Introduction. 000	Sufficient conditions on test functions.	The converse implication holds for $n = 1$. OO	A geometric condition. 000

Bounding Calderón-Zygmund operators in Sobolev spaces on Lipschitz domains PHD thesis in progress, directed by Xavier Tolsa

Martí Prats

May 24th, 2014

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction. Sufficient of	conditions on test functions. T	The converse implication holds for $n = 1$.	A geometric condition.
000 00000	00 0	00	000

Introduction.

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000			
The Be	urling transform.		

$$\mathcal{B}f(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
	rling transform.		

$$\mathcal{B}f(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

It is essential to quasiconformal mappings because

$$\mathcal{B}(\bar{\partial}f)=\partial f \qquad orall f\in W^{1,p}.$$

・ロト・<回ト・<回ト・<回ト・<ロト

	0000000	00	000
The Beu	rling transform.		

$$\mathcal{B}f(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

It is essential to quasiconformal mappings because

$$\mathcal{B}(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

Recall that $\mathcal{B}: L^p(\mathbb{C}) \to L^p(\mathbb{C})$ is bounded for 1 . $Also <math>\mathcal{B}: W^{n,p}(\mathbb{C}) \to W^{n,p}(\mathbb{C})$ is bounded for 1 and <math>n > 0.

	urling transform.		
		The converse implication holds for $h = 1$.	
Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.

$$\mathcal{B}f(z) = c_0 \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

It is essential to quasiconformal mappings because

$$\mathcal{B}(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

Recall that $\mathcal{B}: L^p(\mathbb{C}) \to L^p(\mathbb{C})$ is bounded for 1 . $Also <math>\mathcal{B}: W^{n,p}(\mathbb{C}) \to W^{n,p}(\mathbb{C})$ is bounded for 1 and <math>n > 0.

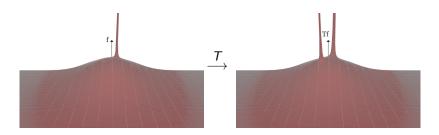
In general, if $x \notin \operatorname{supp}(f) \subset \mathbb{R}^d$ then a convolution CZO of order n is

$$Tf(x) = \int K(x-y)f(y)$$

with

$$|\nabla^j \mathcal{K}(x)| \leq \frac{1}{|x|^{d+j}}$$
 for $j \leq n$.

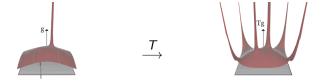
Introduction. 000	Sufficient conditions on test functions.	The converse implication holds for $n = 1$. OO	A geometric condition.
The prob	lem we face.		



◆□▶ ◆□▶ ◆目▶ ◆日▶ ●□■ のへで

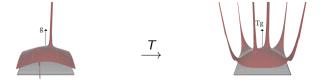
If $T: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$,

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000			
The prob	olem we face.		



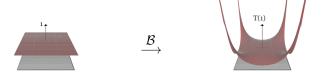
If $T: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d), \ T: L^p(\Omega) \to L^p(\Omega).$

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000			
The pro	blem we face.		



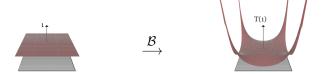
If $T : L^{p}(\mathbb{R}^{d}) \to L^{p}(\mathbb{R}^{d}), T : L^{p}(\Omega) \to L^{p}(\Omega).$ But for $g \in W^{1,p}(\Omega)$ maybe not $\nabla T(g) \in L^{p}(\Omega).$

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	0000000	00	000
The pro	blem we face.		



If $T : L^{p}(\mathbb{R}^{d}) \to L^{p}(\mathbb{R}^{d}), T : L^{p}(\Omega) \to L^{p}(\Omega).$ But for $g \in W^{1,p}(\Omega)$ maybe not $\nabla T(g) \in L^{p}(\Omega).$ For Ω a rectangle, $\mathcal{B}\chi_{\Omega}$ is in every $L^{p}(\Omega)$ but not in $W^{1,p}(\Omega)$ for $p \geq 2$.

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	0000000	00	000
The probl	em we face.		

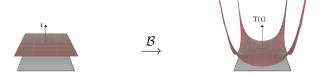


◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ Ξ = の Q @

If
$$T : L^{p}(\mathbb{R}^{d}) \to L^{p}(\mathbb{R}^{d}), T : L^{p}(\Omega) \to L^{p}(\Omega).$$

But for $g \in W^{1,p}(\Omega)$ maybe not $\nabla T(g) \in L^{p}(\Omega).$
When is $T : W^{n,p}(\Omega) \to W^{n,p}(\Omega)$ bounded?

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000			
The prob	lem we face.		



◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ Ξ = の Q @

If
$$T : L^{p}(\mathbb{R}^{d}) \to L^{p}(\mathbb{R}^{d}), T : L^{p}(\Omega) \to L^{p}(\Omega)$$
.
But for $g \in W^{1,p}(\Omega)$ maybe not $\nabla T(g) \in L^{p}(\Omega)$.
When is $T : W^{n,p}(\Omega) \to W^{n,p}(\Omega)$ bounded?
We seek for answers in terms of test functions and in terms of the geometry of the boundary.

URB Universitat Autónoma de Barcelona

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000			
Results.			

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^d$, T even and p > d. If $T(\chi_{\Omega}) \in W^{1,p}(\Omega)$, then T is bounded in $W^{1,p}(\Omega)$.

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	0000000	00	000
Results.			

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^d$, T even and p > d. If $T(\chi_{\Omega}) \in W^{1,p}(\Omega)$, then T is bounded in $W^{1,p}(\Omega)$.

Theorem (P., Tolsa, 2014)

Given a Lipschitz domain $\Omega \subset \mathbb{R}^d$ and p > d. If $T(P) \in W^{n,p}(\Omega)$ for polynomials $P \in \mathcal{P}^{n-1}(\Omega)$, then T is bounded in $W^{n,p}(\Omega)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000			
Results.			

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^d$, T even and p > d. If $T(\chi_{\Omega}) \in W^{1,p}(\Omega)$, then T is bounded in $W^{1,p}(\Omega)$.

Theorem (P., Tolsa, 2014)

Given a Lipschitz domain $\Omega \subset \mathbb{R}^d$ and p > d. If $T(P) \in W^{n,p}(\Omega)$ for polynomials $P \in \mathcal{P}^{n-1}(\Omega)$, then T is bounded in $W^{n,p}(\Omega)$.

Theorem (P., Tolsa, 2014)

For any $1 , if <math>|\nabla^n T(P)(x)|^p dx$ is a p-Carleson measure in Ω for every $P \in \mathcal{P}^{n-1}(\Omega)$, then T is bounded in $W^{n,p}(\Omega)$.

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000			
Results.			

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^d$, T even and p > d. If $T(\chi_{\Omega}) \in W^{1,p}(\Omega)$, then T is bounded in $W^{1,p}(\Omega)$.

Theorem (P., Tolsa, 2014)

Given a Lipschitz domain $\Omega \subset \mathbb{R}^d$ and p > d. If $T(P) \in W^{n,p}(\Omega)$ for polynomials $P \in \mathcal{P}^{n-1}(\Omega)$, then T is bounded in $W^{n,p}(\Omega)$.

Theorem (P., Tolsa, 2014)

For any $1 , if <math>|\nabla^n T(P)(x)|^p dx$ is a p-Carleson measure in Ω for every $P \in \mathcal{P}^{n-1}(\Omega)$, then T is bounded in $W^{n,p}(\Omega)$. If n = 1, the converse is true.

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
Results.			

Theorem (P., Tolsa 2013)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to the boundary of Ω is in the Besov space $B_{p,p}^{n-\frac{1}{p}}(\partial\Omega)$ then $\mathcal{B}(\chi_{\Omega}) \in W^{n,p}(\Omega)$, with

$$\|\nabla^{n}\mathcal{B}(\chi_{\Omega})\|_{L^{p}(\Omega)}^{p} \lesssim \|N\|_{B^{n-1/p}_{p,p}(\partial\Omega)}^{p} + C_{\text{length}(\partial\Omega)}.$$

Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
0000000		

Sufficient conditions on test functions.

・ロト < 団ト < 三ト < 三ト < 三日 < つへの

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	•0000000	OO	
The Whi	tney covering.		

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000		OO	000
The Wł	nitney covering.		

Consider a Lipschitz domain Ω .

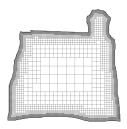
・ロト < 団ト < 三ト < 三ト < 三日 < つへの

Sufficient conditions on test functions.

The converse implication holds for n = 1.

A geometric condition. 000

The Whitney covering.



Consider a Lipschitz domain $\Omega.$ We perform a Whitney covering ${\cal W}$ such that

- dist $(Q, \partial \Omega) \approx \ell(Q)$.
- $\{5Q\}_{Q \in \mathcal{W}}$ has finite superposition.

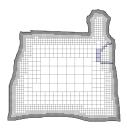
(日)

000	

Sufficient conditions on test functions. •0000000 The converse implication holds for n = 1.

A geometric condition. 000

The Whitney covering.



Consider a Lipschitz domain $\Omega.$ We perform a Whitney covering ${\cal W}$ such that

- dist $(Q, \partial \Omega) \approx \ell(Q)$.
- $\{5Q\}_{Q \in \mathcal{W}}$ has finite superposition.

We can think on Harnack chains.

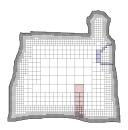
000	

Sufficient conditions on test functions.

The converse implication holds for n = 1.

A geometric condition. 000

The Whitney covering.



Consider a Lipschitz domain $\Omega.$ We perform a Whitney covering $\ensuremath{\mathcal{W}}$ such that

- dist $(Q, \partial \Omega) \approx \ell(Q)$.
- $\{5Q\}_{Q \in \mathcal{W}}$ has finite superposition.

We can think on Harnack chains. We can think on Carleson boxes (or shadows).

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

A new approach for the case n = 1:

Key Lemma

The following are equivalent:

•
$$\|\nabla Tf\|_{L^{p}(\Omega)} \leq C \|f\|_{W^{1,p}(\Omega)}$$
.

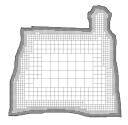
•
$$\sum_{Q\in\mathcal{W}} \|\nabla T(f_{3Q}\chi_{\Omega})\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p.$$

We want to see that $T(\chi_{\Omega}) \in W^{1,p}(\Omega)$ implies T bounded in $W^{1,p}(\Omega)$.

Introduction. Sufficient conditions on test functions. The converse implication holds for n = 1. A geometric condition. OCO Proof of the T(P) theorem (p > d).

> We want to see that $T(\chi_{\Omega}) \in W^{1,p}(\Omega)$ implies T bounded in $W^{1,p}(\Omega)$.

> > ▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

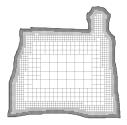


$$\sum_{Q\in\mathcal{W}} \|\nabla T(f_{3Q}\,\chi_{\Omega})\|_{L^{p}(Q)}^{p}$$

UPB Interstat Autónoma de Barcelona

6

We want to see that $T(\chi_{\Omega}) \in W^{1,p}(\Omega)$ implies T bounded in $W^{1,p}(\Omega)$.



$$\sum_{Q \in \mathcal{W}} \|\nabla T(f_{3Q} \chi_{\Omega})\|_{L^{p}(Q)}^{p}$$
$$= \sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \|\nabla T \chi_{\Omega}\|_{L^{p}(Q)}^{p}$$

We want to see that $T(\chi_{\Omega}) \in W^{1,p}(\Omega)$ implies T bounded in $W^{1,p}(\Omega)$.

$$\begin{split} \sum_{Q \in \mathcal{W}} \| \nabla T(f_{3Q} \chi_{\Omega}) \|_{L^{p}(Q)}^{p} \\ &= \sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \| \nabla T \chi_{\Omega} \|_{L^{p}(Q)}^{p} \\ &\leq \| f \|_{L^{\infty}}^{p} \| \nabla T(\chi_{\Omega}) \|_{L^{p}(\Omega)}^{p} \end{split}$$

We want to see that $T(\chi_{\Omega}) \in W^{1,p}(\Omega)$ implies T bounded in $W^{1,p}(\Omega)$.

$$\begin{split} \sum_{Q \in \mathcal{W}} \|\nabla T(f_{3Q} \chi_{\Omega})\|_{L^{p}(Q)}^{p} \\ &= \sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \|\nabla T \chi_{\Omega}\|_{L^{p}(Q)}^{p} \\ &\leq \|f\|_{L^{\infty}}^{p} \|\nabla T(\chi_{\Omega})\|_{L^{p}(\Omega)}^{p} \\ &\leq C \|f\|_{L^{\infty}}^{p}. \end{split}$$

20

We want to see that $T(\chi_{\Omega}) \in W^{1,p}(\Omega)$ implies T bounded in $W^{1,p}(\Omega)$.

$$\begin{split} \sum_{e \in \mathcal{W}} \| \nabla T(f_{3Q} \chi_{\Omega}) \|_{L^{p}(Q)}^{p} \\ &= \sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \| \nabla T \chi_{\Omega} \|_{L^{p}(Q)}^{p} \\ &\leq \| f \|_{L^{\infty}}^{p} \| \nabla T(\chi_{\Omega}) \|_{L^{p}(\Omega)}^{p} \\ &\leq C \| f \|_{L^{\infty}}^{p}. \end{split}$$

Since p > d, by the Sobolev Embedding Theorem

$$\|f\|_{L^{\infty}} \leq C \|f\|_{W^{1,p}(\Omega)}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Consider $\rho(z) = \operatorname{dist}(z, \partial \mathbb{D})^{2-\rho}$. For analytic functions in \mathbb{D} ,

$$\|f\|_{B_p(\rho)}^p = |f(0)|^p + \int_{\mathbb{D}} |f'(z)|^p (1-|z|^2)^p \rho(z) \frac{dm(z)}{(1-|z|^2)^2} \approx \|f\|_{W^{1,p}(\mathbb{D})}^p.$$

Carleson	n measures in the Re	esov space of analytic	- functions
000	0000000	00	000
	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.

Consider $\rho(z) = \operatorname{dist}(z, \partial \mathbb{D})^{2-p}$. For analytic functions in \mathbb{D} ,

$$\|f\|_{B_p(\rho)}^p = |f(0)|^p + \int_{\mathbb{D}} |f'(z)|^p (1-|z|^2)^p \rho(z) \frac{dm(z)}{(1-|z|^2)^2} \approx \|f\|_{W^{1,p}(\mathbb{D})}^p.$$

We say μ is Carleson for $B_p(\rho)$ if $\|f\|_{L^p(\mu)} \leq C \|f\|_{B_p(\rho)}$.

Carleson measures in the Resov space of analytic functions				
000	0000000	00	000	
	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.	

Consider $\rho(z) = \operatorname{dist}(z, \partial \mathbb{D})^{2-p}$. For analytic functions in \mathbb{D} ,

$$\|f\|_{B_p(\rho)}^p = |f(0)|^p + \int_{\mathbb{D}} |f'(z)|^p (1-|z|^2)^p \rho(z) \frac{dm(z)}{(1-|z|^2)^2} \approx \|f\|_{W^{1,p}(\mathbb{D})}^p.$$

We say μ is Carleson for $B_{\rho}(\rho)$ if $||f||_{L^{p}(\mu)} \leq C ||f||_{B_{\rho}(\rho)}$.

Theorem (Arcozzi, Rochberg and Sawyer, 2002)

The following are equivalent:

• μ is Carleson for $B_p(\rho)$.

• For every Whitney cube
$$P$$
,

$$\sum_{Q \subset \mathsf{Sh}(P)} \mu(\mathsf{Sh}(Q))^{p'} \rho(Q)^{1-p'} \leq C\mu(\mathsf{Sh}(P)).$$

Carleson	measures in the Re	sov space of analytic	functions
000	0000000	00	000
	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.

Consider $\rho(z) = \operatorname{dist}(z, \partial \mathbb{D})^{2-p}$. For analytic functions in \mathbb{D} ,

$$\|f\|_{B_p(\rho)}^p = |f(0)|^p + \int_{\mathbb{D}} |f'(z)|^p (1-|z|^2)^p \rho(z) \frac{dm(z)}{(1-|z|^2)^2} \approx \|f\|_{W^{1,p}(\mathbb{D})}^p.$$

We say μ is Carleson for $B_{\rho}(\rho)$ if $||f||_{L^{p}(\mu)} \leq C ||f||_{B_{\rho}(\rho)}$.

Theorem (Arcozzi, Rochberg and Sawyer, 2002)

The following are equivalent:

- μ is Carleson for $B_p(\rho)$.
- For every Whitney cube P, $\sum_{Q \subset \mathbf{Sh}(P)} \mu(\mathbf{Sh}(Q))^{p'} \rho(Q)^{1-p'} \leq C\mu(\mathbf{Sh}(P)).$

• For every
$$h \in l^{p}(\mathcal{W})$$
,

$$\sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathbf{Sh}(P)} h(P) \right)^{p} \mu(Q) \leq C \sum_{Q} h(Q)^{p} \rho(Q).$$

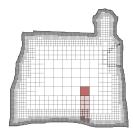
Introdu	

Sufficient conditions on test functions.

The converse implication holds for n = 1.

A geometric condition.

The Carleson measures.



Definition

We say that μ is *p*-Carleson for $\Omega \subset \mathbb{R}^d$ iff for every Whitney cube *P*,

 $\sum_{Q \subset \mathsf{Sh}(P)} \mu(\mathsf{Sh}(Q))^{p'} \ell(Q)^{\frac{p-d}{p-1}} \leq C \mu(\mathsf{Sh}(P)).$

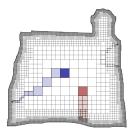
	Sufficient con
000	00000000

ifficient conditions on test functions.

The converse implication holds for n = 1.

A geometric condition.

The Carleson measures.



Definition

We say that μ is *p*-Carleson for $\Omega \subset \mathbb{R}^d$ iff for every Whitney cube *P*,

$$\sum_{Q\subset \mathsf{Sh}(P)} \mu(\mathsf{Sh}(Q))^{p'} \ell(Q)^{\frac{p-d}{p-1}} \leq C\mu(\mathsf{Sh}(P)).$$

For every $h \in I^p(\mathcal{W})$, $\sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset Sh(P)} h(P) \right)^p \mu(Q) \leq C \sum_Q h(Q)^p \ell(Q)^{d-p}.$

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	00000000	00	000
Proof of	$Carleson \Rightarrow bound$	edness ($p \leq d$).	

$$\mu(x) = |\nabla T \chi_{\Omega}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T(\chi_{\Omega})\|_{L^p(Q)}^p\leq C\|f\|_{W^{1,p}(\Omega)}^p.$$

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	00000000	00	000
Proof of	$Carleson \Rightarrow bound$	edness ($p \leq d$).	

$$\mu(x) = |\nabla T \chi_{\Omega}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T(\chi_{\Omega})\|_{L^p(Q)}^p\leq C\|f\|_{W^{1,p}(\Omega)}^p.$$

But,

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\mu(Q)$$

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	00000000	00	000
Proof of	$Carleson \Rightarrow bound$	edness ($p \leq d$).	

$$\mu(x) = |\nabla T \chi_{\Omega}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T(\chi_{\Omega})\|_{L^p(Q)}^p\leq C\|f\|_{W^{1,p}(\Omega)}^p.$$

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

But,

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\mu(Q)\leq \sum_{Q\in\mathcal{W}}\left(\sum_{P:\,Q\subset\mathsf{Sh}(P)}|f_{3P}-f_{3\mathcal{N}(P)}|\right)^p\mu(Q)$$

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
	00000000		
Proof of	$Carleson \Rightarrow bounded$	edness ($p \leq d$).	

$$\mu(x) = |\nabla T \chi_{\Omega}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T(\chi_{\Omega})\|_{L^p(Q)}^p\leq C\|f\|_{W^{1,p}(\Omega)}^p.$$

But, by Poincaré inequalities

$$\sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \mu(Q) \leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} |f_{3P} - f_{3\mathcal{N}(P)}| \right)^{p} \mu(Q)$$
$$\leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} \|\nabla f\|_{L^{p}(5P)} \ell(P)^{1-\frac{d}{p}} \right)^{p} \mu(Q)$$

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	00000000	00	000
Proof of	$Carleson \Rightarrow bounded$	edness ($p \leq d$).	

$$\mu(x) = |\nabla T \chi_{\Omega}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T(\chi_\Omega)\|_{L^p(Q)}^p\leq C\|f\|_{W^{1,p}(\Omega)}^p.$$

But, by Poincaré inequalities and the p-Carleson measure properties,

$$\sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \mu(Q) \leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} |f_{3P} - f_{3\mathcal{N}(P)}| \right)^{p} \mu(Q)$$

$$\leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} \|\nabla f\|_{L^{p}(5P)} \ell(P)^{1 - \frac{d}{p}} \right)^{p} \mu(Q)$$

$$\leq C \sum_{Q \in \mathcal{W}} \|\nabla f\|_{L^{p}(5Q)}^{p}$$

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	00000000	00	000
Proof of	$Carleson \Rightarrow bounded$	edness ($p \leq d$).	

$$\mu(x) = |\nabla T \chi_{\Omega}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T(\chi_\Omega)\|_{L^p(Q)}^p\leq C\|f\|_{W^{1,p}(\Omega)}^p.$$

But, by Poincaré inequalities and the p-Carleson measure properties,

$$\begin{split} \sum_{Q \in \mathcal{W}} |f_{3Q}|^p \mu(Q) &\leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: |Q \subset \mathsf{Sh}(P)|} |f_{3P} - f_{3\mathcal{N}(P)}| \right)^p \mu(Q) \\ &\leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: |Q \subset \mathsf{Sh}(P)|} \|\nabla f\|_{L^p(5P)} \ell(P)^{1 - \frac{d}{p}} \right)^p \mu(Q) \\ &\leq C \sum_{Q \in \mathcal{W}} \|\nabla f\|_{L^p(5Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p \end{split}$$

Introd	

The converse implication holds for n = 1.

A geometric condition.

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Idea of the proof of the Key Lemma.

Key Lemma

The following are equivalent:

- $\|\nabla Tf\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$.
- $\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T(\chi_\Omega)\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p.$

Introd	

The converse implication holds for n = 1.

A geometric condition.

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Idea of the proof of the Key Lemma.

Key Lemma

The following are equivalent:

- $\|\nabla Tf\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$.
- $\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T(\chi_\Omega)\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p.$

Enough to prove

$$\sum_{Q} \|\nabla T(f - f_{3Q})\|_{L^p(Q)}^p \lesssim \|\nabla f\|_{L^p(\Omega)}^p.$$

Introd	

The converse implication holds for n = 1.

A geometric condition.

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Idea of the proof of the Key Lemma.

Key Lemma

The following are equivalent:

- $\|\nabla Tf\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$.
- $\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T(\chi_\Omega)\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p.$

Enough to prove

$$\sum_{Q} \|
abla T(f-f_{3Q}) \|_{L^p(Q)}^p \lesssim \|
abla f \|_{L^p(\Omega)}^p.$$

Break the local part and non-local part.

Introd	

The converse implication holds for n = 1.

A geometric condition.

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Idea of the proof of the Key Lemma.

Key Lemma

The following are equivalent:

- $\|\nabla Tf\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$.
- $\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T(\chi_\Omega)\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p.$

Enough to prove

$$\sum_{Q} \|
abla T(f-f_{3Q}) \|_{L^p(Q)}^p \lesssim \|
abla f \|_{L^p(\Omega)}^p.$$

Break the local part and non-local part. Local part is a good function, in $W^{1,p}(\mathbb{R}^d)$.

Introd	

The converse implication holds for n = 1.

A geometric condition.

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Idea of the proof of the Key Lemma.

Key Lemma

The following are equivalent:

- $\|\nabla Tf\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$.
- $\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T(\chi_\Omega)\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p.$

Enough to prove

$$\sum_{Q} \|
abla T(f-f_{3Q}) \|_{L^p(Q)}^p \lesssim \|
abla f \|_{L^p(\Omega)}^p.$$

Break the local part and non-local part. Local part is a good function, in $W^{1,p}(\mathbb{R}^d)$. For the non-local part, we use a Harnack chain of cubes.

Introd	

The converse implication holds for n = 1.

A geometric condition.

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Idea of the proof of the Key Lemma.

Key Lemma

The following are equivalent:

- $\|\nabla Tf\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$.
- $\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T(\chi_\Omega)\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p.$

Enough to prove

$$\sum_{Q} \|
abla T(f - f_{3Q}) \|_{L^p(Q)}^p \lesssim \|
abla f \|_{L^p(\Omega)}^p.$$

Break the local part and non-local part. Local part is a good function, in $W^{1,p}(\mathbb{R}^d)$. For the non-local part, we use a Harnack chain of cubes. Ingredients: bounds for the kernel, Poincaré inequality and Hölder.

Introduction. 000	Sufficient conditions on test functions.	The converse implication holds for $n = 1$. OO	A geometric condition.
What ab	out $n \ge 2?$		

• We need to iterate the Poincaré inequality to get derivatives of higher order. Thus, we approximate f in 3Q by polynomials $\mathbf{P}_{3Q}^{n-1}f$ instead of the mean value f_{3Q} . The conditions for those polynomials are

$$\int_{3Q} D^{\alpha} \mathbf{P}_{3Q}^{n-1} f = \int_{3Q} D^{\alpha} f \quad \text{for any } |\alpha| < n.$$

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000		OO	000
What a	bout $n \ge 2?$		

• We need to iterate the Poincaré inequality to get derivatives of higher order. Thus, we approximate f in 3Q by polynomials $\mathbf{P}_{3Q}^{n-1}f$ instead of the mean value f_{3Q} . The conditions for those polynomials are

$$\int_{3Q} D^{\alpha} \mathbf{P}_{3Q}^{n-1} f = \int_{3Q} D^{\alpha} f \quad \text{for any } |\alpha| < n.$$

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

• When we use the Harnack chain we don't compare numbers but functions evaluated at a certain distance. Thus new polynomially growing terms will appear.

Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
0000000		

The converse implication holds for n = 1.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E ■ 9 Q @</p>

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
		•0	
A dualit	ty argument $(n = 1)$		

r

 \circ

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
		00	
A duality	y argument ($n = 1$)).	

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1,p}(\Omega)
ightarrow L^p(\mu)$ for

$$\mu(x) = |\nabla T \chi_{\Omega}(x)|^p dx.$$

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

🕨 Key Lemma

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
		•0	
A duality	v argument $(n = 1)$).	

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1,p}(\Omega) \to L^p(\mu)$ for

$$\mu(x) = |\nabla T \chi_{\Omega}(x)|^p dx.$$

(日)

Key Lemma

(case p=2, d=2): by duality, $\mathcal{A}^* : L^2(\mu) \to W^{1,2}(\Omega)$ is also bounded.

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
		00	
A duality	\prime argument ($n=1$)).	

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1,p}(\Omega) \to L^p(\mu)$ for

$$\mu(x) = |\nabla T \chi_{\Omega}(x)|^{p} dx.$$

Key Lemma

(case p=2, d=2): by duality, $\mathcal{A}^* : L^2(\mu) \to W^{1,2}(\Omega)$ is also bounded. Objective: for any P,

$$\sum_{Q\subset \mathsf{Sh}(P)}\mu(\mathsf{Sh}(Q))^2 \leq C\mu(\mathsf{Sh}(P)).$$

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
		••	
A duality	v argument $(n = 1)$).	

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1,p}(\Omega) \to L^p(\mu)$ for

$$\mu(x) = |\nabla T \chi_{\Omega}(x)|^{p} dx.$$

Key Lemma

(case p=2, d=2): by duality, $\mathcal{A}^* : L^2(\mu) \to W^{1,2}(\Omega)$ is also bounded. Objective: for any P,

$$\sum_{Q\subset \mathsf{Sh}(P)}\mu(\mathsf{Sh}(Q))^2 \leq C\mu(\mathsf{Sh}(P)).$$

For $g = \chi_{\mathbf{Sh}(P)}$,

$$\left\|\mathcal{A}^{*}g\right\|_{W^{1,2}(\Omega)}^{2}\lesssim\left\|g\right\|_{L^{2}(\mu)}^{2}=\mu(\mathsf{Sh}(P))$$

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	0000000	00	000
The Ne	uman problem (n -	- 1)	

To get

$$\sum_{Q\subset \mathsf{Sh}(P)} \mu(\mathsf{Sh}(Q))^2 \lesssim \|\mathcal{A}^*g\|^2_{W^{1,2}(\Omega)} + ext{error terms}$$

we need to estimate $\|\mathcal{A}^*g\|_{W^{1,2}(\Omega)}$ from below.

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	0000000	00	000
	11 (1)	

To get

$$\sum_{Q\subset \mathsf{Sh}(P)} \mu(\mathsf{Sh}(Q))^2 \lesssim \|\mathcal{A}^*g\|^2_{W^{1,2}(\Omega)} + ext{error terms}$$

we need to estimate $\|\mathcal{A}^*g\|_{W^{1,2}(\Omega)}$ from below. For $f \in W^{1,2}(\Omega)$

$$\langle \mathcal{A}^*(g), f \rangle = \int_{\Omega} g \, \mathcal{A}(f) \, d\mu = \int_{\Omega} \widetilde{g} \, f \, dx$$

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	0000000	00	000
TI. N.		1)	

To get

$$\sum_{Q\subset \mathsf{Sh}(P)} \mu(\mathsf{Sh}(Q))^2 \lesssim \|\mathcal{A}^*g\|^2_{W^{1,2}(\Omega)} + ext{error terms}$$

we need to estimate $\|\mathcal{A}^*g\|_{W^{1,2}(\Omega)}$ from below. For $f\in W^{1,2}(\Omega)$

$$\langle \mathcal{A}^*(g), f \rangle = \int_{\Omega} g \, \mathcal{A}(f) \, d\mu = \int_{\Omega} \widetilde{g} \, f \, dx$$

But using Hilbert structure of $W^{1,2}(\Omega)$, $\mathcal{A}^*(g)$ is represented by a function $h \in W^{1,2}(\Omega)$ with

$$\langle \mathcal{A}^*(g), f \rangle = \int_{\Omega} \nabla h \cdot \nabla f = -\int_{\Omega} \Delta h f \, dx + \int_{\partial \Omega} \partial_{\nu} h f \, d\sigma.$$

	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	0000000	0•	000
TI NI	11 /	1)	

To get

$$\sum_{Q\subset \mathsf{Sh}(P)} \mu(\mathsf{Sh}(Q))^2 \lesssim \|\mathcal{A}^*g\|^2_{W^{1,2}(\Omega)} + ext{error terms}$$

we need to estimate $\|\mathcal{A}^*g\|_{W^{1,2}(\Omega)}$ from below. For $f\in W^{1,2}(\Omega)$

$$\langle \mathcal{A}^*(g), f \rangle = \int_{\Omega} g \, \mathcal{A}(f) \, d\mu = \int_{\Omega} \widetilde{g} \, f \, dx$$

But using Hilbert structure of $W^{1,2}(\Omega)$, $\mathcal{A}^*(g)$ is represented by a function $h \in W^{1,2}(\Omega)$ with

$$\langle \mathcal{A}^*(g), f \rangle = \int_{\Omega} \nabla h \cdot \nabla f = -\int_{\Omega} \Delta h f \, dx + \int_{\partial \Omega} \partial_{\nu} h f \, d\sigma.$$

Thus, h is the solution of the Neuman problem

$$\begin{cases} -\Delta h = \widetilde{g} & \text{ in } \Omega, \\ \partial_{\nu} h = 0 & \text{ in } \partial \Omega. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

U	AB
Universit	at Autônoma
de B	arcelona

Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
0000000		

A geometric condition.

Ingredie	ents for the proof.		
000	0000000	00	000
Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to $\partial\Omega$ is in the Besov space $B_{p,p}^{n-\frac{1}{p}}(\partial\Omega)$ then $\mathcal{B}(\chi_{\Omega}) \in W^{n,p}(\Omega)$, with

$$\|
abla^n B\chi_\Omega\|_{L^p(\Omega)}^p \lesssim \|N\|_{B^{n-1/p}_{p,p}}^p + C_{ ext{length}(\partial\Omega)}.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Ingredie	nts for the proof.		
000	0000000	00	000
Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to $\partial\Omega$ is in the Besov space $B_{p,p}^{n-\frac{1}{p}}(\partial\Omega)$ then $\mathcal{B}(\chi_{\Omega}) \in W^{n,p}(\Omega)$, with

$$\|\nabla^n B\chi_{\Omega}\|_{L^p(\Omega)}^p \lesssim \|N\|_{B^{n-1/p}_{p,p}(\partial\Omega)}^p + C_{\text{length}(\partial\Omega)}.$$

Ingredients:

• Generalized Peter Jones' betas (using polynomials instead of lines).

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	0000000	00	000
Ingredie	nts for the proof		

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to $\partial\Omega$ is in the Besov space $B_{p,p}^{n-\frac{1}{p}}(\partial\Omega)$ then $\mathcal{B}(\chi_{\Omega}) \in W^{n,p}(\Omega)$, with

$$\|\nabla^n B\chi_{\Omega}\|_{L^p(\Omega)}^p \lesssim \|N\|_{B^{n-1/p}_{p,p}(\partial\Omega)}^p + C_{\text{length}(\partial\Omega)}.$$

Ingredients:

• Generalized Peter Jones' betas (using polynomials instead of lines).

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

• Equivalence between Besov $B^s_{\rho,\rho}$ norm and a sum of betas (Dorronsoro).

o

Introduction.	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
000	0000000	00	000
Ingredie	ents for the proof		

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to $\partial\Omega$ is in the Besov space $B_{p,p}^{n-\frac{1}{p}}(\partial\Omega)$ then $\mathcal{B}(\chi_{\Omega}) \in W^{n,p}(\Omega)$, with

$$\|\nabla^n B\chi_{\Omega}\|_{L^p(\Omega)}^p \lesssim \|N\|_{B^{n-1/p}_{p,p}(\partial\Omega)}^p + C_{\text{length}(\partial\Omega)}.$$

Ingredients:

• Generalized Peter Jones' betas (using polynomials instead of lines).

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

- Equivalence between Besov $B^s_{\rho,\rho}$ norm and a sum of betas (Dorronsoro).
- Beurling of characteristic functions of circles, half-planes, polynomials, ...

See deta

000 000	000000	00	000
Conclusions.			

• For p > d we have a T(P) theorem for any Calderon-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.

Introduction. 000	Sufficient conditions on test functions.	The converse implication holds for $n = 1$. OO	A geometric condition.
Conclus	sions.		

- For p > d we have a T(P) theorem for any Calderon-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.
- For p ≤ d it is not enough to have the images of polynomials bounded, but it suffices that they are Carleson measures. When n = 1, this yields a complete characterization.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction. 000	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
Conclusio	ns.		

- For p > d we have a T(P) theorem for any Calderon-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.
- For p ≤ d it is not enough to have the images of polynomials bounded, but it suffices that they are Carleson measures. When n = 1, this yields a complete characterization.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• In the complex plane, the Besov regularity $B_{p,p}^{n-1/p}$ of the normal vector to the boundary of the domain gives us a bound of $\mathcal{B}(P)$ in $W^{n,p}$ (and 0 < s < 1).

Canalusiana	 A geometric condition. O●O
Conclusions.	

- For p > d we have a T(P) theorem for any Calderon-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.
- For p ≤ d it is not enough to have the images of polynomials bounded, but it suffices that they are Carleson measures. When n = 1, this yields a complete characterization.
- In the complex plane, the Besov regularity $B_{p,p}^{n-1/p}$ of the normal vector to the boundary of the domain gives us a bound of $\mathcal{B}(P)$ in $W^{n,p}$ (and 0 < s < 1).
- Next steps:
 - Proving analogous results for any $s \in \mathbb{R}_+$.
 - Looking for a more general set of operators where the Besov condition on the boundary implies Sobolev boundedness.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

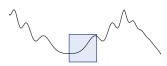
• Sharpness of all those results.

Introduction. 000	Sufficient conditions on test functions.	The converse implication holds for $n = 1$.	A geometric condition.
The end.			

Moltes gràcies!!

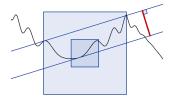
◆□ ▶ < @ ▶ < E ▶ < E ▶ E ■ 9 Q @</p>

Defining some generalized betas of David-Semmes.



A measure of the flatness of a set Γ :

Defining some generalized betas of David-Semmes.



A measure of the flatness of a set Γ :

Definition (P. Jones) $\beta_{\Gamma}(Q) = \inf_{V} \frac{w(V)}{\ell(Q)}$

◆□> ◆□> ◆三> ◆三> 三三 のへの

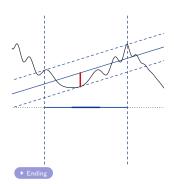
Ending

.....

The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

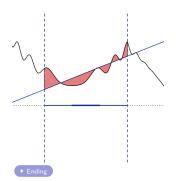
Ending



The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

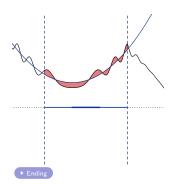
Definition $\beta_{\infty}(I, A) = \inf_{P \in \mathcal{P}^{1}} \left\| \frac{A - P}{\ell(I)} \right\|_{\infty}$



The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

Definition

$$\beta_p(I, A) = \inf_{P \in \mathcal{P}^1} \frac{1}{\ell(I)^{\frac{1}{p}}} \left\| \frac{A - P}{\ell(I)} \right\|_p$$



The graph of a function y = A(x): Consider $I \subset \mathbb{R}$, and define

Definition $\beta_{(n)}(I, A) = \inf_{P \in \mathcal{P}^n} \frac{1}{\ell(I)} \left\| \frac{A - P}{\ell(I)} \right\|_1$

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

If there is no risk of confusion, we will write just $\beta_{(n)}(I)$.

Definition

For $0 < s < \infty$, $1 \leq p < \infty$, $f \in B^s_{p,p}(\mathbb{R})$ if

$$\|f\|_{B^s_{p,p}} = \|f\|_{L^p} + \left(\int_{\mathbb{R}}\int_{\mathbb{R}}\left|\frac{\Delta_h^{[s]+1}f(x)}{h^s}\right|^p \frac{dm(h)}{|h|}dm(x)\right)^{1/p} < \infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへ⊙

Definition

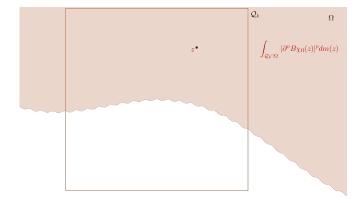
For $0 < s < \infty$, $1 \leq p < \infty$, $f \in B^s_{p,p}(\mathbb{R})$ if

$$\|f\|_{B^s_{\rho,\rho}} = \|f\|_{L^p} + \left(\int_{\mathbb{R}}\int_{\mathbb{R}}\left|\frac{\Delta_h^{[s]+1}f(x)}{h^s}\right|^p \frac{dm(h)}{|h|}dm(x)\right)^{1/p} < \infty.$$

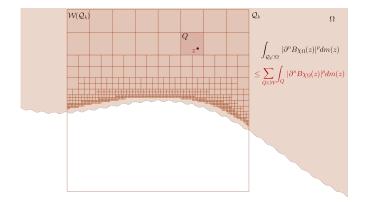
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▲ ◇◇◇

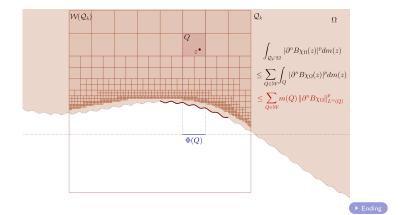
Theorem (Dorronsoro)

Let $f : \mathbb{R} \to \mathbb{R}$ be a function in the Besov space $B^s_{p,p}$. Then, for any $n \ge [s]$, $\|f\|^p_{B^s_{p,p}} \approx \|f\|_{L^p} + \sum_{l \in \mathcal{D}} \left(\frac{\beta_{(n)}(l)}{\ell(l)^{s-1}}\right)^p \ell(l).$

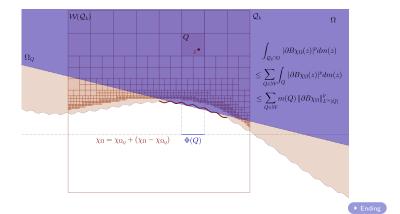


・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

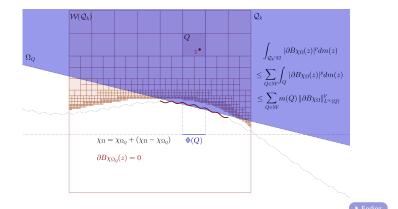


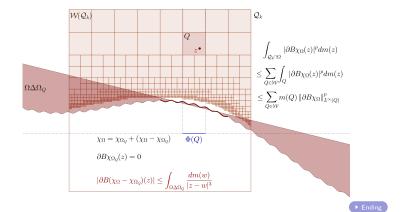


Universitat Autónoma de Barcelona



UP B Universitat Autónoma de Barcelona





UPAB Universitat Autónoma de Barcelona