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Geometrization of three manifolds and Perelman’s proof
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Abstract.  This is a survey about Thurston’s geometrization conjectfrthree manifolds and Perel-
man’s proof with the Ricci flow. In particular we review thesestial contribution of Hamilton as well as
some results in topology relevants for the proof.

Geometrizaci 6n de variedades tridimensionales y la demostraci  6n de
Perelman

Resumen. Esta es una exposicion sobre la conjetura de geometizale Thurston para variedades
tridimensionales, asi como de la demostracion de Perelmediante el flujo de Ricci. En particular
se revisan la contribucion esencial de Hamilton y algumessiltados de topologia relevantes para la de-
mostracion.

1 Introduction

The aim of this paper is to give a brief description of Pereiltmgroof of Thurston’s geometrization con-
jecture.

Theorem 1 (Perelman) Thurston’s geometrization conjecture for three manifdidkls true.

A particular case is Poincaré conjecture, whose proofiredualmost a century, since it was raised in
1904 by Poincaré as a questidni[44].

During the first two thirds of XXth century, topological tatkjues specific for three manifolds where
developed, obtaining some results that have been crucighéofinal solution of geometrization. In par-
ticular, compact three manifolds where shown to be triaalel by Bing and Moise |3, 31], and admit
unigue smooth structures by Munkrgsl[37], allowing the Ussombinatorial and geometric techniques for
topological conclusions.

Despite the previous results, during the 1960’s and 197dlisdaré conjecture seemed still out of reach,
and there was not consensus whether it was true or false. reagthrough came with W. P. Thurston, who
proposed a geometric picture of three manifolds. His cdojedncluded Poincaré’s as a particular case;
and the evidences Thurston gave to support his own congentade people believe seriously in Poincaré’s.
More or less at the same time, R. H. Hamilton introduced treeiRiow, proving Thurston’s conjecture
for manifolds equipped with a metric of nonnegative curvatuHe also developed a program to prove
geometrization conjecture, but the singularities wherewell understood. In the electronic preprints of
2002 and 2003141, 42,13], Perelman introduced new Rieraartachniques to understand the singularities
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and gave a complete proof of geometrization. In particuiirtroduced the so calleg-non collapse
results, that allow to continue and finish Hamilton’s pragrarhose preprints are extremely concise, even
sketchy many times, with almost no details but containihthal key points, so that it took few years to the
community to accept the proof.

At the moment of writing, the proof is considered to be cortgplegy many mathematicians. Besides
Perelman’s preprint§ [4[L, #2,143], the reader can find thes\@4 [ 33/ 5]. In particular the notes of Kleiner
and Lott [24] cover all aspects of the proof or give an appiadpireference, except for the collapse of the
long term flow, that we discuss in Sectionl7.2. For this parpvwapose and approach inl [1], which will be
integrated in a book in preparation about Perelman’s prégeometrization.

A complete proof goes beyond the scope of this paper, theogerjs just to give an introduction to
the conjecture and to sketch the results of Hamilton andlferethat lead to the proof. In Chapfdr 2 we
explain Thurston's geometrization conjecture, includiagy applications of geometrization and of Perel-
man’s proof. Next chapters are devoted to Ricci flow, the wafrklamilton is described in Chapter 3 and
part off4. Perelman’s work on singularities in the first piapof Perelman[[4] is very briefly described
in Chaptef#t. Chaptél 5 is devoted to the flow with cutoff (agsuy process to deal with the singularities
and continue the flow), which is the content of the first haltled second of Perelman’s preprintsi[42].
Either the flow with cutoff becomes extinct in finite time omtmues until infinity. In Chaptd6 we explain
why it becomes extinct for manifolds with finite fundamergabup and gives a “shortcut” for the proof
of Poincaré. This is the content of the third preprint of éheran [41], but here we follow [10]. Finally
in Chapte ¥ we explain the long time behaviour, following tecond half of[[42], and we explain the
alternative approach to collapse that we proposglin [1].

2 Thurston’s Geometrization Conjecture

In this chapter we explain the geometrization conjectunedimension two, every closed surface admits a
metric of constant curvature; this result can be seen asfararization theorem. In dimension three, there
are topological obstructions for having such a metric, @refor having a metric locally homogeneous (the
so called geometric manifolds). Thurston’s geometrizationjecture asserts that every three manifold has
a canonical decomposition in geometric pie¢es [52]. Befdmerston’s, we explain Poincaré’s.

2.1 Poincar é Conjecture

This conjecture is not only a particular case of the georation conjecture, but it has been a strong
motivation for research in the field along the XXth century.

The conjecture is the positive answer to the question thaicAce raised in 1904 at the end of the paper
“cinquiéme complement a I'analysis situ5™]44]. It seetinat Poincaré never conjectured any answer to his
guestion, he just wrote at the end of the paper: “mais cetstipn nous entrainerait trop loin”. In modern
language, it can be stated as:

Poincar é’s question Is the sphere the only three dimensonal manifold with thiftiadamental group?

For an overview of the work on this conjecture before 1980 #aeler may read [32]. Here we will start
with the work of Thurston at end of the 1970’s. However theotogical preliminaries go back to Kneser
in 1928.

2.2 Topological decomposition

As mentioned above, there are topological obstructiona tbhree manifold to admit a locally homogeneous
metric. Here we explain, the so called canonical topoldgieaomposition, which has two steps.

Connected sum is the first step in the topological decomipasitRecall that, in any dimension, the
connected sum of two manifolds consists in removing an opdrobeach one and to glue them along the
boundary spheres.
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For every manifold, the connected sum with the sphere of #meesdimension does not change the
manifold, because a sphere is the result of gluing two bi#dlsgathe boundary. We say that a manifold is
primeif it is not the connected sum of two manifolds different frdine sphere.

The first step in the canonical decomposition was proved bgsién[25], for the existence, and Milnor,
for the uniquenes$ [30].

Theorem 2 (Kneser 1928, Milnor 1962) Every closed, oriented three-manifold® can be decom-
posed as a connected sum
M3 = M3 #M}

sothat each\/? is prime. In addition, the manifold®/? are unique up to permutation and homeomorphism.
Instead of prime, for technical reasons it is easier to waitk wreducible manifolds.

Definition 1 A 3-manifold M3 is calledirreducibleif every embedde2tsphere inM/? is the boundary of
an embedded-ball in A3,

The following remark is well know, and allows to work with @ducible manifolds.

Remark 1 Let M3 be a closed orientabl8-manifold. Then)? is prime if and only if eitherM/3 is
irreducible or M3 =~ §2 x S1.

Later in the 1930's, H. Seifert introduced a family of mardfg that he called fibered, nowadays known
asSeifert manifold§48].

A Seifert fibrationis a partition by circles (locally a product) except for a finnumber of singular
fibres, that have the following local model. We consider angigr, the producb? x [0, 1] of a disc with an
interval, and we glué? x {0} with D? x {1} by a rotation of finite order (cf. FigutellLa). The fibration by
horizontal intervals induces a partition by circles of tieéidstorus (cf. Figurd_Ih), that is a fibration except
for the singular fibrg0} x S!, which is shorter.

(@) (b)

Figure 1: Model for the Seifert fibration. We glue the left and right side of the cylinder [0, 1] x D?
in (a) by a rotation of angle 27r§, with § 0)

Seifert fibrations are described by the the space of fibeesctiefficientsp, ¢), and a rational Euler
class. Seifert classified topologically the compact thremifolds admiting a Seifert fibration [48], in
particular proving Poincaré conjecture for this familyro&nifolds.

During the 1970's, W. Jaco and P. Shalen from one side, andianhson independently, they found a
canonical decomposition along tori, currently knowJ&sl-decomposition

Theorem 3 (Jaco-Shalen and Johansonn 1979)  Let M3 be an irreducible, closed and orientable
three manifold)M 3. There exists a family of incompressible t@#, ..., 772 that cutM? into pieces that
are either Seifert fibered or simple. The family of tori is caital if minimal.

The torus of the family are assumed to be embedded and disj@anonical” means unique up to
isotopy.
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Definition 2 A tori 72 C M3 is said to bencompressibléf 7 (T?) — 71 (M?3) is injective.
An irreducible manifoldi/3 is called simpleif it is not Seifert fibered and every subgrop® Z <
71 M3 comes from a component of the boundany 3.

Figure 2: JSJ decomposition along tori

Because of geometrization conjecture, this theorem is kreswthelSJ splitting but it is also known as
the characteristic submanifoltheorem. In fact, Jaco, Shalen, and Johansonn found a miccémanical
Seifert submanifold, and they called the remaining pietaple. We will see however that in many aspects,
they have a more complicated topology.

2.3 Geometrization

According to the JSJ decomposition (THih. 3), the manifadaisaining to be understood after that were the
simple ones. Thuston’s conjectured teamhple manifolds are hyperboljg2].

Definition 3 A manifold is said to béayperbolicif its interior has a complete metric of constant curva-
ture —1.

It is important to notice that manifolds with finite fundan@rgroup cannot be hyperbolic. Hence the
conjecture claims that irreducible manifolds with finitenflamental group are Seifert fibered. It is clearer
to state two conjectures, according to whether the fundgahgroup of the manifold is finite or infinite.

Hyperbolization Conjecture Let M3 be a prime, closed three-manifold, with (M?) infinite and
such that every subgroup® Z < 1 (M3) comes frondM 3. ThenM? is hyperbolic.

Definition 4 A 3-manifold is said to belliptic if it admits a metric of constant curvaturel.

If M3 is a closed three manifold and M? is finite, then equipping/? with an elliptic metric is
equivalent to admit a Seifert fibration, using the fact bailies elliptic manifolds and Seifert fibered
ones are classified, [47].

Elliptization Conjecture  Let M? be a prime, closed three-manifold, with (1/?) finite. ThenA/? is
elliptic.

This conjecture subsumes Poincarg, as it includes thendéts&rivial fundamental group. Both conjec-
tures can be jointin a single one:

Thurston’s Geometrization Conjecture (first version) Every closed orientable three manifold de-
composes canonically into pieces whose interior is eitlegfie® fibered or hyperbolic

Of course the canonical decomposition is the one due to KiaesklSJ.
This is not still the usual version of the conjecture. We naeduple of definitions.

Definition 5 A metric is said to béhomogeneouwhen the isometry group acts transitively, i.e. any two
points are related by an isometry of the manifold. When surcts@metry is only local, defined only in a
neighborhood of the points, then the metric is said tédoally homogeneous
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The conjecture it is better know as follows:

Thurston’s Geometrization Conjecture (second version) Every closed orientable three manifold
decomposes canonically into pieces whose interior hasaliphomogeneous complete metric.

The equivalence between both formulations of the conjeatames from:

Proposition 1 A 3-manifold admits a locally homogeneous metric if and onliy i either hyperbolic,
Seifert fibered, or a torus bundle ovét.

This proposition uses the classification of homogeneousesain simply connected three-manifolds
done by L. Bianchil[2] in 1897, with cosmological motivatgn

2.4 Examples

Example 1 Consider the unit spher§® c R*. It has anhomogeneoumetric, as the isometry group is
the orthogonal grou (4).
To illustrate Propositioffll we see the sphere as a fibered space. In fact weS$ess the unit sphere
in C2,
83 = { (2’1,22) e C? | 2121 + 2229 =1 }

The fibres of the Hopf fibration are the orbits of the action of
St={weClww=1}
by left multiplication: i.e. the fibres are the circles
{(e?21,e2) | € € S' 1.
The space of fibres is therefore the projective IGR!.

Example 2 We consider next Lens spackg, q), wherep, ¢ € Z denote coprime integer numbers, and
p > 2. Following the notation of previous examplg(p, q) is the quotient ofS® by the cyclic action of
orderp generated by the transformation

(21, 20) = (€Z™ /P2y 2™ 0/ ),

This action preserves the metric 6f, hence it induces a metric on constant curvatureLifp, ¢). In
addition this action conmutes with the multiplication o tHopf fibration, and permutes orbits, except for
two orbits that are invariant:{ (0, z2) | 22 € S' } and{ (z1,0) | 21 € S'}. ThereforeL(p, q) admits a
Seifert fibration with two singular orbits of ordert

It can be shown that all elliptic manifolds, i.e. quotienfs® by a finite subgroup o®(4) admit a
Seifert fibration induced by the Hopf fibratifd].

Example 3 ConsiderF, x S, the product of a closed surface of genug 1 with the circle. Since the
surfaceF, admits a metric of constant curvature, the product meftjc< S* is locally homogeneous. It is
obviously Seifert fibered.

Example 4 Let us consider the Heisenberg group:

Heis:{(ézf;) |x,y,z€R}
001

equipped with a left invariant metric, and the subgroup

lx z
= 01 .
r {(00‘71!) |x,y,z€Z}
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The quotienT\ Heis inherits a locally homogeneous metric. In addition, thejgetion to the coordinates
(z,y) gives a fibration by circles over the torus

S = Heis/T — T2=R2/7?
(z,y,2) — (2,9) '

Example 5 The figure eight knot (Fidd) is the simplest example of hyperbolic knot, i.e. a kno§in
whose complement is a complete hyperbolic manifold of foiteme[45,[51]

(&

Figure 3: The figure eight knot

We always represent knots in the three space, understatithbghey lie in its one point compactifica-
tionRR3 U {oo} = S5.

Example 6 The next example is also the exterior of a kna§i# and has a nontrivial JSJ decomposition.
The knot in Figuréis called a satellite of the figure eight knot, because itilethe tubular neighborhood
of the figure eight knot. The boundary of this tubular neighbod is a torusT’?, that gives a JSJ decom-
position. Outsidd™?, we have the exterior of the figure eight knot, which is hypkebinsideT2, we have
a Seifert manifold, since we can assume that this piece iethdt of removing a solid torus from a model.

S

Figure 4: A satellite of the figure eight knot. On the right hand picture, the torus T2 of the JSJ
decomposition is represented

Example 7 Let ng be a surface of genug> 2. Thurston classified ifb6] the automorphismg: F? —
FZ2in three families: (a) periodic or trivial, (b) reducible.g. having a non-trivial closed invariant curve
in F2) or (c) pseudo-anosov. This classification has a correspand with the decomposition in geometric
pieces of the mapping torud/} = F? x [0,1]/(x,1) ~ (¢(x),0): M} is Seifert fibered in case (a), it
contains an essential torus in case (b) and it is hyperbalicase (c). The later is a particular case of
Thurston’s hyperbolization theorefi89, [54].

2.5 Some partial results about geometrization known before Perelman

Here we list some results that may be viewed as a partialippsihswer to geometrization, though they
originally could have been formulated with a different pogp. This list is far from beeing complete, we
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just quote few of them. In this section we also omit the rasoltHamilton [17[ 18], that will be explained
in TheorenIb and Remaltk 2.
We start with a result of Waldhausen.

Definition 6 A 3-manifold is called a graph manifold if it is a union of Setferanifolds along the bound-
ary, consisting of tori.

Notice that those gluing tori do not need to be the ones of 8ldkcomposition, as the manifold is
not assumed to be irreducible, and the tori are not suppasbe incompressible. Waldhausen proved
in [B8] a theorem that can be viewed as a precedent of the I®dngesition, and that covers one case of
geometrization. The modern version is the following:

Theorem 4 (Waldhausen 1967) A closed orientable grapB-manifold is the connected sum of mani-
folds whose JSJ decomposition contains only Seifert mdaifo

The next result is Thurston’s geometrization for sufficiedrge manifolds, that was one of the main
evidences to support his conjecture.

Definition 7 An orientable3-manifold is calledsufficiently largeif it contains an properly embedded
incompressible surface (i.e;-injective or a disc not parallel to the boundary)

A surfaceF? c M? is calledproperly embeddei it is embedded andF = F N oM?3.

Haken [16] proved that sufficiently large manifolds have erdichy: one can cut them successively
along incompressible surfaces to end up with three-baiid, this is why they are often called Haken
manifolds. Using those hierarchies Thurston proved:

Theorem 5 (Thurston 1981) A sufficiently large three manifold satisfies the geometinreconjecture.

For the complete proof of this theorem, we refer to Thurstgrépers and preprints [53,154.1 55] as
well as [23]26] 34,39, 40]. The proof involves many diffareachniques and has stimulated research in
Kleinian groups, representation spadedrees and surface automorphisms. One of the most notahl#se
about sufficiently large manifolds was proved by Waldhays8it

Theorem 6 (Waldhausen 1968) Any homotopy equivalence relative to the boundary betweéfi s
ciently large three manifolds can be deformed to a homeohismnp.

The following theorem is the result of work by Casson-Juiggi®abai, Mess, Scott and Tukia, [47] 13,
514,16 [29] and it involves convergence groups.

Theorem 7 Let M3 be a compact irreducibl8-manifold. If7; (M?3) has an infinite cyclic normal sub-
group, theM? is Seifert fibered.

Among other results of Thurston supporting his conjectweguote the orbifold theorem. An orbifold
is like a manifold but modeled in finite quotientsiRf instead of jusiR™. Thus an orbifold has a branching
locus, corresponding to the points branching points of tbeeh

For a proof of the following theorem, the reader can ch&tlaf references therein.

Theorem 8 (Thurston) Any compact irreducible and orientable three orbifold witbn-empty bran-
ching locus satisfies the geometrization conjecture.

In the three dimensional setting, Cheeger-Gromov theargdtlapses can also be seen as a geometriza-
tion result. Herenj(x) denotes the injectivity radius of a point in a Riemannian ifiedeh, andsec(z) its
sectional curvature. Let us state the tridimensional earsf Cheeger and Gromov’s theorelmll3, 9].

Theorem 9 (Cheeger-Gromov) There exists a universal constant> 0 such that, for every three di-
mensional Riemannian manifold 3, the subset

{z € M® | inj(z) < e and|sec(z)| <1}

is a graph manifold.
In addition, for everye > 0, any graph manifold admits Riemannian metric wjithc(z)] < 1 and
inj(x) < ¢ at every point.
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2.6 Consequences of Geometrization

Some consequences of geometrization in three dimensmmaltgy are listed in this section. The list could
be much enlarged, specially if entering in technical questiof three dimensional topology.

Definition 8 A Whitehead manifold is a contractibemanifold which is not homeomorphick.

Such a manifold must be necessarily open, otherwise it wioelld counterexample to Poincaré conjec-
ture. The first example was constructed by J. H. C. Whiteh@addif in 1935[[60]. Previously, Whitehead
had published a wrong proof of Poincaré conjecture, whictiuded the generalization of the conjecture
for open manifolds. He found himself the mistake and the tenemample to the wrong statement, the
Whitehead manifold.

Theorem 10 No Whitehead manifold is the universal covering of a compiaee manifold.

This is equivalent to say that the universal covering of agachaspherical-manifold must b&R3. The
theorem is well know if the manifold is geometric, becaRsSds the only simply connected manifold with
an homogeneous Riemannian metric. For an aspherical thagifold M3 in general, we first notice that
it must be irreducible, as,(M?3) = 0. Hence if it is not geometric, theh/® has a nontrivial JSJ decom-
position. In particulan/? is sufficiently large and in this case this has been proved alglWausen59].

The folowing is known as Borel conjecture, which remainsetydunknown in higher dimension.

Theorem 11 (Borel conjecture in dimension three) If two aspherical compact three manifolds are
homotopically equivalent, then they are homeomorphic.

If the manifolds are geometric, this follows from Mostowiddy [B5] in the hyperbolic case, and from
Seifert’s work [48] in the Seifert fibered case. Otherwisg,jrathe proof of Theorefi 10, the manifolds
are irreducible, and they have a nontrivial JSJ decompuwsifThus they are sufficiently large and one can
apply Waldhausen’s theorem (Thigh. 6).

Of course asphericity is required, as there exist lens spabéch are homotopically equivalent but not
homeomorphic. The equivalent formulation is the followore:

Theorem 12 Compact aspherical three manifolds are classified by itsléumental group.

Another important consequence is the uniformization oibast on the three sphere. Together with the
orbifold theorem, geometrization implies:

Theorem 13 Every finite subgroup of orientation preserving diffeontosms ofS? is conjugate to a finite
subgroup ofSO(4).

2.7 Consequences of Perelman’s proof

Before explaining Perelman’s proof, we give some of its egueences. We start with the following result,
whose version up to homotopy was proven by Gromov-Lawsahd®8 Schoen-Yau[46].

Corollary 1 If a compact three manifold admits a metric of non-negatoadas curvature then it is either
flat or a connected sum of elliptic manifolds afitl x S! or its quotients.

Here is another consequence of the approach follwed by [b}. aFmanifold /3 one can define a
topological invariant as follows: given a compact Riemanmnmnanifold(M3, g), let Ry, (M3, g) denote
the minimum of the scalar curvature, and

R(M?)vg) = Rnlin(M3,g) VO](M3ag)2/3
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the normalization of the minimum of the scalar curvatureisTiormalization by th&/3-th power of the
volume is invariant by homotety. In adition, when it is ne@gatit is uniformly growing by the Ricci flow.
We also denote
R(M?) = sup R(M?, g).
g

According to [24, (93.6)]?2(M3) equals the Yamabe invariant when it is non-positive.
On the other hand, for a three manifald one can define a topological invariant:

Vo(M) = inf{ Vol(M \ L) | Lis a link or empty, withM \ L hyperbolic}

By a theorem of Myerd[38], such a link always exists, and bysdw Rigidity, it is a topological invariant.
Using the Jgrgensen-Thurston structure theorem for thenvelmanifolds[[52], this infimum is always
reached by a positive minimum.

Theorem 14 ([1) LetM? be a compactirreducible three manifold with infinite fundamal group. Then
R(M) < —6Vp(M)*/?

with equality if and only ifM is hyperbolic.

3 The Ricci flow

Before defining the flow, we recall the different curvaturdé start with the tensak(-, -) -. For any three
fieldsX, Y andZ in a manifold,R(X,Y)Z is the field:

R(X,Y)Z =V%yZ—-V3yxZ=VxVyZ—-VyVxZ—VxyZ
When we take the trace we get tR&ci curvature
Ric(X,Y) = Trace( Z — R(X,2)Y ).

the Ricci curvature is a symmetric tensor twice equivariiehce of the same order as the metric tensor
g(-, ), which is also symmetric.

When we writeRic > 0 we mean thaRic is a positive semidefinite bilinear form, and positive deéni
whenRic > 0.

Scalar curvaturas the trace of the Ricci tensor, and it is usually denotedbyt is not a tensor but a
function, hence much easier to work with.

Sectional curvature is defined for each plane in the tangestes Given two vectors and v, the
sectional curvature of the plane they sganv) is

sec({u,v)) = g(R(u,v)v, u)

whereg denotes the metric tensor.
In dimension three, both the sectional curvatures and thei Rurvature determine the whole curvature
tensor. This is not true in higher dimension for Ricci cutwat

3.1 The flow

It was introduced by Hamilton in 1982, when he geometrizadanifolds with non-negative Ricci curva-
ture [11]. The flow is defined by the equation
99

5, = 2 Ric,
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whereg denotes a Riemannian metric aRit its corresponding Ricci tensor. This is a differential etipa

in the space of symmetrizztensors on the manifold. In coordinates, . .., 2™), it is written as
0a. -
(5:” =-2 Rijv

whereg;; = g(2—, 2 ) andR;; = Ric(Z—, 9).

Bmi ) BI]‘ Bml ) BI]‘

Theorem 15 (Short time existence [174, 12]) 1 If M is a compact manifold with a Riemannian metric
9o, then the equation has a unique solution for titre [0, ') for someT” > 0.

To understand why this equation can be useful for the geara&ittn conjecture, note that in harmonic
coordinates (i.eA(z?) = 0) the equation is

agij
ot

0
= A(gij) + Qi (971, a—g)

whereA(g;; ) is the laplacian of the scalar functiggy and@Q;; is a quadratic expression. This is a diffusion-
reaction equation, and the heuristics of Hamilton’s pragia the following: “Either ¢(¢) converges to a
locally homogeneous metric or creates singularities cgpnding to the canonical decomposition”

3.2 Examples

We start with the simplest example: assume that the initiefrimg, has constant curvatutk. Then,
knowing the existence and uniqueness of solutions, we eslrict to homotetic metricg, = f(¢)go and
find a solution among those. Since the Ricci tensor is inmabg homoteties,

Ricy, = Ricg, = (n — 1)K go,
wheren is the dimension, the equation beconfés= —2(n — 1) K, hence the solution is
gt = (1 = 2K (n — 1)t) go.
The behaviour depends on the sign of the curvature:
e For K = 0, the solution is stable.
e For K < 0 the solution expands for infinite time.
e For K > 0 it collapses and shrinks to a point in finite tirfie= m

A more general family of solutions is given by solitons.

Definition 9 A solutiong; to the flow is asolitonif g, = A ¢} go, Whereg, is a diffeomorphism ang, is
a constant, both depending on

In the particular case whetg is the uniparametric group associated to a gradient vedtfat, five say
thatg; is agradient soliton Being a gradient soliton is equivalent to the existencefahation f satisfying:

Ric + Hess(f) + cg = 0.
This equation is obtained by differentiating = X; ¢; go at time0, and assuming thap, is the group

of diffeomorphism obtained by integrating the fieldf. Herec = X{,/2, hencec = 0 corresponds to a
stationary soliton{ = 1).
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Figure 5: The cigar.

Example 8 The cigar soliton is the metrig = f_fij_‘gz

(z,y) = (0,0), the metric of the cigar soliton is

in R? (Fig.B). In polar coordinates centered at

g = dr? + tanh® r d6.

Notice that it is asymptotically a cylindetanh — 1 whenr — o). The sectional curvature is—2,—

cosh? r?

henceRic = —2,—g and f = —2log cosh r satisfies the gradient soliton equatiBic + Hess(f) = 0.

cosh® r

Example 9 The cylinderS? x R with the standard metric is a contracting soliton, and thenneollapses
in the $2 direction in finite time (FigH).

Figure 6: The cylinder.

The previous examples play a different roleHamilton’s progranfor the proof of the geometrization
conjecture, in particular for the analysis of the singulas. The cylinder and the cigar tim&are both
examples of solutions to the Ricci flow which have nonnegativvature, are complete and ancient (defined
in at least a time intervdl-oo, 0]). Hamilton showed those kind of solutions appear as linfissrgularities
of the Rici flow on three dimensional manifolds, after resaa(metric and time) and blowing up. Cylinders
are convenient limits, as this should correspond to a caedesum decomposition on the manifold. To
avoid the cigar time®, Perelman introduces the notionfon-collapse (Theorem119).

3.3 Evolution of curvature

The evolution of curvature is central in the study of the Ritaw. We start with scalar curvature for
simplicity

Lemma 1 The evolution of scalar curvatutg = trace(Ric) = R;;¢% during the Ricci flow is:

%—If = AR+ |Ric|%.
Theweakandstrong maximum principlespplied to this equation yield:

Corollary 2 On a compact manifold/, miny; R is non-decreasing with time.
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Corollary 3 On a compact manifold/, if at timet = 0, R > 0 everywere and? > 0 for somer € M,
thenR > 0 everywhere wheti> 0.

Equations for the Ricci and the whole curvature tensorfitsgh be given. In the three dimensional
case, the curvature operator (actinglforms) diagonalizes:

a1 O O
0 (65) 0
0 0 Qs

so that they; are functions onl/. Then then; /2 are sectional curvatures,

D) -5(!3 0 0
Ric= | 0 e
0 0 e

andR = a1 + as + as.
The evolution equations for the; are

o) = Aoy + af + azaz
ah = Aag + a3 + aza;

oy = Aag + a3 + ajas

To those kind of equations one applies Weak maximum principle for tensedeveloped by Hamilton.
One deduces for instance:

Proposition 2 In dimension threeRic > 0, Ric > 0, sec > 0 andsec > 0 are conditions invariant
under the Ricci flow.

Recal thaRic is a symetric bilinear form, and the inequalities in theext@nt of the proposition mean
that it is positive semidefinite or definite, respectively
Maximum principles where also used by Hamilton to contreldh in the following theorem.

Theorem 16 (Hamilton 1982 [17]) If a compact three manifold/3 admits a metric witiRic > 0, then
the Ricci flow, after rescaling, converges to a metric withstant positive sectional curvature. In particular
M3 is elliptic.

Hamilton also developed strong maximum principle for tensof8], and used it to show that if
Ric > 0, then one of the three possibilities happen:

1. The metricis flat.
2. Ric > 0 att > 0, henceM is elliptic.

3. The metric is locally a produgt= g; @© d 2. In this case the manifold is diffeomorphic& x S!
or it is a quotienRP3#RP3.

Hence we conclude:

Remark 2 Hamilton had proved in 198f.8] that a closed manifold with a Riemanian metric witle > 0
satisfies Thuston’s geoemtrization conjecture.
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3.4 Evolution of volume

The evolution of curvature helps to study the behaviour efiblume. We start by giving the evolution
equation for the volume.

Lemma 2 The volume evolves by the Ricci flow satisfying
d
— Vol(M, g(t)) = —/ R.
dt M

Corollary 4 If g(t) evolves by the Ricci flow, then
Vol(M, g(t))(t + 1/4)=3/2
is not increasing in time, provided that for the initial mietat time0 we have

Rmin(0) = min R > —6.
(M.g(0))

ProoF Recall from Lemm@ll thak evolves by:

d
GR=AR+ 2|Ric|?

sinceR is the trace oRic, decomposin@ic as the addition of a traceless part and a diagonal matrix, we
have|Ric|? > 1 R?. Hence

d 2
—R > AR+ =R
dt — + 3
By the maximum principle, the minimum of the scalar curvetiwrM at timet, R..i,(t), satisfies:

d 2
_Rmin > _RQ' .
dt -3
Using the normalizatio®,,;, (0) > —6 for the initial metric, hence we get:
1
1+1/4

2

Rmin 1 Z -5

(1) =3

In addition, since the volume evolves by Lemitha 2, it follotvatt

%Vol(]Vf,g(t)) < —Rmin(t) Vol(M, g(t)).

Combining those equations, we get thal (1M, g(t))(t + 1/4)%/% is non increasing. W

3.5 Hamilton Ivey pinching of curvature

Hamilton-Ivey estimates [19, P1] are another example ofeaanl application of maximum principles for
tensors in dimension three. Lgt [—1, +00) — [1,+00) be the inverse map af — logz — =.

Theorem 17 (Hamilton-Ivey pinching)  The inequalities
R>-1 and a1, g, a3 > —gf)(R)

are invariant under the Ricci flow.
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We remark that, given any metric, the inequalities of theothen are satisfied after homotety. Hence
from now on we shall assume that the flow starts withoamalizedinitial metric, i.e. satisfying those
conditions at timé).

SinceR = a1 + as + a3, we deduce:

Corollary 5 For a metric on a three manifold evolving under the Ricci flavd avith normalized initial
conditions, at each point and each time it holds:

R+2¢(R) > a1, 00, a3 > —¢(R).

It is relevant to notice that, by constructidim,_, + # = 0, therefore forR > 1, R controls the
whole curvature tensor. ‘

4 Singularities

In this section we first explain that the scalar curvatureMslop when there is a singularity. The idea of
Hamilton is to take a rescaled limit of a sequence of flows wihentime converges to the singular time,
rescaling so that the scalar curvature becoimeBhe main technical issue here is to control the injectivity
radius of the base point of this rescaled sequence: this d Réarelman achieved with hisnon-collapse
theorem. Those limits of sequences of rescaled flows givesdhealledx-solutions. They are useful to
understand the singularities, and to ficmhonical neighborhoodsf points with high scalar curvature.

4.1 Scalar curvature

Hamilton showed that in the three dimensional case, thauscatvatureR controls the singularities:

Theorem 18 Let M be a3-manifold. Assume that the Ricci flow is defined in tihg") andT > 0 is
maximal, thersup,, R — co ast — T.

Notice thatM is not assumed to be complete, thus this allows to localizgusarities at points where
R — o0.

The proof of this theorem has two steps. The first one appliesy dimension: the curvature tensor
controls the evolution of the metric; the second one is sjpdoidimension threeR controls the eigenvalues
of the curvaturey;, so that anyy; — oo if and only if R — oo.

) O-C

Figure 7: S with a neck develops a singularity, and the curvature goes to infinity there

4.2 Parabolic rescaling and blow ups

To analyze singularities we need to rescale.

Definition 10 A parabolic rescalingf the metricg;(t) evolving by%g(t) = —2 Ric is Ag(%) for some
A> 0.
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I —1

Figure 8: Rescaled limits of singularities can be though as zooms

The Riccitensor is invariant by homoteties, thusrémealed metric still satisfies the Ricci flow equation
The distance is multiplied by’ and the time by, this is why this rescaling is called parabolic.

Assume we have a singularity developing at tifieinder the Ricci flow(M, g). We take a sequence
x; € M andt; — T so thatR(x;) = max,s R at timet;, and we parabolic rescale to hakéx;) = 1. We
also move the time by a translation, so that the initjdlecomes zero. In order to analyze the singularity,
the idea is to look at the limit of pointed Ricci flows (with legsointz; at time0, after the time translation).

There is a compactness theorem for pointed Ricci flows [I®Vided we have ositive lower bound
on the injectivity radiuof the base point. If we had this lower bound, then there wénalch convergent
subsequence to a flow, and Hamilton work would yield that itinét has the following properties:

e Itis an ancient solution, i.e. defined on tirfreco, 0].
e The metric is complete.

e The sectional curvature is non-negative, because we eebgdt and we apply Hamilton-lvey pin-
ching (Corollan[b).

e R >0, becausd?,,i, is nondecreasing.

4.3 k-noncollapse
Perelman uses a technique calledoncollapse to control the injectivity radius:

Theorem 19 ( x-noncollapse [41]] Given a manifold M, go) there existc > 0 andry, > 0 with the
following property. Assume that evolves by the Ricci flow. Then for every= M3, every0 < r < rg
andevent € [1,7),if |[R| <r~2onB(z,r) C (M, g:), then

1(B
vol( (3x,r)) >k
T
When the conclusion of the theorem holds, we say that theisnlis x-non collapsed at scalg .
We make the following remarks:

e This inequality gives dower bound on the injectivity radius after normalizing |R| < 1, by
Cheeger’s propeller’s lemmBal[7].

¢ Notice thatvol(B(z,r))/r? is scale invariant. By the previous remark, the scale suat| ] = 1 is
the right one to take limits.

o Notice also that thiss > 0 and the scale, depend on the initial condition&\/, go), and that it
applies to times > 1 (i.e. once the Ricci flow has evolved for some time).

The proof is too long to be given here. It develops new fumztle that are monotonic for the Ricci
flow, and can be found in the original paperl[41], the nate$, [[B8] and [5], or the book[36].
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If the dimension is different from3, then the theorem also holds true, by replacing the scaftaature
by the whole curvature tensor.

In the study of singularities, the rescaled limits satisfg tonclusion of the theorem (witly = oo,
because of the blow up). They are calledolutions

Definition 11 A k-solution is a solution to the Ricci flow which is:
e ancient (defined on some time interval containirgw, 0]);
¢ non flat and has non-negative sectional curvature;
e metrically complete;
e x-non-collapsed at all scales (i.e. satisfying the condunsif Theorerf@with rq = o).
The cigar soliton is<-collapsed (when we normalize at some pafht= 1, the injectivity radius is

arbitrarily small). The cylinder is a-solution.

4.4 Canonical neighborhoods

Of coursex-solutions play a central role as local model for singuiesiti.e. as the limit after rescaling.
Namely, points wheré is large, are approximate bysolutions. Then one has to find structure results

for k-solutions. Even ifs-solutions are more complicated than cylinders, the sisate to find regions

in the x-solutions which are close to cylinders, in order to be abledt along connected sums. In fact,

Perelman uses-solutions to prove[42]:

Theorem 20 Given a manifold M, go) there exists: > 0 ande > 0 with the following property:
If t > 1andz € (M, g;) satisfiesR(z) > 2, thenz lies in a canonical neighborhood.

Definition 12 A canonical neighborhoad e-close to one of the following:
a A strongs-neck.
b. An open ball with a cylindrical end (callede@ap cf. Fig.[@).
c. A manifold diffeomorphic t6* or RP3.

d. A manifold with positive sectional constant curvature.

Definition 13 A stronge-neckis a neighborhood/ C M x [0, t9] of (xo, to)
U: {(‘T,t) € M X [07t0] | dto(xaxO) S T/E, tO _72 S t S ’f'},

whered,, denotes the distance at timg such that after parabolic rescaling Ry'r, it is 1/e-close to the
evolving cylinderS? x [-1, 1] in a time interval of length one.

The normalization is chosen so that the scalar curvatureeotylinder at the final time is one, so after
the homotetyR(zo, to) = .

The idea now will be to do surgery along strong necks (i.eetoodnpose along connected sums of these
spheres).
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Figure 9: A cap

L =0

Figure 10: By T, the complement of 2, has simple topology

4.5 Gluing canonical neighborhoods

Let (M, g,) denote a family of metrics evolving by the Ricci flow in a tinméarval[0, T'), with T maximal.
Let R(z,t) denote the scalar curvature aat timet. Having in mind Theoreri20 we define, for some
t=T

1
th—{I€M|R(I,t)SF}

and(); = Up>0 2,:. By the bound of the curvature and thenon collapse, there is a limit metric diy
but the sefM \ Q, can be very wild.

If ¢t = T, every pointinM \ Q; has a canonical neighborhood as in Theok€in 20. By using tlcme
properties of such a neighborhood one can prove:

Theorem 21 There exists @, > 0 such that ifd < § < §y andp < r ¢, thenM \ Q,, is diffeomorphic
to a finite union of cylinders, hats or manifolds with postsurvature.

In addition, there exist parametefs< h < r§ andD > 0 such that ifz, y, z € M, g¢(t) satisfy
R(z) < 1/r?, R(y) > D/h? andz lies in the minimizing segment betweeandy and R(z) = 1/h?,
thenz is the center of a strong neck.

This theorem tells that points of high curvature lie in caigahregions, and that the transition between
points of high curvature and other points is made along cemtestrong necks.

After cutting along the spheres in the centers of strong sgitle surgery consists in gluing balls with
some particular metrics. Those balls are obtained by glaitang cylinder with the unit ball:

5% x [0,10)U B?

whereS? x {10} is identified too B® (Figure[T1). The metric around the gluing sphéfex {10} = B3
must be regularized without changing too much the bound$erctirvature. A homotety of factdr is
required in order to have the same diameter as the sphef$,in

We do not assume that the manifold is connected, new compon@y appear after surgery. Some
of the new components can have positive curvature (andysgé®metrization conjecture, by Hamilton’s
Theorem, Thni16).

Notice that Theorem 21 allows to cut along spheres in suchyatht the topology of the complement
of 2, is simple enough. In addition the metric is well understondie boundary of2,,.

The idea is to restart the flow and apply the process againtder®o do that, we must be careful with
the constants and we will define a flow with cutoff.
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Figure 11: The piece we add after cutoff

<> 2

Figure 12: The manifold after cutoff (cf. Fig.

5 Flow with cutoff

The definition here follows[]1], where we consider some dutiofies, which are not singular, but just
before the singular times, so that we already have quite bighature. This is a technical modification
of Perelman’sl[42] that does not change the main ideas ofrinaf but allows to simplify some technical
issues.

Definition 14 A flow with cutoff is a family of Riemannian three manifold&/;, g(¢)) parametrized by
t€[0,T), T € Ry U{oo}, such that there exists a discrete seRif cutoff timed) < ¢; < --- < ¢, <
-+- < T satisfying:

a Fort e [ti—1,t:), (M(t),g(t)) is asolution to the Ricci flow equation. In particular the tdqpgy of
M (t) does not change along; 1, t;).

b. The solutioninthe interval;_1, ¢;) can be extended to tinig and we denote it b§M _ (¢;), g— (¢;))-

c. (M(t;),g(t;)) is the result of cutoff of M_(¢;), g—(¢;)) as in TheorerfZl for some parameters 4,
h > 0.

We say that a manifold has normalized initial conditiong tfrmae0 R > —1 and satisfies the Hamilton-
Ivey pinching condition. The folowing result tells that tRécci flow with cutoff exists, and it can be pro-
longed for infinite time except if for some time the whole nfahl satisfies the conclusion of Theorén 21.

Theorem 22 There exist positive decreasing functiansd, h: [0,+o00) — (0,00) such that for any
Riemannian irreducible three manifold with normalized miee)M, ¢(0)), one of the following holds.

a. Either there existg > 0 such that a flow with cutoffM/, g(t)) is defined o0, to) and€2,;,) ¢, = M.
b. Or a flow with cutoff M, ¢(¢)) and parameters, d, h is defined o0, co).

Some remarks about this theorem are in order. Firstly, tharebe infinitely many cutoff times, but
they do not accumulate, by a volume argument. Namely, the tierivative of volume follows the rule of
Lemmd2:

%Vol(M,g(t)) _— /M R.
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Since the minimum o/ of the scalar curvatur® is non-decreasing, the growth ¥b1(M, ¢(t)) is con-
trolled. On the other hand, one can estimate the volume tasich cutoff, and the conclusion is that for a
sufficiently large amount of cutoff times in a bounded intdrthe volume would become zero.

Secondly, the constants> 0, r > 0 andh > 0 change at every cutoff time. One has to show that
they do not converge to zero in finite time. In addition theich@f parameters > 0, » > 0 andh > 0
can modify the flow, hence there is no uniqueness. The prdnf ontradiction, and the constants are not
constructible.

Thirdly, the cutoff process is metric, but the connected swan be topologically trivial (as in the

example of Figurg3).
D

Figure 13: Topologically trivial connected sums produced by the flow.

It is unclear if the number of cutoff times is finite or infinitllo example with infinitely many times is
know yet.

Definition 15 We declare the flowxtinctwhen at some timg, we have, ), = M, i.e. as in Theo-
remZ2m@

When the flow becomes extinct, by TheorEm 21, the manifolddsranected sum of pieces of con-
stant curvaturé andS? x S!. In particular it is the connected sum of Seifert manifoldsd aatisfies the
geometrization conjecture.

6 Elliptization

Perelman wrote a third papér143], where he proves that fiptiglation (in particular for proving Poincaré
conjecture) the long time behaviour is not required.

Theorem 23 If the initial manifold has finite or trivial fundamental gup, then the flow with cutoff be-
comes extinct.

We recall that the flow becomes extinct when, at some finite titp = 0.

Even if Perelman gave a proof with loops, we will follow thepapach of Colding and Minicozzi [10,
11], with sweepouts, families of maps from the sphgfeo the manifold)/3. Both proofs use that, when
71 (M?3) is finite, thenms (M3) # 0.

IDEA OF PROOE We consider the space of continuous ma&gs— M3 whose differential is square
integrable:
0 := L3(S*, M3*)nC°.

Notice than)M? can be embedded in® by means of the constant map: to eac M? it corresponds the
constant map fron$? to z. Therefore we can consider the relative fundamental group:

™ (67 M3)a

which is the set of homotopy classes of maps from the intdfval to ©, such that the endpoints are in
M? (i.e. the endpoints are constant maps).
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Sincer; (M?3) is either trivial or finite, Hurewicz theorem applied to itsiversal covering tells us that
73(M3) = Z. This implies thatr; (©, M?) # 0, because if we have a map S® — M3 which is not
homotopically trivial, and we assume thfis of clasC?, then we consider the height function 64 c R*,
which is a Morse function, and its level sets are a family dfesesS?, except for both critical points, the
north and the south pole, where the level sets are points[IBigThis gives a path i®, with parameter
the height function, with endpoints i3 c ©. Clearly, it is a nontrivial element in; (©, M3), because it
comes from a nontrivial element ity (M 3).

3
s:ls

Figure 14: Constructing element in 71 (©, M?3) from an element in 73 (M3).
Letd € 71 (O, M?) denote a nontrivial element. Colding and Minicozzi definewhdth:

W{(g,0) = min max E(ys) >0, whereE(vy;) = 1/ ldys || dpnge.
~ED se[0,1] 2 Js2

Equivalently, given a path if2 with endpoints inM/3, they consider the maximun of the energy among alll
values of the parametere [0, 1]. Then they take the minimum among all paths that represengitren
homotopy clas$ # 0.

By a theorem of JosEI22}V (g, 6) > 0 for § € 71 (0, Q) non trivial.

Wheng(t) evolves by the Ricci flow with cutoff, Colding and Minicozziqve [10,11]:

d

—Wi(g(t),0) < —4m +

= W(g(0),6)

3
4(t+C)
that has a meaning even when it is not differentiable. Thegirality implies that for some finite timg,
W(g(to),0) = 0. Since this contradicts Jost’s reslift(g, ¢) > 0, the only possibility is that the flow is not
defined at timée, i.e. it has become extinct.

7 Long time behaviour

We assume thus that the flow can be continued during infimite.tWe denote by, the manifold at time
t, that may have changed topologically because of cutoff.

7.1 Thin thick decomposition

We want to decompose the manifold as the union of hyperboiit Seifert fibered pieces. According
to Cheeger and Gromov's theory (TheorEIm 9), the Seifertgsieshiould correspond to pieces with small
injectivity radius with respect to curvature (thin part).dddition, by Margulis lemma (ci._I51]), hyperbolic
manifolds have injectivity radius uniformly minorated itk part). We want to find a decomposition into
thin and thick parts, using scale invariant notions.

For every timet > 1 we define

1
n(x,t) = sup { r > 0] the ballB(z,r) C M, has curvature> —— } .
T
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We fix a constant > 0. We will say thatr € M, (w) if

vol(B(z,n(x,t)) <wnlz,t).

Definition 16 Thew-thin part is M, (w), and thew-thick M;" (w) = M \ M, (w).
Perelman uses the regularity properties of the flow to prove:

Theorem 24 For everyw > 0, thew-thick part becomes stable (not affected by cuttoff fordatignes)
and of asymptotically constant negative curvature.

Thus the components of the thick part, when normalized,/sy converge to manifolds of constant
negative curvature, moreover, by Coroll&ty 4, that appiiethe flow with cutoff, they have finite volume.
Hence their boundary components are tori, by Margulis lem@r@e may askvhether they are tori of the
JSJ decompositioor not. This is equivalent to ask whether they are incomjiioéser not (i.e 7, -injective).

Theorem 25 The boundary tori of the thick part are incompressible.

For this theorem Perelman adapts an argument of Hamllidn¢2®e case with cutoff. By contradic-
tion, assume that one of the torus is compressible. Accgrdirbehn lemma, there exists a compressing
disc, i.e. a disc in the manifold whose boundary is and esdantrve of the torus. A theorem of Meeks
and Yau[[28] allows to choose a minimal smooth embedded ¢isknilton shows that the area of the disc
decreases at a rate bounded away from zero, which is impessita flow with cutoff defined for infinite
time.

Remark 3 This concludes the proof of geometrization when the thickipanon empty. If the thick part

has no boundary, then the flow converges to a hyperbolic metfier renormalizing. If it has boundary,

then the manifold contains incompressible tori and thamfbis sufficiently large, and one can apply
Thurston’s geometrization (Theordn

7.2 Collapses and geometrization of aspherical manifolds

The thin part of the manifold is expected to be a graph maahifolit Cheeger-Gromov theory cannot be
applied here because there is no upper bound for the cuevatur

Here we have to quote a paper of Shioya and Yamaglchi [49]hinhwthey show that the thin part is
a graph manifold. Their proof relies on Alexandrov spaceBosE are metric spaces satisfying the same
properties and inequalities for distances as in a manifdtl lewer curvature bound. Unfortunately, their
proof uses unpublished results of Perelman himself, asagajleneralizations of the results of Shioya and
Yamaguchi, not explicitly written up. We propose lin [1] afdient approach, that we explain here.

Theorem 26 Let (M2, g,) be a sequence of aspherical Riemannian three manifoldsfiatj.
(a). Volume collapse.There exists a sequeneg — 0 such that for eaclx € M, there is a radius

0 < pn(z) satisfying

sec > —ﬁ onB(z,pa(z)) and Vol(B(z, p,(x))) < € pn(z)>.

(b). Local curvature bound$or everys > 0 37 = 7#(d) > 0 such that: If0 < r < 7(9), W >0
andsec > —-% on B(z,r), then

|Rm| < Kor~2 and |VRm| < Kyr3.
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Then forn sufficiently large M,, is a graph manifold.

This is a modified version of Theorem 7.4 of Perelnian [42].

By TheoreniZB we may assume that the manifold is asphericalvedmentioned in Remalk 3, we may
also assume that the thick part is empty, and hypotfie}iaya)tbat the manifold is collapsing everywhere.
Hypothesis thm:collapse:b is a regularity property of tea/fljustified in 7.3 of Perelman[42], ct._[24].

Notice that hypothes|s {a) apd](b) are not contradictorthesg deal with different scales. Namely, since

lim W = 47 [[6) applies to a much smaller scale tifai (a).

r—0

The proof of Theorerfi 26 il [1] has three main steps. Firstbrehis a local structure theorem: by a
blow up argument, every point has a neighborhood that loiddesd manifold of non-negative curvature.
If the manifold is compact by Hamiton’s theorem we are donen(@rk2). Otherwise some of the metric
properties are controlled, and its topology is rather senpy Cheeger-Gromoll soul theoref®?, T2 x R,

52 x R, S' x R? or K2xR, the orientable line bundle over the Klein bottle. Using regtroperties of
the soul theorem, one can choose the local neighborhoddsutibrphic to the whole manifold.

The second step is to shrink this covering to have dimension(évery point belongs to at most three
open sets). To do it, we use a nice metric argument of Groindly Jthere the volume notion of collapse
(hypothesi§ (@) in the theorem) is used to shrink coverialgs, as inll4].

Lemma 3 Suppose that an aspherical closednanifold N admits an open coverinflJ; };<; such that
foreveryi € I, m(U;) — m (M™) is trivial. Then the dimension of the coverifiy; } <, is at leastn (i.e.
at least one point belongs o+ 1 open sets).

This lemma uses asphericity, for instace it is trivially trofe for a sphere. The proof use€ach-de
Rham complex to compute
H"(N"R) = H"(m(N"™),R).

If the dimension of the covering was less than or equal,tthenH™(N™ R) = 0, and therefore it has to
be at least: + 1, cf. [24]. Notice that the orientability oN™ can be assumed after taking the orientable
covering.

Since our covering has dimension two for at least one of thenggetsl it holds thatm, (Uy) —

71 (M3) is nontrivial, by Lemmd&I3. In particuldi, = T2 x R, S* x R? or K?xR. By standard three-
dimensional topology, the manifoltl® \ Uy is irreducible (; is not contained in a ball), it is sufficiently
large and has boundary consisting of tori.

We apply Thurston’s geometrization, and therefdfe\ U, has a JSJ decomposition with Seifert and
hyperbolic pieces. We claim that there are not hyperbokces. This is proved by means of the simplicial
volume (also called Gromov norm). By Gromov-Sornal [14, 56§ simplicial volume equals a constant
multiple of the addition of volumes of hyperbolic piecesn& we have this covering of dimension two
by open sets whose fundamental group is trivial, Gromovrssting theorem implies that the simplicial
volume of M? \ Uy vanishes. Thud/? \ Uy is a graph manifold and so &®. By Waldhausen\/? is a
graph manifold: either Seifert fibered or with only Seifeieges in the JSJ decomposition.
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