The two-phase problem for harmonic measure in VMO via jump formulas for the Riesz transform

Martí Prats (joint work with X. Tolsa)

A?
 Aalto-yliopisto

Harmonic analysis seminar, Helsingin Yliopisto, March 6th, 2020

Introduction

Harmonic measure

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with $n \geqslant 2$ be a domain. Consider the Dirichlet problem

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ u=f & \text { on } \partial \Omega .\end{cases}
$$

Harmonic measure

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with $n \geqslant 2$ be a domain. Consider the Dirichlet problem

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ u=f & \text { on } \partial \Omega .\end{cases}
$$

If $\partial \Omega$ is good enough, given $z \in \Omega$ we have a unique continuous assignation $C^{0} \rightarrow \mathbb{R}$ mapping $f \mapsto u(z)$.

Harmonic measure

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with $n \geqslant 2$ be a domain. Consider the Dirichlet problem

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ u=f & \text { on } \partial \Omega .\end{cases}
$$

If $\partial \Omega$ is good enough, given $z \in \Omega$ we have a unique continuous assignation $C^{0} \rightarrow \mathbb{R}$ mapping $f \mapsto u(z)$. Thus, there is a unique Borel probability measure ω^{z} on $\partial \Omega$ so that

$$
u(z)=\int_{\partial \Omega} f d \omega^{z} .
$$

We call ω^{z} the harmonic measure of Ω with pole z.

Harmonic measure

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with $n \geqslant 2$ be a domain. Consider the Dirichlet problem

$$
\begin{cases}\Delta u=0 & \text { in } \Omega \\ u=f & \text { on } \partial \Omega .\end{cases}
$$

If $\partial \Omega$ is good enough, given $z \in \Omega$ we have a unique continuous assignation $C^{0} \rightarrow \mathbb{R}$ mapping $f \mapsto u(z)$. Thus, there is a unique Borel probability measure ω^{z} on $\partial \Omega$ so that

$$
u(z)=\int_{\partial \Omega} f d \omega^{z} .
$$

We call ω^{z} the harmonic measure of Ω with pole z. Different poles give rise to mutually absolutely continuous measures. For this reason z is often neglected.

Questions about harmonic measure

- What is the dimension of $\operatorname{supp}(\omega)$?
- When is $\mathcal{H}^{n} \approx \omega$?
- Connection to rectifiability?

Questions about harmonic measure

- What is the dimension of $\operatorname{supp}(\omega)$?
- When is $\mathcal{H}^{n} \approx \omega$?
- Connection to rectifiability?

Some answers:

- In the plane, if Ω is simply connected with $\mathcal{H}^{1}(\partial \Omega)<\infty$, then $\mathcal{H}^{1} \approx \omega$ (F. and M. Riesz)
- Other results in \mathbb{C} using complex analysis (Carleson, Makarov, Jones, Bishop, Wolff, Garnett,...)
- Analogue of Riesz theorem fails in higher dimensions (Wu, Ziemer)
- Real analysis techniques are needed in \mathbb{R}^{n+1}.

NTA domain

- Harnack chain condition:

If $|x-y| \leqslant \Lambda(d(x, \partial \Omega) \wedge \mathrm{d}(y, \partial \Omega)) \leqslant R$ then \exists a chain $B_{1}, \ldots, B_{m} \subset \Omega$, $m \leqslant C(\Lambda)$, with $x \in B_{1}, y \in B_{m}$, and $\mathrm{d}\left(B_{k}, \partial \Omega\right) \approx \operatorname{diam}\left(B_{k}\right)$.

NTA domain

- Harnack chain condition:

If $|x-y| \leqslant \Lambda(d(x, \partial \Omega) \wedge \mathrm{d}(y, \partial \Omega)) \leqslant R$ then \exists a chain $B_{1}, \ldots, B_{m} \subset \Omega$, $m \leqslant C(\Lambda)$, with $x \in B_{1}, y \in B_{m}$, and $\mathrm{d}\left(B_{k}, \partial \Omega\right) \approx \operatorname{diam}\left(B_{k}\right)$.

- C-corkscrew domain:
$\forall \xi \in \partial \Omega$ and $r \in(0, R)$ there are two balls of radius r / C contained in $B(\xi, r) \cap \Omega$ and $B(\xi, r) \backslash \Omega$ respectively.

NTA domain

- Harnack chain condition:

If $|x-y| \leqslant \Lambda(d(x, \partial \Omega) \wedge \mathrm{d}(y, \partial \Omega)) \leqslant R$ then \exists a chain $B_{1}, \ldots, B_{m} \subset \Omega$, $m \leqslant C(\Lambda)$, with $x \in B_{1}, y \in B_{m}$, and $\mathrm{d}\left(B_{k}, \partial \Omega\right) \approx \operatorname{diam}\left(B_{k}\right)$.

- C-corkscrew domain:
$\forall \xi \in \partial \Omega$ and $r \in(0, R)$ there are two balls of radius r / C contained in $B(\xi, r) \cap \Omega$ and $B(\xi, r) \backslash \Omega$ respectively.

NTA domain

- Harnack chain condition:

If $|x-y| \leqslant \Lambda(d(x, \partial \Omega) \wedge d(y, \partial \Omega)) \leqslant R$ then \exists a chain $B_{1}, \ldots, B_{m} \subset \Omega$, $m \leqslant C(\Lambda)$, with $x \in B_{1}, y \in B_{m}$, and $\mathrm{d}\left(B_{k}, \partial \Omega\right) \approx \operatorname{diam}\left(B_{k}\right)$.

- C-corkscrew domain:
$\forall \xi \in \partial \Omega$ and $r \in(0, R)$ there are two balls of radius r / C contained in $B(\xi, r) \cap \Omega$ and $B(\xi, r) \backslash \Omega$ respectively.

Harmonic measure is doubling in NTA domains, and its support coincides with the whole boundary [Jerison, Kenig'82]

One-sided results

One-phase free boundary problem for harmonic measure: Characterize geometrically the absolute continuity of ω wrt $\sigma=\left.\mathcal{H}^{n}\right|_{\partial \Omega}$.

One-sided results

One-phase free boundary problem for harmonic measure: Characterize geometrically the absolute continuity of ω wrt $\sigma=\left.\mathcal{H}^{n}\right|_{\partial \Omega}$.

Theorem (Dahlberg, ARMA'77)

If Ω is a Lipschitz domain, then $\frac{d \omega}{d \sigma} \in R H_{2}(\sigma)$ and, thus, $\omega \in A_{\infty}(\sigma)$
Here, the $\mathrm{RH}_{2}(\sigma)$ condition means for balls B centered at $\partial \Omega$

$$
\left(f_{b}\left(\frac{d \omega}{d \sigma}\right)^{2} d \sigma\right)^{\frac{1}{2}} \leqslant C \frac{\omega(B)}{\sigma(B)}
$$

One-sided results

One-phase free boundary problem for harmonic measure: Characterize geometrically the absolute continuity of ω wrt $\sigma=\left.\mathcal{H}^{n}\right|_{\partial \Omega}$.

Theorem (Dahlberg, ARMA'77)

If Ω is a Lipschitz domain, then $\frac{d \omega}{d \sigma} \in R H_{2}(\sigma)$ and, thus, $\omega \in A_{\infty}(\sigma)$
Here, the $\mathrm{RH}_{2}(\sigma)$ condition means for balls B centered at $\partial \Omega$

$$
\left(f_{b}\left(\frac{d \omega}{d \sigma}\right)^{2} d \sigma\right)^{\frac{1}{2}} \leqslant C \frac{\omega(B)}{\sigma(B)}
$$

Theorem (David, Jerison'90)

If Ω is chord-arc (Ω is NTA and $\partial \Omega$ is $n-A D$ regular), then $\omega \in A_{\infty}(\sigma)$.

One-sided results

One-phase free boundary problem for harmonic measure: Characterize geometrically the absolute continuity of ω wrt $\sigma=\left.\mathcal{H}^{n}\right|_{\partial \Omega}$.

Theorem (Dahlberg, ARMA'77)

If Ω is a Lipschitz domain, then $\frac{d \omega}{d \sigma} \in R H_{2}(\sigma)$ and, thus, $\omega \in A_{\infty}(\sigma)$
Here, the $\mathrm{RH}_{2}(\sigma)$ condition means for balls B centered at $\partial \Omega$

$$
\left(f_{b}\left(\frac{d \omega}{d \sigma}\right)^{2} d \sigma\right)^{\frac{1}{2}} \leqslant C \frac{\omega(B)}{\sigma(B)}
$$

Theorem (David, Jerison'90)

If Ω is chord-arc (Ω is NTA and $\partial \Omega$ is $n-A D$ regular), then $\omega \in A_{\infty}(\sigma)$.
Recent big break-through: geometric characterization of weak- A_{∞}, related to Dirichlet solvability [Hofmann, Martell'18]+[Azzam,Mourgoglou,Tolsa'18].

Two-sided results

Two-phase f.b.p.: Characterize geometrically $\omega^{+} \approx \omega^{-}$for disjoint $\Omega^{ \pm}$.

Two-sided results

Two-phase f.b.p.: Characterize geometrically $\omega^{+} \approx \omega^{-}$for disjoint $\Omega^{ \pm}$.
Theorem (Azzam, Mourgoglou, Tolsa; to appear in TAMS)
Let $\Omega^{+} \subset \mathbb{R}^{n+1}$ be an NTA domain and let $\Omega^{-}=\mathbb{R}^{n+1} \backslash \overline{\Omega^{+}}$be an NTA domain as well. Then TFAE:
(a) $\omega^{-} \in A_{\infty}\left(\omega^{+}\right)$.
(b) Either ω^{+}or ω^{-}have very big pieces of uniformly n-rectifiable measures
c) $\Omega^{ \pm}$have joint big pieces of chord-arc subdomains

Two-sided results

Two-phase f.b.p.: Characterize geometrically $\omega^{+} \approx \omega^{-}$for disjoint $\Omega^{ \pm}$.
Theorem (Azzam, Mourgoglou, Tolsa; to appear in TAMS)
Let $\Omega^{+} \subset \mathbb{R}^{n+1}$ be an NTA domain and let $\Omega^{-}=\mathbb{R}^{n+1} \backslash \overline{\Omega^{+}}$be an NTA domain as well. Then TFAE:
(a) $\omega^{-} \in A_{\infty}\left(\omega^{+}\right)$.
(b) Either ω^{+}or ω^{-}have very big pieces of uniformly n-rectifiable measures
c) $\Omega^{ \pm}$have joint big pieces of chord-arc subdomains

Non-quantitative $\left(\left.\left.\omega^{+}\right|_{E} \approx \omega^{-}\right|_{E} \Longrightarrow \exists F\right.$ s.t. $\left.\left.\left.\omega^{+}\right|_{F} \approx \mathcal{H}^{n}\right|_{F} \& \omega^{ \pm}(E \backslash F)=0\right)$

- Jordan arcs in the plane [Bishop, Carleson, Garnett, Jones'89].
- General domains in the plane [Bishop; Ark. Mat.'91]
- NTA domains in \mathbb{R}^{n+1} [Kenig, Preiss, Toro; JAMS'08]
- CDC domains in \mathbb{R}^{n+1} [Azzam, Mourgoglou, Tolsa; CPAM'17]
- General domains in \mathbb{R}^{n+1} [Azzam-Mourgoglou-Tolsa-Volberg' 19]

Reifenberg flatness

Given $E \subset \mathbb{R}^{n+1}, x \in \mathbb{R}^{n+1}, r>0, B=B(x, r)$ and P an n-plane, we set

$$
D_{E}(x, r, P)=\frac{\sup _{E \cap B} \mathrm{~d}(y, P) \vee \sup _{P \cap B} \mathrm{~d}(y, E)}{r} .
$$

Reifenberg flatness

Given $E \subset \mathbb{R}^{n+1}, x \in \mathbb{R}^{n+1}, r>0, B=B(x, r)$ and P an n-plane, we set

$$
D_{E}(x, r, P)=\frac{\sup _{E \cap B} \mathrm{~d}(y, P) \vee \sup _{P \cap B} \mathrm{~d}(y, E)}{r} .
$$

Ω is a (δ, R)-Reifenberg flat domain if:
(a) $\forall x \in \partial \Omega, 0<r \leqslant R$ we have $\inf _{P} D_{\partial \Omega}(x, r, P)<\delta$
(b) $\forall x \in \partial \Omega, 0<r \leqslant R$, for the minimizing P, one of the connected components of

$$
B \cap\left\{x \in \mathbb{R}^{n+1}: \mathrm{d}(x, P) \geqslant 2 \delta r\right\}
$$

is contained in Ω and the other is contained in Ω^{c}.

Reifenberg flatness

Given $E \subset \mathbb{R}^{n+1}, x \in \mathbb{R}^{n+1}, r>0, B=B(x, r)$ and P an n-plane, we set

$$
D_{E}(x, r, P)=\frac{\sup _{E \cap B} \mathrm{~d}(y, P) \vee \sup _{P \cap B} \mathrm{~d}(y, E)}{r} .
$$

Ω is a (δ, R)-Reifenberg flat domain if:
(a) $\forall x \in \partial \Omega, 0<r \leqslant R$ we have $\inf _{P} D_{\partial \Omega}(x, r, P)<\delta$
(b) $\forall x \in \partial \Omega, 0<r \leqslant R$, for the minimizing P, one of the connected components of

$$
B \cap\left\{x \in \mathbb{R}^{n+1}: \mathrm{d}(x, P) \geqslant 2 \delta r\right\}
$$

is contained in Ω and the other is contained in Ω^{c}.

Reifenberg flatness

Given $E \subset \mathbb{R}^{n+1}, x \in \mathbb{R}^{n+1}, r>0, B=B(x, r)$ and P an n-plane, we set

$$
D_{E}(x, r, P)=\frac{\sup _{E \cap B} \mathrm{~d}(y, P) \vee \sup _{P \cap B} \mathrm{~d}(y, E)}{r} .
$$

Ω is a (δ, R)-Reifenberg flat domain if:
(a) $\forall x \in \partial \Omega, 0<r \leqslant R$ we have $\inf _{P} D_{\partial \Omega}(x, r, P)<\delta$
(b) $\forall x \in \partial \Omega, 0<r \leqslant R$, for the minimizing P, one of the connected components of

$$
B \cap\left\{x \in \mathbb{R}^{n+1}: \mathrm{d}(x, P) \geqslant 2 \delta r\right\}
$$

is contained in Ω and the other is contained in Ω^{c}.
Small δ implies that Ω is NTA [Kenig, Toro; Duke'97].
Ω is vanishing Reifenberg flat if, Ω is a $\left(\delta, R_{\delta}\right)$-Reifenberg flat for every $\delta>0$.

Given a Radon measure μ in $\mathbb{R}^{n+1}, f \in L_{l o c}^{1}(\mu)$, and $A \subset \mathbb{R}^{n+1}$, we write

$$
m_{\mu, A}(f)=f_{A} f d \mu=\frac{1}{\mu(A)} \int_{A} f d \mu .
$$

VMO

Given a Radon measure μ in $\mathbb{R}^{n+1}, f \in L_{\text {loc }}^{1}(\mu)$, and $A \subset \mathbb{R}^{n+1}$, we write

$$
m_{\mu, A}(f)=f_{A} f d \mu=\frac{1}{\mu(A)} \int_{A} f d \mu
$$

Assume μ to be doubling. We say $f \in \operatorname{VMO}(\mu)$ if

$$
\begin{equation*}
\lim _{r \rightarrow 0} \sup _{x \in \operatorname{supp} \mu} f_{B(x, r)}\left|f-m_{\mu, B(x, r)} f d \mu\right|^{2} d \mu=0 \tag{1}
\end{equation*}
$$

VMO

Given a Radon measure μ in $\mathbb{R}^{n+1}, f \in L_{l o c}^{1}(\mu)$, and $A \subset \mathbb{R}^{n+1}$, we write

$$
m_{\mu, A}(f)=f_{A} f d \mu=\frac{1}{\mu(A)} \int_{A} f d \mu .
$$

Assume μ to be doubling. We say $f \in \operatorname{VMO}(\mu)$ if

$$
\begin{equation*}
\lim _{r \rightarrow 0} \sup _{x \in \operatorname{supp} \mu} f_{B(x, r)}\left|f-m_{\mu, B(x, r)} f d \mu\right|^{2} d \mu=0 . \tag{1}
\end{equation*}
$$

It is well known that the space VMO coincides with the closure of the set of bounded uniformly continuous functions on supp μ in the BMO norm.

Asymptotic absolute continuity

Given a weight w in a doubling measure space, Korey shows that the following asymptotic weight conditions are equivalent for every $p>0$

- $\lim \sup _{\ell(Q) \rightarrow 0}\|\log w\|_{*, Q, \mu}=0($ BMO norm inside Q wrt $\mu)$.
- $\lim \sup _{\ell(Q) \rightarrow 0} \frac{\left(f_{Q} w^{\rho} d \mu\right)^{\frac{1}{\rho}}}{f_{Q} w d \mu}=1$.

Asymptotic absolute continuity

Given a weight w in a doubling measure space, Korey shows that the following asymptotic weight conditions are equivalent for every $p>0$

- $\lim \sup _{\ell(Q) \rightarrow 0}\|\log w\|_{*, Q, \mu}=0($ BMO norm inside Q wrt $\mu)$.
- $\lim \sup _{\ell(Q) \rightarrow 0} \frac{\left(f_{Q} w^{p} d \mu\right)^{\frac{1}{p}}}{f_{Q} w d \mu}=1$.

First condition is $\log w \in \operatorname{VMO}(\mu)$. The second can be understood as a "vanishing reverse Hölder space" $w \in V R H_{p}(\mu)$.

Asymptotic absolute continuity

Given a weight w in a doubling measure space, Korey shows that the following asymptotic weight conditions are equivalent for every $p>0$

- $\lim \sup _{\ell(Q) \rightarrow 0}\|\log w\|_{*, Q, \mu}=0($ BMO norm inside Q wrt $\mu)$.
- $\lim \sup _{\ell(Q) \rightarrow 0} \frac{\left(f_{Q} w^{p} d \mu\right)^{\frac{1}{p}}}{f_{Q} w d \mu}=1$.

First condition is $\log w \in \operatorname{VMO}(\mu)$. The second can be understood as a "vanishing reverse Hölder space" $w \in V R H_{p}(\mu)$. Also a vanishing $A_{q}(\mu)$ condition and some vanishing $A_{\infty}(\mu)$ conditions are equivalent. The weight w is called asymptotically absolutely continuous by Korey, written $w \in A_{\infty, \text { as }}(\mu)$.

One-sided problem for VMO

Theorem (Kenig, Toro '97,99,03)
Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded chord-arc domain which is δ-Reifenberg flat, with $\delta>0$ small enough.

One-sided problem for VMO

Theorem (Kenig, Toro '97,99,03)

Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded chord-arc domain which is δ-Reifenberg flat, with $\delta>0$ small enough.Denote by ω the harmonic measure in Ω with pole $p \in \Omega$ and write $\sigma=\left.\mathcal{H}^{n}\right|_{\partial \Omega}$.

One-sided problem for VMO

Theorem (Kenig, Toro '97,99,03)

Let $\Omega \subset \mathbb{R}^{n+1}$ be a bounded chord-arc domain which is δ-Reifenberg flat, with $\delta>0$ small enough.Denote by ω the harmonic measure in Ω with pole $p \in \Omega$ and write $\sigma=\left.\mathcal{H}^{n}\right|_{\partial \Omega}$. Then TFAE:
(a) $\log \frac{d \omega}{d \sigma} \in \operatorname{VMO}(\sigma)$. (i.e. $\omega \in A_{\infty, a s}(\sigma)$)
(b) The inner normal N to $\partial \Omega$ exists σ-a.e. and it belongs to $\operatorname{VMO}(\sigma)$.
(c) Ω is vanishing Reifenberg flat and the inner normal N to $\partial \Omega$ exists σ-a.e. and it belongs to $\mathrm{VMO}(\sigma)$.

Two-sided problem for VMO

Theorem (P., Tolsa, to appear in CVPDE'20)
Let $\Omega^{+} \subset \mathbb{R}^{n+1}, n \geqslant 2$ be a bounded NTA domain with $\Omega^{-}={\overline{\Omega^{+}}}^{c}$ NTA. Suppose Ω^{+}is a $\delta-R F$ domain, with $\delta>0$ small enough.

Two-sided problem for VMO

Theorem (P., Tolsa, to appear in CVPDE'20)

Let $\Omega^{+} \subset \mathbb{R}^{n+1}, n \geqslant 2$ be a bounded NTA domain with $\Omega^{-}=\overline{\Omega^{+}}{ }^{c}$ NTA. Suppose Ω^{+}is a δ-RF domain, with $\delta>0$ small enough. Then TFAE:
(a) $\log \frac{d \omega^{-}}{d \omega^{+}} \in \operatorname{VMO}\left(\omega^{+}\right)\left(\right.$i.e. $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)$).
(b) Ω^{+}is $v R F, N \in V M O\left(\omega^{+}\right)$and $\omega^{ \pm} \in R H_{3 / 2}\left(\omega^{\mp}\right)$.

Two-sided problem for VMO

Theorem (P., Tolsa, to appear in CVPDE'20)

Let $\Omega^{+} \subset \mathbb{R}^{n+1}, n \geqslant 2$ be a bounded NTA domain with $\Omega^{-}={\overline{\Omega^{+}}}^{c}$ NTA. Suppose Ω^{+}is a δ-RF domain, with $\delta>0$ small enough. Then TFAE:
(a) $\log \frac{d \omega^{-}}{d \omega^{+}} \in \operatorname{VMO}\left(\omega^{+}\right)$(i.e. $\omega^{-} \in A_{\propto, a s}\left(\omega^{+}\right)$).
(b) Ω^{+}is $v R F, N \in V M O\left(\omega^{+}\right)$and $\omega^{ \pm} \in R H_{3 / 2}\left(\omega^{\mp}\right)$.

In $(\mathrm{a}) \Longrightarrow(\mathrm{b}), v R F$ was shown in [Kenig, Toro, Crelle'06].

Two-sided problem for VMO

Theorem (P., Tolsa, to appear in CVPDE'20)

Let $\Omega^{+} \subset \mathbb{R}^{n+1}, n \geqslant 2$ be a bounded NTA domain with $\Omega^{-}={\overline{\Omega^{+}}}^{c}$ NTA. Suppose Ω^{+}is a δ-RF domain, with $\delta>0$ small enough. Then TFAE:
(a) $\log \frac{d \omega^{-}}{d \omega^{+}} \in \operatorname{VMO}\left(\omega^{+}\right)$(i.e. $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)$).
(b) Ω^{+}is $v R F, N \in V M O\left(\omega^{+}\right)$and $\omega^{ \pm} \in R H_{3 / 2}\left(\omega^{\mp}\right)$.
$\operatorname{In}(\mathrm{a}) \Longrightarrow(\mathrm{b}), v R F$ was shown in [Kenig, Toro, Crelle'06]. By Korey, also $\omega^{ \pm} \in R H_{3 / 2}\left(\omega^{\mp}\right)$ follows from $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)$. Our contribution is $N \in V M O\left(\omega^{+}\right)$.

Two-sided problem for VMO

Theorem (P., Tolsa, to appear in CVPDE'20)

Let $\Omega^{+} \subset \mathbb{R}^{n+1}, n \geqslant 2$ be a bounded NTA domain with $\Omega^{-}={\overline{\Omega^{+}}}^{c}$ NTA. Suppose Ω^{+}is a $\delta-R F$ domain, with $\delta>0$ small enough. Then TFAE:
(a) $\log \frac{d \omega^{-}}{d \omega^{+}} \in \operatorname{VMO}\left(\omega^{+}\right)$(i.e. $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)$).
(b) Ω^{+}is $v R F, N \in \operatorname{VMO}\left(\omega^{+}\right)$and $\omega^{ \pm} \in R H_{3 / 2}\left(\omega^{\mp}\right)$.
(c) Ω^{+}is $v R F, \omega^{-} \in A_{\infty}\left(\omega^{+}\right)$, and

$$
\lim _{\rho \rightarrow 0} \sup _{r(B) \leqslant \rho} f_{B}\left|N-N_{B}\right| d \omega^{+}=0
$$

where N_{B} is interior normal to the plane L from RF property.
In $(\mathrm{a}) \Longrightarrow(\mathrm{b}), v R F$ was shown in [Kenig, Toro, Crelle'06]. By Korey, also $\omega^{ \pm} \in R H_{3 / 2}\left(\omega^{\mp}\right)$ follows from $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)$. Our contribution is $N \in \operatorname{VMO}\left(\omega^{+}\right)$.

Two-sided problem for VMO

Theorem (P., Tolsa, to appear in CVPDE'20)

Let $\Omega^{+} \subset \mathbb{R}^{n+1}, n \geqslant 2$ be a bounded NTA domain with $\Omega^{-}=\overline{\Omega^{+}}{ }^{c}$ NTA. Suppose Ω^{+}is a δ-RF domain, with $\delta>0$ small enough. Then TFAE:
(a) $\log \frac{d \omega^{-}}{d \omega^{+}} \in \operatorname{VMO}\left(\omega^{+}\right)$(i.e. $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)$).
(b) Ω^{+}is $v R F, N \in V M O\left(\omega^{+}\right)$and $\omega^{ \pm} \in R H_{3 / 2}\left(\omega^{\mp}\right)$.
(c) Ω^{+}is $v R F, \Omega^{ \pm}$have joint big pieces of chord-arc subdomains, and

$$
\lim _{\rho \rightarrow 0} \sup _{r(B) \leqslant \rho} f_{B}\left|N-N_{B}\right| d \omega^{+}=0,
$$

where N_{B} is interior normal to the plane L from RF property.
$\ln (\mathrm{a}) \Longrightarrow(\mathrm{b}), v R F$ was shown in [Kenig, Toro, Crelle'06]. By Korey, also $\omega^{ \pm} \in R H_{3 / 2}\left(\omega^{\mp}\right)$ follows from $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)$. Our contribution is $N \in V M O\left(\omega^{+}\right)$.

Two-sided problem for VMO

Theorem (P., Tolsa, to appear in CVPDE'20)

Let $\Omega^{+} \subset \mathbb{R}^{n+1}, n \geqslant 2$ be a bounded NTA domain with $\Omega^{-}=\overline{\Omega^{+}}{ }^{c}$ NTA. Suppose Ω^{+}is a δ-RF domain, with $\delta>0$ small enough. Then TFAE:
(a) $\log \frac{d \omega^{-}}{d \omega^{+}} \in \operatorname{VMO}\left(\omega^{+}\right)$(i.e. $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)$).
(b) Ω^{+}is $v R F, N \in V M O\left(\omega^{+}\right)$and $\omega^{ \pm} \in R H_{3 / 2}\left(\omega^{\mp}\right)$.
(c) Ω^{+}is $v R F, \Omega^{ \pm}$have joint big pieces of chord-arc subdomains, and

$$
\lim _{\rho \rightarrow 0} \sup _{r(B) \leqslant \rho} f_{B}\left|N-N_{B}\right| d \omega^{+}=0,
$$

where N_{B} is interior normal to the plane L from RF property.
$\ln (\mathrm{a}) \Longrightarrow(\mathrm{b}), v R F$ was shown in [Kenig, Toro, Crelle'06]. By Korey, also
$\omega^{ \pm} \in R H_{3 / 2}\left(\omega^{\mp}\right)$ follows from $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)$. Our contribution is $N \in \operatorname{VMO}\left(\omega^{+}\right)$. Note that we don't assume $\left.\mathcal{H}^{n}\right|_{\partial \Omega}$ to be locally finite.

The geometric condition

The geometric characterization contains

$$
\lim _{\rho \rightarrow 0} \sup _{r(B) \leqslant \rho} f_{B}\left|N-N_{B}\right| d \omega^{+}=0
$$

where N_{B} is interior normal to the plane L from RF property.

The geometric condition

The geometric characterization contains

$$
\lim _{\rho \rightarrow 0} \sup _{r(B) \leqslant \rho} f_{B}\left|N-N_{B}\right| d \omega^{+}=0
$$

where N_{B} is interior normal to the plane L from RF property. This does not imply $N \in \operatorname{VMO}\left(\omega^{+}\right)$:

The geometric condition

The geometric characterization contains

$$
\lim _{\rho \rightarrow 0} \sup _{r(B) \leqslant \rho} f_{B}\left|N-N_{B}\right| d \omega^{+}=0
$$

where N_{B} is interior normal to the plane L from RF property. This does not imply $N \in \operatorname{VMO}\left(\omega^{+}\right)$:

The geometric condition

The geometric characterization contains

$$
\lim _{\rho \rightarrow 0} \sup _{r(B) \leqslant \rho} f_{B}\left|N-N_{B}\right| d \omega^{+}=0
$$

where N_{B} is interior normal to the plane L from RF property. This does not imply $N \in \operatorname{VMO}\left(\omega^{+}\right)$:

Here N_{B} is "vertical" for all the balls whose diameter is a horizontal segment of an iteration, while the harmonic measure is concentrated in vertical lines so $f_{B} N d \omega^{+} \equiv(1,0)$ and $\left|N_{B}-f_{B} N d \omega^{+}\right| \approx \sqrt{(2)}$.

Reifenberg flatness is necessary

The Reifenberg flatness condition on the domain is necessary in the theorem. This can be easily seen by taking a suitable smooth truncation of the cone $\left.\Omega^{+}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}^{2}+x_{2}^{2}<x_{3}^{2}+x_{4}^{2}\right\}$, for which the harmonic measures ω^{+}and ω^{-}with pole at ∞ coincide:
$\log \frac{d \omega^{-}}{d \omega^{+}} \in \operatorname{VMO}\left(\omega^{+}\right)$, but $N \notin \operatorname{VMO}\left(\omega^{+}\right)$!

Preliminaries

Some notation

Define:

$$
\omega:=\omega^{+}=\omega^{+, p_{+}} \quad \omega^{-}=\omega^{-, p_{-}}
$$

Some notation

Define:

$$
\omega:=\omega^{+}=\omega^{+, p_{+}} \quad \omega^{-}=\omega^{-, p_{-}}
$$

- $\Theta(B)=\frac{\omega(B)}{r(B)^{n}}$

Some notation

Define:

$$
\omega:=\omega^{+}=\omega^{+, p_{+}} \quad \omega^{-}=\omega^{-, p_{-}}
$$

- $\Theta(B)=\frac{\omega(B)}{r(B)^{n}}$
- $\Theta(x):=\Theta_{\omega}^{n}(x)=\lim _{r \rightarrow 0} \Theta(B(x, r))$

Some notation

Define:

- $\omega:=\omega^{+}=\omega^{+, p_{+}} \quad \omega^{-}=\omega^{-, p_{-}}$
- $\Theta(B)=\frac{\omega(B)}{r(B)^{n}}$
- $\Theta(x):=\Theta_{\omega}^{n}(x)=\lim _{r \rightarrow 0} \Theta(B(x, r))$
- Maximal Hardy-Littlewood operator $M_{\omega} f(x)=\sup _{r>0} f_{B(x, r)}|f| d \omega$

Some notation

Define:

- $\omega:=\omega^{+}=\omega^{+, p_{+}} \quad \omega^{-}=\omega^{-, p_{-}}$
- $\Theta(B)=\frac{\omega(B)}{r(B)^{n}}$
- $\Theta(x):=\Theta_{\omega}^{n}(x)=\lim _{r \rightarrow 0} \Theta(B(x, r))$
- Maximal Hardy-Littlewood operator $M_{\omega} f(x)=\sup _{r>0} f_{B(x, r)}|f| d \omega$
- Maximal operator on measures $\mathcal{M}_{n} \omega(x)=\sup _{r>0} \Theta(B(x, r))$

Analogous definitions for $\Theta_{-}, M_{\omega^{-}} f(x), \mathcal{M}_{n} \omega^{-}$.

Some notation

Define:

- $\omega:=\omega^{+}=\omega^{+, p_{+}} \quad \omega^{-}=\omega^{-, p_{-}}$
- $\Theta(B)=\frac{\omega(B)}{r(B)^{n}}$
- $\Theta(x):=\Theta_{\omega}^{n}(x)=\lim _{r \rightarrow 0} \Theta(B(x, r))$
- Maximal Hardy-Littlewood operator $M_{\omega} f(x)=\sup _{r>0} f_{B(x, r)}|f| d \omega$
- Maximal operator on measures $\mathcal{M}_{n} \omega(x)=\sup _{r>0} \Theta(B(x, r))$

Analogous definitions for $\Theta_{-}, M_{\omega^{-}} f(x), \mathcal{M}_{n} \omega^{-}$. Given a signed Radon measure ν we consider the n-dimensional Riesz transform

$$
\mathcal{R} \nu(x)=\int \frac{x-y}{|x-y|^{n+1}} d \nu(y)
$$

whenever the integral makes sense.

Some notation

Define:

- $\omega:=\omega^{+}=\omega^{+, p_{+}} \quad \omega^{-}=\omega^{-, p_{-}}$
- $\Theta(B)=\frac{\omega(B)}{r(B)^{n}}$
- $\Theta(x):=\Theta_{\omega}^{n}(x)=\lim _{r \rightarrow 0} \Theta(B(x, r))$
- Maximal Hardy-Littlewood operator $M_{\omega} f(x)=\sup _{r>0} f_{B(x, r)}|f| d \omega$
- Maximal operator on measures $\mathcal{M}_{n} \omega(x)=\sup _{r>0} \Theta(B(x, r))$

Analogous definitions for $\Theta_{-}, M_{\omega^{-}} f(x), \mathcal{M}_{n} \omega^{-}$. Given a signed Radon measure ν we consider the n-dimensional Riesz transform

$$
\mathcal{R} \nu(x)=\int \frac{x-y}{|x-y|^{n+1}} d \nu(y)
$$

whenever the integral makes sense. For $\varepsilon>0$,

$$
\mathcal{R}_{\varepsilon} \nu(x)=\int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} d \nu(y)
$$

and we set $\mathcal{R}_{*} \nu(x)=\sup _{\varepsilon>0}\left|\mathcal{R}_{\varepsilon} \nu(x)\right|$.

Some notation

Define:

- $\omega:=\omega^{+}=\omega^{+, p_{+}} \quad \omega^{-}=\omega^{-, p_{-}}$
- $\Theta(B)=\frac{\omega(B)}{r(B)^{n}}$
- $\Theta(x):=\Theta_{\omega}^{n}(x)=\lim _{r \rightarrow 0} \Theta(B(x, r))$
- Maximal Hardy-Littlewood operator $M_{\omega} f(x)=\sup _{r>0} f_{B(x, r)}|f| d \omega$
- Maximal operator on measures $\mathcal{M}_{n} \omega(x)=\sup _{r>0} \Theta(B(x, r))$

Analogous definitions for $\Theta_{-}, M_{\omega^{-}} f(x), \mathcal{M}_{n} \omega^{-}$. Given a signed Radon measure ν we consider the n-dimensional Riesz transform

$$
\mathcal{R} \nu(x)=\int \frac{x-y}{|x-y|^{n+1}} d \nu(y)
$$

whenever the integral makes sense. For $\varepsilon>0$,

$$
\mathcal{R}_{\varepsilon} \nu(x)=\int_{|x-y|>\varepsilon} \frac{x-y}{|x-y|^{n+1}} d \nu(y)
$$

and we set $\mathcal{R}_{*} \nu(x)=\sup _{\varepsilon>0}\left|\mathcal{R}_{\varepsilon} \nu(x)\right|$. Also write $\mathcal{R}_{\mu} f^{\beta=\mathcal{R}}(f \mu)$.

CDC and tangent points

By [Azzam, Mourgoglou, Tolsa CPAM], every pair of NTA domains $\Omega^{ \pm}$ with common boundary (...) and with ω^{+}and ω^{-}mutually absolutely continuous, then

CDC and tangent points

By [Azzam, Mourgoglou, Tolsa CPAM], every pair of NTA domains $\Omega^{ \pm}$ with common boundary (...) and with ω^{+}and ω^{-}mutually absolutely continuous, then

- $\partial \Omega^{+}$has an n-rectifiable subset F with full harmonic measure such that

CDC and tangent points

By [Azzam, Mourgoglou, Tolsa CPAM], every pair of NTA domains $\Omega^{ \pm}$ with common boundary (...) and with ω^{+}and ω^{-}mutually absolutely continuous, then

- $\partial \Omega^{+}$has an n-rectifiable subset F with full harmonic measure such that
- both harmonic measures are mutually absolutely continuous with respect to the Hausdorff measure \mathcal{H}^{n} on F,

CDC and tangent points

By [Azzam, Mourgoglou, Tolsa CPAM], every pair of NTA domains $\Omega^{ \pm}$ with common boundary (...) and with ω^{+}and ω^{-}mutually absolutely continuous, then

- $\partial \Omega^{+}$has an n-rectifiable subset F with full harmonic measure such that
- both harmonic measures are mutually absolutely continuous with respect to the Hausdorff measure \mathcal{H}^{n} on F,
- all points in F are tangent points for $\partial \Omega^{+}$and

CDC and tangent points

By [Azzam, Mourgoglou, Tolsa CPAM], every pair of NTA domains $\Omega^{ \pm}$ with common boundary (...) and with ω^{+}and ω^{-}mutually absolutely continuous, then

- $\partial \Omega^{+}$has an n-rectifiable subset F with full harmonic measure such that
- both harmonic measures are mutually absolutely continuous with respect to the Hausdorff measure \mathcal{H}^{n} on F,
- all points in F are tangent points for $\partial \Omega^{+}$and
- F is dense in $\partial \Omega^{+}$.

CDC and tangent points

By [Azzam, Mourgoglou, Tolsa CPAM], every pair of NTA domains $\Omega^{ \pm}$ with common boundary (...) and with ω^{+}and ω^{-}mutually absolutely continuous, then

- $\partial \Omega^{+}$has an n-rectifiable subset F with full harmonic measure such that
- both harmonic measures are mutually absolutely continuous with respect to the Hausdorff measure \mathcal{H}^{n} on F,
- all points in F are tangent points for $\partial \Omega^{+}$and
- F is dense in $\partial \Omega^{+}$.
- N is the interior unit normal, defined ω-a.e.

CDC and tangent points

By [Azzam, Mourgoglou, Tolsa CPAM], every pair of NTA domains $\Omega^{ \pm}$ with common boundary (...) and with ω^{+}and ω^{-}mutually absolutely continuous, then

- $\partial \Omega^{+}$has an n-rectifiable subset F with full harmonic measure such that
- both harmonic measures are mutually absolutely continuous with respect to the Hausdorff measure \mathcal{H}^{n} on F,
- all points in F are tangent points for $\partial \Omega^{+}$and
- F is dense in $\partial \Omega^{+}$.
- N is the interior unit normal, defined ω-a.e.

Being n-rectifiable means that it is \mathcal{H}^{n}-a.e. contained in a countable union of $C^{1} n$-dimensional manifolds.

Jump formulas for the Riesz transform

Assumptions of the theorem do not grant that the Hausdorff measure is locally finite. Thus, traditional jump formulas (Hofman-Mitrea-Taylor) are not available.

Jump formulas for the Riesz transform

Assumptions of the theorem do not grant that the Hausdorff measure is locally finite. Thus, traditional jump formulas (Hofman-Mitrea-Taylor) are not available.
A recent work by Tolsa in arXiv provides jump formulas for n-rectifiable sets. In our setting, we get the following:

Lemma

For ω-a.e. x we have that

$$
\begin{aligned}
& \mathcal{R}^{+} \omega^{+}(x)-\mathcal{R}^{-} \omega^{+}(x)=c_{n} \Theta(x) N(x) \\
& \mathcal{R}^{+} \omega^{+}(x)+\mathcal{R}^{-} \omega^{+}(x)=2 p . v \cdot \mathcal{R} \omega^{+}(x)=: 2 \mathcal{R} \omega^{+}(x)
\end{aligned}
$$

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture. Girela-Sarrión and Tolsa gave the following local version:

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture. Girela-Sarrión and Tolsa gave the following local version:

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture. Girela-Sarrión and Tolsa gave the following local version:

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture. Girela-Sarrión and Tolsa gave the following local version:

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.
b) $P(B):=\sum_{j} 2^{-j} \Theta\left(2^{j} B\right) \leqslant C_{0} \Theta(B)$.

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture. Girela-Sarrión and Tolsa gave the following local version:

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.
b) $P(B):=\sum_{j} 2^{-j} \Theta\left(2^{j} B\right) \leqslant C_{0} \Theta(B)$.
c) There exists a good set with $\omega\left(B \backslash G_{B}\right) \leqslant \delta_{0} \omega(B)$, with

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture. Girela-Sarrión and Tolsa gave the following local version:

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.
b) $P(B):=\sum_{j} 2^{-j} \Theta\left(2^{j} B\right) \leqslant C_{0} \Theta(B)$.
c) There exists a good set with $\omega\left(B \backslash G_{B}\right) \leqslant \delta_{0} \omega(B)$, with
d) $\mathcal{M}_{n}\left(\chi_{B} \omega\right)+\mathcal{R}_{*}\left(\chi_{B} \omega\right) \leqslant C_{1} \Theta(B)$ in G_{B} and

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture. Girela-Sarrión and Tolsa gave the following local version:

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.
b) $P(B):=\sum_{j} 2^{-j} \Theta\left(2^{j} B\right) \leqslant C_{0} \Theta(B)$.
c) There exists a good set with $\omega\left(B \backslash G_{B}\right) \leqslant \delta_{0} \omega(B)$, with
d) $\mathcal{M}_{n}\left(\chi_{B} \omega\right)+\mathcal{R}_{*}\left(\chi_{B} \omega\right) \leqslant C_{1} \Theta(B)$ in G_{B} and
e) $f_{G_{B}}\left|\mathcal{R} \omega-m_{\omega, G_{B}}(\mathcal{R} \omega)\right|^{2} d \omega \leqslant \tau_{0} \Theta(B)^{2}$,

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture. Girela-Sarrión and Tolsa gave the following local version:

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.
b) $P(B):=\sum_{j} 2^{-j} \Theta\left(2^{j} B\right) \leqslant C_{0} \Theta(B)$.
c) There exists a good set with $\omega\left(B \backslash G_{B}\right) \leqslant \delta_{0} \omega(B)$, with
d) $\mathcal{M}_{n}\left(\chi_{B} \omega\right)+\mathcal{R}_{*}\left(\chi_{B} \omega\right) \leqslant C_{1} \Theta(B)$ in G_{B} and
e) $f_{G_{B}}\left|\mathcal{R} \omega-m_{\omega, G_{B}}(\mathcal{R} \omega)\right|^{2} d \omega \leqslant \tau_{0} \Theta(B)^{2}$,
there exists a uniform n-rectifiable set Γ st. $\omega\left(G_{B} \cap \Gamma\right) \geqslant \theta \omega(B)$.

Rectifiability criterion

Nazarov, Tolsa and Volberg showed David and Semmes conjecture. Girela-Sarrión and Tolsa gave the following local version:

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.
b) $P(B):=\sum_{j} 2^{-j} \Theta\left(2^{j} B\right) \leqslant C_{0} \Theta(B)$.
c) There exists a good set with $\omega\left(B \backslash G_{B}\right) \leqslant \delta_{0} \omega(B)$, with
d) $\mathcal{M}_{n}\left(\chi_{B} \omega\right)+\mathcal{R}_{*}\left(\chi_{B} \omega\right) \leqslant C_{1} \Theta(B)$ in G_{B} and
e) $f_{G_{B}}\left|\mathcal{R} \omega-m_{\omega, G_{B}}(\mathcal{R} \omega)\right|^{2} d \omega \leqslant \tau_{0} \Theta(B)^{2}$,
there exists a uniform n-rectifiable set Γ st. $\omega\left(G_{B} \cap \Gamma\right) \geqslant \theta \omega(B)$.
Uniform n-rectifiable means that Γ is $n-A D$ regular and there are $M, \theta>0$ so that for all $x \in E, 0<r<\operatorname{diam}(\Gamma), \exists g: B=B_{r}^{\mathbb{R}^{n}} \rightarrow \mathbb{R}^{d}$ M-Lipschitz with

$$
\mathcal{H}^{n}(\Gamma \cap g(B) \cap B(x, r)) \geqslant \theta r^{n}
$$

Proof of (a) implies (b)

Main argument

Since ω is doubling, define a Christ dyadic structure $\mathcal{D}=\bigcup_{k} \mathcal{D}_{k}$.

Main argument

Since ω is doubling, define a Christ dyadic structure $\mathcal{D}=\bigcup_{k} \mathcal{D}_{k}$. We will define $G \subset Q$ (the "good set") and $L D \subset Q$ (low density) $\forall Q \in \mathcal{D}$.

Main argument

Since ω is doubling, define a Christ dyadic structure $\mathcal{D}=\bigcup_{k} \mathcal{D}_{k}$. We will define $G \subset Q$ (the "good set") and $L D \subset Q$ (low density) $\forall Q \in \mathcal{D}$.
$*:=\int_{Q}\left|N-C_{Q}\right|^{2} d \omega \leqslant \int_{Q \backslash G \cup L D}\left|N-C_{Q}\right|^{2} d \omega+\int_{Q \cap G \backslash L D}\left|N-C_{Q}\right|^{2} d \omega$

Main argument

Since ω is doubling, define a Christ dyadic structure $\mathcal{D}=\bigcup_{k} \mathcal{D}_{k}$. We will define $G \subset Q$ (the "good set") and $L D \subset Q$ (low density) $\forall Q \in \mathcal{D}$.

* $:=\int_{Q}\left|N-C_{Q}\right|^{2} d \omega \leqslant \int_{Q \backslash G \cup L D}\left|N-C_{Q}\right|^{2} d \omega+\int_{Q \cap G \backslash L D}\left|N-C_{Q}\right|^{2} d \omega$

Choose $C_{Q}=\frac{m_{\omega, G}(\Theta N)}{\left|m_{\omega, G}(\Theta N)\right|}$, and note that $\left|\frac{u}{|u|}-\frac{v}{|v|}\right| \leqslant 2 \frac{|u-v|}{|u|}$.

Main argument

Since ω is doubling, define a Christ dyadic structure $\mathcal{D}=\bigcup_{k} \mathcal{D}_{k}$. We will define $G \subset Q$ (the "good set") and $L D \subset Q$ (low density) $\forall Q \in \mathcal{D}$.
**: $=\int_{Q}\left|N-C_{Q}\right|^{2} d \omega \leqslant \int_{Q \backslash G \cup L D}\left|N-C_{Q}\right|^{2} d \omega+\int_{Q \cap G \backslash L D}\left|N-C_{Q}\right|^{2} d \omega$
Choose $C_{Q}=\frac{m_{\omega, G}(\Theta N)}{\left|m_{\omega, G}(\Theta N)\right|}$, and note that $\left|\frac{u}{|u|}-\frac{v}{|v|}\right| \leqslant 2 \frac{|u-v|}{|u|}$. Then

$$
\left|N-C_{Q}\right| \leqslant \frac{2}{\Theta}\left|\Theta N-m_{\omega, G}(\Theta N)\right|
$$

Main argument

Since ω is doubling, define a Christ dyadic structure $\mathcal{D}=\bigcup_{k} \mathcal{D}_{k}$. We will define $G \subset Q$ (the "good set") and $L D \subset Q$ (low density) $\forall Q \in \mathcal{D}$.
**: $=\int_{Q}\left|N-C_{Q}\right|^{2} d \omega \leqslant \int_{Q \backslash G \cup L D}\left|N-C_{Q}\right|^{2} d \omega+\int_{Q \cap G \backslash L D}\left|N-C_{Q}\right|^{2} d \omega$
Choose $C_{Q}=\frac{m_{\omega, G}(\Theta N)}{\left|m_{\omega, G}(\Theta N)\right|}$, and note that $\left|\frac{u}{|u|}-\frac{v}{|v|}\right| \leqslant 2 \frac{|u-v|}{|u|}$. Then

$$
\left|N-C_{Q}\right| \leqslant \frac{2}{\Theta}\left|\Theta N-m_{\omega, G}(\Theta N)\right|
$$

Away from the low density, we have $\Theta(x)>\tau \Theta(Q)$.

Main argument

Since ω is doubling, define a Christ dyadic structure $\mathcal{D}=\bigcup_{k} \mathcal{D}_{k}$. We will define $G \subset Q$ (the "good set") and $L D \subset Q$ (low density) $\forall Q \in \mathcal{D}$.

* $:=\int_{Q}\left|N-C_{Q}\right|^{2} d \omega \leqslant \int_{Q \backslash G \cup L D}\left|N-C_{Q}\right|^{2} d \omega+\int_{Q \cap G \backslash L D}\left|N-C_{Q}\right|^{2} d \omega$

Choose $C_{Q}=\frac{m_{\omega, G}(\Theta N)}{\mid m_{\omega, G}(\Theta N)}$, and note that $\left|\frac{u}{|u|}-\frac{v}{|v|}\right| \leqslant 2 \frac{|u-v|}{|u|}$. Then

$$
\left|N-C_{Q}\right| \leqslant \frac{2}{\Theta}\left|\Theta N-m_{\omega, G}(\Theta N)\right|
$$

Away from the low density, we have $\Theta(x)>\tau \Theta(Q)$. Thus,

$$
\begin{aligned}
* & \lesssim \omega(Q \backslash G)+\omega(L D)+\frac{1}{\tau^{2} \Theta(Q)^{2}} \int_{Q \cap G}\left|\Theta N-m_{Q}(\Theta N)\right|^{2} d \omega \\
& \leqslant \varepsilon_{1} \omega(Q)+\varepsilon_{2} \omega(Q)+\frac{\varepsilon_{3}}{\tau\left(\varepsilon_{2}\right)^{2}} \omega(Q) \leqslant \varepsilon \omega(Q)
\end{aligned}
$$

Main argument

Since ω is doubling, define a Christ dyadic structure $\mathcal{D}=\bigcup_{k} \mathcal{D}_{k}$. We will define $G \subset Q$ (the "good set") and $L D \subset Q$ (low density) $\forall Q \in \mathcal{D}$.
$*:=\int_{Q}\left|N-C_{Q}\right|^{2} d \omega \leqslant \int_{Q \backslash G \cup L D}\left|N-C_{Q}\right|^{2} d \omega+\int_{Q \cap G \backslash L D}\left|N-C_{Q}\right|^{2} d \omega$
Choose $C_{Q}=\frac{m_{\omega, G}(\Theta N)}{\mid m_{\omega, G}(\Theta N)}$, and note that $\left|\frac{u}{|u|}-\frac{v}{|v|}\right| \leqslant 2 \frac{|u-v|}{|u|}$. Then

$$
\left|N-C_{Q}\right| \leqslant \frac{2}{\Theta}\left|\Theta N-m_{\omega, G}(\Theta N)\right|
$$

Away from the low density, we have $\Theta(x)>\tau \Theta(Q)$. Thus,

$$
\begin{aligned}
* & \lesssim \omega(Q \backslash G)+\omega(L D)+\frac{1}{\tau^{2} \Theta(Q)^{2}} \int_{Q \cap G}\left|\Theta N-m_{Q}(\Theta N)\right|^{2} d \omega \\
& \leqslant \varepsilon_{1} \omega(Q)+\varepsilon_{2} \omega(Q)+\frac{\varepsilon_{3}}{\tau\left(\varepsilon_{2}\right)^{2}} \omega(Q) \leqslant \varepsilon \omega(Q)
\end{aligned}
$$

If ε goes to zero uniformly on $\ell(Q)$ then $N \in V M O(\omega)$ and we are done.

Key elements

We have used the following:

Key elements

We have used the following:

- The low density set contains all low density points: $\Theta(x)>\tau \Theta(Q)$ in $L D^{c}$.

Key elements

We have used the following:

- The low density set contains all low density points: $\Theta(x)>\tau \Theta(Q)$ in $L D^{c}$.
- The low density set is small: $\omega(L D) \leqslant \varepsilon_{2} \omega(Q)$.

Key elements

We have used the following:

- The low density set contains all low density points: $\Theta(x)>\tau \Theta(Q)$ in $L D^{c}$.
- The low density set is small: $\omega(L D) \leqslant \varepsilon_{2} \omega(Q)$.
- The good set is big $\omega(Q \backslash G)<\varepsilon_{1} \omega(Q)$

Key elements

We have used the following:

- The low density set contains all low density points: $\Theta(x)>\tau \Theta(Q)$ in $L D^{c}$.
- The low density set is small: $\omega(L D) \leqslant \varepsilon_{2} \omega(Q)$.
- The good set is big $\omega(Q \backslash G)<\varepsilon_{1} \omega(Q)$
- "Riesz transform" does not oscillate much in the good set $f_{Q \cap G}\left|\Theta N-m_{Q}(\Theta N)\right|^{2} d \omega \leqslant \varepsilon_{3} \Theta(Q)^{2}$

Low density set

Define $\mathcal{L D}_{\tau}$ as the maximal family of cubes $P \subset Q$ st $\Theta(P) \leqslant \tau \Theta(Q)$ and $L D:=L D_{\tau}=\bigcup_{P \in \mathcal{L D} \mathcal{D}_{\tau}} P$.

Low density set

Define $\mathcal{L D}_{\tau}$ as the maximal family of cubes $P \subset Q$ st $\Theta(P) \leqslant \tau \Theta(Q)$ and $L D:=L D_{\tau}=\bigcup_{P \in \mathcal{L D} \mathcal{D}_{\tau}} P$. First property $\left(\Theta(x)>\tau \Theta(Q)\right.$ in $\left.L D^{c}\right)$ is immediate.

Low density set

Define $\mathcal{L D} \mathcal{D}_{\tau}$ as the maximal family of cubes $P \subset Q$ st $\Theta(P) \leqslant \tau \Theta(Q)$ and $L D:=L D_{\tau}=\bigcup_{P \in \mathcal{L} \mathcal{D}_{\tau}} P$. First property $\left(\Theta(x)>\tau \Theta(Q)\right.$ in $\left.L D^{c}\right)$ is immediate. The second is the lemma:

Lemma

$\forall \varepsilon_{2}>0, \exists \tau\left(\varepsilon_{2}\right)$ st $\omega\left(L D_{\tau}\right) \leqslant \epsilon_{2} \omega(Q)$

Low density set

Define $\mathcal{L D}_{\tau}$ as the maximal family of cubes $P \subset Q$ st $\Theta(P) \leqslant \tau \Theta(Q)$ and $L D:=L D_{\tau}=\bigcup_{P \in \mathcal{L D} \mathcal{D}_{\tau}} P$. First property $\left(\Theta(x)>\tau \Theta(Q)\right.$ in $\left.L D^{c}\right)$ is immediate. The second is the lemma:

Lemma

$$
\forall \varepsilon_{2}>0, \exists \tau\left(\varepsilon_{2}\right) \text { st } \omega\left(L D_{\tau}\right) \leqslant \epsilon_{2} \omega(Q)
$$

Proof by induction: $\tau=\lambda^{M}, 0<\lambda<1$ and $M(\tau) \gg 1$. Then, writing $\mathcal{L D}{ }^{k}:=\mathcal{L D}_{\lambda^{k}}, L D^{k}:=L D_{\lambda^{k}}$, we prove

Lemma

Let $\lambda(n)$ be small. $\exists \eta \in(0,1)$ st $\forall k \geqslant 0$, if $P \in \mathcal{L} \mathcal{D}_{k}$, then $\omega\left(P \cap L D^{k+1}\right) \leqslant \eta \omega(P)$.

Thus, $\varepsilon_{2}=\eta^{M}$.

Proof of the claim

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.
b) $P(B):=\sum_{j} 2^{-j} \Theta\left(2^{j} B\right) \leqslant C_{0} \Theta(B)$.
c) There exists a good set with $\omega\left(B \backslash G_{B}\right) \leqslant \delta_{0} \omega(B)$, with
d) $\mathcal{M}_{n}\left(\chi_{2 B} \omega\right)+\mathcal{R}_{*}\left(\chi_{2 B} \omega\right) \leqslant C_{1} \Theta(B)$ in G_{B} and
e) $f_{G_{B}}\left|\mathcal{R} \omega-m_{\omega, G_{B}}(\mathcal{R} \omega)\right|^{2} d \omega \leqslant \tau_{0} \Theta(B)^{2}$,
there exists a uniform n-rectifiable set Γ st. $\omega\left(G_{B} \cap \Gamma\right) \geqslant \theta \omega(B)$.

Proof of the claim

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.
b) $P(B):=\sum_{j} 2^{-j} \Theta\left(2^{j} B\right) \leqslant C_{0} \Theta(B)$.
c) There exists a good set with $\omega\left(B \backslash G_{B}\right) \leqslant \delta_{0} \omega(B)$, with
d) $\mathcal{M}_{n}\left(\chi_{2 B} \omega\right)+\mathcal{R}_{*}\left(\chi_{2 B} \omega\right) \leqslant C_{1} \Theta(B)$ in G_{B} and
e) $f_{G_{B}}\left|\mathcal{R} \omega-m_{\omega, G_{B}}(\mathcal{R} \omega)\right|^{2} d \omega \leqslant \tau_{0} \Theta(B)^{2}$,
there exists a uniform n-rectifiable set Γ st. $\omega\left(G_{B} \cap \Gamma\right) \geqslant \theta \omega(B)$.
Condition (a) is immediate form RF,

Proof of the claim

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.
b) $P(B):=\sum_{j} 2^{-j} \Theta\left(2^{j} B\right) \leqslant C_{0} \Theta(B)$.
c) There exists a good set with $\omega\left(B \backslash G_{B}\right) \leqslant \delta_{0} \omega(B)$, with
d) $\mathcal{M}_{n}\left(\chi_{2 B} \omega\right)+\mathcal{R}_{*}\left(\chi_{2 B} \omega\right) \leqslant C_{1} \Theta(B)$ in G_{B} and
e) $f_{G_{B}}\left|\mathcal{R} \omega-m_{\omega, G_{B}}(\mathcal{R} \omega)\right|^{2} d \omega \leqslant \tau_{0} \Theta(B)^{2}$,
there exists a uniform n-rectifiable set Γ st. $\omega\left(G_{B} \cap \Gamma\right) \geqslant \theta \omega(B)$.
Condition (a) is immediate form RF, (b) is shown using RF for small enough balls.

Proof of the claim

Theorem (Girela-Sarrión, Tolsa)

$\forall C_{0}, C_{1}>1, \exists \delta_{0}, \tau_{0}, \theta$ st. given a ball $B \subset \mathbb{R}^{n+1}$ satisfying
a) $\inf _{L \ni 0} f_{B} \frac{\operatorname{dist}(x, L)}{r(B)} d \omega \leqslant \delta_{0}$.
b) $P(B):=\sum_{j} 2^{-j} \Theta\left(2^{j} B\right) \leqslant C_{0} \Theta(B)$.
c) There exists a good set with $\omega\left(B \backslash G_{B}\right) \leqslant \delta_{0} \omega(B)$, with
d) $\mathcal{M}_{n}\left(\chi_{2 B} \omega\right)+\mathcal{R}_{*}\left(\chi_{2 B} \omega\right) \leqslant C_{1} \Theta(B)$ in G_{B} and
e) $f_{G_{B}}\left|\mathcal{R} \omega-m_{\omega, G_{B}}(\mathcal{R} \omega)\right|^{2} d \omega \leqslant \tau_{0} \Theta(B)^{2}$,
there exists a uniform n-rectifiable set Γ st. $\omega\left(G_{B} \cap \Gamma\right) \geqslant \theta \omega(B)$.
Condition (a) is immediate form RF, (b) is shown using RF for small enough balls. We need to check (c)-(e). The AD-regularity of Γ is used to show the claim.

Definition of the good set

Our assumption is that $\log h \in V M O$ for $h:=\frac{d \omega^{+}}{d \omega^{-}}$, that is, the oscillation of $\log h$ vanishes uniformly as $\ell(Q) \rightarrow 0$.

Definition of the good set

Our assumption is that $\log h \in V M O$ for $h:=\frac{d \omega^{+}}{d \omega^{-}}$, that is, the oscillation of $\log h$ vanishes uniformly as $\ell(Q) \rightarrow 0$. Consider

$$
G_{Q}:=\left\{x \in Q:\left|\frac{h(x)}{a_{Q}}-1\right| \leqslant \delta_{1}\right\}
$$

for $a_{Q}:=e^{f_{Q} \log h d \omega} \approx f_{Q} h d \omega$ (by John-Nirenberg).

Definition of the good set

Our assumption is that $\log h \in V M O$ for $h:=\frac{d \omega^{+}}{d \omega^{-}}$, that is, the oscillation of $\log h$ vanishes uniformly as $\ell(Q) \rightarrow 0$. Consider

$$
G_{Q}:=\left\{x \in Q:\left|\frac{h(x)}{a_{Q}}-1\right| \leqslant \delta_{1}\right\}
$$

for $a_{Q}:=e^{f_{Q} \log h d \omega} \approx f_{Q} h d \omega$ (by John-Nirenberg).
For better estimates, we consider a slightly modified set \widetilde{G}_{Q} so that, if $\ell(Q) \leqslant \ell_{1}\left(\delta_{1}, V M O\right)$ then

- $\omega\left(Q \backslash \widetilde{G}_{Q}\right) \leqslant C \delta_{1} \omega(Q)$ (i.e., condition (c) in [GT] is satisfied),

Definition of the good set

Our assumption is that $\log h \in V M O$ for $h:=\frac{d \omega^{+}}{d \omega^{-}}$, that is, the oscillation of $\log h$ vanishes uniformly as $\ell(Q) \rightarrow 0$. Consider

$$
G_{Q}:=\left\{x \in Q:\left|\frac{h(x)}{a_{Q}}-1\right| \leqslant \delta_{1}\right\}
$$

for $a_{Q}:=e^{f_{Q} \log h d \omega} \approx f_{Q} h d \omega$ (by John-Nirenberg).
For better estimates, we consider a slightly modified set \widetilde{G}_{Q} so that, if $\ell(Q) \leqslant \ell_{1}\left(\delta_{1}, V M O\right)$ then

- $\omega\left(Q \backslash \widetilde{G}_{Q}\right) \leqslant C \delta_{1} \omega(Q)$ (i.e., condition (c) in [GT] is satisfied),
- for $x \in \widetilde{G}_{Q}, r<\ell(Q)$, then $\frac{\omega^{-}(Q)}{\omega^{+}(Q)} \approx \frac{\omega^{-}(B(x, r))}{\omega^{+}(B(x, r))}$ and

Definition of the good set

Our assumption is that $\log h \in V M O$ for $h:=\frac{d \omega^{+}}{d \omega^{-}}$, that is, the oscillation of $\log h$ vanishes uniformly as $\ell(Q) \rightarrow 0$. Consider

$$
G_{Q}:=\left\{x \in Q:\left|\frac{h(x)}{a_{Q}}-1\right| \leqslant \delta_{1}\right\}
$$

for $a_{Q}:=e^{f_{Q} \log h d \omega} \approx f_{Q} h d \omega$ (by John-Nirenberg).
For better estimates, we consider a slightly modified set \widetilde{G}_{Q} so that, if $\ell(Q) \leqslant \ell_{1}\left(\delta_{1}, V M O\right)$ then

- $\omega\left(Q \backslash \widetilde{G}_{Q}\right) \leqslant C \delta_{1} \omega(Q)$ (i.e., condition (c) in [GT] is satisfied),
- for $x \in \widetilde{G}_{Q}, r<\ell(Q)$, then $\frac{\omega^{-}(Q)}{\omega^{+}(Q)} \approx \frac{\omega^{-}(B(x, r))}{\omega^{+}(B(x, r))}$ and
- $\Theta_{ \pm}(B(x, r)) \lesssim \Theta_{ \pm}(Q)$, so $\mathcal{M}_{n}\left(\chi_{Q} \omega\right)(x) \lesssim \Theta(Q)$.

Control of maximal operators

By the definition of harmonic measure, we have that

$$
\begin{array}{ll}
\text { for } x \in \chi_{\Omega^{-}}, & \mathcal{R} \omega^{+}(x)=K\left(x-p^{+}\right) \\
\text {for } x \in \chi_{\Omega^{+}}, & \mathcal{R} \omega^{-}(x)=K\left(x-p^{-}\right)
\end{array}
$$

Control of maximal operators

By the definition of harmonic measure, we have that

$$
\begin{array}{ll}
\text { for } x \in \chi_{\Omega^{-}}, & \mathcal{R} \omega^{+}(x)=K\left(x-p^{+}\right) \\
\text {for } x \in \chi_{\Omega^{+}}, & \mathcal{R} \omega^{-}(x)=K\left(x-p^{-}\right)
\end{array}
$$

If $\ell(Q) \leqslant \ell_{1}\left(\delta_{1}, V M O\right)$, then for $x \in \widetilde{G}_{Q}$ we get (by CZ estimates and [Kenig,Toro, Duke'97])

$$
\mathcal{M}_{n}\left(\chi_{Q} \omega\right)(x)+\mathcal{R}_{*}\left(\chi_{Q} \omega\right)(x) \lesssim \Theta(Q)
$$

(this shows that condition (d) in [GS] is satisfied).

Control of maximal operators

By the definition of harmonic measure, we have that

$$
\begin{array}{ll}
\text { for } x \in \chi_{\Omega^{-}}, & \mathcal{R} \omega^{+}(x)=K\left(x-p^{+}\right) \\
\text {for } x \in \chi_{\Omega^{+}}, & \mathcal{R} \omega^{-}(x)=K\left(x-p^{-}\right)
\end{array}
$$

If $\ell(Q) \leqslant \ell_{1}\left(\delta_{1}, V M O\right)$, then for $x \in \widetilde{G}_{Q}$ we get (by CZ estimates and [Kenig,Toro, Duke'97])

$$
\mathcal{M}_{n}\left(\chi_{Q} \omega\right)(x)+\mathcal{R}_{*}\left(\chi_{Q} \omega\right)(x) \lesssim \Theta(Q)
$$

(this shows that condition (d) in [GS] is satisfied). By T(b)-theorem of Nazarov, Trail and Volberg, this implies that

$$
\left\|\mathcal{R}_{\omega}\right\|_{L^{2}\left(\left.\omega\right|_{\tilde{\sigma}_{Q}}\right)} \lesssim \Theta(Q)
$$

and also weak-(1,1) boundedness
$\mathcal{R}:\left\{\right.$ finite Radon measures in $\left.\mathbb{R}^{n+1}\right\} \rightarrow L^{1, \infty}(\omega)$.

Jump identities

By the definition of harmonic measure, we have that

$$
\begin{array}{ll}
\text { for } x \in \chi_{\Omega^{-}}, & \mathcal{R} \omega^{+}(x)=K\left(x-p^{+}\right) \\
\text {for } x \in \chi_{\Omega^{+}}, & \mathcal{R} \omega^{-}(x)=K\left(x-p^{-}\right)
\end{array}
$$

For ω-a.e. in $\partial \Omega$ we have that

$$
\begin{aligned}
& \mathcal{R}^{-} \omega^{+}=K\left(\cdot-p^{+}\right), \\
& \mathcal{R}^{+} \omega^{-}=K\left(\cdot-p^{-}\right) \\
& c_{n} \Theta N=\mathcal{R}^{+} \omega-\mathcal{R}^{-} \omega \text { and } \\
& 2 \mathcal{R} \omega=\mathcal{R}^{+} \omega+\mathcal{R}^{-} \omega,
\end{aligned}
$$

Jump identities

By the definition of harmonic measure, we have that

$$
\begin{array}{ll}
\text { for } x \in \chi_{\Omega^{-}}, & \mathcal{R} \omega^{+}(x)=K\left(x-p^{+}\right) \\
\text {for } x \in \chi_{\Omega^{+}}, & \mathcal{R} \omega^{-}(x)=K\left(x-p^{-}\right)
\end{array}
$$

For ω-a.e. in $\partial \Omega$ we have that

$$
\begin{aligned}
& \mathcal{R}^{-} \omega^{+}=K\left(\cdot-p^{+}\right), \\
& c_{n} \Theta N=\mathcal{R}^{+} \omega-\mathcal{R}^{-} \omega \text { and } \\
& \mathcal{R}^{+} \omega^{-}=K\left(\cdot-p^{-}\right) \\
& 2 \mathcal{R} \omega=\mathcal{R}^{+} \omega+\mathcal{R}^{-} \omega,
\end{aligned}
$$

that is,

$$
\Theta N=\frac{1}{c_{n}}\left(\mathcal{R}^{+} \omega-K\left(\cdot-p^{+}\right)\right) \quad \text { and } \quad \mathcal{R} \omega=\frac{1}{2}\left(\mathcal{R}^{+} \omega+K\left(\cdot-p^{+}\right)\right)
$$

Jump identities

By the definition of harmonic measure, we have that

$$
\begin{array}{ll}
\text { for } x \in \chi_{\Omega^{-}}, & \mathcal{R} \omega^{+}(x)=K\left(x-p^{+}\right) \\
\text {for } x \in \chi_{\Omega^{+}}, & \mathcal{R} \omega^{-}(x)=K\left(x-p^{-}\right)
\end{array}
$$

For ω-a.e. in $\partial \Omega$ we have that

$$
\begin{aligned}
& \mathcal{R}^{-} \omega^{+}=K\left(\cdot-p^{+}\right), \\
& \mathcal{R}^{+} \omega^{-}=K\left(\cdot-p^{-}\right) \\
& c_{n} \Theta N=\mathcal{R}^{+} \omega-\mathcal{R}^{-} \omega \text { and } \\
& 2 \mathcal{R} \omega=\mathcal{R}^{+} \omega+\mathcal{R}^{-} \omega,
\end{aligned}
$$

that is,

$$
\Theta N=\frac{1}{c_{n}}\left(\mathcal{R}^{+} \omega-K\left(\cdot-p^{+}\right)\right) \quad \text { and } \quad \mathcal{R} \omega=\frac{1}{2}\left(\mathcal{R}^{+} \omega+K\left(\cdot-p^{+}\right)\right)
$$

Thus, to control the oscillation of ΘN in the main proof and the oscillation of $\mathcal{R} \omega$ in the nondegeneracy, it is enough to control oscillation of $\mathcal{R}^{+} \omega$.

Oscillation of $\mathcal{R}^{+} \omega$

We define in the main argument $G:=\widetilde{G}_{\wedge Q}$ for \wedge big enough, while in the nondegeneracy argument we choose $G_{B}:=\widetilde{G}_{\Lambda P}$.

Oscillation of $\mathcal{R}^{+} \omega$

We define in the main argument $G:=\widetilde{G}_{\wedge Q}$ for Λ big enough, while in the nondegeneracy argument we choose $G_{B}:=\widetilde{G}_{\Lambda P}$.

Lemma

$\forall \varepsilon^{\prime}$, if $\Lambda=\Lambda\left(\varepsilon^{\prime}\right)$ is big enough and $\delta_{1}\left(\varepsilon^{\prime}, \Lambda\right)$ small enough, whenever $\ell(Q) \leqslant \ell_{2}\left(\delta_{1}, \Lambda, \varepsilon^{\prime}\right)$ we have that

$$
f_{Q \cap \tilde{G}_{\Omega Q}}\left|\mathcal{R}^{+} \omega-C_{Q}\right|^{2} d \omega \lesssim \varepsilon^{\prime} \Theta(Q)^{2}
$$

Oscillation of $\mathcal{R}^{+} \omega$

We define in the main argument $G:=\widetilde{G}_{\wedge Q}$ for Λ big enough, while in the nondegeneracy argument we choose $G_{B}:=\widetilde{G}_{\Lambda P}$.

Lemma

$\forall \varepsilon^{\prime}$, if $\Lambda=\Lambda\left(\varepsilon^{\prime}\right)$ is big enough and $\delta_{1}\left(\varepsilon^{\prime}, \Lambda\right)$ small enough, whenever $\ell(Q) \leqslant \ell_{2}\left(\delta_{1}, \Lambda, \varepsilon^{\prime}\right)$ we have that

$$
f_{Q \cap \tilde{G}_{\wedge Q}}\left|\mathcal{R}^{+} \omega-C_{Q}\right|^{2} d \omega \lesssim \varepsilon^{\prime} \Theta(Q)^{2}
$$

Note that $\mathcal{R}^{+} \omega=\mathcal{R}^{+}\left(\omega^{+}-c \omega^{-}\right)+c K\left(\cdot-p^{-}\right)$a.e. in $\partial \Omega^{+}$.

Oscillation of $\mathcal{R}^{+} \omega$

We define in the main argument $G:=\widetilde{G}_{\wedge Q}$ for \wedge big enough, while in the nondegeneracy argument we choose $G_{B}:=\widetilde{G}_{\Lambda P}$.

Lemma

$\forall \varepsilon^{\prime}$, if $\Lambda=\Lambda\left(\varepsilon^{\prime}\right)$ is big enough and $\delta_{1}\left(\varepsilon^{\prime}, \Lambda\right)$ small enough, whenever $\ell(Q) \leqslant \ell_{2}\left(\delta_{1}, \Lambda, \varepsilon^{\prime}\right)$ we have that

$$
f_{Q \cap \tilde{G}_{\wedge Q}}\left|\mathcal{R}^{+} \omega-C_{Q}\right|^{2} d \omega \lesssim \varepsilon^{\prime} \Theta(Q)^{2}
$$

Note that $\mathcal{R}^{+} \omega=\mathcal{R}^{+}\left(\omega^{+}-c \omega^{-}\right)+c K\left(\cdot-p^{-}\right)$a.e. in $\partial \Omega^{+}$.
The proof is obtained by combining jump formulas, the weak boundedness of the Riesz transform, the pointwise control of the maximal operators, and the estimates on the good set introduced before. The scaling parameter Λ is used to separate the local part from the non-local part, and CZ "off-diagonal" estimates appear which are small for Λ big.

Proof of (b) implies (a)

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN'17])

- Consider $\Omega^{ \pm}$and the good set $G \subset \partial \Omega^{+}$to be defined.

Ω^{-}

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN'17])

- Consider $\Omega^{ \pm}$and the good set $G \subset \partial \Omega^{+}$to be defined.
- Take a Whitney covering of G^{c} so that $\ell(S) \approx \min \left\{r_{0}, \delta_{0}^{2} \mathrm{~d}(S, G)\right\}$

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN'17])

- Consider $\Omega^{ \pm}$and the good set $G \subset \partial \Omega^{+}$to be defined.
- Take a Whitney covering of G^{c} so that $\ell(S) \approx \min \left\{r_{0}, \delta_{0}^{2} \mathrm{~d}(S, G)\right\}$
- Select the cubes that intersect the boundary of the domain.

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN'17])

- Consider $\Omega^{ \pm}$and the good set $G \subset \partial \Omega^{+}$to be defined.
- Take a Whitney covering of G^{c} so that $\ell(S) \approx \min \left\{r_{0}, \delta_{0}^{2} \mathrm{~d}(S, G)\right\}$
- Select the cubes that intersect the boundary of the domain.
- Take ball B_{S} centered in a boundary point of each cube S with radius $\delta_{0}^{-1} \ell(S)$.

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN'17])

- Consider $\Omega^{ \pm}$and the good set $G \subset \partial \Omega^{+}$to be defined.
- Take a Whitney covering of G^{c} so that $\ell(S) \approx \min \left\{r_{0}, \delta_{0}^{2} \mathrm{~d}(S, G)\right\}$
- Select the cubes that intersect the boundary of the domain.
- Take ball B_{S} centered in a boundary point of each cube S with radius $\delta_{0}^{-1} \ell(S)$.
- Consider the domains

$$
\begin{aligned}
& \Omega_{b}^{+}:=\Omega^{+} \cup \bigcup B \text { and } \\
& \Omega_{s}^{-}:=\Omega^{s} \backslash \bigcup B_{S} .
\end{aligned}
$$

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN'17])

- Consider $\Omega^{ \pm}$and the good set $G \subset \partial \Omega^{+}$to be defined.
- Take a Whitney covering of G^{c} so that $\ell(S) \approx \min \left\{r_{0}, \delta_{0}^{2} \mathrm{~d}(S, G)\right\}$
- Select the cubes that intersect the boundary of the domain.
- Take ball B_{S} centered in a boundary point of each cube S with radius $\delta_{0}^{-1} \ell(S)$.
- Consider the domains

$$
\begin{aligned}
& \Omega_{b}^{+}:=\Omega^{+} \cup \bigcup B \text { and } \\
& \Omega_{s}^{-}:=\Omega^{s} \backslash \bigcup B_{S} .
\end{aligned}
$$

- Analogously define Ω_{b}^{-}and Ω_{s}^{+}.

Approximating domains

(from [Azzam,Mourgoglou,Tolsa IMRN'17])

- Consider $\Omega^{ \pm}$and the good set $G \subset \partial \Omega^{+}$to be defined.
- Take a Whitney covering of G^{c} so that $\ell(S) \approx \min \left\{r_{0}, \delta_{0}^{2} \mathrm{~d}(S, G)\right\}$
- Select the cubes that intersect the boundary of the domain.
- Take ball B_{S} centered in a boundary point of each cube S with radius $\delta_{0}^{-1} \ell(S)$.
- Consider the domains

$$
\begin{aligned}
& \Omega_{b}^{+}:=\Omega^{+} \cup \bigcup B_{S} \text { and } \\
& \Omega_{s}^{-}:=\Omega^{s} \backslash \bigcup B_{S} .
\end{aligned}
$$

- Analogously define Ω_{b}^{-}and Ω_{s}^{+}.

If Ω^{+}is $\left(\delta_{1}, r_{0}\right)$-RF with $\delta_{1}\left(\delta_{0}\right)$ small enough, then $\Omega_{b / s}^{ \pm}$are also
$\left(c \delta_{0}^{\frac{1}{2}}, r_{0} / 2\right)-\mathrm{RF}$ and $\partial \Omega \cap 10 B_{S}$ is a Lipschitz graph.

Setting

We want to see that $\omega^{-} \in A_{\infty, \text { as }}\left(\omega^{+}\right)=V R H_{p}\left(\omega^{+}\right)$for a certain $p>1$.

Setting

We want to see that $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)=V R H_{p}\left(\omega^{+}\right)$for a certain $p>1$. That is, $\forall \varepsilon>0, \forall B$ with $r(B) \leqslant \ell(\varepsilon)$,

$$
\Pi^{\frac{1}{p}}:=\left(f_{B}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+}\right)^{\frac{1}{p}} \leqslant(1+\varepsilon) \frac{\omega^{-}(B)}{\omega^{+}(B)}
$$

Setting

We want to see that $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)=V R H_{p}\left(\omega^{+}\right)$for a certain $p>1$. That is, $\forall \varepsilon>0, \forall B$ with $r(B) \leqslant \ell(\varepsilon)$,

$$
\Pi^{\frac{1}{p}}:=\left(f_{B}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+}\right)^{\frac{1}{p}} \leqslant(1+\varepsilon) \frac{\omega^{-}(B)}{\omega^{+}(B)}
$$

Select a good set $G_{0}=G(B)=B \backslash\left(L D_{\tau}(\Lambda B) \cup H D_{A}(\Lambda B)\right)$.

$$
\Pi \llbracket \leqslant \int_{B \cap G_{0}}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+}+\int_{B \backslash G_{0}}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+}
$$

Setting

We want to see that $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)=V R H_{p}\left(\omega^{+}\right)$for a certain $p>1$. That is, $\forall \varepsilon>0, \forall B$ with $r(B) \leqslant \ell(\varepsilon)$,

$$
\Pi^{\frac{1}{p}}:=\left(f_{B}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+}\right)^{\frac{1}{p}} \leqslant(1+\varepsilon) \frac{\omega^{-}(B)}{\omega^{+}(B)}
$$

Select a good set $G_{0}=G(B)=B \backslash\left(L D_{\tau}(\Lambda B) \cup H D_{A}(\Lambda B)\right)$.

Then by the maximum principle, we get

$$
\begin{aligned}
\text { II } & \leqslant \int_{B \cap G_{0}}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+}+\int_{B \backslash G_{0}}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+} \\
& \leqslant \int_{B \cap G_{0}}\left(\frac{d \omega_{b}^{-}}{d \omega_{s}^{+}}\right)^{p} d \omega_{s}^{+}+
\end{aligned}
$$

Setting

We want to see that $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)=V R H_{p}\left(\omega^{+}\right)$for a certain $p>1$. That is, $\forall \varepsilon>0, \forall B$ with $r(B) \leqslant \ell(\varepsilon)$,

$$
\Pi^{\frac{1}{p}}:=\left(f_{B}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+}\right)^{\frac{1}{p}} \leqslant(1+\varepsilon) \frac{\omega^{-}(B)}{\omega^{+}(B)}
$$

Select a good set $G_{0}=G(B)=B \backslash\left(L D_{\tau}(\Lambda B) \cup H D_{A}(\Lambda B)\right)$. Since $\omega^{-} \in A_{\infty}\left(\omega^{+}\right)$, we have that $\omega^{-} \in R H_{q}\left(\omega^{+}\right)$. Write $q=: 1+2 \beta$, define $p:=1+\beta$. Then by the maximum principle, Hölder and RH inequalities we get

$$
\begin{aligned}
\Pi I & \leqslant \int_{B \cap G_{0}}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+}+\int_{B \backslash G_{0}}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+} \\
& \leqslant \int_{B \cap G_{0}}\left(\frac{d \omega_{b}^{-}}{d \omega_{s}^{+}}\right)^{1+\beta} d \omega_{s}^{+}+C\left(\frac{\omega^{+}\left(B \backslash G_{0}\right)}{\omega\left(B_{0}\right)}\right)^{\frac{\beta}{1+2 \beta}}\left(\frac{\omega^{-}(B)}{\omega^{+}(B)}\right)^{1+\beta}
\end{aligned}
$$

Setting

We want to see that $\omega^{-} \in A_{\infty, a s}\left(\omega^{+}\right)=V R H_{p}\left(\omega^{+}\right)$for a certain $p>1$. That is, $\forall \varepsilon>0, \forall B$ with $r(B) \leqslant \ell(\varepsilon)$,

$$
\Pi^{\frac{1}{p}}:=\left(f_{B}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+}\right)^{\frac{1}{p}} \leqslant(1+\varepsilon) \frac{\omega^{-}(B)}{\omega^{+}(B)}
$$

Select a good set $G_{0}=G(B)=B \backslash\left(L D_{\tau}(\Lambda B) \cup H D_{A}(\Lambda B)\right)$. Since $\omega^{-} \in A_{\infty}\left(\omega^{+}\right)$, we have that $\omega^{-} \in R H_{q}\left(\omega^{+}\right)$. Write $q=: 1+2 \beta$, define $p:=1+\beta$. Then by the maximum principle, Hölder and RH inequalities and estimates on the size of G_{0} we get

$$
\begin{aligned}
\text { III } & \leqslant \int_{B \cap G_{0}}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+}+\int_{B \backslash G_{0}}\left(\frac{d \omega^{-}}{d \omega^{+}}\right)^{p} d \omega^{+} \\
& \leqslant \int_{B \cap G_{0}}\left(\frac{d \omega_{b}^{-}}{d \omega_{s}^{+}}\right)^{1+\beta} d \omega_{s}^{+}+C\left(\frac{\omega^{+}\left(B \backslash G_{0}\right)}{\omega\left(B_{0}\right)}\right)^{\frac{\beta}{1+2 \beta}}\left(\frac{\omega^{-}(B)}{\omega^{+}(B)}\right)^{1+\beta} \\
& \leqslant \int_{B \cap G_{0}}\left(\frac{d \omega_{b}^{-}}{d \omega_{s}^{+}}\right)^{1+\beta} d \omega_{s}^{+}+C(\Lambda)\left(\varepsilon^{\prime}\right)^{\frac{\beta}{1+2 \beta}}\left(\frac{\omega^{-}(B)}{\omega^{+}(B)}\right)^{1+\beta}
\end{aligned}
$$

Reverse Hölder for the approximate domains' measures

The key identity to prove is the following:

$$
\left\|N_{\Omega_{s}^{+}}\right\|_{*, \Lambda r(B), \sigma} \lesssim C(A, \tau)\left\|N_{\Omega^{+}}\right\|_{*, 10 \wedge r(B), \omega^{+}}+\varepsilon_{1}\left(\delta_{0}\right)=\varepsilon_{2} .
$$

Reverse Hölder for the approximate domains' measures

The key identity to prove is the following:

$$
\left\|N_{\Omega_{s}^{+}}\right\|_{*, \Lambda r(B), \sigma} \lesssim C(A, \tau)\left\|N_{\Omega^{+}}\right\|_{*, 10 \wedge r(B), \omega^{+}}+\varepsilon_{1}\left(\delta_{0}\right)=\varepsilon_{2} .
$$

Assume it to be true. By stopping conditions and the fact that $\Omega_{b}^{ \pm}$is a Lipschitz domain, we show that they are also chord-arc.

Reverse Hölder for the approximate domains' measures

The key identity to prove is the following:

$$
\left\|N_{\Omega_{s}^{+}}\right\|_{*, \Lambda r(B), \sigma} \lesssim C(A, \tau)\left\|N_{\Omega^{+}}\right\|_{*, 10 \wedge r(B), \omega^{+}}+\varepsilon_{1}\left(\delta_{0}\right)=\varepsilon_{2} .
$$

Assume it to be true. By stopping conditions and the fact that $\Omega_{b}^{ \pm}$is a Lipschitz domain, we show that they are also chord-arc. From the one-phase problem [Kenig, Toro, Duke'97] chord-arc and $N_{\Omega_{s}^{+}} \in$ VMO (not satisfied: we need a quantitative version) imply that $\sigma \in A_{\infty, a s}\left(\omega_{s}^{+}\right)=V R H_{3}\left(\omega_{s}^{+}\right)$and similarly $\omega_{b}^{-} \in V R H_{4}(\sigma)$ with modulus of continuity ε_{3}.

Reverse Hölder for the approximate domains' measures

The key identity to prove is the following:

$$
\left\|N_{\Omega_{s}^{+}}\right\|_{*, \Lambda r(B), \sigma} \lesssim C(A, \tau)\left\|N_{\Omega^{+}}\right\|_{*, 10 \wedge r(B), \omega^{+}}+\varepsilon_{1}\left(\delta_{0}\right)=\varepsilon_{2} .
$$

Assume it to be true. By stopping conditions and the fact that $\Omega_{b}^{ \pm}$is a Lipschitz domain, we show that they are also chord-arc. From the one-phase problem [Kenig, Toro, Duke'97] chord-arc and $N_{\Omega_{s}^{+}} \in$ VMO (not satisfied: we need a quantitative version) imply that $\sigma \in A_{\infty, a s}\left(\omega_{s}^{+}\right)=V R H_{3}\left(\omega_{s}^{+}\right)$and similarly $\omega_{b}^{-} \in V R H_{4}(\sigma)$ with modulus of continuity ε_{3}.

$$
f_{B}\left(\frac{d \omega_{b}^{-}}{d \omega_{s}^{+}}\right)^{2} d \omega_{s}^{+}=\frac{1}{\omega_{s}^{+}(B)} \int_{B}\left(\frac{d \omega_{b}^{-}}{d \sigma}\right)^{2} \frac{d \sigma}{d \omega_{s}^{+}} d \sigma
$$

Reverse Hölder for the approximate domains' measures

The key identity to prove is the following:

$$
\left\|N_{\Omega_{s}^{+}}\right\|_{*, \Lambda r(B), \sigma} \lesssim C(A, \tau)\left\|N_{\Omega^{+}}\right\|_{*, 10 \Lambda r(B), \omega^{+}}+\varepsilon_{1}\left(\delta_{0}\right)=\varepsilon_{2}
$$

Assume it to be true. By stopping conditions and the fact that $\Omega_{b}^{ \pm}$is a Lipschitz domain, we show that they are also chord-arc. From the one-phase problem [Kenig, Toro, Duke'97] chord-arc and $N_{\Omega_{s}^{+}} \in V M O$ (not satisfied: we need a quantitative version) imply that $\sigma \in A_{\infty, a s}\left(\omega_{s}^{+}\right)=V R H_{3}\left(\omega_{s}^{+}\right)$and similarly $\omega_{b}^{-} \in V R H_{4}(\sigma)$ with modulus of continuity ε_{3}.

$$
f_{B}\left(\frac{d \omega_{b}^{-}}{d \omega_{s}^{+}}\right)^{2} d \omega_{s}^{+} \leqslant \frac{1}{\omega_{s}^{+}(B)}\left(\int_{B}\left(\frac{d \omega_{b}^{-}}{d \sigma}\right)^{4} d \sigma \int_{B}\left(\frac{d \sigma}{d \omega_{s}^{+}}\right)^{2} d \sigma\right)^{1 / 2}
$$

Reverse Hölder for the approximate domains' measures

The key identity to prove is the following:

$$
\left\|N_{\Omega_{s}^{+}}\right\|_{*, \Lambda r(B), \sigma} \lesssim C(A, \tau)\left\|N_{\Omega^{+}}\right\|_{*, 10 \Lambda r(B), \omega^{+}}+\varepsilon_{1}\left(\delta_{0}\right)=\varepsilon_{2}
$$

Assume it to be true. By stopping conditions and the fact that $\Omega_{b}^{ \pm}$is a Lipschitz domain, we show that they are also chord-arc. From the one-phase problem [Kenig, Toro, Duke'97] chord-arc and $N_{\Omega_{s}^{+}} \in V M O$ (not satisfied: we need a quantitative version) imply that $\sigma \in A_{\infty, a s}\left(\omega_{s}^{+}\right)=V R H_{3}\left(\omega_{s}^{+}\right)$and similarly $\omega_{b}^{-} \in V R H_{4}(\sigma)$ with modulus of continuity ε_{3}.

$$
f_{B}\left(\frac{d \omega_{b}^{-}}{d \omega_{s}^{+}}\right)^{2} d \omega_{s}^{+} \leqslant\left(\frac{\sigma(B)}{\omega_{s}^{+}(B)} f_{B}\left(\frac{d \omega_{b}^{-}}{d \sigma}\right)^{4} d \sigma f_{B}\left(\frac{d \sigma}{d \omega_{s}^{+}}\right)^{3} d \omega_{s}^{+}\right)^{1 / 2}
$$

Reverse Hölder for the approximate domains' measures

The key identity to prove is the following:

$$
\left\|N_{\Omega_{s}^{+}}\right\|_{*, \Lambda r(B), \sigma} \lesssim C(A, \tau)\left\|N_{\Omega^{+}}\right\|_{*, 10 \Lambda r(B), \omega^{+}}+\varepsilon_{1}\left(\delta_{0}\right)=\varepsilon_{2}
$$

Assume it to be true. By stopping conditions and the fact that $\Omega_{b}^{ \pm}$is a Lipschitz domain, we show that they are also chord-arc. From the one-phase problem [Kenig, Toro, Duke'97] chord-arc and $N_{\Omega_{s}^{+}} \in V M O$ (not satisfied: we need a quantitative version) imply that $\sigma \in A_{\infty, a s}\left(\omega_{s}^{+}\right)=V R H_{3}\left(\omega_{s}^{+}\right)$and similarly $\omega_{b}^{-} \in V R H_{4}(\sigma)$ with modulus of continuity ε_{3}.

$$
\begin{aligned}
f_{B}\left(\frac{d \omega_{b}^{-}}{d \omega_{s}^{+}}\right)^{2} d \omega_{s}^{+} & \leqslant\left(\frac{\sigma(B)}{\omega_{s}^{+}(B)} f_{B}\left(\frac{d \omega_{b}^{-}}{d \sigma}\right)^{4} d \sigma f_{B}\left(\frac{d \sigma}{d \omega_{s}^{+}}\right)^{3} d \omega_{s}^{+}\right)^{1 / 2} \\
& \leqslant\left(1+\varepsilon_{3}\right) \frac{\sigma(B)^{1 / 2}}{\omega_{s}^{+}(B)^{1 / 2}}\left(\frac{\omega_{b}^{-}(B)}{\sigma(B)}\right)^{2}\left(\frac{\sigma(B)}{\omega_{s}^{+}(B)}\right)^{3 / 2}
\end{aligned}
$$

Reverse Hölder for the approximate domains' measures

The key identity to prove is the following:

$$
\left\|N_{\Omega_{s}^{+}}\right\|_{*, \Lambda r(B), \sigma} \lesssim C(A, \tau)\left\|N_{\Omega^{+}}\right\|_{*, 10 \wedge r(B), \omega^{+}}+\varepsilon_{1}\left(\delta_{0}\right)=\varepsilon_{2} .
$$

Assume it to be true. By stopping conditions and the fact that $\Omega_{b}^{ \pm}$is a Lipschitz domain, we show that they are also chord-arc. From the one-phase problem [Kenig, Toro, Duke'97] chord-arc and $N_{\Omega_{s}^{+}} \in V M O$ (not satisfied: we need a quantitative version) imply that $\sigma \in A_{\infty, a s}\left(\omega_{s}^{+}\right)=V R H_{3}\left(\omega_{s}^{+}\right)$and similarly $\omega_{b}^{-} \in V R H_{4}(\sigma)$ with modulus of continuity ε_{3}.

$$
\begin{aligned}
f_{B}\left(\frac{d \omega_{b}^{-}}{d \omega_{s}^{+}}\right)^{2} d \omega_{s}^{+} & \leqslant\left(\frac{\sigma(B)}{\omega_{s}^{+}(B)} f_{B}\left(\frac{d \omega_{b}^{-}}{d \sigma}\right)^{4} d \sigma f_{B}\left(\frac{d \sigma}{d \omega_{s}^{+}}\right)^{3} d \omega_{s}^{+}\right)^{1 / 2} \\
& \leqslant\left(1+\varepsilon_{3}\right) \frac{\sigma(B)^{1 / 2}}{\omega_{s}^{+}(B)^{1 / 2}}\left(\frac{\omega_{b}^{-}(B)}{\sigma(B)}\right)^{2}\left(\frac{\sigma(B)}{\omega_{s}^{+}(B)}\right)^{3 / 2} \\
& =\left(1+\varepsilon_{4}\right)\left(\frac{\omega_{b}^{-}(B)}{\omega_{s}^{+}(B)}\right)^{2}
\end{aligned}
$$

End of the proof

The last RH inequality together with the previous reasoning implies

$$
\Pi \llbracket \leqslant\left(\left(1+\varepsilon_{4}\right)^{\frac{p}{2}}\left(\frac{\omega^{+}(B)}{\omega_{s}^{+}(B)}\right)^{p-1}\left(\frac{\omega_{b}^{-}(B)}{\omega^{-}(B)}\right)^{p}+C_{\Lambda}\left(\varepsilon^{\prime}\right)^{\frac{p-1}{2 p-1}}\right)\left(\frac{\omega^{-}(B)}{\omega^{+}(B)}\right)^{p} .
$$

End of the proof

The last RH inequality together with the previous reasoning implies

$$
\Pi \Pi \leqslant\left(\left(1+\varepsilon_{4}\right)^{\frac{p}{2}}\left(\frac{\omega^{+}(B)}{\omega_{s}^{+}(B)}\right)^{p-1}\left(\frac{\omega_{b}^{-}(B)}{\omega^{-}(B)}\right)^{p}+C_{\Lambda}\left(\varepsilon^{\prime}\right)^{\frac{p-1}{2 p-1}}\right)\left(\frac{\omega^{-}(B)}{\omega^{+}(B)}\right)^{p} .
$$

Finally, we see that $\omega^{+}(B) \leqslant\left(1+\varepsilon_{4}\right) \omega_{s}^{+}(B)$ and
$\omega_{b}^{-}(B) \leqslant\left(1+\varepsilon_{4}\right) \omega^{-}(B)$ for $r(\Lambda B)$ small enough, Λ big enough and δ_{0} small enough, using the Hölder continuity of harmonic measure and the separation between B and $(\Lambda B)^{c}$.

The key estimate

The key estimate remaining

$$
\left\|N_{\Omega_{s}^{+}}\right\|_{*, \Lambda r(B), \sigma} \lesssim C(A, \tau)\left\|N_{\Omega^{+}}\right\|_{*, 10 \wedge r(B), \omega^{+}}+\varepsilon_{1}\left(\delta_{0}\right)
$$

is deduced from

Lemma

Let $\Omega^{+} \subset \mathbb{R}^{n+1}$ be bdd two-sided NTA $\left(\delta_{0}, r_{0}\right)$-Reifenberg flat for some $\delta_{0}>0$ and $r_{0}>0$. Suppose also that $\omega^{+} \in R H_{3 / 2}\left(\omega^{-}\right)$and that $N \in V M O\left(\omega^{+}\right)$. Let B be a ball centered in $\partial \Omega^{+}$with $\Lambda_{0} r(B) \leqslant r_{0} / 4$. Let L_{B} be a best approximating n-plane for $\partial \Omega^{+} \cap B$ and N_{B} the unit normal to L_{B} pointing to Ω^{+}. For any $\varepsilon_{1}>0$,

$$
\left|N_{B}-m_{B, \omega^{+}} N_{\Omega^{+}}\right| \leqslant \varepsilon_{1}=\varepsilon_{1}\left(\delta_{0}, r(B)\right),
$$

with ε_{1} as small as wished if δ_{0} is small enough and $r(B)$ small enough,

The key estimate

To get

$$
\left|N_{B}-m_{B, \omega^{+}} N_{\Omega^{+}}\right| \leqslant \varepsilon_{1}=\varepsilon_{1}\left(\delta_{0}, r(B)\right)
$$

we show the estimate

$$
\left|\int_{G(\Lambda B)} \Theta N_{\Omega^{+}} d \omega-\frac{C_{n}}{r(B)^{n}} N_{B}\right| \leqslant \frac{\varepsilon_{0}}{r(B)^{n}},
$$

if the constants are big/small enough. Then we argue as in the implication (a) $\Longrightarrow(b)$ with $\left|\frac{u}{|u|}-\frac{v}{|v|}\right| \leqslant 2 \frac{|u-v|}{|u|}$.

The key estimate

To get

$$
\left|N_{B}-m_{B, \omega^{+}} N_{\Omega^{+}}\right| \leqslant \varepsilon_{1}=\varepsilon_{1}\left(\delta_{0}, r(B)\right)
$$

we show the estimate

$$
\left|\int_{G(\Lambda B)} \Theta N_{\Omega^{+}} d \omega-\frac{C_{n}}{r(B)^{n}} N_{B}\right| \leqslant \frac{\varepsilon_{0}}{r(B)^{n}},
$$

if the constants are big/small enough. Then we argue as in the implication (a) $\Longrightarrow(b)$ with $\left|\frac{u}{|u|}-\frac{v}{|v|}\right| \leqslant 2 \frac{|u-v|}{|u|}$.
The estimate is obtained using again:

- Jump formulas [Tolsa; arXiv '18]
- Hölder continuity of the harmonic measure and
- change of pole formulas from [Jerison, Kenig; Adv. Math.'82]
- Monotonicity formula [Alt, Caffarelli, Friedmann; TAMS'84]
- Refined doubling properties of ω in [Kenig, Toro; Duke'97]
- Hypothesis $\omega^{+} \in B_{3 / 2}\left(\omega^{-}\right)$is needed in this proof.

Kiitos paljon! Tack! Moltes gràcies!

