	Moduli of continuity		
0000	00000	00000	

Stability of Calderón's inverse problem in 2D

Martí Prats

European Research Council

May 29th, 2017

Introduction	Moduli of continuity		
0000	00000	00000	

Introduction

Introduction	Moduli of continuity	Tools The end
0000	00000	00000

Uniformly strongly elliptic boundary value problems

Let $K \ge 1$, $\Omega \subset \mathbb{C}$ bounded domain. We say $\gamma \in \mathcal{G}(K, \Omega)$ when

- Compactly supported: $\operatorname{supp}(\gamma 1) \subset \overline{\Omega}$.
- Strongly elliptic: $\|\gamma\|_{\infty} \leq K$, $\|\gamma^{-1}\|_{\infty} \leq K$.
- Isotropic conductivity: $\gamma : \mathbb{C} \to \mathbb{R}_+$.

Introduction	Moduli of continuity	
0000	00000	00000

Uniformly strongly elliptic boundary value problems

Let $K \ge 1$, $\Omega \subset \mathbb{C}$ bounded domain. We say $\gamma \in \mathcal{G}(K, \Omega)$ when

- Compactly supported: $\operatorname{supp}(\gamma 1) \subset \overline{\Omega}$.
- Strongly elliptic: $\|\gamma\|_{\infty} \leq K$, $\|\gamma^{-1}\|_{\infty} \leq K$.
- Isotropic conductivity: $\gamma : \mathbb{C} \to \mathbb{R}_+$.

Dirichlet BVP: prescribed electric voltage in the boundary, find voltage

$$\begin{cases} \nabla \cdot (\gamma \nabla u) = 0, \\ u_{|\partial \Omega} = f \in H^{1/2}(\partial \Omega). \end{cases}$$

Introduction	Moduli of continuity	
0000	00000	00000

Uniformly strongly elliptic boundary value problems

Let $K \ge 1$, $\Omega \subset \mathbb{C}$ bounded domain. We say $\gamma \in \mathcal{G}(K, \Omega)$ when

- Compactly supported: $\operatorname{supp}(\gamma 1) \subset \overline{\Omega}$.
- Strongly elliptic: $\|\gamma\|_{\infty} \leq K$, $\|\gamma^{-1}\|_{\infty} \leq K$.
- Isotropic conductivity: $\gamma : \mathbb{C} \to \mathbb{R}_+$.

Dirichlet BVP: prescribed electric voltage in the boundary, find voltage

$$\begin{cases} \nabla \cdot (\gamma \nabla u) = 0, \\ u_{|\partial \Omega} = f \in H^{1/2}(\partial \Omega). \end{cases}$$

Neumann BVP: prescribed electric current in the boundary, find voltage

$$\begin{cases} \nabla \cdot (\gamma \nabla u) = 0, \\ (\gamma \partial_{\nu} u) \mid_{\partial \Omega} = g \in H^{-1/2}(\partial \Omega). \end{cases}$$

Introduction	Moduli of continuity	
0000	00000	00000

Uniformly strongly elliptic boundary value problems

Let $K \ge 1$, $\Omega \subset \mathbb{C}$ bounded domain. We say $\gamma \in \mathcal{G}(K, \Omega)$ when

- Compactly supported: $\operatorname{supp}(\gamma 1) \subset \overline{\Omega}$.
- Strongly elliptic: $\|\gamma\|_{\infty} \leq K$, $\|\gamma^{-1}\|_{\infty} \leq K$.
- Isotropic conductivity: $\gamma : \mathbb{C} \to \mathbb{R}_+$.

Dirichlet BVP: prescribed electric voltage in the boundary, find voltage

$$\begin{cases} \nabla \cdot (\gamma \nabla u) = 0, \\ u_{|\partial \Omega} = f \in H^{1/2}(\partial \Omega). \end{cases}$$

Neumann BVP: prescribed electric current in the boundary, find voltage

$$\begin{cases} \nabla \cdot (\gamma \nabla u) = 0, \\ (\gamma \partial_{\nu} u) \mid_{\partial \Omega} = g \in H^{-1/2}(\partial \Omega). \end{cases}$$

$$\mathsf{DtN} \mathsf{ map:} \qquad \Lambda_\gamma: f \mapsto (\gamma \partial_\nu u_{\gamma,f})|_{\partial\Omega}.$$

Introduction	Moduli of continuity		The end
0000	00000	00000	
Calderón's p	oroblem		

The "forward map"

$$\begin{array}{ccc} \Lambda : & \mathcal{G}(K,\Omega) & \to & \mathcal{L}\left(H^{1/2}(\partial\Omega),H^{-1/2}(\partial\Omega)\right), \\ & \gamma & \mapsto & \Lambda_{\gamma}, \end{array}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

is continuous for the distance $\|\gamma_1 - \gamma_2\|_{\infty}$.

Introduction	Moduli of continuity	
0000		
Calderón's p	problem	

The "forward map"

$$\begin{array}{cccc} \Lambda : & \mathcal{G}(\mathcal{K}, \Omega) & \to & \mathcal{L}\left(H^{1/2}(\partial \Omega), H^{-1/2}(\partial \Omega)\right), \\ & \gamma & \mapsto & \Lambda_{\gamma}, \end{array}$$

is continuous for the distance $\|\gamma_1 - \gamma_2\|_{\infty}$. Given boundary measurements can we recover the conductivity?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Moduli of continuity		
0000	00000	00000	
Calderón's p	problem		

The "forward map"

$$\begin{array}{cccc} \Lambda : & \mathcal{G}(\mathcal{K}, \Omega) & \to & \mathcal{L}\left(H^{1/2}(\partial \Omega), H^{-1/2}(\partial \Omega)\right), \\ & \gamma & \mapsto & \Lambda_{\gamma}, \end{array}$$

is continuous for the distance $\|\gamma_1 - \gamma_2\|_{\infty}$. Given boundary measurements can we recover the conductivity? That is, find the inverse map

$$\Lambda^{-1}: \qquad \mathcal{L}\left(H^{1/2}(\partial\Omega), H^{-1/2}(\partial\Omega)\right) \qquad \to \qquad \mathcal{G}(K, \Omega),$$
$$\Lambda_{\gamma} \qquad \mapsto \qquad \gamma.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	Moduli of continuity		
0000	00000	00000	
Difficulties			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A problem is well-posed if the following conditions hold:

- A solution exists
- 2 The solution is unique
- The solution depends continuously on the input

Introduction	Moduli of continuity		
0000	00000	00000	
Difficultion			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A problem is well-posed if the following conditions hold:

- A solution exists (if we have perfect, complete data),
- 2 The solution is unique
- The solution depends continuously on the input

Introduction	Moduli of continuity		
0000	00000	00000	
Difficulties			

A problem is well-posed if the following conditions hold:

- A solution exists (if we have perfect, complete data),
- Intersection is unique (planar case, see [Astala, Päivärinta '06]),

The solution depends continuously on the input

Introduction	Moduli of continuity		
0000	00000	00000	
Difficulties			

A problem is well-posed if the following conditions hold:

- A solution exists (if we have perfect, complete data),
- On the solution is unique (planar case, see [Astala, Päivärinta '06]),
- The solution depends continuously on the input (a priori conditions needed).

Introduction	Moduli of continuity		
0000	00000	00000	
Difficulties			

A problem is well-posed if the following conditions hold:

- A solution exists (if we have perfect, complete data),
- On the solution is unique (planar case, see [Astala, Päivärinta '06]),
- The solution depends continuously on the input (a priori conditions needed).

Calderón's CIP is severely "ill-posed".

Introduction	Moduli of continuity		
0000	00000	00000	
Stability			

There are counterexamples to unconditional stability.

Introduction	Moduli of continuity	
0000		
Stability		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Moduli of continuity		
0000	00000	00000	
Stability			

Question: find $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ so that $\Lambda^{-1} : \Lambda(\mathcal{F}) \to \mathcal{F}$ is continuous with L^p norm: L^p -stability for Ω .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Moduli of continuity		
0000	00000	00000	
Stability			

Question: find $\mathcal{F} \subset \mathcal{G}(\mathcal{K}, \Omega)$ so that $\Lambda^{-1} : \Lambda(\mathcal{F}) \to \mathcal{F}$ is continuous with L^p norm: L^p -stability for Ω . Let s > 0. Then

• $\mathcal{F} = \{\gamma \in \mathcal{G}(K, \Omega) : \|\gamma\|_{C^s} \leq C\}$, has L^{∞} stability, Lipschitz domain [Barceló, Faraco, Ruiz '07].

Introduction	Moduli of continuity		
0000	00000	00000	
Stability			

Question: find $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ so that $\Lambda^{-1} : \Lambda(\mathcal{F}) \to \mathcal{F}$ is continuous with L^p norm: L^p -stability for Ω . Let s > 0. Then

• $\mathcal{F} = \{\gamma \in \mathcal{G}(K, \Omega) : \|\gamma\|_{C^s} \leq C\}$, has L^{∞} stability, Lipschitz domain [Barceló, Faraco, Ruiz '07].

F = {γ ∈ G(K, Ω) : ||γ||_{W^{s,p}} ≤ C}, has L^p stability, domain with rough boundary [Clop, Faraco, Ruiz '10], [Faraco, Rogers '13].

Introduction	Moduli of continuity		
0000	00000	00000	
Stability			

Question: find $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ so that $\Lambda^{-1} : \Lambda(\mathcal{F}) \to \mathcal{F}$ is continuous with L^p norm: L^p -stability for Ω . Let s > 0. Then

• $\mathcal{F} = \{\gamma \in \mathcal{G}(K, \Omega) : \|\gamma\|_{C^s} \leq C\}$, has L^{∞} stability, Lipschitz domain [Barceló, Faraco, Ruiz '07].

F = {γ ∈ *G*(*K*, Ω) : ||γ||_{W^{s,p}} ≤ *C*}, has *L^p* stability, domain with rough boundary [Clop, Faraco, Ruiz '10], [Faraco, Rogers '13].

We present a sufficient a priori condition for stability which

• Includes all previous results.

Introduction	Moduli of continuity		
0000	00000	00000	
Stability			

Question: find $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ so that $\Lambda^{-1} : \Lambda(\mathcal{F}) \to \mathcal{F}$ is continuous with L^p norm: L^p -stability for Ω . Let s > 0. Then

• $\mathcal{F} = \{\gamma \in \mathcal{G}(K, \Omega) : \|\gamma\|_{C^s} \leq C\}$, has L^{∞} stability, Lipschitz domain [Barceló, Faraco, Ruiz '07].

F = {γ ∈ *G*(*K*, Ω) : ||γ||_{W^{s,p}} ≤ *C*}, has *L^p* stability, domain with rough boundary [Clop, Faraco, Ruiz '10], [Faraco, Rogers '13].

We present a sufficient a priori condition for stability which

- Includes all previous results.
- Valid for every bounded domain.

Introduction	Moduli of continuity		
0000	00000	00000	
Stability			

Question: find $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ so that $\Lambda^{-1} : \Lambda(\mathcal{F}) \to \mathcal{F}$ is continuous with L^p norm: L^p -stability for Ω . Let s > 0. Then

- $\mathcal{F} = \{\gamma \in \mathcal{G}(\mathcal{K}, \Omega) : \|\gamma\|_{C^s} \leq C\}$, has L^{∞} stability, Lipschitz domain [Barceló, Faraco, Ruiz '07].
- $\mathcal{F} = \{\gamma \in \mathcal{G}(\mathcal{K}, \Omega) : \|\gamma\|_{W^{s,p}} \leq C\}$, has L^p stability, domain with rough boundary [Clop, Faraco, Ruiz '10], [Faraco, Rogers '13].

We present a sufficient a priori condition for stability which

- Includes all previous results.
- Valid for every bounded domain.
- Yields a characterization for conductivities supported away from the boundary.

Introduction	Moduli of continuity		
0000	00000	00000	
Stability			

Question: find $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ so that $\Lambda^{-1} : \Lambda(\mathcal{F}) \to \mathcal{F}$ is continuous with L^p norm: L^p -stability for Ω . Let s > 0. Then

- $\mathcal{F} = \{\gamma \in \mathcal{G}(\mathcal{K}, \Omega) : \|\gamma\|_{C^s} \leq C\}$, has L^{∞} stability, Lipschitz domain [Barceló, Faraco, Ruiz '07].
- *F* = {γ ∈ *G*(*K*, Ω) : ||γ||_{W^{s,p}} ≤ *C*}, has *L^p* stability, domain with rough boundary [Clop, Faraco, Ruiz '10], [Faraco, Rogers '13].

We present a sufficient a priori condition for stability which

- Includes all previous results.
- Valid for every bounded domain.
- Yields a characterization for conductivities supported away from the boundary.
- Settles Alessandrini's 2007 conjecture.

	Moduli of continuity		
0000	00000	00000	

Moduli of continuity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Moduli of continuity	Tools	The end
	00000		
Forward	map for compactly suppo	orted	

0000	00000	00000	
0000	●0000	00000	
Introduction	Moduli of continuity	Iools	I he end

(日) (日) (日) (日) (日) (日) (日) (日)

Let $\{\gamma_j\}_{j=0}^{\infty} \subset \mathcal{G}(\mathcal{K}, \widetilde{\Omega})$ with $\gamma_j \to \gamma_0$ in L^p , $\widetilde{\Omega} \subset \subset \Omega$.

Forward	man for compactly support	ted	
0000	00000	00000	
Introduction	Moduli of continuity		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let
$$\{\gamma_j\}_{i=0}^{\infty} \subset \mathcal{G}(\mathcal{K}, \widetilde{\Omega})$$
 with $\gamma_j \to \gamma_0$ in L^p , $\widetilde{\Omega} \subset \subset \Omega$.

Take u_0, u_j solution to Dirichlet BVP's with data φ .

Tools:

Forward	man for compactly suppo	rtad	
0000	00000	00000	
	Moduli of continuity		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $\{\gamma_j\}_{j=0}^{\infty} \subset \mathcal{G}(K, \widetilde{\Omega})$ with $\gamma_j \to \gamma_0$ in L^p , $\widetilde{\Omega} \subset \subset \Omega$. Take u_0, u_j solution to Dirichlet BVP's with data φ .

$$\left|\langle (\Lambda_{\gamma_0} - \Lambda_{\gamma_j})\varphi, \varphi \rangle \right| = \left| \int_{\Omega} (\gamma_0 - \gamma_j) \nabla u_0 \cdot \nabla u_j \right|$$

Tools: Alessandrini's identity,

	Moduli of continuity		
	•0000		
Forward	map for compactly supp	orted	

Let $\{\gamma_j\}_{j=0}^{\infty} \subset \mathcal{G}(\mathcal{K}, \widetilde{\Omega})$ with $\gamma_j \to \gamma_0$ in L^p , $\widetilde{\Omega} \subset \subset \Omega$. Take u_0, u_j solution to Dirichlet BVP's with data φ . Let $\frac{1}{\widetilde{\alpha}} + \frac{1}{q} = \frac{1}{2}$.

$$\begin{aligned} \left| \langle (\Lambda_{\gamma_0} - \Lambda_{\gamma_j}) \varphi, \varphi \rangle \right| &= \left| \int_{\Omega} (\gamma_0 - \gamma_j) \nabla u_0 \cdot \nabla u_j \right| \\ &\leq \|\gamma_j - \gamma_0\|_{L^{\widetilde{p}}} \|\nabla u_0\|_{L^q(\widetilde{\Omega})} \|\nabla u_j\|_{L^2} \end{aligned}$$

Tools: Alessandrini's identity, Hölder inequality,

Introduction	Moduli of continuity	Tools	The end
0000	●0000	00000	
Forward	map for compactly	supported	

Let $\{\gamma_j\}_{j=0}^{\infty} \subset \mathcal{G}(\mathcal{K}, \widetilde{\Omega})$ with $\gamma_j \to \gamma_0$ in L^p , $\widetilde{\Omega} \subset \subset \Omega$. Take u_0, u_j solution to Dirichlet BVP's with data φ . Let $\frac{1}{\widetilde{p}} + \frac{1}{q} = \frac{1}{2}$. For \widetilde{p} big enough

$$\begin{aligned} \left| \langle (\Lambda_{\gamma_0} - \Lambda_{\gamma_j}) \varphi, \varphi \rangle \right| &= \left| \int_{\Omega} (\gamma_0 - \gamma_j) \nabla u_0 \cdot \nabla u_j \right| \\ &\leq \|\gamma_j - \gamma_0\|_{L^{\tilde{p}}} \|\nabla u_0\|_{L^q(\widetilde{\Omega})} \|\nabla u_j\|_{L^2} \\ &\leq \|\gamma_j - \gamma_0\|_{L^{\tilde{p}}} \|\varphi\|_{H^{1/2}}^2 \end{aligned}$$

Tools: Alessandrini's identity, Hölder inequality, higher integrability [Meyers'63]-[Astala'00].

Introduction	Moduli of continuity	Tools	The end
0000	●0000	00000	
Forward	map for compactly	supported	

Let $\{\gamma_j\}_{j=0}^{\infty} \subset \mathcal{G}(\mathcal{K}, \widetilde{\Omega})$ with $\gamma_j \to \gamma_0$ in L^p , $\widetilde{\Omega} \subset \subset \Omega$. Take u_0, u_j solution to Dirichlet BVP's with data φ . Let $\frac{1}{\widetilde{p}} + \frac{1}{q} = \frac{1}{2}$. For \widetilde{p} big enough

$$\begin{aligned} \left| \langle (\Lambda_{\gamma_0} - \Lambda_{\gamma_j}) \varphi, \varphi \rangle \right| &= \left| \int_{\Omega} (\gamma_0 - \gamma_j) \nabla u_0 \cdot \nabla u_j \right| \\ &\leq \|\gamma_j - \gamma_0\|_{L^{\tilde{p}}} \|\nabla u_0\|_{L^q(\widetilde{\Omega})} \|\nabla u_j\|_{L^2} \\ &\leq \|\gamma_j - \gamma_0\|_{L^{\tilde{p}}} \|\varphi\|_{H^{1/2}}^2 \end{aligned}$$

We have continuity of the forward map. Tools: Alessandrini's identity, Hölder inequality, higher integrability [Meyers'63]-[Astala'00].

A 1 111		
	00000	
	Moduli of continuity	

Take a constant conductivity in \mathbb{C} .

	Moduli of continuity	
	0000	
· · · · ·		

Take a constant conductivity in $\mathbb{C}.$ Add the characteristic of $1/4\mathbb{D},$ i.e. $\gamma_0:=1+\chi_{1/4\mathbb{D}}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

	Moduli of continuity		
0000	0000	00000	
A 1.111			

Take a constant conductivity in \mathbb{C} . Add the characteristic of $1/4\mathbb{D}$, i.e. $\gamma_0 := 1 + \chi_{1/4\mathbb{D}}$. Translate it ε to define $\gamma_{\epsilon} := 1 + \chi_{\varepsilon+1/4\mathbb{D}}$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

	Moduli of continuity		
0000	00000	00000	

Take a constant conductivity in \mathbb{C} . Add the characteristic of $1/4\mathbb{D}$, i.e. $\gamma_0 := 1 + \chi_{1/4\mathbb{D}}$. Translate it ε to define $\gamma_{\varepsilon} := 1 + \chi_{\varepsilon+1/4\mathbb{D}}$. Clearly $\|\gamma_0 - \gamma_{\varepsilon}\|_{\infty} = 1$.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

	Moduli of continuity		
0000	0000	00000	

Take a constant conductivity in \mathbb{C} . Add the characteristic of $1/4\mathbb{D}$, i.e. $\gamma_0 := 1 + \chi_{1/4\mathbb{D}}$. Translate it ε to define $\gamma_{\epsilon} := 1 + \chi_{\varepsilon+1/4\mathbb{D}}$. Clearly $\|\gamma_0 - \gamma_{\varepsilon}\|_{\infty} = 1$. But $\|\gamma_0 - \gamma_{\varepsilon}\|_{\widetilde{\rho}} \to 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
	Moduli of continuity Tools		
0000	0000	00000	

Take a constant conductivity in \mathbb{C} . Add the characteristic of $1/4\mathbb{D}$, i.e. $\gamma_0 := 1 + \chi_{1/4\mathbb{D}}$. Translate it ε to define $\gamma_{\epsilon} := 1 + \chi_{\varepsilon+1/4\mathbb{D}}$. Clearly $\|\gamma_0 - \gamma_{\varepsilon}\|_{\infty} = 1$. But $\|\gamma_0 - \gamma_{\varepsilon}\|_{\widetilde{\rho}} \to 0$. Thus, $\Lambda_{\varepsilon} \to \Lambda_0$, and L^{∞} stability fails.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	Moduli of continuity	Tools	The end
0000	0000	00000	

Take a constant conductivity in \mathbb{C} . Add the characteristic of $1/4\mathbb{D}$, i.e. $\gamma_0 := 1 + \chi_{1/4\mathbb{D}}$. Translate it ε to define $\gamma_{\epsilon} := 1 + \chi_{\varepsilon+1/4\mathbb{D}}$. Clearly $\|\gamma_0 - \gamma_{\varepsilon}\|_{\infty} = 1$. But $\|\gamma_0 - \gamma_{\varepsilon}\|_{\widetilde{\rho}} \to 0$. Thus, $\Lambda_{\varepsilon} \to \Lambda_0$, and L^{∞} stability fails.

But take $\gamma_j \in \mathcal{G}(2, \mathbb{D})$ defined by $\gamma_j(z) = 1 + \frac{1}{2}\chi_{\mathbb{Q}}(z)\chi_{chessboard}(jz).$

	Moduli of continuity Tools		
0000	0000	00000	
A 1.111			

Take a constant conductivity in \mathbb{C} . Add the characteristic of $1/4\mathbb{D}$, i.e. $\gamma_0 := 1 + \chi_{1/4\mathbb{D}}$. Translate it ε to define $\gamma_{\epsilon} := 1 + \chi_{\varepsilon+1/4\mathbb{D}}$. Clearly $\|\gamma_0 - \gamma_{\varepsilon}\|_{\infty} = 1$. But $\|\gamma_0 - \gamma_{\varepsilon}\|_{\widetilde{\rho}} \to 0$. Thus, $\Lambda_{\varepsilon} \to \Lambda_0$, and L^{∞} stability fails.

But take $\gamma_j \in \mathcal{G}(2, \mathbb{D})$ defined by $\gamma_j(z) = 1 + \frac{1}{2}\chi_{\mathbb{Q}}(z)\chi_{chessboard}(jz).$ The DtN maps converge as well [Alessandrini, Cabib], [Faraco, Kurylev, Ruiz].

Introduction	Moduli of continuity	Tools	The end
0000	0000	00000	

Take a constant conductivity in \mathbb{C} . Add the characteristic of $1/4\mathbb{D}$, i.e. $\gamma_0 := 1 + \chi_{1/4\mathbb{D}}$. Translate it ε to define $\gamma_{\epsilon} := 1 + \chi_{\varepsilon+1/4\mathbb{D}}$. Clearly $\|\gamma_0 - \gamma_{\varepsilon}\|_{\infty} = 1$. But $\|\gamma_0 - \gamma_{\varepsilon}\|_{\widetilde{\rho}} \to 0$. Thus, $\Lambda_{\varepsilon} \to \Lambda_0$, and L^{∞} stability fails.

But take $\gamma_j \in \mathcal{G}(2, \mathbb{D})$ defined by $\gamma_j(z) = 1 + \frac{1}{2}\chi_{\mathbb{Q}}(z)\chi_{chessboard}(jz)$. The DtN maps converge as well [Alessandrini, Cabib], [Faraco, Kurylev, Ruiz]. But $\{\gamma_i\}$ has no L^p -convergent partial!!

Introduction	Moduli of continuity	Tools	The end
0000	0000	00000	

Take a constant conductivity in \mathbb{C} . Add the characteristic of $1/4\mathbb{D}$, i.e. $\gamma_0 := 1 + \chi_{1/4\mathbb{D}}$. Translate it ε to define $\gamma_{\epsilon} := 1 + \chi_{\varepsilon+1/4\mathbb{D}}$. Clearly $\|\gamma_0 - \gamma_{\varepsilon}\|_{\infty} = 1$. But $\|\gamma_0 - \gamma_{\varepsilon}\|_{\widetilde{\rho}} \to 0$. Thus, $\Lambda_{\varepsilon} \to \Lambda_0$, and L^{∞} stability fails.

But take $\gamma_j \in \mathcal{G}(2, \mathbb{D})$ defined by $\gamma_j(z) = 1 + \frac{1}{2}\chi_{\mathbb{Q}}(z)\chi_{chessboard}(jz)$. The DtN maps converge as well [Alessandrini, Cabib], [Faraco, Kurylev, Ruiz]. But $\{\gamma_j\}$ has no L^p -convergent partial!! L^p stability fails in general! Thus, we seek a priori conditions.

Introduction	Moduli of continuity	
	00000	
Compactn	ess issues	

・ロト・日本・モート モー うへぐ

Theorem (Mandache'01)

 $\Lambda(\mathcal{G}(K, r_0\mathbb{D})) \text{ is a pre-compact subset of } \mathcal{L}(H^{1/2}(\partial\mathbb{D}), H^{-1/2}(\partial\mathbb{D})).$

Compactne			
	00000		
Introduction	Moduli of continuity	Tools	The end

Theorem (Mandache'01)

 $\Lambda(\mathcal{G}(K, r_0\mathbb{D})) \text{ is a pre-compact subset of } \mathcal{L}(H^{1/2}(\partial\mathbb{D}), H^{-1/2}(\partial\mathbb{D})).$

Lemma (Alessandrini'07)

Let $\mathcal{F} \subset\subset \mathcal{G}(K, \widetilde{\Omega})$ in the L^p distance, with $\widetilde{\Omega} \subset\subset \Omega$. Then, \mathcal{F} is L^p -stable for Ω .

Compactne			
0000	00000	00000	
	Moduli of continuity	Tools	The end

Theorem (Mandache'01)

 $\Lambda(\mathcal{G}(K, r_0\mathbb{D})) \text{ is a pre-compact subset of } \mathcal{L}(H^{1/2}(\partial\mathbb{D}), H^{-1/2}(\partial\mathbb{D})).$

Lemma (Alessandrini'07)

Let $\mathcal{F} \subset\subset \mathcal{G}(K, \widetilde{\Omega})$ in the L^p distance, with $\widetilde{\Omega} \subset\subset \Omega$. Then, \mathcal{F} is L^p -stable for Ω .

Continuity forward map + Uniqueness ([AP]) + compactness imply continuity of inverse. But no control on its modulus of continuity.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Comporting			
	00000		
	Moduli of continuity	Tools	The end

Theorem (Mandache'01)

 $\Lambda(\mathcal{G}(K, r_0\mathbb{D})) \text{ is a pre-compact subset of } \mathcal{L}(H^{1/2}(\partial\mathbb{D}), H^{-1/2}(\partial\mathbb{D})).$

Lemma (Alessandrini'07)

Let $\mathcal{F} \subset\subset \mathcal{G}(K, \widetilde{\Omega})$ in the L^p distance, with $\widetilde{\Omega} \subset\subset \Omega$. Then, \mathcal{F} is L^p -stable for Ω .

Continuity forward map + Uniqueness ([AP]) + compactness imply continuity of inverse. But no control on its modulus of continuity.

Theorem

Let $K \ge 1$, let $r_0 < 1$ and let $\mathcal{F} \subset \mathcal{G}(K, r_0 \mathbb{D})$. The family \mathcal{F} is L^2 -stable for \mathbb{D} if and only if it is pre-compact.

Alessandrin	conjecture		
0000	00000	00000	
	Moduli of continuity		

$$\omega_p f(t) := \sup_{|y| \le t} \|f - \tau_y f\|_{L^p} \quad \text{for } 0 \le t \le \infty,$$

Alessandrini	conjecture		
0000	00000	00000	
Introduction	Moduli of continuity		

$$\omega_{p}f(t) := \sup_{|y| \le t} \left\| f - \tau_{y}f \right\|_{L^{p}} \quad \text{for } 0 \le t \le \infty,$$

Theorem (Kolmogorov-Riesz)

 $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ is L^p -precompact if and only if it has a uniform p-integral modulus of continuity $\omega_p f \leq \omega_{\mathcal{F}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Alessandrini	conjecture		
0000	00000	00000	
	Moduli of continuity		

$$\omega_{p}f(t) := \sup_{|y| \leqslant t} \left\| f - \tau_{y}f \right\|_{L^{p}} \quad \text{ for } 0 \leqslant t \leqslant \infty,$$

Theorem (Kolmogorov-Riesz)

 $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ is L^p -precompact if and only if it has a uniform p-integral modulus of continuity $\omega_p f \leq \omega_{\mathcal{F}}$: $\mathcal{F} \subset \mathcal{G}(K, \Omega, p, \omega_{\mathcal{F}})$.

Alessandrini	conjecture		
0000	00000	00000	
	Moduli of continuity		

$$\omega_p f(t) := \sup_{|y| \leqslant t} \|f - \tau_y f\|_{L^p} \quad \text{for } 0 \leqslant t \leqslant \infty,$$

Theorem (Kolmogorov-Riesz)

 $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ is L^p -precompact if and only if it has a uniform p-integral modulus of continuity $\omega_p f \leq \omega_{\mathcal{F}}$: $\mathcal{F} \subset \mathcal{G}(K, \Omega, p, \omega_{\mathcal{F}})$.

Fact: Any stability in C^{α} -conductivities cannot be better than logarithmic (obtained by a quantification of the argument in [Mandache]!).

Alessandrin	coniecture		
0000	00000	00000	
	Moduli of continuity		

$$\omega_{\rho}f(t) := \sup_{|y| \leqslant t} \|f - \tau_{y}f\|_{L^{\rho}} \quad \text{ for } 0 \leqslant t \leqslant \infty,$$

Theorem (Kolmogorov-Riesz)

 $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ is L^p -precompact if and only if it has a uniform p-integral modulus of continuity $\omega_p f \leq \omega_{\mathcal{F}}$: $\mathcal{F} \subset \mathcal{G}(K, \Omega, p, \omega_{\mathcal{F}})$.

Fact: Any stability in C^{α} -conductivities cannot be better than logarithmic (obtained by a quantification of the argument in [Mandache]!). Alessandrini conjecture:

• If the integral modulus of continuity is a power t^s , then we have logarithmic stability.

Alessandrini	coniecture		
0000	00000	00000	
	Moduli of continuity	Tools	The end

$$\omega_{\rho}f(t) := \sup_{|y| \leqslant t} \|f - \tau_{y}f\|_{L^{\rho}} \quad \text{ for } 0 \leqslant t \leqslant \infty,$$

Theorem (Kolmogorov-Riesz)

 $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ is L^p -precompact if and only if it has a uniform p-integral modulus of continuity $\omega_p f \leq \omega_{\mathcal{F}}$: $\mathcal{F} \subset \mathcal{G}(K, \Omega, p, \omega_{\mathcal{F}})$.

Fact: Any stability in C^{α} -conductivities cannot be better than logarithmic (obtained by a quantification of the argument in [Mandache]!). Alessandrini conjecture:

• If the integral modulus of continuity is a power *t^s*, then we have logarithmic stability. Shown by Barceló, Clop, Faraco, Rogers, Ruiz, for quite general domains.

Alessandrini	coniecture		
0000	00000	00000	
	Moduli of continuity	Tools	The end

$$\omega_{p}f(t) := \sup_{|y| \leqslant t} \|f - \tau_{y}f\|_{L^{p}} \quad \text{ for } 0 \leqslant t \leqslant \infty,$$

Theorem (Kolmogorov-Riesz)

 $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ is L^p -precompact if and only if it has a uniform p-integral modulus of continuity $\omega_p f \leq \omega_{\mathcal{F}}$: $\mathcal{F} \subset \mathcal{G}(K, \Omega, p, \omega_{\mathcal{F}})$.

Fact: Any stability in C^{α} -conductivities cannot be better than logarithmic (obtained by a quantification of the argument in [Mandache]!). Alessandrini conjecture:

- If the integral modulus of continuity is a power *t^s*, then we have logarithmic stability. Shown by Barceló, Clop, Faraco, Rogers, Ruiz, for quite general domains.
- There is stability for any ω .

Alessandrini	coniecture		
0000	00000	00000	
	Moduli of continuity	Tools	The end

$$\omega_{p}f(t) := \sup_{|y| \leqslant t} \|f - \tau_{y}f\|_{L^{p}} \quad \text{for } 0 \leqslant t \leqslant \infty,$$

Theorem (Kolmogorov-Riesz)

 $\mathcal{F} \subset \mathcal{G}(K, \Omega)$ is L^p -precompact if and only if it has a uniform p-integral modulus of continuity $\omega_p f \leq \omega_{\mathcal{F}}$: $\mathcal{F} \subset \mathcal{G}(K, \Omega, p, \omega_{\mathcal{F}})$.

Fact: Any stability in C^{α} -conductivities cannot be better than logarithmic (obtained by a quantification of the argument in [Mandache]!). Alessandrini conjecture:

- If the integral modulus of continuity is a power *t^s*, then we have logarithmic stability. Shown by Barceló, Clop, Faraco, Rogers, Ruiz, for quite general domains.
- There is stability for any ω .

Problem: Quantify continuity of inverse mapping for any ω .

Introduction	Moduli of continuity	Tools	The end
0000	0000●	00000	
Our result			

Let $K \ge 1$, let $0 , let <math>\Omega$ be a bounded domain and let ω be a modulus of continuity. Then the family $\mathcal{G}(K,\Omega,p,\omega)$ is L^2 -stable for Ω .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

	Moduli of continuity		
0000	00000	00000	
Our result			

Let $K \ge 1$, let $0 , let <math>\Omega$ be a bounded domain and let ω be a modulus of continuity. Then the family $\mathcal{G}(K,\Omega,p,\omega)$ is L^2 -stable for Ω . In particular

$$\|\gamma_1 - \gamma_2\|_2 \leqslant C \, \eta \left(\|\boldsymbol{\Lambda}_{\gamma_1} - \boldsymbol{\Lambda}_{\gamma_2}\|_{\mathcal{L}(\partial\Omega)} \right)^{\frac{1}{2}}$$

	Moduli of continuity	
	00000	
Our result		

Let $K \ge 1$, let $0 , let <math>\Omega$ be a bounded domain and let ω be a modulus of continuity. Then the family $\mathcal{G}(K,\Omega,p,\omega)$ is L^2 -stable for Ω . In particular

$$\|\gamma_1 - \gamma_2\|_{\mathfrak{s}} \leqslant C_{\mathfrak{s}}\eta \left(\|\mathsf{A}_{\gamma_1} - \mathsf{A}_{\gamma_2}\|_{\mathcal{L}(\partial\Omega)}
ight)^{rac{1}{\mathfrak{s}}}$$

for every $0 < s < \infty$.

	Moduli of continuity		
0000	00000	00000	
Our result			

Let $K \ge 1$, let $0 , let <math>\Omega$ be a bounded domain and let ω be a modulus of continuity. Then the family $\mathcal{G}(K,\Omega,p,\omega)$ is L^2 -stable for Ω . In particular

$$\|\gamma_1 - \gamma_2\|_{\mathfrak{s}} \leqslant C_{\mathfrak{s}} \eta \left(\|\Lambda_{\gamma_1} - \Lambda_{\gamma_2}\|_{\mathcal{L}(\partial\Omega)} \right)^{\frac{1}{\mathfrak{s}}}$$

for every $0 < s < \infty$. Moreover, if ω is continuous,

$$\eta(\rho) \lesssim_{K,\rho} (Id + \omega) \left(C_{K,\rho} \, \omega \left(\frac{C_K}{|\log(\rho)|^{\frac{1}{K}}} \right)^{b_{K,\rho}} + \frac{C_K}{|\log(\rho)|^{\alpha_K}} \right).$$

	Moduli of continuity		
0000	00000	00000	
Our result			

Let $K \ge 1$, let $0 , let <math>\Omega$ be a bounded domain and let ω be a modulus of continuity. Then the family $\mathcal{G}(K,\Omega,p,\omega)$ is L^2 -stable for Ω . In particular

$$\|\gamma_1 - \gamma_2\|_{\mathfrak{s}} \leqslant C_{\mathfrak{s}} \eta \left(\|\Lambda_{\gamma_1} - \Lambda_{\gamma_2}\|_{\mathcal{L}(\partial\Omega)} \right)^{\frac{1}{\mathfrak{s}}}$$

for every $0 < s < \infty$. Moreover, if ω is continuous,

$$\eta(\rho) \lesssim_{\mathcal{K},p} (Id + \omega) \left(C_{\mathcal{K},p} \, \omega \left(\frac{C_{\mathcal{K}}}{|\log(\rho)|^{\frac{1}{\kappa}}} \right)^{b_{\mathcal{K},p}} + \frac{C_{\mathcal{K}}}{|\log(\rho)|^{\alpha_{\mathcal{K}}}} \right).$$

We have gotten every bounded domain and every modulus of continuity.

	Moduli of continuity		
0000	00000	00000	
Our result			

Let $K \ge 1$, let $0 , let <math>\Omega$ be a bounded domain and let ω be a modulus of continuity. Then the family $\mathcal{G}(K,\Omega,p,\omega)$ is L^2 -stable for Ω . In particular

$$\|\gamma_1 - \gamma_2\|_{\mathfrak{s}} \leqslant C_{\mathfrak{s}} \eta \left(\|\Lambda_{\gamma_1} - \Lambda_{\gamma_2}\|_{\mathcal{L}(\partial\Omega)} \right)^{\frac{1}{\mathfrak{s}}}$$

for every $0 < s < \infty$. Moreover, if ω is continuous,

$$\eta(\rho) \lesssim_{\mathcal{K}, p} (Id + \omega) \left(C_{\mathcal{K}, p} \, \omega \left(\frac{C_{\mathcal{K}}}{|\log(\rho)|^{\frac{1}{\mathcal{K}}}} \right)^{b_{\mathcal{K}, p}} + \frac{C_{\mathcal{K}}}{|\log(\rho)|^{\alpha_{\mathcal{K}}}} \right).$$

We have gotten every bounded domain and every modulus of continuity. No "compactly supported" condition!!

	Moduli of continuity		
0000	00000	00000	
Our result			

Let $K \ge 1$, let $0 , let <math>\Omega$ be a bounded domain and let ω be a modulus of continuity. Then the family $\mathcal{G}(K,\Omega,p,\omega)$ is L^2 -stable for Ω . In particular

$$\|\gamma_1 - \gamma_2\|_{\mathfrak{s}} \leqslant C_{\mathfrak{s}} \eta \left(\|\Lambda_{\gamma_1} - \Lambda_{\gamma_2}\|_{\mathcal{L}(\partial\Omega)} \right)^{\frac{1}{\mathfrak{s}}}$$

for every $0 < s < \infty$. Moreover, if ω is continuous,

$$\eta(\rho) \lesssim_{K,p} (Id + \omega) \left(C_{K,p} \, \omega \left(\frac{C_K}{|\log(\rho)|^{\frac{1}{K}}} \right)^{b_{K,p}} + \frac{C_K}{|\log(\rho)|^{\alpha_K}} \right).$$

We have gotten every bounded domain and every modulus of continuity. No "compactly supported" condition!! Every conductivity has an integral modulus of continuity.

Moduli of continuity	Tools	

Tools

◆□ → < @ → < Ξ → < Ξ → ○ < ⊙ < ⊙</p>

	Moduli of continuity	Tools	The end
0000	00000	00000	
Complex Geo	ometric Optics Solut	tion	

The DtN map is a matrix on an appropriate base: spherical harmonics.

	Moduli of continuity	Tools	
0000	00000	00000	
Complex Ge	ometric Optics Solut	tion	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The DtN map is a matrix on an appropriate base: spherical harmonics. The CGOS move boundary conditions to infinity: family of solutions parameterized by $k \in \mathbb{C}$, which behave asymptotically as e^{ikz} :

	Moduli of continuity	Tools	
0000	00000	00000	
Complex Geomet	ric Ontics Solution		

The DtN map is a matrix on an appropriate base: spherical harmonics. The CGOS move boundary conditions to infinity: family of solutions parameterized by $k \in \mathbb{C}$, which behave asymptotically as e^{ikz} :

$$\begin{cases} \nabla \cdot (\gamma \nabla u_{\gamma}(\cdot, k)) \equiv 0, \\ u_{\gamma}(z, k) = e^{ikz} (1 + R(z, k)), \text{ with } R(\cdot, k) \in W^{1,p} \end{cases}$$

.

0000	00000	00000	
Complex C	eometric Ontics Solut	ion	

The DtN map is a matrix on an appropriate base: spherical harmonics. The CGOS move boundary conditions to infinity: family of solutions parameterized by $k \in \mathbb{C}$, which behave asymptotically as e^{ikz} :

$$\begin{cases} \nabla \cdot (\gamma \nabla u_{\gamma}(\cdot, k)) \equiv 0, \\ u_{\gamma}(z, k) = e^{ikz} (1 + R(z, k)), \text{ with } R(\cdot, k) \in W^{1,p} \end{cases}$$

Interesting behavior in k: for every z

$$\frac{\partial_{\overline{k}} u_{\gamma}(z,k)}{-i\overline{u_{\gamma}(z,k)}} = ct(k) =: \tau_{\gamma}(k).$$

(scattering transform).

.

Introduction	Moduli of continuity	lools	I he end
0000	00000	00000	
Complete Complete			

Complex Geometric Optics Solution

The DtN map is a matrix on an appropriate base: spherical harmonics. The CGOS move boundary conditions to infinity: family of solutions parameterized by $k \in \mathbb{C}$, which behave asymptotically as e^{ikz} :

Interesting behavior in k: for every z

$$\frac{\partial_{\overline{k}}u_{\gamma}(z,k)}{-i\overline{u_{\gamma}(z,k)}} = ct(k) =: \tau_{\gamma}(k).$$

 Λ_{γ}

 $R_{\gamma}(\cdot, k)$

 U_{γ}

(scattering transform).

	Moduli of continuity	Tools	
0000	00000	00000	

	Moduli of continuity	Tools	
0000	00000	00000	

Conformal mappings Preserves angles "Circles to circles" Cauchy-Riemann: $\frac{1}{2}(\partial_x f + i\partial_y f) = 0$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

	Moduli of continuity	Tools	
0000	00000	0000	

Conformal mappings Preserves angles "Circles to circles" Cauchy-Riemann: $\overline{\partial}f = 0$

<ロ> (四) (四) (三) (三) (三) (三)

	Moduli of continuity	Tools	
0000	00000	0000	

Conformal mappings Preserves angles "Circles to circles" Cauchy-Riemann: $\overline{\partial}f = 0$

Quasiconformal mappings Angle distortion bounded. "Circles to ellipses". $|\overline{\partial}f| \leq k |\partial f|$

Introduction	Moduli of continuity	Tools	
0000	00000	00●00	
Hodge-* conjug	ation		

Dictionary of divergence equation and Beltrami equation:

 $\begin{array}{c} \Lambda_{\gamma} \\ R_{\gamma}(\cdot,k) \\ \tau_{\gamma} \\ \log u_{\gamma} \\ u_{\gamma} \\ \gamma \end{array}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Introduction	Moduli of continuity	Tools	
0000	00000	00●00	
Hodge-* conjugat	tion		

Dictionary of divergence equation and Beltrami equation: Let $\mu := \frac{1-\gamma}{1+\gamma}$. Let $f_{\mu} := \operatorname{Re} u_{\gamma} + i \operatorname{Im} u_{\gamma^{-1}}$. Then

$$\begin{cases} \bar{\partial} f_{\mu} = \mu \overline{\partial} \overline{f_{\mu}} \\ f_{\mu}(z,k) = e^{ikz} (1 + M_{\mu}), \text{ with } M_{\mu}(\cdot,k) \in W^{1,p}(\mathbb{C}) \end{cases} \qquad \qquad \Delta \Lambda_{\gamma}$$

$$\log t_{\mu}$$

og u_{γ}

 $\Delta \gamma$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Introduction	Moduli of continuity	Tools	
0000	00000	00●00	
Hodge-* conjug	ation		

Dictionary of divergence equation and Beltrami equation: Let $\mu := \frac{1-\gamma}{1+\gamma}$. Let $f_{\mu} := \operatorname{Re} u_{\gamma} + i \operatorname{Im} u_{\gamma^{-1}}$. Then

$$\begin{cases} \overline{\partial} f_{\mu} = \mu \, \overline{\partial} f_{\mu} \\ f_{\mu}(z,k) = e^{ikz} \left(1 + M_{\mu} \right), \text{ with } M_{\mu}(\cdot,k) \in W^{1,p}(\mathbb{C}) \end{cases}$$

We have Lipschitz continuity on the mapping

$$\mathcal{L}\left(H^{1/2}(\partial\Omega), H^{-1/2}(\partial\Omega)\right) \to W^{1,p}(\mathbb{D}^{c}) \to \mathbb{C},$$

$$\Lambda_{\gamma} \mapsto M_{\mu}(\cdot, k) \mapsto \tau_{\mu}(k).$$

$$\Delta_{\gamma}$$

$$\Delta_{\gamma}$$

with $|\tau_1(k) - \tau_2(k)| \leq e^{C|k|} \rho$ ([BFR'07])

 $\rho := \|\Delta \Lambda_{\gamma}\|_{\mathcal{L}}$ $\|\Delta M_{\mu}(\cdot, k)\|_{W\mathbb{D}^{c}}$ $|\Delta \tau_{\mu}(k)| \lesssim \rho e^{C|k|}$ $\log f_{\mu}$ $\log u_{\gamma}$ Δu_{γ} $\Delta \gamma$

Subexponential	behavior in <i>k</i>		
0000	00000	00000	
	Moduli of continuity	Tools	

The logarithm $\varphi_{\mu} := \frac{\log(f_{\mu})}{ik}$ is a quasiconformal principal mapping of \mathbb{C} .

$$\overline{\partial}\varphi_{\mu}(\cdot, \mathbf{k}) = -\frac{\overline{k}}{k}\mu(\cdot) \,\mathbf{e}_{-\mathbf{k}}(\varphi_{\mu}(\cdot, \mathbf{k})) \,\overline{\partial}\varphi_{\mu}(\cdot, \mathbf{k}).$$

$$\begin{split} \rho &:= \|\Delta \Lambda_{\gamma}\|_{\mathcal{L}} \\ \|\Delta M_{\mu}(\cdot, k)\|_{W\mathbb{D}^{c}} \\ |\Delta \tau_{\mu}(k)| &\lesssim \rho e^{C|k|} \\ \log f_{\mu} - izk &= o(k) \\ \log u_{\gamma} \\ \Delta u_{\gamma} \\ \Delta \gamma \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suboynono	ntial hohavior in k		
0000	00000	00000	
	Moduli of continuity	Tools	

The logarithm $\varphi_{\mu} := \frac{\log(f_{\mu})}{ik}$ is a quasiconformal principal mapping of \mathbb{C} . Its inverse $\psi_k := \varphi_{\mu}(\cdot, k)^{-1}$ satisfies the linear Beltrami equation

$$\overline{\partial}\psi_k(\cdot) = -\frac{\overline{k}}{k}\mu \circ \psi_k(\cdot) e_{-k}(\cdot) \,\partial\psi_k(\cdot).$$

 $\rho := \|\Delta \Lambda_{\gamma}\|_{\mathcal{L}}$ $\|\Delta M_{\mu}(\cdot, k)\|_{W\mathbb{D}^{c}}$ $|\Delta \tau_{\mu}(k)| \lesssim \rho e^{C|k|}$ $\log f_{\mu} - izk = o(k)$ $\log u_{\gamma}$ Δu_{γ} $\Delta \gamma$

Suboynonon	tial bobavior in k		
0000	00000	00000	
	Moduli of continuity	Tools	

The logarithm $\varphi_{\mu} := \frac{\log(f_{\mu})}{ik}$ is a quasiconformal principal mapping of \mathbb{C} . Its inverse $\psi_k := \varphi_{\mu}(\cdot, k)^{-1}$ satisfies the linear Beltrami equation

$$\overline{\partial}\psi_k(\cdot) = -\frac{\overline{k}}{k}\mu \circ \psi_k(\cdot) e_{-k}(\cdot) \,\partial\psi_k(\cdot).$$

We show that $\|\varphi_{\mu}(\cdot, k) - Id\|_{L^{\infty}} \leq \upsilon(|k|^{-1}).$

 $\rho := \|\Delta \Lambda_{\gamma}\|_{\mathcal{L}}$ $\|\Delta M_{\mu}(\cdot, k)\|_{W\mathbb{D}^{c}}$ $|\Delta \tau_{\mu}(k)| \leq \rho e^{C|k|}$ $\log f_{\mu} - izk = o(k)$ $\log u_{\gamma}$ Δu_{γ} $\Delta \gamma$

Subeynonen	tial behavior in k		
0000	00000	00000	
	Moduli of continuity	Tools	

The logarithm $\varphi_{\mu} := \frac{\log(f_{\mu})}{ik}$ is a quasiconformal principal mapping of \mathbb{C} . Its inverse $\psi_k := \varphi_{\mu}(\cdot, k)^{-1}$ satisfies the linear Beltrami equation

$$\overline{\partial}\psi_k(\cdot) = -\frac{\overline{k}}{k}\mu \circ \psi_k(\cdot) e_{-k}(\cdot) \partial \psi_k(\cdot).$$

We show that $\|\varphi_{\mu}(\cdot, k) - Id\|_{L^{\infty}} \leq \upsilon(|k|^{-1})$. Tools: interaction of modulus of continuity with translation invariant operators and Fourier transform, control of the Neumann series in k, interaction of the modulus of continuity when composing with qc-maps,... $\rho := \|\Delta \Lambda_{\gamma}\|_{\mathcal{L}}$ $\|\Delta M_{\mu}(\cdot, k)\|_{W\mathbb{D}^{c}}$ $|\Delta \tau_{\mu}(k)| \leq \rho e^{C|k|}$ $\log f_{\mu} - izk = o(k)$ $\log u_{\gamma}$ Δu_{γ} $\Delta \gamma$

	Moduli of continuity	Tools	
0000	00000	00000	
Cauchy problem			

$$\partial_{\overline{k}} u_{\gamma}(z,k) = -i \tau_{\mu}(k) \overline{u_{\gamma}(z,k)}.$$

 $\rho := \|\Delta \Lambda_{\gamma}\|_{\mathcal{L}}$ $\|\Delta M_{\mu}(\cdot, k)\|_{W\mathbb{D}^{c}}$ $|\Delta \tau_{\mu}(k)| \lesssim \rho e^{C|k|}$ $\log f_{\mu} - izk = o(k)$ $\log u_{\gamma} - izk = o(k)$ $\|\Delta u_{\gamma}\|_{L^{\infty}(\mathbb{D})} \leqslant \iota(\rho)$ $\|\Delta \gamma\|_{2} \leqslant \eta(\rho)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tools:

	Moduli of continuity	Tools	
0000	00000	00000	
Cauchy problem			

$$\partial_{\overline{k}} u_{\gamma}(z,k) = -i \tau_{\mu}(k) \overline{u_{\gamma}(z,k)}.$$

There is not enough decay of τ_{μ} to solve it by standard means (fixed point, Cauchy transform,...).

 $\rho := \|\Delta \Lambda_{\gamma}\|_{\mathcal{L}}$ $\|\Delta M_{\mu}(\cdot, k)\|_{W\mathbb{D}^{c}}$ $|\Delta \tau_{\mu}(k)| \lesssim \rho e^{C|k|}$ $\log f_{\mu} - izk = o(k)$ $\log u_{\gamma} - izk = o(k)$ $\|\Delta u_{\gamma}\|_{L^{\infty}(\mathbb{D})} \leqslant \iota(\rho)$ $\|\Delta \gamma\|_{2} \leqslant \eta(\rho)$

Tools:

	Moduli of continuity	Tools	
		00000	
Cauchy problem			

$$\partial_{\overline{k}} u_{\gamma}(z,k) = -i \tau_{\mu}(k) \overline{u_{\gamma}(z,k)}.$$

There is not enough decay of τ_{μ} to solve it by standard means (fixed point, Cauchy transform,...). Instead, we get uniqueness and (bold) stability by using both variables at the same time:

$$\|u_1-u_2\|_{\infty} \leq \iota(\|\Lambda_1-\Lambda_2\|_{\mathcal{L}}).$$

Tools: Browder degree, argument principle, CZ estimates.

 $\rho := \|\Delta \Lambda_{\gamma}\|_{\mathcal{L}}$ $\|\Delta M_{\mu}(\cdot, k)\|_{W\mathbb{D}^{c}}$ $|\Delta \tau_{\mu}(k)| \lesssim \rho e^{C|k|}$ $\log f_{\mu} - izk = o(k)$ $\log u_{\gamma} - izk = o(k)$ $\|\Delta u_{\gamma}\|_{L^{\infty}(\mathbb{D})} \leq \iota(\rho)$ $\|\Delta \gamma\|_{2} \leq \eta(\rho)$

	Moduli of continuity	Tools	
		00000	
Cauchy problem			

$$\partial_{\overline{k}} u_{\gamma}(z,k) = -i \tau_{\mu}(k) \overline{u_{\gamma}(z,k)}.$$

There is not enough decay of τ_{μ} to solve it by standard means (fixed point, Cauchy transform,...). Instead, we get uniqueness and (bold) stability by using both variables at the same time:

$$\|u_1-u_2\|_{\infty} \leq \iota(\|\Lambda_1-\Lambda_2\|_{\mathcal{L}}).$$

To end we infer a control on $\|\gamma_1 - \gamma_2\|_2$. Tools: Browder degree, argument principle, CZ estimates. $\rho := \|\Delta\Lambda_{\gamma}\|_{\mathcal{L}}$ $\|\Delta M_{\mu}(\cdot, k)\|_{W\mathbb{D}^{c}}$ $|\Delta\tau_{\mu}(k)| \lesssim \rho e^{C|k|}$ $\log f_{\mu} - izk = o(k)$ $\log u_{\gamma} - izk = o(k)$ $\|\Delta u_{\gamma}\|_{L^{\infty}(\mathbb{D})} \leqslant \iota(\rho)$ $\|\Delta\gamma\|_{2} \leqslant \eta(\rho)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

	Moduli of continuity	Tools	
		00000	
Cauchy problem			

$$\partial_{\overline{k}} u_{\gamma}(z,k) = -i \tau_{\mu}(k) \overline{u_{\gamma}(z,k)}.$$

There is not enough decay of τ_{μ} to solve it by standard means (fixed point, Cauchy transform,...). Instead, we get uniqueness and (bold) stability by using both variables at the same time:

$$\|u_1-u_2\|_{\infty} \leq \iota(\|\Lambda_1-\Lambda_2\|_{\mathcal{L}}).$$

To end we infer a control on $\|\gamma_1 - \gamma_2\|_2$. Tools: Browder degree, argument principle, CZ estimates. Caccioppoli inequalities for moduli of continuity, interaction of the Fourier transform with the integral moduli. $\rho := \|\Delta \Lambda_{\gamma}\|_{\mathcal{L}}$ $\|\Delta M_{\mu}(\cdot, k)\|_{W\mathbb{D}^{c}}$ $|\Delta \tau_{\mu}(k)| \leq \rho e^{C|k|}$ $\log f_{\mu} - izk = o(k)$ $\log u_{\gamma} - izk = o(k)$ $\|\Delta u_{\gamma}\|_{L^{\infty}(\mathbb{D})} \leq \iota(\rho)$ $\|\Delta \gamma\|_{2} \leq \eta(\rho)$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 − のへぐ

	Moduli of continuity		The end
0000	00000	00000	

The end

Moltes gràcies!! 谢谢!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quasiconformal	mannings and moduli		
0000	00000	00000	
	Moduli of continuity		The end

Lemma

Let ϕ be K-qc, and let $\mu \in L_c^{\infty}$. Consider $0 and <math>\frac{1}{q} > \frac{K}{p}$. For t small enough

 $\omega_{q}(\mu \circ \phi)(t) \leqslant C_{K,q,p} \, \omega_{p} \mu(C_{K} t^{\frac{1}{K}}).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quasiconformal	mannings an	d moduli	
0000	00000	00000	
Introduction	Moduli of continuity		The end

Lemma

Let ϕ be K-qc, and let $\mu \in L_c^{\infty}$. Consider $0 and <math>\frac{1}{q} > \frac{K}{p}$. For t small enough

 $\omega_{q}(\mu \circ \phi)(t) \leqslant C_{K,q,p} \, \omega_{p} \mu(C_{K} t^{\frac{1}{K}}).$

Theorem

Let $\mu \in L^{\infty}_{c}$ with $\|\mu\|_{L^{\infty}} \leq \kappa < 1$ and support in \mathbb{D} . Let f be a quasiregular solution to

$$\overline{\partial}f = \mu \,\overline{\partial}f.$$

Let $1 satisfy that <math>\kappa \|\mathcal{B}\|_{L^{p} \to L^{p}} < 1$, let $r \in [p, p_{\kappa})$ and let q be defined by $\frac{1}{p} = \frac{1}{q} + \frac{1}{r}$. Then, we have that

$$\omega_{\rho}(\bar{\partial}f)(t) \lesssim_{\kappa,r,\rho} \|f\|_{L^{r}(2\mathbb{D})} \omega_{q}\mu(t) + \|f\|_{W^{1+\rho}(2\mathbb{D})} |t|^{1-\frac{2}{\rho}}$$