we see that f l ( 0 )= - l= (  1 01)(~ ). Thus, the cusp 1 is 
P P P 

unramified, but the cusp 0 is certainly ramified over oo eP1 (j). 
Let q~ be an arbitrary congruence subgroup of SL2(Z ), but assume that 4) is 

torsion free. Put Y=q~\.~ as an open Riemann surface, and take one point 
yEZ Then ~ can be naturally identified with the topological fundamental 
group ~ ( Y )  of Y with the base point y. Let X be the smooth compactification 
of Y at cusps. Let g denote the genus of X. We choose 2g-curves {cq, fl~ . . . . .  
C~g, fig} passing through y but not crossing any cusps of X, which form a system 
of canonical generators of the fundamental group ~I(X) of X; namely, ~I(X) is 
isomorphic to the quotient of the free group generated by {~, fll . . . . .  c%, fig} 
by the unique relation 

[ ~ , / ~ g ] . . . . -  [ ~ , / ~ , ]  = 1, 

where [c~,fl]=c~flc~-lfl -I. By cutting X along these 2g-curves, we have a 
simply connected polygone of 4g-sides, and inside the polygone, there are 
cusps of X. Write X -  Y= {x 1 . . . . .  xa}, and draw curves ni on the polygone from 
y encircling each cusp xi and assume that they intersect only at y. Then, 4) 
=:rtl(Y ) is generated by 7t 1 .. . .  , ~d and ~1, fil . . . .  , ~g, fig with the only relation: 

~ , ~ _  1 . . .  ~ ,  [ ~ g , / ~ ] . . . . .  [~1, /~13 = l .  

Let 4),b be the free Z-module generated by {cq,fl 1 . . . . .  c~g, flg, l h . . . . .  ha} and 4),~ 
be the free submodule of 45~b generated by {re 1, --.,~a}. For  each Z-module A, 
let 4) act on A trivially. Then we have a natural diagram 

(5.3) HI(Y,A) ~_H1(~,A) ~_ {~0~Hom(4)~b,A)]q)(nl)+ . . .+(p(na)=0} 

H 1 (X, A)~-H],(~, A)~_ {q~eHom(4)~b, A)lq~(rri) = 0  for i=  1 . . . .  ,d}, 
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which is commutative. Put P(q~)={n 1 . . . .  ,rid}. By definition, we can identify 
P(cb) with the set of generators of (the free part of) ~b s for s~C(cb). Then, we 
have 

(5.4) H~(qO, A)~_HI(r174 A, HI,(q~,A)~_H~(qO, Z)|  A, 
and 

fa(cb;A)=Hl(cb, a)/H~e(q~,A)~-r162174 {q~eHom(~L,A)l ~. ~p(n)=0}. 
nEP(~) 

Especially, this shows that dimhf#(~; C ) = d - 1  and finishes the proof of Lem- 
ma 5.5 in the remaining case: n=0.  

Theorem 5.8. Let e be the idempotent attached to T(p) and let A be either of Z~, 
Z/piZ, Tp or any field of characteristic O. Then, we have ./'or each r>0,  

(5.5) (1-e)fa(Fl(Npr);A)= {q~Hom(Fl(Npr)L,A)[q~(n)=O 

for all n~P(F l (Np')) corresponding to unramified cusps} 

and corankzpefa(F~(Np~); Te)=�89 ) ~ qg(t)~p(n/t). 
O <tIN 

Proof. Write q, for FI(Np~). Let ~ be a Q-subalgebra of End(~a(~;Q)) gener- 
ated over Q by T(1) and T(l, l) for all primes I. Then, by Corollary 5.6, the 
idempotent e defined in o~(| is in fact contained in -~. Thus e naturally 
acts on fq(~b;A) for A as in the theorem. Write the right-hand side of (5.5) as 
V(A). Firstly, we suppose that A is an algebra. Let d~ be the number of 
unramified cusps in C(~) and put d=d imc~(~ ;C) .  By (5.4), f#(45;A) is A-free 
of rank d and thus, V(A) is A-free and its rank is given by d - d , ,  because A- 
linear forms: ~o~--,~0(n) for unramified n are linearly independent and vanish on 
V(A). By Proposition5.7, V(A) contains (1-e)fg(q~;A). Again by (5.4), we 
know that (1 - e ) f f ( ~ ; A )  is A-free and 

ranka(1 - e) c~(~; A) = dimc(1 - e) ~ (~ ;  C) = d - dimce f#(~; C). 

By Lemma 5.1, Lemma 5.3 and Corollary 5.6, we know that 

d, =dimc e c~(cb; C). 

Summing up these arguments, we know that 

rankA(l -e)f#(~;A)=rankAV(A ) and (1 - e ) f q ( ~ ; A ) ~  V(A), 

which proves the assertion for an algebra A. For A =Tp, we know that 

V(Tp)=lim V(Z/p~Z) and (1-e)fr Tfl=li~m(1 -e)fa(4~;Z/p~Z). 
i i 

Thus the desired result follows from that of Z/p~Z and Lemma 5.1. 

w Proof of Theorem 3.1 

We divide our argument into several steps. 
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Step L The proof of 

(6.1) (~~176 and (~~176 for each r> l .  

We begin with a general lemma. 

Lemma6.1 .  The image of HI(dP~/FI(Npr),Z/p"Z(n)) in Hl (~ ,Z /pmZ(n) )  under 
the inflation map is annihilated by the idempotent e attached to T(p) for each n, 
m and r>s>O (of course, we have to assume that m<r  if tb~ acts on Z/pmZ(n) 
non-trivially, i.e., n ~ 0  m o d p " -  1 (p _ 1)). 

Proof We write i for the inflation map. We identify q)~/FI(Np ~) with FJF~ by 
/ 

(~ ~ ) ~ - , d m o d p  r (we understand that F o denotes Z~). For  any 1-cocycle ~p: 

Fs/Fr-,Z/p"Z(n), one knows that 

i((p) (~ bd)=q)(dmodp*)=tp(a-lmodp~ ) for (~bd)e~0,  .s 

By Lemm a  4.3 (ii), we have an explicit decomposi t ion:  

(;0) + 

with % = . For  each 7 = e 4~, write 
P 

c%7=7,c % for some l < v < p  and 7"= c, d,] 

Then, a simple computa t ion  shows that  a - a ,  modp r and hence, d=dumodp  ~. 
This shows that  

P 

(i(tp) lT(p))(7) = ~, qo(d. m o d p  r) = p i(tp)(7 ), 
U = I  

and thus, e annihilates the image i(H 1 (cb~/F 1 (Np'), Z/p m Z(n)). 

Lemma6 .2 .  Let eb~/F1(Np') act on Tp=Qp/Zp trivially. Then, we have the 
vanishing 

2 s r H ( ~ / q ( N p ) , T p ) = O  Jbr each r>s>O. 

Proof Let W :  Tp--+T v be the norm map defined by 

y ( x )  = y ~ .  x, 
a 

where a runs over all elements of ~ / F  l(Np') .  Since cb~/Fl(Np ~) acts trivially on 
Tp, JV" is the multiplication of the index Igor: F~(Np')]. Thus JV" is surjective. It 
is well known that  

H 2 ( ~sr/ F1 ( N pr), Tp)= Tp/Jff(Tp), 

since ~/F~ (Np ~) is a finite cyclic group. Thus the lemma follows. 
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N o w  we shall prove  (6.1) for ~ o .  For  each r > s  > 1, we have the inflation 
and the restriction sequence: 

, t s ~ 1 ~ T r s  0 _~H~(~s/q(Npr),Tp) i H (45r,Tp) H ( q ( N p ) ,  p) 

H 2 (q~/F~ (N p'), Tfl. 

The last te rm H2(~/F~(Npr),llp) is null by L e m m a 6 . 2 .  After applying the 
idempotent  e to the above  sequence, we obtain  another  exact sequence: 

0--~ e( i( H ~ ( ~/F~ ( N pr), Tv))) T M '  e H 1 (@~, Tf l -*  e H ~ ( F~ ( N pr), Tflr~-~ O. 

We know that  

e(i(H 1 (cl)S/F~ (U pr), Te))) = ~ e(i(H 1 ( ~ / F  1 (N pr), Zip m Z))) = 0 
m 

by L e m m a  6.1. This shows that  

e H~(q's, Tp)~-e H~(q (X p), Tp)r'~-(~;~ r" (cf. (5.3)). 

By L e m m a  4.5, we have 

res: W~~ 

Thus, by combin ing  these i somorphisms,  we obtain  

(6.2) (~o)r ,_~ w~o for each r > s > 0. 

By taking the injective limit of this i somorph ism with respect to r, we obtain 
the desired identity (6.1) for ~#/-o. 

Next,  we shall p rove  (6.1) for ~-o. Since ~ is a submodule  of ~ defined by 

~={~oEHom(F~(Np~) ,Tf l ]q0(~)=0 for ~cP(F~(Np~))} (cf. (5.3)), 

for each h o m o m o r p h i s m  ~o: FI(Np")--,Tp invar iant  under  F~ and satisfying ~ole 
=~o, there is a h o m o m o r p h i s m  ~: FI(Np~)~Tp such that  

~ = ( p  on FI(Np ~) and ~ l e = ~ .  

If we know tha t  O(n)=O for all ~P(Ft(Np~)),  then we will have an isomor-  
phism 

(~o)r~ ~ ~//~o for each r > s, 

and hence, ( ~ o ) r ~ _ f ; o  for each r > s .  Thus,  what  we have to show is that  
OeH~(Fl(gp~),Tp). Let [ 0 ]  be the class of  0 in 

N(F~ (Np~), Tp) = H ~ (F 1 (Np~), Tv)/H~,(F~ (Np~), Tp). 

Since rc~P(Fl(Np')) generates the inertia g roup  in FI(Np')=~I(Y,) for the 
corresponding cusp t of X~, if t is unramified over  a cusp t o of  X~, we may  
suppose  that  ~ generates the inertia g roup  for t o in F~(Np~)=z~(Y~). Thus  we 
may  suppose that  each element of P(Ft(Np~)) corresponding to unramified 
cusps over  X~ is conta ined  in P(F~(Np~)). Thus, especially, ~(~)=~0(z~)=0 for 
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all ~rsP(FI(Np~)) corresponding unramified cusps of Xs over  X o, since every 
unramified cusp of X~ over X o is under  an unramif ied cusp of Xr over X o. 
Then, from Theorem 5.8, we know that  

[~]1(1 -e)=[O]. 

However ,  we have already known that  [ q / l i e=  [~]  because of ~ l e = q / .  This 
shows [O] = 0 and we have the desired conclusion: 

Step | I .  V ~ and W ~ are A-free. 

We begin with a l emma:  

L e m m a  6.3. Let M be a continuous compact A-module, and let J/d be its Pon- 
tryagin dual module. Put J /g [P , ]={m~J~ ' lP~ .m=0} .  Then M is A-free of finite 
rank r if and only if there is a subset I of integers with infinitely many elements 
such that J/~[P,] ~-T~ for all nel. 

Proof. "'Only if" par t  is clear; so, we shall prove  the other direction. If 
r r o//g[P,]_T~ for one nEZ, we have by duality that  M/P,M~-Zp. By N a k a y a m a ' s  

lemma,  M is generated by r-elements over A. Thus  we can construct  a sur- 
jective morph i sm of A-modules  (p: A t o M .  For  each n~I, this induces a 
surjection (p,: (A/P,A)r~M/P,M. By duality, M/P,M is Zp-free of rank r, and it 
is obvious  that  A/P,A~Zp; thus, ~o, is an i somorphism.  Thus we know that  
Ker(qo) is contained in P,(A ~) and hence in the intersection of P,(A r) for all neI, 
which is reduced to {0}, because A is a unique factorizat ion domain  and 
{P, IneI}  is a set of infinitely m a n y  distinct pr ime elements of A. 

Next  we shall quote  a result of Shimura  [25, Th. 3.51 and Th. 8.4]: 

L e m m a  6.4. For any subfield K of C or f2, HI(FI(M),L,(K)) is free of rank 2 
over the Hecke algebra ~,+ 2(F1 (M) ;K)  for each positive integer M. 

Proof. For  the readers convenience,  we give a proof  of this fact, which is 
essential in the sequel. The  proof  given here looks a bit different f rom that  
given in [25, Th. 3.51] but  in fact, they are essentially the same. Let 

('0 (o-10) = and r = . Since r and ~ normal ize  F x(M), we may  let r and 

act on H~(FI(M),L,(K)) as described in w Write [z] and [~] for the 
corresponding a u t o m o r p h i s m  of H1p(FI(M),L,(K)). Let 

<, > H~(rl(M), L,(K)) 2 ~ K  

be the perfect pair ing defined in [9, w . For  any K-l inear  opera to r  T on 
H~(F l(M), L,(K)), let T* be the adjoint  opera tor  of  T under  this pairing. Then 
we have the following interrelat ions of opera tors  (e.g. [9, w 

T(m)* = [z] o T(m)o [ z ] -  1, [el o T(m)= T(m)o [e], [~]2 = 1 

[~]*=(-l)"+~[~], D]*=(-l)"[r], [q~=(-  l)"N" 
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and 
[~]o [~]=(-1)"[~]o [~]. 

H.  H i d a  

Define another perfect pairing 

( , ) :  Hle(Fa(M),L,,(K))2~K by (x,y)=(x, yl[z]). 

Then, we see that 

(x[T(m),y)=(x,y]T(m)), (x,y)= -(y,x) ,  (x] [e], y) = - (x ,  y[ [e]). 

Put V -+ (K) = {ve H~(F l(M), L,,(K)[vl[e] = + v}. Then, by these formulae, V • (K) 
are modules over d,+2(Fx(M); K) and under the pairing ( , ) ,  

(*) V+-(K)"~HomK(V-V- (K),K) as d,+2(F~(M);K)-modules. 

Let p denote complex conjugation, and let p act on S,+ 2(FI(M)) by 

a(n)q" = a(n)e q ". 
n = l  ! n = l  

Then, if we write the isomorphism of (5.1 a) as q~: S,+ 2 (F1 (m)) ~- H~(q (m), L.(R)), 
one can easily check that q)(fo)=-q~(f) l[e] .  This shows that q~ induces iso- 
morphisms 

V-(R)~-S,+z(Fx(M);R ) and V+(R)~_]/--1-1S,+E(F~(M);R). 

By the multiplication of ] / / -1 ,  we know that V +(R)~-V-(R) as 
d,+ 2(F1 (M); R)-modules. From [13, Prop. 2.1], we know that 

V-(R)"~-HomR(h,+2(Ft(M);R),R) as d,+a(F~(m),R)-modules. 

Thus, by (*), we have that 

V- (R) ~- V + (R) ~_ d,+ 2(FI(M); R). 

This shows that V• which yields the general identity: 
V• since V• V+(Q)|  

Corollary 6.5. dk(FI(M);K) is a Frobenius algebra over K for k > 2. 

Proof By the above proof of Lemma 6.4, we have that 

d~(G(M)R)~-HomR(ddF~(M);R),R ) as dk(F~(m);R)-modules. 

Thus ~dq ( M ) ;  R)= ddFl(M); Q)| is a Frobenius R-algebra. 
The property of being Frobenius algebra can be descended (cf. [3, 

Chap. IX]), and thus, dk(F~(M);Q) is a Frobenius algebra over Q. Since 
dk(Fl (M); K) = dk(F 1 (M); Q) | K, the general assertion follows. 

We shall start proving the assertion of this step. We shall only take care of 
the module ~/zo, since the proof for ~ o  is quite the same. P u t / ~ = { ~ Z p  [~p-1 
=1}. Then, as a subgroup of Z ( = Z :  x(Z/NZ)• the finite group # acts on 
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~o.  Thus we can decompose 
p - - 2  

< o  = @ <O(a), 
a = O  

where : U ~ 1 7 6  Let r(a) be the rank of the Hecke 
algebra o ~. • t~z(cbl, co ,Zfl, where co is the character of Zp such that co(x)= l imx p" 
and ~l=Fo(P)nFl(N).  Then, we will show " ~  

( 6 . 3 )  f~ for each n > 0  with n - a m o d p - 1 .  

If we admit (6.3), then we conclude the Pontryagin dual module V~ of ~ff~ 
is A-free of rank 2r(a) by Lemma 6.3. Then, we obtain the desired result, since 

p - - 2  

V~ @ V~ Now we shall prove (6.3). By [13, Cor. 3.2], we know that for 
a = O  

each positive integer n=-a mod(p-1) ,  

(6.4) rankzp e ~, + 2 (~bl, Zfl = r(a). 

As seen in Lemma 4.6, we know that 

eH~p(ebl, L,(Zfl) |  is p-divisible, 

and by Lemma 6.4, we know from (6.4) that 

(6.5) e H~(r h, L,(Zfl) | ~- Tff "("). 

By Corollary 4.10, the natural map 

(6.6) 1 r 1 r e H e ( q ) l , L . ( Z f l ) |  Z--*eHp(q)l,L.(Z/p Z)) is injective. 

Let us put 

HI (if1 (Npr), n; Z/pr Z) = { v ~ H  1 ([1 (Npg, Z/pr Z) V[ Z = Z n V for Z~Zp }. 

Then, the inflation and the restriction sequence gives an exact sequence 

O--. H ~ ( eb ff F~ ( N pg, Z/p~ Z(n))~ H ~ ( cb ,, Z/p" Z(n) ) ~  H 1 ( F~ ( N p9, n; Z/p~ Z). 

By Lemma 6.1, we know that the restriction map 

( 6 . 7 )  eH~p(cb,,Z/prZ(n))~eH~,(F~(Npr),n;Z/p~Z) is injective. 

On the other hand, we have by Lemma 4.5 an isomorphism 

(6.8) e H ~.(cb ,, L,( Z/p r Z)) "~ e HI ( q~,, Zip ~ Z(n)). 

By (6.1), e HflF~ (N pg, n; Z/p 'Z)  (=e(H~(F~(N p'),n; Z/p 'Z)c~H ~(F~(N p'), Z/p'Z))) 
can be identified with a subspace of V~ for n = - a m o d p - 1 .  By combin- 
ing these morphisms (6.6), (6.8) and (6.7) in order, we have an injection 

I",: eH~(~a, L,(Zfl) |  Z/p'Z--*~~ 
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for each n with n - a m o d p - 1 .  By taking the injective limit of I~ with respect 
to r, we have an embedding  

I": eH~,(cI)l, L,(Zp)) |  T p ~ ~  

By (6.1), we have a surjective A-morph ism:  AEr(a~V~ This induces a 
surjection : Z 2 r(a) ~__ (A/P. A) z ~)  ~ V ~ (a)/P. V ~ {a). By duality, we know that 

~ '~  is embedded  into T 2r(~. 

Thus we have the following inclusions: 

T 2 r(~) -- e H~(q),, L.  (Zp)) | Zp Tp 

= e H ~ ( r  L,  (Tp)) 

= ~ff~ (a) [p"] ~--~ T2"(~. 

This shows that  every inclusion as above  is in fact a surjective i somorphism,  
and we now know that  

3e '~  2"(a) for each n > O  with n - a m o d p - 1 .  

This finishes Step II. 
Before going into the final step, we record a byproduc t  of Step II: 

Theorem 6.6. For each m > O, there is a canonical isomorphism: 

e H l ( ~ l ,  m ~ X m Ln(Zp))QzZ/p Z - e H e ( ~ I , L ~ ( Z / p  Z)). 

Moreover, if n - a  m o d p -  1, we have an isomorphism of ~~  

eH~,(cP,, L.(Zp)) |  T p__ eH~(cP,, L (Tp)) -~ ~~ �9 

Step I I I  rank  A W ~ = r a n k  A V ~ +�89 ~ ~o(t) cp(N/t). 
O<tlS 

The fact that  rankA(V~176  is clear f rom Step II. Thus 
what  we have to prove  is 

Proposi t ion 6.7. Let  us put ~ o =  y / o / ~ - o  and G O =Hom(~r  ~ Tp). Then G O is A- 
free of  f inite rank and 

rankA(G~189 �9 ~ q~(t)~o(N/t). 
0<tiN 

Moreover, for each r > 0, we have that 

(~o)r~ ~_ e ff ( ~  (N p~); rip). 

Proof. We have an exact sequence: 

O--.GO-~ WO ~ VO ~O. 

Since V ~ is A-free, this exact  sequence splits, and thus G o is A-free. This shows 
that  

(ff o)r, _~ (~W ~ o)r~ _~ e ~r (F 1 (N p~); Tp). 



Galois representations into GLz(Zp[[X]] ) attached to ordinary cusp forms 

By Theorem 5.8, we have that 

coranka(C~ eN(F~(Np); Tp)=�89 ~ ~o(t)~o(N/t). 
0 < t i n  

This finishes the proof. 
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w Proof  of  Theorems 1.1 and 1.2 

We begin by defining a pairing between the Hecke algebras and the spaces of 
modular forms. Let K be a finite extension of Qp, and let (9 K be its p-adic 
integer ring. We write Tp for Qp/Z~, and put 

Sk(N P r; K/~J K) = Sk(l] (NPr); K)/Sk(I'I (NPr); (QK)" 

By definition, one can embed via q-expansion this space into the module of 
formal series (K/6/r)[[q] 3. We take the injective limit: 

Sk(N p~ ; K/(g K) = ~ Sk(N pr ; K/(g K)--*(K/(g K) [[q]]. 
r 

Naturally Sk(NP~';K/(gK) is isomorphic to Sk(Np~176 ~;OK). For each 

element f~Sk(Np~;K/(gK), we write its q-expansion as ~ a(n,f)q n. Naturally, 
n=0  

the Hecke algebra h'k(Np~;(gK) acts on Sk(Np~';K/(gK). We define a pairing 

(7.1a) ( , ) :  ~k(NP~';(gK) XSk(Np~;K/(gK)-+K/(gK by (h,f)=a(1,flh). 

This pairing satisfies 

(7.1 b) (h,flh')=(hh',f) for h,h'S~k(Np~;(gK). 

We shall equip Sk(Np~;K/(gK) with the discrete topology. 

Lemma 7.1. P u t  o Sk(N p ;K/(gr)=eSk(Npr;K/(gK) jor the idempotent e in 
~k(Np~;OK) attached to T(p). 7hen the pairing (7.1a) induces the Pontryagin 
duality between ~k(NP . . . .  ,Z,)  and Sk(N p ,rip) (resp. ~k(SP ~'Zp) and S~ 
Jbr r= 1,2,..., oo. 

This follows from the argument in [13, w 

Lemma 7.2. For each pair of weights k>l(__>l), there is a continuous surjective 
algebra homomorphism of ~k(NP~;(gK) onto ~z(Np~;(gK), which sends the Hecke 
operator T(n) of weight k to that of weight I for each positive integer n. It 
induces a surjective algebra homomorphism of the ordinary part of the Hecke 
algebras. 

Proof Since ~k(NP~~ we may assume that (gK=Z p. 
It suffices to construct the homomorphism for l = k - 1 .  Define a formal q- 
expansion for each t~(Z/p~Z) • by 

G ( r , t ) = - t o P - ~ + � 8 9  ~ sgn(d))q", 
n =  1 d i n  

d = _ t m o d p  r 
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where t o is an integer satisfying 0 < t o < p  ~ and to=tmodpL Then, as shown by 
Hecke [8, w G(r,t) gives in fact the q-expansion of an element of 
s/-/a (F~ (N p'); Q) and satisfies 

,or 

(e.g. [12, Lemma6.1]).  Put E(r, t )=-p'G(r, t ) .  Then, we have a congruence: 
E(r, t)=-t modp ~ (because of our assumption p > 5). For any Zp-module M, we 
write M[p'] for the kernel in M of the multiplication by p". Then, the 
multiplication of E(r, 1) induces an injective morphism 

i,: Sk_ , (N p ~176 ;Tp) [p']--->Sk(NP ~176 ;Tp) [p'], 

since i, preserves the q-expansion. This injection is compatible with Hecke 
operators. Let us verify this fact: If we take feSk_t(F~(Np~);Q) such that 
p'feSk_l(Fl(Nps);Zp) and if write f '  for fE(r,  1), then f and f '  has the same 
q-expansion modulo Zp[[q]].  For each prime l outside Np, we take 7 

(a ~)eFo(Np" ) (for m larger than r and s)such that d - l m o d N p  m. Then 
l _  

w e  

have that 
f 'lk7 = ( f  Ik- 17)(E(r, 1)Ix 7)-  l- i ( f lk-  1 7) mod Zp [[q]],  

since E(r, 1)ll 7 = E(r, a ) -  a--  l -  i modp" Zp [[q]]. 
This show that 

n # 

a(n,f'lT(l))=a(nl,f')+P-ia (7,f Ik,) 
(7,,,,_,,) modZ,. 

- a(n,f] T(l)) mod Zp. 

Thus we know that i, o T(l) = T(l) o i r The equivariance of i, with T(1) for prime 
divisors l of Np and with T(l,l) for arbitrary primes 1 is obvious. Since i, 
preserves q-expansion, we have a commutative diagram for r > s: 

i~: Sk_l(Np~;Tp)[p ~] ,Sk(NP~176 s] 

i,.: Sk_l(Np~;Tp)[p "] -~Sk(Np~;Tp)[ff]. 

After taking the injective limit relative to r of these morphisms i,, we obtain an 
embedding 

i: Sk_i(Np~;Tp)~Sk(Np~;Tp), 

which is equivariant under Hecke operators. By duality, we obtain a con- 
tinuous surjective algebra homomorphism: dk(NP ~176 k_~(Np ~;Zp), 
which was to be shown. 
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Proof of  Theorem I.I. As seen in w and Lemma7.2, we have surjective 
continuous morphisms which make the following diagram commutative: 

d~ ~ , d~176176 

~ (gK) (for each k >__ 2). 

Thus, what we have to prove is that Pro,2 is an injection. 
Since ~~ is finite over A r (cf. [13, Cor. 4.2]), d~ is also 

finite over AK, 

0 m.  0 d2(N p ,(gr)=d2(N p ;Zp)@z (9 K and d~176174 (gK . 

Thus we may assume that C r = Z  p. Since the subgroup # =  {(eZW[(P-1 = l} of 
Z acts on d~ d~ and ~//-o, we can decompose 

d~ = @ dO(a), 
amodp--  1 

d~176176 = @ d~ 
amodp--  1 

and 
3 U~  @ ~U~ 

amodp--  1 

where (e/ t  acts on d~ d~ and f~~ by he character: ~v--~". Then, P~.2 
induces a surjective homomorphism of A-algebras: d~176 for each a. 
Here we regard d~ as A-algebra through the action of z=(Zp, Zo)eZ 

(; "1 on S2(FI(Npr);Zp) given by f [z=z2f[c~ for aeFo(Np" ) with a - - =  m o d N p  r. 
Z 

On the other hand, we have let z e Z  act on H~(F~(Np'), Tp) by the action of 
dO,N ~. aeFo(Np r) as above. Thus the action of Z on 2t p ,Zp) induced by the 

former is the twist of that induced by the latter by the character: z~---~z 2 of Z. 
Thus d~ acts on ~ ~  Write n for k - 2  for each integer k > 2  and 
suppose that k - a m o d ( p - 1 ) .  Then the restriction of operators in d~ to 
~V'~ gives an Zp-algebra homomorphism fl of d~176 onto the 
subalgebra of E n d 0 g ~  generated by all Hecke operators T(1) and 

0 T(l, 1), which is isomorphic to dk(tbl,Zp) by Theorem 6.6 and Lemma 6.4. On 
the other hand, we have already seen in [13, Cor. 3.2] that d~176 ~ -- 

0 dk(tbl,Zp) for each k > 2  with k - a m o d ( p - 1 ) .  Thus, we have the following 
commutative diagram: 

d ~ ( a ) / 8  d ~ ( a ) - -  ~ , d ~ (a)/P~ d ~ (a), 

0 d~ (q~l, Zp) 

where ct is induced by Poo,2. Since ct and fl are surjective, they are isomor- 
phisms. Then, by Lemma 6.3, d~ is free of the same rank as d~ over A. 
This shows the desired isomorphism: d ~ ~- d ~ for each a. 
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Proof of Theorem 1.2. As seen in w one has a surjective homomorphism of 
0K-algebras: 

Pk,~: d~ o . ,o l . (gK)/Pk. ~ d (N, O K ) ~ k  (q~r, e,, OK). 

What we have to show is the injectivity of Pk.~. Write R for the rank of 
d~ over A r and R(k,e) for the rank of o 1 . d k (4~r, e, OK) over (9 K. If R 
=R(k,e), we have the desired injectivity from the surjectivity of Pk.~" What we 
know is the inequality R(k,e)<R. By Theorem 3.1, the rank of 
e H~(F~ (Np~); Zp) is equal to 2 [F  : F~] R. Thus, by Lemma 6.4, we know that 

rank~. (d o (F~ (Np~);(fir))= [F : F~] R. 

Since o d k ( IF  1 ( g  p r ) ;  (~K)  = d O  ( ~ l  ( N  p~); Zp) |  (~r and since 

0 r . 0 r . 0 1 d k (F~ (Np) ,  K) = d k (F~ (Np) ,  (_OK) | K = @ d  k (@,, e; K), 
r. 

we know that [F:F~]R=~R(2,e) ,  where ~ runs over all the characters of F/F~. 

Since R(2,e)<R, the only possibility is the equality R=R(2,~). This finishes the 
proof for k=2.  In order to prove the result for general k>2 ,  we take the 
Eisenstein series E(1, 1)=- 1 modp defined in the proof of Lemma 7.2. Then, the 
multiplication of E(1, 1)k- 2 induces an injection: 

0 . 0 r .  . S z (N p, Tp) Iv] ~ S k (N p , T.) [p] 

By duality, we have a surjection' 

d o (r, (N pr); Zp) | Z/p Z---, d o (1"1 (N p'); Zp) | Z/p Z. 

Thus, we have the following inequality" 

~R(k,~)=rankc~ (d~ CK))>=R[F:F~], 

and we conclude that R=R(k ,e )  for each k and e because of R(k,e)<R. This 
finishes the proof. 

w Proof of Theorem 2.1 

Before proving Theorem 2.1, we shall construct several Galois modules out of 
modular curves. We shall take the compactified canonical model X r = X I ( N p  r) 
over Q of FI(Np ' ) \~  (cf. [25, 6.7]) corresponding to the idele group: 

{(~ b d ) s I ~ G L 2 ( Z ' ) l c - O m ~ 1 7 6  

Then, we consider the jacobien variety Jr/Q of XI(Npr)/Q. Let Jr[P"]/Q denote 
the finite group scheme over Q which is the kernel of the multiplication of p" 
on Jr. Put Jr[p~]=UJ~[p"]. w e  identify Jr[P"] for each n = l , 2  . . . . .  oQ with the 

n 
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group of its Q-points. Then Jr[-p"] for 0 < n  < oo is equipped with natural left 
action of the absolute Galois group 63 = Gal(Q/Q). Let 

J~=li~mJr[p"] (the Tate module of Jr), 
n 

which is a left Galois module free of finite rank over Z r and unramified 
outside Np. Let #p-/z be the finite fiat group scheme over Z which is obtained 
as the kernel of the multiplication of p" on the multiplicative group G,,/z, and 
put ~%~/z=~/~p, as a p-divisible group over Z. The Galois action on /~p~(Q) 

n 

defines the cyclotomic character Z: 63~Zp.  Under the identification of Jr with 
Pic~ the ring of algebraic correspondences on X , x  X, acts on Jr con- 
travariantly. Since #2(FI(Nff); Z) can be considered as a subring of this ring of 
correspondences, J,[p"] becomes a right lf2(Fl(Np~);Zp)-module. There is a 
well known isomorphism 

qo: J, [p ~] ~- Pic ~ (X~)[p~] ~- H ~ (X~/O, #p~) 

as ~2(Fl(Np~);Zfl-modules, where we have taken the cohomology group over 
the 6tale site on X,/o. Since the functor of the cohomology groups is con- 
travariant, the Galois action on H~(X~/Q,#p~) is a right action and is different 
from that on j,[pOO]. For  xeJ~[p~](Q) and ae63, the relation between the two 
action is given by 

(8.1) q0(~. x )=  (p(x). ~ -  a. 

The projection: X r ~ X  ~ for r>s induces contravariantly a morphism: J~Jr.  
This morphism is compatible with the Galois action. Thus we can define the 
injective limit 

J~ [P"] =- ~ Jr [P"] for 0 < n ~  oo, 
r 

which is a n / ; 2 ( N p ~ ; Z f l - m o d u l e  as well as a Galois module. 
The two module structures on J~ [p"] are compatible. If we identify /~v-/o 

with (Z/p"Z)/Q by e \ ~ - !  we have an isomorphism of ~z(FI(Np~);Zfl - 

modules: f~-J~[p~]. Next, we identify Jr with the Albanese variety of X~. 
Then, h2(l'l(Npr);Zp) acts on ~ covariantly, and hence, J r  is a left 
~fz(F~(Np~);Zp)-module as well as a left Galois module. For each pair r>s, the 
projection: X,--,X~ induces covariantly a Q-rational morphism: J~-~J~. Put 

r 

which is a left module of ~2(NP~176 as well as a left 63-module unramified 
outside Np. Since Alb(Xr) and Pic~ are mutually dual, there is a natural 
pairing 

satisfying the conditions: 
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(i) ( a . x , a . y ) = ( x , y ) ~ = X ( a ) ( x , y )  for each a~tS; 

(ii) ( h . x , y ) = ( x , y . h )  for each hed2(I'~(Np');Zp). 
Moreover, if we identify pp~ with T v as above, this pairing gives the Pon- 
tryagin duality between ~ and J,[p~']. The natural morphisms: ~ J ]  and 
j~[p~]_,j~[poo] for r>s are mutually adjoint, and thus, this pairing induces a 
pairing 

( , ): ~-oo xJo~[P~]"-*ttp~(O), 

which gives the Pontryagin duality between them. Let e be the idempotent 
attached to T(p) in dz(Np~176 and put 

J - ~ 1 6 2  and J~176176 

Then, we have isomorphisms of d~ 

~o V o o __~Uo. J ~  and J~ [p~] 

A warning may be necessary: The two action of the Hecke operators on Jr (i.e. 
the right action through viewing Jr as Pic~ and the left action via the 
identification: J r=  Alb(X,)) are different, and they are transformed each other 
by the involution associated with the canonical divisor on Jr. 

Now let us begin the proof of Theorem 2.1. Let K be a finite extension of 
Qp, and let 5aK be the quotient field of A K. P u t  ~(N;K)=~~ 
and VK=~--~174 . Then r  naturally acts on Vr. 

Lemma 8.1. The module V K is free of rank 2 over r  

Proof Let P denote the height one prime Po in A, and let Ap be the localiza- 
tion of A at P. By Theorem 3.1, one knows that J - ~ 1 7 6  as d~ - 
modules. Put J - ~ 1 7 6 1 7 4  P. Then, we know that 

J-~t'/P J~ eJ~l ~ | Qv" 

By Lemma 6.4, J11| Qv is free of rank 2 over d2(Fl(Np);Qv). Let x I and x 2 
be elements o f j -o  v which generate j o  el P 3--o e" Put ~ e = ~ 0 (N ; Zp) |  A e and 
define a morphism 

~ 2 ~ _ o  
qg: e oo,e 

by d2~(hl,h2)~---~hl x 1 + h 2 x : ~ J ~  which is surjective by Nakayama's lemma, 
since d e is a semi-local ring. Note that d 2 and 3S_ ~ ~,e are free of the same rank 
over A e by Theorem 3.1. Thus, ~0 is an isomorphism and V K is free of rank 2 
over ~(N; K). 

Let Of" be a primitive local ring of r  and put L=~--~~174162 as a 
submodule of V~. Then L is a AK-lattice in V x stable under d~ and ~. 
By Lemma 8.1, we can identify V K with r  2, and we put 

E(J~F ") = L n  Jd 2 c V K. 

Then E(u5() is a Ax-lattice in ~)~/'2 stable under the Galois action. Let L ( ~ )  be 
the natural image of E(J{ ' ) |  ) in ~ff2. Then L(o,~) may be regarded as 
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an J (J : ) - la t t ice  in o f  2 stable under the Galois action. Let n be the representa- 
tion of tfi on L(CC). By construction, n is continuous in the sense of w To see 
that n satisfies the required properties of Theorem 2.1, we fix a topological 
generator u of F and put og,=z(uV~)-leA for the tautological character t: 
F--,A. Then A/m,A is naturally isomorphic to the group algebra Zv[F/F,]. 
From Theorem 3.1, we know that 

@f /(o~: -~ ~- e ~ = e(lim J,[p"]). 
r n  

Let 2: ~~ be a homomorphism of C~-algebras associated with an 
ordinary form f~Sz(Fo(NPr),et~(o -2) of weight 2 belonging to ~ .  Thus, if f 

= ~ a(n,f)q", then 2(T(n))=a(n,f) .  Write P:=Ker(2),  and put F 
n = l  

=(/~~174 Then by Corollaries l.3 and 1.4, F is naturally an 
algebra direct summand of /~(F~(Np');Qv). Let A: be the quotient abelian 
variety of Jr attached to f, which is constructed in [21, Th. 1]. Let V(A:) 
=(lj_m_mAy[p"])| Write d for r176 Then, F, e3-~, and V(A:) are 

m 

naturally r and by construction, V : = e ~  @~F is a direct summand of 
V(Af) as Galois modules. The space V: is a vector space of dimension 2 over 
F. The Galois representation on V: is unramified outside Np, and the charac- 
teristic polynomial for the Frobenius element a t for each prime l outside Np is 
given by 

1 -a(1,J)X+~t~oo-2(l)IX 2. 

This follows from 1-21, Th. 1]. Especially nmodPf  coincides with n( f )  as in 
(2.1), since n( f )  is simple [18, Th. 2.3]. By Corollary 1.5, we can consider 2 as a 
morphism of J ( Y )  into f2. Then, by definition, we have an isomorphism of 
Galois modules: 

L(,,U) | j (::) gJ ~- Vf | fJ, 

where we have regarded f2 as an J(gU)-module through ,L Write P: 
=Ker (2 )cY(of f )  and d e t ( 1 - n ( a l ) X ) = l - A ( l ) X + B ( 1 ) X  2 for A(l) and B(1)in 
Y ( f ) .  Since nmodPf  is isomorphic to n(f) ,  

A(1)- a(1,f)modP: and B(l)=etp(~- 2(l)modP:. 

The set of points of the form Pf for ordinary forms of weight 2 in Spec ( J  
(o~ff))(f2)_ HOmalg(,/(3(('), ~2) is Zariski dense (i.e. infinitely many), and thus, A(l) 
(resp. B(l)) must be the projection of T(1) (resp. tT(I,I)) in f .  Thus, for each 
ordinary form f~Sk(Fo(Np'),e~(o k) belonging to f ,  the characteristic poly- 
nomial of nmodPf  for a t is given by 

1 -a ( l , f )  X -t-eq/co-k(l) l k- 1 X 2. 

Thus nmodP:  is isomorphic to n(f). Since n(f )  is simple, n is also simple. This 
finishes the proof of Theorem 2.1. 
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w 9. Structure of jo [p~] as/~0 (N; Z~,)-module 

Let R be a local ring of tJ~ Zv) with the idempotent 1RelJ~ Zp). Put Jr(R) 
=lR(J~ for each r = l , 2  . . . .  ,oo. Define an integer a with 0 < a < p - 1  so 
that ~e# acts on R via the character: ~--~ ~ ~". We shall give exact structure 
theorems of Jr(R) as R-module by assuming one of the following conditions on 
R: 

(9.1a) a and p - 1  have a non-trivial common divisor, and a@2; 

(9.1b) R"~HOmA(R,A) as R-modules. 

Condition (9.1b) is equivalent to 

(9.1c) There is a prime divisor P of A such that 

R/PR ~- HOmA/PA (R/PR, A/PA). 

As a byproduct, we can prove the flatness of R over A without using the result 
of [13]. As already mentioned, the natural action of Z~ on Jr[p ~'] is different 
from the action induced by the Zp[ [Z~] ] -a lgebra  structure of A~ and is 
obtained by twisting the latter by the character: z~--~z 2. Thus, /~ acts on Jr(R) 
through the character: (~._.(a-2, which is non-trivial if a4:2. By Theorem 3.1, 
Joo(R) is A-coffee and Jr(R)",J~(R)[o~r] for ~or=  l(U pr-')  - l e A .  Especially, Jr(R) 
is always p-divisible. Let 6 be the greatest common divisor of a and p - 1, and let 
(, be a primitive pr-th root of unity in O, and let K r be the unique subfield of 
Qp((r) with [Kr :Qp]=pr - l (p -1 ) / 6 .  We denote by (9 r for the ring of p-adic 
integers in K r and by Pr its maximal ideal. 

We say that a p-divisible group G over (9 r is of multiplicative type if its 
Cartier dual is etale over (_9 r and is ordinary if for every geometric point s of 
Spec((gr), its fibre at s is a product of multipticative ones and etale ones. 

Lemma 9. (Langlands). Suppose that a =I = 2. Then the p-divisible subgroup Jr(R)/Q 
of J~/Q is contained in an abelian subvariety A r defined over Q of Jr such that 

(i) A~ has good reduction over (gr; 

(ii) A r is stable under the Hecke operator T(p) 

(iii) Let At~6) , be the Neron model of A r over (_9 r and Ar[p ~'] be the p- 
divisible group associated with A,/C r. Then e(Ar[p~]) is ordinary. 

Proof. Let f be a primitive form in S2(FI(Np~)) (but it does not necessarily 
mean that f is a new form of level Npr). Let C( f )  be the smallest possible 
level of f (thus, f is a new form of level C(f)). Let A I be the abelian 
subvariety of J l (C( f ) )  attached to f ([25, Th. 7.14]). For divisors t of 
Npr/C( f ) ,  the morphism: z~-*tz on .~ induces a morphism of abelian varieties 
It]:  J l ( C( f ) )~J , .  Let Ail[ t  ] denote the image of A I in Jr under [t]. By 
definition, Jr(R) is covered by Y , ~ A I I [ t ]  for some primitive forms f and 

f r 
integers t. Let ~ be the minimal set of primitive forms such that 

Jr(R) ~ Z Z A I I [  t] in Jr- 
f ~  t 
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Since Jr(R) belongs to the ordinary part of Jr[p~], we may assume that 
la(p,f)[p= 1 if fetb,  by replacing f by its conjugate under Galois action if 
necessary. Let n be the cuspidal automorphic representation of GLz(A ) as- 
sociated with fEq~, and decompose n=@n I as a restricted tensor product of 

l 
local representations. Since a(p,f)#O, np must be principal or special. If np is 
special and f is ordinary, then/~ acts trivially on f (e.g. [12, Lemma 3.2]). This 
case is eliminated by the assumption: a=t=2. Thus n v is principal and corre- 

x sponds to two quasi characters 2 and # of Qp, one of which is unramified. By 
local class field theory, we can consider 2 and kt as characters of Gal((~p/Qp). 
Then the restriction of 2 and /t to Gal((~p/Kr) becomes unramified over K,, 
since the restriction of 2 .~  to Z~ coincides with the p-part of the character of 
f which is unramified over K,. Then, by virtue of a result of Langlands [15, 
Th. 7.1 and 7.5]. 

(9.2) The 1-adic representation on AI[I ~ (f~qO Jot each prime 1 outside p is 
unramified at Pr over K r. 

Let T*(p) be the adjoint operator of T(p) in Sk(FI(C(f)) ) under the Peters- 
son inner product. Since f is primitive, Ar is stable under T(p) and T*(p). 
Then, again by the result of Langlands, the characteristic polynomial of the 
Frobenius element in Gal((~jKr)  is given by 

X 2 -(T(p)+ T*(p) o [a])X+p. [a] 

over the Hecke algebra in End(Ar On the other hand, by [12, Prop. 4.4], we 
know that 

Jr(n)c ~ ~ Af[[t]=A. 
f ~  0 < t l N p r / C ( f )  

(t, p) = 1 

By the criterion of N&on-Ogg-Schafarevich ([19, Th. 2.1]), (9.2) shows that Ay 
has good reduction over C r and by the above characteristic polynomial, 
e(Ai[p~J]) is ordinary (cf. [10, Prop. 4.4]). Note that T(p), e and [t] for t prime 
to p are commutative and induce Q-rational maps on A I. Moreover A is 
isogeneous to a product of Af over Q. Thus A has good reduction over 6r and 
eA [p~] is ordinary. 

By Lemma 9.1, Ar[p ~] has a structure of p-divisible group over (9 r (in the 
sense of Tate [27]) if a # 2 ,  and Jr(R) becomes also a p-divisible group over (9 r 
as a director factor of Ar[p~]. 

Corollary 9.2. Assume that a # 2. Then Jr(R)/C r is ordinary. 

This is clear from the assertion (iii) of Lemma 9.1 and the definition of the 
ordinary part of j,[pOO]. 

Let Cr(R)/(9 * (resp. E~(R)/Cr) be the connected component (resp. the maxi- 
mal 6tale quotient) of the p-divisible group Jr(R)/r r. The modules Cr(R ) and 
Er(R ) are naturally R-modules. The inclusion map: Js(R)~Jr(R) for r > s > 0  
induces natural morphisms: 

C~(R)~C~(R) and E~(R)~Er(R). 
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Put 
C o ~ ( R ) = ~ C r ( R )  and E~(R)=li_mmEr(R ). 

r r 

Then, we have an exact sequence of R-modules :  

0-* Cr(R)~Jr(R)~Er(R)-- 'O for each r = 1, 2 . . . . .  oo. 

Theorem 9.3. Assume (9.1a). Then we have natural isomorphisms : 

C~(R) r r ~  - Cr(R ) and 

and as R-modules. 

Cr(R ) ~- (R/~o2,rR) | 

Coo (n)--- R |  n o m z ~  (A, Tp), 

E~o(R)r"~-E,(R) for each r > l  

Er(R ) ~- Homz~ (R/r r R, Tp) 

E o~ (R) ~- H o m z .  (R, Tp), 
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0 , Cr(R ) - -  , Jr(R) , Er(R ) 

0 , Cs(R) rr -~ Js(R) rr , E~(R) r" 

Jr(R)~-Cr(R)GEr(R)  for each r = l , 2  . . . . .  oo* 

Proof. For  each pair  of integers (r,s) with s > r > 0 ,  we have a commuta t ive  
d iagram:  

,0  (exact) 

(exact) 

By definition, a is injective, and by virtue of a result in Mazu r  and Wiles [16, 
Chap.  0], 7 is injective, since J,(R) is ordinary  and the ramificat ion index of K r 
over  Qp is not  divisible by p -  1. Then, by the snake lemma,  we know that  

C~(R) r r -  Cr(R). 

Thus, we also have that  C ~ ( R ) r r ~  Cr(R), and thus Co~(R) rr is p-divisible. Let  z 

( 0 - ~ )  and we denote  by the same symbol  ~ the a u t o m o r p h i s m  of Jr 
N p r 

induced by this matrix.  No te  that  z, as an a u t o m o r p h i s m  of Jr, is defined over 
maximal  real subfield of the cyclotomic field of Npr-th roots  of unity, and also 
we have the relations:  

T * ( p ) = z o T ( p ) o z  -1 and r 2 = l .  

Let e* be the idempoten t  in E n d ( d , ) |  p a t tached to T*(p). Then,  we know 
that  e* = z o e o z -  1. Thus, J,(R) [pro] and r(Jr(R)) [p"]  are mutual ly  dual  under  

* This fact has been also proven by Mazur and Wiles in their preprint: On p-adic analytic 
families of Galois representations (w Prop. 2) 

where (.02.r = I(uPr-I)--u2Pr-1 =I-IP2,e over all character ~: F/F~--*O. Furthermore, 
we have that as R-modules 
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the Weil pairing for the canonical divisor of the jacobian J,/Q, and therefore, 
Cr(R)[p m] is dual to z(Er(R))[p" ] for each m > 0  (see the proof of [11, 
Prop. 3.1]). This shows that corankz,(Cr(R))=corankz,(Er(R)). Let 2t denote 
the corank of J~(R) over A. Then we know that 

Jr(R) = J~ (R) rr " ~  Hom(Zp [F/F~], Tp) 2t as A-module 

and corankz Cr(R)=t[F'F~]. Let C*(R)=Hom(Cr(R ), Tv) for each r 
= 1, 2 . . . . .  ~ .  Then, we have already shown that 

C *  (R)/co x C *  (R) ,~ C~(R) ,~ Ztp. 

Thus, there is a surjective morphism: A'~  C*~(R) of A-modules. For each r>_ 1, 
this morphism induces a surjection: (A/orA)t~C*(R), but the both sides are 
Zv-free of the same rank; thus, (A/o,A) t,~ C*(R) for all r > l .  This shows that 
C*(R) is A-free of rank t, Co(R ) is A-injective and the exact sequence: 

0---~ C~(R)--* Joo(R)--* E~(R)-*O 

splits as A-modules. Hence E~(R) is also A-injective, and especially, E~(R) rr is 
p-divisible. The corank of E~(R) r" and Er(R ) over Zp are equal to t[F" F~] and 
Er(R) is injected into E~(R) r'. This shows that Eoo(R)r"~-Er(R). 

Let E*(R) denote the Pontryagin dual module of E,(R) for each r 
= 1,2 . . . . .  oo. Then we know that E* (R) ~ E* (R)/o r E* (R) for each finite r__> 1. 
It is known by [11, Prop. 3.1] that 

E*(R)~-R/~o2.1R as R-modules. 

Let ~6E*(R) be the element corresponding to the identity of R, and take 
x~E*(R) so that xmodo~lE*(R)=,Y. Then, we can define a morphism ~p of R- 
modules: R~E*(R)  by r ~ r . x  for r~R. By construction, q~ is surjective (to 
define ~o and show the surjectivity of ~o, we have used [13, Cot. 3.2] implicitly, 
but we can do this without [13, Cor. 3.2] as follows: Anyway, ~~ is 
a residue ring of ~~ Since E*(R) is non-trivial, the image R o of R in 
~~ fl is a non-trivial local factor. By [11, Prop. 3.1], E*(R)"R o, and 
by taking x~E*(R) so that the image of x in E~(R) gives the identity of Ro, we 
can define surjective q~ as above). Since R acts on E*,(R) faithfully by Lem- 
ma6.4,  ~o must be injective (if one admits the flatness of R over A, the 
injectivity of ~o is obvious, since R and E*(R) are A-free of the same rank). 
Thus we have that as R-modules 

E*(R)~-R and E~(R)'-'Hom(R, Tfl, 

and we get a new proof  of the fact that R is fiat over A. By [11, Prop. 3.1], we 
have that C 1 ( R ) -  (R/o92,1 R) | Tp as R-modules, and thus 

C* (R) ~- Homzv (R/o2,1 R, Zp). 

Put M=HomA(C*(R),A). Then, M is A-free, since C*(R) is A-free. Further- 
more, we have that 

M/co 1 M ~- Homzp (C~' (R), Zp)~- R/(o2,1 R. 



602 H. Hida 

The same argument as above shows that M-~ R as R-modules. This shows that 

C*(R)~-Homa(R,A), C~(R)~-Hom(HomA(R,A),Tp)~-R| fl 

and 
Cr(R ) ~- R/~z,rR | 

Finally, we shall prove the splitting of exact sequence of R-modules: 

0--* Cr(R)/C9 r ---* Jr(R)/C,~ Er(R)/C ~-,'O. 

The inertia group I over K r acts trivially on E,(R) and on Cr(R ) via a 
character 2: I ~ R  since C*(R)~-HOmA(R,A ). By the remark about det~ after 
Theorem2.1,  we know that 2 coincides with the restriction of ~oaZ-l.z to I, 
where co is the Teichmuller character regarded as a character of I, Z is the 
cyclotomic character and i is the tautological character of F into A. If a~I 
coincides on Qp(~) with the generator of Gal(Qp(~r)/K~), we thus know from 
(9.1a) that 2(a) is congruent to a non-trivial ( p -1 ) - t h  root of unity modulo the 
maximal ideal of R. Then, for each m > 0, we can find sufficiently large integer t 
so that the kernel of the operator a v ' -  1 on Jr(R)[p"] gives the splitting image 
of E~(R)[p"], since a - 1  annihilates E~(R) and coincides on Cr(R ) with an 
action of a unit of R. This finishes the proof. 

Now we shall give a similar structure theorem of the R-module Jr(R) by 

assuming (9.1b)instead of(9.1a) .  We consider the action o f ~ = ( ~  _ 0 1 ) o n  

H~(FI(Np~); Tp)~-J~[p ~ as defined in w As already mentioned in the proof of 
Lemma 6.4, e commutes with the Hecke operators T(n). Therefore, e acts on 
the p-divisible group Jr(R). Put 

J,+- (R)= {v~Jr(R ) I vie = +_ v}. 

Since p > 5 ,  Jr(R)=J+(R)| As is clear from the proof of Lemma 6.4, we 
know that 

corankzp J+ (R) = corankz;  Jr- (R) = t IF  : F~]. 

Since the action of ~ is compatible with the inclusion map: J~(R)~Jr(R ) for 
r > s > 0 ,  we may take the injective limit: J+(R)=limJr+-(R). Evidently, we 
know that r 

(9.3) J~(R)=J+~(R)@J~(R) as R-module, and (Jo~(R))r"~-Jf(R). 

Especially, J f  (R) is A-injective (of A-corank t). If  p acts on J~(R) non-trivially, 
then by [11, Prop. 3.1], there exist an exact sequence of R-modules: 

O~R/o2,a R ~H~ Tp)~Hom(R/~~ R, Zp)--*0. 

By Assumption (9.1b), which is equivalent to (9.1c), Hom(R/o~2.1R, Zp) is 
R/o~2, ~ R-free, and hence this exact sequence splits. Namely, we have 

Homz , ( J l ( e ) ,  Tp)"(e/co2,1e)  2 and Jl(e)~-gom(R/tn2,1R,Tp) 2. 
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Since R/~):.~R is an indecomposable R-module, we know from the theorem of 
Krull-Schmidt ([3, 14.5]) 

Homzp(J ~ (R), Tp) - R/o2. ~ R as R-modules. 

This combined with (9.3) show that 

+ 
J• (R)~- Horn(R, Tp). 

Thus we obtain 

Theorem 9.4. Assume one of the equivalent conditions (9.1 b, c) and that # acts on 
J~(R) non-trivially (i.e. a @ 2). Then, the Pontryagin dual module of J~(R) is ji'ee 
of rank 2 over R. 

w 10. Special values of L-functions of GL (3) 

Let f be a normalized eigenform in Sk(Fo(Np" ), O) and fo be the primitive form 
associated with f. Let 7r be the automorphic representation of GLz(A ) as- 
sociated with fo, for the adeles A of Q. Let C(f) be the conductor of u (i.e. 
C(f)  is the smallest possible level of Jo). Decompose u=@uz  as a restricted 

l 
tensor product of local representations over all places of Q. The L-function of 
GL(2) associated with fo (or ,~) is defined by 

L(s , f )= ~ a(n,Jo)n -s, 
n = l  

which has an Euler product expansion of the form: 

L(s,f) = [ I  1-(1 - a t I ~)(l - fls I s)3-1 
I 

for suitable algebraic numbers ut and fit for each prime I. In the flame work 
of representation theory, one usually takes the "unitarization" L(s, rt)= 

L(s+~--~-l-,Jo ) instead of L(s, fo), but we prefer the classical form, because it 

is suited for p-adic theory. As defined in Gelbart and Jacquet [7, w 3], there is a 
canonical base change lifting of automorphic representations of GL(2) into 
those of GL(3). Let r~ be the lifted automorphic representation of GL(3) of n 
and put D(s , f )=L(s -k  + 1, ~). We recall here the explicit Euler factor of O(s,f) 
according to [7, (1.3), (1.4), (3.1.1)]. Let ~h denote the unique unramified qua- 
dratic character of Q f  for each prime I. Put 

(10.1) D(s,f) = [I Dl(s,.f) 
I 

with 
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1 if n~ is super cuspidal and rc~| 
(1 + /k - J - s )  -1 if r~t is super cuspidal and ~l| 

D~(s,f)=. [ ( 1 - I  k - l -S ) (1 -2 f i ( l ) l  k - l -~ ) (1 - f tp ( l ) l  k-l-s)]  1 if z h is principal 
and 
rc z ~ ~(2, #) for two quasi characters 2 and # of Q [ ,  
1--Ik-2-~) -1 if ~z is special, 

where we understand that  i /~( l )=2f i ( l )=0 if 2fi is ramified. 
Let Oo be the primitive character modulo  COP) which induces O modulo 

Np".  If I is prime to C(f) ,  we have that  

Dt(s,f) = [(1 - ~o (l) cd 1-~)(1 - ~o (l) cfi fit l-~)(1 - ~o (l) fl~ l - ' ) ] -  1. 

Now we define another (auxiliary) Dirichlet series by 

(10.2) ~ ( s , f ) =  [ I  [ (1-~o( l )c~ I-s)(1-~o(l)e,[3,1-~)(1--~bo(1) [3~ l-~)] - ~ 
l 

For  each Dirichlet character Z, the twist of f by Z is defined by 

f i x  = ~ z(n)a(n,f)q".  
n= l  

Evidently, f i x  is a normalized eigenform. The L-function L(s, f )  depends only 
on the primitive form fo, and D(s, f )  depends only on the class of all twists of 
f0, but ~ ( s , f )  depends on the choice of the normalized eigenform f 

Terminology. Assume that  f is primitive. The form f is said to be minimal if 
C ( f l x ) > C ( f )  for all primitive Dirichlet character Z- Always in the class of 
twists of f, the minimal forms exist but they may be several. 

Lemma 10.L Suppose that f is primitive and minimal. Then we have for each 
prime l: 

(i) I f  rt l is special, then l divides C ( f )  exactly once, the restriction of ~k to 
(Z//Z) • is trivial, and a(l, f)  2 = O0(1)l k- 2. 

(ii) 7z I is principal if and only if l is prime to C(f)/C(O). 
(iii) I f  ~l is special or principal, then we have that 

Dt (s,f) --- [(1 - ~0 (1) ~2 l-  ~)(1 - ~0 (l) c~ l fl, l-  ~)(1 - ~0 (1) fl~ l -  ~)] - ~. 

(iv) D(s, f)  = D(s,f[x) for any Dirichlet character Z. 

Proof. Assertions (iii) and (iv) are obvious from the definition and (i) and (ii). 
Firstly, we shall prove (i). If ~z is special, then 7 h ~ a(2, p) with quasi characters 
2 and ~t of Q [  with 2 p - l ( x ) =  I xl .  Let C(~l) (resp. C(2)) be the local conductor  
of 7z~ (resp. 2). Then it is known that C(~)= C(2) 2 or l according as 2 is 
ramified or not. Let X be a Dirichlet character of /-power conductor  whose 
restriction )~l to Z[  coincides with ,L Then, we know that  

rcl| and C(rcl|  
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Since f is minimal, this shows that 2 must be unramified, and thus the 
assertion (i) follows. Then, we assume that ~z is principal, and nt~-n(2, tt). Then 
it is known that C(z~)= C(2)C(t0. Let ~ be a Dirichlet character whose restric- 
tion Xz to Z~ coincides with 2. Then obviously, we have that 

c (~z | z,- ') = c (,~ z,- ') =< c (z~) c (~) = c (,~) c (~) = C (~). 

Thus the minimality of f at l is equivalent to the condition: C(n,)= C(~/,t) , 
where ~, is the/-part of ~. 

Corollaryl0.2. Let X be the set of primes l such that 7zz| , and zt, is 
supercuspidal (then, if leE, 12 divides Np"). If f is primitive and minimal, then 
we have 

D(s,f) = [I(1 + I k-l-s)-1 ~(s,f). 
l e e  

By a result of Shimura [22, Th. 2], ~(s,f) is holomorphic at s=k (in fact, 
by Gelbart and Jacquet [-7, Th. 9.3, 3.7], D(s,f) is holomorphic on the whole s- 
plane and satisfies a functional equation of the form: 2k-1-s~---~s). 

Here are some remarks about the criteria of the minimality: Let f be a 
primitive form, and let 7c=(~)~ t be the corresponding automorphic representa- 
tion. 

(i) For a prime factor l of C(f), if the /-part of the character of f is 
primitive modulo the /-primary part of C(f), the assertion (ii) of Lemma 10.1 
(or its proof) implies that ~t is principal and f is minimal at l; namely, f has a 
minimal conductor in the class of twists of f by characters modulo l-power. In 
particular, each primitive form associated with a primitive local ring of 
r (gr) is minimal at p. Thus fk,~ is not the twist of fk by e. 

(ii) If the character of f is primitive modulo C(f) ,  f is then minimal by the 
first remark and the exceptional set I2 is empty. Thus the primitive function 
D(s,f) coincides with ~(s,f). 

(iii) If a(C(f) , f )40,  then f is minimal and X is empty, and therefore D(s,f) 
=@(s,f) .  

This follows from Lemma 10.1 and the following facts for each prime factor 
l of C(f) (cf. [2] and [12, Lemma 3.2]): (a) if ~t is special and minimal, then 
the /-part of the character ~0 of f is trivial, llC(f) but I zx c ( f ) ,  and a(l,f) z 
=~,o(l)l k-z, where ~00 is the primitive character associated with ~0; (b) if ~, is 
principal and minimal, [a(l,f)]Z=lk-'; (c) if ~l is super-cuspidal or non-mini- 
mal, then a(l,f)=O and 12[C(f). As a special case of this criterion, if the N- 
part (i.e. the prime to p part) of the character of a primitive local ring Y{ of 
~(N;K) is primitive modulo N (cf. Cor. 1.6), then every primitive form f 
associated with ~ is minimal, 2 = ~b and D(s,f)= ~(s,f). 

Fix a primitive local ring ~ of ~t(N;K) defined over K, and let @ be the 
character of ~ .  Let e: F o ( ~  • be a finite order character of F with Ker(e)=F~. 
For each integer k>2 ,  let 7~(k,e) be the set of the primitive forms associated 
with all ordinary forms in Sk(Fo(Npr),~@c9 -k) belonging to ~ .  We write 
= ~(k,e) if no confusion is likely. We shall now define a canonical transcen- 
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dental factor of the value of 

Z(s,T(k,O)= I] ~(s,f)  at s=k. 
f e~t ( k, ~) 

Let K o be a finite extension of Q which contains every Fourier coefficient of 
all forms in 7 ~. We may assume that K is the topological closure of K o in f2 
(see the remark after Cor. 1.7). We suppose that 

(10.3) The conductors of all the elements in tP(k,e) are equal to an integer C. 

This condition is imposed because the semi-simple algebra: F 
=(~(K)/Pk,~/~(K))|162 may not be a field, and thus we do not know in 
general whether all the forms belonging to F have the same conductor or not 
(see the remark after Cor. 1.3). 

This condition is verified (by Corollary 1.6 and the remark after that), when 
k > 2  or the restriction of e@O.) - k  to  (Z/p~Z) • is non-trivial. We thus know that 
C=Np ~ if p divides C, and C = N  if C is prime to p. We now consider the 
parabolic cohomology group HXe(FI(C),L,(C)) for n = k - 2 .  Complex con- 
jugation: L,(C)--*L,(C) induces an automorphism of Hle(F1(C),L,(C)), which we 
also call complex conjugation, and to denote it, we use the symbol " - ' .  As 
seen in (5.1b), Sk(FI(C)) can be considered as a subspace of H~(FI(C),L,(C)). 
Then we can identify 

Sk(F~(C))@'Jk(F~(C))~_HI(F~(C),L,(C)) for n = k - 2 .  

We write simply S for this space. If p divides C, let 

Then we have 

(10.4) 

s(~) = s~(e 1, ~) | s~(er ~ ~ s. 

s= |  

and cb~/FI(Np~)(~F/F~) acts on S(e) through the character e. When C is prime 
to p, then e is trivial and we understand that S(0 and S are the same. 
Naturally, ~k(~br (or r if C is prime to p) acts on S(0. On the 
other hand, we can decompose ~k(eb~,e;K)=F| according to the decom- 
position of r  (i.e. F=(~(Jff)/Pk,~(~ff))| if C is prime to 
p, the idempotent e induces an isomorphism: o o. : r (~1, OK)-- eo ~k(F1 (N); (gK), 
where e o is the idempotent attached to T(p) on Sk(F~(N)). Thus we can also 
decompose ~k(FI(N);K)=F@A as above. Put 

Then we have 

(10.5) 

S(F)= ~ ~p(S(e)) and S(A)= ~,e(S(e)). 
~oeF a~A 

S(e)=S(F)@S(A), and S(F)= ~ , ( C f + C f p ) ,  
f e ~  

where f p ( z ) = f ( - ~ ) =  ~ a(n)q" for f =  ~ a(n)q'. Let 7~F: S(e)--)'S(F)(resp. n~: 
n=O n=O 

S~S(e)) be the projection according to the decomposition (10.5) (resp. (10.4)). 
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Let ( gK o=(9~ K o, and define L by the natural image of H~(~(C),L,((gKo)) in S. 
Then, we know from [25, Prop. 8.6] that S=L| and thus L is a 6~o - 
lattice in S. Put 

(10.6) L~:,F=LnS(F), L~=~F(Lc~S(e)), 15v=~(L)c~S(F ), L~'v=~v(~(L)). 

Then, we have that I2~=L~, v and L~'e~I2F, and they are all CKo-lattice in S(F). 
Now we shall define a pairing on S by (10.7a) 

(10.7a) ( f ~ g ) = 2 , + ~ ( _ l ~ _ l ) ,  t ~ f ( z )g (z )y"dxdy  ( n = k - 2 ) .  
I'1(C)\-~ 

Then, it was shown in [20, w and [23, Prop. 4.2] (see also [9, w for 
integrality) that 

(10.7b) (L,L)CCKo, (L{, Ur) c 6'Ko, (L~,F,L*'F) c(gKo . 

By construction, S(0 and S(~(=S(e)) (resp. S(F) and S(F)) are mutually dual 
(over C) under this pairing, and S(F) and S(A) (resp. S(F) and S(A)) are 
orthogo_nal. Let d be the degree of K over L/'K; so, 7* has d-elements. Consider 
o)=(.~)~)f~, as a row vector of the elements of S(F). Take Cao-basis 61 . . . . .  b2d 
of L,, F and 3' 1 . . . . .  32d of L~F, and put 

(~=((~1 . . . . .  62d) and ( =  . , '  

as row-vectors. Define matrices X v and X F in GLz,~(C ) by 6. Xv= ~o and b'. X v 
= ~o, and put 

(10.8a) Uf=det(Xv) and uV=det(XV), 

(10.Sb) U~(k,c)=~dlk+')(uvut) ~. { ( k - 1 ) ! C .  C(a~9~o-k)q~(C/C(~:tp~o-k))} -d, 

where C(e$(o -k) denotes the conductor of e6oJ -~ and ~p is the Euler function. 
An algebraicity theorem for the value ~(m, f )  was proved by Sturm [26]. Here, 
we give a version of it for the values 9 (k , f ) :  

Proposition 10.3. The number U~:(k,~) is determined up to the multiple of p-adic 
units in Q, and we have that 

0 ~= (Z(k, ~e(k, ~,))/U~ (k, e))2e(OKo . 

Moreover, if the pairing ( , ) induces an isomorphism." 

Then we have the .formula: 

[Z(k, ~(k ,  e))/U~ (k, ~,) ; 2[r:O~l = [L~ : L~.F]. 

Proq[. Write 7 ~ = {fl,f2 . . . . .  J d }  and put 

o3~(resp, c@=~ "f/(resp" f/ ')_ if l<_i<_d, 
(f//P-d(resp �9 )~i d) if d<i<2d .  
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Then we have that 

- -  r t (61 ... .  ,62a)'Xe=(c01 . . . . .  C02a ) and (6' 1 . . . . .  62a).Xr=(c01 . . . .  , ( 0 2 d  ). 

Thus, we see that 

- -  r 

(gKo~det((6i ,6~))l<=i,j<=2a=(upur) 1 det((~ol, cos)) 

= _(U r UF)-* 22(.+ ,)a I-I (f,f)2, 

where ( f , f ) =  5 ] f[Zyk-Zdxdy.  Then, [9, Th. 5.1] shows the first assertion. 
rt(C)\~ 

Now we shall prove the second. By the assumption, we can choose a basis {6*} 
of L~ so that 

6* ( i ,6~)=6ij  for the Kronecker symbol 6 u. 

Then, there exists an invertible matrix ~M2d((gKo) such that 

(6* ... .  ,6%).~ =(6~ . . . . .  62a). 
Then we have that 

det ( ( f i ,6 j ) )=det(e)  and Idet(e)lp-rr:Qpl=[L~:L~.v]. 

Proposition 10.4. I f  the restriction of ~0o9 -k to (Z/p'Z) • is trivial or if k=2, 
then ( , ) induces isomorphisms : 

L,,F~-- Hom~Ko (U'r, (gKo ) and /~--HOm~Ko(/Ar,(gro). 

Especially, we have that 

L~/L~,F~- LJ/IAF as Z-modules. 

Proof. When k=2,  it is well known that L is a self dual (9Ko-lattice under ( , ) .  
Then the assertions are obvious from the definition (10.6); so, we assume that 
~0e)-kl(z/prz)x is trivial and k>2.  This implies that C = N .  Since 

dk (F~ (N); f2) = dk (F~ (N); K) | f2 = dk (F~ (N) ; (~) | f2, 

every idempotent in dk(FI(N);K) is actually contained in dk(Fl(N);l~). By 
replacing K o by its finite extension if necessary, we may thus assume that the 
idempotent e 0 attached to T(p) of level N is contained in dk(FI(N);(_gKo ). Put L ~ 
=eoL. On Sk(FI(N)), the adjoint operator of T(p) under ( , )  is given by 

(; *) T(p)o[a] for aeFo(N ) such that a -  modN. Thus e o is self adjoint. 
P 

Especially, ( , )  induces a perfect pairing on L ~ @~roK0. If ( , )  is perfect on 
L ~ over (-fro, the assertions are obvious from the definition (10.6). Note that 

L~ | (-Or ~- eo H ~,(F~ ( N), L,((g r) ) ~- (e o H ~( I'~ ( N), L,(Zp))) | (-Or. 

Thus, what we have to show is the "perfectness" of the pairing ( , )  on 
eoH~(F~(m),Ln(Zp) ). By Corollary4.10, eoH~(F~(N),Ln(Zp)) |  is na- 
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turally injected into e oH~(F I(N),L.(Z/pZ)), which is isomorphic to 
eH~(~b~,L,(Zp))| (Theorem 6.6 and [10, Cor. 3.3]). Thus we know that 

e o H~,(F~ (N), L,(Z/p Z)) ~- e o H~(F~ (U), L, (Zv)) | Z/p Z. 

By [I0, Cor. 3.5], the pairing ( , ) induces a perfect duality on 
e o H1p(FI(N), L,(Z/pZ)); thus it induces a perfect duality on L ~ over (gKo. 

Let R be a local ring of ~~ such that R |176 contains f .  Take an 
integer a with 0 < a < p - 1  so that /~ acts on R via the character: 0--'~". We 
suppose one of the following two conditions: 

(10.9a) a + 2, and a and p -1  have non-trivial common divisor; 

(10.9 b) a + 2, and R ~- HomAK(R, AK) (i.e. R is a Gorenstein algebra). 

The condition (10.3) is automatically satisfied under the condition: a+2 ,  be- 
cause eOco- 2 is non-trivial. 

Then we have 

Theorem 10.5. I f  k = 2 or C = N, then we have 

[Z(k, 7~(k, ~))/U~(k, ~)[;Ek:O,~ = i Ck,~(jd)l ' 

where Ck,~(3f ) is the module of congruence defined in (1.12) and the right-hand 
side of the above formula is the cardinaIity of the module Ck,~(oU ). 

Here are some remarks about the theorem: 

(i) Under the assumption of the theorem, Conjecture 3.10 in [13] is proven 
to be true. 

(ii) We have adopted in the formulation of the theorem the special value 
~ ( k , f )  for f6~P(k,e) instead of the value of the primitive L-function D(s,f). 
The reason of the adoption of ~ ( k , f )  is as follows: By twisting a minimal form 
f by a character X, f ] z  may have more congruence than f has, and at least 
conjecturally, the amount of extra congruences of f l z  should be governed by 
the excluded Euler factor of ~(k , f [ )0  from D(k,f). Thus, to give a precise 
statement for non-minimal forms has some meaning to examine this phenome- 
non. However, as already seen, the value D(k,f)  depends only on the class of 
twists of f ;  so, for the definition of the standard p-adic interpolation of the 
values D(k,f), it is certainly better to take the local ring to which minimal 
forms belong (see Corollary 10.6 below). In fact, we shall prove in our sub- 
sequent paper that if f e ~ ( k , e )  is minimal for at least one couple (k,e), then it 
is true for all couple (k,e) with k>2.  And, if one supposes that all the non- 
archimedean local factors of the automorphic representation of fe~U(k,~) are 
principal and f is minimal, (this is equivalent to saying that eOco -k is primitive 
modulo C)), then D ( s , f ) = ~ ( s , f )  by Corollary 10.2, and the transcendental 
factor U~ (k, e) is substantially simplified and is given by the formula: 

uo~ (k, E)= #~*+ ~(U~ U~) ~ {(k -1) !C ~ }-d. 



610 H. Hida 

Proof of  Theorem 10.5. We shall prove the theorem only in the case where R 
satisfies (10.9a), because the other case can be shown by an argument similar 
to that given below, by Theorem 9.4 instead of Theorem 9.3. We know from 
Propositions 10.34 that 

IZ(k, ~e(k, O)/U~(k, 01p 2~,,:Qp~ = [ L ~ :  L~,~]  = I-L~'F : L~,] .  

Thus, what we have to prove is the formula: 

[L~ : L~,F] = [L~'F : IAF] = I Ck,~(b()12. 

Firstly we suppose that C = N .  Let e o be the idempotent attached to T(p) in 
/~k(FI(N); C K). Then e induces an isomorphism: 

e o Sk(r , (N); Zp) @zp Z/p Z ~- eSk(~ 1 ; Zp) | Z/p Z. 

By duality (e.g. Lemma 7.1), we know that 

0 ~k (q~l, Zp) | Z/p Z ~- e o ~k( F1 (N); Z,) | Z/p Z. 

Thus, as (gK-algebra, we have that 

~o (@, ;6)K ) ~ eo ~k(F 1 (N); (S,K)" 

Let R k be the local ring of eo~k(F~(N);(gK) corresponding to R (i.e. Rk~--R/PkR ), 
and decompose 

Rk | K = F @ A as an algebra direct sum, 

where e induces an isomorphism: F~_(~(~Y)/Pk~(,)ff))| Let ~(F) (resp. 
R(A)) he the image of R k in F (resp. A). Then, we see that 

Ck, ~ (.)ff) ~- (~ (F) @ R (A))/R k. 

Let L(R)= ~ r(LQ~Ko(gK). Then, by Theorem 9.3 and the proof of Proposi- 
rERk 

tion 10.4, we know that 

L(R)~--Rk| OK) as R-modules. 

Thus, by definition, we know that (e.g. [11, w 

L~/L~,F~- Ck,~(3C ) @ Homz~(Ck,~(3r Tp), 

and this shows the theorem when C = N. Now we treat the case: k = 2 and P l C. 
Put Rk,~=R/P k ~R. Then, Rk. ~ is a local factor of o , ~k(tb~,~;(gK) for r given by F~ 
=Ker(e)  (Theorem 1.2). Let U(R)= ~ r(~(L)| ). Then, similarly 
as above we have r~Rk.~ 

L~(R)~--Rk,~OHom~,,(Rk.~,(9K) as R-modules 
and 

L ~' F/IZF ~-- Ck,~(~f ") @ Homz~ ( Ck, ~ (,~(), Tp), 

which finishes the proof. 
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Finally, we shall discuss the p-adic interpolation of the values 
Z(k,~P(k,e))/U~(k,e). Let M be a finite torsion AK-module. For each prime 
divisor P of A K, let Ip(M) be the length of M |  e over the localization Ap 
of A K at P, and put 

z(M) = I-I P I'(M). 
P 

Then, x(M) is a principal ideal of A K. We now identify A K with (gK[IX]] via 
l(u)~--, 1 +X.  

Since the following corollary gives the main result corresponding to 
Theorem III in the introduction, we shall repeat here all the assumptions we 
have already made, in order to make clear in what extent we have achieved 
this final result and what remains as a conjecture: Firstly, we have to assume 
one of the following conditions to assure the decomposition as in Theorems 9.3 
and 9.4: 

(ia) ( p - l , a ) >  1; 

(ib) R~-HOmA(R,A) as R-module, 

where R is the local ring of h'~ such that R |  and a is the 
integer such that 0 < a < p - 1  and ~t acts on R via the character: ~__,~a. In 
addition to one of (ia, b), we shall suppose the following three conditions: 

(ii) a4=2 (to guarantee the good reduction for the minimal abelian sub- 
variety of J1 (NP r) containing Jr(R); cf. w 

(iii) The module of defect ~ ( d f ;  .%,") is trivial (this is known if (ib) is true 
and [ -X;LfK]=I ;  cf. [,13, Prop. 3.9]; especially when J (  is with complex 
multiplication as in Prop. 2.3 and ace 1, 2 ([-28, w 

(iv) Either k = 2  or the p-part of aO~o -k is trivial (to assure the self duality; 
cf. Prop. 10.4). 

Corollary 10.6. Let H(X) be a generator of X(cd(o,U;K)) in A r. Then, under the 
above assumptions, there exists a p-adic unit Up(k, e)EI2 for each couple (k, e) with 
k > 2 such that 

Z(k, ~(k, ~))/U~ (k, e) Up(k, e,) = H(e(u) u k - 1). 

Thus the Iwasawa function: sw-*H(~(u)u=-l)(s~Zp) gives a p-adic interpolation 
of the values Z(k, ~P(k,O)/U~(k,O. 

Note that when N =  1 and [4ff:L~K] = 1, the condition (ia) is automatically 
satisfied, and hence Theorem IIl in w follows from this corollary. 

Proof Decompose ~ ( N ; K ) = X |  as an algebra direct sum, and let d(5()  
(resp. d(s/)) be the image of d~ in J (  (resp. s/). The vanishing of 
JV~(JF;K) means that (i) /~(~')@r162 is At-free, and (ii) (d(uU;K) 
| AK/Pk,~AK~_Ck,~(JF). The assertion (i) follows from the definition of 
,A~(o~f;K) in [,13, (3.9b)], and (ii) is a consequence of Corollary 1.7. By (i), we 
can take a At-free basis of d(4ff)@ d(~/) and/;~ Then, we find a matrix 
~EMd(AK) n GLa(L~K) for d = ranka,,(~, ~ (N; (gK)) SO that 

(~ ( ,w) | ,~ ( d ) )  = ~ o (N; O,,). 
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It  is wel l  k n o w n  (e.g. [1, VII .4 .6])  tha t  de t (~ )~A K gene ra t e s  Z(cd(3C;K)).  W e  

m a y  thus  a s s u m e  t h a t  H = d e t ( c  0. I f  we p u t  /~ (F)=~(gf ) /Pk ,~g(g f f  ) a n d  ~(A) 

=/~(~r ~ ( d ) ,  then  

Ck,~(o,~)~-(~(F ) A o ~ . |  ))/,~k (4,r, ~, (~K), 

where r is given by F~=Ker(e). Fur thermore ,  if we write ~Md((.gK) for 
a modPk, ~, we know that  

~(/~ (F) (~ ~(A)) = / ; o  (q~, e; OK). 

Thus  we  o b t a i n  the f o r m u l a :  

[ Ck,e( o~)l  = Idet(~)l;lr:Opl = I H (e(u) u k -- 1)I~-[K:Qpl, 

and  we  see f r o m  T h e o r e m  10.5 tha t  

I Z ( k ,  T ( k ,  e ) ) /U~(k ,  e)lp = I n ( e ( u ) u  k - Dip, 

wh ich  f inishes the  proof .  
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