
ACTIONS OF HYPERBOLIC THREE-MANIFOLD GROUPS ONCOMPLEX PROJECTIVE SPACEJOAN PORTIAbstrat. In this paper we desribe a disontinuity domain for the natural ation ofhyperboli three-manifold groups on omplex projetive spaes of arbitrary dimension.1. IntrodutionIn reent years the study of representations of hyperboli three-manifold groups intoSLn(C) is playing an important rôle. Among others, we mention the work of WernerM�uller [17℄, Jonathan Pfa� [25, 24℄, W. M�uller and J. Pfa�, [19, 18, 20℄, Stavros Garoufa-lidis, Dylan Thurston, and Christian Zikert [9℄, S. Garoufalidis, Matthias G�orner, andC. Zikert [8℄, Takashi Hara and Takahiro Kitayama, and Pere Menal-Ferrer and myself[16℄.There is a distinguished representation in SLn+1(C) onstruted as follows. We startwith the de�nition of symmetri power. Consider C[X; Y ℄ the algebra of polynomials ontwo variables. We have a natural ation of SL2(C) on C[X; Y ℄ by preompositionSL2(C)�C[X; Y ℄ ! C[X; Y ℄A; P 7! P Æ Atwhere At denotes the transpose of A. Notie that transposing or taking the inverse inPSL2(C) di�er by onjugation by a matrix, thus the ation P 7! P Æ A�1 is equivalent.This ation restrits to the homogeneous polynomials of degree n, whih de�ne a n + 1dimensional subspae of C[X; Y ℄:Cn[X; Y ℄ = fp(X; Y ) 2 C[X; Y ℄ j p is homogeneous and deg(p) = ng:De�nition 1.1. The n-symmetri representationSymn : SL2(C)! SLn+1(C)is de�ned by the ation on homogeneous polynomials on two variables of degree n.Let M3 be a losed, ompat, hyperboli and orientable three-manifold. Fix a lift ofits holonomy representation fhol : �1(M3)! SL2(C):We onsider then the representation(1) �n = � Æ Symn Æfhol : �1(M3)! SLn+1(C)! PSLn+1(C);where � : SLn+1(C) ! PSLn+1(C) is the natural projetion. Notie that �n does notdepend on the lift. This indues a natural ation of �1(M3) on omplex projetive spaePn but also on the ag manifolds of Pn.Reeived Deember 27, 2012. 138



Question 1.2. Find a domain Xn � Pn (or in a ag manifold of Pn) suh that theation of PSL2(C) indued by Symn is proper and, if possible, oompat. Desribe thequotients PSL2(C)nXn and �n(�1(M3))nXn.The question for surfaes has been addressed by Guihard and Weinhart, with the soalled Anosov representations [10℄. In our ase, when M is ompat, �n is also an Anosovrepresentation.Here we answer Question 1.2 by �nding a domain in omplex projetive spae. Forthe dynamis of disrete groups in omplex projetive spae, see also the work of Cano,Navarrete and Seade in [3℄ and referenes therein. This is also addressed in a moregeneral setting in a joint projet with Misha Kapovih and Bernhard Leeb, as Pn andag manifolds appear in the Tits boundary of symmetri spaes of nonpositive urvature.We mention that Sym1 is the identity, and that �1 is just the lift of the holonomyrepresentation. In this ase there is no proper ation on P1. The ase n = 2 will beaddressed in Setion 2, by onsidering the ag manifold. When n � 3, we will �nd adomain in omplex projetive spae Pn.For n � 3, we deal with an invariant urve and the osulating variety. We start withthe Veronese embedding(2) P1 ! Pn(a : b) 7! (aX + bY )nIts image Qn � Pn is an algebrai urve (isomorphi to P1) invariant under the ation ofSymn(PSL2(C)), alled the rational normal urve [7℄. The ation on Pn�Qn is still notproper. For this we shall remove a larger subset of the osulating manifold. Reall thatan aÆne k-plane is osulating to a urve if at one point it ontains all derivatives of order� k. This is an aÆne notion that generalizes to the projetive setting.De�nition 1.3. The k-osulating variety to Qn is the set of projetive k-planes that arek-osulating to Qn and it is denoted by Osk(Qn).For all k, Osk(Qn) is invariant by the ation of Symn(PSL2(C)). The good hoie willbe k = [n=2℄, the integer part of n=2.Theorem 1.4. For n > 2, the ation of Symn(PSL2(C)) is proper onXn = Pn � Os[n=2℄(Qn):For n odd, the quotient PSL2(C)nXn is a smooth omplex projetive variety. For n even,the quotient PSL2(C)nXn admits a natural one point ompati�ation whih is a omplexprojetive variety, smooth for n = 4 and with preisely a singular point for n > 4.Sine �1(M3)nPSL2(C) is the frame bundle of M3, we have the following orollary.Corollary 1.5. Let M3 be an orientable and hyperboli three-manifold. Then the quotient�n(�1(M3))nXn is a smooth omplex variety that �bres over M3 and also over its framebundle (exept when n = 3). The �ber is ompat for n odd, and for n even it admits aompati�ation that onsists in adding a point for eah �bre of the frame bundle.The exeption when n = 3 is that it is the quotient of the frame bundle by the ationof the permutation group on three elements (i.e. the bundle of unordered frames).The paper is organized as follows. In Setion 2 we disuss �rst the ation of Sym2 onthe ag manifold. Notie that the ation on P2 annot be proper beause of dimensions.139



Then in Setion 3 we prove properness and oompatness by using standard methodsof hyperboli geometry, namely the the baryenter for on�gurations of ideal points.To prove that the quotient (or its one point ompati�ation) is a omplex projetivemanifold, we use geometri invariant theory in Setion 4, as this example was preiselyomputed in Mumford's book [21℄. Then in Setion 5 we establish smoothness of thequotient and nonsmoothness of its ompati�ation, whih is probably the only new resultof the paper. Finally, Setion 6 is devoted to ompute expliitly some low dimensionalexamples.Aknowledgements I am indebted to the organizers of the RIMS Seminar \Represen-tation spaes, twisted topologial invariants and geometri strutures of 3-manifolds",namely to Professors Teruaki Kitano, Takayuki Morifuji, and Yasushi Yamashita.My work is partially supported by the European FEDER and the Spanish Miinnthrough grant MTM2009{0759 and by the Catalan AGAUR through grant SGR2009{1207. I also reeived the prize \ICREA Aad�emia" for exellene in researh, funded bythe Generalitat de Catalunya. 2. The ation of Sym2Theorem 1.4 only applies for n � 3. We disuss �rst n = 2 as an exeptional lowdimensional ase. Notie that PSL3(C) ats naturally on the projetive spae P2, sothe stabilizer of a point in P2 of the ation of Sym2(PSL2(C)) is a omplex manifold ofdimension at least one, hene it annot be proper. To �nd proper ations we shall workin the ag manifold.De�nition 2.1. The ag manifold of P2 is the set of pairs (p; L) where p is a line in C3(a point in P2) and L a plane in C3 (a line in P2) ontaining p. It is denoted by F (2).If (P2)� denotes the dual to P2, thenF (2) = f(p; L) 2 P2 � (P2)� j p 2 Lg:Using homogeneous oordinates for the points p = [x1 : x2 : x3℄ and writing the elementsof (P2)� also with homogeneous oordinates L = [a1 : a2 : a3℄ orresponding to the linede�ned by the equation a1x1 + a2x2 + a3x3 = 0, we have the following remark.Remark 2.2. The ag manifold F (2) is isomorphi to the hypersurfaef([x1 : x2 : x3℄; [a1 : a2 : a3℄) 2 P2 �P2 j x1a1 + x2a2 + x3a3 = 0g:In partiular it is three-dimensionalThus F (2) has already the right dimension to �nd a domain where the ation is properand oompat. To �nd suh a domain, we must onsider and invariant subset. Morepreisely, P2 is the projetive spae on the vetor spae of homogeneous quadrati poly-nomials p(X; Y ) = aX2 + bXY + Y 2Consider the quadri Q2 de�ned by the polynomials that have a double root; namely thepolynomials with zero disriminant:Q2 = faX2 + bXY + Y 2 2 C2[X; Y ℄ j b2 � 4a = 0g:140



The quadri Q2 is isomorphi to P1 and it is invariant by the ation of PSL2(C). It is infat the rational normal urve of the introdution, the image of the Veronese embedding(2). The main result for n = 2 is the following:Theorem 2.3. Viewing the ag manifold F (2) as a subset of P2 � P2, PSL2(C) atsproperly and oompatly on the dense domain of generi agsX2 = F (2) \ (P2 �Q2)� (P2 �Q2):The quotient Sym2(PSL2(C))nX2 is a point.For any hyperboli and orientable 3-manifold M3, �2(�1(M3))nX2 is a sphere bundleover M3, obtained by quotienting out its frame bundle by �3 n (Z=2Z)3. In partiular itis the trivial sphere bundle.This theorem tells that X2 are the ags generi to Q2 and its dual, see Figure 1.
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Figure 1. A generi ag: p does not belong to Q2 and l is not tangent to Q2.To prove Theorem 2.3, we need the interpretation of Sym2 as the adjoint representation.Let sl2(C) denote the Lie algebra. The following result is well known and it is a onse-quene of the uniqueness of irreduible representations of PSL2(C) in eah dimension.Proposition 2.4. The adjoint ation of PSL2(C) on sl2(C) �= C3 is equivalent to Sym2.Moreover it preserves the Killing form B : sl2(C) � sl2(C) ! C and it de�nes an iso-morphism PSL2(C) �= SO(3;C). The isomorphism maps the rational normal urve Q2to the zero set of the Killing form as a quadri fx 2 sl2(C) j B(x; x) = 0g.Now we want to exploit the fat that PSL2(C) is the group of orientation preservingisometries of hyperboli spae. Let P (sl2(C)) �= P2denote the projetive spae on the Lie algebra. In partiular, a point in P (sl2(C)) is aline in sl2(C) to whih one an assoiate a one parameter group.The following is straightforward.Lemma 2.5. For x 2 P (sl2(C)), the one-parameter group of isometriesfexp(�x) j � 2 Cgis paraboli if B(x; x) = 0 and loxodromi if B(x; x) 6= 0.By mapping a loxodromi one-parameter group to its invariant geodesi, we get:Corollary 2.6. There is a natural homeomorphism betweenP (fx 2 sl2(C) j B(x; x) 6= 0g)and the set of unoriented geodesis of H3. 141



Reall that the boundary at in�nity �1H3 is equivalent to P1. Considering the end-points of geodesis, this orollary gives a homeomorphismP (fx 2 sl2(C) j B(x; x) 6= 0g) �= (�1H3 � �1H3 ��)=�2;where �2 is the permutation group of two elements and � the diagonal. This homeomor-phism extends ontinuously to an homeomorphismP (fx 2 sl2(C) j B(x; x) = 0g) �= �1H3;that maps a paraboli group of isometries to its invariant point at in�nity. More preisely,we have the following de�nition:De�nition 2.7. The spae of unoriented (and possibly degenerate) geodesis isG(H3) = (�1H3 � �1H3)=�2:Corollary 2.8. There is a natural homeomorphismG(H3) �= P (sl2(C))whih is PSL2(C)-equivariant and that maps the degenerate geodesis �1H3 � G(H3) toQ2 = P (fx 2 sl2(C) j B(x; x) = 0g).The previous orollary gives already a geometri interpretation of points in P (sl2(C)).We aim to extend it to the ag manifold, in partiular to the dual of P (sl2(C)), of ourseby means of the Killing form.Namely, for eah x 2 P (sl2(C)), its B-orthogonal x? is a projetive line in P (sl2(C)),and sine B is nondegenerate this de�nes an isomorphism between P (sl2(C)) and its dual.Lemma 2.9. Given l 2 P (sl2(C)), the following hold true.(1) If B(l; l) = 0 then l? is the subspae tangent to a group that �xes a point in �1H3.In partiular the geodesis orresponding to l? are all asymptoti to a �xed pointin �1H3.(2) If B(l; l) 6= 0 then the set geodesis orresponding to l? is a penil of geodesis inH3 perpendiular to a �xed geodesi.Proof. When B(l; l) = 0, by transitivity of the ation, we may assume that l = ( 0 10 0 ). Thenl? = ( � �0 � ) and the exponential of l? is the set of all one parameter groups that �x thepoint with homogeneous oordinates [1 : 0℄. Namely we obtain all geodesis asymptotito [1 : 0℄ 2 P1 �= �H3.When B(l; l) 6= 0, we assume that l = ( 1 00 �1 ). Then l? = ( 0 �� 0 ). Thus l? ontainsthe paraboli elements ( 0 10 0 ) and ( 0 01 0 ), with respetive �xed points in �1H3 �= P1 withhomogeneous oordinates [1 : 0℄ and [0 : 1℄, as well as the loxodromi elements ( 0 ab 0 ), witha b 6= 0. Using the formulas of [26, Appendix℄ and the formalism of Fenhel's book [5℄,sine these elements are orthogonal to l by the Killing form, the orresponding geodesisare orthogonal. Therefore we obtain the family of geodesis that are orthogonal to thegeodesi with end-points [1 : 0℄ and [0 : 1℄ in P2. �The dual of P (sl2(C)) and G(H3) may be identi�ed to themselves, and we get:Proposition 2.10. The ag manifold is equivariantly homeomorphi toZ = f(l1; l2) 2 G(H3)� G(H3) j l1 ? l2g:142



This inludes �1H3 � G(H3) as degenerate geodesis, and the perpendiularity relationbeomes being asymptoti.Let Z0 � Z be the nondegenerate subset of Z, namelyZ0 = Z \ �(G(H3)� �1H3)� (G(H3)� �1H3)� :Remark 2.11. The set Z0 is equivariantly homeomorphi to F(H3)=(�3o(Z=2)3), whereF(H3) is the frame bundle of H3, �3 ats by permutation of the vetors and (Z=2)3 byhanges of sign of the vetors.To prove Theorem 2.3, notie that PSL2(C) ats properly and oompatly on theframe bundle F(H3), hene it ats properly and oompatly on Z0, the set or pairs ofgeodesis in H3 that are perpendiular. In addition, viewing the ag manifold F (2) asa subset of P1 � P1, Sym2(PSL2(C)) ats properly and oompatly the dense domainX2 = F (2) \ (B 6= 0)2 �= Z0.The quotient Sym2(PSL2(C))nX2 is a point. For any hyperboli orientable 3-manifoldM3, �2(�1(M3))nX2 is a sphere bundle over M3, obtained by quotienting out its framebundle by �3 n (Z=2)3. In partiular it is the trivial sphere bundle.This onludes the proof of Theorem 2.3.3. The ation of Symn for n > 2 and hyperboli geometryReall that Symn(SL2(C)) ats on the spae homogeneous polynomials of C[X; Y ℄ ofdegree n, that we denote by Cn[X; Y ℄. We look for a domain in Pn = P (Cn[X; Y ℄) wherethe ation is proper and oompat.We also reall the Veronese embedding (2)(3) P1 ! Pn(a : b) 7! (aX + bY )nwith image Qn, the rational normal urve.Finally reall that the k-osulating variety to Qn is the set of projetive k-planes thatare k-osulating to Q and it is denoted by Osk(Qn).To prove Theorem 1.4, we �st show that the ation Symn(PSL2(C)) is proper onXn = Pn � Os[n=2℄(Qn):We also show that it is oompat for n odd, and has a natural one point ompati�ationwhen n is even. Naturality shall beome lear from the proof.In Setion 4 we shall disuss the point of view of Mumford using Geometri InvariantTheory [21℄, and later the one of Deligne and Mostow [4℄. In this setion we follow anapproah that uses mainly hyperboli geometry. First we need to relate this ation withthe ation on on�gurations of �1(H3) �= P1.De�nition 3.1. The spae of unordered on�gurations of n points in the projetive lineP1 is Confn(P1) = (P1)n=�n;where �n denotes the permutation group.To a polynomial in Cn[X; Y ℄ we assoiate its n (unordered) roots in P1, hene we havean equivariant isomorphism:(4) Pn �= Confn(P1) = (P1)n=�n143



where PSL2(C) ats diagonally on (P1)n and �n is the permutation group on n elements.Let �k � Pn=�n denote the k-diagonal, namely the subset suh that (at least) k of itsomponents are equal.Remark 3.2. The isomorphism (4) identi�es Osk(Qn) � (P1)n with �n�k � (P1)n=�n.Given an ideal point � 2 �1H3 and a geodesi ray r : [0;+1)! H3 asymptoti to �,limt!+1 r(t) = �, for any x 2 H3 the quantity t � d(x; r(t)) is stritly inreasing on t,and bounded above by d(r(0); x), by the triangle inequality. Hene, the limitlimt!+1 d(x; r(t))� texists. It de�nes a funtion on x 2 H3 suh that, up to some additive onstant, dependsonly on the ideal point limt!+1 r(t) = � 2 �1H3 (see for instane [2℄).De�nition 3.3. The Busemann funtion entered at � isb�(x) = limt!+1 d(x; r(t))� t;for any hoie of ray r : [0;+1)! H3 satisfying r(+1) = �.
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Figure 2. De�nition of Busemann funtion (left) and its level subsets (right).In the upper half spae model for H3, f(z; t) 2 C�R j t > 0g equipped with the metridjzj2 + dt2t2 ;and with boundary at in�nity �1H3 �= C [ f1g, the Busemann funtion entered at� =1 is, up to some additive onstant,(5) b1(z; t) = � log t:Then it is straightforward that b� is onvex, its level sets b� =  are horospheres enteredat �, and its level subsets b� �  are horoballs.Given an unordered on�gurationC = f�1; : : : ; �ng 2 Confn(P1) �= (P1)n=�n;onsider the sum of Busemann funtions:bC = b�1 + � � �+ b�n : H3 ! R;whih is again a funtion well de�ned up to some additive onstant.144



Lemma 3.4. For n � 3 and C 2 Confn(P1), the funtion bC is proper (has ompatsublevel sets) i� no point of C has multipliity at least n=2.Proof. We �rst look at the example of a on�guration onsisting of two points. Let��; �+ 2 H3 be di�erent points, Consider a geodesi  : (�1;+1) ! H3 that satis�es(�1) = ��. Then b�� + b�+ is onstant (and attains its minimum) along . Even ifbounded below, b�� + b�+ is not proper, as the sublevel sets are nonompat. In addi-tion, sine Busemann funtions are Lipshitz, it is bounded above in the metri tubularneighbourhood Nr() = fx 2 H3 j d(x; ) � rg.To prove one impliation of the lemma, assume that a point in the on�guration hasmultipliity k � n=2. In partiular �1 = � � � = �k. If k = n, obviously b = n b�1 isnot proper. Otherwise, �k+1; : : : ; �n are n� k � n=2 points in the on�guration di�erentfrom �1. Consider the geodesis �1�k+1; : : : ; �1�n. By the previous disussion, the funtionb�1+b�k+1 is not only onstant on �1�k+1 but it is also bounded on �1�k+j when approahing�1, for j = 1; : : : ; n � k, beause both �1�k+1 and �1�k+j are are asymptoti to �1. Thefuntion bC is the sum of suh pairs b�1 + b�k+j , whih are bounded on �1�k+1 whenapproahing �1, added to possibly some b�1 , that onverges to �1 when approahing �1along �1�k+1. Hene it is not proper.For the other impliation, assume that that bC is not proper: let xn be a divergingsequene in H3 suh that bC(�)(xn) remains bounded above. We may assume that xn !� 2 �1H3. If � 6= �i, then b�i(xn)! +1, therefore we may assume that � = �1. Let k bethe multipliity of �1, we laim that k � n=2. Notie that for �j 6= �1, b�1 + b�j is boundedbelow in the whole H3, hene if k < n=2, then bC(xn) would deompose as the additionof terms b�1(xn) + b�j (xn) bounded below and terms b�2k+j (xn) onverging to +1. �Lemma 3.5. If C ontains at least three di�erent points, then bC is stritly onvex.Proof. It is straightforward from (5) that b�i is onvex, and that the seond derivative atthe point x 2 H3 only vanishes in the diretions perpendiular to the ray x�i. If C has atleast three di�erent points, then there is no ommon perpendiular to the rays emanatingfrom x to the points of C. �Corollary 3.6. If no point of C has multipliity at least n=2, then bC has a uniqueminimum in H3.De�nition 3.7. When no point of C has multipliity at least n=2, the unique point whereminimum of bC is reahed is alled the baryenter or enter of mass of C and it is denotedby barC .Thus we have an equivariant map(6) Pn �Os[n=2℄(Qn) roots�= (P1)n=�n ��[(n+1)=2℄ baryenter�! H3:Here we have used that [n=2℄ + [(n + 1)=2℄ = n and Remark 3.2. Notie that PSL2(C)ats properly and oompatly on H3, so this onstrution gives properness of the ationon Pn �Os[n=2℄(Qn).To study oompatness, we must analyze the �bre of the baryenter map (6), equippedwith the ation of SO(3;R), the stabilizer of a point in H3. To understand this �bre,look at the tangent vetors from the enter of mass to the ideal points. They are unitvetors v1; : : : ; vn and satisfy v1 + � � �+ vn = 0. Thus de�ne:145



De�nition 3.8. De�ne the spae of unordered on�gurations in the unit sphere S2 � R3with baryenter the origin:Conf0n(S2) = f(v1; : : : ; vn) 2 S2 � � � � � S2 j v1 + � � �+ vn = 0g=�n:We all a on�guration in Conf0n(S2) regular if it is supported in at least three di�erentvetors. The set of all regular on�gurations is denoted byConf0n(S2)reg = fC 2 Conf0n(S2) j C is supported in at least three di�erent vetorsg:PSfrag replaements
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Figure 3. At the minimum the addition of the unit tangent vetors vi vanishes.Notie that for n odd, Conf0n(S2)reg = Conf0n(S2). For n even, the di�erene betweenConf0n(S2)reg and Conf0n(S2) is preisely the SO(3)-orbit of on�gurations supported onpreisely two vetors, namely two opposite vetors that our preisely n=2 times eah.Lemma 3.9. The �bre of the baryenter map (6) is homeomorphi to Conf0n(S2)reg,equipped with the ation of SO(3).For n odd, this proves oompatness beause Conf0n(S2)reg = Conf0n(S2) is ompat,and so is Conf0n(S2)reg. For n even Conf0n(S2) � Conf0n(S2)reg onsists of a single orbit,thus Conf0n(S2)=SO(3) is the one-point ompati�ation of Conf0n(S2)reg=SO(3). UsingGeometri Invariant Theory, we shall show in next setion that Conf0n(S2)=SO(3) is aprojetive variety smooth at Conf0n(S2)reg=SO(3).If the on�gurations where ordered, they would orrespond to polygons in R3 withsides of length one. This was studied by Kapovih and Millson in [14℄, where they viewon�gurations as atomi measures. These ideas are further developed by Kapovih, Leeband Millson in [13℄. The idea of baryenter of measures is quite ommon and has manyappliations, as for instane the entropy rigidity of Besson, Courtois and Gallot [1℄.4. The Geometri Invariant Theory approahHere we apply the point of view of geometri invariant theory [21℄. The ations ofPSL2(C) on Pn and (P1)n are algebrai, so it makes sense to look at the quotients ingeometri invariant theory. Geometri invariant theory provides Zariski open subsetsU � V of Pn and (P1)n that are PSL2(C)-invariant and:� A ategorial quotient � : V ! Z. Namely this projetion is onstant onPSL2(C)-orbits, and every algebrai map V ! Y onstant on PSL2(C)-orbitsfators though V ! Z. 146



� The projetion � : V ! Z restrits to a geometri quotient on U : �(U) is openand the �bers of � : ��1(�(U))! U are orbits.The hoie of U and V is made by means of stability. We reall the following de�nition:De�nition 4.1. Let V � Cn+1 be an aÆne one, i.e. an algebrai variety suh that ifx 2 V then �x 2 V 8� 2 C. Let G be a Lie group ating on V . A point x 2 V � f0g isalled:� stable if the orbit Gx is losed and x has �nite stabilizer,� semistable if 0 is not in the losure of the orbit Gx, and� unstable if 0 is in the losure of the orbit Gx.Let P (V )s and P (V )ss denote the subset of stable and semistable points, whih areZariski open. Geometri invariant theory provides the following:Theorem 4.2 ([21℄, f. [23℄, [27℄). Let Z be the projetive variety whose graded algebrais C[V ℄G, the set of invariant funtions of the algebra of V . Then:(1) There is a projetion � : P (V )ss ! Z that is the ategorial quotient.(2) The morphism � : P (V )ss ! Z is aÆne.(3) The restrition to P (V )s is a geometri quotient.Remark 4.3. Notie that the projetion on the set of semistable points P (V )ss !PSL2(C)nP (V )ss is the standard topologial quotient, and that Z is a natural om-pati�ation.Remark 4.4. Notie also that the topology of the orbits in V and in P (V ) may di�er.In fat, for an stable point, its orbit in V is losed but possibly not in P (V ). However itis losed in P (V )ss, the semistable part. The orbit of a semistable point maybe nonlosedin P (V )ss, if not it aumulates to a losed orbit, whih is unique in the �bre of �.Bak to our setting, V = Cn[X; Y ℄, the spae of homogeneous polynomials of degree n,and to a polynomial in Cn[X; Y ℄ its roots in P1. Then we have:Lemma 4.5. A polynomial in Cn[X; Y ℄ is stable i� all roots have multipliity < n=2.It is semi-stable i� the multipliities are � n=2.We do not provide a proof of this lemma, whih is stated in 1.7 of [22℄. It is not diÆult,by onsidering the Segre embedding of (P1)n in some projetive spae.Let us try to understand this lemma in our setting. Notie �rst that it is oherent withthe hoie of domains of Pn we have made in the introdution. The ation of PSL2(C) inthe on�guration spae of roots an bring together di�erent points, thus semistable orbitsin P (V ) aumulate to unstable.The disussion for semistability depends on the parity of n:� Notie that when n is odd, semistable equals to stable, and this explains why wedo not need to ompatify in the odd ase.� When n is even the semistable but not stable polynomials have a root of multi-pliity n=2. The orbits of suh polynomials are nonlosed, and they aumulate toeither unstable orbits or to an orbit with preisely two roots of multipliity n=2.Thus all the semistable orbits projet to a single point in the GIT quotient Z.Using the isomorphism (4) and Remark 3.2, we get the following orollary of Lemma 4.5:147



Corollary 4.6. The stable and semistable sets are:(Pn)s = Pn � Os[n=2℄(Qn) and (Pn)ss = Pn � Os[(n�1)=2℄(Qn):From the previous disussion we obtain:Proposition 4.7. The quotient Yn = PSL2(C)n(Pn � Os[n=2℄(Qn)) is� a omplex projetive variety Ŷn = Yn of dimension n� 3, for n odd;� a omplex projetive variety Ŷn of dimension n� 3 minus one point, for n even.In Setion 5 we will prove that PSL2(C)n(Pn�Os[n=2℄(Qn)) is smooth, but the om-pati�ation for even n � 6 is singular.5. Smoothness of the quotientWe shall show that Yn has no singular point, and that, for even n � 6, the point Ŷn�Ynis a singular point. This uses essentially the methods of [12℄.Sine the stabilizer of a point in P (V )s is trivial, a straightforward appliation of Luna'sslie theorem [15℄ gives:Lemma 5.1. All points of Yn = �(P (V )s) are smooth.Lemma 5.2. For n � 6, the point Ŷn�Yn = �(P (V )ss) is singular, but regular for n = 4.Proof. We look at the losed orbit orresponding to the ompletion, the polynomials ofthe form mn=21 mn=22 , for two di�erent monomials m1 and m2. Sine this is a single orbit,we may assume that the polynomial is Xn=2Y n=2. The stabilizer of this orbit is the one-parameter group H = ��� 00 ��1� j � 2 C�� �= C�:We work with homogeneous oordinates[a�n=2; a�n=2+1; a�n=2+2; : : : ; an=2℄orresponding to the polynomial n=2Xi=�n=2 aiXn=2+iY n=2�i:In partiular Xn=2Y n=2 has oordinates ai = 0 for i 6= 0 and a0 6= 0. To �nd a slie,�x �rst an aÆne hart determined by a0 = 1, whih is invariant under the ation of thestabilizer.We next determine the tangent spae to the orbit of Xn=2Y n=2. Consider the ation ofthe in�nitesimal isometriesh+ = �0 10 0� and h� = �0 01 0� :The in�nitesimal ation of h+ does not hange X and maps Y to Y +"X, for in�nitesimal", thus it maps Xn=2Y n=2 7! Xn=2Y n=2 + n2 "Xn=2+1Y n=2�1 +O("2):148



Thus its tangent vetor has oordinates ai = 0 for i 6= �1 and a�1 6= 0. Analogously, thetangent vetor to the ation of h� has oordinates ai = 0 for i 6= 1 and a1 6= 0. To havea transverse slie, de�ne it by setting a0 = 1 and a�1 = a1 = 0:S = f[a�n=2 : a�n=2+1 : � � � : a�2 : 0 : 1 : 0 : a2 : � � � : an=2�1 : an=2℄ j ai 2 Cg �= Cn�3By onstrution S is transverse to the tangent spae of the orbit atXn=2Y n=2 and invariantunder the ation of the stabilizerH. Hene it is the slie onstruted in the proof of Luna'sslie theorem [15℄. It follows that the point in the quotient is singular i� S=H is singularat ai = 0, for i 6= 0.The next step will be to ompute the quotient S=H, but we will have to distinguishdi�erent ases for n. We will use that the stabilizer is the one-parameter group that mapsthe oordinate ai to �2iai.We disuss �rst the ase n = 4. Hene the oordinates are (a2; a�2) 2 C2 and thefuntions invariant by H is the ring generated by the oordinate x = a�2a2. HeneS=H �= C is smooth.Next assume n = 6. The oordinates are (a3; a2; a�2; a�3) 2 C2. Here the H-invariantfuntions are generated by 8>><>>: x = a2a�2y = a3a�3z = a32a2�3t = a3�2a23:They are not independent funtions (the dimension of the quotient is 3), and satisfy therelation:(7) z t = x3y2;whih de�nes a hypersurfae that is singular at the origin.For larger n even, the H invariant funtions are generated byxI = xi1;i2;:::;ik = ai1ai2 � � �aik ;satisfying i1 + i2 + � � � ik = 0. The equations are of the formxI1xI2 � � �xIr = xJ1xJ2 � � �xJs;where the union of unordered set of indies are equal:I1 [ I2 [ � � � [ Ir = J1 [ J2 [ � � � [ Js:Notie that r; s � 2 (otherwise this funtion is not required as generator), thus the deriv-ative of the equation at the origin vanishes. Moreover, the set of equations is nonempty,beause it always ontains (7). Hene it is singular �This �nishes the proof of Theorem 1.4. Notie that in the proof we have obtained thefollowing orollary.Corollary 5.3. The moduli spae of unordered on�gurations of n unit vetors in R3 withtrivial baryenter SO(3)nConf0n(S2)is a omplex projetive variety whih is smooth exept at the point(SO(3)nConf0n(S2))� (SO(3)nConf0n(S2)reg)for n � 6 even. 149



6. Low dimensional examples: n = 3; 4; 5The goal of this setion is to ompute expliitly some quotients Yn = PSL2(C)nXn forn = 3, 4, and 5.6.1. Case n = 3. The spae of ordered triples of di�erent points is naturally isomorphito the frame bundle of hyperboli spae. In our ase, we onsider unordered triples, so itis the quotient of the frame bundle by the permutation group ating on the vetors of theframe. In this ase the osulating variety we remove is just the tangent variety, and thequotient Y3 = PSL2(C)n(P3 �Os1(Q3)) �= �onsists of just one point. The ation of PSL2(C) is not e�etive, it has kernel �3.Therefore �1(M3)n(P3 �Os1(Q3)) �= �1(M3)nPSL2(C)=�3is a quotient of the frame bundle over M3 (the bundle of unordered frames).6.2. Case n = 4. The spae of ordered quadruples of di�erent points has a naturalfuntion whih is PSL2(C)-invariant, the ross ratio:[z1 : z2 : z3 : z4℄ = z1 � z3z2 � z3 z2 � z4z1 � z4 :This de�nes a funtion on the set of di�erent quadruples of P1 that extends when at mosttwo points are equal: (P1)4 ��3 ! P1(z1; z2; z3; z4) 7! [z1 : z2 : z3 : z4℄:To get a funtion on the spae of unordered on�gurations, we onsider the ation of threepermutations that span the symmetri group on 4 elements:(8) [z2 : z1 : z3 : z4℄ = [z1 : z2 : z4 : z3℄ = 1[z1:z2:z3:z4℄ ;[z1 : z3 : z2 : z4℄ = 1� [z1 : z2 : z3 : z4℄:Consider the branhed overing F : P1 ! P1 of degree 6:F (z) = z6 � 3z5 + 3z4 � z3 + 3z2 � 3z + 1z2(1� z)2 = z2 � z + 3z2 � 3z + 1z2(1� z)2 ;It rami�es at 1 2 C [ f1g = P1 and satis�es F�1(1) = f0; 1;1g. Moreover it isinvariant by the transformations on the ross ratio (8)F (z) = F (1� z) = F (1=z);It is then straightforward that(P1)4=�4 ! P1(z1; z2; z3; z4) 7! F ([z1 : z2 : z3 : z4℄)indues an isomorphism Ŷ4 = SL2(C)n(P4 �Os1(Q4)) �= P1:In partiular �1(M3)n(P4 � Os1(Q4))is a P1 bundle over the frame bundle of M3.150



6.3. Case n = 5. We start with the disussion of Deligne and Mostow [4℄ on the spaeof ordered on�gurations of 5 points, with at most two of them equal. Consider the map(P1)5 ��3 ! P1 �P1(z1; z2; z3; z4; z5) 7! (1; 0; 1; 1[z1:z2:z3:z4℄ ; 1[z1:z2:z3:z5℄):It indues � : PSL2(C)n((P1)5 ��3)! P1 �P1:The map � is birregular exept atL13 = ��1(0; 0); L12 = ��1(1; 1); L23 = ��1(1;1):Hene the quotient of the (ordered) on�guration spae PSL2(C)n((P1)5��2) is a blow-up of P1 �P1 at the three points (0; 0), (1; 1) and (1;1). Here Lij orresponds to theoordinates i and j being equal. These are 10 lines in PSL2(C)n((P1)5 ��2), the threeexeptional �bers (��1(0; 0), ��1(1; 1), and ��1(1;1)) and the �-lifts of seven lines inP1 �P1: x = 8<: 011 ; y = 8<: 011 ; x = y;where x = 1=[z1 : z2 : z3 : z4℄ and y = 1=[z1 : z2 : z3 : z5℄.To determine PSL2(C)nX5 we onsider the ation of the permutation group �5, namely:PSL2(C)nX5 �= (P1 �P1#3P2)=�5:We already know that PSL2(C)nX5 is a smooth omplex projetive surfae. We need toargue that it is simply onneted and then look at the homology and apply Freedman'stheorem [6℄. We desribe the ation of �5. We look at permutations (1i) of the �rstoordinate with the i-th oordinate, and the indued map on P1 � P1#3P2, with aomputation similar to the previous subsetion. Notie that these permutations generate�5. The indued maps are:� The permutation (12) indues� x 7! 1=xy 7! 1=y :� The permutation (13) indues� x 7! xx�1y 7! yy�1 :� The permutation (14) indues� x 7! 1� xy 7! y(1�x)y�x :� The permutation (15) indues� x 7! x(1�y)x�yy 7! 1� y :151
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