
ACTIONS OF HYPERBOLIC THREE-MANIFOLD GROUPS ONCOMPLEX PROJECTIVE SPACEJOAN PORTIAbstra
t. In this paper we des
ribe a dis
ontinuity domain for the natural a
tion ofhyperboli
 three-manifold groups on 
omplex proje
tive spa
es of arbitrary dimension.1. Introdu
tionIn re
ent years the study of representations of hyperboli
 three-manifold groups intoSLn(C) is playing an important rôle. Among others, we mention the work of WernerM�uller [17℄, Jonathan Pfa� [25, 24℄, W. M�uller and J. Pfa�, [19, 18, 20℄, Stavros Garoufa-lidis, Dylan Thurston, and Christian Zi
kert [9℄, S. Garoufalidis, Matthias G�orner, andC. Zi
kert [8℄, Takashi Hara and Takahiro Kitayama, and Pere Menal-Ferrer and myself[16℄.There is a distinguished representation in SLn+1(C) 
onstru
ted as follows. We startwith the de�nition of symmetri
 power. Consider C[X; Y ℄ the algebra of polynomials ontwo variables. We have a natural a
tion of SL2(C) on C[X; Y ℄ by pre
ompositionSL2(C)�C[X; Y ℄ ! C[X; Y ℄A; P 7! P Æ Atwhere At denotes the transpose of A. Noti
e that transposing or taking the inverse inPSL2(C) di�er by 
onjugation by a matrix, thus the a
tion P 7! P Æ A�1 is equivalent.This a
tion restri
ts to the homogeneous polynomials of degree n, whi
h de�ne a n + 1dimensional subspa
e of C[X; Y ℄:Cn[X; Y ℄ = fp(X; Y ) 2 C[X; Y ℄ j p is homogeneous and deg(p) = ng:De�nition 1.1. The n-symmetri
 representationSymn : SL2(C)! SLn+1(C)is de�ned by the a
tion on homogeneous polynomials on two variables of degree n.Let M3 be a 
losed, 
ompa
t, hyperboli
 and orientable three-manifold. Fix a lift ofits holonomy representation fhol : �1(M3)! SL2(C):We 
onsider then the representation(1) �n = � Æ Symn Æfhol : �1(M3)! SLn+1(C)! PSLn+1(C);where � : SLn+1(C) ! PSLn+1(C) is the natural proje
tion. Noti
e that �n does notdepend on the lift. This indu
es a natural a
tion of �1(M3) on 
omplex proje
tive spa
ePn but also on the 
ag manifolds of Pn.Re
eived De
ember 27, 2012. 138



Question 1.2. Find a domain Xn � Pn (or in a 
ag manifold of Pn) su
h that thea
tion of PSL2(C) indu
ed by Symn is proper and, if possible, 
o
ompa
t. Des
ribe thequotients PSL2(C)nXn and �n(�1(M3))nXn.The question for surfa
es has been addressed by Gui
hard and Weinhart, with the so
alled Anosov representations [10℄. In our 
ase, when M is 
ompa
t, �n is also an Anosovrepresentation.Here we answer Question 1.2 by �nding a domain in 
omplex proje
tive spa
e. Forthe dynami
s of dis
rete groups in 
omplex proje
tive spa
e, see also the work of Cano,Navarrete and Seade in [3℄ and referen
es therein. This is also addressed in a moregeneral setting in a joint proje
t with Misha Kapovi
h and Bernhard Leeb, as Pn and
ag manifolds appear in the Tits boundary of symmetri
 spa
es of nonpositive 
urvature.We mention that Sym1 is the identity, and that �1 is just the lift of the holonomyrepresentation. In this 
ase there is no proper a
tion on P1. The 
ase n = 2 will beaddressed in Se
tion 2, by 
onsidering the 
ag manifold. When n � 3, we will �nd adomain in 
omplex proje
tive spa
e Pn.For n � 3, we deal with an invariant 
urve and the os
ulating variety. We start withthe Veronese embedding(2) P1 ! Pn(a : b) 7! (aX + bY )nIts image Qn � Pn is an algebrai
 
urve (isomorphi
 to P1) invariant under the a
tion ofSymn(PSL2(C)), 
alled the rational normal 
urve [7℄. The a
tion on Pn�Qn is still notproper. For this we shall remove a larger subset of the os
ulating manifold. Re
all thatan aÆne k-plane is os
ulating to a 
urve if at one point it 
ontains all derivatives of order� k. This is an aÆne notion that generalizes to the proje
tive setting.De�nition 1.3. The k-os
ulating variety to Qn is the set of proje
tive k-planes that arek-os
ulating to Qn and it is denoted by Os
k(Qn).For all k, Os
k(Qn) is invariant by the a
tion of Symn(PSL2(C)). The good 
hoi
e willbe k = [n=2℄, the integer part of n=2.Theorem 1.4. For n > 2, the a
tion of Symn(PSL2(C)) is proper onXn = Pn � Os
[n=2℄(Qn):For n odd, the quotient PSL2(C)nXn is a smooth 
omplex proje
tive variety. For n even,the quotient PSL2(C)nXn admits a natural one point 
ompa
ti�
ation whi
h is a 
omplexproje
tive variety, smooth for n = 4 and with pre
isely a singular point for n > 4.Sin
e �1(M3)nPSL2(C) is the frame bundle of M3, we have the following 
orollary.Corollary 1.5. Let M3 be an orientable and hyperboli
 three-manifold. Then the quotient�n(�1(M3))nXn is a smooth 
omplex variety that �bres over M3 and also over its framebundle (ex
ept when n = 3). The �ber is 
ompa
t for n odd, and for n even it admits a
ompa
ti�
ation that 
onsists in adding a point for ea
h �bre of the frame bundle.The ex
eption when n = 3 is that it is the quotient of the frame bundle by the a
tionof the permutation group on three elements (i.e. the bundle of unordered frames).The paper is organized as follows. In Se
tion 2 we dis
uss �rst the a
tion of Sym2 onthe 
ag manifold. Noti
e that the a
tion on P2 
annot be proper be
ause of dimensions.139



Then in Se
tion 3 we prove properness and 
o
ompa
tness by using standard methodsof hyperboli
 geometry, namely the the bary
enter for 
on�gurations of ideal points.To prove that the quotient (or its one point 
ompa
ti�
ation) is a 
omplex proje
tivemanifold, we use geometri
 invariant theory in Se
tion 4, as this example was pre
isely
omputed in Mumford's book [21℄. Then in Se
tion 5 we establish smoothness of thequotient and nonsmoothness of its 
ompa
ti�
ation, whi
h is probably the only new resultof the paper. Finally, Se
tion 6 is devoted to 
ompute expli
itly some low dimensionalexamples.A
knowledgements I am indebted to the organizers of the RIMS Seminar \Represen-tation spa
es, twisted topologi
al invariants and geometri
 stru
tures of 3-manifolds",namely to Professors Teruaki Kitano, Takayuki Morifuji, and Yasushi Yamashita.My work is partially supported by the European FEDER and the Spanish Mi
innthrough grant MTM2009{0759 and by the Catalan AGAUR through grant SGR2009{1207. I also re
eived the prize \ICREA A
ad�emia" for ex
ellen
e in resear
h, funded bythe Generalitat de Catalunya. 2. The a
tion of Sym2Theorem 1.4 only applies for n � 3. We dis
uss �rst n = 2 as an ex
eptional lowdimensional 
ase. Noti
e that PSL3(C) a
ts naturally on the proje
tive spa
e P2, sothe stabilizer of a point in P2 of the a
tion of Sym2(PSL2(C)) is a 
omplex manifold ofdimension at least one, hen
e it 
annot be proper. To �nd proper a
tions we shall workin the 
ag manifold.De�nition 2.1. The 
ag manifold of P2 is the set of pairs (p; L) where p is a line in C3(a point in P2) and L a plane in C3 (a line in P2) 
ontaining p. It is denoted by F (2).If (P2)� denotes the dual to P2, thenF (2) = f(p; L) 2 P2 � (P2)� j p 2 Lg:Using homogeneous 
oordinates for the points p = [x1 : x2 : x3℄ and writing the elementsof (P2)� also with homogeneous 
oordinates L = [a1 : a2 : a3℄ 
orresponding to the linede�ned by the equation a1x1 + a2x2 + a3x3 = 0, we have the following remark.Remark 2.2. The 
ag manifold F (2) is isomorphi
 to the hypersurfa
ef([x1 : x2 : x3℄; [a1 : a2 : a3℄) 2 P2 �P2 j x1a1 + x2a2 + x3a3 = 0g:In parti
ular it is three-dimensionalThus F (2) has already the right dimension to �nd a domain where the a
tion is properand 
o
ompa
t. To �nd su
h a domain, we must 
onsider and invariant subset. Morepre
isely, P2 is the proje
tive spa
e on the ve
tor spa
e of homogeneous quadrati
 poly-nomials p(X; Y ) = aX2 + bXY + 
Y 2Consider the quadri
 Q2 de�ned by the polynomials that have a double root; namely thepolynomials with zero dis
riminant:Q2 = faX2 + bXY + 
Y 2 2 C2[X; Y ℄ j b2 � 4a
 = 0g:140



The quadri
 Q2 is isomorphi
 to P1 and it is invariant by the a
tion of PSL2(C). It is infa
t the rational normal 
urve of the introdu
tion, the image of the Veronese embedding(2). The main result for n = 2 is the following:Theorem 2.3. Viewing the 
ag manifold F (2) as a subset of P2 � P2, PSL2(C) a
tsproperly and 
o
ompa
tly on the dense domain of generi
 
agsX2 = F (2) \ (P2 �Q2)� (P2 �Q2):The quotient Sym2(PSL2(C))nX2 is a point.For any hyperboli
 and orientable 3-manifold M3, �2(�1(M3))nX2 is a sphere bundleover M3, obtained by quotienting out its frame bundle by �3 n (Z=2Z)3. In parti
ular itis the trivial sphere bundle.This theorem tells that X2 are the 
ags generi
 to Q2 and its dual, see Figure 1.
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Figure 1. A generi
 
ag: p does not belong to Q2 and l is not tangent to Q2.To prove Theorem 2.3, we need the interpretation of Sym2 as the adjoint representation.Let sl2(C) denote the Lie algebra. The following result is well known and it is a 
onse-quen
e of the uniqueness of irredu
ible representations of PSL2(C) in ea
h dimension.Proposition 2.4. The adjoint a
tion of PSL2(C) on sl2(C) �= C3 is equivalent to Sym2.Moreover it preserves the Killing form B : sl2(C) � sl2(C) ! C and it de�nes an iso-morphism PSL2(C) �= SO(3;C). The isomorphism maps the rational normal 
urve Q2to the zero set of the Killing form as a quadri
 fx 2 sl2(C) j B(x; x) = 0g.Now we want to exploit the fa
t that PSL2(C) is the group of orientation preservingisometries of hyperboli
 spa
e. Let P (sl2(C)) �= P2denote the proje
tive spa
e on the Lie algebra. In parti
ular, a point in P (sl2(C)) is aline in sl2(C) to whi
h one 
an asso
iate a one parameter group.The following is straightforward.Lemma 2.5. For x 2 P (sl2(C)), the one-parameter group of isometriesfexp(�x) j � 2 Cgis paraboli
 if B(x; x) = 0 and loxodromi
 if B(x; x) 6= 0.By mapping a loxodromi
 one-parameter group to its invariant geodesi
, we get:Corollary 2.6. There is a natural homeomorphism betweenP (fx 2 sl2(C) j B(x; x) 6= 0g)and the set of unoriented geodesi
s of H3. 141



Re
all that the boundary at in�nity �1H3 is equivalent to P1. Considering the end-points of geodesi
s, this 
orollary gives a homeomorphismP (fx 2 sl2(C) j B(x; x) 6= 0g) �= (�1H3 � �1H3 ��)=�2;where �2 is the permutation group of two elements and � the diagonal. This homeomor-phism extends 
ontinuously to an homeomorphismP (fx 2 sl2(C) j B(x; x) = 0g) �= �1H3;that maps a paraboli
 group of isometries to its invariant point at in�nity. More pre
isely,we have the following de�nition:De�nition 2.7. The spa
e of unoriented (and possibly degenerate) geodesi
s isG(H3) = (�1H3 � �1H3)=�2:Corollary 2.8. There is a natural homeomorphismG(H3) �= P (sl2(C))whi
h is PSL2(C)-equivariant and that maps the degenerate geodesi
s �1H3 � G(H3) toQ2 = P (fx 2 sl2(C) j B(x; x) = 0g).The previous 
orollary gives already a geometri
 interpretation of points in P (sl2(C)).We aim to extend it to the 
ag manifold, in parti
ular to the dual of P (sl2(C)), of 
ourseby means of the Killing form.Namely, for ea
h x 2 P (sl2(C)), its B-orthogonal x? is a proje
tive line in P (sl2(C)),and sin
e B is nondegenerate this de�nes an isomorphism between P (sl2(C)) and its dual.Lemma 2.9. Given l 2 P (sl2(C)), the following hold true.(1) If B(l; l) = 0 then l? is the subspa
e tangent to a group that �xes a point in �1H3.In parti
ular the geodesi
s 
orresponding to l? are all asymptoti
 to a �xed pointin �1H3.(2) If B(l; l) 6= 0 then the set geodesi
s 
orresponding to l? is a pen
il of geodesi
s inH3 perpendi
ular to a �xed geodesi
.Proof. When B(l; l) = 0, by transitivity of the a
tion, we may assume that l = ( 0 10 0 ). Thenl? = ( � �0 � ) and the exponential of l? is the set of all one parameter groups that �x thepoint with homogeneous 
oordinates [1 : 0℄. Namely we obtain all geodesi
s asymptoti
to [1 : 0℄ 2 P1 �= �H3.When B(l; l) 6= 0, we assume that l = ( 1 00 �1 ). Then l? = ( 0 �� 0 ). Thus l? 
ontainsthe paraboli
 elements ( 0 10 0 ) and ( 0 01 0 ), with respe
tive �xed points in �1H3 �= P1 withhomogeneous 
oordinates [1 : 0℄ and [0 : 1℄, as well as the loxodromi
 elements ( 0 ab 0 ), witha b 6= 0. Using the formulas of [26, Appendix℄ and the formalism of Fen
hel's book [5℄,sin
e these elements are orthogonal to l by the Killing form, the 
orresponding geodesi
sare orthogonal. Therefore we obtain the family of geodesi
s that are orthogonal to thegeodesi
 with end-points [1 : 0℄ and [0 : 1℄ in P2. �The dual of P (sl2(C)) and G(H3) may be identi�ed to themselves, and we get:Proposition 2.10. The 
ag manifold is equivariantly homeomorphi
 toZ = f(l1; l2) 2 G(H3)� G(H3) j l1 ? l2g:142



This in
ludes �1H3 � G(H3) as degenerate geodesi
s, and the perpendi
ularity relationbe
omes being asymptoti
.Let Z0 � Z be the nondegenerate subset of Z, namelyZ0 = Z \ �(G(H3)� �1H3)� (G(H3)� �1H3)� :Remark 2.11. The set Z0 is equivariantly homeomorphi
 to F(H3)=(�3o(Z=2)3), whereF(H3) is the frame bundle of H3, �3 a
ts by permutation of the ve
tors and (Z=2)3 by
hanges of sign of the ve
tors.To prove Theorem 2.3, noti
e that PSL2(C) a
ts properly and 
o
ompa
tly on theframe bundle F(H3), hen
e it a
ts properly and 
o
ompa
tly on Z0, the set or pairs ofgeodesi
s in H3 that are perpendi
ular. In addition, viewing the 
ag manifold F (2) asa subset of P1 � P1, Sym2(PSL2(C)) a
ts properly and 
o
ompa
tly the dense domainX2 = F (2) \ (B 6= 0)2 �= Z0.The quotient Sym2(PSL2(C))nX2 is a point. For any hyperboli
 orientable 3-manifoldM3, �2(�1(M3))nX2 is a sphere bundle over M3, obtained by quotienting out its framebundle by �3 n (Z=2)3. In parti
ular it is the trivial sphere bundle.This 
on
ludes the proof of Theorem 2.3.3. The a
tion of Symn for n > 2 and hyperboli
 geometryRe
all that Symn(SL2(C)) a
ts on the spa
e homogeneous polynomials of C[X; Y ℄ ofdegree n, that we denote by Cn[X; Y ℄. We look for a domain in Pn = P (Cn[X; Y ℄) wherethe a
tion is proper and 
o
ompa
t.We also re
all the Veronese embedding (2)(3) P1 ! Pn(a : b) 7! (aX + bY )nwith image Qn, the rational normal 
urve.Finally re
all that the k-os
ulating variety to Qn is the set of proje
tive k-planes thatare k-os
ulating to Q and it is denoted by Os
k(Qn).To prove Theorem 1.4, we �st show that the a
tion Symn(PSL2(C)) is proper onXn = Pn � Os
[n=2℄(Qn):We also show that it is 
o
ompa
t for n odd, and has a natural one point 
ompa
ti�
ationwhen n is even. Naturality shall be
ome 
lear from the proof.In Se
tion 4 we shall dis
uss the point of view of Mumford using Geometri
 InvariantTheory [21℄, and later the one of Deligne and Mostow [4℄. In this se
tion we follow anapproa
h that uses mainly hyperboli
 geometry. First we need to relate this a
tion withthe a
tion on 
on�gurations of �1(H3) �= P1.De�nition 3.1. The spa
e of unordered 
on�gurations of n points in the proje
tive lineP1 is Confn(P1) = (P1)n=�n;where �n denotes the permutation group.To a polynomial in Cn[X; Y ℄ we asso
iate its n (unordered) roots in P1, hen
e we havean equivariant isomorphism:(4) Pn �= Confn(P1) = (P1)n=�n143



where PSL2(C) a
ts diagonally on (P1)n and �n is the permutation group on n elements.Let �k � Pn=�n denote the k-diagonal, namely the subset su
h that (at least) k of its
omponents are equal.Remark 3.2. The isomorphism (4) identi�es Os
k(Qn) � (P1)n with �n�k � (P1)n=�n.Given an ideal point � 2 �1H3 and a geodesi
 ray r : [0;+1)! H3 asymptoti
 to �,limt!+1 r(t) = �, for any x 2 H3 the quantity t � d(x; r(t)) is stri
tly in
reasing on t,and bounded above by d(r(0); x), by the triangle inequality. Hen
e, the limitlimt!+1 d(x; r(t))� texists. It de�nes a fun
tion on x 2 H3 su
h that, up to some additive 
onstant, dependsonly on the ideal point limt!+1 r(t) = � 2 �1H3 (see for instan
e [2℄).De�nition 3.3. The Busemann fun
tion 
entered at � isb�(x) = limt!+1 d(x; r(t))� t;for any 
hoi
e of ray r : [0;+1)! H3 satisfying r(+1) = �.
PSfrag repla
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Figure 2. De�nition of Busemann fun
tion (left) and its level subsets (right).In the upper half spa
e model for H3, f(z; t) 2 C�R j t > 0g equipped with the metri
djzj2 + dt2t2 ;and with boundary at in�nity �1H3 �= C [ f1g, the Busemann fun
tion 
entered at� =1 is, up to some additive 
onstant,(5) b1(z; t) = � log t:Then it is straightforward that b� is 
onvex, its level sets b� = 
 are horospheres 
enteredat �, and its level subsets b� � 
 are horoballs.Given an unordered 
on�gurationC = f�1; : : : ; �ng 2 Confn(P1) �= (P1)n=�n;
onsider the sum of Busemann fun
tions:bC = b�1 + � � �+ b�n : H3 ! R;whi
h is again a fun
tion well de�ned up to some additive 
onstant.144



Lemma 3.4. For n � 3 and C 2 Confn(P1), the fun
tion bC is proper (has 
ompa
tsublevel sets) i� no point of C has multipli
ity at least n=2.Proof. We �rst look at the example of a 
on�guration 
onsisting of two points. Let��; �+ 2 H3 be di�erent points, Consider a geodesi
 
 : (�1;+1) ! H3 that satis�es
(�1) = ��. Then b�� + b�+ is 
onstant (and attains its minimum) along 
. Even ifbounded below, b�� + b�+ is not proper, as the sublevel sets are non
ompa
t. In addi-tion, sin
e Busemann fun
tions are Lips
hitz, it is bounded above in the metri
 tubularneighbourhood Nr(
) = fx 2 H3 j d(x; 
) � rg.To prove one impli
ation of the lemma, assume that a point in the 
on�guration hasmultipli
ity k � n=2. In parti
ular �1 = � � � = �k. If k = n, obviously b
 = n b�1 isnot proper. Otherwise, �k+1; : : : ; �n are n� k � n=2 points in the 
on�guration di�erentfrom �1. Consider the geodesi
s �1�k+1; : : : ; �1�n. By the previous dis
ussion, the fun
tionb�1+b�k+1 is not only 
onstant on �1�k+1 but it is also bounded on �1�k+j when approa
hing�1, for j = 1; : : : ; n � k, be
ause both �1�k+1 and �1�k+j are are asymptoti
 to �1. Thefun
tion bC is the sum of su
h pairs b�1 + b�k+j , whi
h are bounded on �1�k+1 whenapproa
hing �1, added to possibly some b�1 , that 
onverges to �1 when approa
hing �1along �1�k+1. Hen
e it is not proper.For the other impli
ation, assume that that bC is not proper: let xn be a divergingsequen
e in H3 su
h that bC(�)(xn) remains bounded above. We may assume that xn !� 2 �1H3. If � 6= �i, then b�i(xn)! +1, therefore we may assume that � = �1. Let k bethe multipli
ity of �1, we 
laim that k � n=2. Noti
e that for �j 6= �1, b�1 + b�j is boundedbelow in the whole H3, hen
e if k < n=2, then bC(xn) would de
ompose as the additionof terms b�1(xn) + b�j (xn) bounded below and terms b�2k+j (xn) 
onverging to +1. �Lemma 3.5. If C 
ontains at least three di�erent points, then bC is stri
tly 
onvex.Proof. It is straightforward from (5) that b�i is 
onvex, and that the se
ond derivative atthe point x 2 H3 only vanishes in the dire
tions perpendi
ular to the ray x�i. If C has atleast three di�erent points, then there is no 
ommon perpendi
ular to the rays emanatingfrom x to the points of C. �Corollary 3.6. If no point of C has multipli
ity at least n=2, then bC has a uniqueminimum in H3.De�nition 3.7. When no point of C has multipli
ity at least n=2, the unique point whereminimum of bC is rea
hed is 
alled the bary
enter or 
enter of mass of C and it is denotedby barC .Thus we have an equivariant map(6) Pn �Os
[n=2℄(Qn) roots�= (P1)n=�n ��[(n+1)=2℄ bary
enter�! H3:Here we have used that [n=2℄ + [(n + 1)=2℄ = n and Remark 3.2. Noti
e that PSL2(C)a
ts properly and 
o
ompa
tly on H3, so this 
onstru
tion gives properness of the a
tionon Pn �Os
[n=2℄(Qn).To study 
o
ompa
tness, we must analyze the �bre of the bary
enter map (6), equippedwith the a
tion of SO(3;R), the stabilizer of a point in H3. To understand this �bre,look at the tangent ve
tors from the 
enter of mass to the ideal points. They are unitve
tors v1; : : : ; vn and satisfy v1 + � � �+ vn = 0. Thus de�ne:145



De�nition 3.8. De�ne the spa
e of unordered 
on�gurations in the unit sphere S2 � R3with bary
enter the origin:Conf0n(S2) = f(v1; : : : ; vn) 2 S2 � � � � � S2 j v1 + � � �+ vn = 0g=�n:We 
all a 
on�guration in Conf0n(S2) regular if it is supported in at least three di�erentve
tors. The set of all regular 
on�gurations is denoted byConf0n(S2)reg = fC 2 Conf0n(S2) j C is supported in at least three di�erent ve
torsg:PSfrag repla
ements
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Figure 3. At the minimum the addition of the unit tangent ve
tors vi vanishes.Noti
e that for n odd, Conf0n(S2)reg = Conf0n(S2). For n even, the di�eren
e betweenConf0n(S2)reg and Conf0n(S2) is pre
isely the SO(3)-orbit of 
on�gurations supported onpre
isely two ve
tors, namely two opposite ve
tors that o

ur pre
isely n=2 times ea
h.Lemma 3.9. The �bre of the bary
enter map (6) is homeomorphi
 to Conf0n(S2)reg,equipped with the a
tion of SO(3).For n odd, this proves 
o
ompa
tness be
ause Conf0n(S2)reg = Conf0n(S2) is 
ompa
t,and so is Conf0n(S2)reg. For n even Conf0n(S2) � Conf0n(S2)reg 
onsists of a single orbit,thus Conf0n(S2)=SO(3) is the one-point 
ompa
ti�
ation of Conf0n(S2)reg=SO(3). UsingGeometri
 Invariant Theory, we shall show in next se
tion that Conf0n(S2)=SO(3) is aproje
tive variety smooth at Conf0n(S2)reg=SO(3).If the 
on�gurations where ordered, they would 
orrespond to polygons in R3 withsides of length one. This was studied by Kapovi
h and Millson in [14℄, where they view
on�gurations as atomi
 measures. These ideas are further developed by Kapovi
h, Leeband Millson in [13℄. The idea of bary
enter of measures is quite 
ommon and has manyappli
ations, as for instan
e the entropy rigidity of Besson, Courtois and Gallot [1℄.4. The Geometri
 Invariant Theory approa
hHere we apply the point of view of geometri
 invariant theory [21℄. The a
tions ofPSL2(C) on Pn and (P1)n are algebrai
, so it makes sense to look at the quotients ingeometri
 invariant theory. Geometri
 invariant theory provides Zariski open subsetsU � V of Pn and (P1)n that are PSL2(C)-invariant and:� A 
ategori
al quotient � : V ! Z. Namely this proje
tion is 
onstant onPSL2(C)-orbits, and every algebrai
 map V ! Y 
onstant on PSL2(C)-orbitsfa
tors though V ! Z. 146



� The proje
tion � : V ! Z restri
ts to a geometri
 quotient on U : �(U) is openand the �bers of � : ��1(�(U))! U are orbits.The 
hoi
e of U and V is made by means of stability. We re
all the following de�nition:De�nition 4.1. Let V � Cn+1 be an aÆne 
one, i.e. an algebrai
 variety su
h that ifx 2 V then �x 2 V 8� 2 C. Let G be a Lie group a
ting on V . A point x 2 V � f0g is
alled:� stable if the orbit Gx is 
losed and x has �nite stabilizer,� semistable if 0 is not in the 
losure of the orbit Gx, and� unstable if 0 is in the 
losure of the orbit Gx.Let P (V )s and P (V )ss denote the subset of stable and semistable points, whi
h areZariski open. Geometri
 invariant theory provides the following:Theorem 4.2 ([21℄, 
f. [23℄, [27℄). Let Z be the proje
tive variety whose graded algebrais C[V ℄G, the set of invariant fun
tions of the algebra of V . Then:(1) There is a proje
tion � : P (V )ss ! Z that is the 
ategori
al quotient.(2) The morphism � : P (V )ss ! Z is aÆne.(3) The restri
tion to P (V )s is a geometri
 quotient.Remark 4.3. Noti
e that the proje
tion on the set of semistable points P (V )ss !PSL2(C)nP (V )ss is the standard topologi
al quotient, and that Z is a natural 
om-pa
ti�
ation.Remark 4.4. Noti
e also that the topology of the orbits in V and in P (V ) may di�er.In fa
t, for an stable point, its orbit in V is 
losed but possibly not in P (V ). However itis 
losed in P (V )ss, the semistable part. The orbit of a semistable point maybe non
losedin P (V )ss, if not it a

umulates to a 
losed orbit, whi
h is unique in the �bre of �.Ba
k to our setting, V = Cn[X; Y ℄, the spa
e of homogeneous polynomials of degree n,and to a polynomial in Cn[X; Y ℄ its roots in P1. Then we have:Lemma 4.5. A polynomial in Cn[X; Y ℄ is stable i� all roots have multipli
ity < n=2.It is semi-stable i� the multipli
ities are � n=2.We do not provide a proof of this lemma, whi
h is stated in 1.7 of [22℄. It is not diÆ
ult,by 
onsidering the Segre embedding of (P1)n in some proje
tive spa
e.Let us try to understand this lemma in our setting. Noti
e �rst that it is 
oherent withthe 
hoi
e of domains of Pn we have made in the introdu
tion. The a
tion of PSL2(C) inthe 
on�guration spa
e of roots 
an bring together di�erent points, thus semistable orbitsin P (V ) a

umulate to unstable.The dis
ussion for semistability depends on the parity of n:� Noti
e that when n is odd, semistable equals to stable, and this explains why wedo not need to 
ompa
tify in the odd 
ase.� When n is even the semistable but not stable polynomials have a root of multi-pli
ity n=2. The orbits of su
h polynomials are non
losed, and they a

umulate toeither unstable orbits or to an orbit with pre
isely two roots of multipli
ity n=2.Thus all the semistable orbits proje
t to a single point in the GIT quotient Z.Using the isomorphism (4) and Remark 3.2, we get the following 
orollary of Lemma 4.5:147



Corollary 4.6. The stable and semistable sets are:(Pn)s = Pn � Os
[n=2℄(Qn) and (Pn)ss = Pn � Os
[(n�1)=2℄(Qn):From the previous dis
ussion we obtain:Proposition 4.7. The quotient Yn = PSL2(C)n(Pn � Os
[n=2℄(Qn)) is� a 
omplex proje
tive variety Ŷn = Yn of dimension n� 3, for n odd;� a 
omplex proje
tive variety Ŷn of dimension n� 3 minus one point, for n even.In Se
tion 5 we will prove that PSL2(C)n(Pn�Os
[n=2℄(Qn)) is smooth, but the 
om-pa
ti�
ation for even n � 6 is singular.5. Smoothness of the quotientWe shall show that Yn has no singular point, and that, for even n � 6, the point Ŷn�Ynis a singular point. This uses essentially the methods of [12℄.Sin
e the stabilizer of a point in P (V )s is trivial, a straightforward appli
ation of Luna'ssli
e theorem [15℄ gives:Lemma 5.1. All points of Yn = �(P (V )s) are smooth.Lemma 5.2. For n � 6, the point Ŷn�Yn = �(P (V )ss) is singular, but regular for n = 4.Proof. We look at the 
losed orbit 
orresponding to the 
ompletion, the polynomials ofthe form mn=21 mn=22 , for two di�erent monomials m1 and m2. Sin
e this is a single orbit,we may assume that the polynomial is Xn=2Y n=2. The stabilizer of this orbit is the one-parameter group H = ��� 00 ��1� j � 2 C�� �= C�:We work with homogeneous 
oordinates[a�n=2; a�n=2+1; a�n=2+2; : : : ; an=2℄
orresponding to the polynomial n=2Xi=�n=2 aiXn=2+iY n=2�i:In parti
ular Xn=2Y n=2 has 
oordinates ai = 0 for i 6= 0 and a0 6= 0. To �nd a sli
e,�x �rst an aÆne 
hart determined by a0 = 1, whi
h is invariant under the a
tion of thestabilizer.We next determine the tangent spa
e to the orbit of Xn=2Y n=2. Consider the a
tion ofthe in�nitesimal isometriesh+ = �0 10 0� and h� = �0 01 0� :The in�nitesimal a
tion of h+ does not 
hange X and maps Y to Y +"X, for in�nitesimal", thus it maps Xn=2Y n=2 7! Xn=2Y n=2 + n2 "Xn=2+1Y n=2�1 +O("2):148



Thus its tangent ve
tor has 
oordinates ai = 0 for i 6= �1 and a�1 6= 0. Analogously, thetangent ve
tor to the a
tion of h� has 
oordinates ai = 0 for i 6= 1 and a1 6= 0. To havea transverse sli
e, de�ne it by setting a0 = 1 and a�1 = a1 = 0:S = f[a�n=2 : a�n=2+1 : � � � : a�2 : 0 : 1 : 0 : a2 : � � � : an=2�1 : an=2℄ j ai 2 Cg �= Cn�3By 
onstru
tion S is transverse to the tangent spa
e of the orbit atXn=2Y n=2 and invariantunder the a
tion of the stabilizerH. Hen
e it is the sli
e 
onstru
ted in the proof of Luna'ssli
e theorem [15℄. It follows that the point in the quotient is singular i� S=H is singularat ai = 0, for i 6= 0.The next step will be to 
ompute the quotient S=H, but we will have to distinguishdi�erent 
ases for n. We will use that the stabilizer is the one-parameter group that mapsthe 
oordinate ai to �2iai.We dis
uss �rst the 
ase n = 4. Hen
e the 
oordinates are (a2; a�2) 2 C2 and thefun
tions invariant by H is the ring generated by the 
oordinate x = a�2a2. Hen
eS=H �= C is smooth.Next assume n = 6. The 
oordinates are (a3; a2; a�2; a�3) 2 C2. Here the H-invariantfun
tions are generated by 8>><>>: x = a2a�2y = a3a�3z = a32a2�3t = a3�2a23:They are not independent fun
tions (the dimension of the quotient is 3), and satisfy therelation:(7) z t = x3y2;whi
h de�nes a hypersurfa
e that is singular at the origin.For larger n even, the H invariant fun
tions are generated byxI = xi1;i2;:::;ik = ai1ai2 � � �aik ;satisfying i1 + i2 + � � � ik = 0. The equations are of the formxI1xI2 � � �xIr = xJ1xJ2 � � �xJs;where the union of unordered set of indi
es are equal:I1 [ I2 [ � � � [ Ir = J1 [ J2 [ � � � [ Js:Noti
e that r; s � 2 (otherwise this fun
tion is not required as generator), thus the deriv-ative of the equation at the origin vanishes. Moreover, the set of equations is nonempty,be
ause it always 
ontains (7). Hen
e it is singular �This �nishes the proof of Theorem 1.4. Noti
e that in the proof we have obtained thefollowing 
orollary.Corollary 5.3. The moduli spa
e of unordered 
on�gurations of n unit ve
tors in R3 withtrivial bary
enter SO(3)nConf0n(S2)is a 
omplex proje
tive variety whi
h is smooth ex
ept at the point(SO(3)nConf0n(S2))� (SO(3)nConf0n(S2)reg)for n � 6 even. 149



6. Low dimensional examples: n = 3; 4; 5The goal of this se
tion is to 
ompute expli
itly some quotients Yn = PSL2(C)nXn forn = 3, 4, and 5.6.1. Case n = 3. The spa
e of ordered triples of di�erent points is naturally isomorphi
to the frame bundle of hyperboli
 spa
e. In our 
ase, we 
onsider unordered triples, so itis the quotient of the frame bundle by the permutation group a
ting on the ve
tors of theframe. In this 
ase the os
ulating variety we remove is just the tangent variety, and thequotient Y3 = PSL2(C)n(P3 �Os
1(Q3)) �= �
onsists of just one point. The a
tion of PSL2(C) is not e�e
tive, it has kernel �3.Therefore �1(M3)n(P3 �Os
1(Q3)) �= �1(M3)nPSL2(C)=�3is a quotient of the frame bundle over M3 (the bundle of unordered frames).6.2. Case n = 4. The spa
e of ordered quadruples of di�erent points has a naturalfun
tion whi
h is PSL2(C)-invariant, the 
ross ratio:[z1 : z2 : z3 : z4℄ = z1 � z3z2 � z3 z2 � z4z1 � z4 :This de�nes a fun
tion on the set of di�erent quadruples of P1 that extends when at mosttwo points are equal: (P1)4 ��3 ! P1(z1; z2; z3; z4) 7! [z1 : z2 : z3 : z4℄:To get a fun
tion on the spa
e of unordered 
on�gurations, we 
onsider the a
tion of threepermutations that span the symmetri
 group on 4 elements:(8) [z2 : z1 : z3 : z4℄ = [z1 : z2 : z4 : z3℄ = 1[z1:z2:z3:z4℄ ;[z1 : z3 : z2 : z4℄ = 1� [z1 : z2 : z3 : z4℄:Consider the bran
hed 
overing F : P1 ! P1 of degree 6:F (z) = z6 � 3z5 + 3z4 � z3 + 3z2 � 3z + 1z2(1� z)2 = z2 � z + 3z2 � 3z + 1z2(1� z)2 ;It rami�es at 1 2 C [ f1g = P1 and satis�es F�1(1) = f0; 1;1g. Moreover it isinvariant by the transformations on the 
ross ratio (8)F (z) = F (1� z) = F (1=z);It is then straightforward that(P1)4=�4 ! P1(z1; z2; z3; z4) 7! F ([z1 : z2 : z3 : z4℄)indu
es an isomorphism Ŷ4 = SL2(C)n(P4 �Os
1(Q4)) �= P1:In parti
ular �1(M3)n(P4 � Os
1(Q4))is a P1 bundle over the frame bundle of M3.150



6.3. Case n = 5. We start with the dis
ussion of Deligne and Mostow [4℄ on the spa
eof ordered 
on�gurations of 5 points, with at most two of them equal. Consider the map(P1)5 ��3 ! P1 �P1(z1; z2; z3; z4; z5) 7! (1; 0; 1; 1[z1:z2:z3:z4℄ ; 1[z1:z2:z3:z5℄):It indu
es � : PSL2(C)n((P1)5 ��3)! P1 �P1:The map � is birregular ex
ept atL13 = ��1(0; 0); L12 = ��1(1; 1); L23 = ��1(1;1):Hen
e the quotient of the (ordered) 
on�guration spa
e PSL2(C)n((P1)5��2) is a blow-up of P1 �P1 at the three points (0; 0), (1; 1) and (1;1). Here Lij 
orresponds to the
oordinates i and j being equal. These are 10 lines in PSL2(C)n((P1)5 ��2), the threeex
eptional �bers (��1(0; 0), ��1(1; 1), and ��1(1;1)) and the �-lifts of seven lines inP1 �P1: x = 8<: 011 ; y = 8<: 011 ; x = y;where x = 1=[z1 : z2 : z3 : z4℄ and y = 1=[z1 : z2 : z3 : z5℄.To determine PSL2(C)nX5 we 
onsider the a
tion of the permutation group �5, namely:PSL2(C)nX5 �= (P1 �P1#3P2)=�5:We already know that PSL2(C)nX5 is a smooth 
omplex proje
tive surfa
e. We need toargue that it is simply 
onne
ted and then look at the homology and apply Freedman'stheorem [6℄. We des
ribe the a
tion of �5. We look at permutations (1i) of the �rst
oordinate with the i-th 
oordinate, and the indu
ed map on P1 � P1#3P2, with a
omputation similar to the previous subse
tion. Noti
e that these permutations generate�5. The indu
ed maps are:� The permutation (12) indu
es� x 7! 1=xy 7! 1=y :� The permutation (13) indu
es� x 7! xx�1y 7! yy�1 :� The permutation (14) indu
es� x 7! 1� xy 7! y(1�x)y�x :� The permutation (15) indu
es� x 7! x(1�y)x�yy 7! 1� y :151



All these indu
ed maps have �xed points. This implies that PSL2(C)nX5 is simply-
onne
ted, be
ause �1(PSL2(C)nX5) is the quotient of the orbifold group, �5, by thegroup generated by elements with �xed points, see for instan
e [11℄.On the other hand �5 obviously a
ts transitively on the ten lines lij de�ned by two
oordinates being equal. Those lines generate the homology of P1 � P1#3P2, hen
e thehomology of the quotient has rank one, therefore:Y5 = PSL2(C)n(P5 � Os
2(Q5)) �= P2:Hen
e �1(M3)n(P5 � Os
2(Q5))is a P2-bundle over the frame bundle of M3.Referen
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