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Harmonic measure

Let Ω Ă Rn be a bounded domain with n ě 2 be a domain. Consider the
Dirichlet problem

#

∆u “ 0 in Ω

u “ f on BΩ.

If BΩ is good enough, given z P Ω we have a unique continuous
assignation C 0 Ñ R mapping f ÞÑ upzq. Thus, there is a unique Borel
probability measure ωz on BΩ so that

upzq “

ˆ
BΩ

f dωz .

We call ωz the harmonic measure of Ω with pole z . Different poles give
rise to mutually absolutely continuous measures. For this reason z is
often neglected.
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Questions about harmonic measure

What is the dimension of supppωq?

When is Hn « ω?

Connection to rectifiability?

Some answers:

In the plane, if Ω is simply connected with H1pBΩq ă 8, then
H1 « ω (F. and M. Riesz)

Other results in C using complex analysis (Carleson, Makarov,
Jones, Bishop, Wolff, Garnett,...)

Analogue of Riesz theorem fails in higher dimensions (Wu, Ziemer)

Real analysis techniques are needed in Rn`1.
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NTA domain

Harnack chain condition:

If |x ´ y | ď Λpdpx , BΩq ^ dpy , BΩqq ď R then D a chain B1, . . . ,Bm Ă Ω,
m ď C pΛq, with x P B1, y P Bm, and dpBk , BΩq « diampBkq.

C -corkscrew domain:

@ξ P BΩ and r P p0,Rq there are two balls of radius r{C contained in
Bpξ, rq X Ω and Bpξ, rqzΩ respectively.

Harmonic measure is doubling in NTA domains, and its support coincides
with the whole boundary [Jerison, Kenig’82]
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One-sided results

One-phase free boundary problem for harmonic measure: Characterize
geometrically the absolute continuity of ω wrt σ “ Hn|BΩ.

Theorem (Dahlberg, ARMA’77)

If Ω is a Lipschitz domain, then dω
dσ P RH2pσq and, thus, ω P A8pσq

Here, the RH2pσq condition means for balls B centered at BΩ

˜ 
b

ˆ

dω

dσ

˙2

dσ

¸
1
2

ď C
ωpBq

σpBq

Theorem (David, Jerison’90)

If Ω is chord-arc (Ω is NTA and BΩ is n-AD regular), then ω P A8pσq.

Recent big break-through: geometric characterization of weak-A8,
related to Dirichlet solvability [Hofmann,
Martell’18]+[Azzam,Mourgoglou,Tolsa’18].
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Two-sided results

Two-phase f.b.p.: Characterize geometrically ω` « ω´ for disjoint Ω˘.

Theorem (Azzam, Mourgoglou, Tolsa; to appear in TAMS)

Let Ω` Ă Rn`1 be an NTA domain and let Ω´ “ Rn`1zΩ` be an NTA
domain as well. Then TFAE:

(a) ω´ P A8pω
`q.

(b) Either ω` or ω´ have very big pieces of uniformly n-rectifiable
measures

c) Ω˘ have joint big pieces of chord-arc subdomains

Non-quantitative
(ω`|E « ω´|E ùñ DF s.t. ω`|F « Hn|F &ω˘pEzF q “ 0)

Jordan arcs in the plane [Bishop, Carleson, Garnett, Jones’89].

General domains in the plane [Bishop; Ark. Mat.’91]

NTA domains in Rn`1 [Kenig, Preiss, Toro; JAMS’08]

CDC domains in Rn`1 [Azzam, Mourgoglou, Tolsa; CPAM’17]

General domains in Rn`1 [Azzam-Mourgoglou-Tolsa-Volberg’19]
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Reifenberg flatness

Given E Ă Rn`1, x P Rn`1, r ą 0, B “ Bpx , rq and P an n-plane, we set

DE px , r ,Pq “
supEXB dpy ,Pq _ supPXB dpy ,E q

r
.

Ω is a pδ,Rq-Reifenberg flat domain if:

(a) @x P BΩ, 0 ă r ď R we have
infP DBΩpx , r ,Pq ă δ

(b) @x P BΩ, 0 ă r ď R, for the minimizing
P, one of the connected components of

B X
 

x P Rn`1 : dpx ,Pq ě 2δ r
(

is contained in Ω and the other is
contained in Ωc .

Small δ implies that Ω is NTA [Kenig, Toro; Duke’97].
Ω is vanishing Reifenberg flat if, Ω is a pδ,Rδq-Reifenberg flat for every
δ ą 0.
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VMO

Given a Radon measure µ in Rn`1, f P L1
locpµq, and A Ă Rn`1, we write

mµ,Apf q “ ´

ˆ
A

f dµ “
1

µpAq

ˆ
A

f dµ.

Assume µ to be doubling. We say f P VMOpµq if

lim
rÑ0

sup
xPsuppµ

´

ˆ
Bpx,rq

ˇ

ˇf ´mµ,Bpx,rqf dµ
ˇ

ˇ

2
dµ “ 0. (1)

It is well known that the space VMO coincides with the closure of the set
of bounded uniformly continuous functions on suppµ in the BMO norm.
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Asymptotic absolute continuity

Given a weight w in a doubling measure space, Korey shows that the
following asymptotic weight conditions are equivalent for every p ą 0

lim sup`pQqÑ0 }logw}˚,Q,µ “ 0 (BMO norm inside Q wrt µ).

lim sup`pQqÑ0
p ´́

Q
wpdµq

1
p

´́
Q
wdµ

“ 1.

First condition is logw P VMOpµq. The second can be understood as a
“vanishing reverse Hölder space” w P VRHppµq. Also a vanishing Aqpµq
condition and some vanishing A8pµq conditions are equivalent. The
weight w is called asymptotically absolutely continuous by Korey, written
w P A8,aspµq.
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One-sided problem for VMO

Theorem (Kenig, Toro ’97,99,03)

Let Ω Ă Rn`1 be a bounded chord-arc domain which is δ-Reifenberg flat,
with δ ą 0 small enough.

Denote by ω the harmonic measure in Ω with
pole p P Ω and write σ “ Hn|BΩ. Then TFAE:

(a) log
dω

dσ
P VMOpσq. (i.e. ω P A8,aspσq)

(b) The inner normal N to BΩ exists σ-a.e. and it belongs to VMOpσq.

(c) Ω is vanishing Reifenberg flat and the inner normal N to BΩ exists
σ-a.e. and it belongs to VMOpσq.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

One-sided problem for VMO

Theorem (Kenig, Toro ’97,99,03)

Let Ω Ă Rn`1 be a bounded chord-arc domain which is δ-Reifenberg flat,
with δ ą 0 small enough.Denote by ω the harmonic measure in Ω with
pole p P Ω and write σ “ Hn|BΩ.

Then TFAE:

(a) log
dω

dσ
P VMOpσq. (i.e. ω P A8,aspσq)

(b) The inner normal N to BΩ exists σ-a.e. and it belongs to VMOpσq.

(c) Ω is vanishing Reifenberg flat and the inner normal N to BΩ exists
σ-a.e. and it belongs to VMOpσq.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

One-sided problem for VMO

Theorem (Kenig, Toro ’97,99,03)

Let Ω Ă Rn`1 be a bounded chord-arc domain which is δ-Reifenberg flat,
with δ ą 0 small enough.Denote by ω the harmonic measure in Ω with
pole p P Ω and write σ “ Hn|BΩ. Then TFAE:

(a) log
dω

dσ
P VMOpσq. (i.e. ω P A8,aspσq)

(b) The inner normal N to BΩ exists σ-a.e. and it belongs to VMOpσq.

(c) Ω is vanishing Reifenberg flat and the inner normal N to BΩ exists
σ-a.e. and it belongs to VMOpσq.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Two-sided problem for VMO

Theorem (P., Tolsa, to appear in CVPDE’20)

Let Ω` Ă Rn`1, n ě 2 be a bounded NTA domain with Ω´ “ Ω`
c

NTA.
Suppose Ω` is a δ-RF domain, with δ ą 0 small enough.

Then TFAE:

(a) log
dω´

dω`
P VMOpω`q (i.e. ω´ P A8,aspω

`q).

(b) Ω` is vRF, N P VMOpω`q and ω˘ P RH3{2pω
¯q.

(c) Ω` is vRF, ω´ P A8pω
`q, and

lim
ρÑ0

sup
rpBqďρ

´

ˆ
B

|N ´ NB | dω
` “ 0,

where NB is interior normal to the plane L from RF property.

In (a) ùñ (b), vRF was shown in [Kenig, Toro, Crelle’06]. By Korey, also
ω˘ P RH3{2pω

¯q follows from ω´ P A8,aspω
`q. Our contribution is

N P VMOpω`q.Note that we don’t assume Hn|BΩ to be locally finite.
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The geometric condition

The geometric characterization contains

lim
ρÑ0

sup
rpBqďρ

´

ˆ
B

|N ´ NB | dω
` “ 0,

where NB is interior normal to the plane L from RF property.

This does not imply N P VMOpω`q:

Here NB is “vertical” for all the balls whose diameter is a horizontal
segment of an iteration, while the harmonic measure is concentrated in
vertical lines so

ffl
B
Ndω` ” p1, 0q and |NB ´

ffl
B
Ndω`| «

a

p2q.
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Reifenberg flatness is necessary

The Reifenberg flatness condition on the domain is necessary in the
theorem. This can be easily seen by taking a suitable smooth truncation
of the cone Ω` “ tx1, x2, x3, x4q P R4 : x2

1 ` x2
2 ă x2

3 ` x2
4 u, for which the

harmonic measures ω` and ω´ with pole at 8 coincide:

log
dω´

dω`
P VMOpω`q, but N R VMOpω`q!
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Some notation

Define:

ω :“ ω` “ ω`,p` ω´ “ ω´,p´

ΘpBq “ ωpBq
rpBqn

Θpxq :“ Θn
ωpxq “ limrÑ0 ΘpBpx , rqq

Maximal Hardy-Littlewood operator Mωf pxq “ suprą0 ´́
Bpx,rq

|f |dω

Maximal operator on measures Mnωpxq “ suprą0 ΘpBpx , rqq

Analogous definitions for Θ´, Mω´ f pxq, Mnω
´. Given a signed Radon

measure ν we consider the n-dimensional Riesz transform

Rνpxq “
ˆ

x ´ y

|x ´ y |n`1
dνpyq,

whenever the integral makes sense. For ε ą 0,

Rενpxq “

ˆ
|x´y |ąε

x ´ y

|x ´ y |n`1
dνpyq,

and we set R˚νpxq “ supεą0 |Rενpxq|. Also write Rµf “ Rpf µq.
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CDC and tangent points

By [Azzam, Mourgoglou, Tolsa CPAM], every pair of NTA domains Ω˘

with common boundary (...) and with ω` and ω´ mutually absolutely
continuous, then

BΩ` has an n-rectifiable subset F with full harmonic measure such
that

both harmonic measures are mutually absolutely continuous with
respect to the Hausdorff measure Hn on F ,

all points in F are tangent points for BΩ` and

F is dense in BΩ`.

N is the interior unit normal, defined ω-a.e.

Being n-rectifiable means that it is Hn-a.e. contained in a countable
union of C 1 n-dimensional manifolds.
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Jump formulas for the Riesz transform

Assumptions of the theorem do not grant that the Hausdorff measure is
locally finite. Thus, traditional jump formulas (Hofman-Mitrea-Taylor)
are not available.

A recent work by Tolsa in arXiv provides jump formulas for n-rectifiable
sets. In our setting, we get the following:

Lemma

For ω-a.e. x we have that

R`ω`pxq ´R´ω`pxq “ cnΘpxqNpxq

R`ω`pxq `R´ω`pxq “ 2p.v .Rω`pxq “: 2Rω`pxq
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Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture.
Girela-Sarrión and Tolsa gave the following local version:

Theorem (Girela-Sarrión, Tolsa)

@C0,C1 ą 1, Dδ0, τ0, θ st. given a ball B Ă Rn`1 satisfying

a) infLQ0 ´́
B

distpx,Lq
rpBq dω ď δ0.

b) PpBq :“
ř

j 2´jΘp2jBq ď C0ΘpBq.

c) There exists a good set with ωpBzGBq ď δ0ωpBq, with

d) MnpχBωq `R˚pχBωq ď C1ΘpBq in GB and

e) ´́
GB
|Rω ´mω,GB

pRωq|2dω ď τ0ΘpBq2,

there exists a uniform n-rectifiable set Γ st. ωpGB X Γq ě θωpBq.

Uniform n-rectifiable means that Γ is n-AD regular and there are
M, θ ą 0 so that for all x P E , 0 ă r ă diampΓq, Dg : B “ BRn

r Ñ Rd

M-Lipschitz with

HnpΓX gpBq X Bpx , rqq ě θrn
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d) MnpχBωq `R˚pχBωq ď C1ΘpBq in GB and

e) ´́
GB
|Rω ´mω,GB

pRωq|2dω ď τ0ΘpBq2,

there exists a uniform n-rectifiable set Γ st. ωpGB X Γq ě θωpBq.

Uniform n-rectifiable means that Γ is n-AD regular and there are
M, θ ą 0 so that for all x P E , 0 ă r ă diampΓq, Dg : B “ BRn

r Ñ Rd

M-Lipschitz with

HnpΓX gpBq X Bpx , rqq ě θrn
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Main argument

Since ω is doubling, define a Christ dyadic structure D “
Ť

k Dk .

We
will define G Ă Q (the “good set”) and LD Ă Q (low density) @Q P D.

* :“

ˆ
Q

|N ´ CQ |
2dω ď

ˆ
QzGYLD

|N ´ CQ |
2dω `

ˆ
QXGzLD

|N ´ CQ |
2dω

Choose CQ “
mω,G pΘNq
|mω,G pΘNq| , and note that

ˇ

ˇ

ˇ

u
|u| ´

v
|v |

ˇ

ˇ

ˇ
ď 2 |u´v |

|u| . Then

|N ´ CQ | ď
2

Θ
|ΘN ´mω,G pΘNq|

Away from the low density, we have Θpxq ą τΘpQq. Thus,

* À ωpQzG q ` ωpLDq `
1

τ 2ΘpQq2

ˆ
QXG

|ΘN ´mQpΘNq|2dω

ď ε1ωpQq ` ε2ωpQq `
ε3

τpε2q
2
ωpQq ď εωpQq

If ε goes to zero uniformly on `pQq then N P VMOpωq and we are done.
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Key elements

We have used the following:

The low density set contains all low density points: Θpxq ą τΘpQq
in LDc .

The low density set is small: ωpLDq ď ε2ωpQq.

The good set is big ωpQzG q ă ε1ωpQq

“Riesz transform” does not oscillate much in the good set
´́
QXG

|ΘN ´mQpΘNq|2dω ď ε3ΘpQq2



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Key elements

We have used the following:

The low density set contains all low density points: Θpxq ą τΘpQq
in LDc .

The low density set is small: ωpLDq ď ε2ωpQq.

The good set is big ωpQzG q ă ε1ωpQq

“Riesz transform” does not oscillate much in the good set
´́
QXG

|ΘN ´mQpΘNq|2dω ď ε3ΘpQq2



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Key elements

We have used the following:

The low density set contains all low density points: Θpxq ą τΘpQq
in LDc .

The low density set is small: ωpLDq ď ε2ωpQq.

The good set is big ωpQzG q ă ε1ωpQq

“Riesz transform” does not oscillate much in the good set
´́
QXG

|ΘN ´mQpΘNq|2dω ď ε3ΘpQq2



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Key elements

We have used the following:

The low density set contains all low density points: Θpxq ą τΘpQq
in LDc .

The low density set is small: ωpLDq ď ε2ωpQq.

The good set is big ωpQzG q ă ε1ωpQq

“Riesz transform” does not oscillate much in the good set
´́
QXG

|ΘN ´mQpΘNq|2dω ď ε3ΘpQq2



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Key elements

We have used the following:

The low density set contains all low density points: Θpxq ą τΘpQq
in LDc .

The low density set is small: ωpLDq ď ε2ωpQq.

The good set is big ωpQzG q ă ε1ωpQq

“Riesz transform” does not oscillate much in the good set
´́
QXG

|ΘN ´mQpΘNq|2dω ď ε3ΘpQq2



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Low density set

Define LDτ as the maximal family of cubes P Ă Q st ΘpPq ď τΘpQq
and LD :“ LDτ “

Ť

PPLDτ P.

First property (Θpxq ą τΘpQq in LDc) is
immediate. The second is the lemma:

Lemma

@ε2 ą 0, Dτpε2q st ωpLDτ q ď ε2ωpQq

Proof by induction: τ “ λM , 0 ă λ ă 1 and Mpτq ąą 1. Then, writing
LDk :“ LDλk , LDk :“ LDλk , we prove

Lemma

Let λpnq be small. Dη P p0, 1q st @k ě 0, if P P LDk , then
ωpP X LDk`1q ď ηωpPq.

Thus, ε2 “ ηM .
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Proof by induction: τ “ λM , 0 ă λ ă 1 and Mpτq ąą 1. Then, writing
LDk :“ LDλk , LDk :“ LDλk , we prove

Lemma

Let λpnq be small. Dη P p0, 1q st @k ě 0, if P P LDk , then
ωpP X LDk`1q ď ηωpPq.

Thus, ε2 “ ηM .
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Proof of the claim

Theorem (Girela-Sarrión, Tolsa)

@C0,C1 ą 1, Dδ0, τ0, θ st. given a ball B Ă Rn`1 satisfying

a) infLQ0 ´́
B

distpx,Lq
rpBq dω ď δ0.

b) PpBq :“
ř

j 2´jΘp2jBq ď C0ΘpBq.

c) There exists a good set with ωpBzGBq ď δ0ωpBq, with

d) Mnpχ2Bωq `R˚pχ2Bωq ď C1ΘpBq in GB and

e) ´́
GB
|Rω ´mω,GB

pRωq|2dω ď τ0ΘpBq2,

there exists a uniform n-rectifiable set Γ st. ωpGB X Γq ě θωpBq.

Condition (a) is immediate form RF, (b) is shown using RF for small
enough balls. We need to check (c)-(e). The AD-regularity of Γ is used
to show the claim.
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Definition of the good set

Our assumption is that log h P VMO for h :“ dω`

dω´ , that is, the oscillation
of log h vanishes uniformly as `pQq Ñ 0.

Consider

GQ :“

"

x P Q :

ˇ

ˇ

ˇ

ˇ

hpxq

aQ
´ 1

ˇ

ˇ

ˇ

ˇ

ď δ1

*

for aQ :“ e ´́
Q

log hdω
« ´́

Q
hdω (by John-Nirenberg).

For better estimates, we consider a slightly modified set rGQ so that, if
`pQq ď `1pδ1,VMOq then

ωpQz rGQq ď Cδ1ωpQq (i.e., condition (c) in [GT] is satisfied),

for x P rGQ , r ă `pQq, then ω´
pQq

ω`pQq «
ω´
pBpx,rqq

ω`pBpx,rqq and

Θ˘pBpx , rqq À Θ˘pQq, so MnpχQωqpxq À ΘpQq.
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Control of maximal operators

By the definition of harmonic measure, we have that

for x P χΩ´ , Rω`pxq “ K px ´ p`q

for x P χΩ` , Rω´pxq “ K px ´ p´q

If `pQq ď `1pδ1,VMOq, then for x P rGQ we get (by CZ estimates and
[Kenig,Toro, Duke’97])

MnpχQωqpxq `R˚pχQωqpxq À ΘpQq

(this shows that condition (d) in [GS] is satisfied). By T(b)-theorem of
Nazarov, Trail and Volberg, this implies that

}Rω}L2pω|
rGQ
qý À ΘpQq

and also weak-(1,1) boundedness

R : tfinite Radon measures in Rn`1u Ñ L1,8pωq.
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Jump identities

By the definition of harmonic measure, we have that

for x P χΩ´ , Rω`pxq “ K px ´ p`q

for x P χΩ` , Rω´pxq “ K px ´ p´q

For ω-a.e. in BΩ we have that

R´ω` “ K p¨ ´ p`q, R`ω´ “ K p¨ ´ p´q

cnΘN “ R`ω ´R´ω and 2Rω “ R`ω `R´ω,

that is,

ΘN “
1

cn
pR`ω ´ K p¨ ´ p`qq and Rω “ 1

2
pR`ω ` K p¨ ´ p`qq

Thus, to control the oscillation of ΘN in the main proof and the
oscillation of Rω in the nondegeneracy, it is enough to control oscillation
of R`ω.
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Oscillation of R`ω

We define in the main argument G :“ rGΛQ for Λ big enough, while in the

nondegeneracy argument we choose GB :“ rGΛP .

Lemma

@ε1, if Λ “ Λpε1q is big enough and δ1pε
1,Λq small enough, whenever

`pQq ď `2pδ1,Λ, ε
1q we have that

´

ˆ
QX rGΛQ

|R`ω ´ CQ |
2dω À ε1ΘpQq2

Note that R`ω “ R`pω` ´ cω´q ` cK p¨ ´ p´q a.e. in BΩ`.
The proof is obtained by combining jump formulas, the weak
boundedness of the Riesz transform, the pointwise control of the maximal
operators, and the estimates on the good set introduced before. The
scaling parameter Λ is used to separate the local part from the non-local
part, and CZ “off-diagonal” estimates appear which are small for Λ big.
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Proof of (b) implies (a)
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Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN’17])

Consider Ω˘ and the good set
G Ă BΩ` to be defined.

Take a Whitney covering of G c so that
`pSq « mintr0, δ

2
0dpS ,G qu

Select the cubes that intersect the
boundary of the domain.

Take ball BS centered in a boundary
point of each cube S with radius
δ´1

0 `pSq.

Consider the domains
Ω`b :“ Ω` Y

Ť

BS and

Ω´s :“ Ωsz
Ť

BS .

Analogously define Ω´b and Ω`s .
If Ω` is pδ1, r0q-RF with δ1pδ0q small enough, then Ω˘b{s are also

pcδ
1
2
0 , r0{2q-RF and BΩX 10BS is a Lipschitz graph.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN’17])

Consider Ω˘ and the good set
G Ă BΩ` to be defined.

Take a Whitney covering of G c so that
`pSq « mintr0, δ

2
0dpS ,G qu

Select the cubes that intersect the
boundary of the domain.

Take ball BS centered in a boundary
point of each cube S with radius
δ´1

0 `pSq.

Consider the domains
Ω`b :“ Ω` Y

Ť

BS and

Ω´s :“ Ωsz
Ť

BS .

Analogously define Ω´b and Ω`s .
If Ω` is pδ1, r0q-RF with δ1pδ0q small enough, then Ω˘b{s are also

pcδ
1
2
0 , r0{2q-RF and BΩX 10BS is a Lipschitz graph.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN’17])

Consider Ω˘ and the good set
G Ă BΩ` to be defined.

Take a Whitney covering of G c so that
`pSq « mintr0, δ

2
0dpS ,G qu

Select the cubes that intersect the
boundary of the domain.

Take ball BS centered in a boundary
point of each cube S with radius
δ´1

0 `pSq.

Consider the domains
Ω`b :“ Ω` Y

Ť

BS and

Ω´s :“ Ωsz
Ť

BS .

Analogously define Ω´b and Ω`s .
If Ω` is pδ1, r0q-RF with δ1pδ0q small enough, then Ω˘b{s are also

pcδ
1
2
0 , r0{2q-RF and BΩX 10BS is a Lipschitz graph.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN’17])

Consider Ω˘ and the good set
G Ă BΩ` to be defined.

Take a Whitney covering of G c so that
`pSq « mintr0, δ

2
0dpS ,G qu

Select the cubes that intersect the
boundary of the domain.

Take ball BS centered in a boundary
point of each cube S with radius
δ´1

0 `pSq.

Consider the domains
Ω`b :“ Ω` Y

Ť

BS and

Ω´s :“ Ωsz
Ť

BS .

Analogously define Ω´b and Ω`s .
If Ω` is pδ1, r0q-RF with δ1pδ0q small enough, then Ω˘b{s are also

pcδ
1
2
0 , r0{2q-RF and BΩX 10BS is a Lipschitz graph.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN’17])

Consider Ω˘ and the good set
G Ă BΩ` to be defined.

Take a Whitney covering of G c so that
`pSq « mintr0, δ

2
0dpS ,G qu

Select the cubes that intersect the
boundary of the domain.

Take ball BS centered in a boundary
point of each cube S with radius
δ´1

0 `pSq.

Consider the domains
Ω`b :“ Ω` Y

Ť

BS and

Ω´s :“ Ωsz
Ť

BS .

Analogously define Ω´b and Ω`s .
If Ω` is pδ1, r0q-RF with δ1pδ0q small enough, then Ω˘b{s are also

pcδ
1
2
0 , r0{2q-RF and BΩX 10BS is a Lipschitz graph.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN’17])

Consider Ω˘ and the good set
G Ă BΩ` to be defined.

Take a Whitney covering of G c so that
`pSq « mintr0, δ

2
0dpS ,G qu

Select the cubes that intersect the
boundary of the domain.

Take ball BS centered in a boundary
point of each cube S with radius
δ´1

0 `pSq.

Consider the domains
Ω`b :“ Ω` Y

Ť

BS and

Ω´s :“ Ωsz
Ť

BS .

Analogously define Ω´b and Ω`s .

If Ω` is pδ1, r0q-RF with δ1pδ0q small enough, then Ω˘b{s are also

pcδ
1
2
0 , r0{2q-RF and BΩX 10BS is a Lipschitz graph.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN’17])

Consider Ω˘ and the good set
G Ă BΩ` to be defined.

Take a Whitney covering of G c so that
`pSq « mintr0, δ

2
0dpS ,G qu

Select the cubes that intersect the
boundary of the domain.

Take ball BS centered in a boundary
point of each cube S with radius
δ´1

0 `pSq.

Consider the domains
Ω`b :“ Ω` Y

Ť

BS and

Ω´s :“ Ωsz
Ť

BS .

Analogously define Ω´b and Ω`s .
If Ω` is pδ1, r0q-RF with δ1pδ0q small enough, then Ω˘b{s are also

pcδ
1
2
0 , r0{2q-RF and BΩX 10BS is a Lipschitz graph.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

Setting

We want to see that ω´ P A8,aspω
`q “ VRHppω

`q for a certain p ą 1.

That is, @ε ą 0, @B with rpBq ď `pεq,

II
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dω´

dω`

˙p

dω`
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p

ď p1` εq
ω´pBq

ω`pBq
.

Select a good set G0 “ G pBq “ BzpLDτ pΛBq Y HDApΛBqq.

Since
ω´ P A8pω

`q, we have that ω´ P RHqpω
`q. Write q “: 1` 2β, define

p :“ 1` β. Then by the maximum principle,

Hölder and RH inequalities
and estimates on the size of G0

we get
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Reverse Hölder for the approximate domains’ measures

The key identity to prove is the following:

›

›

›
NΩ`

s

›

›

›

˚,ΛrpBq,σ
À C pA, τq}NΩ`}˚,10ΛrpBq,ω` ` ε1pδ0q “ ε2.

Assume it to be true. By stopping conditions and the fact that Ω˘b is a
Lipschitz domain, we show that they are also chord-arc. From the
one-phase problem [Kenig, Toro, Duke’97] chord-arc and NΩ`

s
P VMO

(not satisfied: we need a quantitative version) imply that
σ P A8,aspω

`
s q “ VRH3pω

`
s q and similarly ω´b P VRH4pσq with modulus

of continuity ε3.

´

ˆ
B

ˆ

dω´b
dω`s

˙2

dω`s “
1

ω`s pBq

ˆ
B

ˆ

dω´b
dσ

˙2
dσ

dω`s
dσ

ď p1` ε3q
σpBq1{2

ω`s pBq1{2

ˆ

ω´b pBq

σpBq

˙2 ˆ
σpBq

ω`s pBq

˙3{2

,
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Reverse Hölder for the approximate domains’ measures

The key identity to prove is the following:
›

›

›
NΩ`

s

›

›

›

˚,ΛrpBq,σ
À C pA, τq}NΩ`}˚,10ΛrpBq,ω` ` ε1pδ0q “ ε2.

Assume it to be true. By stopping conditions and the fact that Ω˘b is a
Lipschitz domain, we show that they are also chord-arc. From the
one-phase problem [Kenig, Toro, Duke’97] chord-arc and NΩ`

s
P VMO

(not satisfied: we need a quantitative version) imply that
σ P A8,aspω

`
s q “ VRH3pω

`
s q and similarly ω´b P VRH4pσq with modulus

of continuity ε3.

´

ˆ
B

ˆ

dω´b
dω`s

˙2

dω`s ď

˜

σpBq

ω`s pBq
´

ˆ
B

ˆ

dω´b
dσ

˙4

dσ ´

ˆ
B

ˆ

dσ

dω`s

˙3

dω`s

¸1{2

ď p1` ε3q
σpBq1{2

ω`s pBq1{2

ˆ

ω´b pBq

σpBq

˙2 ˆ
σpBq

ω`s pBq

˙3{2

,

“ p1` ε4q

ˆ

ω´b pBq

ω`s pBq

˙2

.



Introduction Preliminaries Proof of (a) implies (b) Proof of (b) implies (a) The end

End of the proof

The last RH inequality together with the previous reasoning implies

II ď

˜

p1` ε4q
p
2

ˆ

ω`pBq

ω`s pBq

˙p´1 ˆ
ω´b pBq

ω´pBq

˙p

` CΛ pε
1q

p´1
2p´1

¸

ˆ

ω´pBq

ω`pBq

˙p

.

Finally, we see that ω`pBq ď p1` ε4qω
`
s pBq and

ω´b pBq ď p1` ε4qω
´pBq for rpΛBq small enough, Λ big enough and δ0

small enough, using the Hölder continuity of harmonic measure and the
separation between B and pΛBqc .
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The key estimate

The key estimate remaining
›

›

›
NΩ`

s

›

›

›

˚,ΛrpBq,σ
À C pA, τq}NΩ`}˚,10ΛrpBq,ω` ` ε1pδ0q

is deduced from

Lemma

Let Ω` Ă Rn`1 be bdd two-sided NTA pδ0, r0q-Reifenberg flat for some
δ0 ą 0 and r0 ą 0. Suppose also that ω` P RH3{2pω

´q and that
N P VMOpω`q. Let B be a ball centered in BΩ` with Λ0rpBq ď r0{4.
Let LB be a best approximating n-plane for BΩ` X B and NB the unit
normal to LB pointing to Ω`. For any ε1 ą 0,

ˇ

ˇNB ´mB,ω`NΩ`

ˇ

ˇ ď ε1 “ ε1pδ0, rpBqq,

with ε1 as small as wished if δ0 is small enough and rpBq small enough,
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To get
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ˇ
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GpΛBq

ΘNΩ` dω ´
Cn

rpBqn
NB

ˇ

ˇ

ˇ

ˇ

ˇ

ď
ε0

rpBqn
,

if the constants are big/small enough. Then we argue as in the

implication (a) ùñ (b) with
ˇ

ˇ

ˇ

u
|u| ´

v
|v |

ˇ

ˇ

ˇ
ď 2 |u´v |

|u| .

The estimate is obtained using again:

Jump formulas [Tolsa; arXiv ’18]

Hölder continuity of the harmonic measure and

change of pole formulas from [Jerison, Kenig; Adv. Math.’82]

Monotonicity formula [Alt, Caffarelli, Friedmann; TAMS’84]

Refined doubling properties of ω in [Kenig, Toro; Duke’97]

Hypothesis ω` P B3{2pω
´q is needed in this proof.
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The end

Kiitos paljon! Tack! Moltes gràcies!
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