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Abstract. In this first part we reinterpreted the by now classical result of Spaltenstein or

Bökstedt and Neeman of the construction of injective resolutions for unbounded chain com-

plexes: There is a model category of towers of bounded chain complexes which forms a model

approximation for unbounded chain complexes. We then wonder in this part whether this point

of view can be relativized, i.e. if the same category of towers forms a model approximation for un-

bounded complexes, but where one changes the weak equivalences (formerly quasi-isomorphisms)

to I-equivalences, where I is a class of injective modules. We prove that this approach is valid

if we work over a Noetherian ring of finite Krull dimension, but it fails in general when the ring

is Nagata’s “bad ring” of infinite Krull dimension.

Introduction

The idea to alter the choice of projective or injective objects to construct resolutions, and hence

to do “relative” homological algebra, goes back at least to Adamson [1] for group cohomology

and Chevalley-Eilenberg [5] for Lie algebra homology. This was subsumed in a general theory by

Hochschild, [9], but the most complete reference for the classical point of view is probably the work

of Eilenberg and Moore, [8]. Christensen and Hovey, [6], studied the projective case from the point

of view of Quillen’s homotopical algebra. They show that, in many cases, one can equip the category

of unbounded chain complexes with a model category structure where the weak equivalences reflect

the choice of the projective objects. However this approach is not suitable in the injective case,

because of the lack of a dual small object argument.

We decided therefore to see how far the point of view exposed in the first part [4] of this work

can be pushed and will thus try to do relative homological algebra for unbounded chain complexes

by constructing a suitable model approximation. Recall that in the absolute case the approximation

is given by a category of towers of bounded chain complexes. In the relative setting it is easy to

provide the category of bounded chain complexes with a model category structure where the weak

equivalences are now determined by a class I of modules. The question is whether the category

of towers still approximates the category of unbounded chain complexes, that is whether the pair

of adjoint functors between unbounded chain complexes and towers of bounded chain complexes

allows us to do homotopical algebra.
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What kind of classes of modules are suitable to do relative homological algebra? This is the

subject of the companion paper [3] where we mostly focus on the nicest classes, i.e. those consisting

of injective modules. We show that these classes form a lattice and prove they are determined by

certain sets of ideals. Equipped with this knowledge about how injective classes look like we come

back to our objective and prove that our approach does work for any injective class I of injective

modules over a Noetherian ring of finite Krull dimension.

Theorem 3.1. Let R be a Noetherian ring with finite Krull dimension d and I an injective class

of injective modules. The category of towers forms then a model approximation for Ch(R) equipped

with I-equivalences.

The key to this result is local cohomology. It allows to study whether or not the relative homology

of the inverse limit of certain towers stabilizes. However, when the Krull dimension is infinite, this

approach fails and we provide an example of an injective class I and a ring (Nagata’s well known

“bad ring”, [12]) where the limit of an I-injective resolution of the tower of truncations of certain

unbounded chain complexes does not give an I-injective resolution of the original complex, see

Theorem 4.4.

Acknowledgments. We would like to thank Michel van den Bergh for pointing out the relevance

of axiom AB4* at a time when we were still thinking that towers approximate unbounded chain

complexes in any relative setting. The third author would like to thank the Mathematics depart-

ment at the Universitat Autónoma de Barcelona for providing terrific conditions for a sabbatical.

1. Relative equivalences for chain complexes

Let us briefly recall from [3] the basic definitions about how we will do relative homological

algebra.

Definition 1.1. Let I be a collection of R-modules. A homomorphism f : M → N is an I-
monomorphism if, for any W ∈ I, f∗ : HomR(N, W ) → HomR(M,W ) is a surjection of sets. We

say that R-Mod has enough I-injectives if, for any object M , there is an I-monomorphism M → W

with W ∈ I.

Definition 1.2. A collection I of R-modules is an injective class if R-Mod has enough I-injectives

and I is closed under retracts and products.

In [3] we proved that injective classes consisting of injective modules are in bijection with certain

sets of ideals I in R, which we called saturated. The precise definition is given in [3, Definition 2.1]

and it will be sufficient for us to know that it is designed in such a way that the class of retracts

of products of injective envelopes of quotient modules R/I forms an injective class. We start now

by explaining how a choice of an injective class leads to relative weak equivalences between chain

complexes. Throughout the rest of the paper I denotes an injective class of R-modules.
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Definition 1.3. A morphism f : X → Y in Ch(R) is called an I-weak equivalence if, for any

W ∈ I, HomR(f,W ) : HomR(Y,W ) → HomR(X,W ) is a quasi-isomorphism of complexes of

abelian groups. An object X in Ch(R) is called I-trivial if X → 0 is an I-weak equivalence, i.e.

when HomR(X,W ) is an acyclic complex of abelian groups for all W ∈ I.

It is clear that I-weak equivalences satisfy the “2 out of 3” property and that isomorphisms are

I-weak equivalences. Further:

Proposition 1.4. (1) A homotopy equivalence in Ch(R) is an I-weak equivalence.

(2) A morphism f : X → Y in Ch(R) is an I-weak equivalence if and only if the cone Cone(f)

is I-trivial.
(3) Coproducts of I-weak equivalences are I-weak equivalences.

(4) A contractible chain complex in Ch(R) is I-trivial.
(5) Coproducts of I-trivial complexes are I-trivial.
(6) X is I-trivial if and only if, for any i, di : coker(di−1) → Xi+1 is an I-monomorphism.

(7) Let X be a complex such that, for all i, coker(di+1) ∈ I. Then X is I-trivial if and only if

X is isomorphic to
⊕

Di(Wi).

Proof. (1): This is a consequence of the fact that HomR(−,W ) is an additive functor.

(2): Note that the cone of HomR(f,W ) : HomR(Y, W ) → HomR(X, W ) is isomorphic to the shift

of the complex HomR(Cone(f), W ), for any W ∈ I. Thus HomR(f, W ) is a quasi-isomorphism if

and only if HomR(Cone(f),W ) is acyclic. Statement (2) follows.

(3): This is a consequence of two facts. First is that HomR(−,W ) takes coproducts in R-Mod

into products of abelian groups. Second, products of quasi-isomorphisms of chain complexes of

abelian groups are quasi-isomorphisms.

(4): This is a consequence of (1).

(5): This is a consequence of (3).

(6): The kernel of HomR(di−1, W ) is given by HomR(coker(di−1),W ). Thus the homology of

HomR(X, W ) is trivial if and only if the morphism HomR(Xi+1,W ) → HomR(coker(di−1),W )

induced by di is an epimorphism for all i. By definition this happens if and only if the morphism

di : coker(di−1) → Xi+1 is an I-monomorphism.

(7): If X can be expressed as
⊕

Di(Wi), then X is contractible and according to (4) it is I-trivial.

Assume now that X is I-trivial. Define Wi := coker(di−1). According to (6), the morphism

di : coker(di−1) → Xi+1 is an I-monomorphism. As coker(di−1) is assumed to belong to I, it

follows that the morphism di : coker(di−1) → Xi+1 has a retraction. This retraction can be used
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to define a morphism of chain complexes X → Di(Wi). By assembling these morphisms together

we get the desired isomorphism X → ⊕
Di(Wi).

Example 1.5. If I consists of all R-modules, then f : X → Y is an I-weak equivalences if and

only if it is a homotopy equivalence. A chain complex is I-trivial if and only if it is isomorphic to
⊕

i D(Mi) for some sequence of modules Mi.

The collection I of all injective R-modules is an injective class. A morphism f : X → Y in Ch(R)

is an I-weak equivalence if and only if it is a quasi-isomorphism. A chain complex is I-trivial if

and only if it has trivial homology.

Let l : S-Mod ¿ R-Mod : r be a pair of adjoint functors and I be an injective class of R-modules.

According to [3, Proposition ?? (5)], the collection J of retracts of objects of the form r(W ), for

W ∈ I, is an injective class in S-Mod. By applying l and r degree-wise, we get an induced pair of

adjoint functors, denoted by the same symbols: l : Ch(S) ¿ Ch(R) : r. A morphism f : X → Y

in Ch(S) is a J -weak equivalence if and only if l(f) : l(X) → l(Y ) is an I-weak equivalence in

Ch(R).

Example 1.6. Let R be a commutative ring and L be a saturated set of ideals in R. Consider the

injective class E(L) that consists of retracts of products of injective envelopes E(R/I) for I ∈ L.

A morphism f : X → Y in Ch(R) is an E(L)-weak equivalence if and only if Hom(Hn(f), E(R/I))

is a bijection for any n and I ∈ L. This happens if and only if the annihilator of any element in

ker(Hn(f)) or coker(Hn(f)) is not included in any ideal that belongs to L.

Our starting point for studying unbounded chain complexes is the following fundamental result

about bounded chain complexes. It is the relative analogue of the classical result of Quillen, [13],

which was the starting point for our reinterpretation of the classical case in [4]. One could prove

both of these results by constructing explicitly factorizations, but we prefer to simply refer to the

general work of Bousfield [2, Section 4.4].

Theorem 1.7. The following choice of weak equivalence, cofibrations and fibrations in Ch(R)≥n

satisfies the axioms of a model category:

• f : X → Y is called an I-weak equivalence if f∗ : HomR(Y, W ) → HomR(X,W ) is a

quasi-isomorphism of complexes of abelian groups for any W ∈ I.
• f : X → Y is called an I-cofibration if f i : Xi → Y i is an I-monomorphism for all i > n.

• f : X → Y is called an I-fibration if f i : Xi → Y i has a section and its kernel belongs to

I for all i ≥ n. In particular X is I-fibrant if Xi ∈ I for all i ≥ n.

We will often write X → I(X) for a fibrant replacement in this model category, to emphasize

the fact that the modules I(X)k all belong to the class I. Here are some basic properties of this

model structure on Ch(R)≥n:
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Proposition 1.8. (1) All objects in Ch(R)≥n are I-cofibrant.

(2) Let f : X → Y be an I-fibration. Then Ker(f) is fibrant.

(3) An I-fibration f : X → Y is an I-weak equivalence if and only if Ker(f) is I-trivial.
Moreover, if f is an acyclic I-fibration, then there is an isomorphism α : Y ⊕Ker(f) → X

for which the following diagram commutes:

Y ⊕Ker(f)
α //

pr

$$JJJJJJJJJJ
X

f

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

Y

(4) An I-weak equivalence between I-fibrant chain complexes in Ch(R)≥n is a homotopy equiv-

alence.

(5) An I-fibrant object in Ch(R)≥n is I-trivial if and only if it is isomorphic to a complex of

the form
⊕

i≤n Di(Wi).

(6) Products of I-fibrant and I-trivial complexes are I-trivial.
(7) Assume that the following is a sequence of I-fibrations and I-weak equivalences in Ch(R)≥n:

(· · ·X2
f2−→ X1

f1−→ X0)

Then, for any k ≥ 0, the projection morphism limi≥0Xi → Xk is an I-fibration and is an

I-weak equivalence.

Proof. (1): This follows from the fact that, for any R-module W , the morphism 0 → W is an

I-monomorphism.

(2): This follows from the fact that, for any W , the following is an exact sequence of chain

complexes of abelian groups:

0 → HomR(Y, W )
HomR(f,W )−−−−−−−−→ HomR(X,W ) → HomR(Ker(f),W ) → 0

(3): The first part follows from (2). If f : X → Y is an acyclic I-fibration, then because all

objects in Ch(R)≥n are I-cofibrant, there is a morphism s : Y → X for which fs = idY . This

implies the second part of (3).

(4): This statement is a consequence of two facts: all objects in Ch(R)≥n are I-cofibrant and,

for any I-fibrant chain complex Z ∈ Ch(R)≥n, the standard path object Z ⊂ P (Z) π−→ Z ⊕ Z is a

very good path object (THIS DISAPPEARED FROM THIS VERSION, WE CAN’T REFER To

THIS) for Z in the I-model structure on Ch(R)≤n.

(5): According to Proposition 1.4.(8) we need to show that the assumptions X is I-fibrant and

I-trivial imply that, for all i, Wi := coker(di+1) belongs to I. We do it by induction on i. For

i = n, coker(dn+1) = Xn, which belongs to I as X is I-fibrant. Assume now that Wi+1 ∈ I. This
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with the fact that di+1 : Wi+1 → Xi is an I-monomorphism, implies that di+1 has a retraction. It

follows that Xi = Wi+1 ⊕Wi. Consequently Wi, as a retract of a membre of I, also belongs to I.

(6): This is a consequence of (5).

(7): This is a consequence of (3) and (6).

Just like in the classical case (where weak equivalences are quasi-isomorphisms), we have a model

category of towers with relative equivalences. Consider as in [4] the sequence of model categories

{Ch(R)≥n}n≥0, but this time with the relative model structures given by Theorem 1.7. The functor

in : Ch(R)≥n ⊂ Ch(R)≥n+1 takes (acyclic) fibrations to (acyclic) fibrations and hence the following

is a sequence of Quillen pairs, where τn is truncation:

{τn : Ch(R)≥n+1 À Ch(R)≥n : in}n≥0

We will denote this tower of model categories by T (R, I) and use the symbol Tow(R, I) to denote

the category of towers in T (R, I) (see [4, Section ??]). The objects are sequences of bounded chain

complexes Xn together with structure morphisms Xn+1 → in(Xn). This category of towers forms a

model category where weak equivalences are morphisms between towers which are levelwise I-weak

equivalences, [4, Proposition 2.3].

2. A right Quillen pair for Ch(R)

In this section we define a right Quillen pair for Ch(R) that has the potential to form a model

approximation. We are going to use the model category Tow(R, I) described in the previous section.

Recall also from [4, Lemma ??] that there is a “tower” functor tow : Ch(R) → Tow(R, I) which

takes an unbounded chain complex to the tower of its truncations. It is left adjoint to the limit

functor which takes an arbitrary tower to the chain complex defined as the degreewise inverse limit.

We are almost ready to prove that this pair of adjoint functors forms a Quillen pair.

Lemma 2.1. Let K• ∈ Tow(R, I) be a fibrant object such that, for any n ≥ 0, Kn is I-trivial in

Ch(R)≥n. Then lim(K•) is I-trivial in Ch(R).

Proof. Since K• is fibrant in Tow(R, I), K0 is I-fibrant in Ch(R)≥0 and, for n > 0, the structure

morphism tn : Kn → Kn−1 is an I-fibration in Ch(R)≥n. As the bounded chain complexes Kn

are assumed to be I-trivial, the I-fibrations tn are also I-weak equivalences. It then follows from

Proposition 1.8.(2) that K• is isomorphic to the following tower of chain complexes:

· · · → M0 ⊕M1 ⊕M2 ⊕M3
pr−→ M0 ⊕M1 ⊕M2

pr−→ M0 ⊕M1
pr−→ M0

where M0 := K0 and, for n > 0, Mn := Ker(tn : Kn → Kn−1). It then follows that lim(K•) =
∏

n≥0 Mn.
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The fact that Mn is I-trivial and I-fibrant in Ch(R)≤n implies that Mn is isomorphic to
⊕

i≥n Di(Wn,i) for some sequence {Wn,i}i≤n of objects in I (see Proposition 1.8.(4)). Substi-

tuting this to the above product describing lim(K•) we get the following isomorphisms:

lim(K•) ∼=
∏

n≥0

Mn =
∏

n≥0

⊕

i≥n

Di(Wn,i) ∼=
⊕

i

Di(
∏

i≥n

Wn,i)

It is now clear that lim(K•) is I-trivial. In fact lim(K•) is even homotopy equivalent to the trivial

chain complex 0.

Proposition 2.2. The functors tow : Ch(R) À Tow(R, I) : lim form a right Quillen pair for

Ch(R) with I-weak equivalences as weak equivalences.

This right Quillen pair tow : Ch(R) À Tow(R, I) : lim is going to be called the standard Quillen

pair for Ch(R).

Proof. If f : X → Y is an I-weak equivalence in Ch(R), then the tower of truncations tow(f) is

a weak equivalence in Tow(R, I) since our weak equivalences are defined by homing into certain

objects W and truncation is a left adjoint. We have only to show if f• : X• → Y• is a weak

equivalence in Tow(R, I) between fibrant objects, then lim(f•) is an I-weak equivalence in Ch(R).

By Ken Brown Lemma (see for example [7, Lemma 9.9]), it is enough to show the statement

under the additional assumption that f• : X• → Y• is an I-fibration. Let us define K• to be an

object in Tow(R, I) given by the sequence {Ker(fn)}n≥0 with the structure morphisms being the

restrictions of the structure morphisms of X•. Since all objects in Ch(R)≤n are I-cofibrant, then

so are all objects in Tow(R, I). It follows that there is s• : Y• → X• for which f•s• = id. By

applying the functor lim, we then get the following split exact sequence in Ch(R):

0 → lim(K•) → lim(X•)
lim(f•)−−−−→ lim(Y•) → 0

Since X• is isomorphic to K• ⊕ Y•, as a retract of a fibrant object X•, the object K• is then also

fibrant. Moreover, for any n ≥ 0, Kn is I-trivial in Ch(R)≥n. This is a consequence of the fact

that fn is an I-equivalence in Ch(R)≥n. We can then apply Lemma 2.1 to conclude that lim(K•)

is an I-trivial chain complex in Ch(R). The morphism lim(f•) : lim(X•) → lim(Y•) must be then

an I-weak equivalence. It is in fact a homotopy equivalence.

The question which remains now to be answered is when does this right Quillen pair form a

model approximation, or in other words when is it possible to form relative injective resolutions by

the procedure encoded in our pair of adjoitn functors. This is the subject of the final part of the

article.
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3. Noetherian rings with finite Krull dimension

In this section R is a Noetherian ring with finite Krull dimension d. Our main theorem is that the

model category of towers always provides a model approximation for the category of unbounded

chain complexes with W -equivalences for all choices of injective classes I consisting of injective

modules. In this section and the next one we will rely on certains local cohomology computations

which we postpone to Appendix A at the end of the article.

Theorem 3.1. Let R be a Noetherian ring with finite Krull dimension d and I an injective class

of injective modules. The category of towers forms then a model approximation for Ch(R) equipped

with I-equivalences.

We need some preparation before proving this theorem. The key ingredient is the vanishing of

the homology of a W -relative resolution above the Krull dimension of the ring.

Lemma 3.2. Let R be a local Noetherian ring with finite Krull dimension d, p be any prime ideal,

and I ∈ Ch(R)≥0 be an injective resolution of a module M . The complex I(p) obtained from I by

keeping only the copies of E(R/p) has no homology in degrees > d.

Proof. To see why this is a complex one can localize I at p so as to obtain a complex made of

copies of E(R/q) for q ⊂ p by Lemma A.2. The subcomplex Γp(I ⊗ Rp) is then precisely I(p) by

Lemma A.5. The ring Rp is flat so the cohomology of this complex computes the local cohomology

of the module Mp with support in p. We conclude then by Proposition A.7 and Remark A.8 because

the Krull dimension of Rp is at most d− 1.

In [3] we have seen that an injective class of R-modules is completely determined by the saturated

set of ideals of the form ann(x) = {r ∈ R | rx = 0} for some non-zero element x ∈ W ∈ I. When R

is Noetherian it is even sufficient to consider the prime ideals in this set. This subset is generization

closed.

Proposition 3.3. Let R be a local Noetherian ring with finite Krull dimension d and I an injective

class of injective modules. For any module M and a I-relative resolution I ∈ Ch(R)≥0, Hk(I) = 0

if k > d + 1.

Proof. Let S be the generization closed subset of Spec(R) corresponding to the injective class I.

Let a be the length of the maximal chain of prime ideals in the complement of S. If a = 0, I
consists of all injective modules, so that Hk(I) = 0 for all k > 0. If a = 1, S consists of all

prime ideals except the maximal ideal m. In this case it follows from Remark A.6 that the higher

cohomology modules coincide up to a shift with the higher local cohomology modules Hk
m(M). As

m can be generated up to nilpotency by d elements and since local cohomology only depends on

the radical of the ideal, the local cohomology modules vanish in degrees > d.
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Let us thus assume that a > 1. We prove the proposition by induction on a. Consider the

minimal ideals pi in the complement of S so that we know the result is true for the injective class

corresponding to the set S′ = S ∪ {pi}. We denote by I ′ the I ′-relative resolution of M made of

copies of E(R/p) with p ∈ S′. From Lemma A.3 we see that I can be constructed from I ′ by taking

the quotient by the subcomplex I ′′ made of copies of modules E(R/pi). The long exact sequence

in homology reduces the question of the vanishing of the homology modules of I in degrees > d+1

to the vanishing of the homology modules I ′′ in degrees > d. But we infer from Lemma A.3 again

that the complex I ′′ splits into a direct sum of the complexes I(pi) that we have introduced in

Lemma 3.2. We conclude by this lemma.

Here is a last proposition we will apply in the proof of our main theorem to measure the difference

between the resolutions of a bounded complex and a truncation. Recall that I(X) denotes the

fibrant replacement of the bounded complex X in the I-relative model structure described in

Theorem 1.7, i.e. an I-relative injective resolution of X.

Proposition 3.4. Let R be a local Noetherian ring with finite Krull dimension d and I an injec-

tive class of injective modules. Let X ∈ Ch(R)≥0 be a bounded complex and τ1X its first trunca-

tion. Then the canonical morphism X → τ1X induces isomorphisms in cohomology Hk(I(X)) →
Hk(I(τ1X)) for any k > d + 1.

Proof. Let us replace X → τ1X by an I-fibration I(X) → I(τ1X) between I-fibrant objects. The

kernel K is a chain complex made of injective modules in I, and forms therefore an I-fibrant

replacement for H0(X), the kernel of the canonical morphism.

From the previous proposition we know that Hk(K) = 0 if k > d + 1 (since Rp is flat and by

Lemma A.1 it is sufficient to prove that the same holds for the localized complex at p for all prime

ideals p). The long exact sequence in cohomology allows us to conclude.

Proof of Theorem 3.1. To show that the Quillen pair is in fact a model approximation, we must

check that Condition (4) of [4, Definition ??] holds, or equivalently that the canonical morphism

limI(towX) → X is an I-equivalence for any unbounded chain complex X. We have learned from

Proposition 3.4 that the cohomology of I(τnX) and I(τn−1X) only differ in low degrees (in degrees

< n + d + 1). This means that the cohomology of the I-fibrant replacement of the tower tow(X)

stabilizes. Therefore Hk(limI(towX)) ∼= Hk(I(τk+d+1X).

4. A bad Noetherian ring

The objective of this section is to show that even under the Noetherian assumption towers do

not always approximate unbounded chain complexes. We have seen in the previous section that no

problems arise when the Krull dimension is finite. However when the Krull dimension is infinite it
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is always possible to find a problematic injective class. Let us first briefly recall the typical example

of Noetherian ring with infinite Krull dimension, as constructed by Nagata in the appendix of [12].

Example 4.1. Let k be a field and consider the polynomial ring on countably many variables

A = k[x1, x2, . . . ]. Choose prime ideals p1 = (x1), p2 = (x2, x3), p3 = (x4, x5, x6) such that the

depth of pi is precisely i. Take S to be the multiplicative set consisting of elements of A which are

not in any of the pi’s. The localized ring R = S−1A is Noetherian, but of infinite Krull dimension.

In fact its maximal ideals are mi = S−1pi, a sequence of ideals of strictly increasing height.

We choose now C to be the specialization closed subset of Spec(R) consisting of the mi’s. For

us this means that we will do relative homological algebra with respect to the injective class I of

injective R-modules generated by the injective envelopes E(A/p) for all prime ideals p 6= mi for

all i ≥ 1. We noticed earlier that the class of I-acyclic chain complexes is a localizing subcategory

of D(R). As it contains R/mi but not any other R/p, we know from Neeman’s classification that

this localizing subcategory is precisely generated by ⊕R/mi.

Lemma 4.2. Let R be Nagata’s ring described in Example 4.1 and denote by I(R) an I-injective

resolution of R. For any i > 0 we have an isomorphism Hi−1(I(R)) ∼= E(R/mi).

Proof. Let us consider a minimal injective resolution I of the ring R considered as a chain complex

concentrated in degree 0. By the description Matlis gave of injective modules, each In is a direct

sum of modules of the form E(R/p) where p runs over all prime ideals of R.

By Lemma A.3 we see that there is a subcomplex K of I made of copies of E(R/mi) and we

take I(R) = I/K. This is a fibrant replacement for R in the relative model structure described

in Theorem 1.7. Since the cohomology of I is concentrated in degree 0, we see from the long

exact sequence in cohomology for the short exact sequence of complexes K → I → I(R) that

the cohomology modules of I(R) are isomorphic to those of K up to a shift. But K splits as

a direct sum ⊕iΓmi(I) by Lemma A.3 again. Therefore H∗(K) ∼= ⊕H∗
mi

(R) ∼= ⊕iH
∗
mi

(Rmi),

where the second isomorphism comes from Lemma 3.2. The local ring Rmi is regular, hence

Gorenstein, of dimension i. Therefore the computation done in [10, Theorem 11.29] yields that

Hi−1(K) ∼= E(R/mi).

We consider now the unbounded chain complex X with Xn = R for all n and zero differential.

The zeroth truncation of X is the non-positively graded complex with zero differential and where

every module is R, in other words this complex is ⊕i≥0ΣiR. We know how to construct explicitly

an I-relative resolution for this bounded complex by the previous lemma: it is a direct sum

⊕i≥0ΣiI(R).

Lemma 4.3. Let X be the unbounded complex ⊕iΣiR, τ0X be its zeroth truncation, and I(τ0X)

denote the I-relative resolution of the latter. Then Hi−1(I(τ0X)) ∼= R ⊕ ⊕j≤iE(A/mj) for any

i ≥ 1.
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Proof. This is a direct consequence of the previous lemma.

Let us now consider the tower approximation of the complex X. By definition it is the limit of

the tower given by the I-relative resolution of the truncations of X. From the previous lemma the

nth level of this tower is ⊕i≥−nΣiI(R) and the structure maps are the projections. Therefore the

limit is the product
∏

i ΣiI(R). In particular the (i − 1)-st cohomology module is isomorphic to

the product R×∏
j≥1 E(A/mj).

Theorem 4.4. For the choice of the Noetherian ring R and the injective class I, the category of

towers Tow(R, I) does not form a model approximation for the unbounded chain complexes. More

precisely there exists a complex X which is not I-equivalent to the limit of the fibrant replacement

of its truncation tower.

Proof. The complex X is the one we have constructed above, namely ⊕∞i=−∞ΣiR. We have just

computed the homology of Y the limit of the fibrant replacement of its truncation tower. The homo-

topy fiber of the natural map X → Y is an unbounded complex whose homology is
∏

j≥1 E(A/mj)

in each degree. This complex cannot be I-acyclic since the annihilator of the image of 1 via the

composite map A → ∏
i A → ∏

i A/mi →
∏

i E(A/mi) is zero.

Appendix A. Some facts about local cohomology

In this section R is a Noetherian ring. We will recall a few elementary (and well-known to the

algebraists) facts about localization, injective envelopes, and local cohomology. For a prime ideal

p, we denote by Mp the localization of an R-module M at p. The first lemma will allow us to

reduce certain problems to the case of a local ring, namely Rp.

Lemma A.1. An R-module M is zero if and only if Mp is zero for all prime ideals p.

Proof. Let us assume that M is non-zero, but Mp = 0 for any prime ideal p. We choose a non-zero

element x ∈ M and consider its annihilator. This ideal is contained in a maximal ideal m and since

Mm = 0, there must exist an element r ∈ R \m such that rx = 0, a contradiction.

A theorem of Matlis, [11], describes the injective modules as direct sums of injective hulls E(R/p)

of quotients of the ring by prime ideals. The following two lemmas give some properties of these

indecomposable injective modules.

Lemma A.2. If q ⊂ p, the module E(R/q) is p-local, and otherwise E(R/q)p = 0.

Proof. Assume q ⊂ p and fix r 6∈ p. The multiplication by r on E(R/q) is an ismorphism, so

E(R/q) is p-local. Assume now that q 6⊂ p. Then qm 6⊂ p for any m ≥ 1. If x is any element of

E(R/q), its annihilator is qm for some positive integer m since E(R/q) is q-torsion. There exists

thus an element s ∈ qm which does not belong to p and such that sx = 0. Hence xp = 0. This

shows that E(R/q)p = 0.
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Lemma A.3. The R-module of homomorphisms HomR(E(R/p), E(R/q)) is non-zero if and only

if p ⊂ q.

Proof. Since E(R/q) is q-local by the previous lemma, any homomorphism factors through the

q-localization of E(R/p), which is zero unless p ⊂ q.

Let us now introduce local cohomology, a subject which at least one of the authors enjoyed

learning in [10].

Definition A.4. Given an ideal p in R, the p-torsion of an R-module M is the submodule Γp(M)

of elements with annihilator pm for some positive integer m. The local cohomology modules H∗
p (−)

with support in p are the right derived functors of Γp.

Explicitly, to compute the local cohomology of a module M , we construct an injective resolution

I• of M and compute Hj
p(M) = Hj(Γp(I•)). Our last lemma helps us to understand how this

p-torsion injective complex look like.

Lemma A.5. The p-torsion module Γp(E(R/q)) = E(R/q) if p ⊂ q and is zero otherwise.

Proof. Again this follows from the fact that E(R/q) is q-torsion.

Remark A.6. Let R be a local ring with maximal ideal m and let us consider the generization

closed subset of Spec(R) given by S = {q | q 6= m}. It yields the injective class W generated by

all injective envelopes E(R/q) with q 6= m. Given a module M and an injective resolution I•, we

have a triangle in the derived category Γm(I•) → I• → W•, where W• is a W -relative injective

resolution of M . In particular Hk(W•) ∼= Hk+1
m (M) for k ≥ 2.

Proposition A.7. Let R be a Noetherian ring and p be the radical of (x1, . . . , xn). Then Hk
p (M) =

0 for any k > n and any module M .

Proof. Since the torsion functor does not see the difference between an ideal and its radical, we

can assume that p = (x1, . . . , xn). Then the local cohomology can be computed by means of the

Čech complex ⊗iČ(xi, R)⊗M , [10, Theorem 7.13]. Here Č(x,R) is the complex 0 → R → Rx → 0

concentrated in degrees 0 and 1. The Čech complex is thus concentrated in degrees ≤ n.

Remark A.8. If R is a Noetherian local ring of dimension d, then the maximal ideal can always

be expressed as the radical of an ideal generated by n elements, see [10, Theorem 1.17].
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