Boundedness of Calderón-Zygmund operators in Sobolev spaces of a Lipschitz domain

 PHD thesis in progress, directed by Xavier TolsaMartí Prats

UAB

Universitat Autònoma de Barcelona

June 13th, 2014

Introduction.

The Beurling transform.

The Beurling transform of a function $f \in L^{P}(\mathbb{C})$ is:

$$
\mathcal{B} f(z)=c_{0} \lim _{\varepsilon \rightarrow 0} \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{2}} d m(w) .
$$

The Beurling transform.

The Beurling transform of a function $f \in L^{P}(\mathbb{C})$ is:

$$
\mathcal{B} f(z)=c_{0} \lim _{\varepsilon \rightarrow 0} \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{2}} d m(w) .
$$

It is essential to quasiconformal mappings because

$$
\mathcal{B}(\bar{\partial} f)=\partial f \quad \forall f \in W^{1, p} .
$$

The Beurling transform.

The Beurling transform of a function $f \in L^{P}(\mathbb{C})$ is:

$$
\mathcal{B} f(z)=c_{0} \lim _{\varepsilon \rightarrow 0} \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{2}} d m(w) .
$$

It is essential to quasiconformal mappings because

$$
\mathcal{B}(\bar{\partial} f)=\partial f \quad \forall f \in W^{1, p} .
$$

Recall that $\mathcal{B}: L^{p}(\mathbb{C}) \rightarrow L^{p}(\mathbb{C})$ is bounded for $1<p<\infty$.
Also $\mathcal{B}: W^{n, p}(\mathbb{C}) \rightarrow W^{n, p}(\mathbb{C})$ is bounded for $1<p<\infty$ and $n>0$.

The Beurling transform.

The Beurling transform of a function $f \in L^{P}(\mathbb{C})$ is:

$$
\mathcal{B} f(z)=c_{0} \lim _{\varepsilon \rightarrow 0} \int_{|w-z|>\varepsilon} \frac{f(w)}{(z-w)^{2}} d m(w) .
$$

It is essential to quasiconformal mappings because

$$
\mathcal{B}(\bar{\partial} f)=\partial f \quad \forall f \in W^{1, p} .
$$

Recall that $\mathcal{B}: L^{p}(\mathbb{C}) \rightarrow L^{p}(\mathbb{C})$ is bounded for $1<p<\infty$.
Also $\mathcal{B}: W^{n, p}(\mathbb{C}) \rightarrow W^{n, p}(\mathbb{C})$ is bounded for $1<p<\infty$ and $n>0$.
In general, if $x \notin \operatorname{supp}(f) \subset \mathbb{R}^{d}$ then a convolution CZO of order n is

$$
T f(x)=\int K(x-y) f(y)
$$

with

$$
\left|\nabla^{j} K(x)\right| \leq \frac{1}{|x|^{d+j}} \quad \text { for } j \leq n .
$$

The problem we face.

If $T: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right)$,

The problem we face.

If $T: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right), T: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$.

The problem we face.

If $T: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right), T: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$.
But for $g \in W^{1, p}(\Omega)$ maybe not $\nabla T(g) \in L^{p}(\Omega)$.

The problem we face.

If $T: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right), T: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$.
But for $g \in W^{1, p}(\Omega)$ maybe not $\nabla T(g) \in L^{p}(\Omega)$.
For Ω a rectangle, $\mathcal{B} \chi_{\Omega}$ is in every $L^{p}(\Omega)$ but not in $W^{1, p}(\Omega)$ for $p \geq 2$.

The problem we face.

If $T: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right), T: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$.
But for $g \in W^{1, p}(\Omega)$ maybe not $\nabla T(g) \in L^{p}(\Omega)$.
When is $T: W^{n, p}(\Omega) \rightarrow W^{n, p}(\Omega)$ bounded?

The problem we face.

If $T: L^{p}\left(\mathbb{R}^{d}\right) \rightarrow L^{p}\left(\mathbb{R}^{d}\right), T: L^{p}(\Omega) \rightarrow L^{p}(\Omega)$.
But for $g \in W^{1, p}(\Omega)$ maybe not $\nabla T(g) \in L^{p}(\Omega)$.
When is $T: W^{n, p}(\Omega) \rightarrow W^{n, p}(\Omega)$ bounded?
We seek for answers in terms of test functions and in terms of the geometry of the boundary.

Test function conditions.

Results.

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^{d}, T$ even and $p>d$. If $T\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$, then T is bounded in $W^{1, p}(\Omega)$.

Results.

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^{d}, T$ even and $p>d$. If $T\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$, then T is bounded in $W^{1, p}(\Omega)$.

Theorem (P., Tolsa, 2014)

Given a Lipschitz domain $\Omega \subset \mathbb{R}^{d}$ and $p>d$. If $T(P) \in W^{n, p}(\Omega)$ for polynomials $P \in \mathcal{P}^{n-1}(\Omega)$, then T is bounded in $W^{n, p}(\Omega)$.

Results.

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^{d}, T$ even and $p>d$. If $T\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$, then T is bounded in $W^{1, p}(\Omega)$.

Theorem (P., Tolsa, 2014)

Given a Lipschitz domain $\Omega \subset \mathbb{R}^{d}$ and $p>d$. If $T(P) \in W^{n, p}(\Omega)$ for polynomials $P \in \mathcal{P}^{n-1}(\Omega)$, then T is bounded in $W^{n, p}(\Omega)$.

Theorem (P., Tolsa, 2014)

For any $1<p \leq d$, if $\left|\nabla^{n} T(P)(x)\right|^{p} d x$ is a p-Carleson measure in Ω for every $P \in \mathcal{P}^{n-1}(\Omega)$, then T is bounded in $W^{n, p}(\Omega)$.

Results.

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^{d}, T$ even and $p>d$. If $T\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$, then T is bounded in $W^{1, p}(\Omega)$.

Theorem (P., Tolsa, 2014)

Given a Lipschitz domain $\Omega \subset \mathbb{R}^{d}$ and $p>d$. If $T(P) \in W^{n, p}(\Omega)$ for polynomials $P \in \mathcal{P}^{n-1}(\Omega)$, then T is bounded in $W^{n, p}(\Omega)$.

Theorem (P., Tolsa, 2014)

For any $1<p \leq d$, if $\left|\nabla^{n} T(P)(x)\right|^{p} d x$ is a p-Carleson measure in Ω for every $P \in \mathcal{P}^{n-1}(\Omega)$, then T is bounded in $W^{n, p}(\Omega)$.
If $n=1$, the converse is true.

The Whitney covering.

UAB

de Barcelona

The Whitney covering.

Consider a Lipschitz domain Ω.

The Whitney covering.

Consider a Lipschitz domain Ω. We perform a Whitney covering \mathcal{W} such that

- $\operatorname{dist}(Q, \partial \Omega) \approx \ell(Q)$.
- $\{5 Q\}_{Q \in \mathcal{W}}$ has finite superposition.

The Whitney covering.

Consider a Lipschitz domain Ω. We perform a Whitney covering \mathcal{W} such that

- $\operatorname{dist}(Q, \partial \Omega) \approx \ell(Q)$.
- $\{5 Q\}_{Q \in \mathcal{W}}$ has finite superposition.
We can choose a central cube.

The Whitney covering.

Consider a Lipschitz domain Ω. We perform a Whitney covering \mathcal{W} such that

- $\operatorname{dist}(Q, \partial \Omega) \approx \ell(Q)$.
- $\{5 Q\}_{Q \in \mathcal{W}}$ has finite superposition.
We can choose a central cube.

The Whitney covering.

Consider a Lipschitz domain Ω. We perform a Whitney covering \mathcal{W} such that

- $\operatorname{dist}(Q, \partial \Omega) \approx \ell(Q)$.
- $\{5 Q\}_{Q \in \mathcal{W}}$ has finite superposition.
We can choose a central cube.
We can think on Carleson boxes (or shadows).

The Whitney covering.

Consider a Lipschitz domain Ω. We perform a Whitney covering \mathcal{W} such that

- $\operatorname{dist}(Q, \partial \Omega) \approx \ell(Q)$.
- $\{5 Q\}_{Q \in \mathcal{W}}$ has finite superposition.
We can choose a central cube.
We can think on Carleson boxes (or shadows).
We can think on Harnack chains.

The key point: approximating by polynomials.

A new approach for the case $n=1$:

Key Lemma

The following are equivalent:

- $\|\nabla T f\|_{L^{p}(\Omega)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.
- $\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.

The key point: approximating by polynomials.

A new approach for the case $n=1$:

Key Lemma

The following are equivalent:

- $\|\nabla T f\|_{L^{p}(\Omega)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.
- $\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.

Enough to prove

$$
\sum_{Q}\left\|\nabla T\left(f-f_{3 Q} \chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \lesssim\|\nabla f\|_{L^{p}(\Omega)}^{p} .
$$

The key point: approximating by polynomials.

A new approach for the case $n=1$:

Key Lemma

The following are equivalent:

- $\|\nabla T f\|_{L^{p}(\Omega)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.
- $\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.

Enough to prove

$$
\sum_{Q}\left\|\nabla T\left(f-f_{3 Q} \chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \lesssim\|\nabla f\|_{L^{p}(\Omega)}^{p} .
$$

Break the local part and non-local part.

The key point: approximating by polynomials.

A new approach for the case $n=1$:

Key Lemma

The following are equivalent:

- $\|\nabla T f\|_{L^{p}(\Omega)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.
- $\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.

Enough to prove

$$
\sum_{Q}\left\|\nabla T\left(f-f_{3 Q} \chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \lesssim\|\nabla f\|_{L^{p}(\Omega)}^{p} .
$$

Break the local part and non-local part.
Local part is a good function, in $W^{1, p}\left(\mathbb{R}^{d}\right)$.

The key point: approximating by polynomials.

A new approach for the case $n=1$:

Key Lemma

The following are equivalent:

- $\|\nabla T f\|_{L^{p}(\Omega)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.
- $\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.

Enough to prove

$$
\sum_{Q}\left\|\nabla T\left(f-f_{3 Q} \chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \lesssim\|\nabla f\|_{L^{p}(\Omega)}^{p} .
$$

Break the local part and non-local part.
Local part is a good function, in $W^{1, p}\left(\mathbb{R}^{d}\right)$.
For the non-local part, we use a Harnack chain of cubes.

The key point: approximating by polynomials.

A new approach for the case $n=1$:

Key Lemma

The following are equivalent:

- $\|\nabla T f\|_{L^{p}(\Omega)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.
- $\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}$.

Enough to prove

$$
\sum_{Q}\left\|\nabla T\left(f-f_{3 Q} \chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \lesssim\|\nabla f\|_{L^{p}(\Omega)}^{p} .
$$

Break the local part and non-local part.
Local part is a good function, in $W^{1, p}\left(\mathbb{R}^{d}\right)$.
For the non-local part, we use a Harnack chain of cubes.
Ingredients: bounds for the kernel, Poincaré inequality and Hölder.

We want to see that $T\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$ implies T bounded in $W^{1, p}(\Omega)$.

Proof of the $T(P)$ theorem $(p>d)$.

We want to see that $T\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$ implies T bounded in $W^{1, p}(\Omega)$.
$\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T \chi_{\Omega}\right\|_{L^{p}(Q)}^{p}$

We want to see that $T\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$ implies T bounded in $W^{1, p}(\Omega)$.

$$
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T \chi_{\Omega}\right\|_{L^{p}(Q)}^{p} \leq\|f\|_{L^{\infty}}^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)}^{p}
$$

Proof of the $T(P)$ theorem $(p>d)$.

We want to see that $T\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$ implies T bounded in $W^{1, p}(\Omega)$.

$$
\begin{aligned}
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T \chi_{\Omega}\right\|_{L^{p}(Q)}^{p} & \leq\|f\|_{L^{\infty}}^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)}^{p} \\
& \leq C\|f\|_{L^{\infty}}^{p} .
\end{aligned}
$$

Proof of the $T(P)$ theorem $(p>d)$.

We want to see that $T\left(\chi_{\Omega}\right) \in W^{1, p}(\Omega)$ implies T bounded in $W^{1, p}(\Omega)$.

$$
\begin{aligned}
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T \chi_{\Omega}\right\|_{L^{p}(Q)}^{p} & \leq\|f\|_{L^{\infty}}^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)}^{p} \\
& \leq C\|f\|_{L^{\infty}}^{p} .
\end{aligned}
$$

Since $p>d$, by the Sobolev Embedding Theorem

$$
\|f\|_{L^{\infty}} \leq C\|f\|_{W^{1, p}(\Omega)} .
$$

The Carleson measures.

According to carleson measures for Besov space of analytic functions $B_{p}(\rho)$,

Definition

We say that μ is p-Carleson for $\Omega \subset \mathbb{R}^{d}$ iff for every Whitney cube P,

$$
\sum_{Q \subset \mathbf{S h}(P)} \mu(\mathbf{S h}(Q))^{p^{\prime}} \ell(Q)^{\frac{p-d}{p-1}} \leq C \mu(\mathbf{S h}(P)) .
$$

Proof of Carleson \Rightarrow boundedness $(p \leq d)$.

Assume that $n=1$ and

$$
\mu(x)=\left|\nabla T \chi_{\Omega}(x)\right|^{p} d x
$$

is p-Carleson for Ω. We want

$$
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}
$$

Proof of Carleson \Rightarrow boundedness $(p \leq d)$.

Assume that $n=1$ and

$$
\mu(x)=\left|\nabla T \chi_{\Omega}(x)\right|^{p} d x
$$

is p-Carleson for Ω. We want

$$
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}
$$

But,

$$
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p} \mu(Q)
$$

Proof of Carleson \Rightarrow boundedness $(p \leq d)$.

Assume that $n=1$ and

$$
\mu(x)=\left|\nabla T \chi_{\Omega}(x)\right|^{p} d x
$$

is p-Carleson for Ω. We want

$$
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p} .
$$

But,

$$
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p} \mu(Q) \leq \sum_{Q \in \mathcal{W}}\left(\sum_{P: Q \subset \operatorname{Sh}(P)}\left|f_{3 P}-f_{3 \mathcal{N}(P)}\right|\right)^{p} \mu(Q)
$$

Proof of Carleson \Rightarrow boundedness $(p \leq d)$.

Assume that $n=1$ and

$$
\mu(x)=\left|\nabla T \chi_{\Omega}(x)\right|^{p} d x
$$

is p-Carleson for Ω. We want

$$
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p} .
$$

But, by Poincaré inequalities

$$
\begin{aligned}
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p} \mu(Q) & \leq \sum_{Q \in \mathcal{W}}\left(\sum_{P: Q \subset \mathbf{S h}(P)}\left|f_{3 P}-f_{3 \mathcal{N}(P)}\right|\right)^{p} \mu(Q) \\
& \leq \sum_{Q \in \mathcal{W}}\left(\sum_{P: Q \subset \mathbf{S h}(P)}\|\nabla f\|_{L^{p}(5 P)} \ell(P)^{1-\frac{d}{p}}\right)^{p} \mu(Q)
\end{aligned}
$$

Proof of Carleson \Rightarrow boundedness $(p \leq d)$.

Assume that $n=1$ and

$$
\mu(x)=\left|\nabla T \chi_{\Omega}(x)\right|^{p} d x
$$

is p-Carleson for Ω. We want

$$
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}
$$

But, by Poincaré inequalities and some p-Carleson measure properties,

$$
\begin{aligned}
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p} \mu(Q) & \leq \sum_{Q \in \mathcal{W}}\left(\sum_{P: Q \subset \mathbf{S h}(P)}\left|f_{3 P}-f_{3 \mathcal{N}(P)}\right|\right)^{p} \mu(Q) \\
& \leq \sum_{Q \in \mathcal{W}}\left(\sum_{P: Q \subset \mathbf{S h}(P)}\|\nabla f\|_{L^{p}(5 P)} \ell(P)^{1-\frac{d}{p}}\right)^{p} \mu(Q) \\
& \leq C \sum_{Q \in \mathcal{W}}\|\nabla f\|_{L^{p}(5 Q)}^{p}
\end{aligned}
$$

Proof of Carleson \Rightarrow boundedness $(p \leq d)$.

Assume that $n=1$ and

$$
\mu(x)=\left|\nabla T \chi_{\Omega}(x)\right|^{p} d x
$$

is p-Carleson for Ω. We want

$$
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p}\left\|\nabla T\left(\chi_{\Omega}\right)\right\|_{L^{p}(Q)}^{p} \leq C\|f\|_{W^{1, p}(\Omega)}^{p}
$$

But, by Poincaré inequalities and some p-Carleson measure properties,

$$
\begin{aligned}
\sum_{Q \in \mathcal{W}}\left|f_{3 Q}\right|^{p} \mu(Q) & \leq \sum_{Q \in \mathcal{W}}\left(\sum_{P: Q \subset \operatorname{Sh}(P)}\left|f_{3 P}-f_{3 \mathcal{N}(P)}\right|\right)^{p} \mu(Q) \\
& \leq \sum_{Q \in \mathcal{W}}\left(\sum_{P: Q \subset \operatorname{Sh}(P)}\|\nabla f\|_{L^{p}(5 P)} \ell(P)^{1-\frac{d}{p}}\right)^{p} \mu(Q) \\
& \leq C \sum_{Q \in \mathcal{W}}\|\nabla f\|_{L^{p}(5 Q)}^{p} \leq C\|f\|_{\mathcal{W}^{1, p}(\Omega)}^{p}
\end{aligned}
$$

The converse is true for $n=1$: a duality argument.

Hypothesis: T bounded in $W^{1, p}(\Omega)$. Then the averaging function

$$
\mathcal{A} f(x):=\sum_{Q \in \mathcal{W}} \chi_{Q}(x) f_{3 Q},
$$

The converse is true for $n=1$: a duality argument.

Hypothesis: T bounded in $W^{1, p}(\Omega)$. Then the averaging function

$$
\mathcal{A} f(x):=\sum_{Q \in \mathcal{W}} \chi_{Q}(x) f_{3 Q},
$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1, p}(\Omega) \rightarrow L^{p}(\mu)$ for

$$
\mu(x)=\left|\nabla T_{\chi_{\Omega}}(x)\right|^{p} d x .
$$

The converse is true for $n=1$: a duality argument.

Hypothesis: T bounded in $W^{1, p}(\Omega)$. Then the averaging function

$$
\mathcal{A} f(x):=\sum_{Q \in \mathcal{W}} \chi_{Q}(x) f_{3 Q},
$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1, p}(\Omega) \rightarrow L^{p}(\mu)$ for

$$
\mu(x)=\left|\nabla T_{\chi_{\Omega}}(x)\right|^{p} d x .
$$

- Key Lemma

By duality, $\mathcal{A}^{*}: L^{p}(\mu) \rightarrow\left(W^{1, p}(\Omega)\right)^{*}$ is also bounded.

The converse is true for $n=1$: a duality argument.

Hypothesis: T bounded in $W^{1, p}(\Omega)$. Then the averaging function

$$
\mathcal{A} f(x):=\sum_{Q \in \mathcal{W}} \chi_{Q}(x) f_{3 Q},
$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1, p}(\Omega) \rightarrow L^{p}(\mu)$ for

$$
\mu(x)=\left|\nabla T_{\chi_{\Omega}}(x)\right|^{p} d x .
$$

- Key Lemma

By duality, $\mathcal{A}^{*}: L^{p}(\mu) \rightarrow\left(W^{1, p}(\Omega)\right)^{*}$ is also bounded.

$$
(p=2) \text { For } g=\chi_{\operatorname{Sh}(P)},
$$

$$
\sum_{Q \subset \mathbf{S h}(P)} \mu(\mathbf{S h}(Q))^{2} \lesssim \cdots \lesssim\left\|\mathcal{A}^{*} g\right\|_{W^{1,2}(\Omega)}^{2} \lesssim\|g\|_{L^{2}(\mu)}^{2}=\mu(\mathbf{S h}(P))
$$

The converse is true for $n=1$: a duality argument.

Hypothesis: T bounded in $W^{1, p}(\Omega)$. Then the averaging function

$$
\mathcal{A} f(x):=\sum_{Q \in \mathcal{W}} \chi_{Q}(x) f_{3 Q},
$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1, p}(\Omega) \rightarrow L^{p}(\mu)$ for

$$
\mu(x)=\left|\nabla T_{\chi_{\Omega}}(x)\right|^{p} d x .
$$

- Key Lemma

By duality, $\mathcal{A}^{*}: L^{p}(\mu) \rightarrow\left(W^{1, p}(\Omega)\right)^{*}$ is also bounded. $(p=2)$ For $g=\chi_{\mathbf{S h}(P)}$,

$$
\sum_{Q \subset \mathbf{S h}(P)} \mu(\mathbf{S h}(Q))^{2} \lesssim \cdots \lesssim\left\|\mathcal{A}^{*} g\right\|_{W^{1,2}(\Omega)}^{2} \lesssim\|g\|_{L^{2}(\mu)}^{2}=\mu(\mathbf{S h}(P))
$$

$W^{1,2}(\Omega)$ is Hilbert, there is $\mathcal{A}^{*}(g) \in W^{1,2}(\Omega)$.

The converse is true for $n=1$: a duality argument.

Hypothesis: T bounded in $W^{1, p}(\Omega)$. Then the averaging function

$$
\mathcal{A} f(x):=\sum_{Q \in \mathcal{W}} \chi_{Q}(x) f_{3 Q},
$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1, p}(\Omega) \rightarrow L^{p}(\mu)$ for

$$
\mu(x)=\left|\nabla T \chi_{\Omega}(x)\right|^{p} d x
$$

- Key Lemma

By duality, $\mathcal{A}^{*}: L^{p}(\mu) \rightarrow\left(W^{1, p}(\Omega)\right)^{*}$ is also bounded.

$$
(p=2) \text { For } g=\chi_{\operatorname{Sh}(P)},
$$

$$
\sum_{Q \subset \mathbf{S h}(P)} \mu(\mathbf{S h}(Q))^{2} \lesssim \cdots \lesssim\left\|\mathcal{A}^{*} g\right\|_{W^{1,2}(\Omega)}^{2} \lesssim\|g\|_{L^{2}(\mu)}^{2}=\mu(\mathbf{S h}(P))
$$

$W^{1,2}(\Omega)$ is Hilbert, there is $\mathcal{A}^{*}(g) \in W^{1,2}(\Omega)$. UAB $\mathcal{A}^{*}(g)$ solves a Neumann problem $\Delta h=\widetilde{g}$.

A geometric condition.

Results.

Theorem (P., 2013)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to the boundary of Ω is in the Besov space $B_{p, p}^{n-\frac{1}{p}}(\partial \Omega)$ then $\mathcal{B}\left(\chi_{\Omega}\right) \in W^{n, p}(\Omega)$, with

$$
\left\|\nabla^{n} \mathcal{B}\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)}^{p} \lesssim\|N\|_{B_{p, p}^{n-1 / p}(\partial \Omega)}^{p}+C_{\text {length }(\partial \Omega)} .
$$

Results.

Theorem (P., 2013)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to the boundary of Ω is in the Besov space $B_{p, p}^{n-\frac{1}{p}}(\partial \Omega)$ then $\mathcal{B}\left(\chi_{\Omega}\right) \in W^{n, p}(\Omega)$, with

$$
\left\|\nabla^{n} \mathcal{B}\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)}^{p} \lesssim\|N\|_{B_{p, p}^{n,-1 / p}(\partial \Omega)}^{p}+C_{\text {length }(\partial \Omega)} .
$$

V. Cruz and X. Tolsa proved the case $n=1$.

Tolsa proved a converse for $n=1$ and Ω smooth enough.

Ingredients for the proof.

Theorem (P., Tolsa 2013)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to $\partial \Omega$ is in the Besov space $B_{p, p}^{n-\frac{1}{p}}(\partial \Omega)$ then $\mathcal{B}\left(\chi_{\Omega}\right) \in W^{n, p}(\Omega)$, with

$$
\left\|\nabla^{n} \mathcal{B}\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)}^{p} \lesssim\|N\|_{B_{p, p}^{n-1 / p}(\partial \Omega)}^{p}+C_{\text {length }(\partial \Omega)} .
$$

Ingredients:

- Generalized Peter Jones' betas (using polynomials instead of lines).

Ingredients for the proof.

Theorem (P., Tolsa 2013)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to $\partial \Omega$ is in the Besov space $B_{p, p}^{n-\frac{1}{p}}(\partial \Omega)$ then $\mathcal{B}\left(\chi_{\Omega}\right) \in W^{n, p}(\Omega)$, with

$$
\left\|\nabla^{n} \mathcal{B}\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)}^{p} \lesssim\|N\|_{B_{p, p}^{n-1 / p}(\partial \Omega)}^{p}+C_{\text {length }(\partial \Omega)} .
$$

Ingredients:

- Generalized Peter Jones' betas (using polynomials instead of lines).
- Equivalence between Besov $B_{p, p}^{s}$ norm and a sum of betas (Dorronsoro).

Ingredients for the proof.

Theorem (P., Tolsa 2013)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to $\partial \Omega$ is in the Besov space $B_{p, p}^{n-\frac{1}{p}}(\partial \Omega)$ then $\mathcal{B}\left(\chi_{\Omega}\right) \in W^{n, p}(\Omega)$, with

$$
\left\|\nabla^{n} \mathcal{B}\left(\chi_{\Omega}\right)\right\|_{L^{p}(\Omega)}^{p} \lesssim\|N\|_{B_{p, p}^{n-1 / p}(\partial \Omega)}^{p}+C_{\text {length }(\partial \Omega)} .
$$

Ingredients:

- Generalized Peter Jones' betas (using polynomials instead of lines).
- Equivalence between Besov $B_{p, p}^{s}$ norm and a sum of betas (Dorronsoro).
- Beurling of characteristic functions of circles, half-planes, polynomials, ...

Conclusions.

- For $p>d$ we have a $T(P)$ theorem for any Calderón-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.

Conclusions.

- For $p>d$ we have a $T(P)$ theorem for any Calderón-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.
- For $p \leq d$ it is not enough to have the images of polynomials bounded, but it suffices that they are Carleson measures. When $n=1$, this yields a complete characterization.

Conclusions.

- For $p>d$ we have a $T(P)$ theorem for any Calderón-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.
- For $p \leq d$ it is not enough to have the images of polynomials bounded, but it suffices that they are Carleson measures. When $n=1$, this yields a complete characterization.
- In the complex plane, the Besov regularity $B_{p, p}^{n-1 / p}$ of the vector normal to the boundary of the domain gives us a bound of $\mathcal{B}(P)$ in $W^{n, p}(\Omega)$ (and $0<s<1$).

Conclusions.

- For $p>d$ we have a $T(P)$ theorem for any Calderón-Zygmund operator of convolution type in any ambient space as long as we have uniform bounds in the derivatives of its kernel.
- For $p \leq d$ it is not enough to have the images of polynomials bounded, but it suffices that they are Carleson measures. When $n=1$, this yields a complete characterization.
- In the complex plane, the Besov regularity $B_{p, p}^{n-1 / p}$ of the vector normal to the boundary of the domain gives us a bound of $\mathcal{B}(P)$ in $W^{n, p}(\Omega)$ (and $0<s<1$).
- Next steps:
- Proving analogous results for any $s \in \mathbb{R}_{+}$.
- Looking for a more general set of operators where the Besov condition on the boundary implies Sobolev boundedness.
- Sharpness of all those results.

The end.

Moltes gràcies!!

Děkuji!!

Defining some generalized betas of David-Semmes.

A measure of the flatness of a set Γ :

Defining some generalized betas of David-Semmes.

A measure of the flatness of a set Γ :
Definition (P. Jones)
$\beta_{\Gamma}(Q)=\inf _{V} \frac{w(V)}{\ell(Q)}$

Defining some generalized betas of David-Semmes.

The graph of a function $y=A(x)$:

Consider $I \subset \mathbb{R}$, and define

Defining some generalized betas of David-Semmes.

The graph of a function $y=A(x)$:
Consider $I \subset \mathbb{R}$, and define

Definition

$\beta_{\infty}(I, A)=\inf _{P \in \mathcal{P}^{1}}\left\|\frac{A-P}{\ell(I)}\right\|_{\infty}$

Defining some generalized betas of David-Semmes.

The graph of a function $y=A(x)$:
Consider $I \subset \mathbb{R}$, and define

Definition

$$
\beta_{p}(I, A)=\inf _{P \in \mathcal{P}^{1}} \frac{1}{\ell(I)^{\frac{1}{P}}}\left\|\frac{A-P}{\ell(I)}\right\|_{p}
$$

Defining some generalized betas of David-Semmes.

The graph of a function $y=A(x)$:
Consider $I \subset \mathbb{R}$, and define

Definition

$\beta_{(n)}(I, A)=\inf _{P \in \mathcal{P}^{n}} \frac{1}{\ell(I)}\left\|\frac{A-P}{\ell(I)}\right\|_{1}$
If there is no risk of confusion, we will write just $\beta_{(n)}(I)$.

Geometric condition in terms of betas: The Besov space.

Definition
For $0<s<\infty, 1 \leq p<\infty, f \in B_{p, p}^{s}(\mathbb{R})$ if

$$
\|f\|_{B_{p, p}^{s}}=\|f\|_{L^{p}}+\left(\int_{\mathbb{R}} \int_{\mathbb{R}}\left|\frac{\Delta_{h}^{[s]+1} f(x)}{h^{s}}\right|^{p} \frac{d m(h)}{|h|} d m(x)\right)^{1 / p}<\infty .
$$

Geometric condition in terms of betas: The Besov space.

Definition

For $0<s<\infty, 1 \leq p<\infty, f \in B_{p, p}^{s}(\mathbb{R})$ if

$$
\|f\|_{B_{p, p}^{s}}=\|f\|_{L^{p}}+\left(\int_{\mathbb{R}} \int_{\mathbb{R}}\left|\frac{\Delta_{h}^{[s]+1} f(x)}{h^{s}}\right|^{p} \frac{d m(h)}{|h|} d m(x)\right)^{1 / p}<\infty .
$$

Theorem (Dorronsoro)
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function in the Besov space $B_{p, p}^{s}$. Then, for any $n \geq[s]$,

$$
\|f\|_{B_{p, p}^{s}}^{p} \approx\|f\|_{L^{p}}+\sum_{I \in \mathcal{D}}\left(\frac{\beta_{(n)}(I)}{\ell(I)^{s-1}}\right)^{p} \ell(I) .
$$

Main idea: projecting cubes to the boundary.

