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Abstract. The mapping class group Mg,1 of an oriented surface Σg,1

of genus g with one boundary component has a natural decreasing fil-

tration Mg,1 ⊃ Mg,1(1) ⊃ Mg,1(2) ⊃ Mg,1(3) ⊃ · · · , where Mg,1(k)

is the kernel of the action of Mg,1 on the kth nilpotent quotient of

π1(Σg,1). Using a tree Lie algebra approximating the graded Lie al-

gebra ⊕kMg,1(k)/Mg,1(k + 1) we prove that any integral homology

sphere of dimension 3 has for some g a Heegaard decomposition of the

form M = Hg
‘

ιgφ−Hg , where φ ∈ Mg,1(3) and ιg is such that

Hg
‘

ιg
−Hg = S3. This proves a conjecture due to S. Morita [11] and

shows that the ”core” of the Casson invariant introduced in [11] is indeed

the Casson invariant.

1. Introduction

In the early 80’s, A. Casson succeeded to lift the classical Rohlin invariant

of integral homology 3-spheres, which is Z/2Z-valued, to a Z-valued invariant.

Later S. Morita [11] used the theory of Heegaard splittings combined with

techniques from group cohomology to give a new construction of this invari-

ant related to algebraic properties of the mapping class group of an oriented

surface.

More precisely, let Σg be a closed oriented surface of genus g. For technical

reasons, fix a small disc D2 on Σg and consider the mapping class group Mg,1,

i.e. the group of orientation preserving diffeomorphisms of Σg which are the
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identity on D2 modulo isotopies which are also the identity on D2. Let h :

Σg → S3 be a fixed Heegaard embedding of S3, and for φ ∈ Mg,1 let S3
φ

denote the manifold obtained by cutting S3 along h(Σg) and gluing back the

two pieces by a map representing φ. It is a classical fact ([7], chap. 8) that the

diffeomorphism class of S3
φ is well-defined, and that any diffeomorphism class

of closed oriented 3-manifolds can be obtained in this way.

The mapping class group has a natural filtration by normal subgroups,

called the Johnson filtration : · · ·Mg,1(k + 1) ⊂ Mg,1(k) ⊂ · · ·Mg,1, and

it is a natural question to try to relate this filtration to the theory of Heegaard

splittings. For instance, if we restrict the map φ 7→ S3
φ to the group Mg,1(1),

also called the Torelli group, what we get are exactly the integral homology

3-spheres S(3). In [11] S. Morita proved that the elements of Mg,1(2) suffice

to obtain the whole set S(3). Then he proved that the composite of the map

Mg,1(2) → S(3) with the Casson invariant S(3) → Z, is a homomorphism

of groups, and moreover that it is the sum of two morphisms d and q. The

first morphism d, which is related to cohomological properties of the mapping

class group [16], was called by S. Morita “the core of the Casson invariant”,

the second term q appeared as a correcting term and was shown by S. Morita

to vanish on the subgroup Mg,1(3). Therefore he asked if this latter group

suffices to construct all integral homology spheres. The purpose of this paper

is to give an affirmative answer to this question :

Main Theorem. Any integral homology sphere is diffeomorphic to S3
φ for

some φ ∈Mg,1(3) with g ≥ 9.

Our starting point is a classical theorem of Singer. Roughly speaking it

asserts that the sentence “the manifolds S3
φ and S3

ψ are diffeomorphic” can

be algebraically translated as “the mapping classes φ and ψ lie in the same

double coset in Ag+h,1\Mg+h,1/Bg+h,1 for all sufficiently large h ”, where the

subgroups Ag,1 and Bg,1 are known. Unfortunately, this algebraic statement

is difficult to handle in practice. Therefore, we first construct an injective
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Figure 1. The torus H1,2

homomorphism τ̃2 from Mg,1(2)/Mg,1(3) to a commutative group A2(N1).

By commutativity, to check that an element in Mg,1(2) is equivalent to some

element in Mg,1(3) it suffices then to prove that τ̃2(φ) belongs to the subgroup

Can(A2(N1)) ⊂ A2(N1) generated by the images of (Mg,1(2)∩Ag,1)/Mg,1(3)

and (Mg,1(2) ∩ Bg,1)/Mg,1(3).

This paper is organised as follows. In section 2 we have compiled some

standard facts about mapping class groups, the Johnson filtration and Hee-

gaard decompositions. In section 3 we introduce Lie algebra structures on

the graded group ⊕kMg,1(k)/Mg,1(k + 1) and on the natural target of the

Johnson’s homomorphisms ⊕kDk(N1). We also introduce a graded injective

homomorphism ⊕k τ̃k : ⊕kDk(N1) → ⊕kAk(N1) into a Lie algebra of labelled

trees. In section 4 we give some properties of the group Can(A2(N1)), in par-

ticular we study its invariance under some natural actions. The final section 5

is devoted to the proof of the main theorem.

2. Preliminaries

2.1. Johnson’s homomorphisms. Let H1,2 be an oriented solid torus with

two small discs D2
1 and D2

2 on its boundary intersecting in one point x0, and

fix two based loops on the boundary: a parallel α and a meridian β, as in

Figure 1.
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Figure 2. Model for Σg,1

Gluing g copies of H1,2 by identifying (D2
2, x0) on copy i to (D2

1, x0) on copy

i + 1 we get an oriented genus g handlebody Hg with a small disc D2 on its

surface (the D2
2 of the gth term of the sum). Let Σg denote the boundary of

Hg, and Σg,1 = Σg\
◦
D2, these two oriented surfaces are naturally pointed by

x0. By construction the 2g curves αi, βi (see Figure2), which are the images of

the different curves α and β, are free generators of the free group π1(Σg,1, x0).

Consider the central series of the fundamental group π1(Σg,1, x0), induc-

tively defined by Γ0 = π1(Σg,1, x0), and ∀k ≥ 1 Γk+1 = [Γk,Γ0]. Denote

by Nk the nilpotent quotient Γ0/Γk. For instance N1 is isomorphic to the

abelianization of π1(Σg,1, x0).

Let Mg,1 denote the group of isotopy classes of diffeomorphisms which fix

D2 point-wise modulo isotopies which also fix D2 point-wise, also called map-

ping class group. Note that as they fix D2 these mapping classes preserve the

orientation.

The natural action of Mg,1 on π1(Σg,1, x0) was described by Nielsen ([13],

[14], [15]) :

Theorem 2.1. The canonical morphism

Mg,1 −→ Aut(π1(Σg,1, x0))

is injective. Its image consists of those automorphisms which fix
g∏

i=1

[αi, βi].
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As the commutator subgroups Γk are preserved by any automorphism of

π1(Σg,1, x0), the above action induces a family of compatible morphisms :

Mg,1

²² %%KKKKKKKKKK

AutNk+1
// AutNk.

There is a canonical surjection Nk+1 −→ Nk whose kernel Lk+1 is known

to be the centre of Nk+1 ([10] p. 343). As the centre of a group is preserved

by any automorphism one can prove (cf. [17]) that the central extension

0 −→ Lk+1 −→ Nk+1 −→ Nk −→ 1,

induces an exact sequence

0 −→ Hom(N1,Lk+1) −→ Aut(Nk+1) −→ Aut(Nk) −→ 1.

Let Mg,1(k) denote the kernel of the canonical homomorphism Mg,1 −→
Aut(Nk). We have an induced morphism, called the Johnson homomorphism

τk : Mg,1(k) −→ Hom(N1,Lk+1). Explicitly, τk(f) is given as follows :

If c ∈ N1 lifts to γ ∈ π1(Σg,1, x0), then

τk(f)(c) = f(γ)γ−1 mod Γk+1.

The mapping class group acts on the kernels Mg,1(k) by conjugation and on

Hom(N1,Lk+1) through the conjugation action by Aut(Nk+1). These actions

are obviously compatible, so that :

Proposition 2.1. The collection of Johnson homomorphisms reassemble into

a monomorphism of graded groups and Mg,1-modules

⊕k≥1τk : ⊕k≥1Mg,1(k)/Mg,1(k + 1) −→ ⊕k≥1Hom(N1,Lk+1).

Recall that the algebraic intersection of closed paths on π1(Σg,1, x0) induces

a symplectic form ω : Λ2N1 → Z, where we identify N1 with H1(Σg,1) via

the Hurewicz homomorphism. The image of the free basis α1, β1 . . . αg, βg in

N1 is a symplectic basis a1, b1 . . . ag, bg for ω and the image of the canonical
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morphism Mg,1 → AutN1 is known to be the associated symplectic group Spω

(see [10] p. 178, the proof for the one boundary component case is the same).

In the sequel we will denote the two Lagrangians generated by {ai | 1 ≤ i ≤ g}
and {bi | 1 ≤ i ≤ g} respectively by LA and LB . By definition we have a

decomposition by ω-dual Lagrangians N1 = LA ⊕ LB .

2.2. Heegaard splittings. Let V(3) denote the set of all diffeomorphism

classes of closed oriented 3-manifolds and S(3) the subset of all integral ho-

mology spheres. By virtue of the classical theorem of Heegaard splittings, one

can describe these two sets as the direct limit of a system of double cosets of

mapping class groups.

Our inductive construction Hg+1 = Hg]H1,2 makes Σg,1 a canonical sub-

surface of Σg+1,1, thus extending an orientation preserving diffeomorphism

of Σg,1 by the identity over its complement we get a well defined morphism

Mg,1 −→Mg+1,1 compatible with the action on the fundamental group. The

Nielsen theorem implies that this morphism is injective.

Consider the following morphism :

ι̃g : π1(Σg,1, x0) −→ π1(Σg,1, x0)

αi 7−→ β−1
i

βi 7−→ βiαiβ
−1
i .

It fixes (
∏g
i=1[αi, βi]) and so corresponds to an orientation preserving dif-

feomorphism Σg,1 → Σg,1. Let ιg : Σg,1 → −Σg,1 be the composite −Id ◦ ι̃g
where −Σg,1 denotes the surface Σg,1 with opposite orientation.

Lemma 2.1. The oriented manifold Hg qιg −Hg obtained by identifying the

boundaries of Hg and −Hg via ιg is diffeomorphic to S3. Here −Hg denotes

Hg with opposite orientation.
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Proof. Almost by definition ι̃g+1 = ι̃g]ι̃1, so Hg

∐
ιg
−Hg is diffeomorphic to

the connected sum of g copies of H1

∐
ι1
−H1. The diffeomorphism ι̃1 ex-

changes the meridian α and the parallel β and it is well known that this

construction yields S3. Q. E. D.

Therefore we have a map Mg,1 → V(3), given by φ 7→ S3
φ = Hg

∐
ιg◦φ−Hg,

which is compatible with the monomorphisms Mg,1 →Mg+1,1, thus yielding

a well defined and surjective map

lim
g→+∞

Mg,1 −→ V(3).

Note that as we identify S3 with Hg

∐
ιg
−Hg the surface Σg becomes the

common boundary of the two solid handlebodies Hg, and −Hg. Denote the

image of the restriction maps Diff(Hg, rel. D2) −→ Diff(Σg, rel. D2) and

Diff(−Hg, rel. D2) −→ Diff(Σg, rel. D2) in Mg,1 respectively by Bg,1 and

Ag,1. It is easily seen that Ag,1 = ι−1
g Bg,1ιg.

Definition 1. Two mapping classes φ, ψ ∈ Mg,1 will be called equivalent,

denoted by φ ≈ ψ, if there exists fa ∈ Ag,1 and fb ∈ Bg,1 such that φ =

fa ◦ ψ ◦ fb. This is equivalent to say that φ and ψ lie in the same double coset

in Ag,1\Mg,1/Bg,1.

The relation ≈ is clearly an equivalence relation. It is a classical fact that if

φ ≈ ψ then S3
φ is diffeomorphic to S3

ψ (cf. [7] chap. 8). Moreover two equivalent

maps in Mg,1 are also equivalent when considered as maps in Mg+1,1. The

key result in the theory of Heegaard splittings is :

Theorem 2.2. The map

lim
g→+∞

Mg,1/≈ −→ V(3)

φ 7−→ S3
φ

is bijective.
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For historical proofs of this theorem we refer the reader to Redemeister [18]

or Singer [19]. For a shorter proof see for instance Craggs [2]. The historical

proofs of this theorem by are somewhat obscure, for a modern proof

Using the Mayer-Vietoris sequence one can prove that the image of the

restriction of this map to the equivalence classes of maps inMg,1(1) is precisely

S(3). This result was refined by S. Morita who proved :

Theorem 2.3. [11] The map

lim
g→+∞

Mg,1(2)/≈ −→ S(3)

is a bijection.

Remark 2.1. In the above theorem Mg,1(2)/ ≈ stands for the equivalence

classes under the equivalence relation ≈ restricted to Mg,1(2). In particular if

φ ∈ Mg,1(2) and ψ ∈ Mg,1(2) are equivalent, that is φ = fa ◦ ψ ◦ fb for some

(fa, fb) ∈ Ag,1 × Bg,1, we do not require fa nor fb to belong to Mg,1(2).

Our aim is to prove that the theorem still holds when we replace Mg,1(2)

by Mg,1(3), to do so we first need to enrich the structure of the Johnson

homomorphisms.

3. A Lie algebra approximating the mapping class group

Both graded groups ⊕k≥1Mg,1(k) and ⊕k≥1Hom(N1,Lk+1) have natural

structures of graded Lie algebras, that these structures are compatible with

the Johnson homomorphism was first observed by S. Morita in [12]. Let us

briefly recall the involved structures, for the details we refer the reader to [12].

The Lie algebra structure on ⊕k≥1Mg,1(k) is induced by the commutator

bracket f, g 7→ [f, g] = f ◦ g ◦ f−1 ◦ g−1, and it is clearly compatible with the

action by Mg,1.

The algebra ⊕k≥1Lk+1 is the graded subalgebra of elements of degree k ≥ 2

in the free graded Lie algebra L generated by N1. Recall that a derivation of

a Lie algebra L is a homomorphism of abelian groups d : L → L, such that
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for any u, v ∈ L, d([u, v]) = [d(u), v] + [u, d(v)]. A derivation of a graded Lie

algebra is graded of degree s if for all k ≥ 0 d(Lk) ⊂ Lk+s. In particular,

the abelian group of graded derivations of degree ≥ 1 of L is isomorphic to

⊕k≥1Hom(N1,Lk+1) (note that by definition an element f ∈ Hom(N1,Lk+1)

is of degree k). There is a natural graded product on the group of graded

derivations :

Definition 2. Let f and g be two derivations of degree k and l, then f{g} is

the unique derivation of degree k+l given by f{g}(u) = f(g(u)) for all u ∈ N1.

The anti-symmetrisation of this product [f, g] = f{g} − g{f} induces a Lie

bracket and in our case it is compatible with the action of Mg,1, as was proved

by S. Morita.

Recall that we have a symplectic form ω : Λ2N1 → Z, as usual this form

induces an isomorphism of Spω-modules

N1 → Hom(N1,Z)

a 7→ (b ; ω(a, b)).

This in turn induces isomorphisms of Spω-modules Hom(N1,Lk+1) ' N1 ⊗
Lk+1. Let Dk(N1) be the kernel of the Lie bracket N1 ⊗ Lk+1

[ , ]→ Lk+2.

Denote by θ =
∑g
i=1 ai∧ bi ∈ L2 the class of

∏g
i=1[αi, βi]. A typical derivation

φ ∈ Hom(N1,Lk), such that φ(ai) = lai and φ(bi) = lbi sends θ to φ(θ) =
∑g
i=1[lai , bi] + [ai, lbi ]. In particular D(N1) = ⊕∞k=1Dk(N1) is the sub-Lie

algebra of ⊕k≥1Hom(N1,Lk+1) of elements that send θ to 0. As Mg,1 fixes
∏g
i=1[αi, βi], the images of the Johnson homomorphisms lie in D(N1).

Theorem 3.1 ([12]). The Johnson homomorphisms reassemble into a graded

monomorphism of graded Lie algebras and Mg,1-modules :

⊕k≥1τk : ⊕k≥1Mg,1(k)/Mg,1(k + 1) −→ ⊕k≥1Dk(N1).

Moreover, the two structures are mutually compatible.

By definition ofD(N1) the action ofMg,1 factors through Spω and therefore

it is also the case for the action on ⊕k≥1Mg,1(k)/Mg,1(k + 1).
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3.1. Interpretation by tree Lie algebras. The Lie algebra D(N1) is still

difficult to handle for explicit computations. To overcome this problem we em-

bed it into a Lie algebra generated by uni-trivalent trees, labelled by N1. Most

of the material in this paragraph is known, we refer the interested reader to

Levine’s paper [9] for a more detailed investigation of the relationship between

D(N1) and tree Lie algebras. Nevertheless we will give a somewhat extended

discussion as our proof makes full use of the involved structures.

In the sequel a tree will always mean a finite, uni-trivalent tree equipped

with a cyclic ordering of its trivalent vertices. Recall that a uni-trivalent tree is

a tree whose vertices are all of index one or three. Unless otherwise specified,

the trivalent vertices of the trees we draw are oriented according to the usual

trigonometric orientation of the plane. A rooted tree is a tree with a distin-

guished univalent vertex called the root and represented by ∗. A labelled tree

with labels in the set E is a tree T together with a function l : V1(T ) → E,

where V1(T ) stands for the set of univalent vertices excepting the root in case

T is rooted. The label of the univalent vertex x will be denoted by lx.

Definition 3. Let A(N1) (resp. Ar(N1)) denote the free abelian group gen-

erated by the uni-trivalent, oriented (resp. rooted) trees with labels in N1,

modulo multi-linearity with respect to the labels, and the relations IHX, AS

and “T ∧ T = 0” of Figure 3.

In relation “T ∧ T = 0”, S may be either a tree, a label or the root.

Remark 3.1. Usually (cf. [1] [5]), the third relation is omitted as it is a

consequence of the previous one when multiplication by two is an isomorphism

on the group of labels, e.g. when N1 is replaced by N1 ⊗Q.

Both groups Ar(N1) and A(N1) are naturally graded by the internal degree

of trees, that is the number of trivalent vertices in a tree. In the case of A(N1),

we will only consider the subgroup of elements of degree at least 1, and still

denote it by A(N1). The following Proposition is well-known :
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0
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T T

T ∧ T

Figure 3. Relations among trees

A B A B

∗∗ ∗

Figure 4. Lie bracket in Ar(N1)

Proposition 3.1. The bracket in Figure 4 endows Ar(N1) with a graded Lie

algebra structure, compatible with the action of Spω. As Ar0(N1) ' N1, there

is a canonical epimorphism of graded Lie algebras and Spω-modules L −→
Ar(N1), which is in fact an isomorphism.

In the sequel we identify the graded Lie algebras L and Ar(N1). There is a

fundamental operation on trees given by gluing two univalent vertices of two

distinct trees. Consider two trees S and T , where S is not rooted but T may

be, and choose two univalent vertices x ∈ V1(S) and w ∈ V1(T ) (recall that by

definition the root ∗ does not belong to V1(T )). We forget the labelling and

glue these two vertices to get a new labelled tree S−xw−T , naturally rooted

if T was. This gluing operation satisfies :

(1) Symmetry :

S − xw − T = T − wx− S.
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(2) Associativity : If at least two of the three trees S, T , R are non-rooted

S − xw − (T − vy −R) = (S − xw − T )− vy −R.

Extending by linearity, this allows to define :

(1) A bracket on A(N1), which is given on trees by :

[S, T ] =
∑

x,y∈V1(S)×V1(T )

ω(lx ∧ ly)S − xy − T.

(2) A natural graded linear action of A(N1) on Ar(N1), which is given on

trees by :

S{T} =
∑

x,y∈V1(S)×V1(T )

ω(lx ∧ ly)S − xy − T.

It is readily seen from the definition that this is an action by graded deriva-

tions of degree at least 1. We call the resulting linear map :

A(N1) −→ ⊕k≥1Hom(N1,Lk+1) ' N1 ⊗⊕k≥1Lk+1

the expansion map. On a tree T ∈ Ak(N1) the expansion map is given by :

T 7−→ ∑
x∈v1(T ) lx ⊗ T x,

where T x denotes the tree T rooted by its vertex x.

In fact more is true, namely the above bracket is a Lie bracket and turns

the expansion map into a Lie algebra homomorphism. This was first observed

by Garoufalidis and Levine [3] for trees labelled by N1 ⊗ Q. The proof is

straightforward, for the details we refer the interested reader to [6].

Theorem 3.2. • The bracket on A(N1) induces a graded Lie algebra

structure compatible with the action of Spω on the labels.

• The expansion map induces a graded homomorphism of Lie algebras

and Spω-modules. Its image is contained in D(N1).
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In degree 1 the expansion map is an isomorphism, the group D1(N1) is

isomorphic to Λ3N1, and the expansion map is given by :

A1(N1) −→ D1(N1) = Λ3N1

u

77
7

¨̈
¨

wv

7−→ u ∧ v ∧ w.

In higher degrees the expansion map is no more an isomorphism. Nevertheless

there is still a linear homomorphism D(N1) → A(N1) which is an inverse after

taking tensor product with the rationals. It is compatible with the Spω-action

but not with the Lie bracket.

Recall that for each k ≥ 1 Hom(N1,Lk+1) ' N1 ⊗ Lk+1 as an Spω-

module. Moreover we have identified Lk+1 with Ark+1(N1). Therefore we view

Dk(N1) ⊂ Hom(N1,Lk+1) as an Spω-submodule of N1 ⊗ Ark+1(N1). To each

elementary tensor u⊗ T ∈ N1 ⊗Ark+1(N1) we associate the tree Tu ∈ Ak(N1)

which is obtained by labelling the root of T by u. Extending by linearity we

get the “labelling map”, Lab : N1 ⊗Ark+1(N1) −→ Ak(N1).

Lemma 3.1. (1) For any k ≥ 1, the composite

Ak(N1)
expan.

// Dk(N1)
Lab // Ak(N1)

is multiplication by k + 2.

(2) The Labelling map Lab : Dk(N1) −→ Ak(N1) is injective.

Proof. (1) A direct computation shows that the image of a tree T ∈ Ak+1(N1)

inN1⊗Lk+1 is
∑
x∈V1(T ) lx⊗T x so that the compositeAk(N1) −→ Dk(N1) −→

Ak(N1) sends T to (k + 2)T .

(2) Multiplication by k + 2 certainly induces an isomorphism after tensori-

sation by the rationals. In [5] it is proved that the expansion map is also

an isomorphism after tensorisation by the rationals. It follows that the map

Lab⊗Q is an isomorphism. Consider the following commutative diagram :
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Dk(N1)
Lab //

²²

Ak(N1)

²²
Dk(N1)⊗Q

Lab⊗Q
// Ak(N1)⊗Q.

The group Dk(N1) is free abelian as it is a subgroup of the free abelian group

Hom(N1,Lk+1). In particular the left vertical arrow is an injection. The bot-

tom arrow is an isomorphism. In particular it is injective. By commutativity

of the diagram the composite Dk(N1)
Lab.→ Ak(N1) → Ak(N1)⊗Q is therefore

injective, and we may conclude that the labelling map is injective. Q. E. D.

4. The group Can(A2(N1))

We focus on the low degree Johnson homomorphisms. In the preceding

sections we have constructed homomorphisms that fit into a commutative di-

gram :

Mg,1(3) Â Ä // Mg,1(2) // //

τ2

''PPPPPPPPPPP
Mg,1(2)/Mg,1(3)

_Ä

²²
D2(N1)

Â Ä Lab // A2(N1).

Moreover, all arrows are Mg,1-equivariant and the action of Mg,1 on the three

rightmost groups factors through Spω.

From now on we denote the composite Lab ◦ τ2 by τ̃2. We denote by

Ag,1(k) (respectively Bg,1(k)) the subgroup Ag,1∩Mg,1(k) (respectively Bg,1∩
Mg,1(k)). By definition Ag,1(k) (resp. Bg,1(k)) is normal in Ag,1 (resp. Bg,1).

Definition 4. Let Can(A2(N1)) denote the subgroup of A2(N1) generated by

τ̃2(Ag,1(2)) and τ̃2(Bg,1(2)). It is the subgroup of cancelable trees.

The study of this group is justified by the next proposition.

Proposition 4.1. If τ̃2(Mg,1(2)) ⊂ Can(A2(N1)), then for any mapping class

φ ∈ Mg,1(2) there exists a mapping class ψ ∈ Mg,1(3) such that φ ≈ ψ (cf

Definition 1), that is : S3
φ is diffeomorphic to S3

ψ.
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Proof. By definition of Can(A2(N1)) there exist elements φa ∈ Ag,1(2) and

φb ∈ Bg,1(2) such that τ̃2(φ) = τ̃2(φa) + τ̃2(φb). Setting ψ = φ−1
a ◦ φ ◦ φ−1

b , we

have that ψ ∈Mg,1(3) and ψ ≈ φ. Q. E. D.

To fully exploit this proposition, we need first to have a description of a

large class of elements in Can(A2(N1)) and second to have a description of the

image of τ̃2 : Mg,1(2) → A2(N1).

4.1. Some families of elements in Can(A2(N1)).

4.1.1. Elements arising from bounding simple closed curves. A bounding sim-

ple closed curve γ, BSCC for short, is a simple closed curve such that Σg,1−{γ}
has two connected components. One of the components of Σg,1−{γ}, denoted

by Σh,γ , is a surface with only one boundary component, which we may iden-

tify with γ. The genus of γ or the genus of the Dehn twist Tγ is the genus h

of Σh,γ . This terminology was introduced by Johnson, who proved :

Proposition 4.2. [8] The group Mg,1(2) is generated by the Dehn twists

around BSCC.

There is a very nice, algebraic characterisation of the subgroups Ag,1 and

Bg,1 due to Griffiths [4]. Choose a map φ ∈ Bg,1. Then φ is the restriction

of some diffeomorphism Φ : Hg → Hg, and we can assume that Φ(x0) = x0,

where x0 is the common base point of Σg,1 and Hg. The inclusion Σg,1 ⊂ Hg

induces a surjective homomorphism π1(Σg,1, x0) → π1(Hg, x0), its kernel is the

normal subgroup generated by the set of curves {βi}1≤i≤g. As φ is the restric-

tion of Φ, π1(φ) induces a morphism on π1(Hg, x0), in fact it induces precisely

π1(Φ). Therefore, π1(φ) preserves the kernel of π1(Σg,1, x0) → π1(Hg, x0). It

turns out that this last property characterises the group Bg,1 :

Proposition 4.3. [4] An element in Mg,1 is in Bg,1 (resp. Ag,1), if and

only if it preserves the normal subgroup of π1(Σg,1, x0) generated by the set

{βi}1≤i≤g (resp. {αi}1≤i≤g), which is the kernel of the canonical morphism

π1(Σg,1, x0) → π1(Hg, x0) (resp. π1(Σg,1, x0) → π1(−Hg, x0)).
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We are now ready to describe our first family :

Proposition 4.4. Let γ be a simple closed curve on Σg,1 which is contractible

in Hg, then Tγ belongs to Bg,1. In particular if γ is a BSCC, then τ̃2(Tγ)

belongs to Can(A2(N1)). Similarly, if γ ∈ Σg,1 is contractible in −Hg, then

Tγ ∈ Ag,1, and if γ is moreover a BSCC, then τ̃2(Tγ) ∈ Can(A2(N1)).

Proof. By Griffiths’ result, Proposition 4.3, it is enough to prove that ∀ 1≤
i≤g, Tγ(βi) ∈ ker(π1(Σg,1, x0) → π1(Hg, x0)). As βi belongs to the kernel, it

is enough to prove that Tγ(βi) is homotopic to βi in Hg. Up to homotopy the

curves γ and βi meet transversally in a finite number of points x1, . . . , xs. For

each 1≤ j≤s consider γ as a based loop at xj , and choose a based homotopy

Hj : S1× [0, 1] → Hg between γ and the constant loop at xj . This is possible

since γ is contractible in Hg by assumption. These homotopies reassemble into

a homotopy between Tγ(βi) and βi.

If γ is a BSCC, then according to Johnson , Tγ belongs also to Mg,1(2).

Q. E. D.

Remark 4.1. There is an easy way to produce a BSCC of genus 1 in Σg,1.

Consider two simple closed curves λ and µ intersecting exactly in one point on

Σg,1. A tubular neighbourhood of the union λ∪µ is a subsurface of genus 1 in

Σg,1, its boundary δ is the desired BSCC of genus 1. If [λ], [µ] ∈ N1 are the

homology classes of the curves λ and µ, then the image of Tδ in A2(N1) is the

tree

2
[µ]

[λ]

[λ]

[µ]
.

The last assertion follows from a direct computation in the case λ = α1 and

µ = β1 together with the fact that Mg,1 acts transitively on the pairs of simple

closed curves intersecting exactly in one point.

In the sequel, when producing a BSCC of genus 1, we will only draw the

two curves λ and µ, and label them by their homology class. The curves {λ, µ}
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are usually called the spine of the sub-surface, as we focus on the boundary we

call {λ, µ} the spine of the boundary.

4.1.2. Elements arising from commutators. Our second family is more alge-

braic in nature, it comes from commutators of pairs of elements both sitting

in Ag,1(1) or in Bg,1(1).

Recall that we have an isomorphism A1(N1) ' Λ3N1 induced by the ex-

pansion map. According to S. Morita, the images of both τ1(Bg,1(1)) and

τ1(Ag,1(1)) have a very simple characterisation in Λ3N1 ' A1(N1).

Proposition 4.5. [11] A tree
c

77
7

¨̈
¨

ed

represents an element of τ1(Ag,1(1))

(resp. Bg,1(1)) if and only if at least one of its labels belongs to the Lagrangian

LA (resp. LB).

Corollary 4.1. The group τ̃2([Ag,1(1),Ag,1(1)]) (resp. τ̃2([Bg,1(1),Bg,1(1)]))

is generated by the brackets

4




c

77
7

¨̈
¨

ed

,

f

77
7

¨̈
¨

hg


 ,

where at least one of the labels {c, d, e} and one of the labels {f, g, h} are in

the Lagrangian LA (resp. LB).

Proof. As the Johnson homomorphism defines a Lie algebra homomorphism

we have τ2([Bg,1(1),Bg,1(1)]) = [τ1(Bg,1(1)), τ1(Bg,1(1))], whence the condition

on the labels. This subgroup is obviously contained in A2(N1) ⊂ D2(N1) and

as the composite A2(N1) ↪→ D2(N1) → A2(N1) is multiplication by 4 we get

the factor 4 in front of the bracket. Q. E. D.

4.1.3. Invariance properties of Can(A2(N1)). From the above two families of

cancelable trees it is easy to construct more cancelable trees by making use of

the elements in Mg,1 that preserve the group Can(A2(N1)).
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In Lemma 2.1 we introduced a mapping class ιg ∈ Mg,1 such that S3 =

Hg

∐
ιg
−Hg and we remarked that Ag,1 = ι−1

g Bg,1ιg. By equivariance of the

map τ̃2, the group Can(A2(N1)) is invariant under the action of ιg.

In the same spirit, if φ ∈ Ag,1(2) and Φ ∈ Ag,1 then Φ·τ̃2(φ) = τ̃2(ΦφΦ−1) ∈
Can(A2(N1)), because Ag,1(2) is normal in Ag,1. The same result holds for

Bg,1(2).

If T ∈ Can(A2(N1)) and Φ ∈ Ag,1∩Bg,1 then Φ·T ∈ Can(A2(N1)). Indeed,

by definition of Can(A2(N1)), we can decompose T into a sum T = Ta + Tb,

where Ta ∈ τ̃2(Ag,1(2)) and Tb ∈ τ̃2(Bg,1(2)) and then apply the preceding

remarks to Ta and Tb.

Recall that the action of Mg,1 on A2(N1) factors through Spω, so to fully

exploit the preceding theorem we need to know the images of Ag,1, Bg,1 and

ιg in Spω.

The action of ιg is easy to deduce from its action in homology which is given

by : ι(ai) = −bi and ι(bi) = ai, for all 1 ≤ i ≤ g.

In [20] Suzuki describes generators for the group Bg,1 and therefore for

Ag,1 = ιgBg,1ι−1
g , their action on the basis {ai, bi}1≤i≤g of N1 is summarised

in the following table (if an element of the basis is omitted, it is fixed under

the action). The names of the generators are those given by Suzuki.
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Common generators to Ag,1 and Bg,1 Action on the basis of N1

Twist of the knob i ai → −ai
bi → −bi

Exchange of knobs i and j ai ↔ aj

bi ↔ bj

Generators of Ag,1 alone Action on the basis of N1

A-twist of the i handle bi → bi − ai

Sliding θA,i,j ai → ai + aj

bj → bj − bi

Sliding ξA,i,j bi → bi − aj

bj → bj − ai

Generators of Bg,1 alone Action on the basis of N1

B-twist of the i handle ai → ai − bi

Sliding θB,i,j ai → ai − aj

bj → bj + bi

Sliding ξB,i,j ai → ai − bj

aj → aj − bi

It is a standard fact that the subgroup of the elements of Spω that respect

the orthogonal decompositionN1 = LA⊕LB is naturally isomorphic to GLg(Z).

In particular, if P denotes the canonical projection P : Mg,1 → Spω, we have

P (Ag,1) ∩ P (Bg,1) ⊂ Glg(Z). The “sliding” and the “twists of the knobs”

morphisms hit the standard generators of Glg(Z), therefore :

Lemma 4.1. In Spω we have Glg(Z) = P (Ag,1) ∩ P (Bg,1).

Summarising, we have :

Theorem 4.1. The group Can(A2(N1)) is invariant :

(1) Under the action of ιg.

(2) Under the action of Glg(Z) = P (Ag,1) ∩ P (Bg,1).
(3) If T ∈ Can(A2(N1)) is contained in τ̃2(Ag,1(2)), then for all Φ ∈ Ag,1

Φ · T ∈ Can(A2(N1)).
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(4) If T ∈ Can(A2(N1)) is contained in τ̃2(Bg,1(2)), then for all Φ ∈ Bg,1
Φ · T ∈ Can(A2(N1)).

4.2. The image of τ̃2 : Mg,1(2) → A2(N1). Here is a stronger version of

Proposition 4.2, also due to Johnson.

Theorem 4.2. [8] For g ≥ 3, the group Mg,1(2) is generated by the Dehn

twists around BSCC of genus 1 and 2.

The mapping class group acts naturally on the set of simple closed curves,

two BSCC are in the same orbit if and only if they have the same genus. It

follows easily from this that two Dehn twists around BSCC are conjugated in

Mg,1 if and only if they have the same genus. Therefore Mg,1(2) is generated

by the conjugates of any two Dehn twists Tγ1 and Tγ2 of genus 1 and 2 respec-

tively and τ̃2(Mg,1(2)) is generated by the orbits of τ̃2(Tγ1) and τ̃2(Tγ2) under

the action of Mg,1. The algebraic version, in terms of trees, of these results is

given by :

Theorem 4.3. The image of τ̃2 in A2(N1) is the Mg,1-module generated by

the elements of the form

2
v

u

u

v

with ω(u ∧ v) = 1

4
v1

u1

u2

v2

with ω(ui ∧ vj) = δij and ω(u1 ∧ u2) = 0 = ω(v1 ∧ v2).

Proof. We choose as curves γ1 and γ2 the curves of genus 1 and 2 parallel to

the boundary as in Figure 5.

A direct computation shows that Tγ1 acts on α1, β1 ∈ π1(Σg,1) as the conju-

gation by [α1, β1], and leaves the other generators αi, βi 2 ≤ i ≤ g unchanged.
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γ2γ1

Figure 5. Curves γ1 and γ2

By definition of our maps,

τ2(Tγ1) = a1 ⊗ [b1, [a1, b1]] + b1 ⊗ [a1, [b1, a1]],

and

τ̃2(Tγ1) = 2
b1

a1

a1

b1

.

The orbit of this last element is clearly the set of trees of the form 2
v

u

u

v

such that ω(u ∧ v) = 1.

Similarly, writing down the action of Tγ2 on curves α1, β1, α2, β2 one gets :

τ2(Tγ2) = b1 ⊗ [a1, [b1, a1]] + b1 ⊗ [a1, [b2, a2]] +

a1 ⊗ [b1, [a1, b1]] + a1 ⊗ [b1, [a2, b2]] +

b2 ⊗ [a2, [b1, a1]] + b2 ⊗ [a2, [b2, a2]] +

a2 ⊗ [b2, [a1, b1]] + a2 ⊗ [b2, [a2, b2]],

and :

τ̃2(Tγ2) = 2
b1

a1

a1

b1

+ 4
b1

a1

a2

b2

+ 2
b2

a2

a2

b2

.
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The orbit of this element gives, up to elements coming from the orbit of τ̃2(Tγ1),

all trees of the form 4
v1

u1

u2

v2

where ω(u1 ∧ v1) = 1 = ω(u2 ∧ v2) and

ω(u1 ∧ u2) = ω(u1 ∧ v2) = 0 = ω(u2 ∧ v1). Q. E. D.

5. Proof of the main theorem

Main Theorem. Any integral homology sphere is diffeomorphic to S3
φ for

some φ ∈Mg,1(3) with g ≥ 9.

By Morita’s result, we have a bijection (cf. Theorem 2.3) :

lim
g→+∞

Mg,1(2)/≈−→ S(3).

Thus it suffices to show that the inclusions Mg,1(3) ↪→ Mg,1(2) induce a

bijection :

lim
g→+∞

Mg,1(3)/≈−→ lim
g→+∞

Mg,1(2)/≈ .

This is the case if for large enough values of g any element in Mg,1(2) is

equivalent to some element in Mg,1(3). By Proposition 4.1 this will follow

from :

Theorem 5.1. For g ≥ 9, the image of τ̃2 : Mg,1(2) → A2(N1) belongs to the

subgroup Can(A2(N1)).

5.1. Three technical lemmas. In the sequel we will work “modulo the sub-

group Can(A2(N1))”. Two elements, say S, T in A2(N1), which differ by

an element of Can(A2(N1)) will be called equivalent, denoted by S ≈ T . An

element equivalent to 0 will be called cancelable. It is obvious that being equiv-

alent is invariant under the action of GLg(Z). We also assume that g ≥ 9.

Lemma 5.1. For all i 6= j the following trees are in τ̃2(Ag,1(2))∩τ̃2(Bg,1(2)) ⊂
Can(A2(N1)). :

2
bi

ai

ai

bi

, 4
bi

ai

aj

bj

.
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Proof. The trees 2
bi

ai

ai

bi

are all in the GLg(Z)-orbit of 2
b1

a1

a1

b1

, which

is cancelable since the curve γ1 in Figure 5 is contractible in both Hg and

−Hg. By Propsition 4.4 they are all cancelable. The same argument holds for

4
bi

ai

aj

ai

since,up to trees of the preceding form, it belongs to the GLg(Z)-

orbit of the curve γ2, which is contractible too. Q. E. D.

Column Intersection Lemma 5.2. Suppose that the tree 4
d

c

e

f

is

labelled by elements of the symplectic basis {ai, bi}1≤i≤g. Assume furthermore

that ω(c ∧ e) = ω(c ∧ f) = 0 = ω(d ∧ e) = ω(d ∧ f). Then 4
d

c

e

f

is

cancelable.

Proof. As g ≥ 9, there is some index j such that the sets {aj , bj} and {c, d, e, f}
are disjoint. Assume c ∈ {bi}1≤i≤g. According to Proposition 4.5 both ele-

ments

aj

77
7

¨̈
¨

dc

and
bj

77
7

¨̈
¨

fe

represent elements of τ1(Bg,1(1)). By definition of

the bracket :

4




aj

77
7

¨̈
¨

dc

,

bj

77
7

¨̈
¨

fe


 = 4

d

c

e

f

,

which is cancelable by Corollary 4.1.

If c ∈ {ai}1≤i≤g, just replace the pair (aj , bj) in the last equality by (−bj , aj).
Q. E. D.

Chain Equivalences Lemma 5.3. For all pairwise distinct indices i,j,k, we

have three chain of equivalences :

1) 2
bj

ai

ai

bj

≈ 4
bj

ai

aj

bj

≈ 4
ai

ak

bj

bk

≈ 4
bj

ak

ai

bk

;
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2) 2
aj

ai

ai

aj

≈ 4
aj

bj

ai

aj

≈ 4
ai

ak

aj

bk

≈ 4
aj

ak

ai

bk

;

3) 2
bj

bi

bi

bj

≈ 4
bj

aj

bi

bj

≈ 4
bi

bk

bj

ak

≈ 4
bj

bk

bi

ak

.

Moreover, any of this elements is equivalent to its opposite, so that 2 times

any of this elements is cancelable.

Proof. Using suitable exchange of knobs we may suppose that i = 1, j = 2

and k = 3.

First chain of equivalences

Observe that the curve δ, which spine is drawn in Figure 6, is contractible

in Hg, in particular τ̃2(Tδ) is cancelable.

b2

a1 + a2

Figure 6. Spine of the curve δ

Now,

τ̃2(Tδ) = 2
b2

a1 + a2

a1 + a2

b2

= 2
b2

a1

a1

b2

+ 2
b2

a2

a2

b2

+ 4
b2

a1

a2

b2

.

As 2
b2

a2

a2

b2

is cancelable, we get 2
b2

a1

a1

b2

≈ −4
b2

a1

a2

b2

.

Applying the “twist of the knob 2” to both sides removes the minus sign.
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The equality

4[

a3

77
7

¨̈
¨

b2a1

,

b3

77
7

¨̈
¨

b2a2

] = 4
b2

a1

a2

b2

− 4
a1

a3

b2

b3

,

shows that 4
b2

a1

a2

b2

≈ 4
a1

a3

b2

b3

. Exchanging the roles of a3 and b3 in

the previous bracket we get 4
b2

a1

a2

b2

≈ −4
a1

b3

b2

a3

.

Notice that we proved that 4
b2

a1

a2

b2

≈ 2
b2

a1

a1

b2

≈ −4
b2

a1

a2

b2

. In

particular 4
b2

a1

a1

b2

≈ 4
b2

a1

a2

b2

− 4
b2

a1

a2

b2

= 0. This proves that any

tree in this chain is equivalent to its opposite, and therefore that two times any

tree involved in this Chain of Equivalences is cancelable. A similar argument

works for he other two Chains of Equivalences

Second and third chains of equivalences

The second chain of equivalences is proved in the same way as the first one.

One has just to replace the curve δ by the curve δ′ which spine is drawn in

Figure 7 and which is contractible in −Hg. The third chain of equivalences is

a2

a1 + b2

Figure 7. Spine of the curve δ′

obtained from the second one by applying ιg termwise. Q. E. D.
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5.2. Proof of Theorem 5.1. We are now in position to prove that the image

of τ̃2 belongs to Can(A2(N1)). It is obviously enough to prove that the image

of the generators of Mg,1(2), that is Dehn twists of genus 1 and 2 belong to

Can(A2(N1)).

The proof of Theorem 5.1 is quite straightforward once we have in hand

the three above technical Lemmas 5.1 5.2 and 5.3 but nevertheless a bit long

and proceeds by ”case by case” computations. Therefore we will only write the

main lines of the proof leaving the details of the computations to the interested

reader.

5.2.1. Images of genus 1 twists are in Can(A2(N1)). By the description of the

images of genus 1 BSCC (see Theorem 4.3) it is enough to prove

Theorem 5.2. Assume g ≥ 9. For any pair of elements u,w ∈ N1 such that

ω(u ∧ w) = 1,

2
w

u

u

w

is cancelable.

If x, y ∈ N1 we denote by 〈x, y〉 ⊂ N1 the submodule they generate.

Proof. First step : Without loss of generality we may suppose that u,w ∈
〈a1, a2, b1, b2〉.

Recall that N1 = LA ⊕ LB and decompose u and w as u = au + bu and

w = aw + bw. The elements au and aw are contained in a direct factor of A of

rank at most 2, therefore there exists φ ∈ GLg(Z) such that φ(au) and φ(aw)

belong to 〈a1, a2〉. Similarly φ(bu) and φ(bw) are the sum of elements contained

in 〈b1, b2〉 and of two elements b̂u and b̂w contained in 〈b3, . . . bg〉. As b̂u and b̂w

are contained in a direct factor of 〈b3, . . . bg〉 of rank at most two, there exists

ψ ∈ GLg(Z) such that ψ|〈b1,b2〉 = Id =t ψ−1|〈a1,a2〉 and ψ(〈b̂u, b̂w〉) ⊂ 〈b3, b4〉.
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By construction the labels of the trees

tψφ · (2
w

u

u

w

)

are contained in the desired submodule. As a consequence of Theorem 4.1,

2
w

u

u

w

is cancelable if and only if tψφ(2
w

u

u

w

) is.

As an intermediary step, we may thus assume that u,w ∈ 〈a1, a2, b1, b2, b3, b4〉.
By symmetry, to reduce the module to 〈a1, a2, b1, b2〉 it is enough to prove that

if w = w′ + b̂w with w′ ∈ 〈a1, a2, b1, b2〉 and b̂w ∈ 〈b3, b4〉 then

2
w

u

u

w

≈ 2

w′

u

u

w′

.

By multilinearity of the labels :

2
w

u

u

w

− 2

w′

u

u

w′

= 2
u

b̂w

b̂w

u

+ 4
u

b̂w

w′

u

.

Computing the cancellable bracket

4




a5

77
7

¨̈
¨

ub̂w

,

b5

77
7

¨̈
¨

uw′


 = 4

u

b̂w

w′

u

+ 4

b̂w

a5

u

b5

we see that

2
u

b̂w

b̂w

u

+ 4
u

b̂w

w′

u

≈ 2
u

b̂w

b̂w

u

− 4

b̂w

a5

u

b5

.

We have to prove that the righthand term is cancelable.
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Write u = n1a1 + n2a2 +
∑4
i=1mibi and expand 2

u

b̂w

b̂w

u

− 4

b̂w

a5

u

b5

by multilinearity. It is equal to

2∑

i=1

(2n2
i

ai

b̂w

b̂w

ai

− 4ni
b̂w

a5

ai

b5

) +
4∑

i=1

(2m2
i

bi

b̂w

b̂w

bi

− 4mi

b̂w

a5

bi

b5

)

+
∑

1≤i 6=j≤4

4nimj

ai

b̂w

b̂w

bj

.

By the Column Intersection Lemma 5.2, each term in the third sum is

cancelable. The terms in two remaining sums are handled in the same way.

We only write the details for terms in the first sum.

Lemma 5.4. For 1 ≤ i ≤ 2, the sum,

2n2
i

ai

b̂w

b̂w

ai

− 4ni
b̂w

a5

ai

b5

.

is cancelable.

Proof. Write b̂w = s b3 + t b4. Expanding by multilinearity one finds that

2n2
i

ai

b̂w

b̂w

ai

− 4ni
b̂w

a5

ai

b5

is equivalent to :

4((nis)2 − nis)
b3

a5

ai

b5

+ 4((nit)2 − nit)
b4

a5

ai

b5

.

We have proved in the Chain Equivalences Lemma 5.3 that the 2 times any

term that appears in a “Chain Equivalence” is cancelable. As 4
b3

a5

ai

b5
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and 4
b4

a5

ai

b5

both appear in the first chain and both ((nis)2 − nis) and

((nit)2 − nit) are even, the sum is cancelable. Q. E. D.

Second step Assume that u,w ∈ 〈a1, a2, b1, b2〉. Set u = ua1a1 +ua2a2 +ub1b1 +

ub2b2 and w = wa1a1 + wa2a2 + wb1b1 + wb2b2.

We expand the tree 2
w

u

u

w

by multilinearity and group the trees by

type, according to the number of ai’s and bi’s that appear as labels. The types

are thus (4a), (3a, 1b) (2a, 2b), (1a, 3b) and (4b). We will inspect these trees by

type and show that after grouping equivalent trees , they are all cancelable.

The coefficient of the tree
yj

xi

zk

tl

is (uxi w
y
j − uyjwxi )(uzkwtl − utlwzk) up to

a coefficient 2 or 4 depending on the symmetry of the tree.

Types (4a) and (3a,1b)

Tree 2
a2

a1

a1

a2

4
a2

a1

a1

b1

4
a2

a1

a2

b2

Coefficient
(ua1w

a
2 − ua2w

a
1)×

(ua1w
a
2 − ua2w

a
1)

(ua1w
a
2 − ua2w

a
1)×

(ua1w
b
1 − ub1w

a
1)

(ua1w
a
2 − ua2w

a
1)×

(ua2w
b
2 − ub2w

a
2)

Tree 4
a2

a1

a2

b1

4
a1

a2

a1

b2

Coefficient Not needed not needed

By the second chain of equivalences the first 3 trees are mutually equivalent.

As in Lemma 5.4, to prove that their sum is cancelable it is enough to prove

that the sum of their coefficients is even. A direct computation using the fact

that ω(u ∧ v) = 1 yields the result.
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The last two trees are in the same Glg(Z)-orbit, therefore one is cancelable

if and only if the other is. The proof of the cancellation of the tree 4
a2

a1

a2

b1

is obtained by applying the Chain Equivalences Lemma 5.3 to the trees that

appear from the spine of the curve δ′′ on Figure 8.

a1 + a2

b1 + a2

Figure 8. Spine of δ′′

Type (4b) and (3a,1b)

These trees are obtained from the preceding list by interchanging the roles

of a and b. The same argument as above shows that their sum is cancelable.

Type (2a,2b)

There are 11 trees of this type to consider. Among them, 3 are cancelable

by Lemma 5.1,

2
b1

a1

a1

b1

, 2
b2

a2

a2

b2

and 4
b1

a1

a2

b2

.

For the remaining trees, as above, we have two groups of 3 trees that are

handled by the Chain Equivalences Lemma, and two that need a particular

argument to be cancelled. The two groups of 3 trees are :
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Tree 4
b1

a2

a1

b1

2
b1

a2

a2

b1

4
b1

a2

a2

b2

Coefficient
(ua2w

b
1 − ub1w

a
2)×

(ua1w
b
1 − ub1w

a
1)

(ua2w
b
1 − ub1w

a
2)×

(ua2w
b
1 − ub1w

a
2)

(ua2w
b
1 − ub1w

a
2)×

(ua2w
b
2 − ub2w

a
2)

Tree 4
b2

a1

a2

b2

2
b2

a1

a1

b2

4
b1

a1

a1

b2

Coefficient
(ua1w

b
2 − ub2w

a
1)×

(ua2w
b
2 − ub2w

a
2)

(ua1w
b
2 − ub2w

a
1)×

(ua1w
b
2 − ub2w

a
1)

(ua1w
b
1 − ub1w

a
1)×

(ua1w
b
2 − ub2w

a
1)

In each of these tables the 3 trees appear in a Chain of Equivalences as in

the Chain Equivalences Lemma 5.3l. Therefore they are mutually equivalent.

As before to prove that their sum is cancellable it is enough to prove that the

sums of the coefficients in each table is even. Again a direct computation using

the fact that ω(u ∧ w) = 1 yields the result.

The remaining trees are :

Tree 4
b2

a1

a2

b1

4
a2

a1

b1

b2

Coefficient
(ua1w

b
2 − ub2w

a
1)×

(ua2w
b
1 − ub1w

a
2)

(ua1w
a
2 − ua2w

a
1)×

(ub2w
b
1 − ub1w

b
2)

The IHX relation applied for instance to the first tree shows that the differ-

ence of the above two trees is cancellable. Therefore the sum of the two trees is

equivalent to say the first tree with coefficient the difference of the coefficients.

Summing the two cancellable brackets

4




a3

77
7

¨̈
¨

b2a1

,

b3

77
7

¨̈
¨

a2b1


 , 4




−b3
77

7
¨̈

¨

b2a1

,

a3

77
7

¨̈
¨

a2b1



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one finds that

8
b2

a1

a2

b1

≈ 4
b3

a3

b2

a2

− 4
b3

a3

b1

a1

is cancellable by the Column Intersection Lemma 5.2.

Therefore it is enough to show that the aforementioned difference of coeffi-

cients is even, again this is proved by direct computation.

Q. E. D.

5.3. Images of genus 2 twists are in Can(A2(N1)). As one can see from

Theorem 4.3 it remains to prove :

Theorem 5.3. Assume g ≥ 9. For any elements u1, w1, u2, w2 ∈ N1 such that

ω(u1 ∧ w1) = 1 = ω(u2 ∧ w2), and ω(u1 ∧ w2)ω(u1 ∧ u2) = 0 = ω(w1 ∧ u2) =

ω(w1 ∧ w2), the tree

4
w1

u1

u2

w2

is cancelable.

Proof. As in the genus 1 case, Using a suitable element in GLg(Z) we may

suppose that u1, u2, w1, w2 ∈ 〈ai, bi|1 ≤ i ≤ 8〉.
Write u1 as ã+ b̃ with ã ∈ LA and b̃ ∈ LB . Then

4
w1

u1

u2

w2

= 4
w1

ã

u2

w2

+ 4
w1

b̃

u2

w2

Computing the sum of the two cancellable brackets

4




b9

77
7

¨̈
¨

w1ã

,

a9

77
7

¨̈
¨

w2u2


 , 4



−a9

77
7

¨̈
¨

w1b̃

,

b9

77
7

¨̈
¨

w2u2




we get that
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4
w1

u1

u2

w2

≈ −4ω(ã ∧ u2)
b9

w1

a9

w2

+ 4ω(ã ∧ w2)
b9

w1

a9

u2

+

4ω(̃b ∧ u2)
a9

w1

b9

w2

− 4ω(̃b ∧ w2)
a9

w1

b9

u2

.

The equations ω(ã∧u2)+ω(̃b∧u2) = 0 = ω(ã∧w2)+ω(̃b∧w2) imply that

4
w1

u1

u2

w2

≈ ω(̃b ∧ u2)
(
4
a9

w1

b9

w2

+ 4
b9

w1

a9

w2 )
+

ω(ã ∧ w2)
(
4
b9

w1

a9

u2

+ 4
a9

w1

b9

u2 )
.

We only prove that 4
a9

w1

b9

w2

+ 4
b9

w1

a9

w2

is cancelable, the proof for

the remaining sum is the same.

Applying the IHX relation to this sum we get that

4
a9

w1

b9

w2

+ 4
b9

w1

a9

w2

≈ 8
a9

w1

b9

w2

.

Expanding by multilinearity 8
a9

w1

b9

w2

, we find that it is the sum of the

following trees, where 1 ≤ i 6= j ≤ 8, up to a multiplicative coefficient which is

irrelevant to the proof :

8
a9

ai

b9

bi

, 8
a9

bi

b9

ai

, 8
a9

ai

b9

bj

, 8
a9

bj

b9

ai

, 8
a9

ai

b9

aj

, 8
a9

bi

b9

bj

.

Applying the IHX relation to the two first trees we find that they are both

the sum of cancelable trees. The last 4 trees are each equal to 2 times a tree
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that is involved in a Chain of Equivalences (cf Lemma 5.3), hence they are all

cancelable. Q. E. D.
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