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Abstract. In this first part we reinterpret the by now classical result of Spaltenstein or Bökstedt

and Neeman of the construction of injective resolutions for unbounded chain complexes. Our

point of view is that one can do homotopical algebra with unbounded complexes without knowing

that they support a model category structure. There is a model category of towers of bounded

chain complexes which forms a model approximation for unbounded chain complexes.

Introduction

The construction of injective resolutions for bounded chain complexes is very classical, but it is

only in the late eighties that Spaltenstein gave a first construction for unbounded chain complexes,

[10]. A more conceptual interpretation for basically the same construction was then given five years

later by Bökstedt and Neeman by studying homotopy limits in derived categories, [2]. It is also

known that the category of unbounded chain complexes forms a Quillen model category (there is a

proof of this fact for projective resolutions in Hovey’s book [8]), but our point of view is that often

the existence of a model structure does not help so much to construct explicit resolutions, which

is what the approaches of Spaltenstein and Bökstedt–Neeman provide.

Therefore we prefer to interpret the concrete description of the injective resolutions by saying

that the category of unbounded chain complexes admits a model approximation by towers of

bounded chain complexes. The concept of model approximation has been introduced in [4] in order

to construct homotopy limits and colimits in arbitrary model category. It provides a great deal of

flexibility at the time of computing derived functors and the structure of the approximation encodes

the way the resolutions are constructed. In the present situation we “approximate” an unbounded

chain complex by successive truncations, which form a “tower” of bounded chain complexes. Since

bounded chain complexes are easy to resolve, this category forms a model category. The algorithm

to obtain a resolution for the original unbounded complex is now encoded in a pair of adjoint functor

which is the heart of our main result Theorem 3.8 and reads as follows: Form first the tower of

truncations, then construct a fibrant replacement, a.k.a injective resolutions, in the category of

towers, and finally go back to unbounded chain complexes by taking the limit. This should sound

familiar to anyone who has had a look at [10] or [2].
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At the same time as we emphasize the explicitness of the construction, let us also say that the

model approximation gives more than that. It yields in fact all the benefits of a model structure,

such as the construction of the homotopy category in which the homotopy classes of maps form

a set, and of course the possibility to compute derived functors. It is in this spirit that Quillen

developed his axiomatic homotopy theory, [9].

In the sequel [3] of this first part our objective will be to relativize, i.e. to alter the choice

of injective objects. The idea to alter the choice of projective or injective objects, and hence to

do “relative” homological algebra is not new. The idea goes back at least to Adamson [1] for

group cohomology and Chevalley-Eilenberg [5] for Lie algebra homology, these where subsumed in

a general theory by Hochschild, [7]. The most complete reference for the classical point of view is

Eilenberg–Moore, [6]. We will see how far our point of view can be pushed and will thus try to

do relative homological algebra for unbounded chain complexes by constructing a suitable model

approximation.

Acknowledgments. The third author would like to thank the Mathematics department at the

Universitat Autónoma de Barcelona and Amnon Neeman at the Australian National University for

providing terrific conditions for a sabbatical.

1. Model approximations

In the next two sections we discus our set-up for doing homotopical algebra. We explain how

to localize certain categories and construct derived functors. In homotopy theory a convenient

framework for doing this is given by Quillen’s model categories. We use the term model category

as defined in Hovey’s book [8] or [4, Section 2]. There are however situations in which either it

is very hard to construct a model structure or such a structure might not exist. The aim of this

section is to explain how to construct right derived functors in a more general context than model

categories. The idea is not to try to impose a model structure on a given category directly but

rather use model categories to approximate a given category.

Let C be a category and W be a collection of morphisms in C which contains all isomorphisms

and satisfies the “2 out of 3” property: if f and g are composable morphism in C and 2 out of

{f, g, gf} belong to W then so does the third. We call elements of W weak equivalences and a pair

(C,W) a category with weak equivalences. The concept of model approximation was introduced

in [4].

Definition 1.1. A right Quillen pair for (C,W) is a model category M and a pair of functors

l : C À M : r satisfying the following conditions:

(1) l is left adjoint to r;

(2) if f is a weak equivalence in C, then lf is a weak equivalence in M;
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(3) if f is a weak equivalence between fibrant objects in M, then rf is a weak equivalence in C;
We say that this Quillen pair forms a right model approximation if moreover the following

condition is satisfied:

(4) for any weak equivalence lA → X in M with X fibrant, the adjoint A → rX is a weak

equivalence in C.

Note that if the condition (4) of the Definition 1.1 is satisfied for one fibrant replacement X,

then it is satisfied for all such fibrant X.

Let us fix a right Quillen pair l : C À M : r. We recall now the key properties of model

approximations, [4, Section 5]:

Proposition 1.2. (1) The localization Ho(C) of C with respect to weak equivalences exists

and can be constructed as follows: objects of Ho(C) are the same as objects of C and

morHo(C)(X, Y ) = morHo(M)(lX, lY ).

(2) A morphism in C is a weak equivalence if and only if it induces an isomorphism in Ho(C).
(3) The class of weak equivalence in C is closed under retracts.

(4) Let F : C → T be a functor. Assume that the composition Fr : M → T takes weak

equivalences between fibrant objects in M to isomorphisms in T . Then the right derived

functor of the restriction F : C → T exists and is given by A 7→ F (rX), where X is a

fibrant replacement of lA in M.

For a given category with weak equivalences (C,W) our strategy is to construct a right model

approximation l : C À M : r. We can then use it to localize C with respect to weak equivalences

and construct right derived functors as explained in Proposition 1.2. For this strategy to work we

need examples of model categories. This is the purpose of the next section in which we show how

to glue model categories together to build new model categories.

2. Towers

Our main example of model category is assembled from towers of better known and simpler

model categories, very much in the same way as spectra can be seen as “telescopes of spaces” in a

dual setting.

A tower T of model categories consists of a sequence of model categories {Tn}n≥0 and a sequence

of Quillen functors {l : Tn+1 À Tn : r}n≥0 (for any n, l is left adjoint to r and r preserves fibrations

and acyclic fibrations). A tower of model categories can be assembled to form a category of towers:

Definition 2.1. Let T be a tower of model categories. The objects of the category of towers

Tow(T ) are sequences {an}n≥0 of objects an ∈ Tn together with a sequence of morphisms {an+1 →
r(an)}n≥0. We write a• to denote the object {an}n≥0 in Tow(T ) and call the morphisms {an+1 →
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r(an)}n≥0 the structure morphisms of a•. The set of morphisms in Tow(T ) between a• and b•

consists of sequences of morphisms {fn : an → bn}n≥0 for which the following squares commute:

an+1

fn+1

²²

// r(an)

r(fn)

²²
bn+1

// r(bn)

We write f• : a• → b• to denote the morphism {fn : an → bn}n≥0 in Tow(T ).

For a morphism f• : a• → b• in Tow(T ), define p0 := b0 and, for n > 0, define:

pn := lim
(
bn → r(bn−1)

r(fn−1)←−−−−− r(an−1)
)

Set α0 : a0 → p0 to be given by f0 and β0 : p0 → b0 to be the identity. For n > 0, let βn : pn → bn be

the projection from the inverse limit onto the component bn, αn : pn → r(an−1) be the projection

from the inverse limit onto the component r(an−1), and αn : an → pn to be the unique morphism

for which the following diagram commutes:

an

¿¿

%%
αn

AAA
A

ÃÃA
AAA

pn
αn //

βn

²²

r(an−1)

r(fi−1)

²²
bn

// r(bn−1)

The sequence {pn}n≥0 together with morphisms {pn+1
αn+1−−−→ r(ai)

r(αn)−−−→ r(pn)}n≥k defines an

object p• in Tow(T ). Moreover {αn : an → pn}n≥0 and {βn : pn → bn}n≥0 define morphisms

α• : a• → p• and β• : p• → b• whose composition is f•. For example, let ∗• be given by the

sequence consisting of the terminal objects {∗}n≥0 in Tn and f• : a• → ∗• be the unique morphism

in Tow(T ). Then p0 = ∗, and, for n > 0, pn = r(an−1). The morphism αn : an → pn = r(an−1) is

given by the structure morphism of a•.

Definition 2.2. A morphism{fn : an → bn}n≥0 in Tow(T ) is called a weak equivalence (cofibra-

tion) if for any n, fn is a weak equivalence (cofibration) in Tn. This morphism is called a fibration

if, for any n ≥ 0, αn : an → pn is a fibration in Tn.

For example the morphism a• → ∗• is a fibration if and only if a0 is fibrant in T0 and, for n > 0,

the structure morphism an → r(an−1) is a fibration in Tn.

Proposition 2.3. The above choice of weak equivalences, cofibrations, and fibrations defines a

model category structure on Tow(T ).
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Proof. We start by observing first that the category Tow(T ) is bicomplete. The limits and col-

imits are formed ”degreewise”. The structural morphisms of the limit are just the limits of

the structural morphisms since the functors r, as right adjoints, commute with limits. For col-

imits, one considers the adjoints l(an+1) → bn of the structural morphisms, takes the colimit

l(colim(an+1)) ∼= colim l(an+1) → colim(an), and its adjoint colim(an+1) → r(colim(an)). These

are precisely the structural morphisms of the colimit.

The 2 out of 3 property (MC2) for weak equivalences follows immediately from the same property

for categories Tn.

That retracts of weak equivalences (res. cofibrations) are weak equivalences (res. cofibrations)

again follows from the same property in Tn’s. For fibrations, notice that if {cn → dn}n≥0 is a

retract of a fibration {an → bn}n≥0, then c0 → d0 is a fibration in T0. Next consider the following

commutative diagram for n > 0:

dn
//

²²

r(dn−1)

²²

r(cn−1)oooo

²²

p′n

²²

cnoo

²²
bn

//

²²

r(bn−1)

²²

r(an−1)oooo

²²

lim ///o/o/o pn

²²

anoooo

²²
dn

// r(dn−1) r(cn−1)oooo p′n cnoo

By the retract property in Tn the morphism cn → p′n is fibration, for any n ≥ k, and therefore so

is {cn → dn}n≥0 in Tow(T ). This proves axiom (MC3).

Let us prove now the right and left lifting properties (MC4). Consider a commutative diagram:

a•Ä _
∼

²²

// c•

²²²²
b• // d•

where the indicated arrows are respectively an acyclic cofibration and a fibration. In degree 0, a

lift b0 → c0 is provided by the model structure on T0. We construct the lift inductively. Take

the solved lifting problem at level n and complete with the structural maps to get the following
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commutative cube:

r(an) //

²²

r(cn)

²²²²

an+1

;;wwwwwwwww
//

Ä _

∼

²²

cn+1

;;wwwwwwwww

²²

r(bn) //

CC

r(dn)

bn+1

;;xxxxxxxx
// dn+1

;;xxxxxxxx

Denote as usual by pd+1 the pull-back of dn+1 → r(dn) ← r(cn). By the universal property of the

pull-back there is a morphism bn+1 → pn+1 that makes the resulting diagram commutative. Since

by definition cn+1 → pn+1 is a fibration, the resulting lifting problem

an+1 //
Ä _

∼
²²

cn+1

²²²²
bn+1

// pn+1

has a solution and this is the desired morphism. The proof for the right lifting property for acyclic

fibrations with respect to cofibrations is analogous.

We prove finally the factorization axiom (MC5). Consider a morphism a• → b•. The morphism

ak → bk can be factored as an acyclic cofibration followed by a fibration (respectively as a cofibration

followed by an acyclic fibration) as (MC5) holds in T0. We construct by induction on the degree a

factorization an+1 ↪→ qn+1 ³ bn+1. Consider the following commutative diagram:

an+1

²²

//

""EEEEEEEEE r(an)

²²
zn+1 //

||||yy
yy

yy
yy

y
r(qn)

²²²²
bn+1

// r(bn)

where the right column is obtained by applying the functor r to the factorization at level n and

bottom right square is a pull-back. Since the functor r and cobase-change preserve (acyclic) fibra-

tions, zn+1 → bn+1 is an (acyclic) fibration if so is qn → bn. It is now enough to factor an+1 → zn+1

in Tn+1 in the desired way to obtain the factorization of an+1 → bn+1.

Example 2.4. Let M be a model category. The constant sequence {M}n≥0 together with the

the sequence of the identity functors {id : M À M : id}n≥0 form a tower of model categories. Its

category of towers can be identified with the category of functors Fun(N,M), where N is the poset
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whose objects are natural numbers, N(n, l) = ∅ if n < l, and N(n, l) consists of one element if n ≥ l.

The model structure on Fun(N,M), given by Proposition 2.3, coincide with the standard model

structure on the functor category Fun(N,M) (see []). For example, a functor F in Fun(N,M) is

fibrant if the object F (0) is fibrant in M and for any n > 0, the morphism F (n) → F (n − 1),

induced by n− 1 < n, is a fibration in M. A morphism α : F → G is a cofibration in Fun(N,M)

if, for any n ≥ k, αn : F (n) → G(n) is a cofibration in M.

3. An approximation for classical homological algebra

We have now explained our set up for doing homotopical algebra. In the rest of the paper

we are going to illustrate how to use it to study unbounded chain complexes of modules over a

commutative ring. We could as well do this in rather general abelian categories (satisfying the

so-called axiom AB4*), but as soon as we come to the relative version which is the main subject

of this article we will mainly focus on categories of modules anyway. The aim of this section is

to provide a nice model category of towers which approximates the category of unbounded chain

complexes. We are going to use the following notation:

3.1. We consider cohomological complexes (differentials raise the degree by one) in R-Mod, that is

of the form X = (· · · → Xi di

−→ Xi+1 → · · · ). The category of such chain complexes is denoted by

Ch(R). We identify R-Mod with the full subcategory of Ch(R) whose objects are chain complexes

concentrated in degree 0.

For a chain complex X ∈ Ch(R), the cocycles Ker(di : Xi → Xi+1) are denoted by Zi(X), or

simply by Zi and the coboundaries Im(di−1 : Xi−1 → Xi) are denoted by Bi(X), or simply by

Bi. The cohomology of X is as usual Hi(X) = Zi(X)/Bi(X). A morphism of chain complexes

f : X → Y is a quasi-isomorphism if Hi(f) : Hi(X) → Hi(Y ) is an isomorphism for all i ∈ Z. A

chain complex is called acyclic if all its cohomology modules are trivial.

For an integer n, the symbol Σn : Ch(R) → Ch(R) denotes the shift functor that assigns

to a complex X, the shifted complex given by (ΣnX)i := Xi−n with the differentials given by

(−1)ndi−n. Similarly for a morphism f : X → Y in Ch(R), (Σnf)i := f i−n. For example, if M is

an R-module, then ΣnM denotes a chain complex where (ΣnM)n = M and (ΣnM)i = 0 if i 6= n.

3.2. A morphism of chain complexes f : X → Y is a homotopy equivalence if there is a morphism

g : Y → X such that fg and gf are homotopic to the identity morphisms. Homotopy equivalences

are examples of quasi-isomorphisms. For any X, the morphism h : X → P (X) is an example of a

homotopy equivalence.

A complex X is called contractible if X → 0 is a homotopy equivalence. For an R-module M and

an integer k, Dk(M) denotes the chain complex where, for i = k and i = k + 1, Dk(M)i = M and

otherwise Dk(M)i = 0, with the differential dk : Dk(M)k → Dk(M)k+1 given by idM . Complexes

of the form Dk(M) are examples of contractible complexes.
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3.3. Let n be an integer. The full subcategory of Ch(R) consisting of these chain complexes X

such that Xi = 0, for i < n, is denoted by Ch(R)≥n. The inclusion functor in : Ch(R)≥n ⊂ Ch(R)

has both right and left adjoints. The left adjoint is denoted by τn : Ch(R → Ch(R)≥n. Explicitly,

τn assigns to a complex X, the truncated complex:

τn(X) := (coker(dn−1) dn

−→ Xn+1 dn+1

−−−→ Xn+2 dn+2

−−−→ · · · )

where in degree n, τn(X)n = coker(dn−1), and for i > n, τn(X)i = Xi. For a morphism f : X → Y

in Ch(R), τn(f)n is induced by fn and, for i > n, τn(f)i = f i.

For any X ∈ Ch(R), the canonical morphism X → τn(X) is defined to be the morphism in

Ch(R) which is the adjoint to the identity morphism id : τn(X) → τn(X) in Ch(R)≥n. Explicitly

this morphism is given by the following commutative diagram:

X

²²

(· · · dn−2
// Xn−1

²²

dn−1
// Xn

dn

//

q

²²

Xn+1
dn+1

//

id

²²

· · · )

τn(X) (· · · // 0 // coker(dn−1)
dn

// Xn+1
dn+1

// · · · )

where q denotes the quotient morphism.

Whereas unbounded complexes are more difficult to understand, bounded ones are relatively

simple and it was already known to Quillen, [9], that they form a model category.

Theorem 3.4. The category of bounded chain complexes Ch(R)≥n is equipped with a model

category structure where weak equivalences are quasi-isomorphisms, cofibrations are degreewise

monomorphisms in degrees > n, and fibrations are degreewise split epimorphisms with injective

kernel. In particular X is fibrant if Xi is an injective module for all i ≥ n.

As announced we are going to use the model categories Ch(R)≥n to approximate the category

Ch(R) of unbounded chain complexes.

For n ≥ k, the restriction of τk : Ch(R) → Ch(R)≥k to the subcategory Ch(R)≥n ⊂ Ch(R)

is denoted by the same symbol τk : Ch(R)≥n → Ch(R)≥k. Note that this restriction is left

adjoint to the inclusion in : Ch(R)≥k ⊂ Ch(R)≥n. Moreover the canonical morphism X → τk(X)

can be expressed uniquely as the composition X → τn(X) → τk(X), of the canonical morphism

X → τn(X) for X and n, and the canonical morphism τn(X) → τk(X) = τk(τk(X)) for τk(X)

and k.

Consider now the sequence of model categories {Ch(R)≥n}n≥0, with the model structures given

by Theorem 3.4. The functor in : Ch(R)≥n ⊂ Ch(R)≥n+1 takes (acyclic) fibrations to (acyclic)

fibrations and hence the following is a sequence of Quillen functors:

{τn : Ch(R)≥n+1 À Ch(R)≥n : in}n≥0
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We will use the symbol Tow(R) to denote the associated category of towers (see Section 2). Let

X• be an object in Tow(R). We can think about this object as a tower of morphisms:

· · · t3−→ X2
t2−→ X1

t1−→ X0

in Ch(R) given by the structure morphisms of X•. Conversely, for any such tower where Xn is

a chain complex that belongs to Ch(R)≥n, we can define an object X• in Tow(R) given by the

sequence {Xn}n≥0 with the morphisms {tn+1}n≥0 as its structure morphisms. In this way we can

think about Tow(R) as a full subcategory of the functor category Fun(N,Ch(R)) consisting of these

functors X : N → Ch(R) for which X(n) ∈ Ch(R)≥n.

To be very explicit, Tow(R) is the category of the following commutative diagrams of R-modules:

...

²²

...

²²

...

²²

...

²²

...

²²

...

²²
0 // X−2

2

d−2
2 //

t−2
2

²²

X−1
2

d−1
2 //

t−1
2

²²

X0
2

d0
2 //

t02
²²

X1
2

d1
2 //

t12
²²

X2
2

d2
2 //

t22
²²

· · ·

0 // X−1
1

d−1
1 //

t−1
1

²²

X0
1

d0
1 //

0
1

²²

X1
1

d1
1 //

t11
²²

X2
1

d2
1 //

t21
²²

· · ·

0 // X0
0

d0
0 // X1

0

d1
0 // X2

0

d2
0 // · · ·

where, for any n ≥ 0 and i ≤ n , dn,i−1dn,i = 0, i.e., horizontal lines are chain complexes.

We will always think about Tow(R) as a model category, with the model structure given by

Proposition 2.3. For example, if we think about X• as a tower (· · · t3−→ X2
t2−→ X1

t1−→ X0), then

X• is fibrant if and only if X0 is fibrant in Ch(R)≥0 and, for any n ≥ 0, tn+1 : Xn+1 → Xn is a

fibration in Ch(R)≥n+1. If we think about X• as a commutative diagram above, then X• is fibrant

if, for any i ≥ 0, the objects X0,i are injective, and, for any n > 0 and i ≥ n, tn,i has a section

and its kernel is injective. Note also that since all objects in Ch(R)≥n are cofibrant, then so are all

objects in Tow(R)

Here is another way of describing the category Tow(R). Consider the constant sequence of

model categories {Ch(R)≥0}n≥0 with the model structure given by Theorem 3.4 and the sequence

of functors {τ : Ch(R)≥0 À Ch(R)≥0 : Σ}n≥0, where Σ is the shift functor defined in 3.1 that

assigns to X = (X0 d0

−→ X1 d1

−→ · · · ) the shifted complex ΣX := (0 → X0 d0

−→ X1 d1

−→ · · · ). The

functor τ introduced in 3.3 is left adjoint to Σ. It is clear that Σ takes (acyclic) fibrations in

Ch(R)≥0 into (acyclic) fibrations in Ch(R)≥0. Let us denote this tower of model categories by T .

Let X• be an object in Tow(T ). The structure morphisms of X• and the differentials of the

chain complexes Xi can be assembled to form a diagram similar to the one we have seen above,
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in which the horizontal lines are chain complexes. It then follows that Tow(T ) is isomorphic to

Tow(R).

Our aim is to approximate the category of unbounded chain complexes of R-modules by towers

of bounded complexes. For this purpose we first need to construct a pair of adjoint functors

tow : Ch(R) À Tow(R) : lim.

Definition 3.5. Let X be an object in Ch(R). The tower tow(X) is the object in Tow(R) given

by the sequence {τn(X)}n≥0 with the structural morphisms given by the the canonical morphisms

{tn+1 : τn+1(X) → τn(X)}n≥0.

Explicitly, tow(X) is represented by the following commutative diagram in R:

...

²²

...

²²

...

²²

...

²²

...

²²

...

²²
τ2(X)

²²

0 // coker(d−3)
d−2

//

²²

X−1
d−1

//

q

²²

X0
d0

//

id

²²

X1
d1

//

id

²²

· · ·

τ1(X)

²²

0 // coker(d−2)
d−1

//

²²

X0
d0

//

q

²²

X1
d1

//

id

²²

· · ·

τ0(X) 0 // coker(d−1)
d0

// X1
d1

// · · ·

where q’s denote the quotient morphisms. For a chain map f : X → Y , the morphism tow(f) is

defined to be given by the sequence of morphisms {τn(f)}n≥0.

Recall that the category of towers Tow(R) can be identified with a full subcategory of the functor

category Fun(N, Ch(R)).

Definition 3.6. The limit functor lim : Tow(R, I) → Ch(R) is the restriction of the standard

limit functor lim : Fun(N,Ch(R)) → Ch(R).
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Explicitly, let X• be an object in Tow(R, I) described by the following commutative diagram in

R with horizontal lines being chain complexes:

...

²²

...

²²

...

²²

...

²²

...

²²

...

²²
0 // X−2

2

d−2
2 //

t−2
2

²²

X−1
2

d−1
2 //

t−1
2

²²

X0
2

d0
2 //

t02
²²

X1
2

d1
2 //

t12
²²

X2
2

d2
2 //

t22
²²

· · ·

0 // X−1
1

d−1
1 //

t−1
1

²²

X0
1

d0
1 //

t01
²²

X1
1

d1
1 //

t11
²²

X2
1

d2
1 //

t21
²²

· · ·

0 // X0
0

d0
0 // X1

0

d1
0 // X2

0

d2
0 // · · ·

Then lim(X•) is the chain complex obtained by taking the inverse limit of the above diagram in

the vertical direction:

lim(X•)i := lim(· · · ti
3−→ Xi

2

ti
2−→ Xi

1

ti
1−→ Xi

0)

with the differential di : lim(X•)i → lim(X•)i+1 given by limn(di
n). On morphisms, the functor

lim : Tow(R) → Ch(R) is defined in the analogous way by taking the inverse limits in the vertical

direction.

Lemma 3.7. The functor tow : Ch(R) → Tow(R) is left adjoint to lim : Tow(R) → Ch(R).

Proof. Let Y be a chain complex in Ch(R) and X• be an object in Tow(R) given by the tower

(· · ·X2
t2−→ X1

t1−→ X0) of morphisms in Ch(R) with Xn ∈ Ch(R)≥n. Consider a morphism of chain

complexes f : Y → lim(X•). Since lim(X•) is the inverse limit of the tower X•, the morphism

f corresponds to a sequence of morphisms {fn : Y → Xn)}n≥0 for which the following diagram

commutes:

· · · id // Y
id //

f2

²²

Y
id //

f1

²²

Y

f0

²²
· · · t3 // X2

t2 // X1

t1 // X0

Since the chain complex Xn belongs to Ch(R)≥n, the morphism fn : Y → Xn can be expressed in a

unique way as a composition Y → τn(Y ) → Xn where Y → τn(Y ) is the canonical morphism. The

sequence {τn(Y ) → Xn}n≥0 describes a morphism tow(Y ) → X• in Tow(R). It is straightforward

to check that this procedure defines a natural bijection from the set of morphisms between Y and

lim(X•) in Ch(R) onto the set of morphisms between tow(Y ) and X• in Tow(R).

The next proposition is the reinterpretation of the work of Spaltenstein [10] or Bökstedt and

Neeman [2].
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Theorem 3.8. The pair of functors tow : Ch(R) ¿ Tow(R) : lim is a right Quillen pair. It forms

moreover a model approximation.

Proof. Properties (1), (2), and (3) are easy to verify, so that the pair of functors forms a Quillen

pair. The content of the proposition is thus in property (4). It says that if X• is a fibrant

replacement for the truncation tower of some unbounded chain complexe A, then the canonical

morphism A → in(X•) is a quasi-isomorphism. This is basically a cohomological computation.

Notice that the structure map Im+1 → Im induces an isomorphism Hi(A) ∼= Hi(Im+1) → Hi(Im)

for i > n−m. This observation is [2, Application 2.4] and proves the claim.

Let us be very explicit about how one constructs then an injective resolution for an unbounded

chain complex A. First we construct its truncation tower {τnA}, then we form a fibrant replacement

in the category of towers of bounded chain complexes. It can be obtained in a simple inductive

process as follows. Construct an injective resolution I0 for τ0A, and if In has been constructed

choose In+1 so that the structure map In+1 → In be a fibration, i.e. a degreewise split epimorphism

with injective kernel. The tower I• is a special tower in Spaltenstein’s terminology. Its inverse limit

is an unbounded chain complex of injective modules and the canonical map A → lim(I•) is a quasi-

isomorphism as we have proven in the previous proposition.

This concludes the part of the article devoted to classical resolutions.
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