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Let K > 1, Q < C bounded domain. We say v € G(K,Q) when
o Compactly supported: supp(y — 1) < Q.

’yilHoo < K.

@ Isotropic conductivity: 7: C — R.

e Strongly elliptic: [|v], < K,

Dirichlet BVP: prescribed electric voltage in the boundary, find voltage

V- (yVu) =0,
U‘aQ =fe H1/2(6Q)

Neumann BVP: prescribed electric current in the boundary, find voltage

V- (yVu) =0,
(yo,u)loa =g € H*1/2((3Q).

DtN map: Ay f s (YO, uy f)log-
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Calderén’s problem

The “forward map”
A G(K,Q) - (Hl/z((?Q), H—1/2(a9)) ,
Y = /\7,

is continuous for the distance |y; — 72/ ,.Given boundary measurements
can we recover the conductivity? That is, find the inverse map

Al (H1/2(a§z), H—1/2(aQ)) -~ 4(K,Q),
A, — y.
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Difficulties

A problem is well-posed if the following conditions hold:
(%) (if we have perfect, complete data),
@ The solution is unique (planar case, see [Astala, Pdivarinta '06]),

@ The solution depends continuously on the input (a priori conditions
needed).

Calderén's CIP is severely “ill-posed”.
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Stability

There are counterexamples to unconditional stability. They imply that
A1 AG(K,Q)) — G(K,Q) is NOT continuous neither in L® nor in LP
distance.
Question: find F < G(K, Q) so that A= : A(F) — F is continuous with
LP norm: LP-stability for 2. Let s > 0. Then
o F={veG(K,Q):|v|c < C}, has L stability, Lipschitz domain
[Barceld, Faraco, Ruiz '07].
o F={veG(K,Q):|v|ys», < C}, has LP stability, domain with
rough boundary [Clop, Faraco, Ruiz '10], [Faraco, Rogers '13].
We present a sufficient a priori condition for stability which
@ Includes all previous results.
o Valid for every bounded domain.
@ Yields a characterization for conductivities supported away from the
boundary.

@ Settles Alessandrini’s 2007 conjecture.
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Forward map for compactly supported

There is LP continuity of the forward map for “compactly supported”
conductivities:

Let {v;}7 G(K, Q) with v — Yo in LP, Qcc Q.

Take ug, uj solution to Dirichlet BVP's with data . Let £ + % = 1. For
P big enough

KAy = Asy)ips )] = ’/Q(% —j)Vug - Vu;
< [ =0l 51 Vol o) VUil 2

2
< i =0l sl

We have continuity of the forward map.
Tools: Alessandrini's identity, Holder inequality, higher integrability
[Meyers'63]-[Astala’'00].
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Stability counterexamples

Take a constant conductivity in C.

Add the characteristic of 1/4D), i.e.

Y =1+ X1/ap-

Translate it € to define 7. := 1 + X.11/4p-
Clearly [[vo = Yell,, = 1.

But |10 — <], — 0.

Thus, A. — Ag, and L® stability fails.

But take vj € G(2,D) defined by

’Yj(z) =1+ %XQ(Z)Xchessboard(jz)-

The DtN maps converge as well [Alessandrini,
Cabib], [Faraco, Kurylev, Ruiz].

But {7} has no LP-convergent partial!l

LP stability fails in general! Thus, we seek a
priori conditions.
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Compactness issues

Theorem (Mandache'01)
NG (K, o)) is a pre-compact subset of L(HY?(dD), H=/?(oD)).

Lemma (Alessandrini’07)

Let F cc G(K,Q) in the LP distance, with Q cc Q. Then, F is
LP-stable for .

Continuity forward map + Uniqueness ([AP]) + compactness imply
continuity of inverse. But no control on its modulus of continuity.

Let K= 1, let y <1 and let F < G(K, roD). The family F is L?-stable
for D if and only if it is pre-compact.
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Alessandrini conjecture

Let 7,f(x) = f(x — y). Integral modulus of continuity of f:

wpf(t) := sup |f —7,f|,, for 0 <t < o0,
lyl<t

Theorem (Kolmogorov-Riesz)

F < G(K,Q) is LP-precompact if and only if it has a uniform p-integral
modulus of continuity wpf < wr: F < G(K,Q, p,wr).

Fact: Any stability in C®-conductivities cannot be better than logarithmic
(obtained by a quantification of the argument in [Mandache]!).
Alessandrini conjecture:

o If the integral modulus of continuity is a power t°, then we have
logarithmic stability. Shown by Barceld, Clop, Faraco, Rogers, Ruiz,
for quite general domains.

@ There is stability for any w.

Problem: Quantify continuity of inverse mapping for any w.
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J’_ e
|log(p | log(p)[*x

bep
1e) Sip (1 +) | Cpe (C")') -
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Our result

Theorem

Let K>1, let 0 < p < o0, let Q be a bounded domain and let w be a
modulus of continuity. Then the family G(K,Q, p,w) is L?-stable for Q.

In particular
1

I = 2lls < Con (WA = Avall oy ) *

for every 0 < s < o0. Moreover, if w is continuous,

bk p
Ck Ck
<kp(dtw) | Copo | —K ) + 5K

We have gotten every bounded domain and every modulus of continuity.
No “compactly supported” condition!! Every conductivity has an integral
modulus of continuity.
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conditions to infinity: family of solutions parameterized
by k € C, which behave asymptotically as e’*:

{v (V- k) =0,

u,(z,k) = e* (1 + R(z,k)), with R(-, k) € WbP
Interesting behavior in k: for every z

aTU’Y(Zv k)

ey = ct(k) =: 7(k).

(scattering transform).
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Quasiconformal mappings

Conformal mappings
Preserves angles
“Circles to circles”
Cauchy-Riemann:

T (O«f +id,f) =0
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Quasiconformal mappings

Conformal mappings
Preserves angles
“Circles to circles”
Cauchy-Riemann:

of =0

Quasiconformal
mappings

Angle distortion
bounded.

“Circles to ellipses”.
|0f| < k|of]
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Dictionary of divergence equation and Beltrami equation:



Hodge-* conjugation

Dictionary of divergence equation and Beltrami equation:
Let p:= ;—f’y Let f, := Reu, + iImu,—1. Then

éfu = pof,
fu(z, k) = e* (1 + M,), with M,(-, k) e WLP(C)



Hodge-* conjugation

Dictionary of divergence equation and Beltrami equation:

Let p:= }1—3 Let f, := Reu, + iImu,-1. Then p = AN,
0f = pof, [ AM (s k) | wpe
fu(z, k) = e* (1 + M,), with M, (-, k) e WLP(C) AT, (k)| < peClH

We have Lipschitz continuity on the mapping

L(Hl/Z(aQ),H‘1/2(6Q)> ~ WWDY) -  C,
ANy — M, k) — Tu(k).

Y

with |71 (k) — (k)| < e“l¥lp ([BFR'07])



Subexponential behavior in k

The logarithm ¢, := % is a quasiconformal principal pi= AN,
= vz

mapping of C.

HAM/I<'~, k)HWEc

= I - oClK]
Opu(c, k) = *%,u() e_k(pu(-, k) dpu(-, k). AT (k)] < p
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The logarithm ¢, := % is a quasiconformal principal

mapping of C. lts inverse 1, := ¢, (-, k) ! satisfies the
linear Beltrami equation

BUu() = ~ 0 vu() e k() 20

pi=1AA ),
HA/\//,,(~, k)HWDc
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The logarithm ¢, := % is a quasiconformal principal
mapping of C. lts inverse 1, := ¢, (-, k) ! satisfies the
linear Beltrami equation

BUu() = ~ 0 vu() e k() 20

We show that ¢, (-, k) — Id||,.. < v(|k|™1).

pi=
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izk = o(k)



Subexponential behavior in k

The logarithm ¢, := % is a quasiconformal principal

mapping of C. lts inverse 1, := ¢, (-, k) ! satisfies the
linear Beltrami equation

BUu() = ~ 0 vu() e k() 20

We show that ¢, (-, k) — Id||,.. < v(|k|™1).

Tools: interaction of modulus of continuity with
translation invariant operators and Fourier transform,
control of the Neumann series in k, interaction of the
modulus of continuity when composing with gc-maps,...

pi= AN,

HA/\//,,(-, k)

lwoe

AT, (k)| < pec

log f,, —

izk = o(k)



Cauchy problem

Next we need to solve the Cauchy problem

Tools:

Oxuy(z, k) = —iT,(k)uy(z, k).

pi= BN,

HAM,,(',/()HWDC
‘ATu(kH < Peqk‘
log f,, — izk = o(k)

log uy, — izk = o(k)



Cauchy problem

Next we need to solve the Cauchy problem

Oxuy(z, k) = —iT,(k)uy(z, k).

There is not enough decay of 7, to solve it by standard
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Cauchy problem

Next we need to solve the Cauchy problem

Oxuy(z, k) = —iT,(k)uy(z, k).

There is not enough decay of 7, to solve it by standard
means (fixed point, Cauchy transform,...). Instead, we
get uniqueness and (bold) stability by using both
variables at the same time:

fur — w2y < e(A1 — A2l )-

Tools: Browder degree, argument principle, CZ estimates.

pim BN,
[AM,L( 1)l
AT, (K)| < pe¥
log f,, — izk = o(k)
log uy, — izk = o(k)
T



Cauchy problem

Next we need to solve the Cauchy problem

Oxuy(z, k) = —iT,(k)uy(z, k).

There is not enough decay of 7, to solve it by standard
means (fixed point, Cauchy transform,...). Instead, we
get uniqueness and (bold) stability by using both
variables at the same time:

fur — w2y < e(A1 — A2l )-

To end we infer a control on |v1 — 72/,.

Tools: Browder degree, argument principle, CZ estimates.

pim BN,
[AM,L( 1)l
A7, (k)| < pe
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Cauchy problem

Next we need to solve the Cauchy problem
Oxuy(z, k) = —iT,(k)uy(z, k).

There is not enough decay of 7, to solve it by standard
means (fixed point, Cauchy transform,...). Instead, we
get uniqueness and (bold) stability by using both
variables at the same time:

fur — w2y < e(A1 — A2l )-

To end we infer a control on |v1 — 72/,.

Tools: Browder degree, argument principle, CZ estimates.

Caccioppoli inequalities for moduli of continuity,
interaction of the Fourier transform with the integral
moduli.

pi= AN,

[AM,L( 1)l

A7, (k)| < pe
log f,, — izk = o(k)
log uy, — izk = o(k)
T

1Ay, < n(p)



The end
The end

Moltes gracies!!

W/



The end
Quasiconformal mappings and moduli

Let ¢ be K-qc, and let e LY. Consider 0 < p < 0 and
small enough

wq(p o @)(t) < Ci,q,p WPN(CKt%)'




The end
Quasiconformal mappings and moduli

. Fort

Let ¢ be K-qc, and let e LY. Consider 0 < p < 0 and
small enough

>

T [X

1
q

wq(p o @)(t) < Ci,q,p WPN(CKt%)-

Theorem

Let pe LE with |pll,c <k <1 and support inD. Let f be a
quasiregular solution to _ o

of = pof.
Let 1 < p < p,, satisfy that k|B|,,_,,, <1, let r € [p, ps) and let q be
defined by % = % + % Then, we have that

.

wp(0F)(t) Sprp |If

Lr(z]{»)wqﬂ(t) + HfHW1+p(2D)|t
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