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The Beurling transform of a function € LP(C) is:

Bf(z) = ¢o lim / f(iw)zdm(w).

e=0 Jiw_z|>e (z—w)
It is essential to quasiconformal mappings because
B(df) = of Vf e Whe.

Recall that B : LP(C) — LP(C) is bounded for 1 < p < cc.
Also B : W™P(C) — W™P(C) is bounded for 1 < p < oo and n > 0.

In general, if x ¢ supp(f) C RY then a convolution CZO of order n is

with
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If T:LP(RY) — LP(RY), T : LP(Q) — LP(Q).

But for g € W1P(Q) maybe not VT(g) € LP(R).

When is T : W™P(Q) — W"™P(Q2) bounded?

We seek for answers in terms of test functions and in terms
of the geometry of the boundary.
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Theorem (Cruz, Mateu, Orobitg, 2013)

Given a C1*t¢ domain Q c R?, T even and p>d.
If T(xa) € WHP(Q), then T is bounded in WP(Q).
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Theorem (P., Tolsa, 2014)

Given a Lipschitz domain Q C R? and p > d. If T(P) € W™P(Q)
for polynomials P € P"~1(Q), then T is bounded in W™P(Q).

\

Theorem (P., Tolsa, 2014)

Forany 1 < p <d, if [V"T(P)(x)|Pdx is a p-Carleson measure in Q
for every P € P"~1(Q), then T is bounded in W™P(Q).
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Theorem (Cruz, Mateu, Orobitg, 2013)

Given a C1*¢ domain Q c RY, T even and p > d.
If T(xa) € WHP(Q), then T is bounded in WP(Q).

Theorem (P., Tolsa, 2014)

Given a Lipschitz domain Q C R? and p > d. If T(P) € W™P(Q)
for polynomials P € P"~1(Q), then T is bounded in W™P(Q).

\

Theorem (P., Tolsa, 2014)

Forany 1 < p <d, if [V"T(P)(x)|Pdx is a p-Carleson measure in Q
for every P € P"~1(Q), then T is bounded in W™P(Q).
If n =1, the converse is true.
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Consider a Lipschitz domain Q.
We perform a Whitney covering W
such that
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e {5Q}qew has finite
superposition.

We can choose a central cube.
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The Whitney covering.

Consider a Lipschitz domain Q.
We perform a Whitney covering W
such that

o dist(Q,00Q) ~ ¢(Q).

o {5Q}ew has finite
superposition.

We can choose a central cube.
We can think on Carleson boxes
(or shadows).

We can think on Harnack chains.
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The key point: approximating by polynomials.

A new approach for the case n = 1:

The following are equivalent:
o [VTFLoq) < Cliflwinga)

° ZQew|f30|”HVT(XQ)IILp(Q < Cllf a0

Enough to prove

S IVT(F = fioxa)llfog) S IVFII@
Q

Break the local part and non-local part.

Local part is a good function, in W1P(R?).

For the non-local part, we use a Harnack chain of cubes.
Ingredients: bounds for the kernel, Poincaré inequality and Holder.
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Proof of the T(P) theorem (p > d).

We want to see that T(xq) € W1P(Q)
implies T bounded in W1P(Q).

T
/7 > 1BalPIV Txallfaq) < IFlIE= IV T(xa) I fuay

Qew
< CJ|f |

Since p > d, by the Sobolev Embedding
\ Theorem

[fll e < Cllf ()
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According to carleson measures for Besov
space of analytic functions B,(p),

Definition

We say that p is p-Carleson for Q C R iff
for every Whitney cube P,

> u(Sh(Q)P Q)7 < Cp(Sh(P)).

QCSh(P)
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Assume that n =1 and
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The converse is true for n = 1: a duality argument.

Hypothesis: T bounded in W'P(Q). Then the averaging function

Af(x) = > xo(x) g,

Qew
by the Key Lemma, is also bounded A : W1P(Q) — LP(u) for

(x) = [V Txa(x)Pdx.

By duality, A* : LP() — (WHP(Q))* is also bounded.
(p = 2) For g = Xsn(p),

> wSh(Q) S S S gl = #(Sh(P))
QCSh(P)

W12(Q) is Hilbert, there is A*(g) € W12(Q).
une A’(g) solves a Neumann problem Ah = g.
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Results.

Theorem (P., 2013)
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Results.

Theorem (P., 2013)

For Q C C smooth enough, if the vector normal to the boundary of Q is
no1

in the Besov space Bp " (0Q) then B(xa) € W™P(Q), with

anB(XQ)Hip(Q) NYILY 23;1/;:(89) + Clength(aﬂ)-

V. Cruz and X. Tolsa proved the case n = 1.
Tolsa proved a converse for n =1 and Q smooth enough.
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Ingredients for the proof.

Theorem (P., Tolsa 2013)

For Q C C smooth enough, if the vector normal to OS2 is in the Besov
1
space By ,” (0R2) then B(xq) € W™P(Q), with

anB(XQ)HIZP(Q) S ||N||I;g;l/p(an) + Clength(89)~

Ingredients:
o Generalized Peter Jones' betas (using polynomials instead of lines).

@ Equivalence between Besov B; , norm and a sum of betas
(Dorronsoro).

@ Beurling of characteristic functions of circles, half-planes,
polynomials, ...
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Conclusions.
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For p > d we have a T(P) theorem

for any Calderén-Zygmund operator of convolution type
in any ambient space as long as we have uniform bounds
in the derivatives of its kernel.

For p < d it is not enough to have the images of polynomials
bounded, but it suffices that they are Carleson measures. When
n =1, this yields a complete characterization.

In the complex plane, the Besov regularity Bp,"/”
of the vector normal to the boundary of the domain
gives us a bound of B(P) in W™P(Q) (and 0 < s < 1).

Next steps:
o Proving analogous results for any s € R...
o Looking for a more general set of operators where
the Besov condition on the boundary implies Sobolev boundedness.
o Sharpness of all those results.
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The end.

Moltes gracies!!
Dé&kuji!!
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A measure of the flatness of a set I':

infy 2 Q)

Bﬂ Definition (P. Jones)
}/ v
Br(Q) = infv o)
/
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The graph of a function y = A(x):
Consider | C R, and define

Definition

_ 1 |la-r
Bp(l,A) = infpepr WH 0] Hp
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Defining some generalized betas of David-Semmes.

The graph of a function y = A(x):
Consider | C R, and define

Definition

B (1, A) = infpepn z(/)HA PH

If there is no risk of confusion,
we will write just B, (/).
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Geometric condition in terms of betas: The Besov space.

Definition

For0<s<oo, 1<p<oo feB;, (R)if

Al (0 |7
||f||B;,,=||f|Lp+<//’ o
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Geometric condition in terms of betas: The Besov space.

For0<s<oo, 1<p<oo feB;, (R)if

AP (x)
||f||B;,,=||f|Lp+<//’ o
’ R JR

Theorem (Dorronsoro)

P /p
dm(h)
T dm(x)) < 0.

Let f : R — R be a function in the Besov space B, ,. Then, for any

n> s,
1718, =91l + 3 (72 ) et

1eD
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[ Bxatapan(e)
AN

<X [ 1oBxata)pam(e)
Jo

Qew

W(Qk
Q
& NS
man e t(uhiiz,,:,:,
#ﬁ‘i
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Main idea: projecting cubes to the boundary.

Xo =Xo, + (xe = Xo)  ®(Q)
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Xa = X0, + (xo — xa)

°(Q)
OBxo,(2) =0
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Main idea: projecting cubes to the boundary.

oa0, eemsge

mammmmanaEnnn:
HHHH T e

Xo=Xog+ (Xa— X)) ®(Q)

9Bxo,(2) =

[0B(xa — xa,)(2)] < / dm(w)

Joag, |z —wf?
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(o)

/ |0Bxa(2)|Pdm(z)
Qna

< Z |0l)’\n )[Pdm(z)

Qew

<> m(@Q)19Bxall~ g
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