Rectifiable sets and the Traveling Salesman Problem

Martí Prats
Universitat Autònoma de Barcelona

July 22, 2013

First session

The Traveling Salesman Problem

A salesman wants to visit a number of villages and then go back home.

The Traveling Salesman Problem

A salesman wants to visit a number of villages and then go back home.
He wants to find the shortest cycle!

The Traveling Salesman Problem

A salesman wants to visit a number of villages and then go back home.
He wants to find the shortest cycle!

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it.
Find the shortest segment with endpoint in one of the previous,

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it. Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it.
Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.

The Traveling Salesman Problem

The greedy algorithm gives us the minimal spanning tree: choose a vertex.
Find the closer one to it.
Find the shortest segment with endpoint in one of the previous, and keep doing it until you have united all of them.
The resulting spanning tree is minimal in length. Call it G.

The Traveling Salesman Problem

Suppose K connects all these points with minimal length. You can do a tour with double length...

The Traveling Salesman Problem

Suppose K connects all these points with minimal length. You can do a tour with double length...
But you can shorten it by taking straight lines instead of repeating vertices. Call the minimal tour T.

The Traveling Salesman Problem

Suppose K connects all these points with minimal length. You can do a tour with double length...
But you can shorten it by taking straight lines instead of repeating vertices. Call the minimal tour T.

Obviously, T contains a spanning tree and G is minimal among them.

The Traveling Salesman Problem

Suppose K connects all these points with minimal length. You can do a tour with double length...
But you can shorten it by taking straight lines instead of repeating vertices. Call the minimal tour T.

Obviously, T contains a spanning tree and G is minimal among them.
Furthermore, K is shorter than any spanning tree.
The greedy algorithm provides us with the best route up to constant 2.

Non-finite sets

- When it comes to a non-finite set E, the Traveling Salesman Problem consists in finding a minimal rectifiable curve $\Gamma \supset E$. This would give us also a minimal tour up to a constant.

Non-finite sets

- When it comes to a non-finite set E, the Traveling Salesman Problem consists in finding a minimal rectifiable curve $\Gamma \supset E$. This would give us also a minimal tour up to a constant.
- We say that a set is rectifiable when the set is contained in the image of a finite interval by a Lipschitz function.

Non-finite sets

- When it comes to a non-finite set E, the Traveling Salesman Problem consists in finding a minimal rectifiable curve $\Gamma \supset E$. This would give us also a minimal tour up to a constant.
- We say that a set is rectifiable when the set is contained in the image of a finite interval by a Lipschitz function.
- One necessary condition for E to be rectifiable is that the Hausdorff one-dimensional (outer) measure of the set, $\mathcal{H}^{1}(E)$, is finite, but it is not sufficient unless E is connected [Falconer].

The Peter Jones' Betas (1)

Definition
Let Q be a (dyadic) square of side $\ell(Q)$.

The Peter Jones' Betas (1)

Definition
Let Q be a (dyadic) square of side $\ell(Q)$.
We write $3 Q$ for the concentric square with triple side-length,

The Peter Jones' Betas (1)

Definition

Let Q be a (dyadic) square of side $\ell(Q)$.
We write $3 Q$ for the concentric square with triple side-length, and call $\beta_{E}(Q)$ to the width of the narrowest strip containing $E \cap 3 Q$ divided by $\ell(3 Q)$.

The Peter Jones' Betas (1)

Definition

Let Q be a (dyadic) square of side $\ell(Q)$.
We write $3 Q$ for the concentric square with triple side-length, and call $\beta_{E}(Q)$ to the width of the narrowest strip containing $E \cap 3 Q$ divided by $\ell(3 Q)$.
Notice that $\beta_{E}(Q) \leq 1$. We also have that

$$
\beta_{E}(Q)=\frac{2}{\ell(3 Q)} \inf _{L}\left\{\sup _{E \cap 3 Q} \operatorname{dist}(z, L)\right\} .
$$

The Peter Jones' Betas (2)

Definition

Given a set E, we associate to it the coefficient

$$
\beta^{2}(E)=\operatorname{diam}(E)+\sum_{\substack{Q \in \Delta \\ \ell(Q) \leq \operatorname{diam}(E)}} \beta_{E}^{2}(Q) \ell(Q) .
$$

The Peter Jones' Betas (2)

Definition

Given a set E, we associate to it the coefficient

$$
\beta^{2}(E)=\operatorname{diam}(E)+\sum_{\substack{Q \in \Delta \\ \ell(Q) \leq \operatorname{diam}(E)}} \beta_{E}^{2}(Q) \ell(Q) .
$$

Notice that $\beta_{E}(Q)$ is adimensional, and we can see that β^{2} has a linear behavior up to a constant.

Main Result

Theorem
Suppose $E \subset \mathbb{C}$ is a bounded set. Then E is contained in a rectifiable curve if and only if $\beta^{2}(E)$ is finite. Moreover, there are constants c_{1}, c_{2} such that

$$
\begin{equation*}
c_{1} \beta^{2}(E) \leq \inf _{\Gamma \supset E} \mathcal{H}^{1}(\Gamma) \leq c_{2} \beta^{2}(E) \tag{1}
\end{equation*}
$$

where the infimum is taken over all rectifiable curves containing E.

Main Result

Theorem

Suppose $E \subset \mathbb{C}$ is a bounded set. Then E is contained in a rectifiable curve if and only if $\beta^{2}(E)$ is finite. Moreover, there are constants c_{1}, c_{2} such that

$$
\begin{equation*}
c_{1} \beta^{2}(E) \leq \inf _{\Gamma \supset E} \mathcal{H}^{1}(\Gamma) \leq c_{2} \beta^{2}(E) \tag{1}
\end{equation*}
$$

where the infimum is taken over all rectifiable curves containing E. Notice that, even though we do not find the best path for the salesman, we bound the distance the salesman must travel if he designs his route wisely.

Finding a good route

We are about to prove that $\beta^{2}(E)<\infty$ implies that E is rectifiable, with

$$
\inf _{\Gamma \supset E} \mathcal{H}^{1}(\Gamma) \leq c_{2} \beta^{2}(E) .
$$

Breaking a rectangle into two

Breaking a rectangle into two

- Consider a given bounded set E_{0}.
- Cover it by a strip of minimal width and shrink to a rectangle S_{0}.

Breaking a rectangle into two

- Consider a given bounded set E_{0}.
- Cover it by a strip of minimal width and shrink to a rectangle S_{0}.
- Divide in three equal parts.

Breaking a rectangle into two

Case 1: The middle third
 has a point $p \in E_{0}$.

- Divide S_{0} in two rectangles $A_{0, j}$ by p.
- $\alpha_{0,0}+\alpha_{0,1}=1$.

Breaking a rectangle into two

Case 1: The middle third
 has a point $p \in E_{0}$.

- Divide S_{0} in two rectangles $A_{0, j}$ by p.
- $\alpha_{0,0}+\alpha_{0,1}=1$.
- Call $E_{0, j}=E_{0} \cap A_{0, j}$.
- Cover each part $E_{0, j}$ by a rectangle as before.

Breaking a rectangle into two

Case 1: The middle third
 has a point $p \in E_{0}$.

- Divide S_{0} in two rectangles $A_{0, j}$ by p.
- $\alpha_{0,0}+\alpha_{0,1}=1$.
- Call $E_{0, j}=E_{0} \cap A_{0, j}$.
- Cover each part $E_{0, j}$ by a rectangle as before.
- $L_{0, j} \leq$

$$
\begin{aligned}
& \sqrt{\alpha_{0, j}^{2}+\beta_{0}^{2}} L_{0} \leq \\
& \left(1+5 \beta_{0}^{2}\right) \alpha_{0, j} L_{0} .
\end{aligned}
$$

Breaking a rectangle into two

Case 2: The middle third has a no points in E_{0}.

- Fix $\alpha_{0,0}=\alpha_{0,1}=1 / 2$.

Breaking a rectangle into two

Case 2: The middle third has a no points in E_{0}.

- Fix $\alpha_{0,0}=\alpha_{0,1}=1 / 2$.
- Cover each part of E_{0} by a rectangle as before.
- Call $E_{0, j}=E_{0} \cap S_{0} \cap S_{0, j}$.

Breaking a rectangle into two

Case 2: The middle third has a no points in E_{0}.

- Fix $\alpha_{0,0}=\alpha_{0,1}=1 / 2$.
- Cover each part of E_{0} by a rectangle as before.
- Call $E_{0, j}=E_{0} \cap S_{0} \cap S_{0, j}$.
- Still $L_{0, j} \leq\left(1+5 \beta_{0}^{2}\right) \alpha_{0, j} L_{0}$.
- The minimal segment joining them

$$
\left|T_{0}\right| \leq\left(1+\beta_{0}^{2}\right) L_{0} .
$$

Iteration

- Cover E by a rectangle S_{0} as before. Break the rectangle as shown to get $S_{0,0}$ and $S_{0,1}$. In case 2 you get also a segment T_{0}.

Iteration

- Cover E by a rectangle S_{0} as before. Break the rectangle as shown to get $S_{0,0}$ and $S_{0,1}$. In case 2 you get also a segment T_{0}.
- Iterate the process as usual. After n steps, you have 2^{n} rectangles S_{l} covering $E_{I}, I=\left(0, i_{1}, \ldots, i_{n}\right)$, with long sides L_{l}, weights $\alpha_{I} \in[1 / 3,2 / 3]$ and factors β_{I}.

Iteration

- Cover E by a rectangle S_{0} as before. Break the rectangle as shown to get $S_{0,0}$ and $S_{0,1}$. In case 2 you get also a segment T_{0}.
- Iterate the process as usual. After n steps, you have 2^{n} rectangles $S_{\text {, }}$ covering $E_{l}, I=\left(0, i_{1}, \ldots, i_{n}\right)$, with long sides L_{l}, weights $\alpha_{I} \in[1 / 3,2 / 3]$ and factors β_{I}.
- If case 2 is applied to S_{l}, we get also a segment T_{I} connecting the sets $E_{l, 0}$ and $E_{l, 1}$ which are contained into its sons $S_{l, j}$.

Iteration

- Cover E by a rectangle S_{0} as before. Break the rectangle as shown to get $S_{0,0}$ and $S_{0,1}$. In case 2 you get also a segment T_{0}.
- Iterate the process as usual. After n steps, you have 2^{n} rectangles $S_{\text {, }}$ covering $E_{l}, I=\left(0, i_{1}, \ldots, i_{n}\right)$, with long sides L_{l}, weights $\alpha_{I} \in[1 / 3,2 / 3]$ and factors β_{I}.
- If case 2 is applied to S_{I}, we get also a segment T_{I} connecting the sets $E_{l, 0}$ and $E_{l, 1}$ which are contained into its sons $S_{l, j}$.
- After $N=25$ steps the diameter of a rectangle drops by at least $1 / 2$.

Bounds for the length (1): the rectangles

Let R_{n} be the sum of the diameters of the rectangles at stage n.

Bounds for the length (1): the rectangles

Let R_{n} be the sum of the diameters of the rectangles at stage n. For S_{l},

$$
L_{l, 0}+L_{l, 1} \leq\left(1+5 \beta_{l}^{2}\right) \alpha_{l, 0} L_{l}+\left(1+5 \beta_{l}^{2}\right) \alpha_{l, 1} L_{l}=\left(1+5 \beta_{l}^{2}\right) L_{l} .
$$

Bounds for the length (1): the rectangles

Let R_{n} be the sum of the diameters of the rectangles at stage n. For S_{l},

$$
L_{l, 0}+L_{l, 1} \leq\left(1+5 \beta_{l}^{2}\right) \alpha_{l, 0} L_{l}+\left(1+5 \beta_{l}^{2}\right) \alpha_{l, 1} L_{l}=\left(1+5 \beta_{l}^{2}\right) L_{l} .
$$

Arguing by induction, we will have the uniform bound

$$
R_{n} \leq R_{0}+\sum_{|| | \leq n} 5 \beta_{l}^{2} L_{l} \lesssim \operatorname{diam}(E)+\sum \beta_{l}^{2} L_{l} .
$$

Bounds for the length (2): the segments in wide rectangles

If case 2 is applied and $L_{I, 0}+L_{I, 1} \geq 0.9 L_{I}$, then $\beta_{I} \geq \widetilde{\beta}$ for a fixed constant $\widetilde{\beta}$.

Bounds for the length (2): the segments in wide rectangles

If case 2 is applied and $L_{I, 0}+L_{I, 1} \geq 0.9 L_{I}$, then $\beta_{I} \geq \widetilde{\beta}$ for a fixed constant $\widetilde{\beta}$. When that happens, using

$$
\left|T_{I}\right| \leq\left(1+\beta_{I}^{2}\right) L_{I} .
$$

we get

$$
\left|T_{l}\right| \leq C \beta_{l}^{2} L_{l} .
$$

Bounds for the length (2): the segments in wide rectangles

If case 2 is applied and $L_{I, 0}+L_{I, 1} \geq 0.9 L_{I}$, then $\beta_{I} \geq \widetilde{\beta}$ for a fixed constant $\widetilde{\beta}$. When that happens, using

$$
\left|T_{I}\right| \leq\left(1+\beta_{I}^{2}\right) L_{I} .
$$

we get

$$
\left|T_{I}\right| \leq C \beta_{I}^{2} L_{l} .
$$

Thus, the sum of the lengths of the middle segments created from applications of case 2 with $L_{I, 0}+L_{l, 1} \geq 0.9 L_{l}$ is at most $\sum \beta_{l}^{2} L_{I}$.

Bounds for the length (3): the segments in narrow rectangles

Now write

$$
R_{n}=I_{n}+I I_{n}
$$

where I_{n} is the sum of the lengths of the rectangles at stage n to which case 2 will be applied and for which $L_{l, 0}+L_{l, 1}<0.9 L_{I}$. Let T_{n+1} denote the sum of the lengths of the segments created when $L_{l, 0}+L_{l, 1}<0.9 L_{l}$ at stage n.

Bounds for the length (3): the segments in narrow rectangles

Now write

$$
R_{n}=I_{n}+I I_{n}
$$

Then

$$
R_{n+1} \leq\left(I_{n}+C \sum_{|I|=n+1} \beta_{l}^{2} L_{l}\right)+0.9 I I_{n}
$$

Bounds for the length (3): the segments in narrow rectangles

Now write

$$
R_{n}=I_{n}+I I_{n}
$$

Then

$$
R_{n+1} \leq\left(I_{n}+C \sum_{|I|=n+1} \beta_{I}^{2} L_{I}\right)+0.9 I_{n}
$$

Moreover, as $\left|T_{l}\right| \leq\left(1+\beta_{l}^{2}\right) L_{l}$, we have

$$
0.1 T_{n+1} \leq 0.1 / I_{n}+C \sum_{|I|=n+1} \beta_{l}^{2} L_{I} .
$$

Bounds for the length (3): the segments in narrow rectangles

Now write

$$
R_{n}=I_{n}+I I_{n}
$$

Then

$$
R_{n+1} \leq\left(I_{n}+C \sum_{|I|=n+1} \beta_{l}^{2} L_{l}\right)+0.9 / I_{n} .
$$

Moreover, as $\left|T_{l}\right| \leq\left(1+\beta_{l}^{2}\right) L_{l}$, we have

$$
0.1 T_{n+1} \leq 0.1 / I_{n}+C \sum_{|I|=n+1} \beta_{l}^{2} L_{I} .
$$

Summing both inequalities,

$$
R_{n+1}+0.1 T_{n+1} \leq R_{n}+C \sum_{|| |=n+1} \beta_{l}^{2} L_{l} .
$$

Bounds for the length (3): the segments in narrow rectangles

Now write

$$
R_{n}=I_{n}+I I_{n}
$$

Then

$$
R_{n+1} \leq\left(I_{n}+C \sum_{|I|=n+1} \beta_{l}^{2} L_{l}\right)+0.9 / I_{n} .
$$

Moreover, as $\left|T_{l}\right| \leq\left(1+\beta_{l}^{2}\right) L_{l}$, we have

$$
0.1 T_{n+1} \leq 0.1 / I_{n}+C \sum_{|I|=n+1} \beta_{l}^{2} L_{I}
$$

Equivalently,

$$
0.1 T_{n+1} \leq R_{n}-R_{n+1}+C \sum_{|| |=n+1} \beta_{l}^{2} L_{l}
$$

Bounds for the length (3): the segments in narrow rectangles

Now write

$$
R_{n}=I_{n}+I I_{n}
$$

Then

$$
R_{n+1} \leq\left(I_{n}+C \sum_{|I|=n+1} \beta_{l}^{2} L_{l}\right)+0.9 / I_{n}
$$

Moreover, as $\left|T_{l}\right| \leq\left(1+\beta_{l}^{2}\right) L_{l}$, we have

$$
0.1 T_{n+1} \leq 0.1 / I_{n}+C \sum_{|I|=n+1} \beta_{l}^{2} L_{I} .
$$

As R_{n} is uniformly bounded by $C \operatorname{diam}(E)+C \sum \beta_{I}^{2} L_{I}$, also

$$
\sum_{n} T_{n} \lesssim \operatorname{diam}(E)+\sum \beta_{l}^{2} L_{l} .
$$

Summing cubes

It only remains to bound

$$
\sum \beta_{I}^{2} L_{I} \leq \sum_{Q} \beta_{E}^{2}(Q) \ell(Q)
$$

Summing cubes

It only remains to bound

$$
\sum \beta_{I}^{2} L_{I} \leq \sum_{Q} \beta_{E}^{2}(Q) \ell(Q)
$$

Given I chose a dyadic cube Q_{l} such that $d_{l}:=\operatorname{diam}\left(S_{l}\right) \leq \ell\left(Q_{l}\right)<2 d_{l}$ and with $Q_{I} \cap S_{I} \neq \emptyset$. As $3 Q_{I} \supset S_{I}$, we will have the bound

$$
\beta_{I} \leq C \beta_{E}(Q)
$$

Summing cubes

It only remains to bound

$$
\sum \beta_{l}^{2} L_{I} \leq \sum_{Q} \beta_{E}^{2}(Q) \ell(Q) .
$$

Given I chose a dyadic cube Q_{l} such that $d_{l}:=\operatorname{diam}\left(S_{l}\right) \leq \ell\left(Q_{I}\right)<2 d_{l}$ and with $Q_{I} \cap S_{I} \neq \emptyset$. As $3 Q_{I} \supset S_{I}$, we will have the bound

$$
\beta_{I} \leq C \beta_{E}(Q)
$$

It will suffice to prove that

$$
\sum_{I: Q_{I}=Q} \beta_{I}^{2} L_{I} \leq C \beta_{E}^{2}(Q) \ell(Q) .
$$

Summing cubes

Indeed, write $\mathcal{F}(I)$ for the father index of $I,\left(0, i_{1}, \ldots, i_{n-1}\right)$, and call $J \geq I$ if $I=\mathcal{F}^{j}(J)$ for some $j \geq 0$.

Summing cubes

Indeed, write $\mathcal{F}(I)$ for the father index of $I,\left(0, i_{1}, \ldots, i_{n-1}\right)$, and call $J \geq I$ if $I=\mathcal{F}^{j}(J)$ for some $j \geq 0$. Then, if $J \geq I$ and $\ell\left(Q_{J}\right)=\ell\left(Q_{I}\right)$, then we have seen that

$$
|J|-|I| \leq 24 .
$$

Summing cubes

Indeed, write $\mathcal{F}(I)$ for the father index of $I,\left(0, i_{1}, \ldots, i_{n-1}\right)$, and call $J \geq I$ if $I=\mathcal{F}^{j}(J)$ for some $j \geq 0$. Then, if $J \geq I$ and $\ell\left(Q_{J}\right)=\ell\left(Q_{I}\right)$, then we have seen that

$$
|J|-|I| \leq 24
$$

We can classify the independent branches where Q occurs as follows:

$$
\left\{I: Q_{I}=Q\right\}=\bigcup_{I: d_{\mathcal{F}(I)}>\ell(Q) \geq d_{l}} \bigcup_{j=0}^{24}\left\{J \geq I:|J|=|I|+j \text { and } Q_{J}=Q\right\}
$$

Summing cubes

Indeed, write $\mathcal{F}(I)$ for the father index of $I,\left(0, i_{1}, \ldots, i_{n-1}\right)$, and call $J \geq I$ if $I=\mathcal{F}^{j}(J)$ for some $j \geq 0$. Then, if $J \geq I$ and $\ell\left(Q_{J}\right)=\ell\left(Q_{I}\right)$, then we have seen that

$$
|J|-|I| \leq 24
$$

We can classify the independent branches where Q occurs as follows:

$$
\left\{I: Q_{I}=Q\right\}=\bigcup_{I: d_{\mathcal{F}(I)}>\ell(Q) \geq d_{l}} \bigcup_{j=0}^{24}\left\{J \geq I:|J|=|I|+j \text { and } Q_{J}=Q\right\}
$$

Then, using the previous bound, given a dyadic cube Q we have

$$
\sum_{I: Q_{I}=Q} \beta_{I}^{2} L_{I} \lesssim \beta_{E}(Q) \ell(Q) \sum_{j=0}^{24} \sum_{\substack{J: Q_{J}=Q \\ d_{\mathcal{F}^{j+1}(I)}>\ell(Q) \geq d_{\mathcal{F}^{j}(I)}}} \beta_{J}
$$

Summing cubes

Now, for $j \leq 24$, the domains E_{J} appearing in the sum

$$
\sum_{\substack{J: Q_{j}=Q \\ d_{F j+1}(I)} \ell(Q) \geq d_{\mathcal{F}^{j}(l)}} \beta_{J}
$$

are contained in disjoint convex polygons \widetilde{S}_{J} of width $\beta_{J} L_{J}$ and diameter comparable to L_{J}.

Summing cubes

Now, for $j \leq 24$, the domains E_{J} appearing in the sum

$$
\sum_{\substack{J: Q_{1}=Q \\ d_{\mathcal{F} j+1}(l)} \ell \ell(Q) \geq d_{\mathcal{F j}(l)}} \beta_{J}
$$

are contained in disjoint convex polygons \tilde{S}_{J} of width $\beta_{J} L_{J}$ and diameter comparable to L_{J}. One can see that

$$
\beta_{J} L_{J}^{2} \approx \operatorname{Area}\left(\widetilde{S}_{J}\right)
$$

Summing cubes

At the same time, all of them are in a strip of width $\beta_{E}(Q) \ell(Q)$ and contained in $3 Q$. The areas of the polygons are bounded in consequence by the area of this strip intersected with $3 Q$. Thus,

$$
\sum_{\substack{J: Q_{j=1}=Q \\ d_{\mathcal{F} j(l)}>\ell(Q) \geq d_{\mathcal{F j - 1}(I)}}} \beta_{J} L_{J}^{2} \leq C \beta_{E}(Q) \ell(Q)^{2}
$$

Summing cubes

At the same time, all of them are in a strip of width $\beta_{E}(Q) \ell(Q)$ and contained in $3 Q$. The areas of the polygons are bounded in consequence by the area of this strip intersected with $3 Q$. Thus,

$$
\sum_{\substack{J: Q_{1=}=Q \\ d_{F j}(l) \\>\ell(Q) \geq d_{\mathcal{F}^{j-1}(l)}}} \beta_{J} L_{J}^{2} \leq C \beta_{E}(Q) \ell(Q)^{2}
$$

Taking into account that $L_{J} \approx \ell(Q)$ and summing in j we obtain

$$
\sum_{I: Q_{I}=Q} \beta_{I}^{2} L_{I} \leq C \beta_{E}^{2}(Q) \ell(Q)
$$

Lipschitz graphs

Lemma

Let Γ be the graph of a Lipschitz function. For $E \subset \Gamma, \beta^{2}(E) \leq C \mathcal{H}^{1}(\Gamma)$.

Lipschitz graphs

Lipschitz graphs

$$
\text { Let } \Gamma=\{0 \leq x \leq 1, y=f(x)\} \text {, }
$$ where f is Lipschitz with constant M. It is enough to show the case $E=\Gamma$ and $f(0)=f(1)$.

Lipschitz graphs

Let $\Gamma=\{0 \leq x \leq 1, y=f(x)\}$, where f is Lipschitz with constant M. It is enough to show the case $E=\Gamma$ and $f(0)=f(1)$.
Let l_{j}^{n} be the j th dyadic interval of length 2^{-n}, call its image graph Γ_{j}^{n} and let J_{j}^{n} be the segment uniting the endpoints of Γ_{j}^{n}.

Lipschitz graphs

$$
\text { Let } \Gamma=\{0 \leq x \leq 1, y=f(x)\}
$$ where f is Lipschitz with constant M. It is enough to show the case $E=\Gamma$ and $f(0)=f(1)$.

Let I_{j}^{n} be the j th dyadic interval of length 2^{-n}, call its image graph Γ_{j}^{n} and let J_{j}^{n} be the segment uniting the endpoints of Γ_{j}^{n}. Then $J_{2 j}^{n+1}, J_{2 j+1}^{n+1}$ and J_{j}^{n} are the three sides of a triangle.

Lipschitz graphs

Let $\Gamma=\{0 \leq x \leq 1, y=f(x)\}$, where f is Lipschitz with constant M. It is enough to show the case $E=\Gamma$ and $f(0)=f(1)$.
Let l_{j}^{n} be the j th dyadic interval of length 2^{-n}, call its image graph Γ_{j}^{n} and let J_{j}^{n} be the segment uniting the endpoints of Γ_{j}^{n}. Then $J_{2 j}^{n+1}, J_{2 j+1}^{n+1}$ and J_{j}^{n} are the three sides of a triangle. Call $\delta_{n, j}$ its height times 2^{n}. Using the Pythagorean Theorem, one gets
$2^{-n} \delta_{n, j}^{2} \lesssim \ell\left(J_{2 j}^{n+1}\right)+\ell\left(J_{2 j+1}^{n+1}\right)-\ell\left(J_{j}^{n}\right)$
with constant depending on M.

Lipschitz graphs

This implies

$$
\sum_{m, k} c 2^{-m} \delta_{m, k}^{2} \leq 2 \ell(\Gamma)
$$

Lipschitz graphs

This implies

$$
\sum_{m, k} c 2^{-m} \delta_{m, k}^{2} \leq 2 \ell(\Gamma)
$$

Now, by the triangular inequality,

$$
\beta_{n, j}:=2^{n} \sup \left\{\operatorname{dist}\left(z, J_{j}^{n}\right): z \in \Gamma_{j}^{n}\right\}
$$

$$
\beta_{n, j} \leq \sum_{m=n}^{\infty} 2^{n-m} \sup \left\{\delta_{m, k}: I_{k}^{m} \subset I_{j}^{n}\right\}
$$

Lipschitz graphs

This implies

$$
\sum_{m, k} c 2^{-m} \delta_{m, k}^{2} \leq 2 \ell(\Gamma)
$$

Now, by the triangular inequality,
$\beta_{n, j}:=2^{n} \sup \left\{\operatorname{dist}\left(z, J_{j}^{n}\right): z \in \Gamma_{j}^{n}\right\}$,
$\beta_{n, j} \leq \sum_{m=n}^{\infty} 2^{n-m} \sup \left\{\delta_{m, k}: I_{k}^{m} \subset I_{j}^{n}\right\}$.
Using Hölder inequalities and other standard arguments for series, one gets

$$
\sum_{n, j} 2^{-n} \beta_{n, j}^{2} \lesssim \sum_{m, k} 2^{-m} \delta_{m, k}^{2} \lesssim 2 \ell(\Gamma)
$$

Hölderizing

Indeed,

$$
\sum_{n, j} 2^{-n} \beta_{n, j}^{2} \leq \sum_{n, j} 2^{-n}\left(\sum_{m=n}^{\infty} 2^{n-m} \sup _{\substack{I_{k}^{\prime \prime} \subset I_{j}^{n}}} \delta_{m, k}\right)^{2}
$$

Hölderizing

Indeed,

$$
\begin{aligned}
\sum_{n, j} 2^{-n} \beta_{n, j}^{2} & \leq \sum_{n, j} 2^{-n}\left(\sum_{m=n}^{\infty} 2^{n-m} \sup _{I_{k}^{m} \subset l_{j}^{n}} \delta_{m, k}\right)^{2} \\
& \leq \sum_{n, j} 2^{-n} \sum_{m=n}^{\infty} 2^{3 \frac{n-m}{2}} \sup _{I_{k}^{m} \subset l_{j}^{n}} \delta_{m, k}^{2} \sum_{m=n}^{\infty} 2^{\frac{n-m}{2}}
\end{aligned}
$$

Hölderizing

Indeed,

$$
\begin{aligned}
\sum_{n, j} 2^{-n} \beta_{n, j}^{2} & \leq \sum_{n, j} 2^{-n}\left(\sum_{m=n}^{\infty} 2^{n-m} \sup _{I_{k}^{m} \subset l_{j}^{n}} \delta_{m, k}\right)^{2} \\
& \leq \sum_{n, j} 2^{-n} \sum_{m=n}^{\infty} 2^{3 \frac{n-m}{2}} \sup _{I_{k}^{\prime m} \subset l_{j}^{n}} \delta_{m, k}^{2} \sum_{m=n}^{\infty} 2^{\frac{n-m}{2}} \\
& \leq C \sum_{n, j} \sum_{\substack{m \geq n \\
l_{k}^{m} \subset l_{j}^{n}}} 2^{\frac{n}{2}} 2^{-\frac{3 m}{2}} \delta_{m, k}^{2}
\end{aligned}
$$

Hölderizing

Indeed,

$$
\begin{aligned}
\sum_{n, j} 2^{-n} \beta_{n, j}^{2} & \leq \sum_{n, j} 2^{-n}\left(\sum_{m=n}^{\infty} 2^{n-m} \sup _{I_{k}^{m} \subset I_{j}^{n}} \delta_{m, k}\right)^{2} \\
& \leq \sum_{n, j} 2^{-n} \sum_{m=n}^{\infty} 2^{3^{\frac{n-m}{2}}} \sup _{I_{k}^{m} \subset l_{j}^{n}} \delta_{m, k}^{2} \sum_{m=n}^{\infty} 2^{\frac{n-m}{2}} \\
& \leq C \sum_{n, j} \sum_{\substack{m \geq n \\
I_{k}^{m} \subset l_{j}^{n}}} 2^{\frac{n}{2}} 2^{-\frac{3 m}{2}} \delta_{m, k}^{2} \\
& \leq C \sum_{m, k}\left(\sum_{n=0}^{m} \sum_{I_{j}^{n} \supset I_{k}^{m}} 2^{\frac{n}{2}}\right) 2^{-\frac{3 m}{2}} \delta_{m, k}^{2}
\end{aligned}
$$

Hölderizing

Indeed,

$$
\begin{aligned}
\sum_{n, j} 2^{-n} \beta_{n, j}^{2} & \leq \sum_{n, j} 2^{-n}\left(\sum_{m=n}^{\infty} 2^{n-m} \sup _{I_{k}^{m} \subset I_{j}^{n}} \delta_{m, k}\right)^{2} \\
& \leq \sum_{n, j} 2^{-n} \sum_{m=n}^{\infty} 2^{3^{\frac{n-m}{2}}} \sup _{I_{k}^{m} \subset l_{j}^{n}} \delta_{m, k}^{2} \sum_{m=n}^{\infty} 2^{\frac{n-m}{2}} \\
& \leq C \sum_{n, j} \sum_{\substack{m \geq n \\
I_{k}^{m} \subset l_{j}^{n}}} 2^{\frac{n}{2}} 2^{-\frac{3 m}{2}} \delta_{m, k}^{2} \\
& \leq C \sum_{m, k} \sum_{n=0}^{m} 2^{\frac{n}{2}} 2^{-\frac{3 m}{2}} \delta_{m, k}^{2}
\end{aligned}
$$

Hölderizing

Indeed,

$$
\begin{aligned}
\sum_{n, j} 2^{-n} \beta_{n, j}^{2} & \leq \sum_{n, j} 2^{-n}\left(\sum_{m=n}^{\infty} 2^{n-m} \sup _{I_{k}^{m} \subset I_{j}^{n}} \delta_{m, k}\right)^{2} \\
& \leq \sum_{n, j} 2^{-n} \sum_{m=n}^{\infty} 2^{3^{\frac{n-m}{2}}} \sup _{I_{k}^{m} \subset l_{j}^{n}} \delta_{m, k}^{2} \sum_{m=n}^{\infty} 2^{\frac{n-m}{2}} \\
& \leq C \sum_{n, j} \sum_{\substack{m \geq n \\
I_{k}^{m} \subset l_{j}^{n}}} 2^{\frac{n}{2}} 2^{-\frac{3 m}{2}} \delta_{m, k}^{2} \\
& \leq C \sum_{m, k} \sum_{n=0}^{m} 2^{\frac{n}{2}} 2^{-\frac{3 m}{2}} \delta_{m, k}^{2} \\
& \leq C \sum_{m, k} 2^{\frac{m}{2}} 2^{-\frac{3 m}{2}} \delta_{m, k}^{2} \lesssim \ell(\Gamma)
\end{aligned}
$$

Final step

Finally we extend the function periodically and obtain some translated coefficients $\beta_{n, j}(t)$ related to $\Gamma(t)=(I d \times f)([t, 1+t]) \subset \mathbb{C}$ verifying the last inequality as well.

Final step

Then, for a cube Q with $\ell(Q)=2^{-n-2}, 3 Q$ will have projection contained in the translation of an interval $I_{n, j}(t)$ with probability $1 / 4$ with respect to the Lebesgue measure on t.

So

$$
\sum_{\ell(Q)=2^{-n-2}} \beta_{\Gamma}^{2}(Q) \lesssim \int_{-1}^{1} \sum_{j} \beta_{n, j}(t)^{2} d t
$$

Summing with respect to n proofs the claim for Lipschitz graphs.

Second session

Back to previous steps: Main Result

Theorem
Suppose $E \subset \mathbb{C}$ is a bounded set. Then E is contained in a rectifiable curve if and only if $\beta^{2}(E)$ is finite. Moreover, there are constants c_{1}, c_{2} such that

$$
\begin{equation*}
c_{1} \beta^{2}(E) \leq \inf _{\Gamma \supset E} \mathcal{H}^{1}(\Gamma) \leq c_{2} \beta^{2}(E) \tag{2}
\end{equation*}
$$

where the infimum is taken over all rectifiable curves containing E.

Back to previous steps: Main Result

Theorem
Suppose $E \subset \mathbb{C}$ is a bounded set. Then E is contained in a rectifiable curve if and only if $\beta^{2}(E)$ is finite. Moreover, there are constants c_{1}, c_{2} such that

$$
\begin{equation*}
c_{1} \beta^{2}(E) \leq \inf _{\Gamma \supset E} \mathcal{H}^{1}(\Gamma) \leq c_{2} \beta^{2}(E) \tag{2}
\end{equation*}
$$

where the infimum is taken over all rectifiable curves containing E.
We have already proven left-hand side for Lipschitz graphs and right-hand side for general sets with finite β.

Purpose of the second talk

In this session we will proof the left-hand side inequality for general sets of finite length.

Purpose of the second talk

In this session we will proof the left-hand side inequality for general sets of finite length.
The key point is to find $E \subset \bigcup \Gamma_{j}$ being each Γ_{j} the boundary of a Lipschitz domain \mathcal{D}_{j} with some restrictions on the constant and the shapes. We need to do this in such a way that we keep control on the total length and the relations between the original betas and $\sum_{Q} \sum_{\Gamma_{j}} \beta_{\Gamma_{j}}^{2}(Q)$.

Purpose of the second talk

In this session we will proof the left-hand side inequality for general sets of finite length.
The key point is to find $E \subset \bigcup \Gamma_{j}$ being each Γ_{j} the boundary of a Lipschitz domain \mathcal{D}_{j} with some restrictions on the constant and the shapes. We need to do this in such a way that we keep control on the total length and the relations between the original betas and $\sum_{Q} \sum_{\Gamma_{j}} \beta_{\Gamma_{j}}^{2}(Q)$.
We will do that in three steps. First we present a theorem which will allow us to make the decomposition as long as E is the boundary of a simply connected domain. The second step is a simple corollary allowing us to make such a decomposition on any connected plain set γ. Finally we will prove the relation between betas.

M-Lipschitz domains

Definition

We call an M-Lipschitz domain to a simply connected domain whose boundary can be expressed as $\left\{r(\theta) e^{i \theta}: 0 \leq \theta<2 \pi\right\}$ (i.e. it is starlike with respect to the origin), with r a Lipschitz function of coefficient M and $\frac{1}{M+1} \leq r(\theta) \leq 1$ after translation and dilation if necessary.

Decomposition theorem

Theorem
There is a constant M such that whenever Ω is a simply connected domain with $\mathcal{H}^{1}(\partial \Omega)<\infty$ there exists a rectifiable curve Γ such that

- $\Omega \backslash \Gamma=\bigcup_{j=0}^{\infty} \Omega_{j}$,

Decomposition theorem

Theorem
There is a constant M such that whenever Ω is a simply connected domain with $\mathcal{H}^{1}(\partial \Omega)<\infty$ there exists a rectifiable curve Γ such that

- $\Omega \backslash \Gamma=\bigcup_{j=0}^{\infty} \Omega_{j}$,
- each Ω_{j} is an M-Lipschitz domain,

Decomposition theorem

Theorem
There is a constant M such that whenever Ω is a simply connected domain with $\mathcal{H}^{1}(\partial \Omega)<\infty$ there exists a rectifiable curve Γ such that

- $\Omega \backslash \Gamma=\bigcup_{j=0}^{\infty} \Omega_{j}$,
- each Ω_{j} is an M-Lipschitz domain,
- and $\sum_{j} \mathcal{H}^{1}\left(\partial \Omega_{j}\right) \leq M \mathcal{H}^{1}(\partial \Omega)$.

Summary of the proof

Let $\varphi: \mathbb{D} \rightarrow \Omega$ be a Riemann mapping. By translating, rotating and rescaling the domain, we can assume WLOG that $\varphi(0)=0$ and $\varphi^{\prime}(0)=1$ (i.e. $\varphi \in S$).

Summary of the proof

Let $\varphi: \mathbb{D} \rightarrow \Omega$ be a Riemann mapping. By translating, rotating and rescaling the domain, we can assume WLOG that $\varphi(0)=0$ and $\varphi^{\prime}(0)=1$ (i.e. $\varphi \in S$).
We will make a division in the disk in such a way that, using the properties of φ we can ensure that the images of the domains in \mathbb{D} are also M-Lipschitz domains.

Summary of the proof

Let $\varphi: \mathbb{D} \rightarrow \Omega$ be a Riemann mapping. By translating, rotating and rescaling the domain, we can assume WLOG that $\varphi(0)=0$ and $\varphi^{\prime}(0)=1$ (i.e. $\varphi \in S$).
We will make a division in the disk in such a way that, using the properties of φ we can ensure that the images of the domains in \mathbb{D} are also M-Lipschitz domains.
On the first step we will create uniformly chord-arc domains such that we keep control on the lengths. After that we will decompose these domains into smaller domains to ensure the M-Lipschitz condition is satisfied.

Useful theorems

Theorem (Koebe's estimate, growth and distortion theorem)
Given a conformal mapping $\varphi \in S(\varphi: \mathbb{D} \rightarrow \Omega, \varphi(0)=0, \varphi(0)=1)$, we have

- $\operatorname{dist}(\varphi(z), \partial \Omega) \approx\left|\varphi^{\prime}(z)\right|\left(1-|z|^{2}\right)$.
- Whitney cubes are almost invariant, with constant derivative absolute value on them.
- $\frac{|z|}{(1+|z|)^{2}} \leq|\varphi(z)| \leq \frac{|z|}{(1-|z|)^{2}}$.
- $\frac{1-|z|}{\left(1+\left.|z|\right|^{3}\right.} \leq\left|\varphi^{\prime}(z)\right| \leq \frac{1+|z|}{(1-|z|)^{3}}$.

Useful theorems

Theorem (Koebe's estimate, growth and distortion theorem)
Given a conformal mapping $\varphi \in S(\varphi: \mathbb{D} \rightarrow \Omega, \varphi(0)=0, \varphi(0)=1)$, we have

- $\operatorname{dist}(\varphi(z), \partial \Omega) \approx\left|\varphi^{\prime}(z)\right|\left(1-|z|^{2}\right)$.
- Whitney cubes are almost invariant, with constant derivative absolute value on them.
$-\frac{|z|}{(1+|z|)^{2}} \leq|\varphi(z)| \leq \frac{|z|}{(1-|z|)^{2}}$.
$-\frac{1-|z|}{(1+|z|)^{3}} \leq\left|\varphi^{\prime}(z)\right| \leq \frac{1+|z|}{(1-|z|)^{3}}$.
Theorem (F. and M. Riesz Theorem)
Given a Riemann mapping φ to a Jordan domain Ω, it is bounded by a rectifiable curve if and only if $\varphi^{\prime} \in H^{1}$, with

$$
\mathcal{H}^{1}(\Gamma)=\left\|\varphi^{\prime}\right\|_{H^{1}} .
$$

Useful theorems

Theorem (Alexander's)
For Γ connected with finite length, call φ_{i} to a collection of Riemann mappings to each component of \mathbb{C}^{*}. Then

$$
2 \mathcal{H}^{1}(\Gamma)=\sum_{i}\left\|\varphi_{i}^{\prime}\right\| H^{1}
$$

Useful theorems

Theorem (Alexander's)
For Γ connected with finite length, call φ_{i} to a collection of Riemann mappings to each component of \mathbb{C}^{*}. Then

$$
2 \mathcal{H}^{1}(\Gamma)=\sum_{i}\left\|\varphi_{i}^{\prime}\right\|_{H^{1}}
$$

Call the cone $\Gamma_{\alpha}(\psi)=\{z \in \mathbb{D}:|z-\psi|<\alpha(1-|z|)\}$ and the area function $A_{\alpha} \varphi(\psi)=\left(\iint_{\Gamma_{\alpha}(\psi)}\left|\varphi^{\prime}(z)\right|^{2}\right)^{1 / 2}$.

Useful theorems

Theorem (Alexander's)
For Γ connected with finite length, call φ_{i} to a collection of Riemann mappings to each component of \mathbb{C}^{*}. Then

$$
2 \mathcal{H}^{1}(\Gamma)=\sum_{i}\left\|\varphi_{i}^{\prime}\right\|_{H^{1}}
$$

Call the cone $\Gamma_{\alpha}(\psi)=\{z \in \mathbb{D}:|z-\psi|<\alpha(1-|z|)\}$ and the area function $A_{\alpha} \varphi(\psi)=\left(\iint_{\Gamma_{\alpha}(\psi)}\left|\varphi^{\prime}(z)\right|^{2}\right)^{1 / 2}$.

Theorem (M. Calderon's)
Let Ω be chord-arc domain, $\alpha>1,0<p<\infty, \varphi: \Omega$ analytic. Then

$$
\left\|\varphi-\varphi\left(z_{0}\right)\right\|_{H^{p}(\Omega)}^{p} \approx\left\|A_{\alpha} \varphi\right\|_{L^{p}(\partial \Omega)}^{p}
$$

Some tools

Write $F=\sqrt{\varphi^{\prime}}$ and $g=\log \left(\varphi^{\prime}\right)$.

Some tools

Write $F=\sqrt{\varphi^{\prime}}$ and $g=\log \left(\varphi^{\prime}\right)$. Using Bieberbach's Theorem one can see that g is in the Bloch space with norm

$$
\begin{equation*}
\|g\|_{\mathcal{B}} \leq 6 \tag{3}
\end{equation*}
$$

i.e. $\frac{\left|\varphi^{\prime \prime}(z)\right|}{\left|\varphi^{\prime}(z)\right|} \leq \frac{6}{1-|z|^{2}}$ for all $z \in \mathbb{D}$.

Some tools

Write $F=\sqrt{\varphi^{\prime}}$ and $g=\log \left(\varphi^{\prime}\right)$. Using Bieberbach's Theorem one can see that g is in the Bloch space with norm

$$
\begin{equation*}
\|g\|_{\mathcal{B}} \leq 6 \tag{3}
\end{equation*}
$$

i.e. $\frac{\left|\varphi^{\prime \prime}(z)\right|}{\left|\varphi^{\prime}(z)\right|} \leq \frac{6}{1-|z|^{2}}$ for all $z \in \mathbb{D}$.

A simple computation shows that $4 F^{\prime}(z)^{2}=\varphi^{\prime}(z) g^{\prime}(z)^{2}$.

Some help from Hardy spaces

This implies that

$$
\iint_{\mathbb{D}}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d m(z)=4 \iint_{\mathbb{D}}\left|F^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d m(z) .
$$

Some help from Hardy spaces

This implies that

$$
\iint_{\mathbb{D}}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d m(z)=4 \iint_{\mathbb{D}}\left|F^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d m(z) .
$$

By the Littlewood-Paley formula for the Hardy space H^{2}, we have

$$
\iint_{\mathbb{D}}\left|\varphi^{\prime}(z)\left\|\left.g^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d m(z) \leq 2\right\| F\left\|_{H^{2}}^{2}=2\right\| \varphi^{\prime} \|_{H^{1}}^{2}\right.
$$

Some help from Hardy spaces

This implies that

$$
\iint_{\mathbb{D}}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d m(z)=4 \iint_{\mathbb{D}}\left|F^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d m(z) .
$$

By the Littlewood-Paley formula for the Hardy space H^{2}, we have

$$
\iint_{\mathbb{D}}\left|\varphi^{\prime}(z)\left\|\left.g^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d m(z) \leq 2\right\| F\left\|_{H^{2}}^{2}=2\right\| \varphi^{\prime} \|_{H^{1}}^{2}\right.
$$

Thanks to a result due to Alexander (which somehow generalizes the F. and M. Riesz Theorem to any simply connected domain) we can see that $\varphi^{\prime} \in H^{1}$, and $\left\|\varphi^{\prime}\right\|_{H^{1}} \leq 2 \mathcal{H}^{1}(\partial \Omega)$. Summing up,

$$
\iint_{\mathbb{D}}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(z)\right|^{2} \log \frac{1}{|z|} d m(z) \leq 4 \mathcal{H}^{1}(\partial \Omega) .
$$

The local zone

$$
\begin{aligned}
& \text { Set } \mathcal{D}_{0}=\{|z| \leq 1 / 2\} \text { and } \\
& \mathcal{U}_{0}=\varphi\left(\mathcal{D}_{0}\right)
\end{aligned}
$$

The local zone

Set $\mathcal{D}_{0}=\{|z| \leq 1 / 2\}$ and $\mathcal{U}_{0}=\varphi\left(\mathcal{D}_{0}\right)$.By the growth theorem and the distortion theorem for univalent functions, one can see that \mathcal{U}_{0} is an M-Lipschitz domain.

The local zone

Set $\mathcal{D}_{0}=\{|z| \leq 1 / 2\}$ and $\mathcal{U}_{0}=\varphi\left(\mathcal{D}_{0}\right)$.By the growth theorem and the distortion theorem for univalent functions, one can see that \mathcal{U}_{0} is an M-Lipschitz domain. Since $\varphi^{\prime} \in H^{1}$ we also have

$$
\begin{equation*}
\mathcal{H}^{1}\left(\partial \mathcal{U}_{0}\right) \leq \mathcal{H}^{1}(\partial \Omega) \tag{4}
\end{equation*}
$$

Carleson boxes

Next form the dyadic Carleson boxes

Carleson boxes

Next form the dyadic Carleson boxes and consider their top halves $T(Q)=\{z \in Q:|z|<$ $\left.1-2^{-(n+1)}\right\}$. Write z_{Q} for the center of $T(Q)$.

Carleson boxes

Next form the dyadic Carleson boxes and consider their top halves $T(Q)=\{z \in Q:|z|<$ $\left.1-2^{-(n+1)}\right\}$. Write z_{Q} for the center of $T(Q)$.
We will choose the domains by a stoping time argument.
The domains \mathcal{D}_{j} will be unions of $T(Q)$ so that we have a covering of the unit disk with disjoint interiors.

Carleson boxes

Next form the dyadic Carleson boxes and consider their top halves $T(Q)=\{z \in Q:|z|<$ $\left.1-2^{-(n+1)}\right\}$. Write z_{Q} for the center of $T(Q)$.
We will choose the domains by a stoping time argument.
The domains \mathcal{D}_{j} will be unions of $T(Q)$ so that we have a covering of the unit disk with disjoint interiors. We will choose them so that their images $\mathcal{U}_{j}=\varphi\left(\mathcal{D}_{j}\right)$ are such that $\mathcal{H}\left(\cup \mathcal{U}_{j}\right) \leq \mathcal{C H}(\Gamma)$.

Carleson boxes

Next form the dyadic Carleson boxes and consider their top halves $T(Q)=\{z \in Q:|z|<$ $\left.1-2^{-(n+1)}\right\}$. Write z_{Q} for the center of $T(Q)$.
We will choose the domains by a stoping time argument.
The domains \mathcal{D}_{j} will be unions of $T(Q)$ so that we have a covering of the unit disk with disjoint interiors. We will choose them so that their images $\mathcal{U}_{j}=\varphi\left(\mathcal{D}_{j}\right)$ are such that $\mathcal{H}\left(\cup \mathcal{U}_{j}\right) \leq C \mathcal{H}(\Gamma)$.
Finally we will make a subdivision of those domains to get starlike domains with uniform Lipschitz constant.

Type 0 cubes

Fix ε to be determined later and consider a Carleson box Q as big as possible.

Type 0 cubes

Fix ε to be determined later and consider a Carleson box Q as big as possible.
If

$$
\sup _{T(Q)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon
$$

we say that Q is a type 0 cube and define $\mathcal{D}(Q)=T(Q)$.

Type 0 cubes

Fix ε to be determined later and consider a Carleson box Q as big as possible.
If

$$
\sup _{T(Q)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon
$$

we say that Q is a type 0 cube and define $\mathcal{D}(Q)=T(Q)$. In that case, using the Bloch norm, we can find that $\mathcal{U}_{Q}=\varphi\left(\mathcal{D}_{Q}\right)$ is a chord-arc domain with fixed constant.

Stopping time argument: almost constant derivative

If Q is not of type 0 , define $G(Q)$ to be the set of maximal boxes
$Q^{\prime} \subset Q$ for which

$$
\sup _{T\left(Q^{\prime}\right)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon
$$

and define

$$
\mathcal{D}(Q)=\left(Q \backslash \bigcup_{G(Q)} Q^{\prime}\right)
$$

Stopping time argument: almost constant derivative

If Q is not of type 0 , define $G(Q)$ to be the set of maximal boxes
$Q^{\prime} \subset Q$ for which

$$
\sup _{T\left(Q^{\prime}\right)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon
$$

and define

$$
\mathcal{D}(Q)=\left(Q \backslash \bigcup_{G(Q)} Q^{\prime}\right)
$$

Stopping time argument: almost constant derivative

If Q is not of type 0 , define $G(Q)$ to be the set of maximal boxes
$Q^{\prime} \subset Q$ for which

$$
\sup _{T\left(Q^{\prime}\right)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon
$$

and define

$$
\mathcal{D}(Q)=\left(Q \backslash \bigcup_{G(Q)} Q^{\prime}\right)
$$

Stopping time argument: almost constant derivative

If Q is not of type 0 , define $G(Q)$ to be the set of maximal boxes
$Q^{\prime} \subset Q$ for which

$$
\sup _{T\left(Q^{\prime}\right)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon
$$

and define
$\mathcal{D}(Q)=\left(Q \backslash \bigcup_{G(Q)} Q^{\prime}\right)$.
Then, $\mathcal{D}(Q)$ is a chord-arc domain with constant 4 and

$$
\sup _{\mathcal{D}(Q)}\left|g(z)-g\left(z_{Q}\right)\right| \leq \varepsilon .
$$

Stopping time argument: almost constant derivative

If Q is not of type 0 , define $G(Q)$ to be the set of maximal boxes
$Q^{\prime} \subset Q$ for which

$$
\sup _{T\left(Q^{\prime}\right)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon
$$

and define
$\mathcal{D}(Q)=\left(Q \backslash \bigcup_{G(Q)} Q^{\prime}\right)$.
Then, $\mathcal{D}(Q)$ is a chord-arc domain with constant 4 and

$$
\sup _{\mathcal{D}(Q)}\left|g(z)-g\left(z_{Q}\right)\right| \leq \varepsilon .
$$

For ε small enough, $\mathcal{U}_{Q}=\varphi\left(\mathcal{D}_{Q}\right)$ will be chord-arc domains with constant 5 .

Type 1 and type 2

If the domain attains the border of \mathbb{D} in more than the half of the measure of $Q \cap \mathbb{D}$, then we say Q is of type 1 .

Type 1 and type 2

If the domain attains the border of \mathbb{D} in more than the half of the measure of $Q \cap \mathbb{D}$, then we say Q is of type 1 . Otherwise, we say that Q is of type 2.

Type 1 and type 2

If the domain attains the border of \mathbb{D} in more than the half of the measure of $Q \cap \mathbb{D}$, then we say Q is of type 1 . Otherwise, we say that Q is of type 2.
Keep finding $\mathcal{D}(Q)$ for the successive remaining maximal cubes in $Q \backslash \mathcal{D}(Q)$. Then, the family $\left\{\mathcal{D}_{j}\right\}_{j \geq 0}$ is pairwise disjoint.

Lengths in domains of type 0

If Q is of type 0 , then using the Bloch norm of g and $\sup _{T\left(Q^{\prime}\right)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon$, we see that there is a significative part of $T(Q)$ with $\left|g^{\prime}\right|>C \varepsilon \ell(Q)$, so $\ell(Q)^{2} \lesssim \int\left|g^{\prime}\right|^{2}$.

Lengths in domains of type 0

If Q is of type 0 , then using the Bloch norm of g and $\sup _{T\left(Q^{\prime}\right)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon$, we see that there is a significative part of $T(Q)$ with $\left|g^{\prime}\right|>C \varepsilon \ell(Q)$, so $\ell(Q)^{2} \lesssim \int\left|g^{\prime}\right|^{2}$.
Notice that, for $z \in T(Q)$ we have

$$
\ell(Q)=1-|z| \approx 1-|z|^{2} \approx \log \frac{1}{|z|} .
$$

Lengths in domains of type 0

If Q is of type 0 , then using the Bloch norm of g and $\sup _{T\left(Q^{\prime}\right)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon$, we see that there is a significative part of $T(Q)$ with $\left|g^{\prime}\right|>C \varepsilon \ell(Q)$, so $\ell(Q)^{2} \lesssim \int\left|g^{\prime}\right|^{2}$.
Notice that, for $z \in T(Q)$ we have

$$
\ell(Q)=1-|z| \approx 1-|z|^{2} \approx \log \frac{1}{|z|} .
$$

We also have that in Whitney cubes $\left|\varphi^{\prime}(z)\right|$ is almost constant,

Lengths in domains of type 0

If Q is of type 0 , then using the Bloch norm of g and $\sup _{T\left(Q^{\prime}\right)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon$, we see that there is a significative part of $T(Q)$ with $\left|g^{\prime}\right|>C \varepsilon \ell(Q)$, so $\ell(Q)^{2} \lesssim \int\left|g^{\prime}\right|^{2}$.
Notice that, for $z \in T(Q)$ we have

$$
\ell(Q)=1-|z| \approx 1-|z|^{2} \approx \log \frac{1}{|z|}
$$

We also have that in Whitney cubes $\left|\varphi^{\prime}(z)\right|$ is almost constant, so that

$$
\begin{aligned}
\mathcal{H}^{1}\left(\partial \mathcal{U}_{j}\right) & =\int_{\partial T(Q)}\left|\varphi^{\prime}(z)\right| \\
& \lesssim \ell(Q)\left|\varphi^{\prime}\left(z_{Q}\right)\right| \leq \iint_{T(Q)}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(z)\right|^{2} \log \frac{1}{|z|}
\end{aligned}
$$

Lengths in domains of type 0

If Q is of type 0 , then using the Bloch norm of g and $\sup _{T\left(Q^{\prime}\right)}\left|g(z)-g\left(z_{Q}\right)\right| \geq \varepsilon$, we see that there is a significative part of $T(Q)$ with $\left|g^{\prime}\right|>C \varepsilon \ell(Q)$, so $\ell(Q)^{2} \lesssim \int\left|g^{\prime}\right|^{2}$.
Notice that, for $z \in T(Q)$ we have

$$
\ell(Q)=1-|z| \approx 1-|z|^{2} \approx \log \frac{1}{|z|}
$$

We also have that in Whitney cubes $\left|\varphi^{\prime}(z)\right|$ is almost constant, so that

$$
\begin{aligned}
\mathcal{H}^{1}\left(\partial \mathcal{U}_{j}\right) & =\int_{\partial T(Q)}\left|\varphi^{\prime}(z)\right| \\
& \lesssim \ell(Q)\left|\varphi^{\prime}\left(z_{Q}\right)\right| \leq \iint_{T(Q)}\left|\varphi^{\prime}(z)\right|\left|g^{\prime}(z)\right|^{2} \log \frac{1}{|z|}
\end{aligned}
$$

Finally, using the previous estimates on the last integral over \mathbb{D},

$$
\sum_{\text {type } 0} \mathcal{H}^{1}\left(\partial \mathcal{U}_{j}\right) \leq C \mathcal{H}^{1}(\partial \Omega)
$$

Starlike domains come out

Dividing the region into a fixed number of polar rectangles, we can apply yet the previous reasoning. Furthermore, using again the Bloch estimate for g we find that the derivative is almost constant so that the image of the regions are M-Lipschitz domains.

Lengths in domains of type 1

For Q of type 1, using F. and M. Riesz Theorem for Jordan domains we know that

$$
\mathcal{H}^{1}\left(\partial \mathcal{U}_{j}\right)=\iint_{\partial \mathcal{D}_{j}}\left|\varphi^{\prime}(z)\right|
$$

Lengths in domains of type 1

For Q of type 1, using F. and M. Riesz Theorem for Jordan domains we know that

$$
\mathcal{H}^{1}\left(\partial \mathcal{U}_{j}\right)=\iint_{\partial \mathcal{D}_{j}}\left|\varphi^{\prime}(z)\right|
$$

and using that φ^{\prime} is almost constant in type 1 domains, we have

$$
\iint_{\partial \mathcal{D}_{j}}\left|\varphi^{\prime}(z)\right| \lesssim \iint_{\partial \mathcal{D}_{j} \cap \partial \mathbb{D}}\left|\varphi^{\prime}(z)\right| .
$$

Lengths in domains of type 1

For Q of type 1, using F. and M. Riesz Theorem for Jordan domains we know that

$$
\mathcal{H}^{1}\left(\partial \mathcal{U}_{j}\right)=\iint_{\partial \mathcal{D}_{j}}\left|\varphi^{\prime}(z)\right|
$$

and using that φ^{\prime} is almost constant in type 1 domains, we have

$$
\iint_{\partial \mathcal{D}_{j}}\left|\varphi^{\prime}(z)\right| \lesssim \iint_{\partial \mathcal{D}_{j} \cap \partial \mathbb{D}}\left|\varphi^{\prime}(z)\right| .
$$

Finally, as this arcs have zero superposition in \mathcal{H}^{1}, we have using Alexander's result that

$$
\sum_{\text {type } 1} \mathcal{H}^{1}\left(\partial \mathcal{U}_{j}\right) \leq C \iint_{\partial \mathbb{D}}\left|\varphi^{\prime}(z)\right| \leq C \mathcal{H}^{1}(\partial \Omega)
$$

Lengths in domains of type 2

When it comes to type 2 cubes, the reasoning is more involved. We sketch the proof.
Call $\left\{J_{k}\right\}$ to the top edges of the boxes in $G(Q)$. Then

$$
\mathcal{H}^{1}\left(J_{k}\right) \geq \frac{\mathcal{H}^{1}(\partial \mathcal{D}(Q))}{12}
$$

Lengths in domains of type 2

When it comes to type 2 cubes, the reasoning is more involved. We sketch the proof.
Call $\left\{J_{k}\right\}$ to the top edges of the boxes in $G(Q)$. Then

$$
\mathcal{H}^{1}\left(J_{k}\right) \geq \frac{\mathcal{H}^{1}(\partial \mathcal{D}(Q))}{12}
$$

By equicontinuity, there is a big part of J_{k} where

$$
\left|g(z)-g\left(z_{Q}\right)\right| \geq \delta .
$$

Lengths in domains of type 2

When it comes to type 2 cubes, the reasoning is more involved. We sketch the proof.
Call $\left\{J_{k}\right\}$ to the top edges of the boxes in $G(Q)$. Then

$$
\mathcal{H}^{1}\left(J_{k}\right) \geq \frac{\mathcal{H}^{1}(\partial \mathcal{D}(Q))}{12}
$$

By equicontinuity, there is a big part of J_{k} where

$$
\left|g(z)-g\left(z_{Q}\right)\right| \geq \delta
$$

This allows us to prove that

$$
\mathcal{H}^{1}\left(\partial \mathcal{U}_{j}\right) \lesssim \int_{\partial \mathcal{D}(Q)}\left|F(z)-F\left(z_{Q}\right)\right|^{2}
$$

Lengths in domains of type 2

By M. Calderon's Theorem,

$$
\int_{\partial \mathcal{D}(Q)}\left|F(z)-F\left(z_{Q}\right)\right|^{2} \leq C \iint_{\mathcal{D}(Q)}\left|F^{\prime}(z)\right|^{2} \mathcal{H}^{1}(B(z, 2 \operatorname{dist}(z, \partial \mathcal{D}(Q))))
$$

Lengths in domains of type 2

By M. Calderon's Theorem,

$$
\int_{\partial \mathcal{D}(Q)}\left|F(z)-F\left(z_{Q}\right)\right|^{2} \leq C \iint_{\mathcal{D}(Q)}\left|F^{\prime}(z)\right|^{2} \mathcal{H}^{1}(B(z, 2 \operatorname{dist}(z, \partial \mathcal{D}(Q))))
$$

and using that chord-arc domains are bounded by Ahlfors-regular curves,

$$
\begin{aligned}
\int_{\partial \mathcal{D}(Q)}\left|F(z)-F\left(z_{Q}\right)\right|^{2} & \leq C \iint_{\mathcal{D}(Q)}\left|F^{\prime}(z)\right|^{2} \operatorname{dist}(z, \partial \mathcal{D}(Q)) \\
& \leq C \iint_{\mathcal{D}(Q)}\left|F^{\prime}(z)\right|^{2} \log \frac{1}{|z|}
\end{aligned}
$$

Lengths in domains of type 2

By M. Calderon's Theorem,

$$
\int_{\partial \mathcal{D}(Q)}\left|F(z)-F\left(z_{Q}\right)\right|^{2} \leq C \iint_{\mathcal{D}(Q)}\left|F^{\prime}(z)\right|^{2} \mathcal{H}^{1}(B(z, 2 \operatorname{dist}(z, \partial \mathcal{D}(Q))))
$$

and using that chord-arc domains are bounded by Ahlfors-regular curves,

$$
\begin{aligned}
\int_{\partial \mathcal{D}(Q)}\left|F(z)-F\left(z_{Q}\right)\right|^{2} & \leq C \iint_{\mathcal{D}(Q)}\left|F^{\prime}(z)\right|^{2} \operatorname{dist}(z, \partial \mathcal{D}(Q)) \\
& \leq C \iint_{\mathcal{D}(Q)}\left|F^{\prime}(z)\right|^{2} \log \frac{1}{|z|}
\end{aligned}
$$

Therefore,

$$
\sum_{\text {type } 2} \mathcal{H}^{1}\left(\partial \mathcal{U}_{j}\right) \leq C \mathcal{H}^{1}(\partial \Omega) .
$$

Starlike domains in type 1 or 2

It only remains to subdivide the domains $\mathcal{D}(Q)$ related to cubes of type 1 and type 2 into domains $\mathcal{D}_{Q, k}$ such that $\mathcal{U}_{Q, k}=\varphi\left(\mathcal{D}_{Q, k}\right)$ are M-Lipschitz domains with lendth still bounded.

Starlike domains in type 1 or 2: visual explanation

Starlike domains in type 1 or 2: visual explanation

$$
\mathcal{H}^{1}\left(T\left(Q_{k}\right)\right)=C \ell\left(Q_{k}\right)
$$

Starlike domains in type 1 or 2: visual explanation

$$
\begin{gathered}
\mathcal{H}^{1}\left(T\left(Q_{k}\right)\right)=C \ell\left(Q_{k}\right) \\
\mathcal{D}_{j} \backslash \bigcup_{G(Q)} T\left(Q_{k}\right)=\bigcup \mathcal{D}_{j, k}
\end{gathered}
$$

Starlike domains in type 1 or 2: visual explanation

Given any connected set

Corollari

There exists a constant $M<\infty$ such that if Γ is a connected plane set with $\mathcal{H}^{1}(\Gamma)<\infty$, then there exists a connected plane set $\widetilde{\Gamma} \supset \Gamma$ such that $\mathcal{H}^{1}(\widetilde{\Gamma}) \leq M \mathcal{H}^{1}(\Gamma)$, the bounded components \mathcal{D}_{j} of $\mathbb{C} \backslash \widetilde{\Gamma}$ are M-Lipschitz domains with $\Gamma \subset \bigcup \partial \mathcal{D}_{j}$, and the boundary of the unbounded component \mathcal{D}_{0} of $\mathbb{C} \backslash \widetilde{\Gamma}$ is a circle at least $3 \sqrt{2} \mathcal{H}^{1}(\Gamma)$ units from Γ.

The shortest proof

Proof.

Apply the previous result to each bounded component of the original set united to a circle big enough by a segment.

Small domains, big domains

Now, let Γ be connected with $\mathcal{H}^{1}(\Gamma)<\infty$, let $\left\{\mathcal{D}_{j}\right\}$ be the Lipschitz domains given by the previous corollary and write $\Gamma_{j}=\partial \mathcal{D}_{j}$ and $\delta_{j}=\operatorname{diam}\left(\mathcal{D}_{j}\right)$.

Small domains, big domains

Now, let Γ be connected with $\mathcal{H}^{1}(\Gamma)<\infty$, let $\left\{\mathcal{D}_{j}\right\}$ be the Lipschitz domains given by the previous corollary and write $\Gamma_{j}=\partial \mathcal{D}_{j}$ and $\delta_{j}=\operatorname{diam}\left(\mathcal{D}_{j}\right)$. Let Q be any dyadic square and define

$$
\mathcal{F}(Q)=\left\{\Gamma_{j}: \Gamma_{j} \cap 3 Q \neq \emptyset, \delta_{j} \geq \ell(Q)\right\}
$$

and

$$
\mathcal{G}(Q)=\left\{\Gamma_{j}: \Gamma_{j} \cap 3 Q \neq \emptyset, \delta_{j}<\ell(Q)\right\} .
$$

The relation between betas

Lemma

There is a constant C such that if $\ell(Q) \leq \operatorname{diam} \Gamma$ and $\ell(Q)=\frac{1}{4} \ell\left(Q^{\prime}\right)$, with $Q \subset Q^{\prime}$, then

$$
\beta_{\Gamma}^{2}(Q) \leq C \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right)+C_{1} \frac{1}{\ell(Q)^{2}} \sum_{\mathcal{G}(Q)} \operatorname{Area}\left(\mathcal{D}_{j}\right) .
$$

Trivialities

WLOG, WMA that $\ell(Q)=1$ and $\beta_{\Gamma}(Q)>0$, so that $3 Q \cap \Gamma_{j} \neq \emptyset$ for some Γ_{j} and $3 Q^{\prime} \subset \bigcup \mathcal{D}_{j}$.

Trivialities

WLOG, WMA that $\ell(Q)=1$ and $\beta_{\Gamma}(Q)>0$, so that $3 Q \cap \Gamma_{j} \neq \emptyset$ for some Γ_{j} and $3 Q^{\prime} \subset \bigcup \mathcal{D}_{j}$.
If $\mathcal{F}(Q)=\emptyset$ then $\sum_{\mathcal{G}(Q)}$ Area $\mathcal{D}_{j} \geq 9 \ell(Q)^{2}$. Thus, we can assume there exists $\Gamma_{1} \in \mathcal{F}(Q)$.

Trivialities

WLOG, WMA that $\ell(Q)=1$ and $\beta_{\Gamma}(Q)>0$, so that $3 Q \cap \Gamma_{j} \neq \emptyset$ for some Γ_{j} and $3 Q^{\prime} \subset \bigcup \mathcal{D}_{j}$.
If $\mathcal{F}(Q)=\emptyset$ then $\sum_{\mathcal{G}(Q)}$ Area $\mathcal{D}_{j} \geq 9 \ell(Q)^{2}$. Thus, we can assume there exists $\Gamma_{1} \in \mathcal{F}(Q)$.
We distinguish three cases.

Case 1

$$
\mathcal{F}(Q)=\left\{\Gamma_{1}\right\} .
$$

Case 1

$\mathcal{F}(Q)=\left\{\Gamma_{1}\right\}$. Let L be a line such that

$$
d=\sup _{\Gamma_{1} \cap 3 Q} \operatorname{dist}(z, L) \leq \beta_{\Gamma_{1}}(Q) \ell(3 Q) .
$$

Case 1

$\mathcal{F}(Q)=\left\{\Gamma_{1}\right\}$. Let L be a line such that

$$
d=\sup _{\Gamma_{1} \cap 3 Q} \operatorname{dist}(z, L) \leq \beta_{\Gamma_{1}}(Q) \ell(3 Q) .
$$

Let $z_{0} \in \Gamma \cap 3 Q$ have maximal distance $d_{0}=\operatorname{dist}\left(z_{0}, \Gamma_{1}\right)$ and let $z_{1} \in \Gamma_{1}$ have minimal distance to z_{0}.

Case 1

$\mathcal{F}(Q)=\left\{\Gamma_{1}\right\}$. Let L be a line such that

$$
d=\sup _{\Gamma_{1} \cap 3 Q} \operatorname{dist}(z, L) \leq \beta_{\Gamma_{1}}(Q) \ell(3 Q) .
$$

Let $z_{0} \in \Gamma \cap 3 Q$ have maximal distance $d_{0}=\operatorname{dist}\left(z_{0}, \Gamma_{1}\right)$ and let $z_{1} \in \Gamma_{1}$ have minimal distance to z_{0}. Call $z_{2}=\frac{z_{0}+z_{1}}{2}$. Then, if $B=B\left(z_{2}, \frac{d_{0}}{2}\right)$,

$$
B \cap 3 Q \subset \bigcup_{\mathcal{G}(Q)} \overline{\mathcal{D}_{j}}
$$

and Area $(B \cap 3 Q) \approx d_{0}^{2}$.

Case 1

$\mathcal{F}(Q)=\left\{\Gamma_{1}\right\}$. Let L be a line such that

$$
d=\sup _{\Gamma_{1} \cap 3 Q} \operatorname{dist}(z, L) \leq \beta_{\Gamma_{1}}(Q) \ell(3 Q) .
$$

Let $z_{0} \in \Gamma \cap 3 Q$ have maximal distance $d_{0}=\operatorname{dist}\left(z_{0}, \Gamma_{1}\right)$ and let $z_{1} \in \Gamma_{1}$ have minimal distance to z_{0}. Call $z_{2}=\frac{z_{0}+z_{1}}{2}$. Then, if $B=B\left(z_{2}, \frac{d_{0}}{2}\right)$,

$$
B \cap 3 Q \subset \bigcup_{\mathcal{G}(Q)} \overline{\mathcal{D}_{j}}
$$

and Area $(B \cap 3 Q) \approx d_{0}^{2}$.
Hence

$$
\beta_{\Gamma}^{2}(Q) \leq\left(d+d_{0}\right)^{2} \leq 2 d^{2}+2 d_{0}^{2} \lesssim \beta_{\Gamma_{1}}^{2}\left(Q^{\prime}\right)+\sum_{\mathcal{G}(Q)} \operatorname{Area} \mathcal{D}_{j} .
$$

Case 2

$\mathcal{F}(Q)=\left\{\Gamma_{1}, \Gamma_{2}\right\}$ for disjoint \mathcal{D}_{1} and \mathcal{D}_{2}.

Case 2

$\mathcal{F}(Q)=\left\{\Gamma_{1}, \Gamma_{2}\right\}$ for disjoint \mathcal{D}_{1} and \mathcal{D}_{2}.
In this case, we may assume that $\beta_{\Gamma_{j}}^{2}(Q)<\varepsilon_{0}, j=1,2$, since otherwise the lemma would hold for $C=\varepsilon_{0}^{-1}$.

Case 2

$\mathcal{F}(Q)=\left\{\Gamma_{1}, \Gamma_{2}\right\}$ for disjoint \mathcal{D}_{1} and \mathcal{D}_{2}.
In this case, we may assume that $\beta_{\Gamma_{j}}^{2}(Q)<\varepsilon_{0}, j=1,2$, since otherwise the lemma would hold for $C=\varepsilon_{0}^{-1}$.
Let $d_{1}=\sup _{\Gamma_{2} \cap 3 Q} \operatorname{dist}\left(z, \Gamma_{1}\right)$.

Case 2

$\mathcal{F}(Q)=\left\{\Gamma_{1}, \Gamma_{2}\right\}$ for disjoint \mathcal{D}_{1} and \mathcal{D}_{2}.
In this case, we may assume that $\beta_{\Gamma_{j}}^{2}(Q)<\varepsilon_{0}, j=1,2$, since otherwise the lemma would hold for $C=\varepsilon_{0}^{-1}$.
Let $d_{1}=\sup _{\Gamma_{2} \cap 3 Q} \operatorname{dist}\left(z, \Gamma_{1}\right)$. Then, if ε_{0} is small enough, $\Gamma \cap 3 Q$ is trapped between Γ_{1} and Γ_{2}, and

$$
\beta_{\Gamma}(Q) \leq \beta_{\Gamma_{1}}\left(Q^{\prime}\right)+\beta_{\Gamma_{2}}\left(Q^{\prime}\right)+d_{1} .
$$

Case 2

$\mathcal{F}(Q)=\left\{\Gamma_{1}, \Gamma_{2}\right\}$ for disjoint \mathcal{D}_{1} and \mathcal{D}_{2}.
In this case, we may assume that $\beta_{\Gamma_{j}}^{2}(Q)<\varepsilon_{0}, j=1,2$, since otherwise the lemma would hold for $C=\varepsilon_{0}^{-1}$.
Let $d_{1}=\sup _{\Gamma_{2} \cap 3 Q} \operatorname{dist}\left(z, \Gamma_{1}\right)$. Then, if ε_{0} is small enough, $\Gamma \cap 3 Q$ is trapped between Γ_{1} and Γ_{2}, and

$$
\beta_{\Gamma}(Q) \leq \beta_{\Gamma_{1}}\left(Q^{\prime}\right)+\beta_{\Gamma_{2}}\left(Q^{\prime}\right)+d_{1} .
$$

Also because \mathcal{D}_{2} is an M-Lipschitz domain, there exists $z_{3} \in 4 Q \backslash\left(\mathcal{D}_{1} \cup \mathcal{D}_{2}\right)$ such that $\operatorname{dist}\left(z_{3}, \Gamma_{j}\right) \geq C_{1}$.

Case 2

$\mathcal{F}(Q)=\left\{\Gamma_{1}, \Gamma_{2}\right\}$ for disjoint \mathcal{D}_{1} and \mathcal{D}_{2}.
In this case, we may assume that $\beta_{\Gamma_{j}}^{2}(Q)<\varepsilon_{0}, j=1,2$, since otherwise the lemma would hold for $C=\varepsilon_{0}^{-1}$.
Let $d_{1}=\sup _{\Gamma_{2} \cap 3 Q} \operatorname{dist}\left(z, \Gamma_{1}\right)$. Then, if ε_{0} is small enough, $\Gamma \cap 3 Q$ is trapped between Γ_{1} and Γ_{2}, and

$$
\beta_{\Gamma}(Q) \leq \beta_{\Gamma_{1}}\left(Q^{\prime}\right)+\beta_{\Gamma_{2}}\left(Q^{\prime}\right)+d_{1} .
$$

Also because \mathcal{D}_{2} is an M-Lipschitz domain, there exists $z_{3} \in 4 Q \backslash\left(\mathcal{D}_{1} \cup \mathcal{D}_{2}\right)$ such that $\operatorname{dist}\left(z_{3}, \Gamma_{j}\right) \geq C_{1}$.
Consequently,
$\beta_{\Gamma}^{2}(Q) \lesssim \beta_{\Gamma_{1}}^{2}\left(Q^{\prime}\right)+\beta_{\Gamma_{2}}\left(Q^{\prime}\right)^{2}+\mathrm{d}\left(z_{3}, \Gamma_{j}\right)^{2} \lesssim \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right)+\sum_{\mathcal{G}(Q)} \operatorname{Area}\left(\mathcal{D}_{j}\right)$

Case 3

$\mathcal{F}(Q)$ contains at least three distinct Γ_{j}.

Case 3

$\mathcal{F}(Q)$ contains at least three distinct Γ_{j}.
Then, because each \mathcal{D}_{j} is an M-Lipschitz domain, there exist at least one $\Gamma_{j} \in \mathcal{F}(Q)$ such that $\beta_{\Gamma_{j}}\left(3 Q^{\prime}\right) \geq C_{1}$, as three strips intersecting $3 Q$ will always intersect one another in $3 Q^{\prime}$.

Proof of the theorem

To finish the proof of the main theorem, let Γ be a rectifiable curve and let $\left\{\right.$ Gammaja $\left._{j}\right\}$ be as in the corollary. Using the lemma on Lipschitz graphs we can see that

$$
\sum_{Q} \beta_{\Gamma_{j}}^{2}(Q) \ell(Q) \leq C \ell\left(\Gamma_{j}\right)
$$

Small cubes' areas

If $\delta_{j}<2^{-n}$ there are at most 25 dyadic cubes Q such that $\ell(Q)=2^{-n}$ and $\mathcal{D}_{j} \in \mathcal{G}(Q)$.

Small cubes' areas

If $\delta_{j}<2^{-n}$ there are at most 25 dyadic cubes Q such that $\ell(Q)=2^{-n}$ and $\mathcal{D}_{j} \in \mathcal{G}(Q)$. Hence,

$$
\sum_{Q} \frac{1}{\ell(Q)} \sum_{\mathcal{G}(Q)} \text { Area }^{2}=\sum_{j} \text { Area }_{j} \sum_{Q: \mathcal{D}_{j} \in \mathcal{G}(Q)} \frac{1}{\ell(Q)}
$$

Small cubes' areas

If $\delta_{j}<2^{-n}$ there are at most 25 dyadic cubes Q such that $\ell(Q)=2^{-n}$ and $\mathcal{D}_{j} \in \mathcal{G}(Q)$. Hence,

$$
\begin{aligned}
\sum_{Q} \frac{1}{\ell(Q)} \sum_{\mathcal{G}(Q)} \text { Area }_{j} & =\sum_{j} \text { Area }_{j} \sum_{Q: \mathcal{D}_{j} \in \mathcal{G}(Q)} \frac{1}{\ell(Q)} \\
& \leq 25 \sum_{j} \text { Area }_{j} \sum_{m=0}^{\infty} 2^{-m} \delta^{-1}
\end{aligned}
$$

Small cubes' areas

If $\delta_{j}<2^{-n}$ there are at most 25 dyadic cubes Q such that $\ell(Q)=2^{-n}$ and $\mathcal{D}_{j} \in \mathcal{G}(Q)$. Hence,

$$
\begin{aligned}
\sum_{Q} \frac{1}{\ell(Q)} \sum_{\mathcal{G}(Q)} \text { Area }_{j} & =\sum_{j} \text { Area }_{j} \sum_{Q: \mathcal{D}_{j} \in \mathcal{G}(Q)} \frac{1}{\ell(Q)} \\
& \leq 25 \sum_{j} \text { Area }_{j} \sum_{m=0}^{\infty} 2^{-m} \delta^{-1} \\
& \leq 50 \sum_{j} \frac{\text { Area }_{j}}{\delta_{j}}
\end{aligned}
$$

Small cubes' areas

If $\delta_{j}<2^{-n}$ there are at most 25 dyadic cubes Q such that $\ell(Q)=2^{-n}$ and $\mathcal{D}_{j} \in \mathcal{G}(Q)$. Hence,

$$
\begin{aligned}
\sum_{Q} \frac{1}{\ell(Q)} \sum_{\mathcal{G}(Q)} \text { Area }_{j} & =\sum_{j} \text { Area }_{j} \sum_{Q: \mathcal{D}_{j} \in \mathcal{G}(Q)} \frac{1}{\ell(Q)} \\
& \leq 25 \sum_{j} \text { Area }_{j} \sum_{m=0}^{\infty} 2^{-m} \delta^{-1} \\
& \leq 50 \sum_{j} \frac{\text { Area } \mathcal{D}_{j}}{\delta_{j}} \\
& \leq C \sum_{j} \ell\left(\Gamma_{j}\right) \leq C \ell(\Gamma)
\end{aligned}
$$

Big cubes' betas

On the other hand, in the sum

$$
\sum_{Q} \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right) \ell(Q)
$$

each term appears sixteen times,

Big cubes' betas

On the other hand, in the sum

$$
\sum_{Q} \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right) \ell(Q)
$$

each term appears sixteen times, so

$$
\beta^{2}(E)=\operatorname{diam} \Gamma+\sum_{\ell(Q) \leq \operatorname{diam} \Gamma} \beta_{\Gamma}^{2}(Q) \ell(Q)
$$

Big cubes' betas

On the other hand, in the sum

$$
\sum_{Q} \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right) \ell(Q)
$$

each term appears sixteen times, so

$$
\begin{aligned}
\beta^{2}(E) & =\operatorname{diam} \Gamma+\sum_{\ell(Q) \leq \operatorname{diam} \Gamma} \beta_{\Gamma}^{2}(Q) \ell(Q) \\
& \leq \mathcal{H}^{1}(\Gamma)+\sum_{Q} \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right) \ell(Q)+\frac{1}{\ell(Q)} \sum_{\mathcal{G}(Q)} \operatorname{Area}_{j}
\end{aligned}
$$

Big cubes' betas

On the other hand, in the sum

$$
\sum_{Q} \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right) \ell(Q)
$$

each term appears sixteen times, so

$$
\begin{aligned}
\beta^{2}(E) & =\operatorname{diam} \Gamma+\sum_{\ell(Q) \leq \operatorname{diam} \Gamma} \beta_{\Gamma}^{2}(Q) \ell(Q) \\
& \leq \mathcal{H}^{1}(\Gamma)+\sum_{Q} \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right) \ell(Q)+\frac{1}{\ell(Q)} \sum_{\mathcal{G}(Q)} \operatorname{Area}_{j} \\
& \leq C \mathcal{H}^{1}(\Gamma)+C \sum_{j} \sum_{Q} \beta_{\Gamma_{j}}^{2}(Q) \ell(Q)
\end{aligned}
$$

Big cubes' betas

On the other hand, in the sum

$$
\sum_{Q} \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right) \ell(Q)
$$

each term appears sixteen times, so

$$
\begin{aligned}
\beta^{2}(E) & =\operatorname{diam} \Gamma+\sum_{\ell(Q) \leq \operatorname{diam} \Gamma} \beta_{\Gamma}^{2}(Q) \ell(Q) \\
& \leq \mathcal{H}^{1}(\Gamma)+\sum_{Q} \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right) \ell(Q)+\frac{1}{\ell(Q)} \sum_{\mathcal{G}(Q)} \operatorname{Area}_{j} \\
& \leq C \mathcal{H}^{1}(\Gamma)+C \sum_{j} \sum_{Q} \beta_{\Gamma_{j}}^{2}(Q) \ell(Q) \\
& \leq C \mathcal{H}^{1}(\Gamma)+\sum_{j} \ell\left(\Gamma_{j}\right)
\end{aligned}
$$

Big cubes' betas

On the other hand, in the sum

$$
\sum_{Q} \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right) \ell(Q)
$$

each term appears sixteen times, so

$$
\begin{aligned}
\beta^{2}(E) & =\operatorname{diam} \Gamma+\sum_{\ell(Q) \leq \operatorname{diam} \Gamma} \beta_{\Gamma}^{2}(Q) \ell(Q) \\
& \leq \mathcal{H}^{1}(\Gamma)+\sum_{Q} \sum_{\mathcal{F}(Q)} \beta_{\Gamma_{j}}^{2}\left(Q^{\prime}\right) \ell(Q)+\frac{1}{\ell(Q)} \sum_{\mathcal{G}(Q)} \operatorname{Area}_{j} \\
& \leq C \mathcal{H}^{1}(\Gamma)+C \sum_{j} \sum_{Q} \beta_{\Gamma_{j}}^{2}(Q) \ell(Q) \\
& \leq C \mathcal{H}^{1}(\Gamma)+\sum_{j} \ell\left(\Gamma_{j}\right) \\
& \leq C \mathcal{H}^{1}(\Gamma)
\end{aligned}
$$

Thank you!

