Regularity of planar quasiconformal self-maps

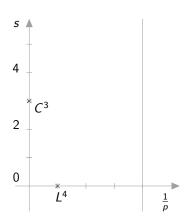
Martí Prats (joint work with K. Astala, E. Saksman and X. Tolsa)

September 5th, 2017

Lebesgue spaces \rightarrow integrability.

$$\|f\|_{L^p} = \left(\int |f|^p\right)^{1/p}, \\ \|f\|_{L^\infty} = \operatorname{ess\,sup}|f|$$

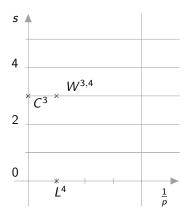
$$\frac{p=\infty}{L^4} \xrightarrow{\frac{1}{p}}$$



Lebesgue spaces → integrability.

Differentiablility classes → smoothness.

$$\bullet \|f\|_{C^s} = \|f\|_{L^\infty} + \cdots + \|\nabla^s f\|_{L^\infty}$$

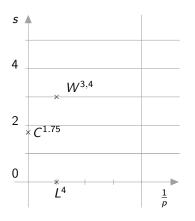


Lebesgue spaces \rightarrow integrability. Differentiablility classes \rightarrow smoothness. Sobolev spaces \rightarrow both together.

•
$$||f||_{L^p} = (\int |f|^p)^{1/p},$$

 $||f||_{L^\infty} = \operatorname{ess\,sup}|f|$

•
$$||f||_{C^s} = ||f||_{L^{\infty}} + \cdots + ||\nabla^s f||_{L^{\infty}}$$



Lebesgue spaces → integrability.

Differentiablility classes → smoothness.

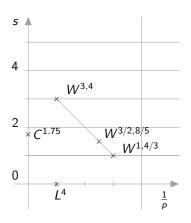
Sobolev spaces → both together.

Hölder continuous spaces → fill gaps.

$$\|f\|_{L^p} = \left(\int |f|^p\right)^{1/p}, \\ \|f\|_{L^\infty} = \operatorname{ess\,sup}|f|$$

•
$$||f||_{C^s} = ||f||_{L^{\infty}} + \cdots + ||\nabla^s f||_{L^{\infty}}$$

•
$$||f||_{C^s} = ||f||_{L^{\infty}} + \dots + \sup \frac{|\nabla^{\lfloor s \rfloor} f(x) - \nabla^{\lfloor s \rfloor} f(y)|}{|x - y|^{\{s\}}}$$



Lebesgue spaces \rightarrow integrability. Differentiablility classes \rightarrow smoothness. Sobolev spaces \rightarrow both together. Hölder continuous spaces \rightarrow fill gaps. Interpolation to generalize.

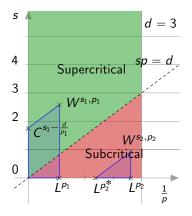
$$\|f\|_{L^p} = \left(\int |f|^p\right)^{1/p}, \\ \|f\|_{L^\infty} = \operatorname{ess\,sup}|f|$$

•
$$||f||_{C^s} = ||f||_{L^{\infty}} + \cdots + ||\nabla^s f||_{L^{\infty}}$$

$$\|f\|_{C^s} =$$

$$\|f\|_{L^{\infty}} + \dots + \sup \frac{|\nabla^{\lfloor s\rfloor} f(x) - \nabla^{\lfloor s\rfloor} f(y)|}{|x - y|^{\{s\}}}$$

$$\bullet \ \|f\|_{W^{s,p}}, \|f\|_{B^s_{p,q}}, \|f\|_{F^s_{p,q}}$$



Lebesgue spaces \rightarrow integrability. Differentiablility classes \rightarrow smoothness. Sobolev spaces \rightarrow both together. Hölder continuous spaces \rightarrow fill gaps. Interpolation to generalize.

$$\|f\|_{L^p} = \left(\int |f|^p\right)^{1/p}, \\ \|f\|_{L^\infty} = \operatorname{ess\,sup}|f|$$

•
$$||f||_{C^s} = ||f||_{L^{\infty}} + \cdots + ||\nabla^s f||_{L^{\infty}}$$

$$\|f\|_{C^s} =$$

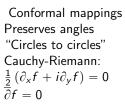
$$\|f\|_{L^\infty} + \dots + \sup \frac{|\nabla^{\lfloor s\rfloor} f(x) - \nabla^{\lfloor s\rfloor} f(y)|}{|x - y|^{\{s\}}}$$

$$\bullet \ \|f\|_{W^{s,p}}, \|f\|_{B^s_{p,q}}, \|f\|_{F^s_{p,q}}$$

By means of Sobolev embeddings, we have either continuity or extra integrability.

Conformal mappings Preserves angles "Circles to circles" Cauchy-Riemann: $\frac{1}{2}\left(\partial_x f + i\partial_y f\right) = 0$

Conformal mappings Preserves angles "Circles to circles" Cauchy-Riemann: $\frac{1}{2} \left(\partial_x f + i \partial_y f \right) = 0$ $\overline{\partial} f = 0$



Quasiconformal mappings Angle distortion bounded. "Circles to ellipses" . $|\overline{\partial}f| \leqslant \kappa |\partial f| W_{\rm loc}^{1,2}$ -homeo

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$\mathcal{B}f(z) = \frac{1}{-\pi} \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$\mathcal{B}f(z) = \frac{1}{-\pi} \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

It is essential to quasiconformal mappings because

$$\mathcal{B}(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

The Beurling transform

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$\mathcal{B}f(z) = \frac{1}{-\pi} \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

It is essential to quasiconformal mappings because

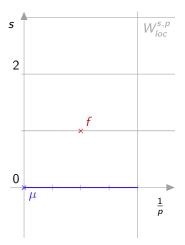
$$\mathcal{B}(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

Recall that $\mathcal{B}: L^p(\mathbb{C}) \to L^p(\mathbb{C})$ is bounded for 1 . $Also <math>\mathcal{B}: W^{s,p}(\mathbb{C}) \to W^{s,p}(\mathbb{C})$ is bounded for 1 and <math>s > 0. QC mappings of the whole plane

Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $\kappa := \|\mu\|_{\infty} < 1$.

$$p = \infty$$
 $p = 1$

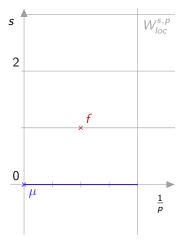
$$\frac{\mu}{\mu}$$



Let $\mu \in L^\infty_c(\mathbb{C})$ with $\kappa := \|\mu\|_\infty < 1$. The Beltrami equation

$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W_{loc}^{1,2}$ such that $f(z) = z + \mathcal{O}(1/z)$ as $z \to \infty$.



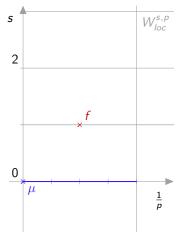
Let $\mu \in L^\infty_c(\mathbb{C})$ with $\kappa := \|\mu\|_\infty < 1$. The Beltrami equation

$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W_{loc}^{1,2}$ such that $f(z) = z + \mathcal{O}(1/z)$ as $z \to \infty$.

Consider

$$h:=\mu+\mu\mathcal{B}(\mu)+\mu\mathcal{B}(\mu\mathcal{B}(\mu))+\cdots$$



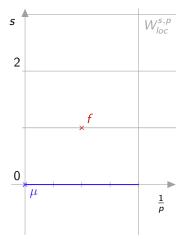
Let $\mu \in L^\infty_c(\mathbb{C})$ with $\kappa := \|\mu\|_\infty < 1$. The Beltrami equation

$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W_{loc}^{1,2}$ such that $f(z) = z + \mathcal{O}(1/z)$ as $z \to \infty$.

Consider

$$h:=\mu+\mu\mathcal{B}(\mu)+\mu\mathcal{B}(\mu\mathcal{B}(\mu))+\cdots$$
$$=(I-\mu\mathcal{B})^{-1}(\mu),$$



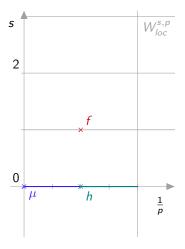
Let $\mu \in L^\infty_c(\mathbb{C})$ with $\kappa := \|\mu\|_\infty < 1$. The Beltrami equation

$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W_{loc}^{1,2}$ such that $f(z) = z + \mathcal{O}(1/z)$ as $z \to \infty$.

Consider

$$\begin{split} & \overset{\pmb{h}:= \mu + \mu \mathcal{B}(\mu) + \mu \mathcal{B}(\mu \mathcal{B}(\mu)) + \cdots \\ = & (\textit{I} - \mu \mathcal{B})^{-1}(\mu), \\ & \text{since } \|\mu \cdot \mathcal{B}\|_{(2,2)} \leqslant \kappa \|\mathcal{B}\|_{(2,2)} = \kappa < 1. \end{split}$$



Let $\mu \in L_c^{\infty}(\mathbb{C})$ with $\kappa := \|\mu\|_{\infty} < 1$. The Beltrami equation

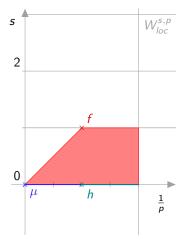
$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W_{loc}^{1,2}$ such that $f(z) = z + \mathcal{O}(1/z)$ as $z \to \infty$.

Consider

$$\begin{split} & \overset{\pmb{h}:=}{\mu} + \mu \mathcal{B}(\mu) + \mu \mathcal{B}(\mu \mathcal{B}(\mu)) + \cdots \\ & = & (\textit{I} - \mu \mathcal{B})^{-1}(\mu), \\ & \text{since } \|\mu \cdot \mathcal{B}\|_{(2,2)} \leqslant \kappa \|\mathcal{B}\|_{(2,2)} = \kappa < 1. \end{split}$$

Then, $h \in L^2$



Let $\mu \in L_c^{\infty}(\mathbb{C})$ with $\kappa := \|\mu\|_{\infty} < 1$. The *Beltrami equation*

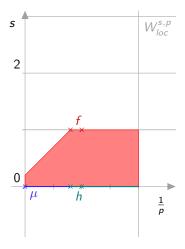
$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W_{loc}^{1,2}$ such that $f(z) = z + \mathcal{O}(1/z)$ as $z \to \infty$.

Consider

$$\begin{split} & \underset{\boldsymbol{h} := \ \mu + \mu \mathcal{B}(\mu) + \mu \mathcal{B}(\mu \mathcal{B}(\mu)) + \cdots \\ & = (I - \mu \mathcal{B})^{-1}(\mu), \\ & \text{since } \|\mu \cdot \mathcal{B}\|_{(2,2)} \leqslant \kappa \|\mathcal{B}\|_{(2,2)} = \kappa < 1. \end{split}$$

Then, $h \in L^2$ and $f = \frac{1}{\pi z} * h + z$.



Let $\mu \in L_c^{\infty}(\mathbb{C})$ with $\kappa := \|\mu\|_{\infty} < 1$. The Beltrami equation

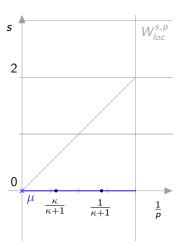
$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W_{loc}^{1,2}$ such that $f(z) = z + \mathcal{O}(1/z)$ as $z \to \infty$.

Consider

$$\begin{split} & \overset{\pmb{h}:=}{\mu} + \mu \mathcal{B}(\mu) + \mu \mathcal{B}(\mu \mathcal{B}(\mu)) + \cdots \\ & = (\textit{I} - \mu \mathcal{B})^{-1}(\mu), \\ & \text{since } \|\mu \cdot \mathcal{B}\|_{(2,2)} \leqslant \kappa \|\mathcal{B}\|_{(2,2)} = \kappa < 1. \end{split}$$

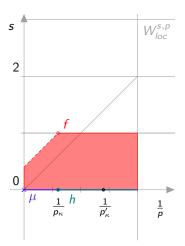
Then, $h \in L^2$ and $f = \frac{1}{\pi z} * h + z$. This remains true if $\|\mathcal{B}\|_{(p,p)} < 1/\kappa$.





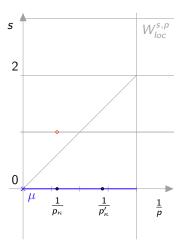
Let $\mu \in L^\infty_c(\mathbb{C})$ with $\kappa := \|\mu\|_\infty < 1$.

• $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].

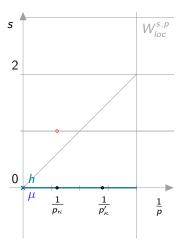


Let $\mu \in L^\infty_c(\mathbb{C})$ with $\kappa := \|\mu\|_\infty < 1$.

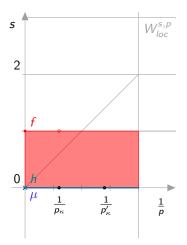
• $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].



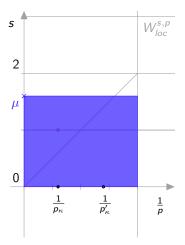
- $h \in L^p$ for $\frac{1}{p_\kappa} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}})$



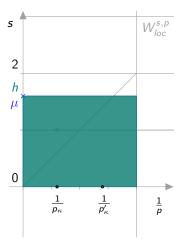
- $h \in L^p$ for $\frac{1}{p_\kappa} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].



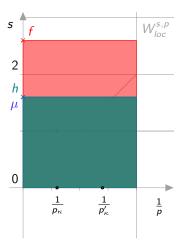
- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].



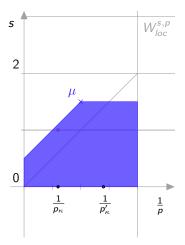
- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\mu \in C^{n+\varepsilon}_{loc}$



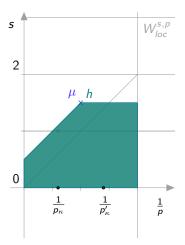
- $h \in L^p$ for $\frac{1}{\rho_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].



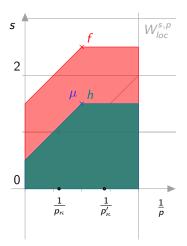
- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].



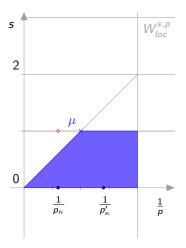
- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].
- $\mu \in A_{p,q}^s$



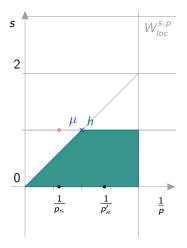
- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\bullet \ \mu \in C^{n+\varepsilon}_{loc} \implies h \in C^{n+\varepsilon}_{loc} \ [\mathsf{AIM}].$
- $\mu \in A_{p,q}^s \implies h \in A_{p,q}^s \text{ for } sp > 2$ [CMO].



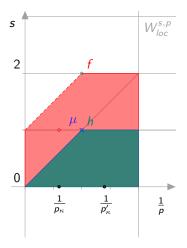
- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\bullet \ \mu \in C^{n+\varepsilon}_{loc} \implies h \in C^{n+\varepsilon}_{loc} \ [\mathsf{AIM}].$
- $\mu \in A_{p,q}^s \implies h \in A_{p,q}^s \text{ for } sp > 2$ [CMO].



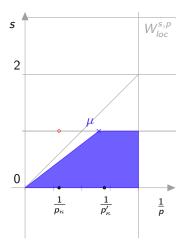
- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\bullet \ \mu \in C^{n+\varepsilon}_{loc} \implies h \in C^{n+\varepsilon}_{loc} \ [\mathsf{AIM}].$
- $\mu \in A_{p,q}^s \implies h \in A_{p,q}^s \text{ for } sp > 2$ [CMO].
- $\mu \in W^{1,2}$



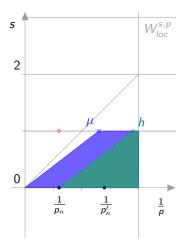
- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\bullet \ \mu \in C^{n+\varepsilon}_{loc} \implies h \in C^{n+\varepsilon}_{loc} \ [\mathsf{AIM}].$
- $\bullet \ \mu \in A^s_{p,q} \implies h \in A^s_{p,q} \text{ for } sp > 2$ [CMO].
- $\mu \in W^{1,2} \implies h \in W^{1,2-\varepsilon}$ for p = 2 [CFMOZ].



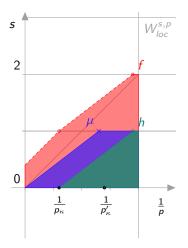
- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\bullet \ \mu \in C^{n+\varepsilon}_{loc} \implies h \in C^{n+\varepsilon}_{loc} \ [\mathsf{AIM}].$
- $\bullet \ \mu \in A_{p,q}^s \implies h \in A_{p,q}^s \text{ for } sp > 2$ [CMO].
- $\mu \in W^{1,2} \implies h \in W^{1,2-\varepsilon}$ for p = 2 [CFMOZ].



- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\bullet \ \mu \in C^{n+\varepsilon}_{loc} \implies h \in C^{n+\varepsilon}_{loc} \ [\mathsf{AIM}].$
- $\bullet \ \mu \in A^s_{p,q} \implies h \in A^s_{p,q} \text{ for } sp > 2$ [CMO].
- $\mu \in W^{1,2} \implies h \in W^{1,2-\varepsilon}$ for p = 2 [CFMOZ].
- $\mu \in W^{1,p}$



- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].
- $\mu \in A_{p,q}^s \implies h \in A_{p,q}^s \text{ for } sp > 2$ [CMO].
- $\mu \in W^{1,2} \implies h \in W^{1,2-\varepsilon}$ for p = 2 [CFMOZ].
- $\mu \in W^{1,p} \Longrightarrow h \in W^{1,q}$ for p < 2, $\frac{1}{q} > \frac{1}{p} + \frac{1}{p_{\kappa}}$ [CFMOZ].



- $h \in L^p$ for $\frac{1}{p_{\kappa}} < \frac{1}{p}$ [A92, AIS01].
- $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for 1 . [I].
- $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].
- $\mu \in A_{p,q}^s \implies h \in A_{p,q}^s \text{ for } sp > 2$ [CMO].
- $\mu \in W^{1,2} \implies h \in W^{1,2-\varepsilon}$ for p = 2 [CFMOZ].
- $\mu \in W^{1,p} \Longrightarrow h \in W^{1,q}$ for p < 2, $\frac{1}{q} > \frac{1}{p} + \frac{1}{p_{\kappa}}$ [CFMOZ].

Recent progress

Theorem (P.)

Let 0 < s < 2, $1 , let <math>\mu \in W^{s,p} \cap L^{\infty}$, with $\mu \leqslant \kappa \chi_{\mathbb{D}}$ and let f be the principal solution to the Beltrami equation $\bar{\partial} f = \mu \partial f$. If $s = \frac{2}{p}$, then

$$\bar{\partial} f \in W^{s,q}$$
 for every $\frac{1}{q} > \frac{1}{p}$.

If
$$s<rac{2}{p}$$
 and $rac{1}{p}<rac{1}{p'_\kappa}-rac{1}{p_\kappa}=rac{1-\kappa}{1+\kappa}$, then

$$\bar{\partial} f \in W^{s,q}$$
 for every $\frac{1}{q} > \frac{1}{p} + \frac{1}{p_{\kappa}}$.

Theorem (P.)

Let 0 < s < 2, $1 , let <math>\mu \in W^{s,p} \cap L^{\infty}$, with $\mu \le \kappa \chi_{\mathbb{D}}$ and let f be the principal solution to the Beltrami equation $\bar{\partial} f = \mu \partial f$. If $s = \frac{2}{n}$, then

$$\bar{\partial} f \in W^{s,q}$$
 for every $\frac{1}{q} > \frac{1}{p}$.

If $s<rac{2}{p}$ and $rac{1}{p}<rac{1}{p'_\kappa}-rac{1}{p_\kappa}=rac{1-\kappa}{1+\kappa}$, then

$$\bar{\partial} f \in W^{s,q}$$
 for every $\frac{1}{q} > \frac{1}{p} + \frac{1}{p_{\kappa}}$.

See [Clop, Faraco, Ruiz] for previous weaker results and Baisón's thesis for a stronger result in the critical setting with s > 1/2.

Recent progress

Theorem (P.)

Let 0 < s < 2, $1 , let <math>\mu \in W^{s,p} \cap L^{\infty}$, with $\mu \leqslant \kappa \chi_{\mathbb{D}}$ and let f be the principal solution to the Beltrami equation $\bar{\partial} f = \mu \partial f$. If $s = \frac{2}{n}$, then

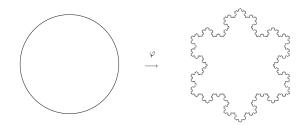
$$\bar{\partial} f \in W^{s,q}$$
 for every $\frac{1}{q} > \frac{1}{p}$.

If $s<rac{2}{p}$ and $rac{1}{p}<rac{1}{p_\kappa'}-rac{1}{p_\kappa}=rac{1-\kappa}{1+\kappa}$, then

$$\bar{\partial} f \in W^{s,q}$$
 for every $\frac{1}{q} > \frac{1}{p} + \frac{1}{p_{\kappa}}$.

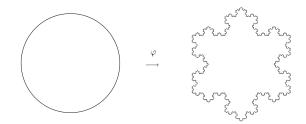
See [Clop, Faraco, Ruiz] for previous weaker results and Baisón's thesis for a stronger result in the critical setting with s>1/2. It remains unclear if the condition $\frac{1}{p}<\frac{1}{p'_\kappa}-\frac{1}{p_\kappa}$ can be replaced by $\frac{1}{p}<\frac{1}{p'_\kappa}$, which is more natural and is achieved for s=1.

What about quasiconformal mappings on domains?

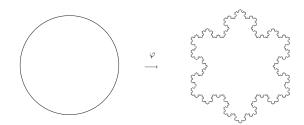


Consider a Riemann mapping from $\mathbb D$ to the Koch Snowflake. Since it is conformal, $\bar\partial \varphi=0$. Thus, $\mu=0$ and $\mu\in W^{s,p}$ for every s,p.

What about quasiconformal mappings on domains?

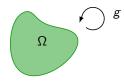


Consider a Riemann mapping from $\mathbb D$ to the Koch Snowflake. Since it is conformal, $\bar\partial \varphi=0$. Thus, $\mu=0$ and $\mu\in W^{s,p}$ for every s,p. However, φ' does not extend to $\partial \mathbb D$. Thus, $\varphi\notin C^1(\overline{\mathbb D})$ and, as a consequence, $\partial \varphi$ is not in any supercritical Sobolev space.

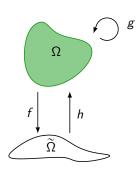


Consider a Riemann mapping from $\mathbb D$ to the Koch Snowflake. Since it is conformal, $\bar\partial \varphi=0$. Thus, $\mu=0$ and $\mu\in W^{s,p}$ for every s,p. However, φ' does not extend to $\partial \mathbb D$. Thus, $\varphi\notin C^1(\overline{\mathbb D})$ and, as a consequence, $\partial \varphi$ is not in any supercritical Sobolev space. The moral is that in order to study the regularity of μ -quasiconformal mappings between domains we must take into account both the regularity of the boundary and the regularity of μ .

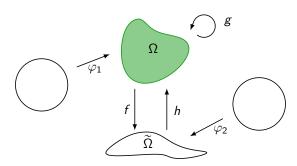
Let $g:\Omega\to\Omega$ to be μ -QC, with $\mu\in W^{s,p}(\Omega)$ and $\partial\Omega$ regular enough. Can we say that $\partial g\in W^{s,p}(\Omega)$??



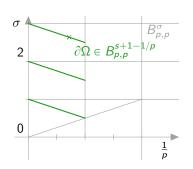
By Stoilow factorization, $g=h\circ f$ where $f:\mathbb{C}\to\mathbb{C}$ is the μ -principal mapping and $h:\widetilde{\Omega}\to\Omega$ is conformal.

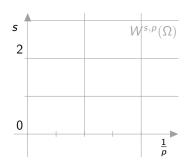


We can find Riemann mappings (conformal) if the domains are simply connected.



The principal mapping

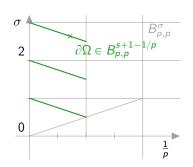


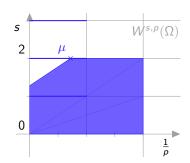


We study supercritical case.

Theorem (Principal mapping condition, P)

Let $\Omega \subset \mathbb{C}$ be a bounded $B_{p,p}^{s+1-1/p}$ -domain, $s \in \mathbb{N}$ and p > 2.



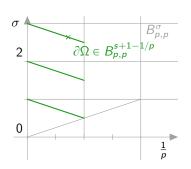


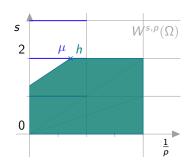
We study supercritical case.

Theorem (Principal mapping condition, P)

Let $\Omega \subset \mathbb{C}$ be a bounded $B^{s+1-1/p}_{p,p}$ -domain, $s \in \mathbb{N}$ and p > 2. Let $\mu \in W^{s,p}(\Omega) \cap L^{\infty}$ with $\|\mu\|_{\infty} < 1$ and $\operatorname{supp} \mu \subset \overline{\Omega}$.

The principal mapping



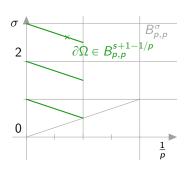


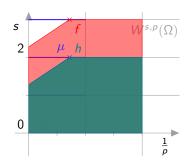
We study supercritical case.

Theorem (Principal mapping condition, P)

Let $\Omega \subset \mathbb{C}$ be a bounded $B^{s+1-1/p}_{p,p}$ -domain, $s \in \mathbb{N}$ and p > 2. Let $\mu \in W^{s,p}(\Omega) \cap L^{\infty}$ with $\|\mu\|_{\infty} < 1$ and $\mathrm{supp}\mu \subset \overline{\Omega}$. Then $I_{\Omega} - \mu\mathcal{B}_{\Omega}$ is invertible in $W^{s,p}(\Omega)$.

The principal mapping





We study supercritical case.

Theorem (Principal mapping condition, P)

Let $\Omega \subset \mathbb{C}$ be a bounded $B^{s+1-1/p}_{p,p}$ -domain, $s \in \mathbb{N}$ and p > 2. Let $\mu \in W^{s,p}(\Omega) \cap L^{\infty}$ with $\|\mu\|_{\infty} < 1$ and $\mathrm{supp}\mu \subset \overline{\Omega}$. Then the principal solution $f \in W^{s+1,p}(\Omega)$ and it is bi-Lipschitz.

Riemann mapping condition (in progress, Astala, P, Saksman)

Let $s \in \mathbb{N}$ and p > 2. If Ω is a simply connected $B^{s+1-\frac{1}{p}}_{p,p}$ -domain, then any Riemann mapping $\varphi : \mathbb{D} \to \Omega$ satisfies that $\varphi \in W^{s+1,p}(\mathbb{D})$ and it is bi-Lipschitz.

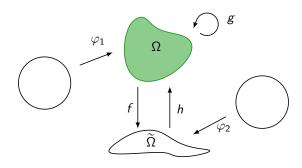
General case

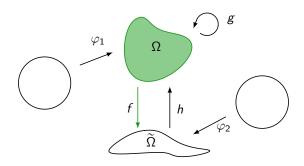
Riemann mapping condition (in progress, Astala, P, Saksman)

Let $s \in \mathbb{N}$ and p > 2. If Ω is a simply connected $B_{p,p}^{s+1-\frac{1}{p}}$ -domain, then any Riemann mapping $\varphi: \mathbb{D} \to \Omega$ satisfies that $\varphi \in W^{s+1,p}(\mathbb{D})$ and it is bi-Lipschitz.

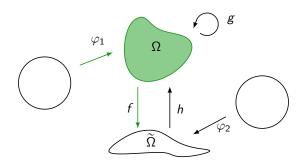
Theorem (in progress, Astala, P, Saksman)

Let $s \in \mathbb{N}$ and p > 2, let Ω be a simply connected $B^{s+1-\frac{1}{p}}_{p,p}$ -domain and let $g:\Omega\to\Omega$ be a μ -quasiconformal self-map with $\mu\in W^{s,p}(\Omega)$. Then $g \in W^{s+1,p}(\Omega)$.

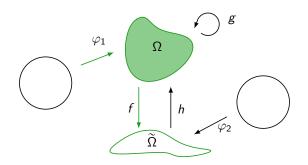




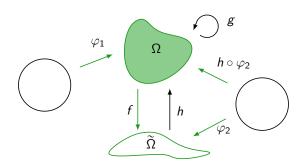
 $f \in W^{s+1,p}(\Omega)$ and it is bi-Lipschitz by the principal mapping condition.



 $f\in W^{s+1,p}(\Omega)$ and it is bi-Lipschitz by the principal mapping condition. $\varphi_1\in W^{s+1,p}(\mathbb{D})$ and it is bi-Lipschitz by the Riemann mapping condition.

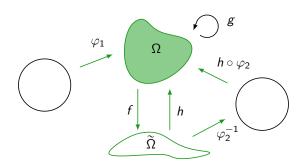


 $f\in W^{s+1,p}(\Omega)$ and it is bi-Lipschitz by the principal mapping condition. $\varphi_1\in W^{s+1,p}(\mathbb{D})$ and it is bi-Lipschitz by the Riemann mapping condition. By the trace condition, $f\circ\varphi_1$ is a $B^{s+1-\frac{1}{p}}_{p,p}$ parameterization of $\partial\widetilde{\Omega}$.



 $f \in W^{s+1,p}(\Omega)$ and it is bi-Lipschitz by the principal mapping condition. $\varphi_1 \in W^{s+1,p}(\mathbb{D})$ and it is bi-Lipschitz by the Riemann mapping condition.

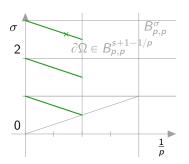
By the trace condition, $f \circ \varphi_1$ is a $B_{p,p}^{s+1-\frac{1}{p}}$ parameterization of $\partial \widetilde{\Omega}$. By the Riemann mapping condition, $h \circ \varphi_2$ and φ_2 are in $W^{s+1,p}(\mathbb{D})$.

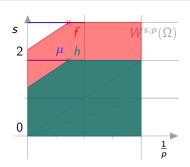


 $f \in W^{s+1,p}(\Omega)$ and it is bi-Lipschitz by the principal mapping condition. $\varphi_1 \in W^{s+1,p}(\mathbb{D})$ and it is bi-Lipschitz by the Riemann mapping condition.

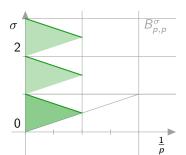
By the trace condition, $f \circ \varphi_1$ is a $B^{s+1-\frac{1}{p}}_{p,p}$ parameterization of $\partial \widetilde{\Omega}$. By the Riemann mapping condition, $h \circ \varphi_2$ and φ_2 are in $W^{s+1,p}(\mathbb{D})$. Then, $g = (h \circ \varphi_2) \circ (\varphi_2^{-1}) \circ f \in W^{s+1,p}(\Omega)$.

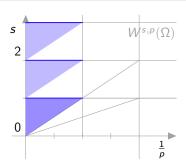
Conclusions





• In the complex plane, if $N \in B^{s-1/p}_{p,p}(\partial\Omega)$ with $s \in \mathbb{N}$ and p > 2, then $\mu \in W^{s,p}(\Omega) \implies f,g \in W^{s+1,p}(\Omega)$.





- In the complex plane, if $N \in B^{s-1/p}_{p,p}(\partial\Omega)$ with $s \in \mathbb{N}$ and p > 2, then $\mu \in W^{s,p}(\Omega) \implies f,g \in W^{s+1,p}(\Omega)$.
- Expected further results:
 - The results hold apparently for 0 < s < 1, sp > 2 (work in progress with K. Astala, E. Saksman) and for Hölder spaces with 0 < s < 1.
 - Subcritical situation: is there any condition on $\partial\Omega$ which can lead to analogous results?

Moltes gràcies!! Muchas gracias!!