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Geometrization of three manifolds and Perelman’s proof

Joan Porti

Abstract. This is a survey about Thurston’s geometrization conjecture of three manifolds and Perel-
man’s proof with the Ricci flow. In particular we review the essential contribution of Hamilton as well as
some results in topology relevants for the proof.

Geometrizaci ón de variedades tridimensionales y la demostraci ón de
Perelman

Resumen. Ésta es una exposición sobre la conjetura de geometrizaci´on de Thurston para variedades
tridimensionales, ası́ como de la demostración de Perelman mediante el flujo de Ricci. En particular
se revisan la contribución esencial de Hamilton y algunos resultados de topologı́a relevantes para la de-
mostración.

1 Introduction

The aim of this paper is to give a brief description of Perelman’s proof of Thurston’s geometrization con-
jecture.

Theorem 1 (Perelman) Thurston’s geometrization conjecture for three manifoldsholds true.

A particular case is Poincaré conjecture, whose proof required almost a century, since it was raised in
1904 by Poincaré as a question [44].

During the first two thirds of XXth century, topological techniques specific for three manifolds where
developed, obtaining some results that have been crucial for the final solution of geometrization. In par-
ticular, compact three manifolds where shown to be triangulable by Bing and Moise [3, 31], and admit
unique smooth structures by Munkres [37], allowing the use of combinatorial and geometric techniques for
topological conclusions.

Despite the previous results, during the 1960’s and 1970’s Poincaré conjecture seemed still out of reach,
and there was not consensus whether it was true or false. The breakthrough came with W. P. Thurston, who
proposed a geometric picture of three manifolds. His conjecture included Poincaré’s as a particular case;
and the evidences Thurston gave to support his own conjecture made people believe seriously in Poincaré’s.
More or less at the same time, R. H. Hamilton introduced the Ricci flow, proving Thurston’s conjecture
for manifolds equipped with a metric of nonnegative curvature. He also developed a program to prove
geometrization conjecture, but the singularities where not well understood. In the electronic preprints of
2002 and 2003 [41, 42, 43], Perelman introduced new Riemannian techniques to understand the singularities
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and gave a complete proof of geometrization. In particular he introduced the so calledκ-non collapse
results, that allow to continue and finish Hamilton’s program. Those preprints are extremely concise, even
sketchy many times, with almost no details but containing all the key points, so that it took few years to the
community to accept the proof.

At the moment of writing, the proof is considered to be complete by many mathematicians. Besides
Perelman’s preprints [41, 42, 43], the reader can find the notes [24, 33, 5]. In particular the notes of Kleiner
and Lott [24] cover all aspects of the proof or give an appropriate reference, except for the collapse of the
long term flow, that we discuss in Section 7.2. For this part wepropose and approach in [1], which will be
integrated in a book in preparation about Perelman’s proof of geometrization.

A complete proof goes beyond the scope of this paper, the purpose is just to give an introduction to
the conjecture and to sketch the results of Hamilton and Perelman that lead to the proof. In Chapter 2 we
explain Thurston’s geometrization conjecture, includingfew applications of geometrization and of Perel-
man’s proof. Next chapters are devoted to Ricci flow, the workof Hamilton is described in Chapter 3 and
part of 4. Perelman’s work on singularities in the first preprint of Perelman [41] is very briefly described
in Chapter 4. Chapter 5 is devoted to the flow with cutoff (a surgery process to deal with the singularities
and continue the flow), which is the content of the first half ofthe second of Perelman’s preprints [42].
Either the flow with cutoff becomes extinct in finite time or continues until infinity. In Chapter 6 we explain
why it becomes extinct for manifolds with finite fundamentalgroup and gives a “shortcut” for the proof
of Poincaré. This is the content of the third preprint of Perelman [41], but here we follow [10]. Finally
in Chapter 7 we explain the long time behaviour, following the second half of [42], and we explain the
alternative approach to collapse that we propose in [1].

2 Thurston’s Geometrization Conjecture

In this chapter we explain the geometrization conjecture. In dimension two, every closed surface admits a
metric of constant curvature; this result can be seen as a uniformization theorem. In dimension three, there
are topological obstructions for having such a metric, or even for having a metric locally homogeneous (the
so called geometric manifolds). Thurston’s geometrization conjecture asserts that every three manifold has
a canonical decomposition in geometric pieces [52]. BeforeThurston’s, we explain Poincaré’s.

2.1 Poincar é Conjecture

This conjecture is not only a particular case of the geometrization conjecture, but it has been a strong
motivation for research in the field along the XXth century.

The conjecture is the positive answer to the question that Poincaré raised in 1904 at the end of the paper
“cinquième complement à l’analysis situs” [44]. It seemsthat Poincaré never conjectured any answer to his
question, he just wrote at the end of the paper: “mais cette question nous entrainerait trop loin”. In modern
language, it can be stated as:

Poincar é’s question Is the sphere the only three dimensonal manifold with trivial fundamental group?

For an overview of the work on this conjecture before 1980 thereader may read [32]. Here we will start
with the work of Thurston at end of the 1970’s. However the topological preliminaries go back to Kneser
in 1928.

2.2 Topological decomposition

As mentioned above, there are topological obstructions fora three manifold to admit a locally homogeneous
metric. Here we explain, the so called canonical topological decomposition, which has two steps.

Connected sum is the first step in the topological decomposition. Recall that, in any dimension, the
connected sum of two manifolds consists in removing an open ball of each one and to glue them along the
boundary spheres.
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For every manifold, the connected sum with the sphere of the same dimension does not change the
manifold, because a sphere is the result of gluing two balls along the boundary. We say that a manifold is
prime if it is not the connected sum of two manifolds different fromthe sphere.

The first step in the canonical decomposition was proved by Kneser [25], for the existence, and Milnor,
for the uniqueness [30].

Theorem 2 (Kneser 1928, Milnor 1962) Every closed, oriented three-manifoldM3 can be decom-
posed as a connected sum

M3 = M3
1 # · · ·#M3

k

so that eachM3
i is prime. In addition, the manifoldsM3

i are unique up to permutation and homeomorphism.

Instead of prime, for technical reasons it is easier to work with irreducible manifolds.

Definition 1 A 3-manifoldM3 is calledirreducibleif every embedded2-sphere inM3 is the boundary of
an embedded3-ball in M3.

The following remark is well know, and allows to work with irreducible manifolds.

Remark 1 Let M3 be a closed orientable3-manifold. ThenM3 is prime if and only if eitherM3 is
irreducible orM3 ∼= S2 × S1.

Later in the 1930’s, H. Seifert introduced a family of manifolds, that he called fibered, nowadays known
asSeifert manifolds[48].

A Seifert fibrationis a partition by circles (locally a product) except for a finite number of singular
fibres, that have the following local model. We consider a cylinder, the productD2× [0, 1] of a disc with an
interval, and we glueD2 ×{0} with D2 ×{1} by a rotation of finite order (cf. Figure 1a). The fibration by
horizontal intervals induces a partition by circles of the solid torus (cf. Figure 1b), that is a fibration except
for the singular fibre{0} × S1, which is shorter.

2πp
q

(a) (b)

Figure 1: Model for the Seifert fibration. We glue the left and right side of the cylinder [0, 1] × D2

in (a) by a rotation of angle 2π p
q , with p

q ∈ Q

Seifert fibrations are described by the the space of fibers, the coefficients(p, q), and a rational Euler
class. Seifert classified topologically the compact three manifolds admiting a Seifert fibration [48], in
particular proving Poincaré conjecture for this family ofmanifolds.

During the 1970’s, W. Jaco and P. Shalen from one side, and K. Johannson independently, they found a
canonical decomposition along tori, currently know asJSJ-decomposition.

Theorem 3 (Jaco-Shalen and Johansonn 1979) Let M3 be an irreducible, closed and orientable
three manifoldM3. There exists a family of incompressible toriT 2

1 , . . ., T 2
k that cutM3 into pieces that

are either Seifert fibered or simple. The family of tori is canonical if minimal.

The torus of the family are assumed to be embedded and disjoint. “Canonical” means unique up to
isotopy.
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Definition 2 A tori T 2 ⊂ M3 is said to beincompressibleif π1(T
2) →֒ π1(M

3) is injective.
An irreducible manifoldM3 is calledsimple if it is not Seifert fibered and every subgroupZ ⊕ Z <

π1M
3 comes from a component of the boundary∂M3.

M3

T 2

T 2

T 2

T 2

Figure 2: JSJ decomposition along tori

Because of geometrization conjecture, this theorem is known as theJSJ splitting, but it is also known as
thecharacteristic submanifoldtheorem. In fact, Jaco, Shalen, and Johansonn found a maximal canonical
Seifert submanifold, and they called the remaining pieces simple. We will see however that in many aspects,
they have a more complicated topology.

2.3 Geometrization

According to the JSJ decomposition (Thm. 3), the manifolds remaining to be understood after that were the
simple ones. Thuston’s conjectured thatsimple manifolds are hyperbolic[52].

Definition 3 A manifold is said to behyperbolicif its interior has a complete metric of constant curva-
ture−1.

It is important to notice that manifolds with finite fundamental group cannot be hyperbolic. Hence the
conjecture claims that irreducible manifolds with finite fundamental group are Seifert fibered. It is clearer
to state two conjectures, according to whether the fundamental group of the manifold is finite or infinite.

Hyperbolization Conjecture Let M3 be a prime, closed three-manifold, withπ1(M
3) infinite and

such that every subgroupZ ⊕ Z < π1(M
3) comes from∂M3. ThenM3 is hyperbolic.

Definition 4 A 3-manifold is said to beelliptic if it admits a metric of constant curvature+1.

If M3 is a closed three manifold andπ1M
3 is finite, then equippingM3 with an elliptic metric is

equivalent to admit a Seifert fibration, using the fact both families elliptic manifolds and Seifert fibered
ones are classified, [47].

Elliptization Conjecture Let M3 be a prime, closed three-manifold, withπ1(M
3) finite. ThenM3 is

elliptic.

This conjecture subsumes Poincaré, as it includes the casewith trivial fundamental group. Both conjec-
tures can be joint in a single one:

Thurston’s Geometrization Conjecture (first version) Every closed orientable three manifold de-
composes canonically into pieces whose interior is either Seifert fibered or hyperbolic

Of course the canonical decomposition is the one due to Kneser and JSJ.
This is not still the usual version of the conjecture. We needa couple of definitions.

Definition 5 A metric is said to behomogeneouswhen the isometry group acts transitively, i.e. any two
points are related by an isometry of the manifold. When such an isometry is only local, defined only in a
neighborhood of the points, then the metric is said to belocally homogeneous.
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The conjecture it is better know as follows:

Thurston’s Geometrization Conjecture (second version) Every closed orientable three manifold
decomposes canonically into pieces whose interior has a locally homogeneous complete metric.

The equivalence between both formulations of the conjecture comes from:

Proposition 1 A 3-manifold admits a locally homogeneous metric if and only ifit is either hyperbolic,
Seifert fibered, or a torus bundle overS1.

This proposition uses the classification of homogeneous metrics on simply connected three-manifolds
done by L. Bianchi [2] in 1897, with cosmological motivations.

2.4 Examples

Example 1 Consider the unit sphereS3 ⊂ R4. It has anhomogeneousmetric, as the isometry group is
the orthogonal groupO(4).

To illustrate Proposition1, we see the sphere as a fibered space. In fact we seeS3 as the unit sphere
in C2,

S3 = { (z1, z2) ∈ C2 | z1z̄1 + z2z̄2 = 1 }.
The fibres of the Hopf fibration are the orbits of the action of

S1 = {ω ∈ C | ωω̄ = 1 }

by left multiplication: i.e. the fibres are the circles

{ (eiθz1, e
iθz2) | eiθ ∈ S1 }.

The space of fibres is therefore the projective lineCP
1.

Example 2 We consider next Lens spacesL(p, q), wherep, q ∈ Z denote coprime integer numbers, and
p ≥ 2. Following the notation of previous example,L(p, q) is the quotient ofS3 by the cyclic action of
orderp generated by the transformation

(z1, z2) 7→ (e2π i/pz1, e
2π i q/pz2).

This action preserves the metric ofS3, hence it induces a metric on constant curvature inL(p, q). In
addition this action conmutes with the multiplication of the Hopf fibration, and permutes orbits, except for
two orbits that are invariant:{ (0, z2) | z2 ∈ S1 } and{ (z1, 0) | z1 ∈ S1 }. ThereforeL(p, q) admits a
Seifert fibration with two singular orbits of orderp.

It can be shown that all elliptic manifolds, i.e. quotients of S3 by a finite subgroup ofO(4) admit a
Seifert fibration induced by the Hopf fibration[47].

Example 3 ConsiderFg × S1, the product of a closed surface of genusg ≥ 1 with the circle. Since the
surfaceFg admits a metric of constant curvature, the product metricFg × S1 is locally homogeneous. It is
obviously Seifert fibered.

Example 4 Let us consider the Heisenberg group:

Heis =
{(

1 x z
0 1 y
0 0 1

)

| x, y, z ∈ R

}

equipped with a left invariant metric, and the subgroup

Γ =
{(

1 x z
0 1 y
0 0 1

)

| x, y, z ∈ Z

}

.
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The quotientΓ\Heis inherits a locally homogeneous metric. In addition, the projection to the coordinates
(x, y) gives a fibration by circles over the torus

S1 → Heis /Γ → T 2 = R2/Z2

(x, y, z) 7→ (x, y)
.

Example 5 The figure eight knot (Fig.3) is the simplest example of hyperbolic knot, i.e. a knot inS3

whose complement is a complete hyperbolic manifold of finitevolume[45, 51].

Figure 3: The figure eight knot

We always represent knots in the three space, understandingthat they lie in its one point compactifica-
tion R3 ∪ {∞} = S3.

Example 6 The next example is also the exterior of a knot inS3, and has a nontrivial JSJ decomposition.
The knot in Figure4 is called a satellite of the figure eight knot, because it liesin the tubular neighborhood
of the figure eight knot. The boundary of this tubular neighborhood is a torusT 2, that gives a JSJ decom-
position. OutsideT 2, we have the exterior of the figure eight knot, which is hyperbolic. InsideT 2, we have
a Seifert manifold, since we can assume that this piece is theresult of removing a solid torus from a model.

Figure 4: A satellite of the figure eight knot. On the right hand picture, the torus T 2 of the JSJ
decomposition is represented

Example 7 LetF 2
g be a surface of genusg ≥ 2. Thurston classified in[56] the automorphismsφ : F 2 →

F 2 in three families: (a) periodic or trivial, (b) reducible (i.e. having a non-trivial closed invariant curve
in F 2) or (c) pseudo-anosov. This classification has a correspondence with the decomposition in geometric
pieces of the mapping torusM3

φ = F 2 × [0, 1]/(x, 1) ∼ (φ(x), 0): M3
φ is Seifert fibered in case (a), it

contains an essential torus in case (b) and it is hyperbolic in case (c). The later is a particular case of
Thurston’s hyperbolization theorem[39, 54].

2.5 Some partial results about geometrization known before Perelman

Here we list some results that may be viewed as a partial positive answer to geometrization, though they
originally could have been formulated with a different purpose. This list is far from beeing complete, we
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just quote few of them. In this section we also omit the results of Hamilton [17, 18], that will be explained
in Theorem 16 and Remark 2.

We start with a result of Waldhausen.

Definition 6 A 3-manifold is called a graph manifold if it is a union of Seifert manifolds along the bound-
ary, consisting of tori.

Notice that those gluing tori do not need to be the ones of the JSJ decomposition, as the manifold is
not assumed to be irreducible, and the tori are not supposed to be incompressible. Waldhausen proved
in [58] a theorem that can be viewed as a precedent of the JSJ decomposition, and that covers one case of
geometrization. The modern version is the following:

Theorem 4 (Waldhausen 1967) A closed orientable graph3-manifold is the connected sum of mani-
folds whose JSJ decomposition contains only Seifert manifolds.

The next result is Thurston’s geometrization for sufficiently large manifolds, that was one of the main
evidences to support his conjecture.

Definition 7 An orientable3-manifold is calledsufficiently largeif it contains an properly embedded
incompressible surface (i.e.π1-injective or a disc not parallel to the boundary)

A surfaceF 2 ⊂ M3 is calledproperly embeddedif it is embedded and∂F = F ∩ ∂M3.
Haken [16] proved that sufficiently large manifolds have a hierarchy: one can cut them successively

along incompressible surfaces to end up with three-balls, and this is why they are often called Haken
manifolds. Using those hierarchies Thurston proved:

Theorem 5 (Thurston 1981) A sufficiently large three manifold satisfies the geometrization conjecture.

For the complete proof of this theorem, we refer to Thurston’s papers and preprints [53, 54, 55] as
well as [23, 26, 34, 39, 40]. The proof involves many different techniques and has stimulated research in
Kleinian groups, representation spaces,R-trees and surface automorphisms. One of the most notable results
about sufficiently large manifolds was proved by Waldhausen[59]:

Theorem 6 (Waldhausen 1968) Any homotopy equivalence relative to the boundary between suffi-
ciently large three manifolds can be deformed to a homeomorphism.

The following theorem is the result of work by Casson-Jungreis, Gabai, Mess, Scott and Tukia, [47, 13,
57, 6, 29] and it involves convergence groups.

Theorem 7 Let M3 be a compact irreducible3-manifold. Ifπ1(M
3) has an infinite cyclic normal sub-

group, theM3 is Seifert fibered.

Among other results of Thurston supporting his conjecture,we quote the orbifold theorem. An orbifold
is like a manifold but modeled in finite quotients ofRn instead of justRn. Thus an orbifold has a branching
locus, corresponding to the points branching points of the model.

For a proof of the following theorem, the reader can check [4]and references therein.

Theorem 8 (Thurston) Any compact irreducible and orientable three orbifold withnon-empty bran-
ching locus satisfies the geometrization conjecture.

In the three dimensional setting, Cheeger-Gromov theory for collapses can also be seen as a geometriza-
tion result. Hereinj(x) denotes the injectivity radius of a point in a Riemannian manifold, andsec(x) its
sectional curvature. Let us state the tridimensional version of Cheeger and Gromov’s theorem [8, 9].

Theorem 9 (Cheeger-Gromov) There exists a universal constantε > 0 such that, for every three di-
mensional Riemannian manifoldM3, the subset

{ x ∈ M3 | inj(x) ≤ ε and| sec(x)| ≤ 1 }
is a graph manifold.

In addition, for everyε > 0, any graph manifold admits Riemannian metric with| sec(x)| ≤ 1 and
inj(x) ≤ ε at every pointx.
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2.6 Consequences of Geometrization

Some consequences of geometrization in three dimensional topology are listed in this section. The list could
be much enlarged, specially if entering in technical questions of three dimensional topology.

Definition 8 A Whitehead manifold is a contractible3-manifold which is not homeomorphic toR3.

Such a manifold must be necessarily open, otherwise it wouldbe a counterexample to Poincaré conjec-
ture. The first example was constructed by J. H. C. Whitehead himself in 1935 [60]. Previously, Whitehead
had published a wrong proof of Poincaré conjecture, which included the generalization of the conjecture
for open manifolds. He found himself the mistake and the counterexample to the wrong statement, the
Whitehead manifold.

Theorem 10 No Whitehead manifold is the universal covering of a compactthree manifold.

This is equivalent to say that the universal covering of a compact aspherical3-manifold must beR3. The
theorem is well know if the manifold is geometric, becauseR3 is the only simply connected manifold with
an homogeneous Riemannian metric. For an aspherical three-manifoldM3 in general, we first notice that
it must be irreducible, asπ2(M

3) = 0. Hence if it is not geometric, thenM3 has a nontrivial JSJ decom-
position. In particularM3 is sufficiently large and in this case this has been proved by Waldhausen [59].

The folowing is known as Borel conjecture, which remains widely unknown in higher dimension.

Theorem 11 (Borel conjecture in dimension three) If two aspherical compact three manifolds are
homotopically equivalent, then they are homeomorphic.

If the manifolds are geometric, this follows from Mostow rigidity [35] in the hyperbolic case, and from
Seifert’s work [48] in the Seifert fibered case. Otherwise, as in the proof of Theorem 10, the manifolds
are irreducible, and they have a nontrivial JSJ decomposition. Thus they are sufficiently large and one can
apply Waldhausen’s theorem (Thm. 6).

Of course asphericity is required, as there exist lens spaces which are homotopically equivalent but not
homeomorphic. The equivalent formulation is the followingone:

Theorem 12 Compact aspherical three manifolds are classified by its fundamental group.

Another important consequence is the uniformization of actions on the three sphere. Together with the
orbifold theorem, geometrization implies:

Theorem 13 Every finite subgroup of orientation preserving diffeomorphisms ofS3 is conjugate to a finite
subgroup ofSO(4).

2.7 Consequences of Perelman’s proof

Before explaining Perelman’s proof, we give some of its consequences. We start with the following result,
whose version up to homotopy was proven by Gromov-Lawson [15] and Schoen-Yau [46].

Corollary 1 If a compact three manifold admits a metric of non-negative scalar curvature then it is either
flat or a connected sum of elliptic manifolds andS2 × S1 or its quotients.

Here is another consequence of the approach follwed by [1]. For a manifoldM3 one can define a
topological invariant as follows: given a compact Riemannian manifold(M3, g), let Rmin(M3, g) denote
the minimum of the scalar curvature, and

R̂(M3, g) = Rmin(M
3, g)Vol(M3, g)2/3
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the normalization of the minimum of the scalar curvature. This normalization by the2/3-th power of the
volume is invariant by homotety. In adition, when it is negative, it is uniformly growing by the Ricci flow.
We also denote

R̂(M3) = sup
g

R̂(M3, g).

According to [24, (93.6)]̂R(M3) equals the Yamabe invariant when it is non-positive.
On the other hand, for a three manifoldM one can define a topological invariant:

V0(M) = inf{Vol(M \ L) | L is a link or empty, withM \ L hyperbolic}

By a theorem of Myers [38], such a link always exists, and by Mostow Rigidity, it is a topological invariant.
Using the Jørgensen-Thurston structure theorem for the volume manifolds [52], this infimum is always
reached by a positive minimum.

Theorem 14 ([1]) LetM3 be a compact irreducible three manifold with infinite fundamental group. Then

R̂(M) ≤ −6V0(M)2/3

with equality if and only ifM is hyperbolic.

3 The Ricci flow

Before defining the flow, we recall the different curvatures.We start with the tensorR(· , ·) · . For any three
fieldsX , Y andZ in a manifold,R(X, Y )Z is the field:

R(X, Y )Z = ∇2
X,Y Z −∇2

Y,XZ = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

When we take the trace we get theRicci curvature:

Ric(X, Y ) = Trace(Z 7→ R(X, Z)Y ).

the Ricci curvature is a symmetric tensor twice equivariant, hence of the same order as the metric tensor
g(· , ·), which is also symmetric.

When we writeRic ≥ 0 we mean thatRic is a positive semidefinite bilinear form, and positive definite
whenRic > 0.

Scalar curvatureis the trace of the Ricci tensor, and it is usually denoted byR. It is not a tensor but a
function, hence much easier to work with.

Sectional curvature is defined for each plane in the tangent space. Given two vectorsu and v, the
sectional curvature of the plane they span〈u, v〉 is

sec(〈u, v〉) = g(R(u, v)v, u)

whereg denotes the metric tensor.
In dimension three, both the sectional curvatures and the Ricci curvature determine the whole curvature

tensor. This is not true in higher dimension for Ricci curvature.

3.1 The flow

It was introduced by Hamilton in 1982, when he geometrized3-manifolds with non-negative Ricci curva-
ture [17]. The flow is defined by the equation

∂g

∂t
= −2 Ric,
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whereg denotes a Riemannian metric andRic its corresponding Ricci tensor. This is a differential equation
in the space of symmetric2-tensors on the manifold. In coordinates(x1, . . . , xn), it is written as

∂gij

∂t
= −2 Rij,

wheregij = g(∂
∂xi

, ∂
∂xj

) andRij = Ric(∂
∂xi

, ∂
∂xj

).

Theorem 15 (Short time existence [17, 12]) If M is a compact manifold with a Riemannian metric
g0, then the equation has a unique solution for timet ∈ [0, T ) for someT > 0.

To understand why this equation can be useful for the geometrization conjecture, note that in harmonic
coordinates (i.e.∆(xi) = 0) the equation is

∂gij

∂t
= ∆(gij) + Qij(g

−1,
∂g

∂x
)

where∆(gij) is the laplacian of the scalar functiongij andQij is a quadratic expression. This is a diffusion-
reaction equation, and the heuristics of Hamilton’s program is the following: “Either g(t) converges to a
locally homogeneous metric or creates singularities corresponding to the canonical decomposition”.

3.2 Examples

We start with the simplest example: assume that the initial metric g0 has constant curvatureK. Then,
knowing the existence and uniqueness of solutions, we will restrict to homotetic metricsgt = f(t)g0 and
find a solution among those. Since the Ricci tensor is invariant by homoteties,

Ricgt
= Ricg0

= (n − 1)K g0,

wheren is the dimension, the equation becomesf ′ = −2(n − 1)K, hence the solution is

gt = (1 − 2K(n− 1)t) g0.

The behaviour depends on the sign of the curvature:

• ForK = 0, the solution is stable.

• ForK < 0 the solution expands for infinite time.

• ForK > 0 it collapses and shrinks to a point in finite timeT = 1
2 K (n−1) .

A more general family of solutions is given by solitons.

Definition 9 A solutiongt to the flow is asoliton if gt = λt φ∗

t g0, whereφt is a diffeomorphism andλt is
a constant, both depending ont.

In the particular case whereφt is the uniparametric group associated to a gradient vector field, we say
thatgt is agradient soliton. Being a gradient soliton is equivalent to the existence of afunctionf satisfying:

Ric+ Hess(f) + c g = 0.

This equation is obtained by differentiatinggt = λt φ∗

t g0 at time0, and assuming thatφt is the group
of diffeomorphism obtained by integrating the field∇f . Herec = λ′

0/2, hencec = 0 corresponds to a
stationary soliton (λ ≡ 1).
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Figure 5: The cigar.

Example 8 The cigar soliton is the metricg = dx2+dy2

1+x2+y2 in R2 (Fig. 5). In polar coordinates centered at
(x, y) = (0, 0), the metric of the cigar soliton is

g = d r2 + tanh2 r dθ.

Notice that it is asymptotically a cylinder (tanh r → 1 whenr → ∞). The sectional curvature is 2
cosh2 r

,
henceRic = 2

cosh2 r
g andf = −2 log cosh r satisfies the gradient soliton equationRic + Hess(f) = 0.

Example 9 The cylinderS2×R with the standard metric is a contracting soliton, and the metric collapses
in theS2 direction in finite time (Fig.6).

Figure 6: The cylinder.

The previous examples play a different role inHamilton’s programfor the proof of the geometrization
conjecture, in particular for the analysis of the singularities. The cylinder and the cigar timesR are both
examples of solutions to the Ricci flow which have nonnegative curvature, are complete and ancient (defined
in at least a time interval(−∞, 0]). Hamilton showed those kind of solutions appear as limits of singularities
of the Rici flow on three dimensional manifolds, after rescaling (metric and time) and blowing up. Cylinders
are convenient limits, as this should correspond to a connected sum decomposition on the manifold. To
avoid the cigar timesR, Perelman introduces the notion ofκ-non-collapse (Theorem 19).

3.3 Evolution of curvature

The evolution of curvature is central in the study of the Ricci flow. We start with scalar curvature for
simplicity

Lemma 1 The evolution of scalar curvatureR = trace(Ric) = Rijg
ij during the Ricci flow is:

∂R

∂t
= ∆R + |Ric |2.

Theweakandstrong maximum principlesapplied to this equation yield:

Corollary 2 On a compact manifoldM , minM R is non-decreasing with time.
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Corollary 3 On a compact manifoldM , if at timet = 0, R ≥ 0 everywere andR > 0 for somex ∈ M ,
thenR > 0 everywhere whent > 0.

Equations for the Ricci and the whole curvature tensor itself can be given. In the three dimensional
case, the curvature operator (acting on2-forms) diagonalizes:





α1 0 0
0 α2 0
0 0 α3





so that theαi are functions onM . Then theαi/2 are sectional curvatures,

Ric =





α2+α3

2 0 0
0 α1+α2

2 0
0 0 α1+α2

2





andR = α1 + α2 + α3.
The evolution equations for theαi are







α′

1 = ∆α1 + α2
1 + α2α3

α′

2 = ∆α2 + α2
2 + α3α1

α′

3 = ∆α3 + α2
3 + α1α2

To those kind of equations one applies theweak maximum principle for tensors, developed by Hamilton.
One deduces for instance:

Proposition 2 In dimension three,Ric ≥ 0, Ric > 0, sec ≥ 0 and sec > 0 are conditions invariant
under the Ricci flow.

Recal thatRic is a symetric bilinear form, and the inequalities in the statement of the proposition mean
that it is positive semidefinite or definite, respectively

Maximum principles where also used by Hamilton to control theαi in the following theorem.

Theorem 16 (Hamilton 1982 [17]) If a compact three manifoldM3 admits a metric withRic > 0, then
the Ricci flow, after rescaling, converges to a metric with constant positive sectional curvature. In particular
M3 is elliptic.

Hamilton also developed astrong maximum principle for tensors[18], and used it to show that if
Ric ≥ 0, then one of the three possibilities happen:

1. The metric is flat.

2. Ric > 0 at t > 0, henceM is elliptic.

3. The metric is locally a productg = g1 ⊕ d x3. In this case the manifold is diffeomorphic toS2 × S1

or it is a quotientRP
3#RP

3.

Hence we conclude:

Remark 2 Hamilton had proved in 1984[18] that a closed manifold with a Riemanian metric withRic ≥ 0
satisfies Thuston’s geoemtrization conjecture.
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3.4 Evolution of volume

The evolution of curvature helps to study the behaviour of the volume. We start by giving the evolution
equation for the volume.

Lemma 2 The volume evolves by the Ricci flow satisfying

d

dt
Vol(M, g(t)) = −

∫

M

R.

Corollary 4 If g(t) evolves by the Ricci flow, then

Vol(M, g(t))(t + 1/4)−3/2

is not increasing in time, provided that for the initial metric at time0 we have

Rmin(0) = min
(M,g(0))

R ≥ −6.

PROOF. Recall from Lemma 1 thatR evolves by:

d

dt
R = ∆R + 2|Ric|2

sinceR is the trace ofRic, decomposingRic as the addition of a traceless part and a diagonal matrix, we
have|Ric|2 ≥ 1

3R2. Hence
d

dt
R ≥ ∆R +

2

3
R2.

By the maximum principle, the minimum of the scalar curvature inM at timet, Rmin(t), satisfies:

d

dt
Rmin ≥ 2

3
R2

min.

Using the normalizationRmin(0) ≥ −6 for the initial metric, hence we get:

Rmin(1) ≥ −2

3

1

1 + 1/4
.

In addition, since the volume evolves by Lemma 2, it follows that:

d

dt
Vol(M, g(t)) ≤ −Rmin(t) Vol(M, g(t)).

Combining those equations, we get thatVol(M, g(t))(t + 1/4)3/2 is non increasing. �

3.5 Hamilton Ivey pinching of curvature

Hamilton-Ivey estimates [19, 21] are another example of a clever application of maximum principles for
tensors in dimension three. Letφ : [−1, +∞) → [1, +∞) be the inverse map ofx 7→ log x − x.

Theorem 17 (Hamilton-Ivey pinching) The inequalities

R ≥ −1 and α1, α2, α3 ≥ −φ(R)

are invariant under the Ricci flow.
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We remark that, given any metric, the inequalities of the theorem are satisfied after homotety. Hence
from now on we shall assume that the flow starts with anormalizedinitial metric, i.e. satisfying those
conditions at time0.

SinceR = α1 + α2 + α3, we deduce:

Corollary 5 For a metric on a three manifold evolving under the Ricci flow and with normalized initial
conditions, at each point and each time it holds:

R + 2φ(R) ≥ α1, α2, α3 ≥ −φ(R).

It is relevant to notice that, by construction,limy→+∞

φ(y)
y = 0, therefore forR ≫ 1, R controls the

whole curvature tensor.

4 Singularities

In this section we first explain that the scalar curvature blows up when there is a singularity. The idea of
Hamilton is to take a rescaled limit of a sequence of flows whenthe time converges to the singular time,
rescaling so that the scalar curvature becomes1. The main technical issue here is to control the injectivity
radius of the base point of this rescaled sequence: this is what Perelman achieved with hisκ-non-collapse
theorem. Those limits of sequences of rescaled flows give theso calledκ-solutions. They are useful to
understand the singularities, and to findcanonical neighborhoodsof points with high scalar curvature.

4.1 Scalar curvature

Hamilton showed that in the three dimensional case, the scalar curvatureR controls the singularities:

Theorem 18 Let M be a3-manifold. Assume that the Ricci flow is defined in time[0, T ) andT > 0 is
maximal, thensupM R → ∞ ast → T .

Notice thatM is not assumed to be complete, thus this allows to localize singularities at points where
R → ∞.

The proof of this theorem has two steps. The first one applies in any dimension: the curvature tensor
controls the evolution of the metric; the second one is specific to dimension three,R controls the eigenvalues
of the curvatureαi, so that anyαi → ∞ if and only if R → ∞.

Figure 7: S3 with a neck develops a singularity, and the curvature goes to infinity there

4.2 Parabolic rescaling and blow ups

To analyze singularities we need to rescale.

Definition 10 A parabolic rescalingof the metricsg(t) evolving by∂
∂tg(t) = −2 Ric is λg( t

λ) for some
λ > 0.
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Figure 8: Rescaled limits of singularities can be though as zooms

The Ricci tensor is invariant by homoteties, thus therescaled metric still satisfies the Ricci flow equation.
The distance is multiplied by

√
λ and the time byλ, this is why this rescaling is called parabolic.

Assume we have a singularity developing at timeT under the Ricci flow(M, g). We take a sequence
xi ∈ M andti → T so thatR(xi) = maxM R at timeti, and we parabolic rescale to haveR(xi) = 1. We
also move the time by a translation, so that the initialti becomes zero. In order to analyze the singularity,
the idea is to look at the limit of pointed Ricci flows (with base pointxi at time0, after the time translation).

There is a compactness theorem for pointed Ricci flows [19], provided we have apositive lower bound
on the injectivity radiusof the base point. If we had this lower bound, then there wouldbe a convergent
subsequence to a flow, and Hamilton work would yield that the limit has the following properties:

• It is an ancient solution, i.e. defined on time(−∞, 0].

• The metric is complete.

• The sectional curvature is non-negative, because we rescale byR and we apply Hamilton-Ivey pin-
ching (Corollary 5).

• R ≥ 0, becauseRmin is nondecreasing.

4.3 κ-noncollapse

Perelman uses a technique calledκ-noncollapse to control the injectivity radius:

Theorem 19 ( κ-noncollapse [41]) Given a manifold(M, g0) there existκ > 0 and r0 > 0 with the
following property. Assume thatgt evolves by the Ricci flow. Then for everyx ∈ M3, every0 < r < r0

and everyt ∈ [1, T ), if |R| ≤ r−2 onB(x, r) ⊂ (M, gt), then

vol(B(x, r))

r3
≥ κ.

When the conclusion of the theorem holds, we say that the solution is κ-non collapsed at scale≤ r0.
We make the following remarks:

• This inequality gives alower bound on the injectivity radius after normalizingto |R| ≤ 1, by
Cheeger’s propeller’s lemma [7].

• Notice thatvol(B(x, r))/r3 is scale invariant. By the previous remark, the scale such that |R| = 1 is
the right one to take limits.

• Notice also that thisκ > 0 and the scaler0 depend on the initial conditions(M, g0), and that it
applies to timest ≥ 1 (i.e. once the Ricci flow has evolved for some time).

The proof is too long to be given here. It develops new functionals that are monotonic for the Ricci
flow, and can be found in the original paper [41], the notes [24], [33] and [5], or the book [36].
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If the dimension is different from3, then the theorem also holds true, by replacing the scalar curvature
by the whole curvature tensor.

In the study of singularities, the rescaled limits satisfy the conclusion of the theorem (withr0 = ∞,
because of the blow up). They are calledκ-solutions:

Definition 11 A κ-solution is a solution to the Ricci flow which is:

• ancient (defined on some time interval containing(−∞, 0]);

• non flat and has non-negative sectional curvature;

• metrically complete;

• κ-non-collapsed at all scales (i.e. satisfying the conclusion of Theorem19with r0 = ∞).

The cigar soliton isκ-collapsed (when we normalize at some pointR = 1, the injectivity radius is
arbitrarily small). The cylinder is aκ-solution.

4.4 Canonical neighborhoods

Of courseκ-solutions play a central role as local model for singularities, i.e. as the limit after rescaling.
Namely, points whereR is large, are approximate byκ solutions. Then one has to find structure results

for κ-solutions. Even ifκ-solutions are more complicated than cylinders, the strategy is to find regions
in theκ-solutions which are close to cylinders, in order to be able to cut along connected sums. In fact,
Perelman usesκ-solutions to prove [42]:

Theorem 20 Given a manifold(M, g0) there existsr > 0 andε > 0 with the following property:
If t ≥ 1 andx ∈ (M, gt) satisfiesR(x) ≥ 1

r2 , thenx lies in a canonical neighborhood.

Definition 12 A canonical neighborhoodis ε-close to one of the following:

a. A strongε-neck.

b. An open ball with a cylindrical end (called acap, cf. Fig.9).

c. A manifold diffeomorphic toS3 or RP
3.

d. A manifold with positive sectional constant curvature.

Definition 13 A strongε-neckis a neighborhoodU ⊂ M × [0, t0] of (x0, t0)

U = { (x, t) ∈ M × [0, t0] | dt0(x, x0) ≤ r/ε, t0 − r2 ≤ t ≤ r },

wheredt0 denotes the distance at timet0, such that after parabolic rescaling by1/r, it is 1/ε-close to the
evolving cylinderS2 × [− 1

ε , 1
ε ] in a time interval of length one.

The normalization is chosen so that the scalar curvature of the cylinder at the final time is one, so after
the homotetyR(x0, t0) = 1

r2 .
The idea now will be to do surgery along strong necks (i.e. to decompose along connected sums of these

spheres).
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Figure 9: A cap

Ωρ

Figure 10: By 21, the complement of Ωρ has simple topology

4.5 Gluing canonical neighborhoods

Let (M, gt) denote a family of metrics evolving by the Ricci flow in a time interval[0, T ), with T maximal.
Let R(x, t) denote the scalar curvature atx at timet. Having in mind Theorem 20 we define, for some
t ≈ T

Ωρ,t =

{

x ∈ M | R(x, t) ≤ 1

ρ2

}

.

andΩt =
⋃

ρ>0 Ωρ,t. By the bound of the curvature and theκ-non collapse, there is a limit metric onΩt

but the setM \ Ωt can be very wild.
If t ≈ T , every point inM \ Ωt has a canonical neighborhood as in Theorem 20. By using the metric

properties of such a neighborhood one can prove:

Theorem 21 There exists aδ0 > 0 such that if0 < δ < δ0 andρ ≤ r δ, thenM \ Ωρ,t is diffeomorphic
to a finite union of cylinders, hats or manifolds with positive curvature.

In addition, there exist parameters0 < h ≤ r δ andD > 0 such that ifx, y, z ∈ M , g(t) satisfy
R(x) ≤ 1/r2, R(y) ≥ D/h2 andz lies in the minimizing segment betweenx andy andR(z) = 1/h2,
thenz is the center of a strong neck.

This theorem tells that points of high curvature lie in canonical regions, and that the transition between
points of high curvature and other points is made along centers of strong necks.

After cutting along the spheres in the centers of strong necks, the surgery consists in gluing balls with
some particular metrics. Those balls are obtained by gluinga long cylinder with the unit ball:

S2 × [0, 10] ∪ B3

whereS2 × {10} is identified to∂B3 (Figure 11). The metric around the gluing sphereS2 × {10} = ∂B3

must be regularized without changing too much the bounds on the curvature. A homotety of factorh is
required in order to have the same diameter as the spheres in∂Ωh.

We do not assume that the manifold is connected, new components may appear after surgery. Some
of the new components can have positive curvature (and satisfy geometrization conjecture, by Hamilton’s
Theorem, Thm. 16).

Notice that Theorem 21 allows to cut along spheres in such a way that the topology of the complement
of Ωρ is simple enough. In addition the metric is well understood on the boundary ofΩρ.

The idea is to restart the flow and apply the process again. In order to do that, we must be careful with
the constants and we will define a flow with cutoff.
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Figure 11: The piece we add after cutoff
.

Figure 12: The manifold after cutoff (cf. Fig. 10)

5 Flow with cutoff

The definition here follows [1], where we consider some cutoff times, which are not singular, but just
before the singular times, so that we already have quite highcurvature. This is a technical modification
of Perelman’s [42] that does not change the main ideas of the proof, but allows to simplify some technical
issues.

Definition 14 A flow with cutoff is a family of Riemannian three manifolds(Mt, g(t)) parametrized by
t ∈ [0, T ), T ∈ R+ ∪ {∞}, such that there exists a discrete set inR of cutoff times0 < t1 < · · · < tn <
· · · < T satisfying:

a. For t ∈ [ti−1, ti), (M(t), g(t)) is a solution to the Ricci flow equation. In particular the topology of
M(t) does not change along[ti−1, ti).

b. The solution in the interval[ti−1, ti) can be extended to timeti, and we denote it by(M−(ti), g−(ti)).

c. (M(ti), g(ti)) is the result of cutoff of(M−(ti), g−(ti)) as in Theorem21 for some parametersr, δ,
h > 0.

We say that a manifold has normalized initial conditions if at time0 R ≥ −1 and satisfies the Hamilton-
Ivey pinching condition. The folowing result tells that theRicci flow with cutoff exists, and it can be pro-
longed for infinite time except if for some time the whole manifold satisfies the conclusion of Theorem 21.

Theorem 22 There exist positive decreasing functionsr, δ, h : [0, +∞) → (0,∞) such that for any
Riemannian irreducible three manifold with normalized metric (M, g(0)), one of the following holds.

a. Either there existst0 >0 such that a flow with cutoff(M, g(t)) is defined on[0, t0) andΩρ(t0),t0 = M .

b. Or a flow with cutoff(M, g(t)) and parametersr, δ, h is defined on[0,∞).

Some remarks about this theorem are in order. Firstly, therecan be infinitely many cutoff times, but
they do not accumulate, by a volume argument. Namely, the time derivative of volume follows the rule of
Lemma 2:

d

dt
Vol(M, g(t)) = −

∫

M

R.
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Since the minimum onM of the scalar curvatureR is non-decreasing, the growth ofVol(M, g(t)) is con-
trolled. On the other hand, one can estimate the volume lost at each cutoff, and the conclusion is that for a
sufficiently large amount of cutoff times in a bounded interval, the volume would become zero.

Secondly, the constantsδ > 0, r > 0 andh > 0 change at every cutoff time. One has to show that
they do not converge to zero in finite time. In addition the choice of parametersδ > 0, r > 0 andh > 0
can modify the flow, hence there is no uniqueness. The proof isby contradiction, and the constants are not
constructible.

Thirdly, the cutoff process is metric, but the connected sums can be topologically trivial (as in the
example of Figure 13).

Figure 13: Topologically trivial connected sums produced by the flow.

It is unclear if the number of cutoff times is finite or infinite. No example with infinitely many times is
know yet.

Definition 15 We declare the flowextinctwhen at some timet0, we haveΩρ(t0),t0 = M , i.e. as in Theo-
rem22 a.

When the flow becomes extinct, by Theorem 21, the manifold is aconnected sum of pieces of con-
stant curvature1 andS2 × S1. In particular it is the connected sum of Seifert manifolds and satisfies the
geometrization conjecture.

6 Elliptization

Perelman wrote a third paper [43], where he proves that for elliptization (in particular for proving Poincaré
conjecture) the long time behaviour is not required.

Theorem 23 If the initial manifold has finite or trivial fundamental group, then the flow with cutoff be-
comes extinct.

We recall that the flow becomes extinct when, at some finite time,Ωρ = ∅.
Even if Perelman gave a proof with loops, we will follow the approach of Colding and Minicozzi [10,

11], with sweepouts, families of maps from the sphereS2 to the manifoldM3. Both proofs use that, when
π1(M

3) is finite, thenπ3(M
3) 6= 0.

IDEA OF PROOF. We consider the space of continuous mapsS2 → M3 whose differential is square
integrable:

Θ := L2
1(S

2, M3) ∩ C0.

Notice thanM3 can be embedded intoΘ by means of the constant map: to eachx ∈ M3 it corresponds the
constant map fromS2 to x. Therefore we can consider the relative fundamental group:

π1(Θ, M3),

which is the set of homotopy classes of maps from the interval[0, 1] to Θ, such that the endpoints are in
M3 (i.e. the endpoints are constant maps).

119



J. Porti

Sinceπ1(M
3) is either trivial or finite, Hurewicz theorem applied to its universal covering tells us that

π3(M
3) ∼= Z. This implies thatπ1(Θ, M3) 6= 0, because if we have a mapf : S3 → M3 which is not

homotopically trivial, and we assume thatf is of classC2, then we consider the height function onS3 ⊂ R4,
which is a Morse function, and its level sets are a family of spheresS2, except for both critical points, the
north and the south pole, where the level sets are points, Fig. 14. This gives a path inΘ, with parameter
the height function, with endpoints inM3 ⊂ Θ. Clearly, it is a nontrivial element inπ1(Θ, M3), because it
comes from a nontrivial element inπ3(M

3).

s

s = 0

s = 1

S2
s

S3

γs M3

Figure 14: Constructing element in π1(Θ, M3) from an element in π3(M
3).

Let θ ∈ π1(Θ, M3) denote a nontrivial element. Colding and Minicozzi define the width:

W (g, θ) = min
γ∈θ

max
s∈[0,1]

E(γs) > 0, whereE(γs) =
1

2

∫

S2

‖dγs‖2dµS2 .

Equivalently, given a path inΩ with endpoints inM3, they consider the maximun of the energy among all
values of the parameters ∈ [0, 1]. Then they take the minimum among all paths that represent the given
homotopy classθ 6= 0.

By a theorem of Jost [22],W (g, θ) > 0 for θ ∈ π1(Θ, Ω) non trivial.
Wheng(t) evolves by the Ricci flow with cutoff, Colding and Minicozzi prove [10, 11]:

d

dt
W (g(t), θ) ≤ −4π +

3

4(t + C)
W (g(t), θ)

that has a meaning even when it is not differentiable. This inequality implies that for some finite timet0,
W (g(t0), θ) = 0. Since this contradicts Jost’s resultW (g, θ) > 0, the only possibility is that the flow is not
defined at timet0, i.e. it has become extinct.

7 Long time behaviour

We assume thus that the flow can be continued during infinite time. We denote byMt the manifold at time
t, that may have changed topologically because of cutoff.

7.1 Thin thick decomposition

We want to decompose the manifold as the union of hyperbolic and Seifert fibered pieces. According
to Cheeger and Gromov’s theory (Theorem 9), the Seifert pieces should correspond to pieces with small
injectivity radius with respect to curvature (thin part). In addition, by Margulis lemma (cf. [51]), hyperbolic
manifolds have injectivity radius uniformly minorated (thick part). We want to find a decomposition into
thin and thick parts, using scale invariant notions.

For every timet ≫ 1 we define

η(x, t) = sup

{

r > 0 | the ballB(x, r) ⊂ Mt has curvature≥ − 1

r2

}

.

120



Geometrization of three manifolds and Perelman’s proof

We fix a constantω > 0. We will say thatx ∈ M−

t (ω) if

vol(B(x, η(x, t)) ≤ ω η(x, t)3.

Definition 16 Theω-thin part isM−

t (ω), and theω-thick M+
t (ω) = M \ M−

t (ω).

Perelman uses the regularity properties of the flow to prove:

Theorem 24 For everyω > 0, theω-thick part becomes stable (not affected by cuttoff for large times)
and of asymptotically constant negative curvature.

Thus the components of the thick part, when normalized by
√

t, converge to manifolds of constant
negative curvature, moreover, by Corollary 4, that appliesto the flow with cutoff, they have finite volume.
Hence their boundary components are tori, by Margulis lemma. One may askwhether they are tori of the
JSJ decompositionor not. This is equivalent to ask whether they are incompressible or not (i.e.π1-injective).

Theorem 25 The boundary tori of the thick part are incompressible.

For this theorem Perelman adapts an argument of Hamilton [20] to the case with cutoff. By contradic-
tion, assume that one of the torus is compressible. According to Dehn lemma, there exists a compressing
disc, i.e. a disc in the manifold whose boundary is and essential curve of the torus. A theorem of Meeks
and Yau [28] allows to choose a minimal smooth embedded disk.Hamilton shows that the area of the disc
decreases at a rate bounded away from zero, which is impossible for a flow with cutoff defined for infinite
time.

Remark 3 This concludes the proof of geometrization when the thick part is non empty. If the thick part
has no boundary, then the flow converges to a hyperbolic metric, after renormalizing. If it has boundary,
then the manifold contains incompressible tori and therefore it is sufficiently large, and one can apply
Thurston’s geometrization (Theorem5).

7.2 Collapses and geometrization of aspherical manifolds

The thin part of the manifold is expected to be a graph manifold, but Cheeger-Gromov theory cannot be
applied here because there is no upper bound for the curvature.

Here we have to quote a paper of Shioya and Yamaguchi [49], in which they show that the thin part is
a graph manifold. Their proof relies on Alexandrov spaces. Those are metric spaces satisfying the same
properties and inequalities for distances as in a manifold with lower curvature bound. Unfortunately, their
proof uses unpublished results of Perelman himself, as wellas generalizations of the results of Shioya and
Yamaguchi, not explicitly written up. We propose in [1] a different approach, that we explain here.

Theorem 26 Let (M3
n, gn) be a sequence of aspherical Riemannian three manifolds satisfying.

(a). Volume collapse.There exists a sequenceεn → 0 such that for eachx ∈ Mn, there is a radius
0 < ρn(x) satisfying

sec ≥ − 1

ρn(x)2
onB(x, ρn(x)) and Vol(B(x, ρn(x))) ≤ ε ρn(x)3.

(b). Local curvature bounds.For everyδ > 0 ∃r̄ = r̄(δ) > 0 such that: If0 < r < r̄(δ), Vol(B(x,r))
r3 > δ

andsec ≥ − 1
r2 onB(x, r), then

|Rm| < K0r
−2 and |∇Rm| < K1r

−3.
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Then forn sufficiently large,Mn is a graph manifold.

This is a modified version of Theorem 7.4 of Perelman [42].
By Theorem 23 we may assume that the manifold is aspherical. As we mentioned in Remark 3, we may

also assume that the thick part is empty, and hypothesis (a) says that the manifold is collapsing everywhere.
Hypothesis thm:collapse:b is a regularity property of the flow, justified in 7.3 of Perelman [42], cf. [24].

Notice that hypothesis (a) and (b) are not contradictory, asthey deal with different scales. Namely, since
lim
r→0

Vol(B(x,r)
r3 = 4π

3 , (b) applies to a much smaller scale than (a).

The proof of Theorem 26 in [1] has three main steps. Firstly there is a local structure theorem: by a
blow up argument, every point has a neighborhood that looks like a manifold of non-negative curvature.
If the manifold is compact by Hamiton’s theorem we are done (Remark 2). Otherwise some of the metric
properties are controlled, and its topology is rather simple, by Cheeger-Gromoll soul theorem:R3, T 2×R,
S2 × R, S1 × R2 or K2×̃R, the orientable line bundle over the Klein bottle. Using metric properties of
the soul theorem, one can choose the local neighborhoods diffeomorphic to the whole manifold.

The second step is to shrink this covering to have dimension two (every point belongs to at most three
open sets). To do it, we use a nice metric argument of Gromov [14], where the volume notion of collapse
(hypothesis (a) in the theorem) is used to shrink coverings,also as in [4].

Lemma 3 Suppose that an aspherical closedn-manifoldNn admits an open covering{Ui}i∈I such that
for everyi ∈ I, π1(Ui) → π1(M

n) is trivial. Then the dimension of the covering{Ui}i∈I is at leastn (i.e.
at least one point belongs ton + 1 open sets).

This lemma uses asphericity, for instace it is trivially nottrue for a sphere. The proof uses aČech-de
Rham complex to compute

Hn(Nn, R) ∼= Hn(π1(N
n), R).

If the dimension of the covering was less than or equal ton, thenHn(Nn, R) = 0, and therefore it has to
be at leastn + 1, cf. [27]. Notice that the orientability ofNn can be assumed after taking the orientable
covering.

Since our covering has dimension two for at least one of the open setsU0 it holds thatπ1(U0) →
π1(M

3) is nontrivial, by Lemma 3. In particularU0
∼= T 2 × R, S1 × R2 or K2×̃R. By standard three-

dimensional topology, the manifoldM3 \ U0 is irreducible (U0 is not contained in a ball), it is sufficiently
large and has boundary consisting of tori.

We apply Thurston’s geometrization, and thereforeM \ U0 has a JSJ decomposition with Seifert and
hyperbolic pieces. We claim that there are not hyperbolic pieces. This is proved by means of the simplicial
volume (also called Gromov norm). By Gromov-Soma [14, 50], the simplicial volume equals a constant
multiple of the addition of volumes of hyperbolic pieces. Since we have this covering of dimension two
by open sets whose fundamental group is trivial, Gromov’s vanishing theorem implies that the simplicial
volume ofM3 \ U0 vanishes. ThusM3 \ U0 is a graph manifold and so isM3. By WaldhausenM3 is a
graph manifold: either Seifert fibered or with only Seifert pieces in the JSJ decomposition.
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