A T(1) theorem for Sobolev spaces on domains PHD thesis in progress, directed by Xavier Tolsa

Martí Prats

Universitat Autònoma de Barcelona
September 19, 2013

Introduction

The Beurling transform

The Beurling transform of a function $f \in L^{p}(\mathbb{C})$ is:

$$
B f(z)=c_{0} \lim _{\varepsilon \rightarrow 0} \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{2}} d m(z) .
$$

The Beurling transform

The Beurling transform of a function $f \in L^{p}(\mathbb{C})$ is:

$$
B f(z)=c_{0} \lim _{\varepsilon \rightarrow 0} \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{2}} d m(z) .
$$

It is essential to quasiconformal mappings because

$$
B(\bar{\partial} f)=\partial f \quad \forall f \in W^{1, p} .
$$

The Beurling transform

The Beurling transform of a function $f \in L^{p}(\mathbb{C})$ is:

$$
B f(z)=c_{0} \lim _{\varepsilon \rightarrow 0} \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{2}} d m(z) .
$$

It is essential to quasiconformal mappings because

$$
B(\bar{\partial} f)=\partial f \quad \forall f \in W^{1, p} .
$$

Recall that $B: L^{p}(\mathbb{C}) \rightarrow L^{p}(\mathbb{C})$ is bounded for $1<p<\infty$. Also $B: W^{s, p}(\mathbb{C}) \rightarrow W^{s, p}(\mathbb{C})$ is bounded for $1<p<\infty$ and $s>0$.

The Beurling transform

The Beurling transform of a function $f \in L^{p}(\mathbb{C})$ is:

$$
B f(z)=c_{0} \lim _{\varepsilon \rightarrow 0} \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{2}} d m(z) .
$$

It is essential to quasiconformal mappings because

$$
B(\bar{\partial} f)=\partial f \quad \forall f \in W^{1, p} .
$$

Recall that $B: L^{p}(\mathbb{C}) \rightarrow L^{p}(\mathbb{C})$ is bounded for $1<p<\infty$. Also $B: W^{s, p}(\mathbb{C}) \rightarrow W^{s, p}(\mathbb{C})$ is bounded for $1<p<\infty$ and $s>0$.

In particular, if $z \notin \operatorname{supp}(f)$ then $B f$ is analytic in an ε-neighborhood of z and

$$
\partial^{n} B f(z)=c_{n} \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{n+2}} d m(z) .
$$

The problem we face

Let Ω be a Lipschitz domain.

When is $B: W^{s, p}(\Omega) \rightarrow W^{s, p}(\Omega)$ bounded?
We want an answer in terms of the geometry of the boundary.

Known facts, part 1

In a recent paper, Cruz, Mateu and Orobitg proved that for $0<s \leq 1$, $1<p<\infty$ with $s p>2$, and $\partial \Omega$ smooth enough,

Theorem

$$
B: W^{s, p}(\Omega) \rightarrow W^{s, p}(\Omega) \quad \text { is bounded }
$$

if and only if

$$
B \chi_{\Omega} \in W^{s, p}(\Omega) .
$$

Known facts, part 1

In a recent paper, Cruz, Mateu and Orobitg proved that for $0<s \leq 1$, $1<p<\infty$ with $s p>2$, and $\partial \Omega$ smooth enough,

Theorem

$$
B: W^{s, p}(\Omega) \rightarrow W^{s, p}(\Omega) \text { is bounded }
$$

if and only if

$$
B \chi_{\Omega} \in W^{s, p}(\Omega) .
$$

One can deduce regularity of a quasiregular mapping in terms of the regularity of its Beltrami coefficient.

Introducing the Besov spaces $B_{p, p}^{s}$

The geometric answer will be given in terms of Besov spaces $B_{p, p}^{s}$. $B_{p, p}^{s}$ form a family closely related to $W^{s, p}$. They coincide for $p=2$. For $p<2, B_{p, p}^{s} \subset W^{s, p}$. Otherwise $W^{s, p} \subset B_{p, p}^{s}$.

Introducing the Besov spaces $B_{p, p}^{s}$

The geometric answer will be given in terms of Besov spaces $B_{p, p}^{s}$. $B_{p, p}^{s}$ form a family closely related to $W^{s, p}$. They coincide for $p=2$.
For $p<2, B_{p, p}^{s} \subset W^{s, p}$. Otherwise $W^{s, p} \subset B_{p, p}^{s}$.

Definition

For $0<s<\infty, 1 \leq p<\infty, f \in \dot{B}_{p, p}^{s}(\mathbb{R})$ if

$$
\|f\|_{\dot{B}_{p, p}^{s}}=\left(\int_{\mathbb{R}} \int_{\mathbb{R}}\left|\frac{\Delta_{h}^{[s]+1} f(x)}{h^{s}}\right|^{p} \frac{d m(h)}{|h|} d m(x)\right)^{1 / p}<\infty
$$

Introducing the Besov spaces $B_{p, p}^{s}$

The geometric answer will be given in terms of Besov spaces $B_{p, p}^{s}$. $B_{p, p}^{s}$ form a family closely related to $W^{s, p}$. They coincide for $p=2$.
For $p<2, B_{p, p}^{s} \subset W^{s, p}$. Otherwise $W^{s, p} \subset B_{p, p}^{s}$.

Definition

For $0<s<\infty, 1 \leq p<\infty, f \in \dot{B}_{p, p}^{s}(\mathbb{R})$ if

$$
\|f\|_{\dot{B}_{p, p}^{s}}=\left(\int_{\mathbb{R}} \int_{\mathbb{R}}\left|\frac{\Delta_{h}^{[s]+1} f(x)}{h^{s}}\right|^{p} \frac{d m(h)}{|h|} d m(x)\right)^{1 / p}<\infty
$$

Furthermore, $f \in B_{p, p}^{s}(\mathbb{R})$ if

$$
\|f\|_{B_{p, p}^{s}}=\|f\|_{L^{p}}+\|f\|_{\dot{B}_{p, p}^{s}}<\infty .
$$

We call them homogeneous and non-homogeneous Besov spaces respectively.

Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any $1<p<\infty$, and Ω a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p, p}^{1-1 / p}(\partial \Omega)$, then $B\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$ with

$$
\left\|\nabla B\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)} \leq c\|N\|_{\dot{B}_{p, p}^{1-1 / p}(\partial \Omega)} .
$$

Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any $1<p<\infty$, and Ω a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p, p}^{1-1 / p}(\partial \Omega)$, then $B\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$ with

$$
\left\|\nabla B\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)} \leq c\|N\|_{\dot{B}_{p, p}^{1-1 / p}(\partial \Omega)} .
$$

They proved also an analogous result for smoothness $0<s<1$.

Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any $1<p<\infty$, and Ω a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p, p}^{1-1 / p}(\partial \Omega)$, then $B\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$ with

$$
\left\|\nabla B\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)} \leq c\|N\|_{\dot{B}_{p, p}^{1-1 / p}(\partial \Omega)} .
$$

They proved also an analogous result for smoothness $0<s<1$. This implies

Theorem

Let $0<s \leq 1,1<p<\infty$ with $s p>2$. If the normal vector is in the Besov space $B_{p, p}^{s-1 / p}(\partial \Omega)$, then the Beurling transform is bounded in $W^{s, p}(\Omega)$.

Known facts, part 2

In another recent paper, Cruz and Tolsa proved that for any $1<p<\infty$, and Ω a Lipschitz domain,

Theorem

If the normal vector N belongs to $B_{p, p}^{1-1 / p}(\partial \Omega)$, then $B\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$ with

$$
\left\|\nabla B\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)} \leq c\|N\|_{\dot{B}_{p, p}^{1-1 / p}(\partial \Omega)} .
$$

They proved also an analogous result for smoothness $0<s<1$.
This implies

Theorem

Let $0<s \leq 1,1<p<\infty$ with $s p>2$. If the normal vector is in the Besov space $B_{p, p}^{s-1 / p}(\partial \Omega)$, then the Beurling transform is bounded in $W^{s, p}(\Omega)$.

Tolsa proved a converse for Ω flat enough.

Main results

Main Theorem

Let $2<p<\infty$ and $1 \leq n<\infty$. Let Ω be a Lipschitz domain.
Then the Beurling transform is bounded in $W^{n, p}(\Omega)$ if and only if for any polynomial of degree less than n restricted to the domain, $P=P_{\chi_{\Omega}}, B(P) \in W^{n, p}(\Omega)$.

Main results

Main Theorem

Let $2<p<\infty$ and $1 \leq n<\infty$. Let Ω be a Lipschitz domain.
Then the Beurling transform is bounded in $W^{n, p}(\Omega)$ if and only if for any polynomial of degree less than n

This theorem is valid for any Calderon-Zygmund convolution operator with enough smoothness and for any space \mathbb{R}^{d}.

Main results

Main Theorem

Let $2<p<\infty$ and $1 \leq n<\infty$. Let Ω be a Lipschitz domain.
Then the Beurling transform is bounded in $W^{n, p}(\Omega)$
if and only if for any polynomial of degree less than n restricted to the domain, $P=P_{\chi_{\Omega}}, B(P) \in W^{n, p}(\Omega)$.

This theorem is valid for any Calderon-Zygmund convolution operator with enough smoothness and for any space \mathbb{R}^{d}.

Theorem

Let Ω be smooth enough. Then we can write

$$
\left\|\partial^{n} B \chi_{\Omega}\right\|_{L^{p}(\Omega)}^{p} \lesssim\|N\|_{B_{p, p}^{n-1 / p}(\partial \Omega)}^{p}+\mathcal{H}^{1}(\partial \Omega)^{2-n p}
$$

Proof of the $T(P)$ theorem

Local charts

- We have a Lipschitz domain.

Local charts

- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization $C^{0,1}$.

Local charts

- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization $C^{0,1}$.
- We make a covering of the boundary by N of such cubes \mathcal{Q}_{k} with some controlled overlapping and find a partition of unity $\left\{\psi_{j}\right\}_{j=0}^{N}$.

Local charts

- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization $C^{0,1}$.
- We make a covering of the boundary by N of such cubes \mathcal{Q}_{k} with some controlled overlapping and find a partition of unity $\left\{\psi_{j}\right\}_{j=0}^{N}$.
- $\|B f\|_{W^{n, p}(\Omega)}^{p} \approx\|B f\|_{L^{p}(\Omega)}^{p}+\left\|\nabla^{n} B f\right\|_{L^{p}(\Omega)}^{p}$.

Local charts

- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization $C^{0,1}$.
- We make a covering of the boundary by N of such cubes \mathcal{Q}_{k} with some controlled overlapping and find a partition of unity $\left\{\psi_{j}\right\}_{j=0}^{N}$.
- $\|B f\|_{W^{n, p}(\Omega)}^{p} \approx\|B f\|_{L^{p}(\Omega)}^{p}+\left\|\nabla^{n} B f\right\|_{L^{p}(\Omega)}^{p}$.
- $\left\|\nabla^{n} B f\right\|_{L^{p}(\Omega)}^{p} \approx \sum_{k=0}^{N}\left\|\nabla^{n} B\left(f \psi_{k}\right)\right\|_{L^{p}\left(\mathcal{Q}_{k}\right)}^{p}+\left\|\nabla^{n} B\left(f \psi_{k}\right)\right\|_{L^{p}\left(\Omega \backslash \mathcal{Q}_{k}\right)}^{p}$

Local charts

Beurling transform

- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization $C^{0,1}$.
- We make a covering of the boundary by N of such cubes \mathcal{Q}_{k} with some controlled overlapping and find a partition of unity $\left\{\psi_{j}\right\}_{j=0}^{N}$.
- $\|B f\|_{W^{n, p}(\Omega)}^{p} \approx\|B f\|_{L^{p}(\Omega)}^{p}+\left\|\nabla^{n} B f\right\|_{L^{p}(\Omega)}^{p}$.
- $\left\|\nabla^{n} B f\right\|_{L^{p}(\Omega)}^{p} \approx \sum_{k=0}^{N}\left\|\nabla^{n} B\left(f \psi_{k}\right)\right\|_{L^{p}\left(\mathcal{Q}_{k}\right)}^{p}+\left\|\nabla^{n} B\left(f \psi_{k}\right)\right\|_{L^{p}\left(\Omega \backslash \mathcal{Q}_{k}\right)}^{p}$
- Away from \mathcal{Q}_{k} we have good bounds:

$$
\left|\nabla^{n} B\left(f \psi_{k}\right)(z)\right| \lesssim \frac{1}{R^{n+2}} \int_{\mathcal{Q}_{k}}|f(w)| d w
$$

Local charts

- We have a Lipschitz domain.
- In particular, at every boundary point we can center a cube with fixed side-length R inducing a parametrization $C^{0,1}$.
- We make a covering of the boundary by N of such cubes \mathcal{Q}_{k} with some controlled overlapping and find a partition of unity $\left\{\psi_{j}\right\}_{j=0}^{N}$.
- $\|B f\|_{W^{n, p}(\Omega)}^{p} \approx\|B f\|_{L^{p}(\Omega)}^{p}+\left\|\nabla^{n} B f\right\|_{L^{p}(\Omega)}^{p}$.
- $\left\|\nabla^{n} B f\right\|_{L^{p}(\Omega)}^{p} \approx \sum_{k=0}^{N}\left\|\nabla^{n} B\left(f \psi_{k}\right)\right\|_{L^{p}\left(\mathcal{Q}_{k}\right)}^{p}+\left\|\nabla^{n} B\left(f \psi_{k}\right)\right\|_{L^{p}\left(\Omega \backslash \mathcal{Q}_{k}\right)}^{p}$
- Away from \mathcal{Q}_{k} we have good bounds: $\left|\nabla^{n} B\left(f \psi_{k}\right)(z)\right| \lesssim \frac{1}{R^{n+2}} \int_{\mathcal{Q}_{k}}|f(w)| d w$
- The restriction to the inner region is always bounded: $f \psi_{0} \in W^{n, p}(\mathbb{C})$.

Local charts: Whitney decomposition

We perform an oriented Whitney covering \mathcal{W} such that

Local charts: Whitney decomposition

We perform an oriented Whitney covering \mathcal{W} such that

- $\operatorname{dist}(Q, \partial \Omega \cap \mathcal{Q}) \approx \ell(Q)$ for every $Q \in \mathcal{W}$.

Local charts: Whitney decomposition

We perform an oriented Whitney covering \mathcal{W} such that

- $\operatorname{dist}(Q, \partial \Omega \cap \mathcal{Q}) \approx \ell(Q)$ for every $Q \in \mathcal{W}$.
- The family $\{5 Q\}_{Q \in \mathcal{W}}$ has finite superposition.

A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given $f \in W^{1, p}(Q)$, $1 \leq p \leq \infty$,

$$
\left\|f-m_{Q} f\right\|_{L^{p}(Q)} \lesssim \ell(Q)\|\nabla f\|_{L^{p}(Q)} .
$$

A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given $f \in W^{1, p}(Q)$, $1 \leq p \leq \infty$,

$$
\left\|f-m_{Q} f\right\|_{L^{p}(Q)} \lesssim \ell(Q)\|\nabla f\|_{L^{p}(Q)} .
$$

Equivalently, for any Sobolev function f with 0 mean on Q,

$$
\|f\|_{L^{p}(Q)} \lesssim \ell(Q)\|\nabla f\|_{L^{p}(Q)} .
$$

If we want to apply recursively the Poincaré inequality we need $D f$ to have mean 0 in $3 Q$ for any partial derivative D.

A necessity arises: approximating polynomials

We will use the Poincaré inequality, that is, given $f \in W^{1, p}(Q)$, $1 \leq p \leq \infty$,

$$
\left\|f-m_{Q} f\right\|_{L^{p}(Q)} \lesssim \ell(Q)\|\nabla f\|_{L^{p}(Q)} .
$$

Equivalently, for any Sobolev function f with 0 mean on Q,

$$
\|f\|_{L^{p}(Q)} \lesssim \ell(Q)\|\nabla f\|_{L^{p}(Q)} .
$$

If we want to apply recursively the Poincaré inequality we need $D f$ to have mean 0 in $3 Q$ for any partial derivative D.

Definition

Given $f \in W^{n, p}(\Omega)$ and a cube Q, we call $\mathfrak{p}_{Q}^{n} f$ to the polynomial of degree smaller than n restricted to Ω such that for any multiindex β with $|\beta|<n$,

$$
f_{3 Q} D^{\beta} \mathfrak{p}_{Q}^{n} f=f_{3 Q} D^{\beta} f
$$

Properties of approximating polynomials

$$
\text { P1. }\left\|f-\mathfrak{p}_{Q}^{n} f\right\|_{L^{\rho}(3 Q)} \lesssim \ell(Q)^{n}\left\|\nabla^{n} f\right\|_{L^{\rho}(3 Q)} \text {. }
$$

Properties of approximating polynomials

P1. $\left\|f-\mathfrak{p}_{Q}^{n} f\right\|_{L^{\rho}(3 Q)} \lesssim \ell(Q)^{n}\left\|\nabla^{n} f\right\|_{L^{\rho}(3 Q)}$.
P2. Given two neighbor Whitney cubes Q_{1} and Q_{2},

$$
\left\|\mathfrak{p}_{Q_{1}}^{n} f-\mathfrak{p}_{Q_{2}}^{n} f\right\|_{L^{\infty}\left(3 Q_{1} \cap 3 Q_{2}\right)} \lesssim \ell\left(Q_{1}\right)^{n-\frac{2}{p}}\left\|\nabla^{n} f\right\|_{L^{p}\left(3 Q_{1} \cup 3 Q_{2}\right)} .
$$

Properties of approximating polynomials

P1. $\left\|f-\mathfrak{p}_{Q}^{n} f\right\|_{L^{\rho}(3 Q)} \lesssim \ell(Q)^{n}\left\|\nabla^{n} f\right\|_{L^{\rho}(3 Q)}$.
P2. Given two neighbor Whitney cubes Q_{1} and Q_{2},

$$
\left\|\mathfrak{p}_{Q_{1}}^{n} f-\mathfrak{p}_{Q_{2}}^{n} f\right\|_{L^{\infty}\left(3 Q_{1} \cap 3 Q_{2}\right)} \lesssim \ell\left(Q_{1}\right)^{n-\frac{2}{p}}\left\|\nabla^{n} f\right\|_{L^{p}\left(3 Q_{1} \cup 3 Q_{2}\right)} .
$$

P5. We can bound the coefficients of the polynomial

$$
\mathfrak{p}_{Q}^{n} f(w)=\sum_{|\gamma|<n} m_{Q, \gamma}\left(w-x_{Q}\right)^{\gamma}:
$$

Properties of approximating polynomials

P1. $\left\|f-\mathfrak{p}_{Q}^{n} f\right\|_{L^{P}(3 Q)} \lesssim \ell(Q)^{n}\left\|\nabla^{n} f\right\|_{L^{P}(3 Q)}$.
P2. Given two neighbor Whitney cubes Q_{1} and Q_{2},

$$
\left\|\mathfrak{p}_{Q_{1}}^{n} f-\mathfrak{p}_{Q_{2}}^{n} f\right\|_{L^{\infty}\left(3 Q_{1} \cap 3 Q_{2}\right)} \lesssim \ell\left(Q_{1}\right)^{n-\frac{2}{p}}\left\|\nabla^{n} f\right\|_{L^{p}\left(3 Q_{1} \cup 3 Q_{2}\right)} .
$$

P5. We can bound the coefficients of the polynomial

$$
\mathfrak{p}_{Q}^{n} f(w)=\sum_{|\gamma|<n} m_{Q, \gamma}\left(w-x_{Q}\right)^{\gamma}:
$$

$$
\left|m_{Q, \gamma}\right| \lesssim \sum_{j=|\gamma|}^{n-1}\left\|\nabla^{j} f\right\|_{L^{\infty}(3 Q)^{\prime}} \ell(Q)^{j-|\gamma|} .
$$

The proof: $B P \in W^{n, p}(\Omega) \Rightarrow\|B f\|_{W^{n, p}(\Omega)}^{p} \lesssim\|f\|_{W^{n, p}(\Omega)}^{p}$

Assume that, we have a bound for the polynomials. Fix a point $x_{0} \in \Omega$ and call $P_{\lambda}(z)=\left(z-x_{0}\right)^{\lambda} \chi_{\Omega}(z)$.

The proof: $B P \in W^{n, p}(\Omega) \Rightarrow\|B f\|_{W^{n, p}(\Omega)}^{p} \lesssim\|f\|_{W^{n, p}(\Omega)}^{p}$

Assume that, we have a bound for the polynomials. Fix a point $x_{0} \in \Omega$ and call $P_{\lambda}(z)=\left(z-x_{0}\right)^{\lambda} \chi_{\Omega}(z)$.
Given a cube Q, we can write

$$
\mathfrak{p}_{Q}^{n} f(w)=\chi_{\Omega}(w) \sum_{|\gamma|<n} m_{Q, \gamma}\left(w-x_{Q}\right)^{\gamma}
$$

The proof: $B P \in W^{n, p}(\Omega) \Rightarrow\|B f\|_{W^{n, p}(\Omega)}^{p} \lesssim\|f\|_{W^{n, p}(\Omega)}^{p}$

Assume that, we have a bound for the polynomials. Fix a point $x_{0} \in \Omega$ and call $P_{\lambda}(z)=\left(z-x_{0}\right)^{\lambda} \chi_{\Omega}(z)$.
Given a cube Q, we can write, using Newton's binomial

$$
\begin{aligned}
\mathfrak{P}_{Q}^{n} f(w) & =\chi_{\Omega}(w) \sum_{|\gamma|<n} m_{Q, \gamma}\left(w-x_{Q}\right)^{\gamma} \\
& =\chi_{\Omega}(w) \sum_{|\gamma|<n} m_{Q, \gamma} \sum_{(0,0) \leq \lambda \leq \gamma}\binom{\gamma}{\lambda}\left(w-x_{0}\right)^{\lambda}\left(x_{0}-x_{Q}\right)^{\gamma-\lambda}
\end{aligned}
$$

The proof: $B P \in W^{n, p}(\Omega) \Rightarrow\|B f\|_{W^{n, p}(\Omega)}^{p} \lesssim\|f\|_{W^{n, p}(\Omega)}^{p}$

Assume that, we have a bound for the polynomials. Fix a point $x_{0} \in \Omega$ and call $P_{\lambda}(z)=\left(z-x_{0}\right)^{\lambda} \chi_{\Omega}(z)$.
Given a cube Q, we can write, using Newton's binomial

$$
\begin{aligned}
\mathfrak{p}_{Q}^{n} f(w) & =\chi_{\Omega}(w) \sum_{|\gamma|<n} m_{Q, \gamma}\left(w-x_{Q}\right)^{\gamma} \\
& =\chi_{\Omega}(w) \sum_{|\gamma|<n} m_{Q, \gamma} \sum_{(0,0) \leq \lambda \leq \gamma}\binom{\gamma}{\lambda}\left(w-x_{0}\right)^{\lambda}\left(x_{0}-x_{Q}\right)^{\gamma-\lambda}
\end{aligned}
$$

so

$$
D^{\alpha} B\left(\mathfrak{p}_{Q}^{n} f\right)(z)=\sum_{|\gamma|<n} m_{Q, \gamma} \sum_{(0,0) \leq \lambda \leq \gamma}\binom{\gamma}{\lambda}\left(x_{0}-x_{Q}\right)^{\gamma-\lambda} D^{\alpha}\left(B P_{\lambda}\right)(z)
$$

The proof: $B P \in W^{n, p}(\Omega) \Rightarrow\|B f\|_{W^{n, p}(\Omega)}^{p} \lesssim\|f\|_{W^{n, p}(\Omega)}^{p}$

Assume that, we have a bound for the polynomials. Fix a point $x_{0} \in \Omega$ and call $P_{\lambda}(z)=\left(z-x_{0}\right)^{\lambda} \chi_{\Omega}(z)$.
Given a cube Q, we can write, using Newton's binomial

$$
\begin{aligned}
\mathfrak{p}_{Q}^{n} f(w) & =\chi_{\Omega}(w) \sum_{|\gamma|<n} m_{Q, \gamma}\left(w-x_{Q}\right)^{\gamma} \\
& =\chi_{\Omega}(w) \sum_{|\gamma|<n} m_{Q, \gamma} \sum_{(0,0) \leq \lambda \leq \gamma}\binom{\gamma}{\lambda}\left(w-x_{0}\right)^{\lambda}\left(x_{0}-x_{Q}\right)^{\gamma-\lambda}
\end{aligned}
$$

so

$$
D^{\alpha} B\left(\mathfrak{p}_{Q}^{n} f\right)(z)=\sum_{|\gamma|<n} m_{Q, \gamma} \sum_{(0,0) \leq \lambda \leq \gamma}\binom{\gamma}{\lambda}\left(x_{0}-x_{Q}\right)^{\gamma-\lambda} D^{\alpha}\left(B P_{\lambda}\right)(z)
$$

where, by P5,

$$
\left|m_{Q, \gamma}\right| \lesssim \sum_{j=|\gamma|}^{n-1}\left\|\nabla^{j} f\right\|_{L^{\infty}(3 Q)^{\prime}} \ell(Q)^{j-|\gamma|} .
$$

The Sobolev Embedding Theorem appears

Thus

$$
\left\|D^{\alpha} B\left(\mathfrak{p}_{Q}^{n} f\right)\right\|_{L^{p}(Q)}^{p} \lesssim \sum_{j<n}\left\|\nabla^{j} f\right\|_{L^{\infty}}^{p} \sum_{\substack{|\gamma| \leq j \\ 0 \leq \lambda \leq \gamma}}\left\|D^{\alpha} B P_{\lambda}\right\|_{L^{p}(Q)}^{p} \mathcal{H}^{1}(\partial \Omega)^{(j-|\lambda|) p} .
$$

The Sobolev Embedding Theorem appears

Thus

$$
\left\|D^{\alpha} B\left(\mathfrak{P}_{Q}^{n} f\right)\right\|_{L^{p}(Q)}^{p} \lesssim \sum_{j<n}\left\|\nabla^{j} f\right\|_{L^{\infty}}^{p} \sum_{\substack{|\gamma| \leq j \\ 0 \leq \lambda \leq \gamma}}\left\|D^{\alpha} B P_{\lambda}\right\|_{L^{p}(Q)}^{p} \mathcal{H}^{1}(\partial \Omega)^{(j-|\lambda|) p}
$$

Adding with respect to $Q \in \mathcal{W}$, by the Sobolev Embedding Theorem $\left(\left\|\nabla^{j} f\right\|_{L^{\infty}(\mathcal{Q} \cap \Omega)} \leq C\left\|\nabla^{j} f\right\|_{W^{1, p}(\mathcal{Q} \cap \Omega)}\right.$ when $\left.p>2\right)$, we get

$$
\begin{aligned}
\sum_{Q \in \mathcal{W}}\left\|D^{\alpha} B\left(\mathfrak{p}_{Q}^{n} f\right)\right\|_{L^{p}(Q)}^{p} & \lesssim \sum_{j<n}\left\|\nabla^{j} f\right\|_{W^{1, p}(\mathcal{Q} \cap \Omega)}^{p} \sum_{0 \leq \lambda \leq \gamma}\left\|B P_{\lambda}\right\|_{W^{n, p}(\Omega)}^{p} \\
& \lesssim\|f\|_{W^{n, p}(\mathcal{Q} \cap \Omega)}^{p} .
\end{aligned}
$$

Key Lemma: sticking to the essential

Lemma

Let Ω be a Lipschitz domain, \mathcal{Q} a window, $\psi \in \mathcal{C}^{\infty}\left(\frac{99}{100} \mathcal{Q}\right)$ with $\left\|\nabla^{j} \psi\right\|_{L^{\infty}} \lesssim \frac{1}{R^{j}}$ for $j \geq 0$. Then, for any $|\alpha|=n$ and $f=\psi \cdot \widetilde{f}$ with $\tilde{f} \in W^{n, p}(\Omega)$, TFAE:

- $\left\|D^{\alpha} B f\right\|_{L^{p}(\mathcal{Q})}^{p} \lesssim\|f\|_{W^{n, p}(\mathcal{Q} \cap \Omega)}^{p}$.
- $\sum_{Q \in \mathcal{W}}\left\|D^{\alpha} B\left(\mathfrak{p}_{Q}^{n} f\right)\right\|_{L^{p}(Q)}^{p} \lesssim\|f\|_{W^{n, p}(\mathcal{Q} \Omega)}^{p}$.

Key Lemma: sticking to the essential

Lemma

Let Ω be a Lipschitz domain, \mathcal{Q} a window, $\psi \in \mathcal{C}^{\infty}\left(\frac{99}{100} \mathcal{Q}\right)$ with $\left\|\nabla^{j} \psi\right\|_{L^{\infty}} \lesssim \frac{1}{R^{j}}$ for $j \geq 0$. Then, for any $|\alpha|=n$ and $f=\psi \cdot \widetilde{f}$ with $\tilde{f} \in W^{n, p}(\Omega)$, TFAE:

- $\left\|D^{\alpha} B f\right\|_{L^{p}(\mathcal{Q})}^{p} \lesssim\|f\|_{W^{n, p}(\mathcal{Q} \cap \Omega)}^{p}$.
- $\sum_{Q \in \mathcal{W}}\left\|D^{\alpha} B\left(\mathfrak{P}_{Q}^{n} f\right)\right\|_{L^{p}(Q)}^{p} \lesssim\|f\|_{W^{n, p}(\mathcal{Q} \cap \Omega)}^{p}$.

Idea of the proof: separate local and non-local parts of the error term,

$$
\begin{aligned}
D^{\alpha} B f(z) & -D^{\alpha} B\left(\mathfrak{p}_{Q}^{n} f\right)(z) \\
& =D^{\alpha} B\left(\chi_{2 Q}\left(f-\mathfrak{p}_{Q}^{n} f\right)\right)(z)+D^{\alpha} B\left(\left(1-\chi_{2 Q}\right)\left(f-\mathfrak{p}_{Q}^{n} f\right)\right)(z)
\end{aligned}
$$

A geometric condition for the Beurling transform

Defining some generalized betas of David-Semmes

A measure of the flatness of a set Γ :

Defining some generalized betas of David-Semmes

A measure of the flatness of a set Γ :
Definition (P. Jones)
$\beta_{\Gamma}(Q)=\inf _{V} \frac{\omega(V)}{\ell(Q)}$

Defining some generalized betas of David-Semmes

The graph of a function $y=A(x)$:

Consider $I \subset \mathbb{R}$, and define

Defining some generalized betas of David-Semmes

The graph of a function $y=A(x)$:
Consider $I \subset \mathbb{R}$, and define

Definition

$\beta_{\infty}(I, A)=\inf _{P \in \mathcal{P}^{1}}\left\|\frac{A-P}{\ell(I)}\right\|_{\infty}$

Defining some generalized betas of David-Semmes

The graph of a function $y=A(x)$:
Consider $I \subset \mathbb{R}$, and define

Definition

$\beta_{P}(I, A)=\inf _{P \in \mathcal{P}^{1}} \frac{1}{\ell(I)^{\frac{1}{P}}}\left\|\frac{A-P}{\ell(I)}\right\|_{P}$

Defining some generalized betas of David-Semmes

The graph of a function $y=A(x)$:
Consider $I \subset \mathbb{R}$, and define

Definition

$\beta_{(n)}(I, A)=\inf _{P \in \mathcal{P}^{n}} \frac{1}{\ell(I)}\left\|\frac{A-P}{\ell(I)}\right\|_{1}$
If there is no risk of confusion, we will write just $\beta_{(n)}(I)$.

Relation between $\beta_{(n)}$ and $B_{p, p}^{n}$

Theorem (Dorronsoro)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function in the homogeneous Besov space $\dot{B}_{p, p}^{s}$. Then, for any $n \geq[s]$,

$$
\|f\|_{\dot{B}_{p, p}^{s}}^{p} \approx \sum_{I \in \mathcal{D}}\left(\frac{\beta_{(n)}(I)}{\ell(I)^{s-1}}\right)^{p} \ell(I) .
$$

Local charts: Whitney decomposition

Local charts: Whitney decomposition

\mathcal{Q}_{k}
$\begin{aligned} & \int_{\mathcal{Q}_{\Uparrow} \cap \Omega}\left|\partial^{n} B \chi_{\Omega}(z)\right|^{p} d m(z) \\ \leq & \sum_{Q \in \mathcal{W}} \int_{Q}\left|\partial^{n} B \chi_{\Omega}(z)\right|^{p} d m(z)\end{aligned}$

Local charts: Whitney decomposition

Local charts: Bounds for the first derivative

Local charts: Bounds for the first derivative

$$
\begin{aligned}
& \chi_{\Omega}=\chi_{\Omega_{Q}}+\left(\chi_{\Omega}-\chi_{\Omega_{Q}}\right) \\
& \partial B \chi_{\Omega_{Q}}(z)=0
\end{aligned}
$$

\mathcal{Q}_{k}

$$
\begin{aligned}
& \int_{\mathcal{Q}_{\Omega} \Omega}\left|\partial B \chi_{\Omega}(z)\right|^{p} d m(z) \\
\leq & \sum_{Q \in \mathcal{W}} \int_{Q}\left|\partial B \chi_{\Omega}(z)\right|^{p} d m(z) \\
\leq & \sum_{Q \in \mathcal{W}} m(Q)\left\|\partial B \chi_{\Omega}\right\|_{L^{\infty}(Q)}^{p}
\end{aligned}
$$

000000

Local charts: Bounds for the first derivative

Conclusions

- For $p>2$ we have a $T(P)$ theorem for any Calderon-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.

Conclusions

- For $p>2$ we have a $T(P)$ theorem for any Calderon-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.
- In the complex plane, the Besov regularity $B_{p, p}^{n-1 / p}$ of the normal vector to the boundary of the domain gives us a bound of $B(P)$ in $W^{n, p}$ (and $0<s<1$).

Conclusions

- For $p>2$ we have a $T(P)$ theorem for any Calderon-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.
- In the complex plane, the Besov regularity $B_{p, p}^{n-1 / p}$ of the normal vector to the boundary of the domain gives us a bound of $B(P)$ in $W^{n, p}$ (and $0<s<1$).
- Next steps:
- Proving analogous results for any $s \in \mathbb{R}_{+}$.
- Looking for a more general set of operators where the Besov condition on the boundary implies Sobolev boundedness.
- Giving a necessary condition for the boundedness of the Beurling transform when $p \leq 2$.
- Sharpness of all those results.

Farewell

Thank you!

Local charts: Second order derivative

Local charts: Second order derivative

Local charts: Higher order derivatives

Local charts: Higher order derivatives

Bounding the polynomial region

We can choose the window length R small enough so that

Bounding the polynomial region

We can choose the window length R small enough so that
Proposition
If we denote by Ω_{Q} the region with boundary a minimizing polynomial for $\beta_{(n)}(\Phi(Q))$, we get

$$
\left|\partial^{n} B \chi_{\Omega_{Q}}\right| \leq \frac{C}{R^{n}}
$$

Bounding the interstitial region

Proposition

Choosing a minimizing polynomial for $\beta_{(n)}(\Phi(Q))$, we get

$$
\int_{\Omega \Delta \Omega_{Q}} \frac{d m(w)}{|z-w|^{n+2}} \lesssim \sum_{\substack{I \in \mathcal{D} \\ \Phi(Q) \subset I \subset \Phi\left(\mathcal{Q}_{k}\right)}} \frac{\beta_{(n)}(I)}{\ell(I)^{n}}+\frac{1}{R^{n}}
$$

Hölder inequalities do the rest

Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

$$
\left\|\partial^{n} B \chi_{\Omega}\right\|_{L^{p}(\Omega)}^{p} \lesssim \sum_{k=1}^{N} \sum_{I \in \mathcal{D}^{k}}\left(\frac{\beta_{(n)}(I)}{\ell(I)^{n-1 / p}}\right)^{p} \ell(I)+\mathcal{H}^{1}(\partial \Omega)^{2-n p} .
$$

Hölder inequalities do the rest

Using a decomposition in windows,

Theorem

Let Ω be a Lipschitz domain of order n. Then, with the previous notation,

$$
\left\|\partial^{n} B \chi_{\Omega}\right\|_{L^{p}(\Omega)}^{p} \lesssim\|N\|_{B_{p, p}^{n-1 / p}(\partial \Omega)}^{p}+\mathcal{H}^{1}(\partial \Omega)^{2-n p} .
$$

