Regularity of planar quasiconformal self-maps

Marti Prats (joint work with K. Astala, E. Saksman and X. Tolsa)

Cincuenta
B Aniversario

NSTITUTO DE CIENCIAS MATEMATICAS

European Research Council

September 5th, 2017



Introduction

Introduction



Introduction
@00

Measuring smoothness and integrability in R?

Lebesgue spaces — integrability.

1/
o |fl, = (SIfIP)"",
[f],« = esssup|f]



Introduction
@00

Measuring smoothness and integrability in R?

Lebesgue spaces — integrability.
Differentiablility classes — smoothness.

S
4 1/
o [fl, = ([IfP)"",
s |l = esssuplf]
) o [fllce =IFllw + -+ |[VF) e
O >3
L4 1



Introduction
@00

Measuring smoothness and integrability in R?

Lebesgue spaces — integrability.
Differentiablility classes — smoothness.
s Sobolev spaces — both together.

1/
e o fl, = (f1F17)",
[f], = esssup|f]

° [flles = Ifllee + -+ [V*F] 10
O [Fllyse = [Fllp + - + V£l



Introduction
@00

Measuring smoothness and integrability in R?

Lebesgue spaces — integrability.
Differentiablility classes — smoothness.
Sobolev spaces — both together.
Holder continuous spaces — fill gaps.

1/
o [fl = ([IFIP)"",
[f], = esssup|f]

o |flles = Il + -+ IV*Fl 0
O [Fllyse = [Fllp + - + V£l
° |fle =

[l + - - + sup L=V 0]

[x—yl[{s}



Introduction
@00

Measuring smoothness and integrability in R?

W/3/2:8/5
y W1,4/3

Lebesgue spaces — integrability.
Differentiablility classes — smoothness.
Sobolev spaces — both together.
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Lebesgue spaces — integrability.
Differentiablility classes — smoothness.
Sobolev spaces — both together.
Holder continuous spaces — fill gaps.
Interpolation to generalize.

o Il = (J1F1P)",

[f], = esssup|f]
o [fllcs = lIflpe + -+ [Vl
o [fllwse =l + -+ 1VF]L
o |flc =

|fll e + -+ -+ sup
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o [Flwss: Flsy - IF1r

By means of Sobolev embeddings, we have
either continuity or extra integrability.
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Quasiconformal mappings

Conformal mappings
Preserves angles
“Circles to circles”
Cauchy-Riemann:

S (o«f +id,f) =0
of =0

Quasiconformal
mappings

Angle distortion
bounded.

“Circles to ellipses”.
|8f| < k|Of]

Wloc -homeo
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The Beurling transform

The Beurling transform of a function f € LP(C) is:
Bf(z) — - Iim/ ) ().
| _

It is essential to quasiconformal mappings because

B(3f) =of  Vfe W

Recall that B : LP(C) — LP(C) is bounded for 1 < p < o0.
Also B : W*=P(C) — W*P(C) is bounded for 1 < p < o0 and s > 0.
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The Beltrami equation: the principal solution
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Let e LZ(C) with k := ||, < 1.
The Beltrami equation

0f(z) = u(z)of (2)

1,2
W~ such

loc
as Zz — 0.

has a unique solution f €
that f(z) = z+ O(1/z)

Consider

hi=p+ pB(p) + pB(pB(u)) + - -
=( — pB) Y (n),

since - Bl gy < 6Bl 50 = 5 < 1.

Then, he L2 and f = i*h—i—z.
This remains true if | B, ,) < 1/k.
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Recent progress

Theorem (P.)

Let0<s<2, 1<p<ow,let ue WP L%, wit_hugmxlg) and let f
be the principal solution to the Beltrami equation 0f = udf.
Ifs = %, then

- 1 1
of € W19 for every — > —.
q
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/fs<fand <1 1 _ 1=K then
P Al F

- 1 1 1
of e W19 for every — > — + —.
9 P P

See [Clop, Faraco, Ruiz] for previous weaker results and Baisén's thesis

for a stronger result in the critical setting with s > 1/2.
It remains unclear if the condition % 5 < ,T — i can be replaced

by 5 < ?’ which is more natural and is achleved for s = 1.
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What about quasiconformal mappings on domains?

Consider a Riemann mapping from D to the Koch Snowflake.

Since it is conformal, dp = 0. Thus, = 0 and e W*P for every s, p.
However, ¢’ does not extend to dD. Thus, ¢ ¢ C*(D) and, as a
consequence, dp is not in any supercritical Sobolev space.

The moral is that in order to study the regularity of u-quasiconformal
mappings between domains we must take into account both the
regularity of the boundary and the regularity of p.
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Idea

Let g: Q — Q to be u-QC, with u e W*P(Q) and 02 regular enough.
Can we say that dg € W*P(Q)??
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By Stoilow factorization, g = ho f where f : C — C is the y-principal
mapping and h : Q — Q is conformal.
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We can find Riemann mappings (conformal) if the domains are simply
connected.
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We study supercritical case.

Theorem (Principal mapping condition, P)

Let Q = C be a bounded B 5 ~Y/P-domain, s € N and p > 2.
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We study supercritical case.

Theorem (Principal mapping condition, P)

Let Q = C be a bounded B35 Y/P-domain, s e Nand p > 2. Let
e WP(Q) n L with ||u],, <1 and suppu < Q. Then lq — uBq is
invertible in W*P(Q).
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The principal mapping
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We study supercritical case.

Theorem (Principal mapping condition, P)

Let Q = C be a bounded B35 Y/P-domain, s e Nand p > 2. Let
e WP(Q) n L with ||p],, <1 and suppp < Q. Then the principal
solution f € WSTLP(Q) and it is bi-Lipschitz.
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General case

Riemann mapping condition (in progress, Astala, P, Saksman)

1
Let se N and p > 2. If Q is a simply connected B;j:,l P-domain, then
any Riemann mapping ¢ : D —  satisfies that ¢ € Wst1P(DD) and it is
bi-Lipschitz.

Theorem (in progress, Astala, P, Saksman)

Let se N and p > 2, let Q be a simply connected B:;liﬁ—domain and
let g : Q — Q be a p-quasiconformal self-map with © € W*P(Q). Then
g e WstLr(Q).
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f e WstLP(Q) and it is bi-Lipschitz by the principal mapping condition.
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f e WstLP(Q) and it is bi-Lipschitz by the principal mapping condition.
1 € WSHtLP(D) and it is bi-Lipschitz by the Riemann mapping condition.
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By the trace condition, f o ¢y is a B;,p P parameterization of 0€0.
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|dea of the proof
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f e WstLP(Q) and it is bi-Lipschitz by the principal mapping condition.
1 € WSHtLP(D) and it is bi-Lipschitz by the Riemann mapping condition.

1

By the trace condition, f o ¢y is a B;iJ » parameterization of 9<.
By the Riemann mapping condition, ho ¢, and @5 are in Ws+t1.P(ID).
Then, g = (ho ) o (gp{l) ofe Wsthr(Q).
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@ In the complex plane, if N € B;;,l/p(aﬂ) with s e N and p > 2,
then pe WSP(Q) = f,ge WstLP(Q).
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Conclusions

@ In the complex plane, if N € Bf,;,l/p((?ﬂ) with se N and p > 2,
then pe WSP(Q) = f,ge WstLP(Q).
o Expected further results:
e The results hold apparently for 0 < s < 1, sp > 2 (work in progress
with K. Astala, E. Saksman) and for Holder spaces with 0 < s < 1.

o Subcritical situation: is there any condition on dQ which can lead to
analogous results?
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