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Disclaimer

These notes are from a course on Fontaine’s theory of p-adic integration, taken by the
authors at Concordia University in the winter of 2009, given by Adrian Iovita. We have
tried our best to present a faithful account of these lectures. Be warned that despite
our efforts, many errors likely persist. Please do not take this as an indication of the
quality of the lectures. Any errors are most likely due to carelessness while typesetting,
or the authors’ misunderstanding of the material.
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Introduction

A motivating question for this course is the following:

How can one “integrate” differential forms on a p-adic algebraic variety?

Before discussing the local picture, we will consider some global examples.

Block-Kato conjectures

Let X/ Spec(Z) be a scheme. Attached to X is a complex L-function L(X, s). The
Block-Kato conjectures relate certain special values:

L(X,−n)

for n ∈ Z>0 to the geometry of X, for nice enough schemes X. We discuss several
examples.

Example (Riemann ζ-function). Let ζ(s) be the Riemann ζ-function, which for <(s) >
1 is given by the Euler product:

ζ(s) =
∏
l

(1− l−s)−1.

If B2k is the (2k)-th Bernoulli number, then the following formula is well-known:

ζ(1− 2k) = −B2k

2k
.

It turns out that in this very classical case, one has the following geometric description
of these special values:

ζ(1− 2k) = ±
∏
l

(
#H1

et(Spec(Z[1/l]), (Ql/Zl)(2k))

#H0
et(Spec(Z[1/l]), (Ql/Zl)(2k))

)
Here (Ql/Zl)(2k) denotes the (2k)-th cyclotomic twist of Ql/Zl. We have been impre-
cise about the sign; note that each factor in the infinite product is a multiplicative euler
characteristic.

Example (Smooth, proper algebraic varieties). Let X/Q be a smooth, proper algebraic
variety. In this case the L-function of X factors as:

L(X, s) =
2 dimX∏
i=0

L(H i(X), s)(−1)i

.

(Perhaps we should define L(H i(X), s)?) Let n > i/2 + 1 be an integer, for a fixed
index 0 ≤ i ≤ 2 dimX. Deligne has predicted a geometrix description of the values

L(H i(X), n),



up to rational factors.
In order to explain Deligne’s conjecture, we must examine some comparison isomor-

phisms. To begin we introduce the notations:

Q(n) = (2πin)Q,

MB(X) = H i
B(X,Q(n)),

MdR(X) = H i
dR(X,Q(n)),

〈σ〉 = Gal(C/R).

Here H i
B(X,Q(n)) denotes classical Betti-cohomology of the complex analytic variety

associated to X, with coefficients in the twisted module Q(n). Note that σ acts on X
and on the coefficients Q(n); this gives an action of Gal(C/R) on MB(X). Put:

MB(X)+ = MB(X)σ=1.

We will first explain the existence of a natural “complex integration” comparison
isomorphism:

MB(X)⊗Q C 'MdR(X)⊗Q C.

This isomorphism is even σ-equivariant, where σ acts on both factors of the left side,
and only on the coeffients on the right. Thanks to this equivariance, one can take
σ-invariants to obtain another canonical isomorphism:

(MB(X)⊗Q C)σ=1 'MdR(X)⊗Q R.

In order to define the complex integration map, first note that there are canonical
isomorphisms:

MB(X)⊗Q C ' H i
B(X,C) ' H i(Xan,C),

where C denotes the C-valued constant sheaf on the complex analytic space Xan, and:

MdR(X)⊗Q C ' H i
dR(X,C) ' H i

dR(Xan).

The final isomorphism above follows by GAGA. We see that it suffices to prove that
these two analytic cohomologies are isomorphic. To do this, we consider the de Rham
complex of sheaves on Xan:

ΩXan : OXan −→ Ω1
Xan −→ Ω2

Xan −→ · · ·

The fundamental result concerning this complex was known to Poincaré:

Lemma (Poincaré). The de Rham complex is exact.

In the case that dimX = 1, so that Xan is a Riemann surface, the de Rham complex
has a single differential:

OXan −→ Ω1
Xan .
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If x ∈ Xan is a point and t a local parameter at x, then OXan,x is isomorphic to C{{t}},
the ring of convergent power series in t. Similarly, Ω1

Xan,x is isomorphic to C{{t}}dt.
Since each such differential can formally be integrated to give a local primitive that is
also convergent in the same region, one sees that the differential is surjective. This is
the Poincaré lemma for curves.

In order to apply the lemma to obtain our complex integration isomorphism, we
first note that:

C ' ker(d : OXan → Ω1
Xan);

this simply says that the locally constant functions are precisely the kernel of d. This
simple observation gives us a map α of complexes:

C• : C //

��

0 //

��

0 //

��

· · ·

Ω•
Xan : OXan // Ω1

Xan
// Ω2

Xan
// · · ·

The first vertical map is the inclusion of the locally constant functions into OXan ,
and all other vertical maps are necessarily trivial. The Poincaré lemma implies that
α is a quasi-isomorphism. Recall that this means that α induces an isomorphism
between the cohomologies of these two complexes. Since the complex C• is mostly
trivial, hypercolohomology of C• is just sheaf cohomology of C. We thus obtain an
isomorphism:

H i(Xan,C) ' Hi(C•) ' Hi(Ω•
Xan) = H i

dR(Xan).

In light of our initial remarks, this establishes the complex integration isomorphism.
We leave checking the σ-equivariance to the reader. The canonicity of the isomorphism
follows from the fact that each isomorphism in the definition is canonical.

The slick, modern proof given above does not give any indication of why this iso-
morphism:

MB(X)⊗Q C 'MdR(X)⊗Q C

deserves to be called “complex integration”. One can show that it is induced by the
Poincaré pairing. Recall that:

MB(X) = H i
B(X,Q(n)) = Hi(X,Q(n))∨.

The Poincaré pairing is a perfect bilinear map:

〈, 〉 : Hi(X,C)×H i
dR(X,C)→ C,

defined by the formula:

〈γ, ω〉 =

∫
γ

ω.

The explains why we call this the complex integration isomorphism.



Example. Let X = E be an elliptic curve defined over Q. Then the closed points
of E(C) can be given the structure of a complex manifold, which we denote by Ean.
There thus exists a lattice Λ ⊂ C such that:

ι : Ean ' C/Λ.

Recall that C is the universal covering space of Ean, where:

C

π

��

Ean

is the quotient map followed by ι−1. Note that Λ acts by translation on C, and this
gives a natural isomorphism:

π1(E
an, 0) ' Λ.

Since this is abelian we obtain:

H1(E
an,Z) ' π1(E

an, 0) ' Λ.

On the other hand, GAGA gives:

H1
dR(E)⊗Q C ' H1

dR(Ean) ' Cω ⊕Cη,

where ω is a holomorphic form, and η is not. For instance, if E is given by a Weierstrass
equation y2 = 4x3 − ax− b, one could take ω = dx/y and η = xdx/y.

We would like to describe the complex integration isomorphism:

H1
B(E,Q)⊗Q C ' H1

dR(E)⊗Q C

explicitely in this case. Let ℘ denote the Weierstrass ℘-function for the lattice Λ. Then
the functions x = ℘(z) and y = ℘′(z) give coordinates for E(C).

Given γ ∈ Λ and α ∈ H1
dR(Ean), how does one integrate α over γ? First, consider

the pullback π∗(α) to the simply connected space C. It has the form d(g(z)) where g(z)
is a meromorphic function on C. The cycle on Ean corresponding to γ is the image
under π of any path from 0 to γ in C. We thus have:∫

γ

α =

∫ γ

0

d(g(z)) = g(γ)− g(0).

Let us compute this for ω and η. The holomorphic form ω is easy to treat since:

π∗(ω) = d(℘(z))/℘′(z) = dz.

Hence, for γ ∈ Λ, ∫
γ

ω = γ.
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The nonholomorphic form η is more interesting. For this we must introduce:

ξ(z) = −
∑
λ∈Λ

1

z − λ
.

For each λ ∈ Λ this satsfies:
ξ(z + λ) = ξ(z) + cλ

for all z ∈ C, where cλ ∈ C is a constant depending on λ. Note that:

d(ξ(z)) = ℘(z)dz,

and hence: ∫
γ

η = ξ(γ)− ξ(0) = cγ.

It is now possible to state Deligne’s conjecture more precisely. Suppose again that
X/Q is a smooth projective scheme. Taking σ-invariants under the complex integration
isomorphism gives an isomorphism:

(MB(X)⊗Q R)σ=1 'MdR(X)⊗Q R.

Since MB(X)+ = MB(X)σ=1, we obtain an injection:

MB(X)+ ⊗Q R ↪→MdR(X)⊗Q R.

Let:
MdR(X)→MdR(X)/F0

be the projection onto the zero-th part of the Hodge filtration. Together these maps
yield:

ξ∞ : MB(X)+ ⊗Q R→ (MdR(X)/F0)⊗Q R.

Deligne defines X/Q to be critical if for n > i/2 + 1, ξ∞ is an isomorphism. For
such critical schemes, Deligne conjectured that:

L(H i(X), n)

det(ξ∞)
∈ Q.

If one could define similar maps ξp for finite primes, one might hope that the special
values of p-adic L-functions Lp(X,n) are related to the values det(ξp). Beilinson has
conjectures of this flavor.

To recapitulate, we have studied a conjecture of Deligne that relates the special
values of L(X, s) to the geometry of X. At the heart of the story was the complex
integration comparison isomorphism. In this course we will study various comparison
isomorphisms at finite primes.

In order to be more precise about the types of statements that we will prove, let us fix
some notations: let p ∈ Q be a finite prime, and let K/Qp be a finite extension. Fix an



algebraic closure K of K. Let Cp denote the completion of K, and let GK = Gal(K/K
denote the absolute Galois group of K. Recall that since GK acts continuously on K,
the action extends to the completion Cp.

Let A/K be an algebraic variety. One goal of the course will be to define the period
rings BdR and B+

dR, and prove that:

H i
et(AK ,Qp)⊗Qp BdR ' H i

dR(A,K)⊗K BdR.

Moreover, this isomorphism will be compatible with “extra structure”.
The left hand side of this isomorphism is well-understood in the case of abelian

varieties; note, however, that it is quite mysterious for general schemes! Let:

Tp(A) = lim←−A[pn]

denote the Tate-module of A. It is a free Zp-module of rank 2 dim(A), endowed with a
continuous action of GK . One has:

H1
et(AK ,Zp) ' HomZp(TpA,Zp) = (Tp(A))∨

as GK-modules, and similarly:

Hn
et(AK ,Zp) ' ∧nZp

H1
et(AK ,Zp)

as GK-modules for n ≥ 2. One of the main theorems that we will see is the Hodge-Tate
comparison isomorphism:

Theorem. With notations as above,

Tp(A)⊗Zp Cp '
(
H0(A,Ω1

A)∨ ⊗K Cp(1)
)
⊕
(
H1(A,OA)∨ ⊗K Cp

)
.

Here Cp(1) denotes Cp with the GK action twisted by the cyclotomic character. More-
over, this is an isomorphism as GK-modules.

This gives:
Tp(A)⊗Zp Cp ' (Cp(1))dim(A) ⊕ (Cp)

dim(A)

as GK-modules. In the language to be introduced later, this says that the representation
Tp(A) is Hodge-Tate. A second key theorem to be proved below is the following:

Theorem. With notations as above,

Tp(A)⊗Zp B
+
dR ' H1

dR(A)∨ ⊗B+
dR

as GK-modules. Moreover, this isomorphism respects the natural filtrations on these
spaces.

We remark that the first main theorem can be deduced from the second, since the
isomorphism respects filtrations.



Chapter 1

Period rings and their Galois
cohomology

1.1 Ramification in extensions of local fields

Fix a prime p. Consider the p-adic field Qp, and fix an algebraic closure Qp. The
non-archimedean valuation v on Qp, normalized so that v(p) = 1, extends in a unique
way to a valuation on Qp. Let K ⊆ Qp be a finite extension of Qp. Then K is complete
and discretely valued for the restriction of v to K. Note that

v(K×) =
1

eK
Z,

for some integer eK ≥ 1. The integer eK is called the ramification degree of K/Qp.
We will use the following standard notation:

OK
def
= {x ∈ K | v(x) ≥ 0} ⊇ mK

def
= {x ∈ K | v(x) > 0}.

Remark. The normalization for the valuation used here is different from the one in
[Ser79]. We use this choice because we will consider towers of extensions.

A uniformizer for K/Qp is an element πK ∈ K such that v(πK) = 1/eK . For such
a uniformizer πK we have

mK = πKOK ,

so that the valuation ring OK is a principal ideal domain.
With K/Qp as above, let:

κ
def
= OK/mK .

This is a finite extension of Fp called the residue field of K. Given an extension of
Qp denoted by some roman numeral, the corresponding residue field will typically be
denoted by the Greek equivalent. For instance, for L/Qp an algebraic extension we will
write λ = OL/mL for the residue field.

1



2 PERIOD RINGS

Consider another extension K ⊆ L ⊆ K with L/K finite. The valuation v on K
extends again in a unique way to L, and it can be defined explicitly as

v(x)
def
=

1

[L : K]
v(NL|K(x)), for all x ∈ L×.

Note that we have

1

eK
Z = v(K×) ⊆ w(L×) =

1

eL
Z ⊆ Q,

so that we can define:

Definition 1.1.1. The ramification index of L over K is the integer

eL/K
def
= [w(L×) : v(K×)].

By definition it satisfies eL = eL/K · eK .

Note that mL ∩ OK = mK , so that λ is a finite extension of κ.

Definition 1.1.2. The residue degree of L over K is the integer fL/K
def
= [λ : κ].

The residue degree and ramification index are related by the following fundamental
relation:

Proposition 1.1.3. For Qp ⊂ K ⊂ L ⊂ Qp as above, with L/Qp finite, the following
equality holds:

[L : K] = eL/K · fL/K .

Proof. See [Ser79]. The idea is to construct an intelligent basis. Note that we will also
prove this result below.

Definition 1.1.4. We say that an extension L/K is unramified if eL/K = 1. We say
that it is totally ramified if fL/K = 1.

Remark. The extension L/K being unramified is equivalent to OL being étale over
OK .

1.2 The discriminant and the different

Note that in [Ser79] the following is done for Dedekind domains (global case), whereas
we will only treat the case of local fields. Note, however, that we will later apply these
results to Dedekind domains.

Fix K as above, and let V be a finite dimensional K-vectorspace.

Definition 1.2.1. A subset X ⊆ V is an OK-lattice if X is a finitely-generated OK-
module which spans V over K.
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Remark. As OK is a PID, a lattice X is a free OK-module of rank equal to the K-
dimension of V . Note that an OK-lattice is not a discrete subgroup of V . Multiplication
by p on V is a contractive mapping, which implies that any nontrivial additive subgroup
of V accumulates at 0.

Given two lattice X1 ⊆ X2 ⊆ V , the structure theory for modules over a PID gives:

X2/X1 '
t⊕
i=1

OK/mni ,

and we may hence define:

Definition 1.2.2. The characteristic ideal of X2 with respect to X1 is

charOK
(X2/X1)

def
= m

P
ni ⊆ OK .

Note that given any two lattices X1, X2 ⊆ V , their intersection is also a lattice.

Definition 1.2.3. The characteristic ideal of two arbitrary lattices X1 and X2 is

charOK
(X1, X2)

def
= charOK

(X1/(X1 ∩X2)) · charOK
(X2/(X1 ∩X2))

−1 ⊆ L,

which is a fractional ideal of OK . Note that:

charOK
(X1, X2) = charOK

(X2, X1)
−1.

Let T : V × V → K be a perfect bilinear pairing. The condition for T to be perfect
is equivalent to requiring that the K-linear map

αT : V → HomK(V,K)
def
= V ∨

which sends x to the linear form y 7→ T (x, y) is an isomorphism.
If X ⊆ V is a lattice, define the dual lattice with respect to T :

X∗ def
= {x ∈ V | T (x, y) ∈ OK for all y ∈ X}.

The dual lattice is an OK-submodule of V . In fact:

Lemma 1.2.4. X∗ is a lattice in V .

Proof. Let {e1, . . . , en} be an OK-basis for X, which is then also a K-basis for V . Let
{e∨1 , . . . , e∨n} ∈ V ∨ be the corresponding dual basis, so that e∨i (ej) = δij is the Kronecker
delta. Furthermore put e∗i = α−1

T (e∨i ) ∈ V and note that since αT is an isomorphism,
the e∗i ’s make up a K-basis for V .

Claim. X∗ is the free OK-submodule of V generated by {e∗1, . . . , e∗n}.
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To prove the claim, take y ∈ X and write:

y =
∑

ajej,

with aj ∈ OK . Then:
T (e∗i , y) = e∨i (y) = ai ∈ OK ,

so that e∗i ∈ X∗ for all i.
Now take x ∈ X∗ and write

x =
∑

aie
∗
i ,

with ai ∈ K. We want to conclude that ai ∈ OK for all i. But since x ∈ X∗, we have
T (x, ei) ∈ OK for all i. Since T (x, ei) = ai, we obtain ai ∈ OK for all i. This proves
the claim, and the lemma follows at once.

Definition 1.2.5. Given a lattice X ⊆ V and a perfect bilinear pairing T on V , the
discriminant of X is

δX,T
def
= charOK

(X∗, X).

We will apply the above theory to the case where K ⊂ L ⊂ Qp are finite extensions
of Qp. Take V = L and X = OK , which is a lattice. The pairing T : L × L → K is
defined via the trace:

T (x, y)
def
= TrL|K(x · y) ∈ K.

This map is bilinear, and it is perfect because L is separable over K.
The discriminant of OL is then

δL/K
def
= charOK

(O∗
L,OL).

It will be useful later to have an explicit description of O∗
L:

O∗
L = {x ∈ L | TrL|K(xy) ∈ OK for all y ∈ OL},

which is a fractional ideal of L. This description immediately shows that:

Lemma 1.2.6. The fractional ideal O∗
L is the largest fractional ideal E of L such that

TrL|K(E) ⊆ OK .

Since OL has the property from the lemma, it follows that OL ⊆ O∗
L. Therefore,

δL/K = charOK
(O∗

L/OL)

is an honest ideal of OL. The fact that OL ⊆ O∗
L also shows that our next definition is

an ideal, and not simply a fractional ideal:

Definition 1.2.7. The different of L/K is the following ideal of OL:

DL/K
def
= (O∗

L)−1 .
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Lemma 1.2.8. In the setting above we have:

1. NL|K(DL/K) = δL/K;

2. If K ⊆ L ⊆M are all finite extensions of Qp then

DM/K = DM/L · DL/K ,

as ideals in OM ;

3. Let a ⊆ K and b ⊆ L be fractional ideals of OK and OL, respectively. Then the
following are equivalent:

(a) TrL|K(b) ⊆ a,

(b) b ⊆ D−1
L/K · a.

Proof. The first two statements are left as exercise. For the third note that if a = 0
then the claim is trivial. So assume that a 6= 0. Then:

TrL|K(b) ⊆ a ⇐⇒ a−1 TrL/K(b) ⊆ OK
⇐⇒ TrL|K(a−1b) ⊆ OK
⇐⇒ a−1b ⊆ D−1

L/K

⇐⇒ b ⊆ D−1
L/Ka.

Remark. Write DL/K = md
L for a positive integer d, and let i ∈ Z. The third property

above is equivalent to:
TrL|K(mi

L) = mj
K ,

where j =
⌊
i+d
eL/K

⌋
. If we define |·| : Qp → R by:

|x| def
= p−v(x),

then this shows that for x ∈ L and e = eL/K :∣∣TrL|K(x)
∣∣ ≤ p−de |x| .

1.3 Computation of DL/K for L/K finite

Consider again extensions Qp ⊆ K ⊆ L ⊆ Qp with L/Qp finite. Then L/K is separable
and there exists α ∈ L such that L = K(α). But what about OK ⊆ OL?

Proposition 1.3.1. There exists a ∈ OL such that OL = OK [a] ' OK [x]/(f(x)).
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Proof. We need two lemmas.

Lemma 1.3.2. Let π be a uniformizer for OL, and let x ∈ OL be such that λ = κ(x),
where x denotes the image of x in λ. Note that such an x exists since κ and λ are
perfect. Write e = eL/K and f = fL/K. Then:

{πixj : 0 ≤ i ≤ e− 1 and 0 ≤ j ≤ f − 1}

is a basis of OL over OK. In particular, this proves that [L : K] = ef as was claimed
above.

Proof (of lemma). Clearly πixj ∈ OL for all i, j. First we show that they are linearly
independent over OK . Suppose that∑

i,j

aijπ
ixj = 0, with aij ∈ OK .

Without loss of generality suppose that at least one of the aij is a unit in OK . Write:

∑
i

(∑
j

aijx
j

)
πi = 0.

Note that v(x) = 0 because its class in λ is nonzero, so that v
(∑

j aijx
j
)
∈ v(K)

for all i. Then we have

v
((∑

aijx
j
)
πi
)

= v(bi) + iv(π), where bi =
∑

aijx
j.

Hence if i1 6= i2,
v(bi1π

i1) 6= v(bi2π
i2),

for otherwise L would contain an element π′ with 0 < v(π′) < v(π), contradicting the
choice of π as uniformizer. Thus bi = 0 for all i.

But now, ∑
aijx

j ≡ 0 (mod mL) =⇒ aij ∈ mL

because {xj} form a basis for λ over κ. This contradicts the fact that at least one of
the aij is a unit. Thus, our candidate basis at least is linearly independent over OK .

It remains to show that the candidate basis generates OL over OK . By Nakayama’s
lemma, it is enough to show that the images of the elements generate OL/mKOL over
κ. Note that mKOL = me

L.
We will in fact show, by induction, that the images of {πixj}i,j generate OL/ms

L as
OK/(OK ∩ms

L)-modules, for all integers s ≥ 1. For the case s = 1 we have:

{πixj | 0 ≤ i ≤ e− 1, 0 ≤ j ≤ f − 1} = {0, 1, x, . . . , xf−1}.

In this case note that OK ∩ mL = mK , and this is a set of generators for OL/mL = λ
over OK/mK = κ by choice of x.
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Now suppose that the result is true for some s > 1, and consider the natural exact
sequence:

0 −→ ms
L/m

s+1
L −→ OL/ms+1

L −→ OL/ms
L −→ 0.

Since ms
L/m

s+1
L ' λ, the images of {πixj}i,j in the leftmost and rightmost terms generate

by induction. It follows that the images also generate the middle term as well. This
concludes the proof of the first lemma.

Lemma 1.3.3. In the preceding lemma, x ∈ OL may be chosen such that there is a
monic polynomial R(X) ∈ OK [X] with the property that R(x) is a uniformizer of OL.

Proof. Choose any x ∈ OL such that λ = κ(x). Let R(X) ∈ κ[X] be the minimal
polynomial for x over κ. Choose a monic polynomial R(X) ∈ OK [X] which lifts R(X)
in the obvious sense. Write α = R(x) ∈ OL. Note that:

α = R(x) = 0,

so that α ∈ mL. If v(α) = 1/eL then we got lucky and α = R(x) is a uniformizer.
Suppose instead that v(α) > 1/eL, so that α ∈ m2

L. Let π ∈ OL be any uniformizer
and consider y = x+π. Since y = x, this y also satisfies the conditions of the preceding
lemma. By considering formal Taylor expansions one obtains:

β = R(y) = R(x) +R′(x)π +M(x)π2 = R′(x)π + γπ2,

where R′(X) is the formal derivative of R(X) and M(X) ∈ OL[X], γ ∈ OL. We have
used the fact that R(x) = α is divisible by π2 to reach the last step. Note that:

R′(x) (mod mL) = R
′
(x) 6= 0,

since κ finite implies R is separable. The Taylor expansion above thus shows that
β = R(y) is a uniformizer, and concludes the proof of the lemma.

We now return to the proof of the proposition. Choose x ∈ OL and R(X) ∈
OK [X] as in the second lemma above, and put π = R(x). The first lemma shows that
{xjR(x)i}i,j is a basis for OL/OK . The injection:

OK [x] ↪→ OL

is thus an isomorphism.

Remark. Suppose that K ⊂ L is totally ramified. If π is a uniformizer of L then:

OL = OK [π].

If the residue degree is larger than 1, then one can use the proofs of the lemmas above
to find an appropriate generator x ∈ OL.
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Theorem 1.3.4. Let Qp ⊂ K ⊂ L ⊂ Qp extensions with L finite over Qp. Let x ∈ OL
be such that OL = OK [x], and let f(X) ∈ K[X] be the characteristic polynomial of x
over K. Then f is a monic polynomial in OK [X] and:

DL/K = f ′(x)OL.

Proof. The proof of the first claim is rather elementary. Recall that the coefficients of
f(X) are symmetric functions in the conjugates of x. They are hence integral over OK .
Since OK is integrally closed in K, it follows that f(X) ∈ OK [X]. That f(X) is monic
is part of the definition of the irreducible polynomial.

We turn now to the proof of the second claim of the theorem. Note that the first
claim at least proves that f ′(x) ∈ OL. Recall that:

D−1
L/K = O∗

L = {a ∈ L | TrL/K(ab) ∈ OK for all b ∈ OL}.

We begin with a lemma:

Lemma 1.3.5. With n = [L : K] = deg f , the elements:{
xi

f ′(x)
| 0 ≤ i ≤ n− 1

}
make up a basis for D−1

L/K over OK.

Proof of lemma. By assumption {1, x, x2, . . . , xn−1} is a basis for OL/OK . This already
shows that the elements in question are linearly independent over OK . We claim that
to prove the lemma, it suffices to show that the (n× n)-matrix:

T =
(
TrL/K(xixj/f ′(x))

)
is in GLn(OK).

A priory T is just an (n × n)-matrix with entries in K. If the coefficients of T are
in OK , then it follows from the definition of D−1

L/K , and the fact that the powers xi are

an integral basis for OL, that each xj/f ′(x) is contained in D−1
L/K . Now suppose that T

is moreover invertible. It remains to show that the xj/f ′(x) span D−1
L/K . Let y ∈ D−1

L/K ,

so that each trace TrL/K(xiy) is an element of OK . It thus follows from the invertibility
of T that we can define elements α0, . . . , αn−1 ∈ OK by the formula:

TrL/K(y)
TrL/K(xy)

...
TrL/K(xn−1y)

 = T


α0

α1
...

αn−1

 .

This formula says precisely that y and

n−1∑
j=0

αjx
j/f ′(x)
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take the same value upon pairing with each xi. As the xi are linearly independent over
K, it follows from the nondegeneracy of the trace pairing that y =

∑
j αjx

j/f ′(x). Since

the αj’s are contained in OK , this shows that the xj/f ′(x) span D−1
L/K if T ∈ GLn(OK).

It thus remains to prove that T ∈ GLn(OK). To begin we will show that:

TrL/K(xs/f ′(x)) = 0

if 0 ≤ s ≤ n− 2, and

TrL/K(xn−1/f ′(x)) = 1.

Let x1 = x, x2, . . . , xn ∈ Qp be the distinct conjugates of x over K. We want to
compute:

TrL/K(xs/f ′(x)) =
n∑
k=1

xsk
f ′(xk)

.

Consider the partial fraction decomposition of 1/f(X):

1

f(X)
=

n∑
k=1

αk
X − xk

,

for some αk ∈ Qp. For each k this gives an equation:

1 = αk
∏
i6=k

(X − xi) + (X − xk)
(
polynomial in Qp[X]

)
.

Evaluating at xk gives the expression:

1 = αkf
′(xk),

so that:
1

f(X)
=

n∑
k=1

1

f ′(xk)(X − xk)
.

Consider the field of rational functions K(X), which we regard as the function field
of P1

K . The point ∞ ∈ P1
K corresponds to a valuation v∞ of K(X) with uniformizer

1/X. There is an injection:

K(X) ↪→ Frac
(
ÔP1

K,∞

)
= K((1/X)),

where K ((1/X)) = Frac (K [[1/X]]) is the field of formal Laurent series in 1/X over K.
Write:

f(X) = xn + a1x
n−1 + · · ·+ an.
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Then:

1

f(X)
=

1

Xn(1 + a1(1/X) + · · ·+ anXn−1)

=
1

Xn

(
1

1 + (1/X)(a1 + a2(1/X) + · · ·+ an(1/X)n−1)

)
=

1

Xn

(∑
u=0

(−1)u(a1/x+ a2/x
2 + · · ·+ anx

n)u

)
.

We can expand 1/f(X) at infinity in a second way:

1

f(X)
=

n∑
k=1

1

f ′(xk)(X − xk)

=
1

X

(
n∑
k=1

1

f ′(xk)(1− xk/X)

)

=
1

X

(
n∑
k=1

∞∑
t=0

xtk(1/X)t

)

=
1

X

(
∞∑
t=0

(
n∑
k=1

xtk

)
(1/X)t

)
.

Now we compare coefficients in both expansions of 1/f(X) above. Both expansions
have zero constant term. Comparing coefficients of the terms (1/X)r for 1 ≤ r ≤ n− 1
gives:

0 =
n∑
k=1

xr−1
k

f ′(xk)
= TrL/K(xr−1/f ′(x)).

Similarly comparing the (1/X)n terms gives:

1 = TrL/K(xn−1/f ′(x)).

Now to prove that:

T = (ti,j) =
(
TrL/K(xixj/f ′(x)

)
lives in GLn(OK), we first note that the calculation above shows that T is zero above
the anti-diagonal, and the anti-diagonal entries all equal 1. This shows, at least, that
T is invertible. To treat the entries below the anti-diagonal, note that:

xn = −(a1x
n−1 + · · ·+ an).

By induction and linearity of TrL/K , we deduce that the remaining entries of T lie in
OK . Thus T ∈ GLn(OK), and this concludes the proof of the lemma. Here is how the
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matrix of T looks like: 
0 0 · · · 0 1
0 0 · · · 1
...

...

0 1 *
1



We now return to the proof of the second claim of the theorem. Since {xi/f ′(x)}i
is a basis for D−1

L/K we deduce that {xi}i is a basis for f ′(x)D−1
L/K . But since {xi}i is a

basis for OL this gives:
OL = f ′(x)D−1

L/K .

Hence also DL/K = f ′(x)OL. This concludes the proof of the theorem.

The preceding theorem has the following differential interpretation. If:

OL = OK [x] ' OK [X]/(f(X))

as above, then one can show that:

ΩOL/OK
' (OL/f ′(X)OL)dX,

where ΩOL/OK
denotes the OK-module of Kähler differentials. We thus see that:

AnnOL
(ΩOL/OK

) = f ′(x)OL = DL/K .

Example. Consider the case of Qp instead of finite extensions L,K. One can consider:

O = ker
(
OQp

−→ ΩOQp
/OQun

p

)
,

which is a subring of OQp
. The p-adic completion of O maps into OCp :

Ô → OCp .

It turns out that this ring has the curious property that:

Ô ⊗Zp Qp ' B+
dR/I

2

is a quotient of the deRham period ring B+
dR. We will discuss B+

dR and the connection
with differentials of OQp

later in the course.

Consider now the case of a tower of finite extensions

Qp ⊆ K ⊆ L ⊆M ⊆ Qp, [M : Qp] <∞.
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Proposition 1.3.6. The canonical sequence of OM -modules

0→ OM ⊗OL
ΩOL/OK

→ ΩOM/OK
→ ΩOM/OL

→ 0

is exact.

Proof. It is enough to show that the first map is injective (see [Har77], section II.8).
That will say that OM is smooth as an OL-module. This will be proved later; the reader
can check that the eventual proof is independent of the intermediate material.

Remark. The results of this section assume that K is a complete DVR with finite
residue field, and that L/K is a finite extension. They are also true, and the same
proof works, if K is replaced by a complete DVR with perfect residue field.

In the case that the residue field of K is non-perfect but has a finite p-basis (that
means that [κ : κp] <∞), then the previous proposition still holds, but the result about
the annihilator will not be true in general. In that case one can show that ΩOL/OK

is
of finite length and:

lengthOL

(
ΩOL/OK

)
= lengthOL

(
OL/DL/K

)
.

1.4 Ramification in Zp-towers

Let K/Qp be a finite extension contained in Qp.

Definition 1.4.1. A Zp-extension of K is a sequence of fields {Kn}n≥0 satisfying:

1. K0 = K and Kn ⊆ Kn+1 for all n ≥ 0, and

2. Kn is Galois over K with Gal(Kn/K) ' Z/pnZ.

Example. Fix a compatible sequence of primitive pnth roots of unity {ζpn}n≥0 ⊂ Qp.
That is, choose primitive pnth roots of unity ζpn such that:

(ζpn+1)p = ζpn , for all n ≥ 0.

Let then K = Qp(ζp) and let Kn = Qp(ζpn+1). The sequence {Kn}n≥0 is a Zp-
extension.

In general, suppose that {Kn}n≥0 is a Zp-extension. Let:

K∞
def
=
⋃
n≥0

Kn,

which is a field since Kn ⊆ Kn+1 for all n. So we have K ⊆ K∞ ⊆ Qp, and moreover
K∞ is Galois over K with

Gal(K∞/K) = lim←−
n

Z/pnZ ' Zp.

In fact, this last condition characterizes Zp-extensions and explains the choice of ter-
minology:
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Proposition 1.4.2. The following two sets of data are equivalent:

1. A Zp-extension over K, say {Kn}n≥0.

2. A Galois extension K∞ of K such that Gal(K∞/K) ' Zp.

Proof.

Remark. We will typically work with Zp-extensions such that K∞/K is totally rami-
fied. In such cases the field K∞ is “very strange”. To explain we note that one has:

mKn ⊂ mK∞ ,

for all n. Thus if πn is a uniformizer for Kn then we deduce that:

v(πn) =
1

eKn/Qp

=
1

pneK/Qp

,

which tends to zero from above as n tends to infinity. Hence K∞ contains elements of
arbitrarily small positive valuation, and this fact implies the following three unfamiliar
properties:

1. The maximal ideal mK∞ is not finitely generated, since the valuation on K∞ is
not discrete.

2. The maximal ideal is idempotent: m2
K∞ = mK∞ .

3. One has mK∞OK = mK .

Also, note that sinceK∞/K is an infinite extension, K∞ is not complete with respect
to the natural valuation.

Example. We can obtain Zp towers over any finite extension K of Qp as follows. With
the ζpn ’s as above, let

L
def
= K(ζp, ζp2 , . . . ζpn , . . .).

Then L/K is a Galois extension, and we would like to understand Gal(L/K). Let:

F = Qp(ζp, ζp2 , . . . ζpn , . . .),

so that:
Gal(F/Qp) ' Z×

p ' (Z/(p− 1)Z)× Zp.

Restriction of automorphisms σ ∈ Gal(L/K) to σ|F ∈ Gal(F/Qp) gives an injective
continuous map:

Gal(L/K) ↪→ Z×
p .

Since Gal(L/K) is compact and Z×
p is Hausdorff, the image is a closed subgroup of Z×

p .
From his one can show that there is a finite group ∆ with:

Gal(L/K) ' ∆× Zp.

Then K∞ = L∆, the fixed field of ∆, is a Zp-extension over K.
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Theorem 1.4.3 (Tate, 1967). Let K be a finite extension of Qp, or a finite extension
of Mur, where M is a finite extension of Qp. Let {Kn}n≥0 be a Zp-tower such that Kn

is totally ramified over K, for all n. Then the function dn
def
= v(DKn/K) satisfies:

dn = c0 + n+ anp
−n, for all n.

In particular, dn →∞ when n→∞.

Remark. Such a tower is an example of a deeply ramified extension of K. We will
see more on this later.

Proof. We only prove the theorem for the case that we will study later. The proof of
the general statement uses higher ramification groups.

Let K = Qp(ζp), let Kn = Qp(ζpn+1) and set dn = v(DKn/K). Since DKn/Qp =
DKn/K · DK/Qp :

dn = v(DKn/Qp)− v(DK/Qp),

and so it will suffice to prove that v(DKn/Qp) is of the form in the theorem.
The extension Kn/Qp is totally ramified, so that OKn = Zp[πn] with πn = ζpn+1 − 1.

Let f(X) be the irreducible polynomial of πn over Qp:

f(X) =
(X + 1)p

n+1 − 1

(X + 1)pn − 1
= φpn+1(X + 1)

.
Then by previous work, v(DKn/Qp) = v (f ′(πn)). Computing the formal derivative

of f(X) and evaluating at πn gives:

f ′(πn) = pn+1ζp(ζp − 1)−1,

so that v(f ′(πn)) = 1− 1
p−1

+ n, which proves the theorem in this case.

Remark. In our example, the constant c0 of the theorem is

c0 = 1− 1

p− 1
− v(DK/Qp),

and the an are all 0. This is not what happens in general, of course. The fact that K
contained a pth root of unity made this computation much easier.

Corollary 1.4.4. Let K be a finite extension of Qp, and let L = K∞ be a totally
ramified Zp-extension. Then there is a positive constant a such that for all n and
x ∈ Kn+1,

|TrKn+1/Kn(x)| ≤ |p|1−ap−n|x|.

Proof. To be added later.1

1 FIXME: Add proof
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Again, fix K/Qp finite and let K∞ be a totally ramified Zp-extension of K. Let L
be a finite extension of K∞. Later we will prove that L is unramified over K∞, that is:

ΩOL/OK∞
= 0.

For now we content ourselves with a weaker form of this fact. Use the primitive element
theorem to write L = K∞[x] for some x ∈ L. Let f(X) be the irreducible polynomial of
x over K∞. Then there exists some n0 such that f(X) ∈ Kn0 [X], and f(X) is obviously
irreducible in Kn0 [X].

Let Ln0 = Kn0 [x] and let Ln = Ln0 ·Kn be the composite field. We have a lattice:

L

K∞

ooooooo

Ln

Kn

ppppppp

Ln0

Kn0

qqqqqq

Note that Ln ⊆ Ln+1 for all n ≥ 0, that L = ∪n≥1Ln, and that for n ≥ n0 one has
Ln ∩Kn+1 = Kn.

Remark. We will use the convention, found commonly in the literature, that if M/Qp

is a finite extension and α ∈ v(M×), we denote by pα any element of M× such that
v(pα) = α. Note that the element pα is not well-defined, but the ideal pαOM is.

Theorem 1.4.5 (Tate).

1. Let δn
def
= v(DLn/Kn). Then δn → 0 when n→∞.

2. The maximal ideal mK∞ is contained in TrL/K∞(OL).

Proof. We first need to study the modules of differentials. To lighten the notation, we
set

A = OKn , A′ = OKn+1 , B = OLn , B′ = OLn+1 ,

so that we have a diagram of ring extensions:

B′

A′

rrrrrr

B

A

qqqqqqq
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Consider the two exact sequences

0 // ΩB/A ⊗B B′ α // ΩB′/A // ΩB′/B // 0

0 // ΩA′/A ⊗A′ B′ // ΩB′/A
β

// ΩB′/A′ // 0

,

then we define a map
γ : ΩB/A ⊗B B′ → ΩB′/A′ ,

as γ
def
= β ◦ α.

As ΩB/A ' B/pδnB and B′ is free over B (in particular, it is flat), we get

ΩB/A ⊗B B′ ' B′/pδnB′.

Similarly, we have
ΩB′/A′ ' B′/pδn+1B′.

Let then
dn

def
= v(DKn+1/Kn).

We want to compute the kernel of the map γ. The map α is injective, and by
definition of β, we have

ker β = ΩA′/A ⊗A′ B′ ' A′/pdnA′ ⊗A′ B′ ' B′/pdnB′,

so that
ker γ = α−1(ker β) ⊇ B′/pmin(dn,δn)B′.

Similarly,
coker γ '

Similarly, we can prove that2

pδn−δn+1 · coker(γ) = 0.

Consider then the exact sequence

0→ ker γ → B′/pδnB′ γ→ B′/pδn+1B′ → coker γ → 0,

which yields, by taking B′/pB′-ranks:

δn − δn+1 ≥ min(dn, δn)− (δn − δn+1).

From the equality DKn+1/K = DKn+1/Kn · DKn/K , we get

dn = v(DKn+1/Kn) = v(DKn+1/K)− v(DKn/K) = n+ 1 + c0 + an+1p
−n − n− c0 − anp−n,

2 FIXME: Add the proof later!
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so that dn = 1+bnp
−n with bn = an+1/p−an, which is a sequence bounded with respect

to n. Hence we get:

0 ≤ δn+1 ≤ δn −
1

2
min(dn, δn),

and hence eventually δn+1 ≤ δn/2, yielding δn → 0 with n. This concludes the proof of
the first claim.

We turn now to the second claim, namely proving that:

mK∞ ⊂ TrL/K∞(OL).

First one notes that for every n ≥ n0:

TrFn/Kn(OFn) ⊂ TrL/K∞(OL).

Next recall the following consequence of lemma 1.2.8: we have

TrFn/Kn(OFn) = mj
Kn

where:

j =

[
bn

eFn/Kn

]
,

and bn is defined by the relation:

DFn/Kn = mbn
Fn
.

In other words,

bn =
v(DFn/Kn)

v(πFn)
=
δneFn/Kn

v(πKn)
.

Thus, we have:
πjKn
∈ TrFn/Kn(OFn) ⊂ TrL/K∞(OL),

and we can compute the valuation:

v(πKj
n
) = jv(πKn)

=

[
bn

eFn/Kn

]
v(πKn)

≤
(

δneFn/Kn

v(πKn)eFn/Kn

)
v(πKn)

= δn.

Since the δn’s go to zero as n tends to infinity, we see that TrL/K∞(OL) contains elements
of arbitrarily small but positive valuation. Thus:

mK∞ ⊂ TrL/K∞(OL)

as claimed.
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1.5 Calculus of algebraic integers

In this section we fix Qp ⊂M ⊂ Qp with [M : Qp] <∞. Let K = Mur be the maximal

unramified extension of M in Qp. Note that K is an infinite extension of Qp, since M
is finite over Qp. We would like to describe OK , mK and κ. Since K is unramified over
M , if π is a uniformiser for M then:

mK = πOK .

Consider the residue field κ = OK/mK of K. It is an algebraic extension of Fp, and it
must in fact be an algebraic closure for Fp. If not, one could construct an unramified
algebraic extension of K inside Qp, contradicting the fact that K = Mur. In particular,
κ is perfect.

Since K/Qp is an infinite extension, it is not hard to show that it is not complete
for the natural valuation induced from Qp. Hence nor is OK a complete local ring. It
is, however, henselian: if f(X) ∈ OK [X] is a monic polynomial such that:

f(X) ≡ g(X)h(X) (mod mK [X]),

for monic polynomials g(X), h(X) ∈ κ[X] such that (g, h) = 1, then there exist monic
polynomials g, h ∈ OK [X] such that:

1. f(X) = g(X)h(X),

2. g(X) ≡ g(X) (mod mK [X]), and h(X) ≡ h(X) (mod mK [X]).

The reader can check that the theory of differents and discriminants for finite ex-
tensions of K is the same as for finite extensions of Qp. The advantage of working with
K = Mur is that all algebraic extensions of K are totally ramified.

Basic object of study

Retain the notation as above. We would like to understand:

Ω = ΩOK/OK
,

and the differential:
d : OK → Ω.

Note that since OK is the union of the OL for L/K finite, one has:

OK = lim−→
L/K finite

OL.

Similarly, if
OK ⊂ OL1 ⊂ OL2 ⊂ OL3 ⊂ K,
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for finite extensions Li of K, Li ⊂ Li+1 for each i, then composition of the differentials
with inclusion maps gives a natural commutative diagram:

ΩOL1
/OK

//

&&LLLLLLLLLL
ΩOL2

/OK

xxrrrrrrrrrr

ΩOL3
/OK

This gives a directed system, and one can show that the natural maps:

ΩOL/OK
→ Ω

give a natural isomorphism:
Ω ' lim−→

L/K finite

ΩOL/OK
.

Since the standard construction of Ω is as a quotient, it is not always easy to
recognize if a given differential, say df ∈ Ω, is zero. Viewing Ω as a direct limit in this
way, one sees that ω ∈ Ω is identically zero if and only if there exists a finite extension
L/K with ω ∈ ΩOL/OK

already vanishing in this module. In fact, we will show that
ω = 0 if it vanishes in ΩOL/OK

for every finite extension L/K. This will follow from
the next lemma, since it proves that the transition maps:

ΩOL1
/K → ΩOL2/K

for the direct system above are injective. Thus, one may think of Ω as the union of the
submodules ΩOL/OK

for L/K finite.

Lemma 1.5.1. Let K ⊂ L1 ⊂ L2 be extensions with [L2 : K] <∞, then:

α : OL2 ⊗OL1
ΩOL1

/OK
→ ΩOL2/OK

is injective. In particular,
ΩOL1/OK

→ ΩOL2/OK

is injective.

Proof. In our proof we will refrain from being very pedantic by omitting subscripts for
the various differential maps appearing. All will be denoted d.

Fix uniformizers π1, π2 for L1 and L2, respectively. We first claim that every element:

ω ∈ OL2 ⊗OL1
ΩOL1

/OK

can be written in the form:
ω = a⊗ dπ1

with a ∈ OL2 . This follows since dπ1 generates ΩOL1
/OK1

as an OL1-module.
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Suppose that ω = a⊗ dπ1 ∈ kerα, so that:

α(ω) = adπ1 = 0

in ΩOL2
/OK

. Since L2/K is totally ramified, we have OL2 = OK [π2]. Let f(X) ∈ OK [X]
be such that π1 = f(π2). Then:

0 = adπ1 = ad(f(π2)) = af ′(π2)dπ2.

Since DL2/K is the annihilator of OL2/K , this is true if and only if:

v(a) + v(f ′(π2)) = v(af ′(π2)) ≥ v(DL2/K) = v(DL2/L1) + v(DL1/K).

We will now show that v(f ′(π2)) = v(DL2/L1). Let F (X) ∈ OL1 [X] be the (monic)
minimal polynomial of π2 over L1. Since L2/L1 is totally ramified, one has F (0) = uπ1,
where u ∈ O×

L1
. This follows since the constant coefficient a0 of F (X) is the product of

the conjugates of π2 over L1. Since L2/L1 is totally ramified, we have [L2 : L1] = eL2/L1

and hence:
v(a0) = v(π

eL2/L1
2 ) = v(π1).

In fact, F (X) is an Eisenstein polynomial. All coefficients must be divisible by π1 since
the roots all reduce to zero mod mL1 , and we have just shown that the constant term
has the same valuation as π1.

Since f(π2)− π1 = 0 and f(X)− π1 ∈ OL1 [X], we deduce that:

f(X)− π1 = F (X)G(X),

for some monic polynomial G(X) ∈ OL1 [X]. By comparing coefficients above, one can
show that v(G(π2)) = 0. Thus:

f ′(π2) = F ′(π2)G(π2),

and taking valuations gives:

v(f ′(π2)) = v(F ′(π2)) = v(DL2/L1).

Combining this with the inequality above shows that:

v(a) ≥ v(DL1/K).

Write DL1/K = πb1OL1 where b ≥ 0 is an integer. Then by what we have just seen,
a/πb1 ∈ OL1 and hence:

ω = a⊗ dπ1

=

(
a

πb1

)
πb1 ⊗ dπ1

=

(
a

πb1

)
⊗ (πb1dπ1)

= 0
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in OL2 ⊗OL1
ΩOL1

/OK
, since πb1 annihilates ΩOL1

/OK
. This concludes the proof of the

first claim.
The second claim follows from the first, since the natural map factors as:

ΩOL1/OK
→ OL2 ⊗OL1

ΩOL1
/OK
→ ΩOL2/OK

.

We have just seen that the second factor is injective. The first is injective since OL2 is
a free OL1-module of rank [L2 : L1].

The map δ

Let a ∈ OK , so that a ∈ OF for some F/K finite. Let π be a uniformizer for F and let
f(X) ∈ OK [X] be such that f(π) = a. We again remind the reader that such f exists
since F/K is totally ramified.

Define a map δ = δK : OK → (−∞, 0] by putting:

δ(a) = min

{
v

(
f ′(π)

DF/K

)
, 0

}
.

Lemma 1.5.2. For δ defined as above:

1. δ is independent of f(X), π and F . Hence δ is well-defined.

2. If a, b ∈ OK then:

δ(a+ b) ≥ min(δ(a), δ(b)),

and if δ(a) 6= δ(b), there is equality. For products one has:

δ(ab) ≥ min{δ(a) + v(b), v(a) + δ(b)}.

3. If f(X) ∈ OK [X] and a ∈ OK then:

δ(f(a)) = min{v(f ′(a)) + δ(a), 0}.

4. If x, y ∈ OK then xdy = 0 if and only if v(x) + δ(y) ≥ 0. In particular, dy = 0 if
and only if δ(y) = 0.

5. For x, y ∈ OK, the formula:

δ(xdy) = min{v(x) + δ(y), 0}

gives a well-defined map:

δ : Ω→ (−∞, 0]

which is compatible with δ : OK → (−∞, 0].
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Proof. 1. First, suppose that F remains fixed, and consider two (possibly distinct)
uniformizers of F , say π and uπ, for some u ∈ O×

F . Let f(x), g(x) ∈ OK [x] be
such that

f(π) = a, g(uπ) = a.

Taking d = dF , we get f ′(π)dπ = ug′(uπ)dπ, where ()′ denotes the (formal)
derivative with respect to x. So we get that

v(f ′(π)− ug′(uπ)) ≥ v(DF/K).

Suppose that v(f ′(π)) 6= v(g′(uπ)), say without loss of generality that v(f ′(π)) <
v(g′(uπ)). Then

v(f ′(π)− ug′(uπ)) = v(f ′(π)),

so the previous inequality implies that v(f ′(π)) ≥ v(DF/K), and so δ will be 0, no
matter what the valuations are.

Now, given F1, F2 two fields such that a ∈ F1 ∩ F2, as F1 ∩ F2 is also a field
we can assume without loss of generality that a ∈ F1 ⊆ F2. Compute then
δ(a) thinking of a as belonging to F2, and we will show that the result is as we
took a as belonging to F1. To do this, we choose a uniformizer π for F2, and
let N(π) be a uniformizer for F1. Let f ∈ OK [x] be a polynomial such that
f(N(π)) = a. Let also φ(x) be the minimal polynomial of π over F1, and note
that π(x) = N(π) − h(x), for some polynomial h(x) divisible by x. Then the

polynomial g
def
= f ◦ h has coefficients in OK as well, and is such that g(π) =

f(h(π)) = f(N(π)) = a. Then we have:

v(g′(π))− v(DF2/K) = v(h′(π)f ′(N(π)))− v(DF2/K)

= v(h′(π)) + v(f ′(N(π))− v(DF2/F1)− v(DF1/K),

and just note that v(DF2/F1) = v(φ′(π)) = v(−h′(π)) = v(h′(π)).

2. First, let F be a finite extension of K such that a, b ∈ F . Let π be a uniformizer
for F . Then, if f(x), g(x) ∈ OK [x] are such that f(π) = a and g(π) = b, we have:

v(f ′(π) + g′(pi)) ≥ min {v(f ′(π)), v(g′(π))} ,

so that the first inequality follows. If δ(a) 6= δ(b), it means that v(f ′(π)) 6=
v(g′(π)), so that the previous inequality is an equality, and hence we get equality
for the δ’s.

To compute δ(ab) use the polynomial fg ∈ OK [x]. Then (fg)′(π) = f ′(π)g(π) +
f(π)g′(π) and the valuations satisfy:

v((fg)′(π)) ≥ min {v(f ′(π)) + v(b), v(a) + v(g′(π))} .
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3. If g(x) ∈ OK [x] is such that g(π) = a, then f(a) = f(g(π)), so we need to consider
the polynomial f ◦ g. Then we have

(f ◦ g)′(π) = f ′ (g(π)) · g′(π),

so that in valuations we get:

δ(f(a)) = min {v(f ′(a)) + v(g′(π)), 0} = min {v(f ′(a)) + δ(a), 0} .

4. Let F be a finite extension of K such that x, y ∈ F . Let π be a uniformizer in F .
Write y = f(π) for some f(x) ∈ OK [x]. Then, as DF/K is the exact annihilator
of ΩOF /OK

' (OF/DF/K) · dπ, we get

xdy = xd(f(π)) = xf ′(π)dπ,

so that

xdy = 0 ⇐⇒ xf ′(π) ∈ DF/K
⇐⇒ v(x) + v(f ′(π)) ≥ v(DF/K)

⇐⇒ v(x) + δ(y) = 0.

5. We know that Ω ⊇ ΩOF /OK
= (OF/DF/K) · dπ, so that to show that δ is well-

defined it is enough to show that if x ∈ DF/K , then min{v(x) + δ(π), 0} = 0.
But δ(π) = −DF/K , so that v(x)−DF/K ≥ 0, and then the minimum is 0, as we
wanted.

The compatibility with the previously defined δ is then clear.

Lemma 1.5.3. Let M be a finite extension of Qp, and let K = Mur. Then the natural
map

ΩOK/OM
→ ΩOK/OK

is an isomorphism.

Proof. From the fundamental exact sequence, this is equivalent to showing that

OK ⊗OK
ΩOK/OM

= 0.

But recall that
ΩOK/OM

= lim−→ΩOL/OM
,

where L runs through all finite extensions M ⊆ L ⊆ K. Such an L/M is finite and
unramified, which implies that OL/OM is étale. Hence

ΩOL/OM
= 0.
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Define a map δM : OK → (−∞, 0] via the formula:

δM(a)
def
= −v

(
AnnOK

(dM(a))
)
, a ∈ OK ,

where we think of dM(a) ∈ ΩOK/OM
.

Lemma 1.5.4. We have
δM = δK .

Proof. From Lemma 1.5.2 we know that

δK(a) = −v
(
AnnOK

(dK(a))
)
.

This proves dK(a) ∈ ΩOK/OK
, and the result follows from the previous lemma.

Definition 1.5.5. An extension L of K is said to be deeply ramified if there is some
sequence {Fn} of finite extensions of K such that L =

⋃
n Fn, and such that

v(DFn/K)→∞ when n→∞.

Remark. It follows, although we won’t prove it here, that if this happens for a sequence
{Fn} then it is also true for any other sequence {F ′

n} such that L = ∪nF ′
n.

Example. Let K be a finite extension of Qp, or K = Mur, where M is a finite extension
of Qp. Then the extension L = K(µp∞) = ∪nK(µpn) is deeply ramified. Also, Theorem
1.4.3 shows that any Zp extension of K is deeply ramified.

Recall that our object of interest is the module

Ω = ΩOK/OK
' ΩOK/OM

.

Note that Ω is a torsion module: for any ω ∈ Ω, there exists N ≥ 1 such that pNω = 0.
In fact, one can take any N > −δ(ω).

Lemma 1.5.6. Let a, b ∈ OK be such that δ(a) ≤ δ(b). Then there exists c ∈ OK[a,b]

such that cda = db as elements of Ω.

Proof. If δ(b) = 0 then db = 0, so that we may take c = 0. Hence we assume that
δ(b) < 0.

Let π be a uniformizer ofK[a, b]. Let h1(X), h2(X) ∈ OK [X] be such that h1(π) = a,
and h2(π) = b. Then:

v(h′1(π))− v(DK[a,b]/K) = δ(a) ≤ δ(b) = v(h′2(π))− v(DK[a,b]/K),

so that v(h′1(π)) ≤ v(h′2(π)). If

c =
h′2(π)

h′1(π)
∈ OK[a,b],

then cda = db in ΩOK[a,b]/OK
, which concludes the proof since ΩOK[a,b]/OK

↪→ Ω.
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Lemma 1.5.7. Let L/K be an algebraic extension of K. Then the following are equiv-
alent:

1. δ(OL) is unbounded.

2. If F/L is an algebraic extension of L then:

ΩOF /OK
= OF · ΩOL/OK

.

as subgroups of Ω. In particular, taking F = K gives:

ΩOK/OK
= OK · ΩOL/OK

.

Proof. We first claim that in any case, ΩOL/OK
⊆ ΩOF /OK

. This has been proved for
finite extensions, and since direct limits are exact, one obtains the inclusion for infinite
extensions by passing to the limit. It follows that:

OF · ΩOL/OK
⊆ ΩOF /OK

,

where we regard the left side as a subgroup, say.

Assume first that δ(OL) is unbounded, and let udv ∈ ΩOF /OK
. Let x ∈ OL be such

that

δ(x) ≤ δ(v).

Then, by the previous lemma, there exists y ∈ OK[x,v] ⊆ OF such that ydx = dv. So
uydx = udv and we obtain the reverse inclusion.

Conversely, if δ(OL) is bounded by −N for some N ∈ N, then note that pN anni-
hilates ΩOL/OK

by the basic properties of δ. On the other hand, Ω is not annihilated
by any fixed power of p, so that Ω 6= OK · ΩOL/OK

. This finishes the proof of the
lemma.

Theorem 1.5.8. Let L be an algebraic extension of K. Then the following statements
are equivalent:

1. L is deeply ramified over K.

2. δ(OL) is unbounded.

3. ΩOL/OK
is a nonzero p-divisible group.

4. For every algebraic extension F/L we have ωOF /OL
= 0.

5. For every algebraic extension F/L we have ωOF /OK
= OF · ΩOL/OK

.
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Proof. 2 ⇐⇒ 5: This was done in the previous lemma.

1 ⇐⇒ 2: For this it is enough to show that if K ⊆ N ⊆ L, N/K finite and π is
a uniformizer for N , then δ(π) = −v(DN/K). Since this is in fact true, this establishes
the equivalence.

4 ⇐⇒ 5: This follows formally from the fundamental exact sequence corresponding
to:

OK ⊆ OL ⊆ OF .

2 =⇒ 3: Let ω ∈ ΩOL/OK
. We want to find η ∈ ΩOL/OK

such that ω = pη. Write
ω = udv and find x ∈ OL such that δ(x) ≤ δ(v) − 1. Then there exists y ∈ OL such
that pydx = dv, and we are done.

3 =⇒ 2: The proof will be by contradiction; suppose that δ(OL) is bounded. Let
ε = infa∈OL

{δ(a)}, which is strictly less than 0. Let x ∈ OL be such that 0 ≤ δ(x)−ε ≤
1/2. As ΩOL/OK

is p-divisible, one can find a, b ∈ OL such that dx = padb. But then

δ(x) = 1 + v(a) + δ(b) =⇒ δ(b) ≤ δ(x)− 1 ≤ ε− 1/2 < ε,

which contradicts the definition of ε.

Remark. Using Lemma 1.5.3, we can replace K by M in the previous theorem.

Let L = K, where still K = Mur. Then L is a deeply ramified extension of K, and
the previous theorem implies that Ω = ΩOK/OM

is a p-divisible group. Every p-divisible
group has an associated Tate module, which we construct below for Ω.

For every n ≥ 1, consider the submodule of Ω:

Ω[pn]
def
= {ω ∈ Ω | pnω = 0}.

Multiplication by p gives a natural map Ω[pn+1] → Ω[pn], so that the submodules
Ω[pn] define a projective system. Let:

TpΩ
def
= lim←−

n

Ω[pn].

Let GM = Gal(K/M). For ω = adb ∈ Ω, if σ ∈ GM we can define

σ(ω)
def
= σ(a)d(σ(b)).

It is an easy exercise to show that this is well-defined, and that it gives a continuous
action of GM on Ω. Also, GM acts on each of the discrete modules Ω[pn], so that it
acts continuously on TpΩ when this is given the p-adic topology.

Definition 1.5.9. The Tate module of Ω is the GM -module TpΩ.



CYCLOTOMIC TWISTS 27

1.6 Cyclotomic twists

In this section K will denote a finite extension of Qp.
Fix a compatible sequence of primitive pnth roots of unity ε = (ε(n))n≥0 ⊆ K.

Compatible means that (ε(n+1))p = ε(n).

Definition 1.6.1. The cyclotomic character is the continuous homomorphism:

χ : GK → Z×
p

defined by the formula:

σ(ε(n)) =
(
ε(n)
)χ(σ)

.

If µµpn denotes the group of pnth roots of unity, which we write additively as ε(n) ·
Z/pnZ, then there is a map:

µµpn → µµpn−1 , ε(n) 7→ ε(n−1) =
(
ε(n)
)p
.

Set:
Zp(1)

def
= TpGm

def
= lim←−

n

µµpn ' ε · Zp,

with the GK action given by

σ(aε) = aσ(ε) = aχ(σ)ε = χ(σ)(aε).

For every n ≥ 1, define also:

Zp(n)
def
= Zp(1)⊗Zp · · · ⊗Zp Zp(1)︸ ︷︷ ︸

n times

,

and if n ≤ −1 we let Zp(n)
def
= Hom(Zp(−n), 1).

The Galois action of these twists Zp(1) is actually quite simple: x ∈ Zp(n) and
σ ∈ GK , then we have

σ(x) = χ(σ)nx.

We also set K(1)
def
= K ⊗Zp Zp(1) = K ⊗ε, where GK acts diagonally: if x ∈ K and

σ ∈ GK ,
σ(x⊗ ε) = σ(x)⊗χ(σ)ε = χ(σ)σ(x)⊗ ε.

Following the work of Fontaine, define a function f : K(1) → Ω = ΩOK/OK
by the

formula:

f(x⊗ ε) def
= a

dε(n)

ε(n)
∈ Ω,

if x = a/pn with a ∈ OK .

Remark. This is well defined: if x = a
pn = b

pm , with a, b ∈ OK , then it is easy to check

that a dlog ε(n) = b dlog ε(m).



28 PERIOD RINGS

Theorem 1.6.2 (Fontaine). The following properties for f hold:

1. f is an OK-liner map which is GK-equivariant.

2. f is surjective.

3. ker f = D(1) = D ⊗ ε, where

D =

{
x ∈ K | v(x) ≥ −v(DK/Qp)−

1

p− 1

}
.

Proof. For the first property, take x ⊗ ε ∈ K(1) and write x = a/pn where a ∈ OK ,
n ≥ 0. Hence for any σ ∈ GK , one has σ(a) ∈ OK as well. It follows that:

f(σ(x⊗ ε)) = f((σ(a)χ(σ)/pn)⊗ ε) =
σ(a)χ(σ)

pn
d(ε(n))

ε(n)
.

On the other hand:

σ(f(x⊗ ε)) = σ

(
a
d(ε(n))

ε(n)

)
= σ(a)

d(σ(ε(n)))

σ(ε(n))
.

Recall that σ acts on ε via the cyclotomic character. If χ(σ) = m+ pnα for m ∈ Z and
α ∈ Zp, then:

σ(ε(n)) = (ε(n))χ(σ) = (ε(n))m,

and hence:
d(σ(ε(n))) = m(ε(n))m−1d(ε(n)) = χ(σ)(ε(n))m−1d(ε(n)),

where the last equality above follows since pn annihilates d(ε(n)). Splicing these two
computations together gives:

σ(f(x⊗ ε)) = σ(a)
d(σ(ε(n)))

σ(ε(n))
= f(σ(x⊗ ε)).

For the second property we begin by showing that:

δQp(ε
(n)) = −n+

1

p− 1
,

for all n ≥ 1. This is quite simple at this point, as in theorem 1.4.3 we showed that:

v(DQp(ε(n))/Qp
) = n− 1

p− 1
.

Note that πn = ε(n) − 1 is a uniformizer for Qp(ε
(n)), and f(X) = X + 1 obviously

satisfies f(πn) = ε(n). Since f ′(X) = 1, we see that in this case:

δQp(ε
(n)) = v(f ′(πn))− v(DQp(ε(n))/Qp

) = −n+
1

p− 1
.
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Note also that multiplicativity of the different in finite towers gives:

δK(ε(n)) = δQp(ε
(n)) + v(DK/Qp).

Let ω ∈ Ω and write ω = udv for u, v in some finite extension of K. The preceding
computation shows that there exists an integer n ≥ 1 such that:

δK(ε(n)) ≤ δK(v).

Hence lemma 1.5.6 shows that there exists a ∈ OK such that:

ad(ε(n)) = dv.

For this a write x = (au/pn)ε(n), which is an element of K. Now one simply computes:

f(x⊗ ε) = auε(n)d(ε
(n))

ε(n)
= udv = ω,

which shows that f is surjective.
For the final claim note that for x = a/pn with a ∈ OK and n ≥ 1:

f(x⊗ ε) = 0 ⇐⇒ ad(ε(n)) = 0

⇐⇒ v(a) + δK(ε(n)) ≥ 0

⇐⇒ v(a) + n+
1

p− 1
+ v(DK/Qp) ≥ 0

⇐⇒ v(x) = v(a/pn) ≥ −v(DK/Qp)−
1

p− 1
.

This concludes the proof of the theorem.

Corollary 1.6.3. Let ξK ∈ K be such that v(ξK) = −v(DK/Qp)− 1
p−1

. Then:

D(1) ' ξKOK(1),

and there is an exact sequence of GK-modules:

0 −→ D(1) −→ K(1) −→ Ω −→ 0.

Since multiplication by pn commutes with the GK-action, one deduces commutative
diagrams of GK-modules with exact rows:

0 // D(1) //

pn

��

K(1) //

pn

��

Ω //

pn

��

0

0 // D(1) // K(1) // Ω // 0
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for every n ≥ 0. The middle map is obviously an isomorphism. Note that D(1) is
torsion free, which implies that the leftmost vertical map is injective. Analogously, the
p-divisibility of Ω shows that the rightmost vertical map is surjective. The snake lemma
thus gives an isomorphism of GK-modules:

δn : Ω[pn] ' (D/pnD)(1).

These all fit together to give an isomorphism:

TpΩ ' lim←−(D/pnD)(1) ' D̂(1) ' ξKOCp(1),

where ξK is as in the preceding corollary. Hence:

Vp(Ω) = TpΩ⊗Zp Qp ' Cp(1)

as GK-modules. This gives a deep geometric interpretation of the GK-module Cp(1).

1.7 Continuous representations

In this section we again fix a finite extension K/Qp contained in our fixed algebraic
closure K.

Let U be a topological abelian group along with a map:

f : GK × U → U

which we will denote as (σ, x) 7→ σx. If f is continuous for the product topology on
GK × U , and moreover gives a linear action of GK on U , then we say that U is a
continuous GK-representation.

Example. If U is a discrete abelian group and GK acts on U algebraically, then the
action is continuous if and only if the stabilizer subgroup stabGK

(x) is open in GK for all
x ∈ U . If E/K is an elliptic curve, then U = E[pn](K) is a naturally occurring example
of such a group. Similarly for the étale cohomology groups of varieties over K with
finite coefficients. We will refer to such examples as discrete GK-representations.

Example (p-adic representations of GK). If V is a finite dimensional Qp vector space,
then it has a unique canonical p-adic topology which makes V into a topological vector
space. It can be defined by choosing a basis for V and thereby identifying V ' Qn

p for
some n ≥ 0. Suppose that GK acts continuously on the additive group of V , such that
if a ∈ Qp then:

σ(av) = aσ(v)

for all v ∈ V and σ ∈ GK . Then V is said to be a p-adic representation.
Fix a Qp-basis for V , say e = {e1, . . . , en}. For each σ ∈ GK write:

σ(ej) =
n∑
i=1

aij(σ)ei
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for aij(σ) ∈ Qp. This gives a matrix A(σ) = (aij(σ)) ∈ GLn(Qp). One obtains a map:

ρV,e : GK −→ GLn(Qp),

which is in fact a continuous group homomorphism.
Since GK is a compact group, the image of ρV,e lies in one of the maximal compact

subgroups of GLn(Qp). Changing the basis e amounts to conjugating ρV,e, and all
maximal compact subgroups of GLn(Qp) are conjugate. It follows that there is a choice
of basis e for V such that:

im ρV,e ⊂ GLn(Zp).

For this choice of basis define:

T = Zpe1 ⊕ · · · ⊕ Zpen.

This gives a Zp-lattice T ⊂ V that is preserved by GK . For each n ≥ 1 one thus
obtains an induced continuous action of GK on the finite discrete groups T/pnT . One
thus obtains:

V ' T ⊗Z Qp '
(
lim←−T/p

nT
)
⊗Zp Qp.

This realizes V as a limit of finite discrete GK-representations, with p inverted. One
can hence deduce information about V by studying finite discrete GK-representations.

We introduce at this point the following two categories:

Repcont(GK) = { continuous GK-representations on topological abelian groups} ,

and:
RepQp

(GK) = {p-adic representations of GK} .

Note that forgetting the linear structure of objects in RepQp
(GK) gives a functor

RepQp
(GK)→ Repcont(GK),

which is a fully faithful embedding. To see that the embedding is full, one notes that
an additive morphism f of Qp-vectorspaces satisfies

f(rv) = rf(v), for all r ∈ Q.

Thus continuity of f and the density of Q in Qp ensure the Qp-linearity of f . In this
way RepQp

(GK) is a full subcategory of Repcont(GK).

Example. Let V ∈ RepQp
(GK) and put W = V ⊗Qp Cp. If σ ∈ GK then define an

action of GK on W by:
σ(v ⊗ x) = σ(v)⊗ σ(x).

Then one can show that the action on W is continuous for the natural p-adic topology.
As a Qp-vector space, W is infinite dimensional. It is also naturally a finite dimensional
Cp-vector space via the second factor of W . However, the GK action of Cp does not
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commute with scalar multiplication by elements in Cp. Rather, the action is semi-
linear: for a ∈ Cp one has

σ(a(v ⊗ x)) = σ(v ⊗ (ax)) = σ(v)⊗ (σ(a)σ(x)) = σ(a)σ(v ⊗ x).

One can attempt to copy what was done above, and fix a Cp basis for W to obtain
a map:

ρ : GK −→ GLn(Cp).

Since the GK action is only semi-linear, one obtains a cocycle, or crossed homomor-
phism, rather than a group homomorphism. Thus:

ρ ∈ H1 (GK ,GLn(Cp)) ,

which is a pointed set.
Let T ⊂ V be a GK-invariant Zp-lattice as above. Then put:

W0 = T ⊗Zp OCp .

Note that using the basis for T , we can identify W0 inside W . Under this identification
one has σ(W0) ⊂ W for all σ ∈ GK . Also:

W0 ⊗Zp Qp ' W.

Once again we see that W can be regarded as a limit of discrete (although not finite)
GK-representations:

W0 ' lim←−
(
T ⊗Zp Qp/p

n(T ⊗Zp Qp)
)
,

followed by inverting p.

Example. Take V ∈ RepQp
(GK) and put Wcris = V ⊗Qp B

+
cris, where B+

cris is a field to

be defined below. It is again the case that B+
cris contains a p-adically complete lattice.

Thus, we will see that Wcris is also a limit of discrete modules with p inverted.

Example. We will also define the deRham period ring B+
dR. The above phenomena

will not hold for:
WdR = V ⊗Qp B

+
dR.

One thus requires different methods to study these representations.

1.8 Continuous group cohomology

1.8.1 Cohomology of finite groups

LetG be a finite group. Denote by RepG the category ofG-modules (or representations
of G). Its objects are abelian groups M endowed with a G-action which respects the
additive structure. That is, there is a map

G×M →M, (σ,m) 7→ σm,
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satisfying, for all σ, τ ∈ G, and for all a, b ∈M :

σ(τa) = (στ)a

σ(a+ b) = σa+ σb

1Ga = a.

For two objects M1 and M2 in RepG, a morphism f : M1 → M2 is a group homo-
morphism such that, for all σ ∈ G and for all a ∈M , satisfies

f(σa) = σf(a).

The category RepG just defined is abelian. Indeed, one easily proves that it is
isomorphic to the category of Z[G]-modules, and thus it is a module category. This
already implies that it has enough injectives and projectives, for example.

More generally, suppose that R is a commutative ring. Denote by RepRG the
category of R-modules with a linear G-action. Again, RepRG ' Mod(R[G]), so
it is also abelian and has enough injectives and projectives. The forgetful functor
RepRG→ RepG is faithful.

If S in a R-algebra and G is a subgroup of the group of R-algebra isomorphisms of
S, then one defines the category Rep(R,S)G to have as objects the S-modules M with
a semilinear action by G. That is, for s ∈ S, a ∈M and σ ∈ G, one requires

σ(sa) = (σs)(σa).

Note that if α ∈ R, then σ(αa) = α(σa), so that there is again a forgetful functor
Rep(R,S)G→ RepRG, which again is faithful. The category Rep(R,S)G is abelian as
well, although it cannot be directly seen as a module category.3

We define the functor of G-invariants F : RepG → Ab. On objects M of RepG,
it is:

F (M)
def
= MG def

= {m ∈M | σm = m for all σ ∈ G}.

If f : M → N is a morphism, then it maps an element m ∈ M fixed by G to an
element f(m) which will also be fixed by G, and thus its restriction induces a group
homomorphism

F (f) : F (M)→ F (N).

It is an easy exercise to show that F is a functor. It is also easy to show that F is left
exact. This means that if

0→M1
f→M2

g→M3

is an exact sequence in RepG, then the induced sequence

0→ F (M1)
F (f)→ F (M2)

F (g)→ F (M3)

is exact in Ab.

3 FIXME: Shouldn’t be an abelian categories ALWAYS a module category?
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We define the functors Hn(G,−) from RepG to Ab, for all non-negative integers
n, as the nth right derived functors of F . The family

{Hn(G,−)}n≥0

is a cohomological δ-functor. This means that given a short exact sequence ofG-modules

0→M1 →M2 →M3 → 0,

there exists a sequence of group homomorphisms δn : Hn(G,M3) → Hn(G,M1) which
yields a long exact sequence in Ab:

· · · → Hn(G,M1)→ Hn(G,M2)→ Hn(G,M3)
δn→ Hn+1(G,M1)→ · · ·

1.8.2 Construction using injective resolutions

Let M be a G-module. Consider an injective resolution for M in RepG

0→M → I0 → I1 → · · ·

This means that the sequence is exact, and each of the Ij is an injective object in
RepG.

Define then

Hn(G,M)
def
= Hn

(
0→ F (M)→ F (I0)→ F (I1)→ · · ·

)
One checks that the definition is independent of the chosen resolution.

Remark. If M is in RepRG, to compute Hn(G,M) one may take an injective resolu-
tion in RepRG, and it follows that Hn(G,M) has in fact a structure of an R-module.
Similarly, if M is in Rep(R,S)G, one may compute Hn(G,M) by using an injective

resolution in Rep(R,S)G, which will endow the cohomology groups with an SG-module
structure.

1.8.3 The Hochschild-Serre spectral sequence

Suppose that H ⊆ G is a normal subgroup of G, and let M be a G-module. By
restriction of the action, M is also an H-module and H i(H,M) has the structure of a
G/H-module.

Theorem 1.8.1 (Hochschild-Serre spectral sequence). There is a spectral sequence

Hp (G/H,Hq(H,M)) =⇒ Hp+q(G,M).

In particular, there is an exact sequence (inflation-restriction exact sequence):

0→ H1(G/H,MH)
Inf→ H1(G,M)

Res→ H1(H,M)G/H → · · ·
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1.8.4 Computation using the chain complex

Let M be a G-module, and consider the chain complex:

C•(G,M) : C0(G,M)
d0→ C1(G,M)

d1→ C2(G,M)→ · · · ,

where

Ci(G,M)
def
= { functions f : Gi →M},

made into an abelian group using the additive structure of M . The maps di are defined
as

di : C
i(G,M)→ Ci+1(G,M), f 7→ dif,

where

(dif)(σ1, . . . , σi+1) = σ1 · f(σ2, σ3, . . . , σi+1) +
i∑

j=1

(−1)jf(σ1, . . . , σjσj+1, . . . σi+1) +

+(−1)i+1f(σ1, . . . , σi).

A tedious but simple calculation shows that di+1 ◦ di = 0, so that C•(G,M) is a
complex.

Theorem 1.8.2. For each non-negative integer n, there are canonical isomorphisms

Hn(G,M) ' Hn (C•(G,M)) .

In particular, one can compute using this definitions:

H0(G,M) = MG,

H1(G,M) =
{f : G→M | f(στ) = σ · f(τ) + f(σ), for all σ, τ ∈ G}

{g : G→M | there exists m ∈M s.t. g(σ) = σm−m, for all σ}
.

1.8.5 Continuous cohomology

Let G be a profinite group. For example, if K is an algebraic extension of Qp, one may
take G = GK = Gal(K/K). But note that there are some groups in which we may be
interested, like GL2(Qp), which are not profinite.

Consider the category RepcontG. An object M is a topological abelian group,
together with a continuous action. This means that the map G ×M → M giving the
action is continuous, where G ×M is given the product topology. A map f : M → N
is a morphism in RepcontG if f is a continuous group homomorphism commuting with
the action of G.

Remark. Although there is a forgetful functor RepcontG→ RepG, it is rarely used.
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We will be primarily interested in simpler subcategories of RepcontG. In these
cases there are simpler definitions of continuous cohomology. At the present level of
generality one defines continuous cohomology using continuous cochains. Let M be a
continuous G-module and consider the chain complex:

C•
cont(G,M) : C0

cont(G,M)
d0→ C1

cont(G,M)
d1→ C2

cont(G,M)→ · · · ,

where

Ci
cont(G,M)

def
= { continuous functions f : Gi →M},

made into an abelian group using the additive structure of M . The maps di are defined
as before:

di : C
i
cont(G,M)→ Ci+1

cont(G,M), f 7→ dif,

where

(dif)(σ1, . . . , σi+1) = σ1 · f(σ2, σ3, . . . , σi+1) +
i∑

j=1

(−1)jf(σ1, . . . , σjσj+1, . . . σi+1)

+(−1)i+1f(σ1, . . . , σi).

The continuous cohomology groups are defined as

Hn
cont(G,M)

def
= Hn (C•

cont(G,M)) .

It is easy to check that H0
cont(G,M) = MG. However, the family {Hn

cont(G,−)}n≥0

is not a cohomological δ-functor. It satisfies a weaker property:4

Theorem 1.8.3. Let

0→M1 →M2
g→M3 → 0

be an exact sequence in RepcontG. Assume that there is a continuous group homomor-
phism s : M3 → M2, not necessarily commuting with the G-action, such that s is a
section to g. That means that g ◦ s = IdM3. Then there is a long exact sequence of
abelian groups

· · · → Hn
cont(G,M1)→ Hn

cont(G,M2)→ Hn
cont(G,M3)

δn→ Hn+1
cont (G,M1)→ · · · .

We will apply this theorem later in the course to what will be called the fundamental
exact sequence for period rings. Also, suppose thatH ⊆ G is a closed, normal subgroup.
Then one can find sections to the restriction map and one obtains again the inflation-
restriction exact sequence.

4 FIXME: Explain better the problem here.
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1.8.6 Distinguished subcategories of RepcontG

In this subsection we discuss subcategories of RepcontG that allow us to work with
limits of cohomology of finite groups. First consider the category RepdiscG of discrete
topological abelian groups M , together with a continuous G-action. It is a full
subcategory of RepcontG.

Remark. Given a discrete abelian group M with a G-action, the continuity of the
action is equivalent to the fact that, for all m ∈M , the stabilizer of m in G is an open
subgroup of G.

Let M be an object in RepdiscG, and let H ⊆ G be an open, normal subgroup.
Then MH has a natural structure of G/H-module and

M =
⋃
H⊆G

H open, normal

MH .

Moreover, if H ′ ⊆ H ⊆ G are both open, normal subgroups of G, then there is a
surjection G/H ′ � G/H, and MH ⊆MU . This gives maps for all n ≥ 0,

Hn(G/H,MH)→ Hn(G/H ′,MH′),

which yield an inductive system.

The following theorem reduces the computation of continuous group cohomology to
that of finite group cohomology:

Theorem 1.8.4. Let M be a discrete G-module. Then there are canonical isomor-
phisms

Hn
cont(G,M) ' lim−→

H⊆G
Hn(G/H,MH), for all n ≥ 0,

where the injective limit is taken over all open, normal subgroups H ⊆ G.

We can generalize the previous construction by enlarging the category we consider.
Let (RepdiscG)N denote the category having as objects projective systems of discrete
modules

(M0 M1
oo M2

oo · · ·)oo

and as morphisms families {hi}i≥0 of morphisms of discrete representations of G, such
that the resulting diagrams commute:

M0

h0

��

M1
oo

h1

��

M2
oo

h2

��

· · ·oo

N0 N1
oo N2

oo · · ·oo
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There is a functor from (RepdiscG)N to RepcontG, which takes a projective system
to the corresponding projective limit. There is also a functor FN mapping (RepdiscG)N

to Ab, which on objects is

FN(M0 ←M1 ←M2 ← · · · ) =

(
lim←−
i

Mi

)G

.

For the sake of brevity we begin denoting projective systems as sets {Mn}n≥0, or
even just {Mn}. The projective limit functor is left exact in general. We write lim←−

(n)

for n ∈ N to denote the nth right derived functor of lim←−. The following is a sufficient
condition for lim←− to preserve an exact sequence:

Definition 1.8.5. Let {An} be a projective system of abelian groups with transition
homomorphisms un : Mn+1 → Mn. We say that {An} satisfies the ML condition, for
Mittag-Leffler, if for every n ≥ 0 the decreasing sequence of subgroups:{

U (m)
n = (un ◦ un+1 ◦ · · · ◦ um)(Mm+1) | m > n

}
is stationary.

For instance, if the transition morphisms un above are surjective, then U
(m)
n = An

for all m > n. In this case the ML condition is trivially satisfied. Another simple
case is when the groups An are all finite or, more generally, when they all satisfy the
decreasing chain condition. The ML condition is immediate in this case.

Below we will sometimes discuss the ML condition for modules over rings; in this
context one forgets any extra structure and regards the objects as abelian groups.

Lemma 1.8.6. Let {An} be a projective system of abelian groups which satisfies ML.
Then lim←−

(1)An = 0.
In particular, if {Bn} and {Cn} are projective systems of abelian groups and the

sequence:

0→ {An} → {Bn} → {Cn} → 0

is exact, then the resulting sequence of abelian groups:

0→ lim←−An → lim←−Bn → lim←−Cn → 0

is exact.

Theorem 1.8.7. 1. Let {Mn} ∈ (RepdiscG)N satisfy the ML condition. Put M =
lim←−Mn. Then there are canonical isomorphisms

Hn
cont(G,M) ' RnFN ({Mn})

for all n ≥ 0.
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2. Moreover, suppose that:

0→ {Rn} → {Sn} → {Mn} → 0

is exact in (RepdiscG)N, and that the three projective systems satisfy the ML
condition. Then if we put R = lim←−Rn, S = lim←−Sn and M = lim←−Mn, the induced
sequence:

0→ R→ S →M → 0

is exact in RepcontG, and the topology on M is the induced quotient topology of
S/R. In particular, theorem 1.8.3 applies, and one obtains a long exact sequence
in continuous cohomology.

3. The isomorphisms of cohomology in (1) are compatible with long exact sequences
in the sense that:

· · · // H i
cont(G,R) //

��

H i
cont(G,S) //

��

H i
cont(G,M) //

��

· · ·

· · · // (RiFN) ({Rn}) // (RiFN) ({Sn}) // (RiFN) ({Mn}) // · · ·

commutes.

Since FN is a composition of left exact functors, one can use the Leray spectral
sequence, and the fact that the higher derived functors of lim←− vanish (see [Wei94]) to
prove:

Theorem 1.8.8. Given {Mn} ∈ (RepdiscG)N, there are exact sequences for all i ≥ 1:

0→ lim←−
(1)H i−1

cont(G,Mn)→ (RiFN) ({Mn})→ lim←−H
i
cont(G,Mn)→ 0.

The proofs of these claims can be found in [Jan88].

Remark. Note in particular that if {Mn} satisfies ML, and for some i ≥ 1 the projective
system of abelian groups {H i−1

cont(G,Mn)} satisfies ML, then:

lim←−
(1)H i−1

cont(G,Mn) = 0

and the preceding two theorems give:

H i
cont(G, lim←−Mn) ' lim←−H

i
cont(G,Mn).

We end this section by discussing a technical condition that will be useful in subse-
quent computations. Our terminology is presently nonstandard.

Definition 1.8.9. Let {An, dn} be a projective system in (ModOL
)N. We say that

{An, dn} is almost ML if for every a ∈ mL, one has a coker dn = 0.
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5

Note that if the cokernels vanish, then {An, dn} is a projective system with surjective
transition maps, and hence ML. This explains the choice of terminology.

The importance of the almost ML condition is encapsulated in the following:

Lemma 1.8.10. If {An} is almost ML, then lim←−
(1)An is annihilated by every a ∈ mL.

Proof.

One can regard this lemma as saying that if {An} is almost ML, then lim←−
(1)An is

almost zero.

1.9 Cohomology of Cp

One can prove that there is a bijection

{subfields Qp ⊆ K ⊆ Qp} oo // {complete subfields Qp ⊆ L ⊆ Cp}

where to a subfield K ⊆ Qp one assigns its completion K̂, and to a complete subfield
L one assigns K = L ∩Qp. Moreover, if K is a subfield of Qp and GK = Gal(Qp/K),
then:

CGK
p = K̂.

This provides us with a Galois theory for Cp which relates complete subfields of Cp and
closed subgroups of GQp . All of this follows quite easily from a theorem of Ax. This
result can be stated equivalently as:

H0
cont(K,Cp) = CGK

p = K̂.

We want to compute the higher cohomology groups H i
cont(K,Cp), for all i ≥ 0, using

the cohomological machinery developed above.

Notation. Fix a finite extension K/Qp and L = K∞ a totally ramified Zp-extension
of K. Write Γ = Gal(L/K), so that Γ ' Zp. Let γ ∈ Γ be a topological generator.

We begin by treating the totally ramified Zp-extension L ofK, and will subsequently
descend our results using the Hochschild-Serre spectral sequence. The following diagram

5 FIXME: Should call it ”almost surjective” instead...



COHOMOLOGY OF CP 41

shows the fields under consideration, and the corresponding Galois groups:

K

GL

GK L = K∞

Γ=Zp

K

finite

Qp.

Let W be an OK-module with the discrete topology and a continuous semilinear
action of GL = Gal(K/L). Note that:

W ∈ Repdisc
(OL,OK)(GL).

Remark. The natural induced GL-action on OK , or even K, is continuous for the
discrete topology, and hence for any topology on OK . To see this simply note that if
x ∈ OK , then in fact x ∈ OF for some finite extension F/L and hence:

GF ⊂ StabGL
(x).

Since GF is open in GL, it is of finite index. Hence the stabilizer of x in GL is also of
finite index, thus open. Note that this result does not hold for Cp.

We begin with a key lemma:

Lemma 1.9.1. For every a ∈ mL, one has aH i
cont(GL,W ) = 0 for all i ≥ 1.

Proof. Recall that since W is a discrete OK module with continuous GL-action, one
has:

H i
cont(GL,W ) ' lim−→

F/L finite Galois

H i(Gal(F/L),WGF )

for all i ≥ 1. We may hence fix a finite Galois extension F/L, put G = Gal(F/L) and
show that every a ∈ mL annihilates H i(Gal(F/L),WGF ). Write X = WGF , which is a
OF -module with semilinear G-action; hence X ∈ Rep(OL,OF )(G).

In section 1.4 we observed that:

mLOK = mK .

Intersecting this with OF gives mF = mLOF . By theorem 1.4.5 we deduce that:

mL ⊂ TrF/L(OF ).

So take a ∈ mL and write it as a = TrF/L(b) for some b ∈ OF .
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Let:

0→ X → I0 d0→ I1 d1→ I2 → · · ·
be an injective resolution of X in Rep(OL,OF )(G). If we write d′n for the restriction of

dn to (In)G then:
Hn(G,X) = ker d′n/ im d′n−1

for all n ≥ 1. Consider the commutative diagram:

In−1 dn−1
//

��

In
dn

//

��

In+1

��

(In−1)GL
d′n−1

// (In)GL
dn

// (In+1)GL

where the vertical maps are the natural inclusions. Represent an element of Hn(G,X)
by some x ∈ ker d′n, so that also dn(x) = 0. Since the top row is exact, we may take
y ∈ In−1 with dn−1(y) = x. Now, y may not be G-invariant. The trick is to average
by ∈ In−1 over the finite group G to obtain:

y′ =
∑
σ∈G

σ(by) ∈ (In−1)G.

But now, since x is G-invariant, one easily computes:

dn−1(y
′) =

∑
σ∈G

σ(bdn−1(y))

=
∑
σ∈G

σ(bx)

=

(∑
σ∈G

σ(b)

)
x

= ax.

Hence ax ∈ im dn−1, so that the class of ax is zero in Hn(G,X). This shows that each
a ∈ mL annihilates Hn(G,X) for all n ≥ 1 and concludes the proof of the lemma.

The next two results now follow formally from the cohomological machinery devel-
oped above:

Theorem 1.9.2. With L as above, CGK
p = L̂.

Proof. For all n ≥ 1 we have commutative diagrams with exact rows:

0 // OK
pn

// OK // OK/pnOK // 0

0 // OK
pn+1

//

p

OO

OK // OK/pn+1OK //

OO

0



COHOMOLOGY OF CP 43

Here the maps labeled with pi denote multiplication by pi. The unlabeled maps are
the natural projections. Note that these maps all commute with the GL-action since
p ∈ Qp. Since the GL-action is continuous for the discrete topologies above, we deduce
that there are corresponding long exact sequences of continuous cohomology:

0 // (OK)GL
pn

// (OK)GL // (OK/pnOK)GL // H1
cont(GL,OK) // · · ·

0 // (OK)GL
pn+1

//

p

OO

(OK)GL // (OK/pn+1OK)GL //

OO

H1
cont(GL,OK) //

p

OO

· · ·

such that the above diagram commutes. Hence for each n ≥ 1 we have a commutative
diagram of abelian groups with exact rows:

0 // OL/pnOL // (OK/pnOK)GL // H1
cont(GL,OK)

0 // OL/pn+1OL //

OO

(OK/pn+1OK)GL //

OO

H1
cont(GL,OK)

p

OO

Note that the leftmost vertical map is the natural projection, as it is induced from
the identity on (OK)GL = OL. Since p ∈ mL, Lemma 1.9.1 implies that the rightmost
vertical map is trivial. Hence:

lim←−H
1
cont(GL,OK) = 0,

for the rightmost projective system appearing in the diagram above. Taking projective
limits of the diagram, which is a left exact operation, thus gives an isomorphism:

ObL ' lim←−OL/p
nOL ' lim←−(OK/pnOK)GL ' (OCp)

GL .

The last isomorphism follows by commuting projective limits with Galois invariants.
This can be done since the GL acts componentwise on the projective limit, when re-
garded as a subset of the product of the modules in the projective system. Inverting p
then gives L̂ ' (Cp)

GL .

Remark. Note that:

H1
cont(GL,OK)⊗Zp Qp ' H1

cont(GL, K),

and this is trivial by Hilbert 90. It follows that H1
cont (GL,OK) is a torsion Zp-module.

This does not imply, however, that:

lim←−H
1
cont(GL,OK) = 0,

where the transition maps for the projective system are given by multiplication by p as
above. It would imply this if H1

cont (GL,OK) were furthermore finitely generated, but
this is not true in general.
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Theorem 1.9.3. If V is a p-adic representation of GL, then:

H i
cont(GL, V ⊗Qp Cp) = 0

for all i ≥ 1.

Proof. Recall that there exists a GL-stable Zp-lattice T ⊂ V . For each n ≥ 0 write:

Mn = (T ⊗Zp OCp)/p
n+1(T ⊗Zp OCp),

which is a discrete GL-representation.
We begin with the case i = 1. Lemma 1.9.1 applies, so that for all a ∈ mL:

aH1
cont(GL,Mn) = 0.

The natural projection maps make {Mn} an object in (RepdiscGL)N. Since the pro-
jection maps are surjective, it trivially satisfies the ML condition. One can show that
{MGL

n } is almost ML (we will add a proof after we have completed homework 2).6 We
may hence apply Theorem 1.8.8 to obtain the exact sequence:

0→ lim←−
(1){MGL

n } → H1
cont(GL, lim←−Mn)→ lim←−H

1
cont(GL,Mn)→ 0.

Take a ∈ mL and choose α ∈ v(L×) such that α ≤ v(a)/2; this is possible since
L/K is a totally ramified Zp-extension. Since {MGL

n } is almost ML, pα annihilates the
leftmost term. Similarly, the Lemma 1.9.1 implies that pα annihilates the cokernel.
It follows that p2α annihilates H1

cont(GL, lim←−Mn). By choice of α we see that also
aH1

cont(GL, lim←−Mn) = 0. This holds for all a ∈ mL, so inverting p kills the group

H1
cont(GL, lim←−Mn).

But lim←−Mn is isomorphic to T ⊗Zp OCp , and hence:

0 = H1
cont(GL, T ⊗Zp OCp)⊗Zp Qp ' H1

cont(GL, V ⊗Qp Cp).

This concludes the proof when i = 1.
Suppose now that i ≥ 2. In this case Lemma 1.9.1 implies that each H i−1

cont(GL,Mn)
is killed by every a ∈ mL, and so {H i−1

cont(GL,Mn)}n≥0 is a fortiori almost ML. The proof
proceeds as above.

1.9.1 Computing Γ-cohomology

Let us fix a p-adic representation V as above, and turn our attention towards under-
standing H i

cont(GK , V ⊗Qp Cp). Theorem 1.9.3 immediately implies that the Hochschild-
Serre spectral sequence:

H i
cont

(
Γ, Hj

cont(GL, V ⊗Qp Cp)
)

=⇒ H i+j
cont(GK , V ⊗Qp Cp)

6 FIXME: add a proof
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degenerates at the first step and gives isomorphisms:

H i
cont

(
Γ, (V ⊗Qp Cp)

GL
)
' H i

cont(GK , V ⊗Qp Cp)

for all i ≥ 0. In the case i = 0 this is just the obvious identification:

(V ⊗Qp Cp)
GK '

(
(V ⊗Qp Cp)

GL
)Γ
,

and for i = 1 the isomorphism is given by the inflation-restriction exact sequence.
This identification translates our problem to the problem of computing the coho-

mology of a continuous Γ-module W . Although the methods we use below are quite
general, we suppose for simplicity that W ' lim←−Wn, where the Wn’s are discrete Γ-
representations. Consider the following complex concentrated on degrees 0 and 1, which
depends on the choice of the topological generator γ ∈ Γ.

C•(γ,W ) : W
γ−1−→ W

given by x 7→ γx− x.

Theorem 1.9.4. For each i ≥ 0, there is a canonical isomorphism

H i
cont(Γ,W ) ' H i(C•(γ,W ))

Proof. Let X be a discrete representation of Γ. The the cohomological δ-functors
H i

cont(Γ,−) and H i(C•(γ,−)) agree at i = 0 and they are universal (because they are
effaa̧ble), so a theorem of Grothendieck gives the canonical isomorphisms for i ≥ 0.

For general {Wn, dn}, still there is an isomorphism

H0
cont(Γ,W ) ' H0(C•(γ,W )) = W γ=Id.

The ML condition and Theorem 1.8.8 give exact sequences, for each i ≥ 1:

0→ lim←−
(1)H i−1

cont(Γ,Wn)→ H i
cont(Γ,W )→ lim←−

n

H i
cont(Γ,Wn)→ 0.

For i = 1 we have

lim←−
n

H1
cont(Γ,Wn) ' lim←−

n

(Wn/(γ − 1)Wn) ' W/(γ − 1)W,

and thus we get a surjective map

H1
cont(Γ,W ) � W/(γ − 1)W.

This map is also injective because of the diagram

C0(Γ,W )
d0 // ker d1

//
_�

��

H1
cont(Γ,W ) //

��
�
�
�

0

W
γ−1

// W // W/(γ − 1)W // 0
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in which the middle map sends f ∈ ker d1 to f(γ).
For i = 2, note that H2

cont(Γ,Wn) = 0 for all n, and that {Wn/(γ − 1)Wn} satisfies
the ML condition, so that its lim←−

(1) vanishes. Theorem 1.8.8 implies that H2
cont(Γ,W )

is zero, agreeing with H2(C•(γ,W )). For i ≥ 3, both cohomologies vanish, and so the
result holds as well.

In particular we have the identities:

H0
cont(Γ,W ) = ker(γ − 1),

H1
cont(Γ,W ) = W/(γ − 1)W,

H i
cont(Γ,W ) = 0 for i ≥ 2.

The last identity above reflects the fact that Γ is procyclic, and hence has cohomological
dimension 1.

Fix a continuous homomorphism φ : Γ → O×
K . Continuity implies that φ is deter-

mined by φ(γ) = λ−1. The image of φ is either finite or infinite, and in either case it is
topologically generated by a single element. We will suppose that φ has infinite image.
In particular, φ is nontrivial.

Recall that there is a natural isomorphism of topological groups:

O×
K ' (Z/(q − 1)Z)×OK ,

where q is the residue degree of K/Qp. If π is a uniformizer for K/Qp, then one can
express x ∈ O×

K uniquely as ζ(1+πy), where ζ is a (q−1)th root of unity, and y ∈ OK .
Mapping x 7→ (ζ, y) gives the isomorphism above. This decomposition makes it clear
that since φ(Γ) is infinite and topologically generated by a single element, then we must
have:

φ(Γ) ⊂ 1 + mK ' {1} × OK .

We will regard φ as a continuous character GK → O×
K via the natural projection

GK → Γ. Note that then GL ⊆ kerφ since φ factors through Gal(L/K). In fact, if φ
has infinite image then GL equals kerφ. Let V = K(φ), which is K as a vectorspace
and has the GK action:

σ(x) = φ(σ)x.

Then V ⊗K Cp ' Cp(φ), and GK acts semilinearly on Cp(φ) as:

σ · x = φ(σ)σ(x).

In particular, if σ ∈ GL then σ · x = σ(x), so that the two actions of GL agree. The
identity map Cp(φ) ' Cp is an isomorphism of GL-modules, but not as GK-modules.
Note that:

(V ⊗Cp)
GL = (Cp(φ))GL = (CGL

p )(φ) = L̂(φ),

where the middle equality follows from the inclusion GL ⊂ kerφ. We would thus like
to compute H i

cont(Γ, L̂(φ)).
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For this we specialize the complex discussed above to the case W = L̂(φ):

C•(Γ, L̂(φ)) : L̂(φ)
γ−1−→ L̂(φ).

Consider a second complex:

C ′• : L̂
γ−λ−→ L̂.

A trivial verification shows that the diagram

L̂(φ)
γ−1

// L̂(φ)

L̂
γ−λ

//

1

OO

L̂

λ−1

OO

commutes. As the vertical maps are isomorphisms of vectorspaces, this chain map is
an isomorphism of complexes, so that:

H i
cont(Γ, L̂(φ)) ' H i(C•) ' H i(C ′•).

Thus, we should study the map γ − λ on L̂. For this we must return to the study of
ramification.

1.9.2 The trace map t : L→ K

Since L/K is a totally ramified Zp-extension, every x ∈ L belongs to Kn for some n.
We can hence put:

t(x) =
1

pn
TrKn/K(x) ∈ K.

Since each Kn+1/Kn is totally ramified of degree p, and since:

TrKn+1/K = TrKn/K ◦TrKn+1/Kn ,

it follows that t(x) does not depend on the choice of Kn with x ∈ Kn. It thus gives a
well-defined function:

t : L→ K

which is easily seen to be K-linear. If we write i : K → L for the natural injection,
then t ◦ i = IdK . It follows that t is surjective and i gives a splitting. Our first goal is
to establish the continuity of t, in order to extend it to a continuous map L̂ → K. It
turns out that this map is related to γ − 1.

We begin with a simple lemma:

Lemma 1.9.5. For n ≥ 0, let σ denote a generator of Gal(Kn+1/Kn). Then for all
x ∈ Kn+1: ∣∣∣∣x− 1

p
TrKn+1/Kn(x)

∣∣∣∣ ≤ p |σ(x)− x| .



48 PERIOD RINGS

7

Proof. The proof is a simple computation:

∣∣px− TrKn+1/Kn(x)
∣∣ =

∣∣∣∣∣px−
p−1∑
i=0

σi(x)

∣∣∣∣∣
=

∣∣∣∣∣
p−1∑
i=0

(1− σi)(x)

∣∣∣∣∣
=

∣∣∣∣∣
p−1∑
i=0

(1 + σ + · · ·+ σi−1)((1− σ)x)

∣∣∣∣∣
=

∣∣∣∣∣
p−1∑
i=0

i−1∑
j=0

σj((1− σ)x)

∣∣∣∣∣
≤ |σx− x| ,

by the strong triangle inequality and since each σj is an isometry.

The following proposition is fundamental for what follows:

Proposition 1.9.6. There exists a constant d > 0 depending only on L, such that for
all x ∈ L:

|x− t(x)| ≤ d |γx− x| .

Proof. We will show, by induction on n, that for x ∈ Kn:

|x− t(x)| ≤ cn |γx− x| ,

where cn+1 = pap
−n
cn, c0 = p and a is a constant. The case n = 0 was treated in the

preceding lemma.

Next take x ∈ Kn+1 and note that:

|x− t(x)| ≤ sup{
∣∣x− (1/p) TrKn+1/Kn

∣∣ , ∣∣t(x)− (1/p) TrKn+1/Kn

∣∣}.
We bound each of the values in the set. The first is easy; take σ = γp

n
as a generator

for Gal(Kn+1/Kn) and deduce the bound:∣∣x− (1/p) TrKn+1/Kn(x)
∣∣ ≤ p

∣∣γpn

x− x
∣∣

= p
∣∣(γpn−1 + γp

n−2 + · · ·+ 1)(γ − 1)(x)
∣∣

≤ p |γx− x| .

7 FIXME: We changed —p— to 1/p
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If we put y = (1/p) TrKn+1/Kn(x), then y ∈ Kn and so:

t(y) = (1/pn) TrKn/K(y)

= (1/pn) TrKn/K((1/p) TrKn+1/Kn(x))

= (1/pn+1) TrKn+1/K(x)

= t(x).

Hence:∣∣t(x)− (1/p) TrKn+1/Kn

∣∣ = |y − t(y)|
≤ cn |γ(y)− y| by induction,

= cn
∣∣γ((1/p) TrKn+1/Kn(x))− (1/p) TrKn+1/Kn(x)

∣∣
= pcn

∣∣TrKn+1/Kn(γx− x)
∣∣

Corollary 1.4.4 yields a constant a ≥ 0, independent of n, such that:∣∣TrKn+1/Kn(γx− x)
∣∣ ≤ pap

−n−1 |x| .

Thus: ∣∣t(x)− (1/p) TrKn+1/Kn

∣∣ ≤ pcn · pap
−n−1 |x| = cnp

ap−n |x| = cn+1 |x| .

This concludes the proof.

Remark. For a given m, replace K by Km, so that γ′ = γp
m

is a generator for the group
Γ′ = Gal(L/Km). Similarly replace the map t by t′, where t′ is defined analogously to
t relative to the base field Km. Then for all x ∈ L,

|t′(x)− x| ≤ d |γ′(x)− x| ,

where d is the same constant as in the proposition.

1.9.3 Functional analysis for dummies

Fix K a field endowed with an non-archimedean absolute value |·|.

Definition 1.9.7. A normed K-vectorspace is a pair (B, ‖·‖), where B is a K-
vectorspace and

‖·‖ : B → R≥0

is a map satisfying:

1. ‖x+ y‖ ≤ max{‖x‖ , ‖y‖}, for all x, y ∈ B.

2. ‖ax‖ = |a| ‖x‖, for all a ∈ K and x ∈ B.
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3. ‖x‖ = 0 if and only if x = 0.

Such a map ‖·‖ is called a norm on B.

Example. In our setting of K a finite extension of Qp and L = K∞ a totally ramified

Zp-extension, the fields L,K, L̂,Cp, together with the natural extension of |·| on K, are
all normed K-spaces.

Definition 1.9.8. A normed K-spaces (B, ‖·‖) is a Banach space over K if B is
complete with respect to the norm ‖·‖.

Definition 1.9.9. A linear map f : B1 → B2 of normed K-vectorspaces is bounded
if there exists a constant M > 0 such that for all x ∈ B1

‖f(x)‖B2
≤M ‖x‖B1

.

We define a norm on the linear K-vectorspace Homcont(B1, B2) by setting

‖f‖ def
= inf

{
M | ‖f(x)‖B2

≤M ‖x‖B1
for all x ∈ B1

}
.

Lemma 1.9.10. Let B1 and B2 be normed K-vectorspaces, and let f : B1 → B2 be a
K-linear map. Then f is continuous if and only if f is bounded.

Example. The fields L and K, with the natural norm, are not K-Banach spaces. Since
they are infinite extensions of K, they are not complete. In fact, their completions are
actually L̂ and Cp, which become then K-Banach spaces.

We need some results from the general theory of Banach spaces.

Lemma 1.9.11. Let B1 and B2 be K-Banach spaces. Let f : B1 → B2 be a continuous
K-linear map which is surjective. Then there exists a continuous K-linear map s : B2 →
B1 such that f ◦ s = IdB2.

Lemma 1.9.12 (Open mapping property). Let B1 and B2 be K-Banach spaces. Let
f : B1 → B2 be a continuous K-linear map which is bijective. Then f−1 : B2 → B1 is
continuous.

1.9.4 The theorem of Tate

As the action of γ on L is continuous, the map γ−1 is also continuous on L. Proposition
1.9.6 thus implies that the map t − 1: L → L is bounded, hence continuous. But
IdL : L → L is continuous, and we conclude that t = (t − 1) + 1 is continuous as well,
being the sum of two continuous maps.

The previous discussion allows us to extend the map t : L → K by continuity to
t : L̂ → K. Note that the natural inclusion i : K ↪→ L̂ is a continuous splitting of t.
Note then that t is surjective.
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Let X = L̂, and let X0 = ker t, which is a closed subspace of X. There is an exact
sequence of K-Banach spaces

0→ X0 → X → K → 0,

and i : K → X yields a canonical decomposition of X:

X = X0 ⊕K, as K-Banach spaces.

We want to study the action of γ − Id and of γ − λ · Id on X.

Lemma 1.9.13. The map γ − Id is trivial on K, and induces an isomorphism

(γ − Id)|X0 : X0 → X0.

Proof. Recall that γ is a topological generator of Γ = Gal(L/K), so γ fixes K. If
x ∈ X0

t(γ(x)− x) = t(γ(x)) = γ(t(x)) = γ(0) = 0,

so that (γ− Id)(X0) ⊆ X0. It remains to show that the restriction of γ− Id induces an
isomorphism on X0.

Let Kn,0 = Kn ∩ X0 and note that Kn,0 is not a subfield of Kn. It only has the
structure of a finite-dimensional K-vectorspace. Let K∞,0 =

⋃
n≥0Kn,0, and note that

K∞,0 = K∞ ∩X0; in fact, K∞,0 is dense in X0.
If x ∈ Kn,0 then

|γ(x)− x| ≥ 1

d
|t(x)− x| = 1

d
|x| ,

so that γ(x) − x = 0 if and only if x = 0. Hence the map γ − Id is injective when
restricted to Kn,0, and so bijective since Kn,0 is finite-dimensional. This shows that
γ − Id is a continuous and bijective map on K∞,0, and so its set theoretic inverse
ρ∞ : K∞,0 → K∞,0 is continuous as well, by the open mapping property (Lemma 1.9.12).
The map ρ∞ extends in a unique way to the closure of K∞,0, which is X0, thus giving
an inverse ρ to the map (γ − Id)|X0 .

Remark. For later use we give an explicit construction of ρ. Let ρn be the inverse
of (γ − Id)|Kn,0 . The uniqueness of inverses implies that ρn+1 agrees with ρn when
restricted to Kn,0, so that we can define ρ : K∞,0 → K∞,0 by ρ(x) = ρn(x) if x ∈ Kn,0.

By its very definition, ρ is a K-linear map which is a two-sided inverse to (γ −
Id)|K∞,0 . It remains to show that ρ : K∞,0 → K∞,0 is continuous. But if x ∈ K∞,0, then

|x| = |((γ − Id) ◦ ρ)(x)| ≥ 1

d
|t(ρ(x))− ρ(x)| = 1

d
|ρ(x)| ,

so ρ is bounded and hence continuous. This allows ρ to be extended uniquely to X0.
The density of K∞,0 in X0 implies that ρ is the inverse of (γ − Id)|X0 .
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The following lemma treats the twisting by φ. This is equivalent to saying that for
all n, λp

n 6= 1 or, equivalently,

λ ∈ (1 + mK) \ µµp∞(K).

The following lemma treats this case:

Lemma 1.9.14. Assume that φ is of infinite order. Then the map γ − λId induces an
isomorphism

(γ − λId) : X → X.

Proof. Decompose X as X0⊕K. The map γ− λ acts on K as multiplication by 1− λ.
Since this is a unit in K, γ − λ induces an isomorphism on K. It remains to study the
action of γ − λ on X0.

First suppose that |λ− 1| d < 1. Let ρ be the inverse of (γ − Id)|X0 . Consider the
map

α
def
= (γ − λ) ◦ ρ = ((γ − Id) + (1− λ)Id) ◦ ρ = IdX0 − (λ− 1)ρ.

Note that α is a K-linear map X0 → X0. We write an explicit formula for the
inverse of α and then check that the stated formula makes sense. Define β : X0 → X0

as

β(x)
def
=

∞∑
n=0

(λ− 1)nρn(x),

where ρn denotes the nth iterate of ρ. Note that for all n and for all x ∈ X0,

|(λ− 1)nρn(x)| ≤ (|λ− 1| d)n |x| .

The right hand side tends to 0 as n tends to infinity, so that the series defining β(x)
is convergent. Is is easy to check that β is a continuous K-linear map, and that
α ◦ β = β ◦ α = IdX0 . This proves that α is invertible. But then γ − λ is invertible
when restricted to X0, with inverse ρ ◦ β.

In the general case, choose m large enough so that
∣∣λpm − 1

∣∣ d < 1. Replace then
K by Km and γ by γp

m
, and show as above that (γp

m − λpm
)|X0 is invertible. One can

factor
γp

m − λpm

= (γ − λ) ◦ U,
where U is a polynomial in γ. It follows then that (γ−λ)|X0 is invertible as well, as we
wanted to show.

Theorem 1.9.15 (Tate). Let K be a finite extension of Qp. Then:

H i
cont(GK ,Cp) =


K i = 0

K (non-canonically) i = 1

0 i ≥ 2

Let φ : GK → K× be a continuous character, and assume that it is not of finite
order. Then for all i:

H i
cont(GK ,Cp(φ)) = 0.
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Proof. The vanishing of the higher cohomology groups follows because Γ is profinite,
and hence it has cohomological dimension 1.

If φ is trivial, Lemma 1.9.13 gives:

H0
cont(Γ, L̂) = ker(γ − Id : X → X) = K

H1
cont(Γ, L̂) = coker(γ − Id : X → X) = X/X0 ' K.

Suppose that φ is of infinite order. Then Lemma 1.9.14 gives:

H0
cont

(
Γ, L̂(φ)

)
= ker(γ − λ : X → X) = 0

H1
cont

(
Γ, L̂(φ)

)
= coker(γ − λ : X → X) = 0.

Corollary 1.9.16. Let W be a Cp-vectorspace with a semilinear and continuous action
of GK. Suppose that the sequence

0→ Cp(m)k1 → W → Cp(q)
k2 → 0

is exact. Here ki are in Z≥1, and m and q are distinct integers. Then the sequence is
canonically split, and so

W ' Cp(m)k1 ⊕Cp(q)
k2 ,

compatible with the GK-action.

Remark. The theorem that we just proved ensures that H1
cont(GK ,Cp) is a one dimen-

sional K-vectorspace. We can find an explicit nonzero element. For that, let

c : GK → Cp

be defined as c(σ) = logp(χ(σ)) ∈ Zp ⊆ Cp. The map c is continuous, and

c(στ) = logp(χ(σ)χ(τ)) = logp(χ(σ)) + logp(χ(τ)),

so it is a cocycle. Remark that logp χ(τ) ∈ Zp, so it is fixed by σ. Show that c is a
nontrivial cocycle in H1

cont(GK ,Cp), as an exercise. 8

8 FIXME: do it?
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Chapter 2

p-divisible Groups

2.1 Group schemes

Fix a commutative ring R. In most of our applications it will be either a field or a local
noetherian ring.

Definition 2.1.1. A group scheme is a group object in the category SchR of schemes
over R.

More concretely, a group scheme is a R-scheme G together with morphisms m : G×
G→ G, ε : SpecR→ G and i : G→ G, making the following diagrams commutative:

G×G×G Id×m
//

m×Id
��

G×G
m

��

G×G m // G

G×G

m
''NNNNNNNNNNNNN G× SpecR

Id×ε
//

ε×Id
oo

'
��

G×G

m
wwppppppppppppp

G
1

Definition 2.1.2. A group scheme is commutative if it satisfies the corresponding
diagram.2

Definition 2.1.3. If S is a R-scheme, the set of S-points of G is

G(S)
def
= HomSchR

(S,G),

with the following group structure: given f, g ∈ G(S) then fg
def
= m ◦ (f × g) ∈ G(S).

The identity is given as e
def
= ε ◦ π, where π : S → SpecR is the structure morphism.

1 FIXME: put the other diagram.
2 FIXME: which is...
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Definition 2.1.4. An abelian scheme is a proper commutative 3 group scheme. This
means that it is proper when considered as a scheme over R.

Definition 2.1.5. A finite group scheme of rank r is a group scheme G over R which
when seen as a scheme over R is finite and locally free of rank r.

Remark. A finite group scheme of rank r is in particular affine, so G = SpecA, where
A is a projective R algebra of rank r. The morphisms m, ε, i correspond respectively
to R-algebra homomorphisms µ : A→ A⊗R A, e : A→ R and s : A→ A.

Definition 2.1.6. Let G be an abelian scheme and let n be a positive integer. We
write

G[n]
def
= ker

(
G

[n]→ G
)
,

which is a finite group scheme.

Example. 1. The additive group scheme over R is Ga,R. As a scheme, it is
Spec(R[T ]), and the comultiplication is given by µ : R[T ]→ R[T ]⊗R[T ] sending
T to T ⊗1 + 1⊗T .

2. The multiplicative group scheme over R is Gm,R. As a scheme, it is given as
Spec(R[T, T−1]), and the comultiplication is given by

µ : R[T, T−1]→ R[T, T−1]⊗R[T, T−1],

sending T to T ⊗T .

3. For n a positive integer, the group scheme of nth roots of unity is µµn. It is defined
as the kernel of the multiplication-by-n map,

µµn
def
= ker

(
Gm,R

[n]→ Gm,R

)
.

As a scheme, it is Spec (R[T ]/(T n − 1)), and the comultiplication sends T to T⊗T .

4. For an abelian group H, define A as the set of maps H → R. It has an R-algebra
structure induced pointwise from the structure in R. Let µ : A→ A⊗RA be given
by

µ(f)(x, y)
def
= f(x+ y),

where the + symbol indicates the addition in the group H. The other operations
are defined similarly, and one obtains a group scheme H = SpecA, which is the
constant group scheme associated to H.

3 FIXME: we don’t require commutativity, but if follows?
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2.1.1 Cartier duality

Let G be a finite group scheme of rank r over R. Let G = SpecA, where A is a
projective finite R-algebra. Consider the dual module

A′ def
= HomR(A,R),

which is a projective R-module of the same rank. The comultiplication µ : A→ A⊗A
gives a ring structure to A′, and the dual of · : A×A→ A gives A′ a comultiplication.
Then G′ = Spec(A′) has a structure of a finite group scheme of rank r.

Definition 2.1.7. The Cartier dual of G is G′ defined above.

Proposition 2.1.8 (Basic properties). 1. (G′)′ = G.

2. If S is an R-scheme, then

G′(S) = HomSchS
(GS,Gm,S) ,

where GS = G⊗R S is the base change of G to S.

Example. 1. The dual of µµn is Z/nZ.

2. Let G/R be an abelian scheme. Let G′ be its dual abelian scheme. This is harder
to define, as G is not affine. See [Mum70] for more details. However, they are
related as follows: if n is any positive integer, then

(G[n])′ ' G′[n].

2.1.2 Connected and étale group schemes

Let R be a complete noetherian local ring. Let G be a finite group scheme over R.

Definition 2.1.9. We say that G is étale (resp. connected) G is étale (resp. con-
nected) over R. Equivalently, if G = SpecA, then G is étale (resp. connected) if A is
a finite étale R-algebra (resp. if A contains no nontrivial idempotents).

Theorem 2.1.10. If G is a finite group scheme, then there is a canonical exact sequence

0→ G0 → G→ Get → 0,

where G0 is connected and Get is étale.
If G = Spec(A) and we write Get = Spec(Aet) and G0 = Spec(A0), then Aet and A0

are characterized, respectively, as the maximal subalgebra of A which is étale over R,
and by the component of A which factors via the identity section.

Proof. Omitted.
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2.2 p-divisible groups

Fix K/Qp finite and let R = OK .

Definition 2.2.1. A p-divisible group G of height h is an inductive system G =
{Gν , iν}ν≥0, where Gν is a finite group scheme over R of rank pνh, and such that there
are exact sequences

0→ Gν
iν→ Gν+1

pν

→ Gν+1.

for all ν ≥ 0.

Lemma 2.2.2. Multiplication by pν kills Gν.

Proof. Consider the following commutative diagram with exact rows:

0 // Gν
iν //

pν

��

Gν+1

pν

��

0 // Gν
iν // Gν+1

Since iν ◦ [pν ] = [pν ]◦ iν = 0, and since iν is injective, it follows that [pν ] = 0 on Gν .

Example. If G is an abelian scheme, write Gν = G[pν ] for all ν ≥ 0 and let iν : G[pν ]→
G[pν+1] denote the inclusion. The sequence

0→ G[pν ]
iν→ G[pν+1]→ [p]G[pν+1],

is exact. We denote by G(p) = {Gν , iν}ν≥0 this p-divisible group.

2.2.1 Dual p-divisible group

Fix a p-divisible group {Gν , iν}ν≥0. Iteration of the transition morphisms gives maps:

iν,µ : Gν → Gν+1 → · · · → Gν+µ

for all µ ≥ 1. A simple induction shows that the sequence:

0→ Gν
iν,µ→ Gν+µ

pν

→ Gν+µ

is exact for all µ ≥ 1. This identifies Gν with the kernel of multiplication by pν on Gν+µ

for all µ ≥ 1. Since multiplication by pν+µ on Gν+µ factors as:

Gν+µ
pµ

→ Gν+µ
pν

→ Gν+µ,

and since [pν+µ] = 0 on Gν+µ, it follows that multiplication by pµ factors uniquely
throughGµ = ker[pν ]. Let jν,µ : Gν+µ → Gν be the unique map such that [pµ] = iν,µ◦jν,µ.
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Lemma 2.2.3. The sequence:

0→ Gµ
iµ,ν→ Gν+µ

jν,µ→ Gν → 0

is exact for all ν ≥ 0 and µ ≥ 1.

Proof. First note that iν,µ ◦ jν,µ ◦ iµ,ν = [pµ] ◦ iµ,ν = 0. Since iν,µ is injective, it follows
that jν,µ ◦ iµ,ν = 0. Hence im iµ,ν ⊆ ker jν,µ. For the converse inclusion note that
ker jν,µ ⊂ ker[pµ] = im iµ,ν . It thus remains to show that jν,µ is surjective. This follows
by considering orders.

Example. Returning to the previous example with G an abelian scheme, and Gν =
G[pν ], then the maps:

jν = j1,ν : G[pν+1]→ G[pν ]

are often referred to as “multiplication by p”.

For each ν ≥ 0, the group scheme Gν has a Cartier dual, which we write as G′
ν . We

consider the duals of the maps j1,ν :

i′ν = j′1,ν : G′
ν → G′

ν+1.

def
= For G = {Gν , iν}n≥0 a p-divisible group, the dual p-divisible group G′ is define to
be {G′

ν , i
′
ν}ν≥0. It is not difficult to check that G′ as defined is actually a p-divisible

group.

Example. Let Gm(p) = {µµpν , iν}ν≥0 denote the p-divisible group where µµpν denotes
the group scheme of pνth roots of unity, and iν denotes the natural inclusion. Then
(µµpν )′ = (Z/pνZ) and:

i′ν : (Z/pνZ)→ (Z/pν+1Z)

is multiplication by p.

Example. If G is an abelian scheme, then (G(p))′ = G′(p).

2.2.2 Connected and étale components

Let G = {Gν , iν}ν≥0 be a p-divisible group. For each ν there exists a decomposition:

0→ G0
ν → Gν → Get

ν → 0.

with G0
ν connected and Get

ν étale. The maps iν induce maps on the connected and étale
parts so that {G0

ν , i
0
ν}ν≥0 and {Get

ν , i
et
ν }ν≥0 are p-divisible groups. Denote them by G0

and Get, respectively. We say that the sequence:

0→ G0 → G→ Get → 0

is exact to indicate that it is exact at each finite level.
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Definition 2.2.4. A p-divisible group G is said to be connected if G = G0. It is said
to be étale if G = Get.

If we write G0
ν = Spec(A0

ν) for each ν ≥ 0, then maps i0ν correspond to maps
A0
ν+1 → A0

ν . This makes {A0
ν} into a projective system. Setting A0 = lim←−A

0
ν , Tate

showed that:
A0 ' OK [[X1, . . . , Xn]] .

Definition 2.2.5. The dimension of a p-divisible group G, denoted dimG, is the
integer n ≥ 1 such that A0 ' OK [[X1, . . . , Xn]], with A0 as defined in the preceding
paragraph.

The dimension can be defined in other ways, but we will not pursue this. Note that
dimG = dimG0 by definition. Also, one can show that dimG ≤ h where h is the height
of G.

Note that if G = {Gν , iν}ν≥0 is a p-divisible group of height h, so that each Gν

is free of rank pνh, then G′
ν is also free of rank pνh. Hence G′ is also of height h. If

dimG′ = n′, then one can show that h = n+ n′.

Example. Consider G = Gm(p) as above. In this case the height of G is one, and one
can show that also dimG = 1. Note that we observed that G′ = {(Z/pνZ), i′ν}, and

each (Z/pνZ) is étale. Thus G′ is étale, so that G0 = 0. Hence dimG′ = 0, and indeed,
dimG+ dimG′ = 1 + 0 = 1.

Example. If G is an abelian scheme of dimension n, then X(p) also has dimension n,
and height 2n. Similarly for the dual.

2.2.3 Points of a p-divisible group

Let S be an OK-algebra and G = {Gν , iν}ν≥1 a p-divisible group. It is tempting to
define the S-points of G by setting:

G(S) = lim−→Gν(S),

but this is not a fruitful definition. Instead we adopt the following more subtle:

Definition 2.2.6. Let π be a uniformizer for OK , and suppose that the OK-algebra S
is complete for the (πS)-adic topology. Then the S-points of G are denoted G(S) and
defined to be:

G(S) = lim←−
i

(
lim−→
ν

(Gν(S/π
iS))

)
.

We will only ever need to consider the OCp-points of a p-divisible group. Write:

ΦG = lim−→Gν(OCp)

for the “naive” definition of OCp-points of G. This group is torsion. In fact,

ΦG = G(OCp)tors.
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Example. Consider again G = Gm(p), and note that in this case ΦG = µp∞(Cp). One
can show that G(OCp) = 1 + mCp , which is much larger than ΦG.

If the p-divisible group G is étale, one can use the lifting of maps property to show
that the reductions:

Gν(OCp/πiOCp
)→ Gν(k),

where k is an algebraic closure of the residue field of K, are isomorphisms. From this
one deduces that G(OCp) is a torsion group whenever G is étale. Given an arbitrary
p-adic group, one can similarly use the lifting property with the exact sequence:

0→ G0 → G→ Get → 0

to show that G → Get has a section. The existence of this section then implies that
the sequence of points:

0→ G0(OCp)→ G(OCp)→ Get(OCp)→ 0

is exact. Since Get(OCp) is torsion, one deduces the following comforting fact:

Proposition 2.2.7. If G is a p-divisible group, then G(OCp) is an abelian group which
is p-divisible.

2.2.4 Differential structure

Let G be a p-divisible group with connected component G0 = {G0
ν}. As above, write

G0
ν = A0

ν and put A0 = lim←−A
0
ν .

Definition 2.2.8. The tangent space at 0 to G, denoted tG(Cp), is the space of OK
linear derivations:

tG(Cp) = DerOK
(A0,Cp).

The tangent space can be defined in a second way. Consider the map ε : A0 → OK
mapping f 7→ f(0), where we regard f ∈ A0 ' OK [[X1, . . . , Xn]] via Tate’s isomor-
phism. Then if we put

I0 = ker ε = (X1, . . . , Xn), (2.1)

one has:
tG(Cp) ∼= homOK

(I0/(I0)2,Cp).

The isomorphism is given by restricting a derivation τ ∈ tG(Cp) to I0. Since I0/(I0)2

is a free OK-module of rank n, it follows that tG(Cp) ∼= Cn
p as complex vector spaces;

recall that n = dimG by definition.
We can similarly define the space of differential forms ΩG/OK

on G by putting
ΩG/OK

= ΩA0/OK
, so that:

ΩG/OK
∼= A0dX1

⊕
· · ·
⊕

A0dXn,
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where n = dimG. There is a natural subspace of invariant differential forms Inv(G),
and there is a natural identification:

I0/(I0)2 ∼= Inv(G).

Thus, the tangent space to G at 0 is dual to the space of invariant differential 1-forms.

Example. Consider once again the case G = Gm(p), so that A0 = OK [[X]]. Then
tG(Cp) = Cp, generated by say τ(f) = f ′(0). One can check that:

Inv(G) = OK
dX

1 +X
= OK

(∑
n≥0

(−X)n

)
dX.

2.2.5 Logarithm map

Let G = {Gν , iν}ν≥0 be a p-divisible group. We want to define a map

logG : G(OCp)→ tG(Cp).

We will see two possible ways in which this map can be defined. Showing that they
agree is a good exercise.

First definition

Consider the exact sequence

0→ G0(OCp)→ G(OCp)→ Get(OCp)→ 0.

Given x ∈ G(OCp), its image in Get(OCp) is torsion, so that there exists a positive
integer n0 such that pn0x ∈ G0(OCp). This implies that we can evaluate any f ∈ A0 at
pnx for sufficiently large n, and thus the following definition makes sense.

Definition 2.2.9. Identify tG(Cp) with DerOK
(A0,Cp). Then, for x ∈ G(OCp) and

f ∈ A0, define the logarithm of x as the derivation

logG(x)(f)
def
= lim

n→∞

f(pnx)− f(0)

pn
.

Proposition 2.2.10 (Properties). 1. logG(x) is an OK-linear derivation.

2. logG is a Zp-linear. In particular, it is a group homomorphism.

3. If x is torsion, then logG(x) = 0.

Note that the last property implies that ΦG = G(OCp)tors ⊆ ker(logG).

Example. Let G = Gm(p), so G(OCp) ' 1 + mOCp
. One can see then that

logGm(p)(x) = log(x)(
d

dx
|x=0),

where log(x) =
∑∞

n=1(−1)n+1 (x−1)n

n
. 4

4 FIXME: Add the computation.
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Second definition

Identify tG(Cp) with HomOK
(I0/(I0)2,Cp), where I0 has been defined in 2.1. Recall

that I0/(I0)2 has been identified with Inv(G), the space of invariant one-forms.
It is enough to define logG on G0(OCp) and then extend to all G(OCp) by scaling. 5

Given ω ∈ Inv(G), write ω =
∑n

i=1 fi(x1, . . . , xn)dxi, with fi ∈ A0.

Claim. There exists a unique Ω(x1, . . . , xn) ∈ K [[x1, . . . , xn]] such that dΩ = ω, and
Ω(0) = 0.

Lemma 2.2.11. Let x ∈ G0(OCp), and let ω ∈ Inv(G).

Definition 2.2.12. The element logG(x) is the functional

ω 7→ Ω(x) =

∫ x

0

ω.

Example. The element d
dx
|x=0 ∈ tGm(p)(Cp) is identified with the functional ω 7→ 1,

where ω = dx
x+1

. We get as before that

logGm(p)(x)(ω) = log(x),

as before.6

2.2.6 Properties of the Logarithm

Lemma 2.2.13. The logarithm logG : G(OCp)→ tG(Cp) is a Zp-linear homomorphism,

and a local isomorphism. More concretely, given any c ∈ R such that 0 < c < p
1

1−p , the
restriction of the logG induces a bijection

{x ∈ G0(OCp) | |xi| ≤ c} → {τ ∈ tG(Cp) | |τ(xi)| ≤ c for all i = 1 . . . n}

Proof. The idea is to use that one can define the exponential, which gives an inverse.

Corollary 2.2.14. The map logG induces a GK-equivariant exact sequence

0→ ΦG→ G(OCp)→ tG(Cp)→ 0

Proof. We will first see that logG is surjective. Let τ ∈ tG(Cp). There exists some
large n such that |pnτ | ≤ c. The lemma gives x ∈ G(OCp) such that logG(x) = pnτ .
As G(OCp) is p-divisible, there exists y ∈ G(OCp) such that pny = x, and then pnτ =
pn logG(y). As tG(Cp) is torsion-free, we obtain τ = logG(y).

As ΦG is torsion, it is contained in the kernel of logG. Conversely, let x ∈ ker logG.
Let n be large enough so that pnx ∈ G0(OCp), and |pnx| ≤ c. Then logG(pnx) =
pn logG(x) = 0, so the lemma implies that pnx = 0, and hence x ∈ ΦG.

5 FIXME: Add details.
6 FIXME: Add the computation.
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2.2.7 A theorem of Tate

Theorem 2.2.15 (Tate). Let G be a p-divisible group. Then there are canonical Cp-
linear isomorphisms of GK-modules:

TpG⊗Zp Cp ' tG(Cp)(1)
⊕

(tG′(Cp))
∨ ,

where ∨ we denote the Cp-dual.

Remark. If we forget theGK-action, the left hand side is a Cp-vectorspace of dimension
h, and the right hand side has dimension n + n′ = h, so at least the dimensions
agree. Also, as Cp[GK ]-modules, the right hand side is isomorphic (non-canonically) to
Cp(1)

n ⊕Cn′
p .

Proof. We consider the dual p-divisible group G′ = {G′
ν , i

′
ν}ν≥0. From its definition, we

have a commutative diagram involving its OCp-points:

G′
ν(OCp) HomOCp−grpsch

(
Gν ⊗OK

OCp ,Gm(p)⊗OK
OCp

)
G′
ν+1(OCp)

j′ν

OO

HomOCp−grpsch

(
Gν+1 ⊗OK

OCp ,Gm(p)⊗OK
OCp

)
,

(iν⊗Id)∗

OO

so denoting by T ′ = TpG
′ the Tate module of the dual group we get a canonical

isomorphism

T ′ ' HomOCp−p−div

(
G⊗̂[OK ]OCp ,Gm(p)⊗OK

OCp

)
,

and a GK-equivariant pairing

(·, ·) : T ′ ×G(OCp)→ U,

where we define U
def
= Gm(p)(OCp) = 1 + mOCp

.
Applying Id× logG to the left-hand side, and logGm(p) to the right-hand side, we get

another pairing
(·, ·) : T ′ × tG(Cp)→ tGm(p)(Cp) ' Cp.

Consider the exact sequence of p-divisible groups (and hence injective objects)

0→ Utors → U → logGm(p)tGm(p)(Cp)→ 0.

Applying the functor HomZp(T
′,−) yields an exact sequence

0→ HomZp (T ′, Utors)→ HomZp (T ′, U)→ HomZp

(
T ′, tGm(p)(Cp)

)
→ 0.

The two pairings defined above induce maps α in dα, which fit in to a commutative
diagram with exact rows:

0 // ΦG //

α0

��
�
�
� G(OCp) //

α

��

tG(Cp) //

dα
��

0

0 // HomZp (T ′, Utors) // HomZp (T ′, U) // HomZp

(
T ′, tGm(p)(Cp)

)
// 0.
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Moreover, if we define an action of GK on HomZp(T
′, U) by

(σf)(t)
def
= σ(f(σ−1(t))),

all the maps in the diagram are GK-equivariant.
We give dα explicitly: let τ ∈ tG(Cp), and t ∈ T ′. Let f ∈ AGm(p). Think of t as a

homomorphism G⊗̂OCp → Gm(p)⊗Cp, which gives a map

AGm(p)⊗̂OCp → AG⊗̂OCp → A0⊗̂OCp .

Then
(dα)(τ)(t)(f) = τ(t(f)).

7

Proposition 2.2.16. 1. The map α0 is an isomorphism.

2. The maps α and dα are both injective.

Proof (of the proposition). Consider the commutative diagram

Gν(OCp) HomOCp−grpsch

(
G′
ν ⊗OK

OCp , µµpν (OCp)
)

Gν−1(OCp)

iν

OO

HomOCp−grpsch

(
G′
ν−1 ⊗OK

OCp , µµpν−1(OCp)
)
.

j′ν

OO

By taking inductive limits we obtain

ΦG ∼= lim−→
ν

Gν(OCp)
∼= HomZp

(
lim←−
ν

G′
ν(OCp), Utors

)
= HomZp(T

′, Utors),

and one can check that the map coincides with α0, so that the first part of the propo-
sition is proven.

Next, consider the commutative diagram

Gν(OCp)

jν

��

HomOCp−grpsch

(
G′
ν ⊗OK

OCp , µµpν (OCp)
)

��

Gν−1(OCp) HomOCp−grpsch

(
G′
ν−1 ⊗OK

OCp , µµpν−1(OCp)
)
.

By taking projective limits, we get an isomorphism

T = TpG ∼= HomZp (T ′, TpGm(p)) .

7 FIXME: This should be rewritten.
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Note that TpGm(p) ∼= Zp(1), as GK-modules. This gives a perfect pairing

〈·, ·〉W : T × T ′ → Zp(1),

called the Weil pairing.
Note that since α0 is an isomorphism, the snake lemma applied to the commutative

diagram (2.2.7) shows that kerα ∼= ker dα. Since ker dα is actually a Cp-vectorspace,
it is uniquely p-divisible. Hence the same can be said for kerα.

The group GK acts on kerα and ker dα, since α and dα are GK-equivariant. Ob-
viously (kerα)GK ⊂ G(OCp)

GK , and we claim that G(OCp)
GK = G(OK), as one would

hope. To see this, recall that there is an exact sequence:

0→ G0(OCp)→ G(OCp)→ Get(OCp)→ 0,

along with a GK-equivariant section s : Get(OCp) → G(OCp). Taking GK-invariants
thus gives the natural commutative diagram:

0 // G0(OK)

��

// G(OK) //

��

Get(OK) //

��

0

0 // G0(OCp)
GK // G(OCp)

GK // Get(OCp)
GK // 0

with exact rows. The snake lemma will show that the middle map is an isomorphism
if we can show that the other two maps are isomorphisms.

One can check that the leftmost map is the following isomorphism:

G0(OCp)
GK ∼= Homcont(OK [[X1, . . . , Xn]] ,OCp)

GK

∼= Homcont(OK [[X1, . . . , Xn]] ,OGK
Cp

)

∼= Homcont(OK [[X1, . . . , Xn]] ,OK)
∼= G0(OK).

Similarly, the rightmost map is the isomorphism:

Get(OCp)
GK =

(
lim−→
ν

Get
ν (OCp)

)GK

∼= lim−→
ν

(
Get
ν (OCp)

GK
)

∼= lim−→
ν

(
Get
ν (OK)

)
∼= Get(OK).

We thus see that G(OCp)
GK = G(OK).

We next show that (kerα)GK = 0. Note that (kerα)GK = kerα ∩ G(OCp)
GK =

kerα ∩G(OK). We will use the decomposition G(OK) = G0(OK)⊕Get(OK) given by
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the section s. Since kerα is p-divisible, kerα∩G0(OK) is contained in
⋂
m≥0 p

mG0(OK),
as this is the collection of p-divisible elements of G0(OK). For m large enough, the
logarithm gives an isomorphism pmG0(OK) ∼= pmmCp . It thus follows that:⋂

m≥0

pmG0(OK) ∼=
⋂
m≥0

pmmCp = 0,

since Cp is p-adically separated. Hence kerα ∩ G0(OK) = 0. The other intersection
kerα ∩Get(OK) is trivial since Get(OK) is a torsion module. This confirms:

(kerα)GK = kerα ∩G(OCp)
GK = 0.

Hence also (ker dα)GK = 0.
Consider the map:

αK : G(OK)→
(
HomZp(T

′, U)
)GK ∼= HomOK

(T ′, U);

one has kerαK = (kerα)GK = 0, so that αK is injective. We similarly have:

dαK : tG(Cp)
GK = tG(K)→ HomZp (T ′,Cp)

GK ∼= (T ′,Cp),

and again ker dαK = (ker dα)GK = 0.
Consider the commutative diagram:

tG(Cp)
dα // W

tG(K)
dαK

//
?�

OO

WGK
?�

OO

Since the GK-action on the Cp-vectorspace is componentwise, one has a natural GK-
equivariant isomorphism tG(Cp) ∼= tG(K)⊗K Cp. One can show that the composition
of the following maps is precisely dα:

tG(Cp) ∼= tG(K)⊗K Cp → dαK ⊗ IdWGK ⊗K Cp → φW,

where φ(w⊗ a) = aw. But dαK ⊗ Id is injective, as dαK is injective and Cp is flat over
K. Similarly, lemma (2.2.17) shows that φ is injective. It follows that dα is injective,
so kerα = ker dα = 0. This concludes the proof of the proposition.

We now return to the proof of Tate’s theorem (2.2.15). Recall that we have a map:

dαG′ : tG′(Cp)→ HomZp(T,Cp),

so that if we write T ∗ = HomZp(T,Zp), then we obtain a GK-equivariant map:

T ⊗Cp
∼= (T ∗ ⊗Cp)

∗ → (dαG′)
∗tG′(Cp)

∗,
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which we denote by v. Since dαG′ is injective, the dual map (dαG′)
∗ is surjective.

Similarly we have:

tG(Cp)
dαG→ HomZp(T

′,Cp) ∼= (T ′)∗ ⊗Zp Cp.

We can use the Weil pairing T ×T ′ → Zp(1) to identify (T ′)∗ ∼= T (−1) as GK-modules.
Twisting the map above thus gives:

u : tG(Cp)(1) ↪→ T ⊗Zp Cp,

which is injective and GK-equivariant. We thus have maps:

0→ tG(Cp)(1)
u→ T ⊗Zp Cp

v→ tG′(Cp)
∗ → 0, (2.2)

with u, v both Cp-linear and GK-equivariant. Moreover u is injective and v is surjective.
Note that v ◦ u gives a GK-equivariant and Cp-linear map:

tG(Cp)(1)→ tG′(Cp)
∗.

These are isomorphic to Ct
p(1) and Cr

p as GK-modules, for some t, r ∈ Z. One can use
our earlier computations of Galois cohomology to show that:

HomCp[GK ](C
t
p(k),C

r
p(k

′)) = 0

whenever k 6= k′. This immediately gives v ◦ u = 0. To see that the sequence (2.2) is
exact, it remains to note that the dimension of tG(Cp)(1) is the dimension n of G, and
the dimension of tG′(Cp)

∗ is the dimension n′ of G′. Since n+ n′ = h, the height of G,
and T ⊗Zp Cp is of dimension h, exactness follows.

Finally, note that if Ext1(A,C) denotes the group of extension classes of C by A in
the category of topological Cp[GK ]-modules, then:

Ext1 (tG′(Cp)
∗, tG(Cp)(1)) ∼= Ext1 (Cp, tG(Cp)(1))n

′

∼= H1
cont (GK , tG(Cp)(1))n

′
= 0.

It follows that the sequence (2.2) is split. If s and s′ are two continuous GK-equivariant
splittings, their difference induces a GK-equivariant map

tG(Cp)(1)→ tG′(Cp)
∗.

But the only such map is zero, as one can show using Theorem 1.9.15. Hence s = s′,
and the splitting is canonical.

Lemma 2.2.17. Let W be a finite dimensional Cp-vectorspace with continuous semi-
linear GK-action. The natural comparison map:

φ : WGK ⊗K Cp → W,

where φ(w ⊗ a) = aw, is injective.
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Proof. It suffices to show that if {w1, . . . , wt} ⊂ WGK is a linearly independent set of
vectors over K, then they are in fact linearly independent over Cp.

Let {w1, . . . , wt} ⊂ WGK denote a minimal set for which the wi’s are independent
over K, yet dependent over Cp. If t = 1 we reach a contradiction since dependence of
a single vector is equivalent to being 0. Hence suppose t ≥ 2 and take:

a1w1 + · · ·+ atwt = 0

for ai ∈ Cp, not all of which are zero. Without loss of generality we may suppose
a1 = 1, so that w1 + a2w2 + · · ·+ atwt = 0. For any σ ∈ GK we deduce that:

w1 + σ(a2)w2 + · · ·+ σ(at)wt = 0,

since the wi’s are GK-invariant. Thus:

(a2 − σ(a2))w2 + · · ·+ (at − σ(a2)wt = 0.

By choice of t we must have σ(ai) = ai for all σ ∈ GK and i = 2, . . . , t. But then ai ∈ K
for all i, contradicting the independence of the wi’s over K.
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Chapter 3

p-adic Hodge theory for Abelian
varieties

3.1 p-adic Hodge theory of abelian varieties with

good reduction

Let K be a noetherian local ring with perfect residue field. One can choose K to be a
finite extension of Qp, as has done before.

Let X be an abelian scheme over OK , and let X = X ⊗K be its generic fiber. As
SpecK is an open subscheme of SpecOK , the generic fiber X can be seen as an open
subscheme of X. Alternatively, one can start with an abelian scheme X over K, and
take X to be its Néron model over OK . Note that in particular we require that X is
smooth over OK , and not just generically smooth.

Denote by G the p-divisible group corresponding to X. Similarly, define X′ and X ′

as the dual abelian schemes of X and X respectively, and G′ as the p-divisible group
corresponding to X, which is actually the dual of G.

The tangent space tG(K) can be canonically identified with LieK(X), the Lie group
of X, and this in turn can be identified with H0(X,ΩX)∗, the dual to the global differen-
tial forms. The space tG′(K) can be identified then with H0(X ′,ΩX′)

∗ ' H1(X,OX)∗,
the last isomorphism following from Serre duality.

Theorem 2.2.15 says in this situation:

TpX ⊗Zp Cp '
(
H0(X,ΩX)∗ ⊗K Cp(1)

)
⊕
(
H1(X,OX)∗ ⊗K Cp

)
.

The importance of this result cannot be overstated: it gives a very concrete structure
of TpX after extending scalars to Cp.

Theorem 2.2.15 can be restated in a more compact way, by introducing the Hodge-
Tate ring of periods:

BHT
def
=
⊕
i∈Z

Cp(i),

71
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with the Galois group GK acting component-wise. Define also

H1
Hodge(X)

def
= GrH1

dR(X).

Corollary 3.1.1. With the same hypothesis as in Theorem 2.2.15,(
TpX ⊗Zp BHT

)GK = H1
Hodge(X)∗.

Proof. Just note that
(TpX ⊗Zp Cp)

GK = H1(X,OX)∗,

and
(TpX ⊗Zp Cp(−1))GK = H0(X,ΩX)∗.

Finally, if i 6= 0, 1, then
(TpX ⊗Zp Cp(i))

GK = 0.

Apply then Theorem 2.2.15 and the definitions of BHT and H1
Hodge(X), noting that the

Hodge-deRham spectral sequence gives 1:

H1
Hodge(X) = H0(X,ΩX)⊕H1(X,OX).

3.2 A geometric approach

This theory was developed by Fontaine and Coleman. Let X be an abelian scheme over
OK , and let X be its generic fiber.

The scheme X is proper, and the valuative criterion for properness gives that every
OK-point of X extends to a K-point of X2. In this way one obtains an identification
X(OK) = X(K), which identifies

TpX = TpX = lim←−
n

X[pn](K).

The natural map H0(X,ΩX/OK
) → H0(X,ΩX/K) is injective, and allows one to see

H0(X,ΩX/OK
) as a lattice inside H0(X,ΩX), since

H0(X,ΩX) ' H0(X,ΩX/OK
)⊗OK

K.

Define a pairing

〈·, ·〉 = 〈·, ·〉X : X(OK)×H0(X,ΩX/OK
)→ Ω1

OK/OK
,

given by 〈u, ω〉 def
= u∗(ω). Here we think of u as belonging to Hom(SpecOK ,X).

1 FIXME: Is this the spectral sequence that we consider?
2 FIXME: why?
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Lemma 3.2.1. For all u, u1, u2 ∈ X(OK), all ω, ω1, ω2 ∈ H0(X,ΩX/OK
) and all σ ∈ GK,

we have:

1. 〈u, ω1 + ω2〉 = 〈u, ω1〉 + 〈u, ω2〉.

2. 〈σu, ω〉 = σ(〈u, ω〉).

3. 〈u1 + u2, ω〉 = 〈u1, ω〉 + 〈u2, ω〉.

Proof. The first two statements are easy. We only prove additivity in the first compo-
nent. Let ω ∈ H0(X,ΩX/OK

). One needs to show3 that ω is always translation invariant.
That is, consider the three maps

m, pr1, pr2 : X× X→ X,

given respectively by multiplication and by the two natural projections. Then

m∗ω = pr∗1 ω + pr∗2 ω.

Given u1 and u2, we need to compute u1 +u2. Thinking of u1 and u2 as morphisms,
we can consider the commutative diagram:

SpecOK
∆ //

u1+u2

��

SpecOK × SpecOK
u1×u2

��

X X× Xm
oo

Denote by v the composition u1 × u2 ◦∆. Then:

〈u1 + u2, ω〉 = (u1 + u2)
∗(ω)

= (m ◦ v)∗(ω)

= v∗(m∗(ω))

= v∗(pr∗1(ω) + pr∗2(ω))

= u∗1(ω) + u∗2(ω) = 〈u1, ω〉 + 〈u2, ω〉.

Corollary 3.2.2. The following diagram commutes:

X(OK)×H0(X,ΩX/OK
)

〈·,·〉
//

[p]×Id

��

Ω1
OK/OK

p

��

X(OK)×H0(X,ΩX/OK
)

〈·,·〉
// Ω1

OK/OK
.

3 FIXME: do it!
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Let X̃ be the projective limit of the sequence

X(K)
[p]←− X(K)

[p]←− X(K)
[p]←− · · ·

The valuative criterion for properness implies as before that it is the same as the
projective limit of the sequence

X(OK)
[p]←− X(OK)

[p]←− X(OK)
[p]←− · · ·

Similarly, define Ω̃ to be the projective limit of the sequence

Ω1
OK/OK

p←− Ω1
OK/OK

p←− Ω1
OK/OK

p←− · · · .

It is easily seen that Ω̃ ' (TpΩ)⊗Zp Cp ' Cp(1).

The GK-module X̃ fits into an exact sequence, which is GK-equivariant:

0→ TpX → X̃ → X(K)→ 0.

Remark. One can think of TpX as the fundamental group of XK , and so X̃ can be
thought of as the universal covering space for X(K).

We can construct an integration pairing∫
: X̃ ×H0(X,ΩX)→ TpΩ⊗Zp Cp,

as follows: if u = (un)n is a coherent sequence in X̃ and ω = η
pm with η a global

differential in H0(X,ΩX/OK
), then∫

u

ω
def
=

1

pm
(u∗nη)n.

Proposition 3.2.3. For all u, u1, u2 ∈ X̃, all ω, ω1, ω2 ∈ H0(X,ΩX) and all σ ∈ GK,
we have:

1.
∫
u
(aω1 + bω2) = a

∫
u
ω1 + b

∫
u
ω2.

2.
∫
σu
ω = σ

(∫
u
ω
)
.

3.
∫
u1+u2

ω =
∫
u1
ω +

∫
u2
ω.

The restriction of int to TpX×H0(X,ΩX) done by identifying TpX with a submodule

of X̃, gives a K-linear map

ρX : H0(X,ΩX)→ HomZp[GK ] (TpX,Cp(1)) ,

given by ρX(ω)(u) =
∫
u
ω.



A GEOMETRIC APPROACH 75

Theorem 3.2.4 (Fontaine). The K-linear map ρX is injective.

Proof. Let x ∈ X(OK), and consider its local ring (OX,x,mX,x). Let ÔX,x denote the
mX,x-adic completion of OX,x:

ÔX,x = lim←−
n

OX,x/m
n
X,x.

As X is smooth over OK , the completed local ring has a simple structure:

ÔX,x ' OK [[t1, . . . , t2]] .

Consider the stalk of Ω1
X/OK

at x, denoted by Ω1
X,x, and its mX,x-adic completion Ω̂X,x.

As before, one has

Ω̂1
X,x '

d⊕
i=1

OK [[t1, . . . , t2]] dti.

The natural map Ω1
X,x → Ω̂1

X,x is injective because Ω1
X,x has no mX,x-torsion. Every

differential is invariant, so that a nonzero global differential is nonzero at all points.
Hence the localization map H0(X,Ω1

X/OK
)→ Ω1

X,x is also injective. We can thus see the
space of global differentials as a subspace of the local differentials around x:

H0(X,Ω1
X/OK

) ↪→ Ω̂1
X,x.

Lemma 3.2.5. Let ω =
∑d

i=1 αi(t1, . . . , td)dti, with αi ∈ OK [[t1, . . . , td]]. If ω is
nonzero, then there exists a tuple (u1, . . . , ud) ∈ md

K
such that

d∑
i=1

αi(u1, . . . , ud)dui 6= 0,

as an element of Ω = ΩOK/OK
.

Proof. First assume that d = 1 and write ω =
∑∞

n=0 ant
ndt, with an ∈ OK . Let s be

the minimum valuation of all the an:

s
def
= {v(an) | n ≥ 0}.

and let i0 be the smallest index i such that v(ai) = s.
Let u ∈ mK be such that v(u) < 1/i0. Take u to be in a ramified extension of K.

Then:
v(
∑

anu
) = v(ai0u

i0) = s+ i0v(u) < s+ 1.

The element u belongs to mL, for some finite extension L of K which is totally ramified.
Take it also large enough so that

v(DL/K) > s+ 1,
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and such that u is a uniformizer of L/K. 4

Then
AnnOL

(du) = DL/K ,

so that
∑
anu

ndu 6= 0 in ΩOL/OK
↪→ ΩOK

.
The following lemma reduces this one to the case of d = 1, which finishes the

proof.

Lemma 3.2.6. Write t for (t1, . . . , td), and similarly for a. Let α1(t), . . . , αd(t) be a
collection of power series in OK [[t]], not all zero. Then there exists univariate power
series ϕ1(y), . . . , ϕd(y) ∈ yOK [[y]] such that

λϕ(y)
def
=

d∑
i=1

αi (ϕ1(y), . . . , ϕd(y))ϕ
′
i(y)

is not zero in OK [[y]].

Proof. We will actually find the ϕi(y) as polynomials of the form aiy + biy
2, with

ai, bi ∈ OK . Write αi(t) =
∑

m≥0 αi,m(t), where αi,m(t) are homogeneous polynomials
of degree m. Then:

λϕ(y) =
d∑
i=1

αi(a1y + b1y
2, . . . , ady + bdy

2)(ai + 2bi).

Let r be the smallest integer such that there is some j with αj,r nonzero. Then λϕ(y)
can be written as a power series in y as:

λϕ(y) =
d∑
i=1

(aiαi,r(a)) y
r

+

(
d∑
i=1

aiαi,r+1(a) +
d∑
j=1

2bjαj,r(a) +
d∑

i,j=1

aibj
∂αi,r
∂tj

(a)

)
yr+1 + · · ·

To choose the ai and bi, we distinguish three cases:

1. If
∑d

i=1 tiαi,r(t) 6= 0, then there are elements a ∈ OK such that
∑d

=1 tiαi,r(a) 6= 0,
and then λϕ(y) is nonzero for any choice of the bi.

2. If
∑d

i=1 tiαi,r(t) = 0 but
∑d

i=1 tiαi,r+1(t) 6= 0, then choose all the bj to be 0, and

choose a ∈ OK such that
∑d

=1 tiαi,r+1(a) 6= 0.

3. Otherwise, choose any j such that αj,r(t) is nonzero, and choose a ∈ OK such
that αj,r(a) is nonzero. Choose then bj = 1, and all the bi = 0 for i 6= j. A trivial
check shows that this choice works.

4 FIXME: This part of the argument needs to be improved.
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Now that Lemma (3.2.5) is established, we return to the proof of Fontaine’s theorem.

Let ω ∈ H0(X,ΩX) and write ω̂x for the corresponding element of Ω̂X,x under the

inclusion H0(X,ΩX) ↪→ Ω̂X,x discussed above. The lemma supplies u = (u1, . . . , ud) ∈
md
K

such that ω̂x(u) 6= 0 as an element of Ω. Evaluation at u gives a continuous
homomorphism OX,x → OK of OK-algebras. This map can be used to define a map of
schemes:

v : Spec(OK)→ Spec(OX,x)→ X,

where the first map in the composition is induced by evaluation at u, and the second
is the natural map. With this notation v∗(ω) = ω̂x(u) 6= 0.

In order to analyze the map ρX , we realize it as a composition of two others maps
and study each in turn. Towards this end define:

φX : H0(X,ΩX)→ HomZp[GK ]

(
X̃,Cp(1)

)
which is defined via integration:

φX(ω)(u) =

∫
u

ω.

We claim that φX is injective. Note that if it is not injective, then H0(X,ΩX) contains
a non-zero element of kerφX ; this follows since H0(X,ΩX) sits as an OK-lattice inside
of H0(X,ΩX). Thus suppose ω ∈ H0(X,ΩX) is nonzero and satisfies φX(ω) = 0. This

is the same as saying that for every (un)n≥0 ∈ X̃:

φX(ω) ((un)n≥0) = (u∗n(ω))n≥0 = 0,

so that u∗n(ω) = 0 for all n ≥ 0. Since X̃ surjects onto X(K), it follows that v∗(ω) = 0
for all v ∈ X(K). This contradicts Lemma (3.2.5) as per the discussion in the previous
paragraph. This shows that φX is injective.

Next consider the exact sequence of Galois modules:

0→ TpX → X̃ → X(K)→ 0

and apply the functor HomZp[GK ](−,Cp(1)) to obtain the exact sequence:

0→ HomZp[GK ](X(K),Cp(1))→ HomZp[GK ](X̃,Cp(1))
ψX−→ HomZp[GK ](Tp(X),Cp(1)).

Note that ρX = ψX ◦φX . We thus see that in order to prove that ρX is injective, it will
suffice to prove that ψX is injective. By the exactness of the sequence of above, this is
tantamount to verifying that HomZp[GK ](X(K),Cp(1)) = 0.

Suppose otherwise, and let φ : X(K) → Cp(1) be a nonzero Zp[GK ]-module mor-
phism. Let x ∈ X(K) be such that φ(x) 6= 0. Then there exists L/K finite, L ⊂ K,
such that x ∈ X(L) and for all σ ∈ GL = Gal(K/L):

σ(φ(x)) = φ(σx) = φ(x).
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So φ(x) ∈ (Cp(1))GL , contradicting our previous computation that (Cp(1))GL = 0. This
concludes the proof of Fontaine’s theorem (3.2.4).

We next indicate how Tate’s theorem (2.2.15) can be deduced from Fontaine’s the-
orem (3.2.4). If one forgets the GK-module structure, then ρX gives an injective map,
which by abuse of notation we also call ρX :

ρX : H0(X,ΩX) ↪→ HomZp(Tp(X),Cp(1)).

Note that:
HomZp(Tp(X),Cp(1)) ∼= (Tp(X))∗ ⊗Zp Cp(1),

so that ρX induces an injection:

H0(X,ΩX) ↪→ (TpX)∗ ⊗Zp Cp(1).

This map remains an injection after tensoring H0(X,ΩX) with Cp to yield a Cp-linear
and GK-equivariant map:

: H0(X,ΩX)⊗K Cp ↪→ (Tp(X))∗ ⊗Zp Cp(1).

Take Cp-duals and twist by Cp(1) to obtain:

v : Tp(X)⊗Zp Cp � H0(X,ΩX)∗ ⊗K Cp(1).

Applying this discussion to the dual abelian variety X ′, one similarly obtains an injec-
tion:

H0(X ′,ΩX′)⊗K Cp → (TpX
′)∗ ⊗Zp Cp(1) ∼= TpX ⊗Zp Cp.

Identifying H0(X ′,ΩX′) ∼= H1(X,OX)∗ and call the resulting injection u:

u : H1(X,OX)∗ ⊗K Cp ↪→ Tp(X)⊗Zp Cp.

Since u and v are Cp-linear and GK-equivariant, u is injective and v is surjective, the
same argument as above shows that:

0→ H1(X,OX)∗ ⊗K Cp
u→ Tp(X)⊗Zp Cp

v→ H0(X,ΩX)∗ ⊗K Cp(1)→ 0

is exact, and has a canonical GK-equivariant splitting. This proves Tate’s theorem
(2.2.15).

Consider the consequent decomposition:

Tp(X)⊗Zp Cp
∼=
(
H1(X,OX)∗ ⊗K Cp

)
⊕
(
H0(X,ΩX)∗ ⊗K Cp(1)

)
.

We have already given a geometric interpretation of the projection:

Tp(X)⊗Zp Cp � H0(X,ΩX)∗ ⊗K Cp(1).

Our next task will be to give a geometric interpretation of the other projection:

θX : Tp(X)⊗Zp CpH
1(X,OX)∗ ⊗K Cp

∼= H0(X ′,ΩX′)⊗K Cp.

For this we will need to recall some facts about duality for abelian varieties.
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3.3 Duality of abelian varieties

Let X be an abelian variety over Cp. Recall that the Picard group Pic(X) of X is
the group of isomorphism classes of line bundles on X, where the group law is given
by the tensor product. Recall further that Pic0(X) denotes the subgroup of classes of
line bundles that are translation invariant in the following sense: consider the three
maps p1, p2,m : X ×X → X where the pi’s are the projections and m is the group law
for X. Then translation invariance of a line bundle L corresponds to the condition:

m∗L ∼= p∗1L ⊗ p∗2L.

The group Pic0(X) can be seen as the Cp-points of an abelian variety X ′/Cp. This
is the dual abelian variety to X. We stress that the Cp points of X ′ correspond to
translation invariant line bundles on X.

The duality between X and X ′ is expressed beautifully via the existence of the
Poincaré bundle. This is a bundle P → X × X ′ such that for every x ∈ X ′(Cp),
corresponding to some translation invariant line bundle Lx on X, one has:

P|X×{x} ∼= Lx.

The double duality (X ′)′ ∼= X is given via the Poincaré bundle in the following way:
for x ∈ X(Cp), consider P{x}×X′ , which is a translation invariant line bundle on X ′. It
thus corresponds to a Cp point of (X ′)′, so that the association x 7→ P{x}×X′ gives an
isomorphism X(Cp) ∼= (X ′)′(Cp).

Now we use the theory of duality to describe the map:

θX : TpX ⊗Zp Cp → H0(X ′,ΩX′),

discussed above. Note that we work with θX′ rather than θX , to simplify some notations.
Note that double duality shows that:

θX : Tp(X
′)⊗Zp Cp → H0(X,ΩX).

Take u = (un)n≥0 ∈ Tp(X
′), so that un ∈ X ′(Cp) for all n. Write Ln ∈ Pic0(X)

for the corresponding line bundle on X. We have [pn]un = 0 for each n, and this
corresponds to the identity:

L⊗pn

n
∼= OX .

The triviality of L⊗pn

n is equivalent to the existence of a nonzero global section fn ∈
L⊗pn

n (OX), which we regard as a unit in the function field, fn ∈ K(X)×. Then consider
ωn = dfn/fn+1, which is a meromorphic differential of the third kind on X.

We claim that the sequence (ωn)n≥0 converges in the vector space of meromorphic
differentials of the third kind on X, and that the limit is actually a regular differential.
The point is that the residue of ωn is divisible by pn, so it vanishes as n tends to infinity.
To see this, suppose m > n and note that [pm−n]um = un by definition of Tp(X

′), which
corresponds to the identity:

L⊗pm−n

m ⊗ L−1
n
∼= OK .
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It follows that this bundle has a global nonzero section gm,n ∈ H0(X,L⊗pm−n

m ⊗ L−1
n ).

But then:
dfm
fm
− dfn
fn

= pn
dgm,n
gm,n

,

and since the absolute values of the residues of the ωn’s are all at most 15, it follows that
(ωn)n≥0 is a Cauchy-sequence. Accepting that the space of meromorphic differentials
of the third kind on X is a complete vector space, it follows that (ωn)n≥0 converges to
a regular differential on X, as was claimed. One can show that:

θX(u) = lim
n→∞

ωn ∈ H0(X,ΩX).

3.4 de Rham theory for abelian varieties with good

reduction

Let K/Qp be finite as above, and let X be an abelian scheme defined over K. Suppose
for simplicity that X has good reduction, so that our work above applies. Note however
that one can work more generally with arbitrary reduction type.

Recall that the Hodge-Tate period ring is the direct sum:

BHT(TpX) =
⊕
n∈Z

Cp(n).

We have shown that:

DHT(TpX) = (Tp(X)⊗Zp BHT)GK ∼= H1
Hodge(X)∗.

One can use a similar formalism, with different methods and a new period ring BdR,
to recover H1

dR(X). In what follows we will define the de Rham period ring BdR and
prove the following theorem:

Theorem 3.4.1. Let X be an abelian scheme defined over K with good reduction. If
we write:

DdR((TpX)∗) = ((TpX)∗ ⊗Zp BdR)GK ,

then there exists a canonical isomorphism:

DdR((TpX)∗) ∼= H1
dR(X).

We remark once again that this theorem holds without the assumption of good
reduction.

Before proceeding to discuss theorem (3.4.1), we recall some facts about B+
dR and

BdR. Some of the key properties of BdR are that it is a field of characteristic, it is
complete with respect to a discrete valuation, and B+

dR denotes the corresponding ring

5 FIXME: Why?
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of integers. We write mdR for the maximal ideal of B+
dR; let t ∈ mdR be a uniformizer.

If σ ∈ GK , then σ acts on t via the cyclotomic character:

σ(tn) = χ(σ)ntn.

The field BdR is filtered by the maximal ideal mdR. We write:

FiliBdR = tiB+
dR

for all i ∈ Z.
Before we can prove theorem (3.4.1), we would like to discuss a helpful reduction.

Write Vp(X) = Tp(X)⊗Zp Qp and V = (Vp(X))∗. Set B2 = B+
dR/(t

2B+
dR) and consider

the projection:

π : B+
dR → B2,

as well as the natural inclusion:

i : B+
dR → BdR.

These induce maps:

πK : (V ⊗Qp B
+
dR)GK → DdR(V ),

and:

iK : (V ⊗Qp B
+
dR)GK → (V ⊗Qp B2)

GK .

Note that iK is still injective since the finite dimensional Qp-vector space V is flat over
Qp. We would like to show that πK and iK are isomorphisms, so that our study of
DdR(V ) amounts to a studying (V ⊗Qp B2)

GK .
To see that πK and iK are isomorphisms, first note that t2BdR/(t

3BdR) ' Cp(2).
We thus have an exact sequence:

0→ Cp(2)→ B+
dR/(t

3)→ B+
dR/(t

2)→ 0.

All maps are of K-Banach spaces, so that there exists a K-linear splitting (which is not
GK-equivariant). It follows that the exact sequence:

0→ V ⊗Qp Cp(2)→ V ⊗Qp

(
B+

dR/(t
3)
)
→ V ⊗Qp

(
B+

dR/(t
2)
)
→ 0

also has a splitting, and there is thus a corresponding long exact sequence of continuous
Galois cohomology. Since V ⊗Qp Cp(2) ∼= Cp(2)d⊗Cp(1)d, where d = dimX, our work
in the first chapter shows that the cohomology of V ⊗Qp Cp(2) vanishes in all degrees.
In particular, the long exact sequence gives:(

V ⊗Qp

(
B+

dR/(t
3)
))GK ∼=

(
V ⊗Qp

(
B+

dR/(t
2)
))GK .
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One continues by induction to show that for all n ≥ 2, the natural surjectionB+
dR/(t

n) �
B+

dR/(t
2) induces isomorphisms:(

V ⊗Qp

(
B+

dR/(t
n)
))GK ∼=

(
V ⊗Qp

(
B+

dR/(t
2)
))GK .

Taking projective limits gives:

(V ⊗Qp B
+
dR)GK ∼= (V ⊗Qp B2)

GK ,

and one can check that this isomorphism is precisely πK .
To show that iK is an isomorphism, one uses the fact that BdR = lim−→n

t−nB+
dR, and

the exact sequence:
0→ B+

dR → t−1B+
dR → Cp(−1)→ 0

to similarly show that iK is an isomorphism. This reduces the study of DdR(V ) to the
study of (V ⊗Qp B2)

GK . The advantage to this approach is that B2 is a much more
simple ring than BdR.

3.5 The de Rham cohomology of schemes

Let S = SpecB be an affine scheme. Let f : Y → S be a smooth scheme of finite type.
In applications, we will usually require that B is a finite extension of Qp, or its ring of
integers. We will usually need to assume also that Y is proper.

Define the quasi-coherent sheaves of OS-modules on S:

Hi
dR(Y/S)

def
= Rif∗Ω

•
Y/S.

By taking global sections, we can think of Hi
dR(Y/S) as B-modules. These can be

described using Čech cohomology. 6

There are maps

H0
(
Y,Ω1,closed

Y/S

)
a−→ H1

dR(Y/S)
b−→ H1(Y,OY ).

7

Proposition 3.5.1. If B is of characteristic zero and Y is proper over B, then

1. The natural inclusion H0(Y,Ω1,closed
Y/S ) ↪→ H0(Y,Ω1

Y/S) is an isomorphism.

2. The sequence of B-modules

0→ H0
(
Y,Ω1

Y/S

)
→ H1

dR(Y/S)→ H1(Y,OY )→ 0

is exact.

6 FIXME: We should add our notes here.
7 FIXME: Add how to define this.
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Proof. The exactness of the sequence follows from the degeneration of the Hodge to
de Rham spectral sequence at the first step. This was shown by Deligne and Illusie.
Otherwise, one can use the Lefschetz principle and prove it using harmonic theory.
8

We obtain a filtration and a corresponding grading of H1
dR(Y/S):

FiliH1
dR(Y/S) =


H1

dR(Y/S) i ≤ 0

H0(Y,Ω1
Y/S) i = 1

0 i ≥ 2.

and also Gr0H1
dR(Y/S) = Fil0 /Fil1 ' H1(Y,OY ).

Another consequence is that H1
dR(Y/S) is a locally-free B-module of finite rank,

because both H0(Y,Ω1
Y/S) and H1(Y,OY ) are.

3.6 Vectorial extensions of abelian schemes

3.6.1 Vector groups

Let B be a commutative ring. Assume that B is reduced and flat as a Z-algebra. For
our applications, it suffices to consider B a finite extension of Qp or its ring of integers.

Let S = SpecB, and fix L a coherent sheaf of OS-modules on S corresponding to a
B-module M . Consider SymM , the symmetric algebra over B defined by M .

Example. 1. If M = B, then SymM is canonically isomorphic to B[x], the poly-
nomial algebra, where x corresponds to 1 ∈M has degree 1.

2. More generally, if M is a free B-module of rank n with basis {e1, . . . , en}, then
SymM is canonically isomorphic to the polynomial algebra in n variables.

Define the S-scheme V (L)
def
= Spec(SymM). We will make it into a group scheme.

For that, let R be any B-algebra. Then:

V (L)(R) = HomB−alg(SymM,R) = HomB−mod(M,R).

Note that the right hand side has a natural structure of R-module, and so R× acts on
it. This makes V (L) into a group scheme in a natural way, which is endowed with a
canonical action of Gm.

Definition 3.6.1. The group scheme V (L) just defined is called the vector group
over B corresponding to L (or to M).

8 FIXME: Add a proper proof.
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If M is locally-free of finite rank over B and L is the sheaf associated to M , then

V (L)(R) ' HomR−mod(M,R) 'M∗ ⊗B R,

and hence:
V (L) 'M∗ ×SpecB Ga.

In particular, if M is free we have V (L) isomorphic to Gn
a where n is the B-rank of M .

3.6.2 Vectorial extensions

Let B be as before, and let X/B be an abelian scheme.

Definition 3.6.2. A vectorial extension of X is a group scheme G over B, together
with a morphism f : G→ X such that there is a vector group V and an exact sequence
of group schemes over B:

0→ V → G
f−→ X → 0.

Remark. As the first cohomology group of V for the fppf-topology vanishes, to check
exactness in the previous sequence is equivalent to checking exactness of

0→ V (R)→ G(R)
fR−→ X(R)→ 0

for every B-algebra R.9

Proposition 3.6.3. There is a canonical bijection

ϕX : H1(X,OX)→ Ext1
GrpSch/B (X,V (OS))

which becomes a group isomorphism when the right hand side is endowed with the Baer
sum.

Proof. We define explicitly ϕX and its inverse ψX .
Given x ∈ H1(X,OX), find a cover C = {Ui}i∈I of X by open affine subsets,

and write Ui = SpecAi, and write x as the class of the sequence (fij)(i,j)∈I2 , with
fij ∈ OX(Ui ∩ Uj). For each i ∈ I, consider the affine line over Ui:

Gi
def
= Spec(Ai[xi]).

We glue the family (Gi)i∈I along Uij = Ui ∩ Uj with the gluing data:

xi|Uij
− xj|Uij

= fij,

and denote by G the scheme thus obtained. It is a group scheme together with a
surjective map f : G→ X, and the kernel of f is Ga.

9 FIXME: Is the justification correct?
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We define now ψX . Given

Ξ: 0→ Ga → G
f−→ X → 0,

think of G as a Ga-torsor over X 10. It is locally trivial over X, so one can find an open
affine covering C = {Ui}i∈I , such that the following triangle commutes:

Gi
def
= f−1(Ui)

αi

∼=
//

%%KKKKKKKKKKK
Ga × Ui

pr2
{{xx

xx
xx

xx
xx

Ui

By restricting to Uij we obtain transition functions fij ∈ OX(Uij). The family (fij)i,j
is a 1-cocycle for H1(X,OX) and we define ψX(Ξ) = [(fij)].

A trivial check proves that ϕX and ψX are mutual inverses.

Let M = H1(X,OX)∗ be the B-dual of the first cohomology group of X with values
on OX . Let L be the sheaf of OS-modules on S = SpecB associated to M , and let
W = WX = V (L). Then there is a unique vectorial extension GX of X by WX , which
is universal in the following sense: for any vectorial extension

Ξ: 0→ V → G→ X → 0,

there exists a unique morphism of vectorial extensions w : WX → V such that Ξ is the
pushout of GX by w:

0 // WX
//

w

��

GX
//

��

X //

=

��

0

0 // V // G // X // 0

and the left square is cartesian.

Remark. In order to help motivate the preceding material, we specialize to a classical
case. Let Y be a smooth proper curve over C. Then we can consider the Jacobian of
Y , say X = Jac(Y ), which is an abelian variety. As always, we write X ′ for the dual
abelian variety ofX. Although it is not true for abelian varieties in general, for Jacobian
varieties one has a natural isomorphism H1

dR(X/C) ∼= H1
dR(X ′/C). Composition with

the identification H1
dR(X/C)∗ ∼= H1

dR(X ′/C), which does hold for arbitrary abelian
varieties, thus gives a natural self duality:

H1
dR(X/C) ∼= H1

dR(X/C)∗.

Recall that integration gives a natural pairing:

H1(Y (C),Z)×H1
dR(Y/C)→ C,

10 FIXME: what is this?
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which is perfect and induces a natural inclusion:

ιH1(Y (C),Z) ↪→ H1
dR(Y/C)∗ ∼= H1

dR(X/C)∗ ∼= H1
dR(X/C).

If Y is of genus g, then dimX = g, and H1
dR(X/C) is a (2g)-dimensional real vector

space. The map ι embeds H1(Y (C),Z) as a real lattice of rank (2g) in H1
dR(X/C).

In fact, ι factors through H0(X,Ω1
X/C) ⊆ HdR(X/CC). Integration yields a group

isomorphism:

X(C) ∼=
H0(X,Ω1

X/C)

ι(H1(Y (C),Z))
.

One may thus rewrite the Hodge filtration for X/C in the form:

0→ H1(X,OX)→ H1
dR(X/C)

H1(Y (C),Z)
→ X(C)→ 0.

Serre duality gives H1(X,OX) ∼= WX(C). Thus, the filtration above gives a concrete
realization of the universal vectorial extension of X by H1(X,OX):

GX(C) ∼=
H1

dR(X/C)

H1(Y (C),Z)
.

Lemma 3.6.4. Every ω ∈ Inv(GX) is closed.

Proof. To be added! 11

It follows from the lemma that there is a natural map:

βX : Inv(GX) ↪→ H0(GX ,Ω
1,closed
GX/S

)→ H1
dR(GX/S).

Theorem 3.6.5. 1. There is a canonical isomorphism αX making the following di-
agram commute:

H1
dR(X/B)

αX

∼=
//

f∗ ''PPPPPPPPPPPP
Inv(GX)� _

βX

��

H1
dR(GX/B).

2. The map f ∗ is injective. If B = K is a finite extension of Qp, then f ∗ is an
isomorphism.

Remark. This theorem gives a geometric interpretation of the Hodge filtration, which
can be thought of as the sequence obtained by applying the functor Inv(−) to the
universal vectorial extension.

11 FIXME: Add proof!!
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Proof. We begin by describing the map αX . Take ω ∈ H1
dR(X/B) and represent it by a

1-hypercocycle: say {Ui}i∈I is a covering ofX by affine open subsets, say Ui = Spec(Ai),
with:

ω = [((ωi)i∈I , (fij)i,j∈I ].

The 1-hypercocyle condition for this coset representative implies that (fij)i,j∈I repre-
sents an element of H1(X,OX). Let:

0→ Ga → H
h−→ X → 0 (3.1)

denote the corresponding vectorial extension associated to the 1-cocycle (fij)i,j∈I . For
each i ∈ I let Hi = Spec(Ai[X]). Glue Hi and Hj over Ui ∩ Uj using the gluing data
Xi−Xj = h∗(fij). For each i ∈ I write ηi = h∗(ωi)− dXi, so ηi ∈ Ω1

H/B(Hi). Note that
if we write Hij = Hi ∩Hj as usual, then:

ηi|Hij
− ηj|Hij

= h∗(ωi|Uij
− ωj|Uij

− fij) = 0,

since ω is a 1-hypercocyle. This shows that the ηi’s glue to yield a global differential
η ∈ H0(H,Ω1

H/B). In fact, one can check that η ∈ Inv(H). The universal property of
the universal vectorial extension GX implies that there exists a unique morphism h of
vectorial extensions between the universal extension and the extension (3.1):

0 // WX
//

w

��

GX
f

//

β

��

X // 0

0 // Ga
// H

h // X // 0

Define αX by putting αX(ω) = β∗(η). Since η ∈ Inv(H), it follows that αX(ω) ∈
Inv(GX).

We must check that αX is well-defined. Suppose that the 1-hypercocycle ω above
is actually a 1-hypercoboundary. Then it follows that (fij)i,j∈I ∈ H1(X,OX) is a 1-
cocycle, so that the corresponding vectorial extension (3.1) is canonically split. This
implies that the map w : WX → Ga is zero in this case, hence also β = 0. We see that
αX(ω) = β∗(η) = 0, as it should be. It remains to show that αX is an isomorphism. 12

We now turn to prove part (b). Since f ∗ = βX ◦ αX is a composition of injective
maps, it follows that f ∗ is itself injective. Now take B = K, and consider again the
universal vectorial extension:

0→ WX → GX
f−→ X → 0.

Recall that the de
H1

dR(GX/X) = (Rif∗)(Ω
•
GX/X

).

There is a spectral sequence:

Hj(X,H i
dR(GX/X)) =⇒ H i+j

dR (GX/K),

12 FIXME: Add details!
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which we will show degenerates at E1
13.

Let A be a K-algebra, and consider the additive group Ga,A over Spec(A). Since
char(K) = 0, one can integrate formally to show that:

H1
dR(Ga,A/ Spec(A)) =

Ω1
A[X]/A

d(A[X])
= 0.

Similarly, H i
dR(Gm

a,A/ Spec(A)) = 0 for all i > 0 and all m ≥ 1. The sheaf H1
dR(GX/X)

is the sheaf associated to the presheaf:

U 7→ H i
dR(f−1(U)/U).

Is U is an open affine which is “small enough”, then f−1(U) ∼= WX×U ∼= Gd
a,A for some

d ≥ 1. For such U we thus have H i
dR(f−1(U)/U) = 0, so that the stalks of H i

dR(GX/X)
vanish at all points. Hence H i

dR(GX/X) = 0 for all i > 0. This gives the desired
degeneration of the spectral sequence above, so that:

H i
dR(X/K) ∼= H i

dR(GX/K).

One should verify that this isomorphism corresponds to the map f ∗.

3.6.3 Tangent spaces and lie algebras of group schemes

Let B be a ring. Let G be a group scheme defined over B, and M a B-module. Write
e ∈ G(B) for the identity element. An M -valued tangent vector to G at the identity is
a B-derivation:

t : OG,e →M,

where we regard M as an OG,e-module via the map OG,e → B. Let tG(M) denote the
collection of all M -valued tangent vectors. Let LieG denote the set of all B-derivations
D : OG → OG that are left invariant, which is naturally a B-module.

We admit the following lemmas without proof:

Lemma 3.6.6. There is a canonical perfect pairing:

LieG× Inv(G)→ B.

Lemma 3.6.7. If M is a B-module, then LieG⊗BM ∼= tG(M).

Now let A, B and C be rings, and suppose given ring homomorphisms A → B
and B → C. Regard C as an A-algebra via the composite of these two maps. Write
C[ε] = C[X]/(X2) for the ring of dual numbers over C. Let I ⊂ C[ε] denote the
ideal generated by the image of the variable X in C[ε]. The following lemma realizes
derivations as points of a “first order deformation” of C:

13 FIXME: is this the correct degeneration?
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Lemma 3.6.8. Let notation be as above. Then the map:

DerB(A,C)→ {φ : A→ C[ε] | φ is an A-algebra map with φ(b)−b ∈ I for all b ∈ B}

given by D 7→ (b 7→ b+ εD(b)) is an isomorphism of A-modules.

Proof. To be added later 14

We would like to apply this to our situation, where B is our chosen ground ring and
G is a group scheme over B. Let A = OG,e, and consider the ring maps:

A
e−→ B → C.

By the preceding lemma, each t ∈ tG(C) = DerB(A,C) corresponds to:

φ ∈ {φ : A→ C[ε] | φ is an A-algebra map with φ(b)− b ∈ I for all b ∈ B}.

This induces maps:
Spec(C[ε])→ Spec(OG,e)→ G(C),

and one obtains a natural identification:

tG(C) = ker (G(C[ε])→ G(C)) .

This is the main tool that allows us to integrate. 15

We will apply the above discussion to the universal vectorial extension:

0→ WX → GX → X → 0,

where X is an abelian scheme over B. Recall that B2 = B+
dR/t

2B+
dR fits into a non-split

exact sequence:
0→ I → B2 → Cp → 0,

where I ∼= Cp(1) as GK-modules. This sequence induces an exact sequence:

0→ LieX ⊗KCp(1)→ X(B2)→ X(Cp)→ 0.

Take x = (xn)n≥1 ∈ X[pn](K), which lifts to some x̂ ∈ X(B2). Write x̂ = (x̂n).
Then tn = [pn]x̂n is a tangent vector, and we must show that the tn’s converge to
some t ∈ LieX ⊗KCp(1). This strategy will not work. Philosophically the argument is
correct, but a modified integration argument is required. Assume for the moment that
the sequence does converge. Then given ω ∈ H0(X,Ω1

X/K) = Inv(X), one can pair:

〈t, ω〉 =

∫
x

ω ∈ Cp(1),

where the integral is the one discussed previously. With these notations, one has the
following theorem:

14 FIXME: Should add more details
15 FIXME: This section needs to be cleaned up
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Theorem 3.6.9 (Fontaine-Messing). Let X/OK be an abelian scheme. Then there is
a canonical integration pairing:

〈·, ·〉dR : TpX ×H1
dR(X/ Spec(K))→ B2,

where 〈x, ω〉dR =
∫
x
ω. The pairing is bilinear and perfect. It is GK-equivariant in

the first argument. Moreover, it respects filtrations in the following sense: for all ω ∈
H0
(
X,Ω1

X/K

)
and all x ∈ Tp(X),∫

x

ω ∈ tB2 = Fil1(B2).

Corollary 3.6.10. There is a canonical isomorphism of filtered K-vector spaces:

DdR((TpX)∗) ∼= H1
dR(X/K),

and the Galois representation Vp(X) = Tp(X)⊗Zp Qp is de Rham.

3.7 Proof of the Theorem of Fontaine-Messing

16

3.7.1 Integral structure of B2 = BdR
+/I2

We recall the construction of B2, together with its integral structure A2.
Let R = lim←−OK/pOK = lim←−OCp/pOCp , where the transition maps are given by

x 7→ xp. It is a perfect Fp-algebra. Let Ainf = W (R) be its ring of Witt vectors, which
is a W (Fp)-algebra. It comes equipped with a surjective ring homomorphism

θ : Ainf → OCp ,

and we let J
def
= ker θ, which is a principal ideal in Ainf generated by

ξ
def
= [p]− p

where p ∈ R is given by a sequence (p, p1/p, p1/(p2), . . .) ∈ R, and [·] is the Teichmüller
lift.

Let B2 be the quotient

B2
def
= Ainf[p

−1]/(ker θ[p−1])2,

where we have written θ[p−1] for the induced map Ainf[p
−1]→ Cp.

16 FIXME: Need to put something here
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Since Ainf has no p-power torsion, the ring A2
def
= Ainf/J

2 injects into B2, and
moreover B2 = A2 ⊗Zp Qp.

The subring A2 is a Zp-subalgebra of B2 which is p-adically complete, and hence B2

is a p-adic Qp-Banach space with unit ball given by A2.

Let J
def
= J/J2, seen as an ideal of A2. Note that A2/J ' OCp , the isomorphism

being induced by θ. Let I = I/I2, which as we have seen is isomorphic to Cp(1). There
is a commutative diagram with exact rows, of GK-equivariant maps:

0 // J //
� _

��

A2
//

� _

��

OCp
//

� _

��

0

0 // I // B2
θ // Cp

// 0

3.7.2 Geometric interpretation of the pair (A2, J)

Let Ω
def
= ΩOK/OK

. Consider the derivation d : OK → Ω, which is surjective by definition

of Ω. Let O2
def
= ker d. Note that O2 is a subring of OK . The multiplication-by-pn maps

induce a commutative diagram of OK-modules

0 // O2
//

pn

��

OK
d //

pn

��

Ω //

pn

����

0

0 // O2
// OK

d // Ω // 0,

where the rightmost map is surjective because Ω is p-divisible. The snake lemma yields
then an exact sequence

0→ Ω[pn]→ O2/p
nO2 → OK/pnOK → 0.

Note also that Ω[pn] � Ω[pn−1], so that the directed system satisfies the ML condition.

Hence taking projective limits yields an exact sequence (Ô2 = lim←−nO2/p
nO2):

0→ TpΩ→ Ô2 → OCp → 0.

The universality property of A2 provides a unique map A2 → Ô2 which we claim is an
isomorphism17, and which induces a commutative diagram

0 // TpΩ // Ô2
// OCp

// 0

0 // J //

'

OO�
�
�

A2
//

'
OO

OCp
// 0,

where the maps are GK-equivariant. Note also that TpΩ acts then an ideal of square

zero in Ô2. This gives a geometric interpretation of J and A2.
Inverting p we obtain an isomorphism I ' (TpΩ) [p−1] ' Cp(1), and B2 ' Ô2[p

−1].

17 FIXME: why?
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3.7.3 The Diagram

Fix X/OK an abelian scheme of dimension d, and let

0→ W → G→ X → 0

be its universal vectorial extension.
If F is any group scheme over OK , then the kernel of the map F (A2) → F (OCp)

precisely is Lie(F ) ⊗OK
J18. Note that H1(X,OX)∗ is locally free, and hence flat.

Similarly replacing X with W and G. This yields the following diagram with exact
rows and columns:

0

��

0

��

0

��

0 // Lie(W )⊗OK
J //

��

W (A2) //

��

W (OCp) //

��

0

0 // Lie(G)⊗OK
J //

��

G(A2) //

��

G(OCp) //

��

0

0 // Lie(X)⊗OK
J //

��

X(A2) //

��

X(OCp) //

��

0

0 0 0.

(3.2)

Recall that W (A2) ' H1(X,OK)∗ ⊗OK
A2. Similarly, W (OCp) ' H1(X,OK)∗ ⊗OK

OCp , and Lie(W )⊗OK
J ' H1(X,OK)∗ ⊗OK

J . Moreover,

Lie(G) ' Inv(G)∗ ' H1
dR(X/OK)∗

Lie(X) ' Inv(X)∗ ' H0(X,Ω1
X)∗.

We will break the proof in three steps, the last one giving the theorem, and the first
two proving the third.

3.7.4 First Step

Consider the last row in Diagram 3.2. Multiplication by pn gives a commutative diagram
with exact rows

0 // H0(X,Ω1
X)∗ ⊗OK

J //

pn

��

X(A2) //

pn

��

X(OCp) //

pn

��

0

0 // H0(X,Ω1
X)∗ ⊗OK

J // X(A2) // X(OCp) // 0,

18 FIXME: a smoothness argument proves this
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and the snake lemma gives a GK-equivariant map

ϕX,n : X[pn](OCp)→ H0(X,Ω1
X)∗ ⊗OK

Ω[pn],

which induces a pairing

(·, ·)n : X[pn](OCp)×H0(X,Ω1
X)→ Ω[pn],

given by (a, ω)n
def
= (ϕX,n(a), ω). This sequence of pairings induces a pairing on the

projective limit: (
lim←−X[pn](OCp)

)
×H0(X,Ω1

X)→
(
lim←−Ω[pn]

)
.

Finally, inverting p yields the desired pairing:

〈·, ·〉1 : TpX ×H0(X,Ω1
X)→ Cp(1).

Proposition 3.7.1. The pairing 〈·, ·〉1 is Fontaine’s pairing: 〈a, ω〉F = a∗ω.

Proof. To begin, we claim that there is an exact sequence:

0→ TpΩ→ VpΩ→ sΩ→ 0,

of GK-modules, where as always VpΩ = TpΩ ⊗Zp Qp. Here s is defined on elementary
tensors as:

s((xn)n≥0 ⊗ (1/pm)) = xm.

One should check that s is a well-defined and surjective Zp[GK ]-module homomorphism,
such that ker s = TpΩ.

Recall that there is a canonical section of θ : B+
dR � Cp above K ⊂ Cp:

K ↪→ B+
dR;

the section does not extend to all of Cp. This induces a map K → B2 via the compo-
sition:

K ↪→ B+
dR � B2,

which is in fact injective. Let x ∈ OK and write x1 for the image of x in B2 under this
map. The diagram:

x1 ∈ B2
θ // // Cp

A2
θ // //

?�

OO

OCp 3 x
?�

OO

is commutative, where the vertical arrows are the inclusions. Let x2 be lift of x in A2

and consider αx = x1 − x2 ∈ B2. Note that θ(αx) = 0, so that αx ∈ I. Although αx
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depends on the choice of the lift x2, we claim that its image in I/J is independent of
this choice. Moreover, we claim that the mapping:

α : OK → I/J

defined by α(x) = αx is a derivation, such that the isomorphism:

I/J ∼= VpΩ/TpΩ ∼= Ω

identifies α with the differential d : OK → Ω. 19

More generally, we will use the previous claim to prove the following: let X be a
smooth abelian20 scheme over OK and write: B = θ−1(K) and A = θ−1(OK), so that
there is a commutative diagram:

B
θ // // K

A
θ // //

?�

OO

OK
?�

OO

with vertical arrows the inclusions. As observed above, there is a canonical section
K → B. Note that J ⊂ I ⊂ B, and also J ⊂ A.

For x ∈ X(OK) let x1 be the image of x in X(B) as above, and let x2 be a lift of
x in X(A) ⊂ X(B). Then x1 − x2 ≡ 0 (mod I); indeed, x1 − x2 can be seen as an
element of tX,x ⊗ I, which is isomorphic with ker(X(B) → X(K)). Let αx denote the
image of x1 − x2 in:

tX,x ⊗OK
(I/J) ∼= tX,x ⊗OK

Ω.

As above, we claim that αx is independent of the choice of lifts of x; it depends only
on x ∈ X(OK).

Consider the map δx : OX,x → Ω defined as follows: if f ∈ OX,x then δx(f) =
(f(x1) − f(x2)) (mod J). Let ω ∈ H0(X,Ω1

X) and let X1, . . . , Xd be local parameters
at x. Write ωx =

∑
i fi(x1, . . . , xd)dXi and compute: 21

〈ω, δx〉 =
d∑
i=1

fi(X1, . . . , Xd)(dXi, δx) (3.3)

=
d∑
i=1

fi(X1, . . . , Xd)(Xi(x1)−Xi(x2)) (mod J), (3.4)

which by the claim left as an exercise is:

d∑
i=1

fi(X1, . . . , Xd)dXi (mod J) = x∗(ω).

19 FIXME: Proof of claim left as exercise
20 FIXME: Notes didn’t have abelian scheme, but I think it’s required for proof to make sense
21 FIXME: Which pairing is used below? Fontaine or 〈, 〉1?
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Recall that we defined maps above:

φX,n : X[pn](OCp)→ LieX ⊗ (J/pnJ) ∼= H0(X,Ω1
X)∗ ⊗ Ω[pn],

where φX,n(x) = pnx2 (mod () Lie(X)⊗pnJ), since pnx1 = pnx = 0, as x ∈ X[pn](OCp).
It follows from these two computations that 〈, 〉1 = 〈, 〉F .

3.7.5 Second Step

Consider the third column of Diagram 3.2. Let X ′ be the dual abelian variety to X.
Recall that by Serre duality H1(X,OX)∗ ' H0(X ′,Ω1

X′). Multiplication by pn gives a
commutative diagram with exact rows

0 // H1(X ′,OX′)∗ ⊗OK
OCp

//

pn

��

G(OCp) //

pn

��

X(OCp) //

pn

��

0

0 // H1(X ′,OX′)∗ ⊗OK
OCp

// G(OCp) // X(OCp) // 0,

and the snake lemma gives a GK-equivariant map

ψX,n : X[pn](OCp)→ H0(X ′,Ω1
X′)

∗ ⊗OK
OCp/p

nOCp .

Taking projective limits, we get a map

ψX : TpX → H0(X ′,Ω1
X′)⊗OK

OCp .

Proposition 3.7.2. The map ψX is Coleman’s map.

Proof. To prove this proposition, we require a “moduli interpretation” of G(OCp). Re-
call that points in X(OCp) correspond to isomorphism classes of invariant line bundles
L on the dual abelian scheme X ′, such that L is defined over OCp . We claim that this
interpretation and the exact sequence of points:

0→ W (OCp)
∼= H0(X ′,Ω1

X′)⊗OK
OCp → G(OCp)→ X(OCp)→ 0,

obtained from the universal vectorial extension of X, allows one to interpret G(OCp)
as the collection of isomorphism classes of pairs (L,∇) of line bundles L on X ′ and
connections on L. Indeed, if s ∈ G(OCp), then let L correspond to the image of s in
X(OCp), and let ∇ denote a connection:

∇ : L → L⊗OX′
Ω1
X′/OCp

.

We only describe how ∇ is defined in the case s 7→ 0, as this is the only case we need.
Note that then L = sOX′ . Hence to define ∇ we need only describe the value ∇(s).
Define:

∇(s) = s⊗ ω,
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where ω ∈ H0(X ′,Ω1
X′ ⊗OK

OCp maps to s via the map:

H0(X ′,Ω1
X′)⊗OK

OCp → G(OCp).

The properties of a connection then show that for any a ∈ OX′(U), one has:

∇(as|U) = s|U ⊗ da+ a∇(s)|U = s|U ⊗ da+ a(s⊗ ω)|U .

We have thus explicitly described a moduli interpretation of H0(X ′,Ω1
X′ ⊗OK

OCp :
given ω ∈ H0(X ′,Ω1

X′ ⊗OK
OCp , which maps to s ∈ G(OCp), there corresponds an

isomorphism class of pairs (sOX′ ,∇), where ∇(s) = s⊗ ω.
Note that if s1 = (L1,∇1) and s2 = (L2,∇2), then s1 + s2 = (L1 ⊗ L2,∇1 ⊗ Id +

Id⊗∇2). We will write ∇1 ⊗∇2 for ∇1 ⊗ Id + Id⊗∇2.
Let now q = pn, let a ∈ X[q](OCp) and let ã ∈ G(OCp) be a lift of a. Let F be

the line bundle on X ′ corresponding to a and let (F ,∇) be the pair corresponding
to ã. Then F⊗q ∼= OX′ , so it has a nontrivial global section t ∈ H0(X ′,F⊗q). Let
{Ui}i∈I be an affine open covering of X ′ such that F|Ui

∼= siOX′|Ui
for all i. Write

∇(si) = si ⊗ ωi ∈ (F ⊗ Ω1
X′(Ui). Then there exists hi ∈ OX′(Ui) such that sqihi = t|Ui

.
It then follows that ∇⊗q(t) = t⊗ ω ∈ H0(X ′,Ω1

X′)⊗OK
OCp , and hence:

ψX,n(a) ≡ ω (mod pn).

On the other hand:

∇⊗q(t|Ui
) = ∇⊗q(sqihi) = sqi ⊗ dhi + qhis

q
i ⊗ ωi = t|Ui

(dhi/hi + qωi).

This shows that ω|Ui
= dhi/hi + pnωi, and so since:

dt/t = d(his
q
i )/(his

q
i ) = dhi/hi + qdsi/si = ω + pn(dsi/si − ωi),

it follows that:
ψX,n(a) = dt/t (mod pn).

Upon taking projective limits one deduces that ψX(a) = ψC(a), as claimed by the
proposition.

3.7.6 Third Step

Consider the diagonal map in Diagram 3.2. The map G(A2) → X(OCp) is clearly
surjective. Define

N
def
=
(
(H1(X,OX)∗)⊗OK

A2 ⊕ (Lie(G)⊗OK
J)
)
/
(
H1(X,OX)∗ ⊗OK

J
)
,

where H1(X,OX)∗⊗OK
J is seen as a submodule of

(
H1(X,OX)∗ ⊕ Lie(G)⊗J

)
via the

diagonal embedding. There is a natural map N → Lie(G)⊗A2, and an exact sequence

0→ N → G(A2)→ X(OCp)→ 0.
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Multiplication by pn and the snake lemma applied as before yields a map

X[pn](OCp)→ N/pnN,

and by composing with the natural map 22

N/pn → H1
dR(X/OK)∗ ⊗OK

(A2/p
nA2)

we get a map
ρn : X[pn](OCp)→ H1

dR(X/OK)∗ ⊗OK
(A2/p

nA2) .

Taking projective limits, we get a map

ρX : TpX → H1
dR(X/OK)⊗OK

A2,

which induces a pairing

〈·, ·〉 : TpX ×H1
dR(X,OK)→ A2.

Write XK
def
= X ×SpecOK

SpecK. We get then a pairing

〈·, ·〉dR : TpXK ×H1
dR(XK)→ B2.

Proposition 3.7.3. The pairing 〈·, ·〉dR is perfect.

Proof. Recall two fundamental exact sequences:

0→ Cp(1)→ αB2 → β → Cp → 0,

and
0→ H0(X,Ω1

X)→ iH1
dR(X)→ π → H1(X,OX)→ 0.

Some earlier diagram chasing showed that, if a ∈ TpX and h ∈ H1
dR(X), then:

β(〈a, h〉dR) == (a, π(h))2,

which, by Proposition (3.7.2), is equal to (a, π(h))C ∈ Cp. Similarly if ω ∈ H0(X,Ω1
X)

then Proposition (3.7.1) gives:

〈a, i(ω)〉dR = α(〈a, ω〉1) = α((a, ω)F ).

We require a few last pieces of notation. Let φF denote the map:

φF : TpX ⊗Zp Cp → H0(X,Ω1
X)∗ ⊗OK

Cp(1)

obtained from the Fontaine pairing (, )F . Similarly let φC denote the map:

TpX ⊗Zp Cp → H1(X,OX)∗ ⊗OK
Cp

22 FIXME: how is it defined?
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obtained from the Coleman pairing (, )C . We have seen that together these maps give
an isomorphism:

φF ⊕ φCTpX ⊗Zp Cp →
(
H0(X,Ω1

X)∗ ⊗OK
Cp(1)

)
⊕
(
H1(X,OX)∗ ⊗OK

Cp

)
.

Suppose that a ∈ TpX is such that 〈a, h〉dR = 0 for all h ∈ H1
dR(X); we want to show

a = 0. Note that for such a ∈ TpX, the computations above show that (a, π(h))C = 0 for
all h ∈ H1

dR(X). But since π is surjective we see that (a, u)C = 0 for all u ∈ H1(X,OX).
Also, for every ω ∈ H0(X,Ω1

X) we obtain α((a, ω)F ) = 0. As α is injective, we see that
(a, ω)F = 0 for all ω ∈ H0(X,Ω1

X). It follows that φF ⊕φC)(a⊗1) = 0. Since φF ⊕φC is
an isomorphism, it follows that a = 0. This concludes the proof of the proposition.
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