Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures The end

Singular integral operators on Sobolev spaces on domains and quasiconformal mappings PHD dissertation, directed by Xavier Tolsa

Martí Prats

October 16th, 2015

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	

Introduction

	T(P) theorems 00000	The Beurling transform on planar domains 000	Planar quasiconformal mappings 00000	Carleson measures 000000	
Meası	uring sm	noothness and inte	egrability in \mathbb{R}^d		

Lebesgue spaces \rightarrow integrability.

•
$$\|f\|_{L^p} = \left(\int |f|^p\right)^{1/p},$$

 $\|f\|_{L^\infty} = \operatorname{ess\,sup}|f|$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

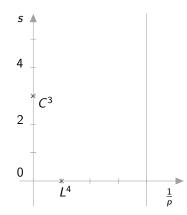
Lebesgue spaces \rightarrow integrability. Differentiablility classes \rightarrow smoothness.

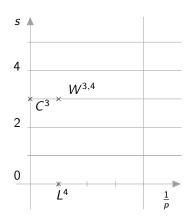
•
$$\|f\|_{L^{p}} = (\int |f|^{p})^{1/p},$$

 $\|f\|_{L^{\infty}} = \operatorname{ess\,sup}|f|$
• $\|f\|_{C^{s}} = \|f\|_{L^{\infty}} + \dots + \|\nabla^{s}f\|_{L^{\infty}}$

イロト イポト イヨト イヨト

э





Lebesgue spaces \rightarrow integrability. Differentiablility classes \rightarrow smoothness. Sobolev spaces \rightarrow both together.

•
$$\|f\|_{L^p} = \left(\int |f|^p\right)^{1/p},$$

 $\|f\|_{L^{\infty}} = \operatorname{ess\,sup}|f|$

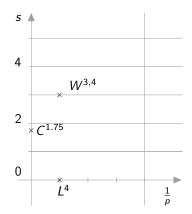
•
$$||f||_{C^s} = ||f||_{L^{\infty}} + \dots + ||\nabla^s f||_{L^{\infty}}$$

•
$$||f||_{W^{s,p}} = ||f||_{L^p} + \dots + ||\nabla^s f||_{L^p}$$

・ロト ・聞ト ・ヨト ・ヨト

э

Measuring smoothness and integrability in \mathbb{R}^d



Lebesgue spaces \rightarrow integrability. Differentiablility classes \rightarrow smoothness. Sobolev spaces \rightarrow both together. Hölder continuous spaces \rightarrow fill gaps.

•
$$\|f\|_{L^{p}} = (\int |f|^{p})^{1/p},$$

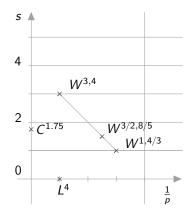
 $\|f\|_{L^{\infty}} = \operatorname{ess\,sup}|f|$
• $\|f\|_{C^{s}} = \|f\|_{L^{\infty}} + \dots + \|\nabla^{s}f\|_{L^{\infty}}$
• $\|f\|_{W^{s,p}} = \|f\|_{L^{p}} + \dots + \|\nabla^{s}f\|_{L^{p}}$
• $\|f\|_{C^{s}} =$

$$\left\|f\right\|_{L^{\infty}} + \cdots + \sup \frac{|\nabla^{\lfloor s \rfloor} f(x) - \nabla^{\lfloor s \rfloor} f(y)|}{|x - y|^{\{s\}}}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

0000	00000	000	00000	000000
Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures The end

Measuring smoothness and integrability in \mathbb{R}^{a}



Lebesgue spaces \rightarrow integrability. Differentiablility classes \rightarrow smoothness. Sobolev spaces \rightarrow both together. Hölder continuous spaces \rightarrow fill gaps. Interpolation to generalize.

•
$$\|f\|_{L^p} = \left(\int |f|^p\right)^{1/p},$$

 $\|f\|_{L^{\infty}} = \operatorname{ess\,sup}|f|$

•
$$||f||_{C^s} = ||f||_{L^{\infty}} + \dots + ||\nabla^s f||_{L^{\infty}}$$

•
$$||f||_{W^{s,p}} = ||f||_{L^p} + \dots + ||\nabla^s f||_{L^p}$$

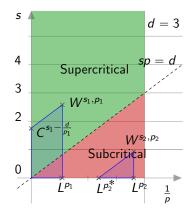
•
$$\|f\|_{C^s} =$$

 $\|f\|_{L^\infty} + \dots + \sup \frac{|\nabla^{\lfloor s \rfloor} f(x) - \nabla^{\lfloor s \rfloor} f(y)|}{|x-y|^{\{s\}}}$

•
$$||f||_{W^{s,p}}, ||f||_{B^s_{p,q}}, ||f||_{F^s_{p,q}}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Measuring smoothness and integrability in \mathbb{R}^d



Lebesgue spaces \rightarrow integrability. Differentiablility classes \rightarrow smoothness. Sobolev spaces \rightarrow both together. Hölder continuous spaces \rightarrow fill gaps. Interpolation to generalize.

•
$$\|f\|_{L^{p}} = (\int |f|^{p})^{1/p},$$

 $\|f\|_{L^{\infty}} = \operatorname{ess sup}[f]$
• $\|f\|_{C^{s}} = \|f\|_{L^{\infty}} + \dots + \|\nabla^{s}f\|_{L^{\infty}}$
• $\|f\|_{W^{s,p}} = \|f\|_{L^{p}} + \dots + \|\nabla^{s}f\|_{L^{p}}$
• $\|f\|_{C^{s}} = \|f\|_{L^{p}} + \dots + \|\nabla^{s}f\|_{L^{p}}$

$$\|f\|_{L^{\infty}} + \dots + \sup \frac{|\nabla^{[s]}f(x) - \nabla^{[s]}f(y)|}{|x - y|^{\{s\}}}$$

•
$$\|f\|_{W^{s,p}}, \|f\|_{B^s_{p,q}}, \|f\|_{F^s_{p,q}}$$

By means of Sobolev embeddings, we have either continuity or extra integrability.

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	000000	
~					

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$\mathcal{B}f(z) = \frac{1}{-\pi} \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	000000	
<u><u></u></u>	· · · · ·	1			

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$\mathcal{B}f(z) = \frac{1}{-\pi} \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

It is essential to quasiconformal mappings because

$$\mathcal{B}(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures The er	nd
0000	00000	000	00000	000000	
~.	1				

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$\mathcal{B}f(z) = \frac{1}{-\pi} \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

It is essential to quasiconformal mappings because

$$\mathcal{B}(\overline{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recall that $\mathcal{B}: L^p(\mathbb{C}) \to L^p(\mathbb{C})$ is bounded for 1 . $Also <math>\mathcal{B}: W^{s,p}(\mathbb{C}) \to W^{s,p}(\mathbb{C})$ is bounded for 1 and <math>s > 0.

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures TI	he end
0000	00000	000	00000	000000	
~ .					

The Beurling transform of a function $f \in L^p(\mathbb{C})$ is:

$$\mathcal{B}f(z) = \frac{1}{-\pi} \lim_{\varepsilon \to 0} \int_{|w-z| > \varepsilon} \frac{f(w)}{(z-w)^2} dm(w).$$

It is essential to quasiconformal mappings because

$$\mathcal{B}(\bar{\partial}f) = \partial f \qquad \forall f \in W^{1,p}.$$

Recall that $\mathcal{B}: L^p(\mathbb{C}) \to L^p(\mathbb{C})$ is bounded for 1 . $Also <math>\mathcal{B}: W^{s,p}(\mathbb{C}) \to W^{s,p}(\mathbb{C})$ is bounded for 1 and <math>s > 0.

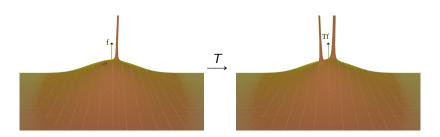
In general a convolution CZO of order s is defined as

$$Tf(x) = \int K(x-y)f(y) dm(y)$$

if $x \notin \text{supp}(f) \subset \mathbb{R}^d$, with some cancellation property and some size and smoothness conditions, say

$$|\nabla^{j} \mathcal{K}(x)| \leq |x|^{-d-j} \qquad \text{for } j \leq s$$

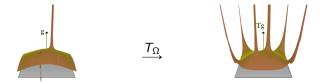
Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	000000	
Thom	wahlam	una faca			



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

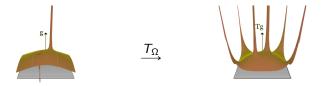
If $T: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$,

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000					
The p	oroblem	we face			



If $T: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d), \ T_\Omega := \chi_\Omega T \chi_\Omega : L^p(\Omega) \to L^p(\Omega).$

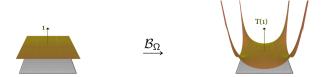
Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	000000	
The p	oroblem	we face			



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

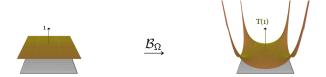
If $T : L^{p}(\mathbb{R}^{d}) \to L^{p}(\mathbb{R}^{d}), T_{\Omega} := \chi_{\Omega} T \chi_{\Omega} : L^{p}(\Omega) \to L^{p}(\Omega).$ But for $g \in W^{1,p}(\Omega)$ maybe not $\nabla T_{\Omega}(g) \in L^{p}(\Omega).$

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000					
The p	oroblem	we face			



If $T: L^{p}(\mathbb{R}^{d}) \to L^{p}(\mathbb{R}^{d}), T_{\Omega} := \chi_{\Omega} T \chi_{\Omega} : L^{p}(\Omega) \to L^{p}(\Omega).$ But for $g \in W^{1,p}(\Omega)$ maybe not $\nabla T_{\Omega}(g) \in L^{p}(\Omega).$ For Ω a rectangle, $\mathcal{B} \chi_{\Omega}$ is in every $L^{p}(\Omega)$ but not in $W^{1,p}(\Omega)$ for $p \ge 2$.

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000					
The p	oroblem	we face			

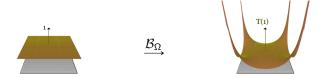


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

If
$$T : L^{p}(\mathbb{R}^{d}) \to L^{p}(\mathbb{R}^{d}), T_{\Omega} := \chi_{\Omega}T\chi_{\Omega} : L^{p}(\Omega) \to L^{p}(\Omega).$$

But for $g \in W^{1,p}(\Omega)$ maybe not $\nabla T_{\Omega}(g) \in L^{p}(\Omega).$
When is $T_{\Omega} : W^{s,p}(\Omega) \to W^{s,p}(\Omega)$ bounded?

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000					
The p	oroblem	we face			



If $T: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$, $T_{\Omega} := \chi_{\Omega} T \chi_{\Omega} : L^p(\Omega) \to L^p(\Omega)$. But for $g \in W^{1,p}(\Omega)$ maybe not $\nabla T_{\Omega}(g) \in L^p(\Omega)$. When is $T_{\Omega} : W^{s,p}(\Omega) \to W^{s,p}(\Omega)$ bounded? We seek for answers in terms of test functions and in terms of the geometry of the boundary.

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures The end
0000	00000	000	00000	000000

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ / 圖 / の�?

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lipschitz domains vs Uniform domains

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures The end
0000	00000	000	00000	000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lipschitz domains vs Uniform domains

Introduction	T(P) theorems	The Beurling transform on plan
0000		

Planar quasiconformal mapping 00000 Carleson measures The end

Lipschitz domains vs Uniform domains

◆□ → ◆圖 → ◆園 → ◆園 → □ 園

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson me
0000	00000	000	00000	000000

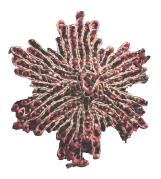
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	T(P) theorems
0000	00000

The Beurling transform on planar do

Planar quasiconformal mappings 00000 Carleson measures The end

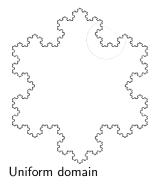
Lipschitz domains vs Uniform domains



◆□>

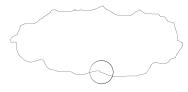
Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	

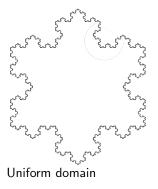
Lipschitz domain



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	

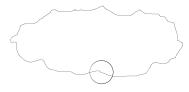




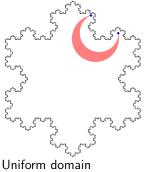
◆□> ◆□> ◆豆> ◆豆> □豆

Lipschitz domain Local parameterizations of $\partial \Omega$.

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	



Lipschitz domain Local parameterizations of $\partial \Omega$.

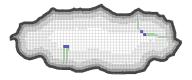


Cigars joining pairs of points

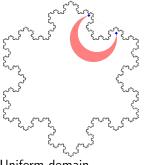
イロト 不得 トイヨト イヨト

э

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	



Lipschitz domain Local parameterizations of $\partial \Omega$. Whitney covering with straight paths around $\partial \Omega$.



Uniform domain Cigars joining pairs of points

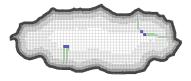
(日)、

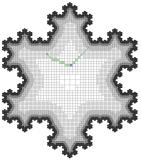
-

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar
0000	00000	000	0000

Planar quasiconformal mappings 00000 Carleson measures The end

Lipschitz domains vs Uniform domains





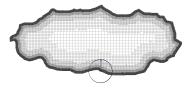
Lipschitz domain Local parameterizations of $\partial \Omega$. Whitney covering with straight paths around $\partial \Omega$. Uniform domain Cigars joining pairs of points Whitney covering with 'cigar' paths

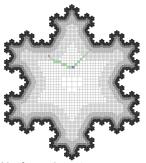
くして 「「」 (山下) (山下) (山下) (山下)

Introduction	T(P) theorems	The Beurling transform on planar domains	
0000			

Planar quasiconformal mappings 00000 Carleson measures The end

Lipschitz domains vs Uniform domains





Lipschitz domain Local parameterizations of $\partial \Omega$. Whitney covering with straight paths around $\partial \Omega$. Vertical shadow Uniform domain Cigars joining pairs of points Whitney covering with 'cigar' paths

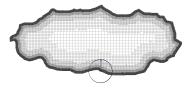
Introduction	T(P) theorems	The Beurling transform on planar
0000		

Planar quasiconformal mapping 00000

domains

Carleson measures The end

Lipschitz domains vs Uniform domains



Lipschitz domain Local parameterizations of $\partial \Omega$. Whitney covering with straight paths around $\partial \Omega$. Vertical shadow Uniform domain Cigars joining pairs of points Whitney covering with 'cigar' paths Spherical shadow

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	

T(P) theorems

(ロ)、(型)、(E)、(E)、 E) の(の)

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
	00000				
Recult	te				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a bdd $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^d$, a convolution CZO T with homogeneous even kernel, $0 < s \leq 1$ and sp > d. $T_{\Omega}(1) \in W^{s,p}(\Omega) \iff T_{\Omega}$ is bounded in $W^{s,p}(\Omega)$.

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	
Result	ts				

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a bdd $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^d$, a convolution CZO Twith homogeneous even kernel, $0 < s \leq 1$ and sp > d. $T_{\Omega}(1) \in W^{s,p}(\Omega) \iff T_{\Omega}$ is bounded in $W^{s,p}(\Omega)$.

Theorem (P., Tolsa, 2015)

Given a bdd uniform domain $\Omega \subset \mathbb{R}^d$, $s \in \mathbb{N}$, p > d and an admissible convolution CZO T. Then, $T_{\Omega}(P) \in W^{s,p}(\Omega) \ \forall P \in \mathcal{P}^{s-1} \iff T_{\Omega} \text{ is bounded in } W^{s,p}(\Omega).$

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
	00000				
Docult	te				

Theorem (Cruz, Mateu, Orobitg, 2013)

Given a bdd $C^{1+\epsilon}$ domain $\Omega \subset \mathbb{R}^d$, a convolution CZO T with homogeneous even kernel, $0 < s \leq 1$ and sp > d. $T_{\Omega}(1) \in W^{s,p}(\Omega) \iff T_{\Omega}$ is bounded in $W^{s,p}(\Omega)$.

Theorem (P., Tolsa, 2015)

Nesuits

Given a bdd uniform domain $\Omega \subset \mathbb{R}^d$, $s \in \mathbb{N}$, p > d and an admissible convolution CZO T. Then, $T_{\Omega}(P) \in W^{s,p}(\Omega) \ \forall P \in \mathcal{P}^{s-1} \iff T_{\Omega} \text{ is bounded in } W^{s,p}(\Omega).$

Theorem (P., Saksman, 2015)

Given a bdd uniform domain $\Omega \subset \mathbb{R}^d$, 0 < s < 1 and sp > dand an admissible convolution CZO T. Then, $T_{\Omega}(1) \in W^{s,p}(\Omega) \iff T_{\Omega}$ is bounded in $W^{s,p}(\Omega)$.

	T(P) theorems 0●000	The Beurling transform on planar domains 000	Planar quasiconformal mappings 00000	Carleson measures 000000	
The k	ey point	t: approximating b	by polynomials		

A new approach for the case s = 1:

Key Lemma

The following are equivalent:

•
$$\|\nabla T_{\Omega}f\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$$
.

•
$$\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T_\Omega 1\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p$$
.

æ

・ロト ・ 一下・ ・ モト・ ・ モト・

	T(P) theorems 0●000	The Beurling transform on planar domains 000	Planar quasiconformal mappings 00000	Carleson measures	The end
The k	ey poin [.]	t: approximating b	by polynomials		

Key Lemma

The following are equivalent:

•
$$\|\nabla T_{\Omega}f\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$$
.

•
$$\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T_{\Omega} \mathbf{1}\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p$$
.

Enough to prove

$$\sum_{Q} \|\nabla T_{\Omega}(f - f_{3Q}\chi_{\Omega})\|_{L^{p}(Q)}^{p} \lesssim \|\nabla f\|_{L^{p}(\Omega)}^{p}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	T(P) theorems 0●000	The Beurling transform on planar domains 000	Planar quasiconformal mappings 00000	Carleson measures	The end
The k	ey point	t: approximating b	by polynomials		

Key Lemma

The following are equivalent:

•
$$\|\nabla T_{\Omega}f\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$$
.

•
$$\sum_{Q \in \mathcal{W}} |f_{3Q}|^p \|\nabla T_{\Omega} \mathbf{1}\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p.$$

Enough to prove

$$\sum_{Q} \left\| \nabla T_{\Omega} (f - f_{3Q} \chi_{\Omega}) \right\|_{L^{p}(Q)}^{p} \lesssim \left\| \nabla f \right\|_{L^{p}(\Omega)}^{p}.$$

Idea: Break the local part and non-local part.

	T(P) theorems 0●000	The Beurling transform on planar domains 000	Planar quasiconformal mappings 00000	Carleson measures	The end
The k	ey point	t: approximating b	by polynomials		

Key Lemma

The following are equivalent:

•
$$\|\nabla T_{\Omega}f\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$$
.

•
$$\sum_{Q \in \mathcal{W}} |f_{3Q}|^p \|\nabla T_{\Omega} \mathbf{1}\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p$$
.

Enough to prove

$$\sum_{Q} \left\| \nabla T_{\Omega} (f - f_{3Q} \chi_{\Omega}) \right\|_{L^{p}(Q)}^{p} \lesssim \left\| \nabla f \right\|_{L^{p}(\Omega)}^{p}.$$

Idea: Break the local part and non-local part. Local part is a good function, in $W^{1,p}(\mathbb{R}^d)$.

	0€000	The Beurling transform on planar domains 000		000000	The end
The k	ey poin	t: approximating b	by polynomials		

Key Lemma

The following are equivalent:

•
$$\|\nabla T_{\Omega}f\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$$
.

•
$$\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T_{\Omega} 1\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p.$$

Enough to prove

$$\sum_{Q} \left\| \nabla T_{\Omega} (f - f_{3Q} \chi_{\Omega}) \right\|_{L^{p}(Q)}^{p} \lesssim \left\| \nabla f \right\|_{L^{p}(\Omega)}^{p}.$$

Idea: Break the local part and non-local part. Local part is a good function, in $W^{1,p}(\mathbb{R}^d)$. For the non-local part, we use a Harnack chain of cubes.

	0€000	The Beurling transform on planar domains 000		000000	The end
The k	ey poin	t: approximating b	by polynomials		

Key Lemma

The following are equivalent:

•
$$\|\nabla T_{\Omega}f\|_{L^{p}(\Omega)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$$
.

•
$$\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T_{\Omega} 1\|_{L^p(Q)}^p \leq C \|f\|_{W^{1,p}(\Omega)}^p$$
.

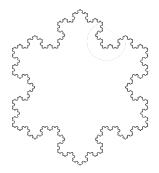
Enough to prove

$$\sum_{Q} \left\| \nabla T_{\Omega} (f - f_{3Q} \chi_{\Omega}) \right\|_{L^{p}(Q)}^{p} \lesssim \left\| \nabla f \right\|_{L^{p}(\Omega)}^{p}.$$

- 日本 - 1 日本 - 日本 - 日本

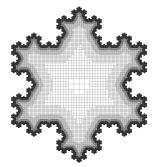
Idea: Break the local part and non-local part. Local part is a good function, in $W^{1,p}(\mathbb{R}^d)$. For the non-local part, we use a Harnack chain of cubes. Ingredients: bounds for the kernel, Poincaré inequality and Hölder.

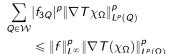
イロト イポト イヨト イヨト



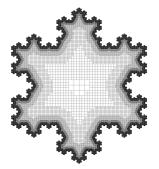
$$\sum_{Q\in\mathcal{W}} |f_{3Q}|^p \|\nabla T\chi_{\Omega}\|_{L^p(Q)}^p$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ



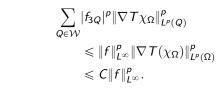


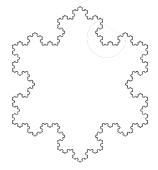
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ



ヘロト 人間ト 人団ト 人団ト

э.





$$\sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \|\nabla T \chi_{\Omega}\|_{L^{p}(Q)}^{p}$$

$$\leq \|f\|_{L^{\infty}}^{p} \|\nabla T(\chi_{\Omega})\|_{L^{p}(\Omega)}^{p}$$

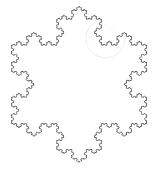
$$\leq C \|f\|_{L^{\infty}}^{p}.$$

Since p > d, by the Sobolev Embedding Theorem

$$\|f\|_{L^{\infty}} \leqslant C \|f\|_{W^{1,p}(\Omega)}.$$

イロト イポト イヨト イヨト

э



Introduction 0000	T(P) theorems 000●0	The Beurling transform on planar domains 000	Planar quasiconformal mappings 00000	Carleson measures	
Furth	er comn	nents			

• The natural smoothness greater than one works analogously, but with polynomials instead of means on cubes. The reasoning becomes more subtle in this setting.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
	00000				
Furth	er comn	nents			

- The natural smoothness greater than one works analogously, but with polynomials instead of means on cubes. The reasoning becomes more subtle in this setting.
- The fractional smoothness case with 0 < s < 1 works analogously, but with much more work.

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
	00000				
Furth	er comn	nents			

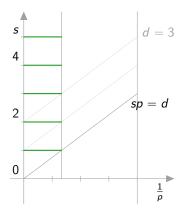
- The natural smoothness greater than one works analogously, but with polynomials instead of means on cubes. The reasoning becomes more subtle in this setting.
- The fractional smoothness case with 0 < s < 1 works analogously, but with much more work.
- Some new results (Triebel-Lizorkin norms in terms of differences, extension theorems for that situation, ...) arose to prove this particular result.

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
	00000				
Furth	er comn	nents			

- The natural smoothness greater than one works analogously, but with polynomials instead of means on cubes. The reasoning becomes more subtle in this setting.
- The fractional smoothness case with 0 < s < 1 works analogously, but with much more work.
- Some new results (Triebel-Lizorkin norms in terms of differences, extension theorems for that situation, ...) arose to prove this particular result.

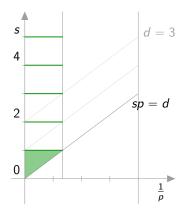
• These results have applications to PDE's, in particular quasiconformal mappings, as we will see.

Introduction 0000	T(P) theorems 0000●	The Beurling transform on planar domains 000	Planar quasiconformal mappings 00000	Carleson measures	
Concl	usions				



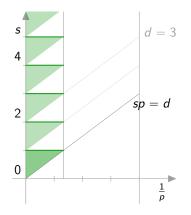
 For p > d we have a T(P) theorem for any CZO of convolution type in Ω ⊂ ℝ^d if we have bounds in the derivatives of its kernel.

		The Beurling transform on planar domains			
0000	00000	000	00000	000000	
Concl	usions				



- For p > d we have a T(P) theorem for any CZO of convolution type in Ω ⊂ ℝ^d if we have bounds in the derivatives of its kernel.
- For 0 < s < 1, sp > d we have a T(1) theorem for any CZO in \mathbb{R}^d as long as its kernel satisfies an *s*-Hölder condition.

Introduction 0000	T(P) theorems 0000●	The Beurling transform on planar domains 000	Planar quasiconformal mappings 00000	Carleson measures	
Conclu	usions				



- For p > d we have a T(P) theorem for any CZO of convolution type in Ω ⊂ ℝ^d if we have bounds in the derivatives of its kernel.
- For 0 < s < 1, sp > d we have a T(1) theorem for any CZO in \mathbb{R}^d as long as its kernel satisfies an *s*-Hölder condition.

Expected further results:

- Proving analogous results for $s \in \mathbb{R}$.
- Other characterizations of W^{s,p}(Ω) may lead to wider range of indices.

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	

The Beurling transform on planar domains

(ロ)、(型)、(E)、(E)、 E) の(の)

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
		000			
Result	ts				

Theorem (P., 2015)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to the boundary of Ω is in the Besov space $B_{p,p}^{s-\frac{1}{p}}(\partial\Omega)$ with $s \in \mathbb{N}$, $1 , then <math>\mathcal{B}(\chi_{\Omega}) \in W^{s,p}(\Omega)$, and

$$\|\nabla^{s}\mathcal{B}(\chi_{\Omega})\|_{L^{p}(\Omega)}^{p} \lesssim \|N\|_{B^{s-1/p}_{p,p}(\partial\Omega)}^{p}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
		000			
Recul	te				

Theorem (P., 2015)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to the boundary of Ω is in the Besov space $B_{p,p}^{s-\frac{1}{p}}(\partial\Omega)$ with $s \in \mathbb{N}$, $1 , then <math>\mathcal{B}(\chi_{\Omega}) \in W^{s,p}(\Omega)$, and

$$\|\nabla^{s}\mathcal{B}(\chi_{\Omega})\|_{L^{p}(\Omega)}^{p} \lesssim \|N\|_{B^{s-1/p}_{p,p}(\partial\Omega)}^{p}$$

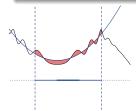
V. Cruz and X. Tolsa proved the case $\frac{1}{p} < s \leq 1$. Tolsa proved a converse for s = 1 and Ω flat enough.

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	000000	
Ingred	lients fo	or the proof			

Theorem (P. 2015)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to the boundary of Ω is in the Besov space $B_{p,p}^{s-\frac{1}{p}}(\partial\Omega)$ with $s \in \mathbb{N}$, $1 , then <math>\mathcal{B}(\chi_{\Omega}) \in W^{s,p}(\Omega)$, and

$$\|\nabla^{s}\mathcal{B}(\chi_{\Omega})\|_{L^{p}(\Omega)}^{p} \lesssim \|N\|_{B^{s-1/p}_{p,p}(\partial\Omega)}^{p}.$$



Ingredients:

• Generalized Peter Jones' betas (using polynomials instead of lines).

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	000000	
Ingred	lients fo	or the proof			

Theorem (P. 2015)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to the boundary of Ω is in the Besov space $B_{p,p}^{s-\frac{1}{p}}(\partial\Omega)$ with $s \in \mathbb{N}$, $1 , then <math>\mathcal{B}(\chi_{\Omega}) \in W^{s,p}(\Omega)$, and

$$\|\nabla^{s}\mathcal{B}(\chi_{\Omega})\|_{L^{p}(\Omega)}^{p} \lesssim \|N\|_{B^{s-1/p}_{p,p}(\partial\Omega)}^{p}.$$

Ingredients:

$$\begin{split} \|f\|_{B^{s+1-1/p}_{p,p}}^{p} &\approx \|f\|_{L^{p}}^{p} \\ &+ \sum_{I \in \mathcal{D}} \left(\frac{\beta_{(s)}(I)}{\ell(I)^{s}}\right)^{p} \ell(I)^{2} \end{split}$$

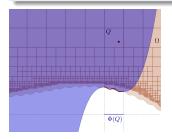
- Generalized Peter Jones' betas (using polynomials instead of lines).
- Equivalence between $B_{p,p}^{s-1/p}$ norm and a sum of betas (Dorronsoro).

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	000000	
Ingred	lients fo	or the proof			

Theorem (P. 2015)

For $\Omega \subset \mathbb{C}$ smooth enough, if the vector normal to the boundary of Ω is in the Besov space $B_{p,p}^{s-\frac{1}{p}}(\partial\Omega)$ with $s \in \mathbb{N}$, $1 , then <math>\mathcal{B}(\chi_{\Omega}) \in W^{s,p}(\Omega)$, and

$$\|\nabla^{s}\mathcal{B}(\chi_{\Omega})\|_{L^{p}(\Omega)}^{p} \lesssim \|N\|_{B^{s-1/p}_{p,p}(\partial\Omega)}^{p}.$$

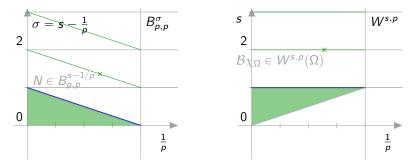


Ingredients:

- Generalized Peter Jones' betas (using polynomials instead of lines).
- Equivalence between $B_{p,p}^{s-1/p}$ norm and a sum of betas (Dorronsoro).
- Beurling of characteristic functions of circles, half-planes, polynomials.

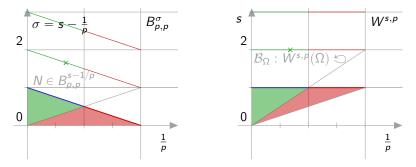
		The Beurling transform on planar domains			The end
0000	00000	00•	00000	000000	
Const					

Conclusions



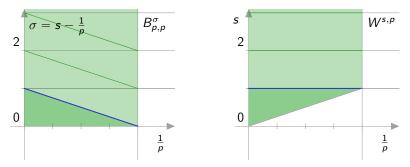
In the complex plane, the Besov regularity B^{s-1/p}_{p,p} of the vector normal to the boundary of the domain gives us a bound of B(χ_Ω) in W^{s,p}(Ω) (s ∈ N and ¹/_p < s < 1).

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	000000	
Canal					



- In the complex plane, the Besov regularity B^{s-1/p}_{p,p} of the vector normal to the boundary of the domain gives us a bound of B(χ_Ω) in W^{s,p}(Ω) (s ∈ N and ¹/_p < s < 1).
- Combined with the previous results, when sp > 2 and p > 2 we get that B_Ω is bounded in W^{s,p}(Ω).

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	
Concl	usions				



- Expected further results:
 - Proving analogous results for any $s \in \mathbb{R}_+$.
 - Studying higher dimensions.
 - Sharpness of all those results for $s \neq 1$.

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	

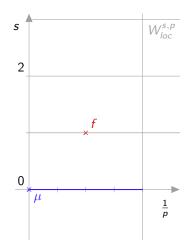
Planar quasiconformal mappings

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
			00000		
The E	Beltrami	equation			

Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.

	T(P) theorems 00000	The Beurling transform on planar domains 000	Planar quasiconformal mappings •0000	Carleson measures	The end
T 1	р				

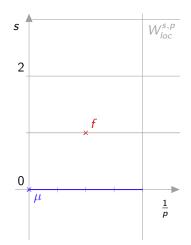


Let $\mu \in L^{\infty}_{c}(\mathbb{C})$ with $k := \|\mu\|_{\infty} < 1$. The *Beltrami equation*

$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

 $\begin{array}{ll} \text{has a unique solution } f\in \mathcal{W}_{\textit{loc}}^{1,2} \text{ such} \\ \text{that } f(z)=z+\mathcal{O}(1/z) \quad \text{as } z\to\infty. \end{array}$

00000	000	rling transform on planar domains	Planar quasiconformal mappings ●0000	000000	
 D 1.		1			



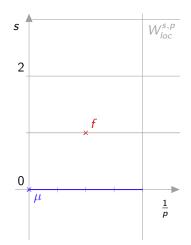
Let $\mu \in L^{\infty}_{c}(\mathbb{C})$ with $k := \|\mu\|_{\infty} < 1$. The *Beltrami equation*

$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W_{loc}^{1,2}$ such that f(z) = z + O(1/z) as $z \to \infty$.

Consider $h := \mu + \mu \mathcal{B}(\mu) + \mu \mathcal{B}(\mu \mathcal{B}(\mu)) + \cdots$

00000	000	rling transform on planar domains	Planar quasiconformal mappings ●0000	000000	
 D 1.		1			



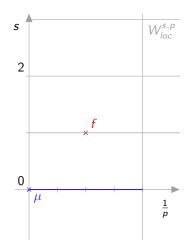
Let $\mu \in L^{\infty}_{c}(\mathbb{C})$ with $k := \|\mu\|_{\infty} < 1$. The *Beltrami equation*

$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W^{1,2}_{loc}$ such that f(z) = z + O(1/z) as $z \to \infty$.

Consider $h := \mu + \mu \mathcal{B}(\mu) + \mu \mathcal{B}(\mu \mathcal{B}(\mu)) + \cdots$ $= (I - \mu \mathcal{B})^{-1}(\mu),$

Introduction	 T(P) theorems 	The Beurli	ing transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000		00000	000000	
	B 1		-			



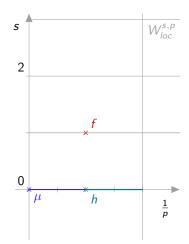
Let $\mu \in L_c^{\infty}(\mathbb{C})$ with $k := \|\mu\|_{\infty} < 1$. The Beltrami equation

 $\bar{\partial}f(z) = \mu(z)\partial f(z)$

has a unique solution $f \in W_{loc}^{1,2}$ such that $f(z) = z + \mathcal{O}(1/z)$ as $z \to \infty$.

Consider $\begin{aligned} h &:= \mu + \mu \mathcal{B}(\mu) + \mu \mathcal{B}(\mu \mathcal{B}(\mu)) + \cdots \\ &= (I - \mu \mathcal{B})^{-1}(\mu), \\ \text{since } \|\mu \cdot \mathcal{B}\|_{(2,2)} \leq k \|\mathcal{B}\|_{(2,2)} = k < 1. \end{aligned}$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙



Let $\mu \in L^{\infty}_{c}(\mathbb{C})$ with $k := \|\mu\|_{\infty} < 1$. The *Beltrami equation*

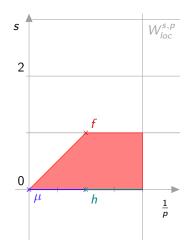
$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W^{1,2}_{loc}$ such that f(z) = z + O(1/z) as $z \to \infty$.

Consider $\begin{aligned} h &:= \mu + \mu \mathcal{B}(\mu) + \mu \mathcal{B}(\mu \mathcal{B}(\mu)) + \cdots \\ &= (I - \mu \mathcal{B})^{-1}(\mu), \\ \text{since } \|\mu \cdot \mathcal{B}\|_{(2,2)} \leq k \|\mathcal{B}\|_{(2,2)} = k < 1. \end{aligned}$ Then, $h \in L^2$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Introduction	 T(P) theorems 	The Beurli	ing transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000		00000	000000	
	B 1		-			



Let $\mu \in L^{\infty}_{c}(\mathbb{C})$ with $k := \|\mu\|_{\infty} < 1$. The *Beltrami equation*

$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W^{1,2}_{loc}$ such that f(z) = z + O(1/z) as $z \to \infty$.

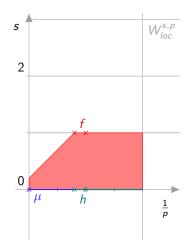
Consider

$$h := \mu + \mu \mathcal{B}(\mu) + \mu \mathcal{B}(\mu \mathcal{B}(\mu)) + \cdots$$
$$= (I - \mu \mathcal{B})^{-1}(\mu),$$
since $\|\mu \cdot \mathcal{B}\|_{(2,2)} \leq k \|\mathcal{B}\|_{(2,2)} = k < 1.$

Then, $h \in L^2$ and $f = \frac{1}{\pi z} * h + z$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Introduction	 T(P) theorems 	The Beurli	ing transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000		00000	000000	
	B 1		-			



Let $\mu \in L^{\infty}_{c}(\mathbb{C})$ with $k := \|\mu\|_{\infty} < 1$. The *Beltrami equation*

$$\bar{\partial}f(z) = \mu(z)\partial f(z)$$

has a unique solution $f \in W^{1,2}_{loc}$ such that f(z) = z + O(1/z) as $z \to \infty$.

Consider

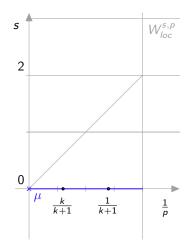
$$\begin{aligned} & h := \mu + \mu \mathcal{B}(\mu) + \mu \mathcal{B}(\mu \mathcal{B}(\mu)) + \cdots \\ &= (I - \mu \mathcal{B})^{-1}(\mu), \\ & \text{since } \|\mu \cdot \mathcal{B}\|_{(2,2)} \leq k \|\mathcal{B}\|_{(2,2)} = k < 1. \end{aligned}$$

Then, $h \in L^2$ and $f = \frac{1}{\pi z} * h + z$. This remains true if $\|\mathcal{B}\|_{(p,p)} < 1/k$.

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
			0000		

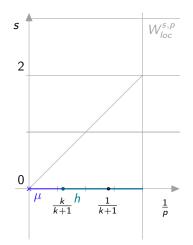
Results without boundaries



Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.

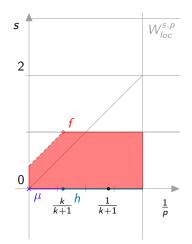
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
			0000		



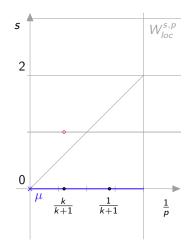
Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^{p}$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
			0000		



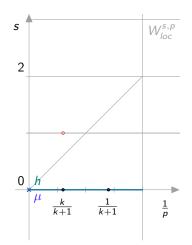
Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^{p}$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
			00000		



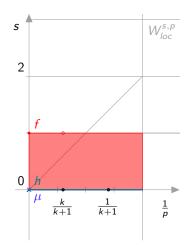
Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^{p}$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}})$

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
			00000		



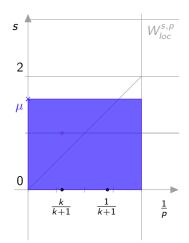
Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^{p}$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AlS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^{p}$ for $1 . [I]$

T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
		0000		



Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^{p}$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AlS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^{p}$ for $1 . [I]$

Introduction T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000 00000	000	0000	000000	

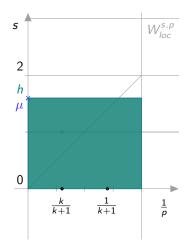


Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^{p}$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^{p}$ for
 $1 . [I]
• $\mu \in C^{n+\varepsilon}_{loc}$$

ntroduction T(P) theorems T	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000 00000 0000	000	0000	000000	

L

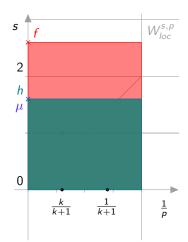
Results without boundaries



Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^{p}$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^{p}$ for $1 . [I]$

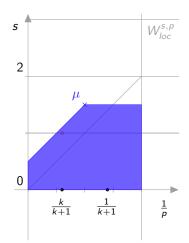
•
$$\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$$
 [AIM].

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	0000	000000	



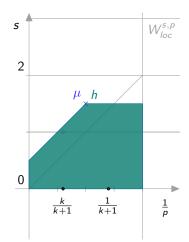
Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^{p}$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^{p}$ for $1 . [I]
• $\mu \in C^{n+\varepsilon}_{loc} \implies h \in C^{n+\varepsilon}_{loc}$ [AIM].$

Introduction T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
00000 00000	000	0000	000000	



Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^{p}$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AlS01].
• $\mu \in VMO(\widehat{\mathbb{C}}) \implies h \in L^{p}$ for $1 . [I]
• $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].
• $\mu \in A_{p,q}^{s}$$

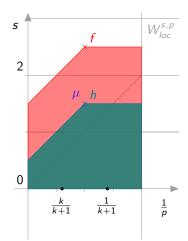
introduction (r) theorems the bei	urling transform on planar domains Planar	quasiconformal mappings Carle	son measures I he end
0000 00000 000	0000	000	0000



Let
$$\mu \in L^{\infty}_{c}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^{p}$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AlS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^{p}$ for $1 . [I]
• $\mu \in C^{n+\varepsilon}_{loc} \implies h \in C^{n+\varepsilon}_{loc}$ [AIM].$

•
$$\mu \in A_{p,q}^s \implies h \in A_{p,q}^s$$
 for $sp > 2$ [CMO].

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	0000	000000	



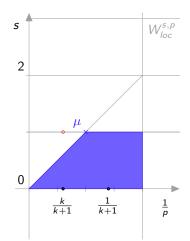
Let $\mu \in L^\infty_c(\mathbb{C})$ with $k := \ \mu\ _\infty < 1.$
• $h \in L^p$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for
$1 . [I]$
• $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].

• $\mu \in A^s_{p,q} \implies h \in A^s_{p,q}$ for sp > 2 [CMO].

introduction (r) theorems the bei	urling transform on planar domains Planar	quasiconformal mappings Carle	son measures I he end
0000 00000 000	0000	000	0000

L

Results without boundaries

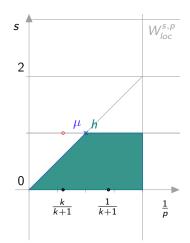


et
$$\mu \in L_c^{\infty}(\mathbb{C})$$
 with $k := \|\mu\|_{\infty} < 1$.
• $h \in L^p$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for $1 . [I]
• $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].
• $\mu \in A_{p,q}^s \implies h \in A_{p,q}^s$ for $sp > 2$ [CMO].
• $\mu \in W^{1,2}$$

incoduction (i) cheorems the beaming chambion	on planar domains Planar quasiconformal mappings	Carleson measures	i ne end
0000 00000 000	00000	000000	

L

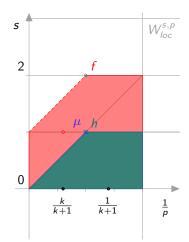
Results without boundaries



Let $\mu \in L^{\infty}_{c}(\mathbb{C})$ with $k := \ \mu\ _{\infty} < 1.$
• $h \in L^p$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for $1 . [I]$
• $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].
• $\mu \in A^s_{p,q} \implies h \in A^s_{p,q}$ for $sp > 2$ [CMO].
• $\mu \in W^{1,2} \implies h \in W^{1,2-\varepsilon}$ for

•
$$\mu \in W^{1,2} \implies h \in W^{1,2-\varepsilon}$$
 for $p = 2$ [CFMOZ].

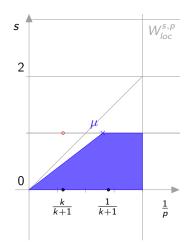
Introduction T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
00000 00000	000	0000	000000	



Let $\mu \in L^{\infty}_{c}(\mathbb{C})$ with $k := \ \mu\ _{\infty} < 1$.
• $h \in L^p$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for
$1 . [I]$
• $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].
• $\mu \in A^s_{p,q} \implies h \in A^s_{p,q}$ for $sp > 2$
[CMO].

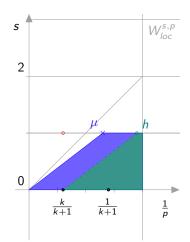
•
$$\mu \in W^{1,2} \implies h \in W^{1,2-\varepsilon}$$
 for $p = 2$ [CFMOZ].

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	0000	000000	



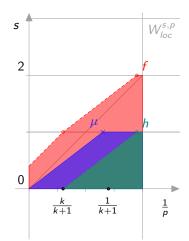
Let $\mu \in L^\infty_c(\mathbb{C})$ with $k := \ \mu\ _\infty < 1.$
• $h \in L^p$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for
$1 . [I]$
• $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].
• $\mu \in A^s_{p,q} \implies h \in A^s_{p,q}$ for $sp > 2$
[CMO].
• $\mu \in W^{1,2} \implies h \in W^{1,2-arepsilon}$ for
p = 2 [CFMOZ].
• $\mu \in W^{1,p}$

0000 00000 000 00000 000000		T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
	0000	00000	000	0000	000000	



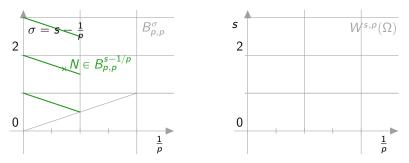
Let $\mu \in L^{\infty}_{c}(\mathbb{C})$ with $k := \ \mu\ _{\infty} < 1$.
• $h \in L^p$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for
$1 . [I]$
• $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].
• $\mu \in A^s_{p,q} \implies h \in A^s_{p,q}$ for $sp > 2$
[CMO].
• $\mu \in W^{1,2} \implies h \in W^{1,2-arepsilon}$ for
p = 2 [CFMOZ].
• $\mu \in W^{1,p} \implies h \in W^{1,q}$ for $p < 2$,
$\frac{1}{q} > \frac{1}{p} + \frac{k}{k+1} $ [CFMOZ].

0000 00000 000 00000 000000		T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
	0000	00000	000	0000	000000	



Let $\mu \in L^{\infty}_{c}(\mathbb{C})$ with $k := \ \mu\ _{\infty} < 1$.
• $h \in L^p$ for $\frac{k}{k+1} < \frac{1}{p}$ [A92, AIS01].
• $\mu \in VMO(\hat{\mathbb{C}}) \implies h \in L^p$ for
$1 . [I]$
• $\mu \in C_{loc}^{n+\varepsilon} \implies h \in C_{loc}^{n+\varepsilon}$ [AIM].
• $\mu \in A^s_{p,q} \implies h \in A^s_{p,q}$ for $sp > 2$
[CMO].
• $\mu \in W^{1,2} \implies h \in W^{1,2-arepsilon}$ for
p = 2 [CFMOZ].
• $\mu \in W^{1,p} \implies h \in W^{1,q}$ for $p < 2$,
$\frac{1}{q} > \frac{1}{p} + \frac{k}{k+1}$ [CFMOZ].

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	

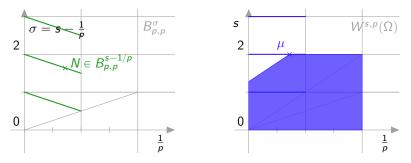


We study supercritical case.

Theorem

Let $\Omega \subset \mathbb{C}$ be a bdd domain, with normal vector $N \in B^{s-1/p}_{p,p}(\partial \Omega)$, $s \in \mathbb{N}$ and p > 2.

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	000000	

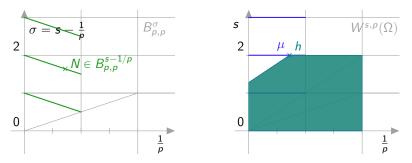


We study supercritical case.

Theorem

Let $\Omega \subset \mathbb{C}$ be a bdd domain, with normal vector $N \in B^{s-1/p}_{p,p}(\partial\Omega)$, $s \in \mathbb{N}$ and p > 2. Let $\mu \in W^{s,p}(\Omega) \cap L^{\infty}$ with $k := \|\mu\|_{\infty} < 1$ with $\operatorname{supp} \mu \subset \overline{\Omega}$.

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The
0000	00000	000	00000	000000	



We study supercritical case.

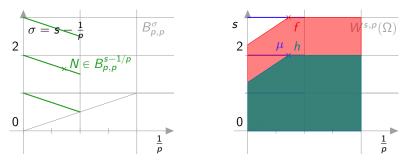
Theorem

Let $\Omega \subset \mathbb{C}$ be a bdd domain, with normal vector $N \in B^{s-1/p}_{p,p}(\partial\Omega)$, $s \in \mathbb{N}$ and p > 2. Let $\mu \in W^{s,p}(\Omega) \cap L^{\infty}$ with $k := \|\mu\|_{\infty} < 1$ with $\operatorname{supp} \mu \subset \overline{\Omega}$. Then $I_{\Omega} - \mu \mathcal{B}_{\Omega}$ is invertible in $W^{s,p}(\Omega)$.

T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	
		00000	

Carleson measures The end

Results with boundaries



We study supercritical case.

Theorem

Let $\Omega \subset \mathbb{C}$ be a bdd domain, with normal vector $N \in B^{s-1/p}_{p,p}(\partial\Omega)$, $s \in \mathbb{N}$ and p > 2. Let $\mu \in W^{s,p}(\Omega) \cap L^{\infty}$ with $k := \|\mu\|_{\infty} < 1$ with $\operatorname{supp} \mu \subset \overline{\Omega}$. Then the principal solution $f \in W^{s+1,p}(\Omega)$.

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	000●0	000000	
Tools					

• Objective: Prove that $I_{\Omega} - \mu \mathcal{B}_{\Omega}$ is invertible.

Introduction 0000	T(P) theorems 00000	The Beurling transform on planar domains 000	Planar quasiconformal mappings 000●0	Carleson measures	
Tools					

- Objective: Prove that $I_{\Omega} \mu \mathcal{B}_{\Omega}$ is invertible.
- Fredholm Theory: Show that for m big $I_{\Omega} (\mu B_{\Omega})^m = A + K$ with A invertible and K compact in $W^{s,p}(\Omega)$.

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	○○○●○	000000	
Tools					

- Objective: Prove that $I_{\Omega} \mu \mathcal{B}_{\Omega}$ is invertible.
- Fredholm Theory: Show that for m big I_Ω (μB_Ω)^m = A + K with A invertible and K compact in W^{s,p}(Ω).
- Compactness of the commutator: $[\mu, \mathcal{B}_{\Omega}] = \mu \mathcal{B}_{\Omega}(\cdot) \mathcal{B}_{\Omega}(\mu \cdot).$

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	000●0	000000	
Tools					

- Objective: Prove that $I_{\Omega} \mu \mathcal{B}_{\Omega}$ is invertible.
- Fredholm Theory: Show that for m big I_Ω (μB_Ω)^m = A + K with A invertible and K compact in W^{s,p}(Ω).
- Compactness of the commutator: $[\mu, \mathcal{B}_{\Omega}] = \mu \mathcal{B}_{\Omega}(\cdot) \mathcal{B}_{\Omega}(\mu \cdot).$

• Approximate by smooth Beltrami coefficients (easy).

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	000●0	000000	
Tools					

- Objective: Prove that $I_{\Omega} \mu \mathcal{B}_{\Omega}$ is invertible.
- Fredholm Theory: Show that for m big $I_{\Omega} (\mu \mathcal{B}_{\Omega})^m = A + K$ with A invertible and K compact in $W^{s,p}(\Omega)$.
- Compactness of the commutator: $[\mu, \mathcal{B}_{\Omega}] = \mu \mathcal{B}_{\Omega}(\cdot) \mathcal{B}_{\Omega}(\mu \cdot).$
 - Approximate by smooth Beltrami coefficients (easy).
 - Show that if μ is smooth, then the commutator is smoothing and, therefore, compact (harder, using T(P) techniques).

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	○○○●○	000000	
Tools					

- Objective: Prove that $I_{\Omega} \mu \mathcal{B}_{\Omega}$ is invertible.
- Fredholm Theory: Show that for m big $I_{\Omega} (\mu \mathcal{B}_{\Omega})^m = A + K$ with A invertible and K compact in $W^{s,p}(\Omega)$.
- Compactness of the commutator: $[\mu, \mathcal{B}_{\Omega}] = \mu \mathcal{B}_{\Omega}(\cdot) \mathcal{B}_{\Omega}(\mu \cdot).$
 - Approximate by smooth Beltrami coefficients (easy).
 - Show that if μ is smooth, then the commutator is smoothing and, therefore, compact (harder, using T(P) techniques).

• Compactness of the 'double reflection' $\chi_{\Omega} \mathcal{B}(\chi_{\Omega^c} \mathcal{B}^m(\chi_{\Omega} \cdot)).$

			Planar quasiconformal mappings		
0000	00000	000	00000	000000	
Tools					

- Objective: Prove that $I_{\Omega} \mu \mathcal{B}_{\Omega}$ is invertible.
- Fredholm Theory: Show that for m big $I_{\Omega} (\mu \mathcal{B}_{\Omega})^m = A + K$ with A invertible and K compact in $W^{s,p}(\Omega)$.
- Compactness of the commutator: $[\mu, \mathcal{B}_{\Omega}] = \mu \mathcal{B}_{\Omega}(\cdot) \mathcal{B}_{\Omega}(\mu \cdot).$
 - Approximate by smooth Beltrami coefficients (easy).
 - Show that if μ is smooth, then the commutator is smoothing and, therefore, compact (harder, using T(P) techniques).
- Compactness of the 'double reflection' $\chi_{\Omega} \mathcal{B}(\chi_{\Omega^c} \mathcal{B}^m(\chi_{\Omega} \cdot)).$
 - Approximate by smoothly truncated double reflections (very hard, T(P), complex and harmonic analysis techniques).

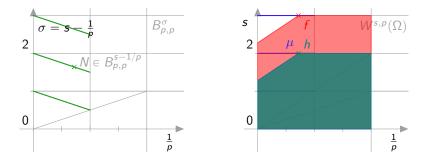
			Planar quasiconformal mappings		
0000	00000	000	00000	000000	
Tools					

- Objective: Prove that $I_{\Omega} \mu \mathcal{B}_{\Omega}$ is invertible.
- Fredholm Theory: Show that for m big I_Ω (μB_Ω)^m = A + K with A invertible and K compact in W^{s,p}(Ω).
- Compactness of the commutator: $[\mu, \mathcal{B}_{\Omega}] = \mu \mathcal{B}_{\Omega}(\cdot) \mathcal{B}_{\Omega}(\mu \cdot).$
 - Approximate by smooth Beltrami coefficients (easy).
 - Show that if μ is smooth, then the commutator is smoothing and, therefore, compact (harder, using T(P) techniques).
- Compactness of the 'double reflection' $\chi_{\Omega} \mathcal{B}(\chi_{\Omega^c} \mathcal{B}^m(\chi_{\Omega} \cdot)).$
 - Approximate by smoothly truncated double reflections (very hard, T(P), complex and harmonic analysis techniques).

• Show that they are smoothing and, therefore, compact (easy).

Cond					
0000	00000	000	00000	000000	
	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	

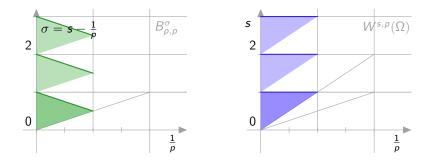
Conclusions



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• In the complex plane, if $N \in B^{s-1/p}_{p,p}(\partial\Omega)$ and p > 2, then $\mu \in W^{s,p}(\Omega) \implies f \in W^{s+1,p}(\Omega)$.

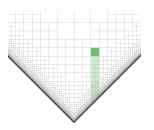
	ucione				
	00000			000000	The end
Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mannings	Carleson measures	The end



- In the complex plane, if $N \in B^{s-1/p}_{p,p}(\partial\Omega)$ and p > 2, then $\mu \in W^{s,p}(\Omega) \implies f \in W^{s+1,p}(\Omega)$.
- Expected further results:
 - Proving analogous results for any $s \in \mathbb{R}_+$. 0 < s < 1, sp > 2 seems ready to be done.
 - Subcritical situation: is there any condition on $\partial \Omega$ which can lead to analogous results?

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	000000	

Carleson measures



According to [Arcozzi, Rochberg, Sawyer], i.e., Carleson measures for Besov space of analytic functions $B_p(\rho)$,

Definition

We say that ν is *p*-Carleson for $\Omega \subset \mathbb{R}^d$ iff for every Whitney cube *P*,

$$\sum_{Q\subset \operatorname{Sh}(P)}\nu(\operatorname{Sh}(Q))^{p'}\ell(Q)^{\frac{p-d}{p-1}}\leqslant C\nu(\operatorname{Sh}(P)).$$

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	O●OOOO	
Result	ts				

Lipschitz domains, $s \in \mathbb{N}$.

Theorem (P., Tolsa, 2014)

Given a domain $\Omega \subset \mathbb{R}^d$ and p > d. If $T_{\Omega}(P) \in W^{s,p}(\Omega)$ for polynomials $P \in \mathcal{P}^{s-1}(\Omega)$, then T_{Ω} is bounded in $W^{s,p}(\Omega)$.

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	0●0000	
Result	.s				

Lipschitz domains, $s \in \mathbb{N}$.

Theorem (P., Tolsa, 2014)

Given a domain $\Omega \subset \mathbb{R}^d$ and p > d. If $T_{\Omega}(P) \in W^{s,p}(\Omega)$ for polynomials $P \in \mathcal{P}^{s-1}(\Omega)$, then T_{Ω} is bounded in $W^{s,p}(\Omega)$.

Theorem (P., Tolsa, 2014)

For any $1 , if <math>|\nabla^s T_{\Omega}(P)(x)|^p dx$ is a p-Carleson measure in Ω for every $P \in \mathcal{P}^{s-1}(\Omega)$, then T_{Ω} is bounded in $W^{s,p}(\Omega)$.

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	0●0000	
Result	.s				

Lipschitz domains, $s \in \mathbb{N}$.

Theorem (P., Tolsa, 2014)

Given a domain $\Omega \subset \mathbb{R}^d$ and p > d. If $T_{\Omega}(P) \in W^{s,p}(\Omega)$ for polynomials $P \in \mathcal{P}^{s-1}(\Omega)$, then T_{Ω} is bounded in $W^{s,p}(\Omega)$.

Theorem (P., Tolsa, 2014)

For any $1 , if <math>|\nabla^s T_{\Omega}(P)(x)|^p dx$ is a p-Carleson measure in Ω for every $P \in \mathcal{P}^{s-1}(\Omega)$, then T_{Ω} is bounded in $W^{s,p}(\Omega)$. If s = 1, the converse is true.

 $d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

is *p*-Carleson for Ω .

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}} \|\nabla T_{\Omega}f\|_{L^{p}(Q)}^{p} \leqslant C \|f\|_{W^{1,p}(\Omega)}^{p}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T_{\Omega}1\|_{L^p(Q)}^p\leqslant C\|f\|_{W^{1,p}(\Omega)}^p.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T_{\Omega}1\|_{L^p(Q)}^p\leqslant C\|f\|_{W^{1,p}(\Omega)}^p.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

But,

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^{p}\nu(Q)$$

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T_{\Omega}1\|_{L^p(Q)}^p\leqslant C\|f\|_{W^{1,p}(\Omega)}^p.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

But,

$$\sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \nu(Q) \leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} |f_{3P} - f_{3\mathcal{N}(P)}| \right)^{p} \nu(Q)$$

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T_{\Omega}1\|_{L^p(Q)}^p\leqslant C\|f\|_{W^{1,p}(\Omega)}^p.$$

But, by Poincaré inequalities

$$\sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \nu(Q) \leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} |f_{3P} - f_{3\mathcal{N}(P)}| \right)^{p} \nu(Q)$$
$$\leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} \|\nabla f\|_{L^{p}(5P)} \ell(P)^{1 - \frac{d}{p}} \right)^{p} \nu(Q)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T_{\Omega}1\|_{L^p(Q)}^p\leqslant C\|f\|_{W^{1,p}(\Omega)}^p.$$

But, by Poincaré inequalities and some p-Carleson measure properties,

$$\sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \nu(Q) \leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} |f_{3P} - f_{3\mathcal{N}(P)}| \right)^{p} \nu(Q)$$
$$\leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} \|\nabla f\|_{L^{p}(5P)} \ell(P)^{1 - \frac{d}{p}} \right)^{p} \nu(Q)$$
$$\leq C \sum_{Q \in \mathcal{W}} \|\nabla f\|_{L^{p}(5Q)}^{p}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx$$

is *p*-Carleson for Ω . We want

$$\sum_{Q\in\mathcal{W}}|f_{3Q}|^p\|\nabla T_{\Omega}1\|_{L^p(Q)}^p\leqslant C\|f\|_{W^{1,p}(\Omega)}^p.$$

But, by Poincaré inequalities and some p-Carleson measure properties,

$$\sum_{Q \in \mathcal{W}} |f_{3Q}|^{p} \nu(Q) \leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} |f_{3P} - f_{3\mathcal{N}(P)}| \right)^{p} \nu(Q)$$
$$\leq \sum_{Q \in \mathcal{W}} \left(\sum_{P: Q \subset \mathsf{Sh}(P)} \|\nabla f\|_{L^{p}(5P)} \ell(P)^{1 - \frac{d}{p}} \right)^{p} \nu(Q)$$
$$\leq C \sum_{Q \in \mathcal{W}} \|\nabla f\|_{L^{p}(5Q)}^{p} \leq C \|f\|_{W^{1,p}(\Omega)}^{p}$$

Hypothesis: T_{Ω} bounded in $W^{1,p}(\Omega)$. Then the averaging function

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

Hypothesis: T_{Ω} bounded in $W^{1,p}(\Omega)$. Then the averaging function

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1,p}(\Omega) \to L^p(\nu)$ for

$$d\nu(x) = |\nabla T_{\Omega} 1(x)|^{p} dx.$$

🕨 Key Lemma

Hypothesis: T_{Ω} bounded in $W^{1,p}(\Omega)$. Then the averaging function

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1,p}(\Omega) \to L^p(\nu)$ for

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx.$$

Key Lemma

By duality, $\mathcal{A}^*: L^{p'}(\nu) \to (W^{1,p}(\Omega))^*$ is also bounded.

Hypothesis: T_{Ω} bounded in $W^{1,p}(\Omega)$. Then the averaging function

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1,p}(\Omega) \to L^p(\nu)$ for

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx.$$

Key Lemma

By duality, $\mathcal{A}^*: L^{p'}(\nu) \to (W^{1,p}(\Omega))^*$ is also bounded. (p=d=2)

$$\sum_{Q \subset \mathsf{Sh}(P)} \nu(\mathsf{Sh}(Q))^{p'} \ell(Q)^{\frac{p-d}{p-1}} \lesssim \nu(\mathsf{Sh}(P))$$

Hypothesis: T_{Ω} bounded in $W^{1,p}(\Omega)$. Then the averaging function

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1,p}(\Omega) \to L^p(\nu)$ for

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx.$$

🕨 Key Lemma

By duality,
$$\mathcal{A}^* : L^{p'}(\nu) \to (W^{1,p}(\Omega))^*$$
 is also bounded.
 $(p = d = 2)$ For $g = \chi_{\mathbf{Sh}(P)}$,
 $\sum_{Q \subset \mathbf{Sh}(P)} \nu(\mathbf{Sh}(Q))^2 \lesssim \dots \lesssim \|\mathcal{A}^*g\|^2_{(W^{1,2}(\Omega))^*} \lesssim \|g\|^2_{L^2(\nu)} = \nu(\mathbf{Sh}(P))$

Hypothesis: T_{Ω} bounded in $W^{1,p}(\Omega)$. Then the averaging function

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1,p}(\Omega) \to L^p(\nu)$ for

$$d\nu(x) = |\nabla T_{\Omega} \mathbf{1}(x)|^{p} dx.$$

🕨 Key Lemma

By duality,
$$\mathcal{A}^* : L^{p'}(\nu) \to (W^{1,p}(\Omega))^*$$
 is also bounded.
 $(p = d = 2)$ For $g = \chi_{\mathbf{Sh}(P)}$,
 $\sum_{Q \subset \mathbf{Sh}(P)} \nu(\mathbf{Sh}(Q))^2 \lesssim \cdots \lesssim \|\mathcal{A}^*g\|^2_{(W^{1,2}(\Omega))^*} \lesssim \|g\|^2_{L^2(\nu)} = \nu(\mathbf{Sh}(P))$

 $W^{1,2}(\Omega)$ is Hilbert, there is $\mathcal{A}^*(g) \in W^{1,2}(\Omega)$.

Hypothesis: T_{Ω} bounded in $W^{1,p}(\Omega)$. Then the averaging function

$$\mathcal{A}f(x) := \sum_{Q \in \mathcal{W}} \chi_Q(x) f_{3Q},$$

by the Key Lemma, is also bounded $\mathcal{A}: W^{1,p}(\Omega) \to L^p(\nu)$ for

$$d\nu(x) = |\nabla T_{\Omega} 1(x)|^{p} dx.$$

🕨 Key Lemma

By duality,
$$\mathcal{A}^* : L^{p'}(\nu) \to (W^{1,p}(\Omega))^*$$
 is also bounded.
($p = d = 2$) For $g = \chi_{\mathbf{Sh}(P)}$,

$$\sum_{Q\subset \mathsf{Sh}(P)}\nu(\mathsf{Sh}(Q))^2 \lesssim \cdots \lesssim \|\mathcal{A}^*g\|^2_{(W^{1,2}(\Omega))^*} \lesssim \|g\|^2_{L^2(\nu)} = \nu(\mathsf{Sh}(P))$$

 $W^{1,2}(\Omega)$ is Hilbert, there is $\mathcal{A}^*(g) \in W^{1,2}(\Omega)$. $\mathcal{A}^*(g)$ solves a Neumann problem $\Delta h = \tilde{g}$.

Introduction 0000		The Beurling transform on planar domains	Planar quasiconformal mappings 00000	Carleson measures 0000●0	The end			
0000	00000	000	00000	000000				
E								
Furth	Further comments							

• To avoid some cancellation issues, the Neumann problem is solved in the half-space.

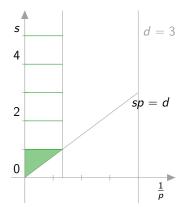
Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	0000●0	
Furth	er comn	nents			

- To avoid some cancellation issues, the Neumann problem is solved in the half-space.
- The necessity of the Carleson condition for $W^{1,p}$ with $p \neq 2$ is shown with the same scheme, but the lack of self-duality makes the proof trickier.

Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
0000	00000	000	00000	000000	
Furth	er comn	nents			

- To avoid some cancellation issues, the Neumann problem is solved in the half-space.
- The necessity of the Carleson condition for $W^{1,p}$ with $p \neq 2$ is shown with the same scheme, but the lack of self-duality makes the proof trickier.
- A sufficient Carleson condition for Triebel-Lizorkin spaces $F_{p,q}^s$ with 0 < s < 1 and $s > \frac{d}{p} \frac{d}{q}$ is also obtained in the thesis.

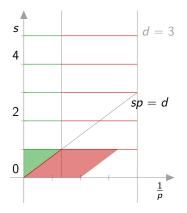
Introduction	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	
0000	00000	000	00000	00000●	
Conclu	usions				



• For p > d and $s \in \mathbb{N}$ or 0 < s < 1, sp > d we have obtained a T(P) theorem.

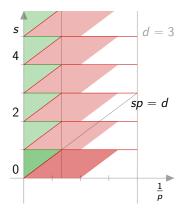
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

	T(P) theorems 00000	The Beurling transform on planar domains 000	Planar quasiconformal mappings 00000	Carleson measures 00000●	
Concl	usions				



- For p > d and $s \in \mathbb{N}$ or 0 < s < 1, sp > d we have obtained a T(P) theorem.
- For p ≤ d it is not enough to have the images of polynomials bounded, but it suffices that they are Carleson measures. When s = 1, this yields a complete characterization.

	T(P) theorems 00000	The Beurling transform on planar domains 000	Planar quasiconformal mappings 00000	Carleson measures	
Concl	usions				



- For p > d and $s \in \mathbb{N}$ or 0 < s < 1, sp > d we have obtained a T(P) theorem.
- For p ≤ d it is not enough to have the images of polynomials bounded, but it suffices that they are Carleson measures. When s = 1, this yields a complete characterization.
- Expected further results:
 - Proving analogous results for any $s \in \mathbb{R}_+$.

• Sharpness of all those results.

	T(P) theorems	The Beurling transform on planar domains	Planar quasiconformal mappings	Carleson measures	The end
The e	nd				

Moltes gràcies!! Muchas gracias!! Kiitos paljon!!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ