The Beurling transform in Sobolev spaces of a Lipschitz domain

Martí Prats *

September 22, 2014

1 1st session

1.1 Review of the Beurling transform

The Beurling transform is defined as the principal value

\[B\varphi(z) := -\frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|w-z|>\varepsilon} \frac{\varphi(w)}{(z-w)^2} dm(w), \tag{1.1} \]

for \(\varphi \in C_0^\infty(\mathbb{C}) \). Notice that the principal value is necessary since the integral is not absolutely convergent, and it exists pointwise by Green’s formula.

Lemma 1.1 (Properties of the Beurling transform). One has

- \(B\varphi - \partial C\varphi \) for \(\varphi \in C_0^\infty \).
- \(B(\overline{f}) - \partial f \) for \(f \in L_{\text{loc}}^1 \cap \dot{W}^{1,2} \).
- \(B(f) = \mathcal{F}^{-1}\left(\frac{z}{\sqrt{1-|z|^2}} \right) \).
- \(B \) extends as an isometry in \(L^2 \), \(B_2 := \|B\|_{L^2 \to L^2} = 1 \) and the principal value is well defined.
- \(B \) is a bounded operator in \(L^p \) with norm \(B_p \) for \(1 < p < \infty \) and the principal value is well defined.
- The map \(p \mapsto B_p \) is Lipschitz continuous.

Partial proof. By Green’s formula,

\[
B\varphi(z) - \frac{1}{\pi} \lim_{\varepsilon \to 0} \int_{|w-z|>\varepsilon} \frac{\partial \varphi(w)}{(z-w)} dm(w) + \frac{i}{2\pi} \lim_{\varepsilon \to 0} \int_{|w-z|<\varepsilon} \frac{\varphi(w)}{(z-w)} dm(w) = C\partial\varphi(z) - \partial C\varphi(z).
\]

From the Cauchy formula, being \(\varphi \) of compact support we have that in \(C_0^\infty \), \(C \circ \overline{\partial} = I \) and, thus,

\[B(\overline{\partial} \varphi) - \partial \varphi. \]

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Catalonia: mprats@mat.uab.cat.
By integration by parts one can see that \(\| \partial_\nu \varphi \|_{L^2} - \| \partial_\varphi \|_{L^2} \) and, together with some approximation methods one sees that

\[\| B(\varphi) \|_{L^2} - \| \varphi \|_{L^2} \]

for all \(\varphi \in C_0^\infty \).

By density again one can define the Beurling transform acting on \(L^2 \). That is, the Beurling transform is an isometry in \(L^2 \). \(\square \)

1.2 Relation with quasiconformal mappings: Solving the Beltrami equation

Consider \(0 \leq k < 1 \) and a measurable and compactly supported function \(\mu \) such that \(\| \mu \| = k \) for \(z \in \mathbb{C} \) (we call it Beltrami coefficient). The Beltrami equation

\[\overline{\partial} f(z) - \mu(z) \partial f(z) \]

has a unique solution \(f \in W_{\text{loc}}^{1,2} \) such that

\[f(z) = z + O(1/z) \quad \text{as } z \to \infty. \]

The solution will be of the following form. Consider

\[h := (I - \mu B)^{-1}(\mu), \]

where we consider the mapping \(I - \mu B : L^p \to L^p \) with \(\| \mu \cdot B \|_{(p,p)} \leq kB - k < 1 \) for \(p = 2 + \varepsilon \) and \(\varepsilon \) small enough. Then,

\[f = C(h) + z. \]

One can check that, indeed,

\[\overline{\partial} f = h \]

and, since \((I - \mu B)(h) = \mu \),

\[\mu \overline{\partial} f - \mu B(h) + \mu - h \]

With some more effort one can see that this solution is indeed a \(K \)-quasiconformal homeomorphism for \(K = \frac{1+k}{1-k} \).

What can we say on the regularity of the solution? We consider \(\mu \) compactly supported. If \(\mu \in A \) is then \(h \in A \)? In which spaces can we invert \(I - \mu B \)?

1. [AIS01] For \(p \) in the critical interval, \(p \in (p_k, q_k) \), we have that

\[\mu \in L^p \Longleftrightarrow h \in L^p \]

and it fails otherwise.

2. [AIM09] With Schauder estimates they get for \(0 < \alpha < 1 \)

\[\mu \in C^{\alpha,\alpha}_{\text{loc}}(\Omega) \quad \Longleftrightarrow \quad f \in C^{\alpha+1,\alpha}_{\text{loc}}(\Omega) \]

and it fails for \(\alpha = 0 \) and \(\alpha = 1 \).

3. [CMO13] For any \(1 < p < \infty \) and \(1 < q < \infty \) and \(sp > 2 \) (that is, when we have that \(B_{p,q}^s \) and \(F_{p,q}^s \) are multiplication algebras of bounded continuous functions),

\[\mu \in A_{p,q}^s \quad \Longleftrightarrow \quad h \in A_{p,q}^s. \]
1.3 Known results:

Theorem ([CMO13]). Let \(\Omega \) be a bounded \(C^{1,\varepsilon} \) domain for \(\varepsilon > 0 \), and let \(1 < p < \infty \) and \(0 < s \leq 1 \) such that \(sp > 2 \). Then the Beurling transform is bounded in the Sobolev space \(W^{s,p}(\Omega) \) if and only if \(B(\chi_\Omega) \in W^{s,p}(\Omega) \).

Using this, a Hölder estimate for \(C^{1,\varepsilon} \)-domains and Fredholm theory they prove the following.

Corollary ([CMO13]). If \(\varepsilon > s \),
\[
\mu \in W^{s,p}(\Omega) \implies h \in W^{s,p}(\Omega).
\]

Tolsa and Cruz looked for weaker conditions on the regularity of \(\Omega \) to bound \(B(\chi_\Omega) \):

Theorem ([CT12]). Let \(\Omega \subset \mathbb{C} \) be a Lipschitz domain and its unitary outward normal vector \(N \) is in the Besov space \(B^{s-1/p}_p(\partial\Omega) \) for \(s \leq 1 \), then one has \(B(\chi_\Omega) \in W^{s,p}(\Omega) \).

Notice that, if \(sp > 2 \), \(B^{s-1/p}_p \subset C^{0,s-2/p} \), so one can use the result in [CMO13]

Corollary ([CT12]). If \(sp > 2 \) and \(N \in B^{s-1/p}_p(\partial\Omega) \), then \(B \) is bounded in \(W^{s,p}(\Omega) \).

Theorem ([Tol13]). This geometric condition is necessary when the Lipschitz constants of \(\partial\Omega \) are small.

1.4 Results found:

Theorem 1.2. Let \(\Omega \subset \mathbb{R}^d \) be a Lipschitz domain, \(T \) a smooth convolution Calderón-Zygmund operator of order \(n \in \mathbb{N} \) and \(p > d \). Then the following statements are equivalent:

a) The operator \(T \) is bounded in \(W^{n,p}(\Omega) \).

b) For every polynomial \(P \) of degree at most \(n \), we have that \(T(P) \in W^{n,p}(\Omega) \).

Theorem 1.3. Let \(T \) be a smooth convolution Calderón-Zygmund operator of order \(n \), and consider a Lipschitz domain \(\Omega \) and let \(1 < p \leq d \). If the measure \(|\nabla^n T(\chi_\Omega)|^p dx \) is a \(p \)-Carleson measure for every polynomial \(P \) of degree at most \(n \) restricted to the domain, then \(T \) is a bounded operator on \(W^{n,p}(\Omega) \).

Theorem 1.4. This condition is in fact necessary for \(n \geq 2 \) and small Lipschitz constant.

Theorem 1.5. Let \(\Omega \) be a \(C^{\alpha-1,1} \) domain. Then,
\[
\|B(\chi_\Omega)\|^p_{W^{n,p}(\Omega)} \leq \|\nabla\|^p_{B^{1-n/p}(\partial\Omega)} + \mathcal{H}^1(\partial\Omega)^2 \eta^{-n/p}
\]
with constants depending only on \(p \), \(n \) and the Lipschitz character of the domain.

2 2nd session

2.1 Proof of Theorem 1.2

Proof. The implication \(a) \Rightarrow b) \) is trivial.

To see the converse, we will use a Whitney covering of \(\Omega \).

Recall that the Poincaré inequality tells us that, given a cube \(Q \) and a function \(f \in W^{1,p}(Q) \) with 0 mean in the cube,
\[
\|f\|_{L^p(Q)} \leq \ell(Q) \|\nabla f\|_{L^p(Q)}
\]
Since we want to iterate that inequality, we also need the gradient of f to have 0 mean on Q and so on.

Given $f \in W^{n,p}(Q)$, we define $P^p_Q(f) \in P^n(\Omega)$ as the unique polynomial (restricted to Ω) of degree smaller or equal than n such that

$$
\int_Q D^\beta P^p_Q f \, dm - \int_Q D^\beta f \, dm
$$

for every multiindex $\beta \in \mathbb{N}^d$ with $|\beta| \leq n$.

Let x_Q be the center of Q. If we consider the Taylor expansion of $P^{n-1}_Q f$ at x_Q,

$$
P^{n-1}_Q f(y) - \chi_{\Omega}(y) \sum_{\gamma \in \mathbb{N}^d} m_{Q,\gamma}(y - x_Q)^\gamma,
$$

then the coefficients $m_{Q,\gamma}$ are bounded by

$$
|m_{Q,\gamma}| \leq c_n \sum_{\beta \geq \gamma \atop |\beta| < n} \|D^\beta f\|_{L^\infty(3Q)} \ell((Q)^{j-1}).
$$

Now, fix a point $x_0 \in \Omega$. We have a finite number of monomials $P_\lambda(x) - (x - x_0)^\lambda \chi_{\Omega}(x)$ for multiindices $\lambda \in \mathbb{N}^d$ and $|\lambda| < n$, so the hypothesis can be written as

$$
\|T(P_\lambda)\|_{W^{n,p}(\Omega)} \leq C.
$$

Assume $f \in W^{n,p}(\Omega)$. We will see later that it is enough to prove that

$$
\sum_{Q \in \mathcal{W}} \|D^\alpha T(P^{n-1}_Q f)\|_{L^p(Q)} \leq \|f\|_{W^{n,p}(\Omega)}^p.
$$

Taking the Taylor expansion of the polynomial $P^{n-1}_Q f$ in x_0, one has

$$
P^{n-1}_Q f(x) - \chi_{\Omega}(x) \sum_{|\gamma| < n} m_{Q,\gamma} \sum_{\beta \leq \gamma \atop \beta,\gamma \in \mathbb{N}^d} \binom{\gamma}{\lambda} (x - x_0)^\lambda (x_0 - x_Q)^{\gamma - \lambda}.
$$

Thus,

$$
D^\alpha T(P^{n-1}_Q f)(y) - \sum_{|\gamma| < n} m_{Q,\gamma} \sum_{\beta \leq \gamma \atop \beta,\gamma \in \mathbb{N}^d} \binom{\gamma}{\lambda} (x_0 - x_Q)^{\gamma - \lambda} D^\alpha(TP_\lambda)(y).
$$

Raising (2.4) to the power p, integrating in Q and using the bounds on $|m_{Q,\gamma}|$ we get

$$
\left\|D^\alpha T(P^{n-1}_Q f)\right\|_{L^p(Q)}^p \leq \sum_{|\beta| < n} \|D^\beta f\|_{L^p(\Omega)}^p \sum_{\beta \leq \gamma \atop \beta,\gamma \in \mathbb{N}^d} \text{diam}\Omega^{|\beta| - |\beta|} p \|D^\alpha(TP_\lambda)\|_{L^p(Q)}^p.
$$

By the Sobolev Embedding Theorem, we know that $\|\nabla^j f\|_{L^\infty(\Omega)} \leq C_\alpha \|\nabla^j f\|_{W^{1,p}(\Omega)}$ as long as $p > d$. If we add with respect to $Q \in \mathcal{W}$ and we use (2.3) we get

$$
\sum_{Q \in \mathcal{W}} \|D^\alpha T(P^{n-1}_Q f)\|_{L^p(Q)}^p \leq \sum_{|\beta| < n} \|D^\beta f\|_{W^{1,p}(\Omega)}^p \sum_{\beta \leq \gamma \atop \beta,\gamma \in \mathbb{N}^d} \|D^\alpha(TP_\lambda)\|_{L^p(\Omega)}^p \leq \|f\|_{W^{n,p}(\Omega)}^p,
$$

with constants depending on the diameter of Ω, p, d and n. \qed
2.2 The Key Lemma

To complete the proof of Theorem 1.2 it remains to prove the following lemma which says that it is equivalent to bound the transform of a function and its approximation by polynomials.

Key Lemma 2.1. Given a multiindex α with $|\alpha| = n$, we have
\[
\sum_{Q \in \mathcal{W}} \left\| D^\alpha T(f - P_{3Q}^{n-1} f) \right\|_{L^p(Q)}^p \lesssim \left\| \nabla^n f \right\|_{L^p(\Omega)}^p.
\] (2.5)

Proof. For each cube $Q \in \mathcal{W}$ we define a bump function $\varphi_Q \in C_c^\infty$ such that $\chi_{\frac{3}{4}Q} \leq \varphi_Q \leq \chi_Q$ and $\|\nabla^j \varphi_Q\|_\infty \approx \ell(Q)^{-j}$ for every $j \in \mathbb{N}$. Then we can break (2.5) into local and non-local parts as follows:
\[
\sum_{Q \in \mathcal{W}} \left\| D^\alpha T(f - P_{3Q}^{n-1} f) \right\|_{L^p(Q)}^p \leq \sum_{Q \in \mathcal{W}} \left\| D^\alpha T(\varphi_Q(f - P_{3Q}^{n-1} f)) \right\|_{L^p(Q)}^p
\]
\[+ \sum_{Q \in \mathcal{W}} \left\| D^\alpha T((\chi_\Omega - \varphi_Q)(f - P_{3Q}^{n-1} f)) \right\|_{L^p(Q)}^p
- (1) + (2).
\] (2.6)

First of all we will show that the local term in (2.6) satisfies
\[
(1) - \sum_{Q \in \mathcal{W}} \left\| D^\alpha T(\varphi_Q(f - P_{3Q}^{n-1} f)) \right\|_{L^p(Q)}^p \lesssim \left\| \nabla^n f \right\|_{L^p(\Omega)}^p.
\] (2.7)

To do so, notice that $\varphi_Q(f - P_{3Q}^{n-1} f) \in W^{n,p}(\mathbb{R}^d)$ and, by (2.2) and the boundedness of T in L^p, $D^\alpha T(\varphi_Q(f - P_{3Q}^{n-1} f)) \|_{L^p(Q)} \leq \|T\|_{L^p} D^\alpha(\varphi_Q(f - P_{3Q}^{n-1} f)) \|_{L^p(\Omega)} - C \|D^\alpha(\varphi_Q(f - P_{3Q}^{n-1} f))\|_{L^p(\Omega^d)},$

where $\|\cdot\|_{L^p(\Omega)}$ stands for the operator norm in $L^p(\Omega^d)$. Using first the Leibnitz formula, and then using j times the Poincaré inequality, we get
\[
\|D^\alpha T(\varphi_Q(f - P_{3Q}^{n-1} f))\|_{L^p(Q)} \leq \sum_{j=1}^n \|\nabla^j \varphi_Q\|_{L^1(2Q)} \left\| \nabla^{n-j}(f - P_{3Q}^{n-1} f) \right\|_{L^p(2Q)}
\]
\[\leq \sum_{j=1}^n \frac{1}{\ell(Q)^j} \|f\|_{L^p(2Q)} \left\| \nabla^n (f - P_{3Q}^{n-1} f) \right\|_{L^p(3Q)} - n \left\| \nabla^n f \right\|_{L^p(3Q)}.
\]

Summing over all Q we get (2.7).

For the non-local part in (2.6),
\[
(2) - \sum_{Q \in \mathcal{W}} \left\| D^\alpha T((\chi_\Omega - \varphi_Q)(f - P_{3Q}^{n-1} f)) \right\|_{L^p(Q)}^p
\]
we will argue by duality. We can write
\[
(2)^\frac{1}{2} = \sup_{1 \leq \|\cdot\|_{L^p} \leq 1} \sum_{Q \in \mathcal{W}} \left\| D^\alpha T(\varphi_Q(f - P_{3Q}^{n-1} f)) \right\|_{L^p(Q)} \|g(x)\|_{L^p(\Omega)}.
\] (2.8)
Note that given \(x \in Q \), one has

\[
D^n T[(\chi_N - \varphi_Q)(f - P_{3Q}^{n-1} f)](x) = \int_\Omega D^n K(x - y) (1 - \varphi_Q(y)) \left(f(y) - P_{3Q}^{n-1} f(y) \right) dy.
\]

Taking absolute values, we can bound

\[
|D^n T[(\chi_N - \varphi_Q)(f - P_{3Q}^{n-1} f)](x)| \leq \int_{\Omega} \frac{|f(y) - P_{3Q}^{n-1} f(y)|}{|x - y|^{d+n}} dy
\]

\[
\leq \sum_{S \in \mathcal{W}} \frac{\|f - P_{3Q}^{n-1} f\|_{L^1(S)}}{D(Q,S)^{n+d}}.
\]

(2.9)

We cannot use Poincaré inequality here, but we have

\[
\left\| f - P_{3Q}^{n-1} f \right\|_{L^1(S)} \leq \sum_{P \in [S,Q]} \ell(S)^d D(P,S)^{n-1} \| \nabla^n f \|_{L^1(3P)}.
\]

Proof. Consider the chain function \([Q,S]\) connecting \(Q \) and \(S \) by the shortest hyperbolic path.

\[
\left\| f - P_{3Q}^{n-1} f \right\|_{L^1(S)} \leq \| f - P_{3S}^{n-1} f \|_{L^1(S)} + \sum_{P \in [S,Q]} \left\| P_{3P}^{n-1} f - P_{3N(P)}^{n-1} f \right\|_{L^1(S)}
\]

(2.10)

where we write \(N(P) \) for the next cube in the chain. For every polynomial \(q \in \mathcal{P}^{n-1} \), from the equivalence of norms of polynomials of bounded degree \(\mathcal{P}^{n-1}(Q(0,1)) \) it follows that

\[
\| q \|_{L^1(Q)} \approx \ell(Q)^n \| q \|_{L^\infty(Q)},
\]

and for \(r > 1 \), also

\[
\| q \|_{L^\infty(rQ)} \leq r^{n-1} \| q \|_{L^\infty(Q)},
\]

with constants depending only on \(d \) and \(n \). Applying these estimates to \(q = P_{3P}^{n-1} f - P_{3N(P)}^{n-1} f \) with \(r \approx \frac{D(P,S)}{\ell(P)} \), it follows that

\[
\left\| P_{3P}^{n-1} f - P_{3N(P)}^{n-1} f \right\|_{L^1(S)} \approx \left\| P_{3P}^{n-1} f - P_{3N(P)}^{n-1} f \right\|_{L^\infty(S)} \ell(S)^d
\]

\[
\leq \left\| P_{3P}^{n-1} f - P_{3N(P)}^{n-1} f \right\|_{L^\infty(3P \cap 3N(P))} \frac{\ell(S)^d D(P,S)^{n-1}}{\ell(P)^{n-1}}
\]

\[
\approx \left\| P_{3P}^{n-1} f - P_{3N(P)}^{n-1} f \right\|_{L^1(3P \cap 3N(P))} \frac{\ell(S)^d D(P,S)^{n-1}}{\ell(P)^{n-1} \ell(P)^d}.
\]

Using that and the Poincaré inequality,

\[
\left\| f - P_{3Q}^{n-1} f \right\|_{L^1(S)} \leq \sum_{P \in [S,Q]} \left\| f - P_{3P}^{n-1} f \right\|_{L^1(3P)} \frac{\ell(S)^d D(P,S)^{n-1}}{\ell(P)^{d+n-1}}
\]

\[
\leq \sum_{P \in [S,Q]} \left\| \nabla^n f \right\|_{L^1(3P)} \frac{\ell(S)^d D(P,S)^{n-1}}{\ell(P)^{d-1}}.
\]
Plugging this expression and (2.9) into (2.8), we get
\[
2^{t/2} \leq \sup_{|Q| \leq 1} \sum_{Q \in W} \sum_{P \in S(Q)} \int_Q g(x) \, dx \frac{\ell(S)^d D(P, S)^{n-1} \|\nabla^n f\|_{L^1(3P)}}{D(Q, S)^{d+1}}.
\]
Finally, we use that \(P \in [S, Q]\) implies \(D(P, S) \leq D(Q, S)\) (one can prove that using the Lipschitz condition) to get
\[
2^{t/2} \leq \sup_{|Q| \leq 1} \sum_{Q \in W} \sum_{P \in S(Q)} \int_Q g(x) \, dx \frac{\ell(S)^d \|\nabla^n f\|_{L^1(3P)}}{\ell(P)^{d+1} D(Q, S)^{d+1}}
\]
\[
+ \sup_{|Q| \leq 1} \sum_{Q \in W} \sum_{P \in S(Q)} \int_Q g(x) \, dx \frac{\ell(S)^d \|\nabla^n f\|_{L^1(3P)}}{\ell(P)^{d+1} D(Q, S)^{d+1}}
\]
\[
= 2.1 + 2.2,
\]
where \(Q_S\) and \(S_Q\) are two neighbor cubes of maximal size in this path. We consider first the term 2.1 where \(P \in [S, S_Q]\) and, thus, \(D(Q, S) \approx D(P, Q)\). Rearranging the sum, we have
\[
2.1 \leq \sup_{|Q| \leq 1} \sum_{P \in W} \|\nabla^n f\|_{L^1(3P)} \frac{\int_Q g(x) \, dx}{D(Q, P)^{d+1}} \sum_{S \leq P} \ell(S)^d.
\]
We have
\[
\sum_{S \leq P} \ell(S)^d \approx \ell(P)^d,
\]
and
\[
\sum_{Q \in W} \frac{\int_Q g(x) \, dx}{D(Q, P)^{d+1}} \leq \inf_{x \in \partial P} \frac{Mg(x)}{\ell(P)}.
\]
An analogous argument can be performed with 2.2, leading to
\[
2.1 + 2.2 \leq \sup_{|Q| \leq 1} \sum_{P \in W} \|\nabla^n f\|_{L^1(3P)} \frac{\inf_{x \in \partial P} Mg}{\ell(P)^{d+1}} \ell(P)^d \leq \sup_{|Q| \leq 1} \sum_{P \in W} \|\nabla^n f \cdot Mg\|_{L^1(3P)}
\]
and, by Hölder inequality and the boundedness of the Hardy-Littlewood maximal operator in \(L^p\), the theorem is proved.

2.3 Carleson measures

Theorem 2.2. [ARS02, Theorem 3] Let \(1 < p < \infty\) and let \(\rho(x) = \text{dist}(x, \partial \Omega)^{d-p}\) (a weight on \(\Omega\)), \(\rho_W(Q) - \ell(Q)^{d-p}\) (a weight on the tree \(T\) of Whitney cubes). For a nonnegative measure \(\mu\) on \(\mathcal{T}\), the following statements are equivalent:

i) There exists a constant \(C = C(\mu)\) such that
\[
\|\mathcal{I} h\|_{L^p(\mu)} \leq C \|h\|_{L^p(\rho)}
\]
ii) There exists a constant $C - C(\mu)$ such that for every $P \in \mathcal{W}$ one has
\[
\sum_{Q \subseteq P} \left(\sum_{S \subseteq Q} \mu(S) \right)^{\gamma} \rho_{\mathcal{W}}(Q)^{1-\gamma} \lesssim C \sum_{Q \subseteq P} \mu(Q). \tag{2.11}
\]

iii) For every $a \in \Omega$ one has
\[
\int_{\text{Sh}(a)} \rho(x)^{1-\gamma} \left(\mu(\text{Sh}(x) \cap \text{Sh}(a)) \right)^{\gamma} \frac{dx}{\text{dist}(x, \partial \Omega)^d} \lesssim C \mu(\text{Sh}(a)).
\]

In virtue of [ARS02, Theorem 1], when $d - 2$ and the domain Ω is the unit disk in the plane, the first condition is equivalent to μ being a Carleson measure for the analytic Besov space $B_p(\rho)$, that is, for every analytic function defined on the unit disc \mathbb{D},
\[
\|f\|_{L^p(\rho)}^p \leq \|f\|_{B_p(\rho)}^p - |f(0)|^p + \int_{\mathbb{D}} (1 - |z|^2)^p |f'(z)|^p \rho(z) \frac{dm(z)}{(1 - |z|^2)^d}.
\]

Theorem 2.3. If for every multiindex $|\lambda| < n$
\[
d\mu_\lambda(x) - |\nabla^n T P_\lambda(x)|^p dx
\]
defines a p-Carleson measure, then T is a bounded operator on $W^{n,p}(\Omega)$.

This proof is very much in the spirit of Theorem 1.2. Again we fix a point $x_0 \in \Omega$ and we use the polynomials $P_\lambda(x) - (x - x_0)^\lambda \chi_\Omega(x)$ for every multiindex $|\lambda| < n$, but now the key point is to use the Poincaré inequality instead of the Sobolev Embedding Theorem. Our hypothesis is reduced to $d\mu_\lambda(x) - |\nabla^n T P_\lambda(x)|^p dx$ being a p-Carleson measure for Ω for every $|\lambda| < n$.

Sketch of the proof. Arguing as in the $T(P)$ theorem, we can bound
\[
\sum_{Q \subseteq P} \left\| \nabla^n T (P^{n-1}_Q) \right\|_{L^p(Q)}^p \lesssim \sum_{|Q| \leq n} \sum_{0 \leq \lambda \leq |Q|} \int_{3Q} D^\lambda f \, dm \mu_\lambda(Q),
\]
where $\mu_\lambda(Q) = \|\nabla^n T P_\lambda\|_{L^p(Q)}$.

Subtracting the mean in the central cube Q_0 if necessary, we have $\int_{3Q_0} D^\lambda f \, dm = 0$. Thus,
\[
\int_{3Q} D^\lambda f \, dm = \sum_{P \subseteq Q \cap Q_0} \left(\int_{3P} D^\lambda f \, dm - \int_{3P(P)} D^\lambda f \, dm \right),
\]
and we can use the Poincaré inequality to find that
\[
\sum_{Q \subseteq P} \left\| \nabla^n T (P^{n-1}_Q) \right\|_{L^p(Q)}^p \lesssim \sum_{|Q| \leq n} \sum_{0 \leq \lambda \leq |Q|} \left(\sum_{P \supseteq Q} \ell(P) \int_{3P} \left| \nabla D^\lambda f \right| \, dm \right)^p \mu_\lambda(Q). \tag{2.12}
\]

By assumption, μ_λ is a p-Carleson measure for every $|\lambda| < n$. By Theorem 2.2, we have that, for every $h \in L^p(\rho_{\mathcal{W}})$,
\[
\sum_{Q \subseteq P} \left(\sum_{P \supseteq Q} h(P) \right)^p \mu_\lambda(Q) \lesssim C \sum_{Q \subseteq P} h(Q)^p \ell(Q)^{d-p}, \tag{2.13}
\]
where $\rho_W(Q) - \ell(Q)^{d-p}$.

Let us fix β and λ momentarily and take $h(P) - \ell(P) \int_{5P} |\nabla D^\beta f| \, dm$ in (2.13). Using Jensen’s inequality and the finite overlapping of the quintuple cubes, we have

$$
\sum_{Q \in W} \left(\sum_{P \supseteq Q} \ell(P) \int_{5P} |\nabla D^\beta f| \, dm \right)^p \mu_\lambda(Q) \leq C \sum_{Q \in W} \left(\int_{5Q} |\nabla D^\beta f| \, dm \right)^p \ell(Q)^d
$$

$$
\leq \sum_{Q \in W} \int_{5Q} |\nabla D^\beta f|^p \, dm \ell(Q)^d
$$

$$
\leq \int_{\Omega} |\nabla D^\beta f|^p \, dm,
$$

(2.14)

finishing the proof.

2.4 The converse implication

Sketch of the proof. We are going to perform a duality argument for the case $n = 1$. Recall that our hypothesis is that our operator T bounded in $W^{1,p}(\Omega)$. Then the averaging function A_P is bounded

$$
\|A_P g\|_{W^{1,2}(\Omega)}^2 \leq \|g\|_{L^2(\mu)}^2 - \mu(\text{Sh}(P)).
$$

To get

$$
\sum_{Q \supseteq \text{Sh}(P)} \mu(\text{Sh}(Q))^2 \leq \|A^* g\|_{W^{1,2}(\Omega)}^2 + \text{error terms}
$$

we need to estimate $\|A^* g\|_{W^{1,2}(\Omega)}$ from below.

For $f \in W^{1,2}(\Omega)$

$$
\langle A^*(g), f \rangle = \int_{\Omega} g A(f) \, d\mu - \int_{\Omega} \tilde{g} f \, dx
$$

But using Hilbert structure of $W^{1,2}(\Omega)$, $A^*(g)$ is represented by a function $h \in W^{1,2}(\Omega)$ with

$$
\langle A^*(g), f \rangle = \int_{\Omega} \nabla h \cdot \nabla f - \int_{\partial \Omega} \Delta h f \, dx + \int_{\partial \Omega} \tilde{\partial}_\nu h f \, d\sigma.
$$

Thus, h is the solution of the Neuman problem

$$
\begin{cases}
-\Delta h - \tilde{g} & \text{in } \Omega, \\
\tilde{\partial}_\nu h - 0 & \text{in } \partial \Omega.
\end{cases}
$$

It is well known that

$$
h(x) := N[(R_{d-1}^\nu g_0) d\sigma](x) - N g_0(x).
$$

(2.15)
Claim 2.4. One has
\[
\sum_{Q \in P} \mu(\text{Sh}(Q))^{q'} \ell(Q) \frac{\bar{\alpha}}{\bar{\gamma}} \lesssim \|\partial_{\delta} \|_{L^{q'}(\text{Sh}(P))}^{q'} + \sum_{Q \in P} \int_{Q} \frac{z_{d} - x_{d}}{|x - \frac{x_{d}}{d}|^{q} g(\omega(z))dz} \ dx
\]
\[- \ (1) + (2). \quad (2.16)
\]
Finally, we bound the negative contribution of the \((d-1)\)-dimensional Riesz transform in (2.16), that is we bound \((2)\).

Claim 2.5. One has
\[
(2) - \sum_{Q \in P} \int_{Q} \left(\int_{\{z: z_{d} > x_{d}\}} \frac{z_{d} - x_{d}}{|x - \frac{x_{d}}{d}|^{q} g(\omega(z))dz} \right)^{q'} \ dx \lesssim \mu(\text{Sh}(P)). \quad (2.17)
\]

References

