
LOCAL AND INFINITESIMAL RIGIDITY OF REPRESENTATIONSOF HYPERBOLIC THREE MANIFOLDSJOAN PORTIAbstra
t. We dis
uss lo
al and in�nitesimal rigidity for �nite dimensional represen-tations of hyperboli
 three manifolds. We are motivated by the fa
t that some of therepresentations have a geometri
 interpretation, though we dis
uss it in a general setting.1. Introdu
tionLet M3 be a 
losed, 
ompa
t, hyperboli
 and orientable three-manifold. Fix a lift ofits holonomy representation fhol : �1(M3)! SL2(C):Let G denote a (real or 
omplex) Lie group and let� : SL2(C)! Gbe a linear representation, that does not need to be holomorphi
. For simpli
ity, we shallassume that � is irredu
ible.Question 1.1. Is � Æ fhol : �1(M3)! G lo
ally rigid?In order to properly de�ne lo
al rigidity, we 
onsider the variety of representationshom(�1(M3); G);whi
h naturally embeds in G � � � � � G, by 
onsidering the image of the elements in a(�nite) generating set. Then we de�ne:De�nition 1.2. A representation � : �1(M3)! G is lo
ally rigid if a neighborhood of �in hom(�1(M3); G) 
onsist only of representations that are 
onjugate to �.We are interested in the stronger notion of in�nitesimal rigidity. For this we 
onsiderthe Lie algebra equipped with the adjoint a
tion, that we denote gAd�:De�nition 1.3. A representation � : �1(M3)! G is said to be in�nitesimally rigid ifH1(�1(M3); gAd�) = 0:In�nitesimal rigidity is stronger than lo
al rigidity, as H1(�1(M3); gAd�) may be viewedas the tangent spa
e to the variety of representations up to 
onjuga
y. We shall dis
usthis later in Se
tion 4. It is natural to arise the following question:Question 1.4. Is � Æ fhol : �1(M3)! G in�nitesimally rigid?The answer will vary for di�erent 
hoi
es of G. To des
ribe the possibilities, we needto re
all the 
lassi�
ation of irredu
ible representations of SL2(C). This will be done inSe
tion 2, before we want to dis
uss some motivating examples.Re
eived De
ember 27, 2012. 154



Example 1.5. Consider � to be the identity. Hen
e deformations of the representation
orrespond to deformations of the hyperboli
 stru
ture, 
f. [41, 14℄. By Mostow's theorem[35℄, it is rigid (globally and lo
ally), but in�nitesimal rigidity is given by a theorem ofWeil that we re
all next [43℄.Theorem 1.6 (Weil in�nitesimal rigidity [43℄). If M3 is a 
losed hyperboli
 three mani-fold, then H1(�1(M3); sl2(C)Adghol) = 0:Weil proved this theorem in dimension three and higher. When the manifold is non-
ompa
t, there is a deformation spa
e 
oming from the ends of the manifold, that we shalldis
uss in Se
tion 12Example 1.7. Consider the representation� : SL2(C)! SO(3; 1);whi
h indu
es an isomorphism between PSL2(C) and SO0(3; 1). The notation�1;1 = � Æ fhol : �1(M3)! SO(3; 1)will be 
lear later. Noti
e thatH1(�1(M3); so(3; 1)Ad�1;1) = 0 by Weil in�nitesimal rigidity.Then embed SO(3; 1) in SL4(R), so that rigidity of the representation in SL4(R) meansrigidity of the indu
ed real proje
tive stru
ture.De�nition 1.8. One says that M3 is proje
tively rigid if �1;1 is rigid as representation inSL4(R), and M3 is in�nitesimally proje
tively rigid ifH1(�1(M3); sl4(R)Ad�1;1 ) = 0:Cooper, Long, and Thistlethwaite 
ompute in [17℄ the deformation spa
e of proje
tivestru
tures for a large number of hyperboli
 three manifolds. They show that all possibili-ties 
an o

ur: in�nitesimally proje
tively rigid, proje
tively rigid but not in�nitesimally,and proje
tively non rigid (that they 
all 
exible).Histori
ally, one of the �rst to study proje
tive stru
tures was Benz�e
ri in the 1960's[10℄. Ka
 and Vinberg [42℄ gave the �rst examples of su
h deformations. Koszul [29℄ andGoldman later generalized these examples. Johnson and Millson provided deformationsof the 
anoni
al proje
tive stru
ture by means of bending along totally geodesi
 surfa
es[25℄. Examples of deformations for Coxeter orbifolds have been obtained by Benoist [8℄,Choi [16℄, and Marquis [31℄. See the survey by Benoist [9℄ and referen
es therein for moreresults on 
onvex proje
tive stru
tures.With Heusener, we have proved in [24℄ the existen
e of in�nitely many hyperboli
manifolds that are in�nitesimally proje
tively rigid.Example 1.9. Next 
onsider the embeddingIsom(H3) ,! Isom(H4)and ask whether its 
omposition with the holonomy is rigid here or not. This is equivalentto the study of deformations of the 
at 
onformal stru
ture, as Isom(H4) is the groupof M�obius transformations of S3 = �1H3. We may view them also as quasifu
hsianstru
tures. 155



Here we mention again the 
onstru
tion of Johnson and Millson on bending alongtotally geodesi
 surfa
es [25℄, but also the results on rigidity by Kapovi
h, S
annell andFran
aviglia and myself on (in�nitesimal, lo
al and global) rigidity of su
h stru
tures[19, 26, 39, 40℄. Also Apanasov [3, 5℄, Apanasov and Tetenov [4℄, and Bart and S
annell[7℄ have 
onstru
ted deformations that do not 
orrespond to bending.The paper is addressed to readers in low dimensional topology and geometry and I donot assume any ba
kground in representation theory. Some of the statements are wellknown in representation theory, and most of the proofs are given or sket
hed here. Thereare of 
ourse a lot of results presented here that are known, but to my knowledge, someof them where not previously known in the literature.The paper is organized as follows. In Se
tion 2 we re
all the 
lassi�
ation of �nitedimensional representations of SL2(C), and we look at those that are real. The mainresults are then stated in Se
tion 3. In Se
tion 4 we re
all some known fa
ts on thetangent spa
e of the varieties of representations and 
ohomology required for the proofs,basi
ally Weil's 
onstru
tion. Then we need two main tools for proving lo
al rigidity.The �rst one is Raghunathan's vanishing theorem, that will be re
alled in Se
tion 5.The se
ond tool is to de
ompose the Lie algebras as irredu
ible modules, in order toapply Raghunathan's vanishing. This de
omposition is done in Se
tions 6, 7 and 8. Nextwe dis
uss real representations in Se
tion 9, in
luding the proje
tive stru
tures. Thisalso 
on
erns 
omplex hyperboli
 stru
tures in Se
tion 10 and 
onformally 
at ones inSe
tion 11. Finally, Se
tion 12 is devoted to non
ompa
t hyperboli
 three manifolds of�nite type.A
knowledgements I am indebted to the organizers of the RIMS Seminar \Represen-tation spa
es, twisted topologi
al invariants and geometri
 stru
tures of 3-manifolds",namely to Professors Teruaki Kitano, Takayuki Morifuji, and Yasushi Yamashita.My work is partially supported by the European FEDER and the Spanish Mi
innthrough grant MTM2009{0759 and by the Catalan AGAUR through grant SGR2009{1207. I also re
eived the prize \ICREA A
ad�emia" for ex
ellen
e in resear
h, funded bythe Generalitat de Catalunya.2. Finite dimensional representations of SL2(C)Given n � 0, 
onsiderVn;0 = fP (X; Y ) 2 C[X; Y ℄ j P homogeneous and degP = ng :Then SL2(C) a
ts on Vn;0 as follows:SL2(C)� Vn;0 ! Vn;0(A; P ) 7! P ÆAtwhere At denotes the transpose of A. Noti
e that instead of the transpose one 
an 
onsiderthe inverse, as transposing and taking the inverse are 
onjugate operations in SL2(C).Next de�ne Vn1;n2 = Vn1;0 
 Vn2;0where the bar denotes 
omplex 
onjugation. We have:dimC Vn1;n2 = (n1 + 1)(n2 + 1):156



The 
orresponding representation is denoted bySymn1;n2 : SL2(C)! AutC Vn1;n2 :The automorphisms in the image of Symn1;n2 have determinant oneSymn1;n2 : SL2(C)! SL(n1+1)(n2+1)(C):This gives the 
lassi�
ation of �nite dimensional representations (
f. [28℄):Theorem 2.1. Every irredu
ible and �nite dimensional representation of SL2(C) isequivalent to Symn1;n2 for some (unique) pair of integers n1; n2 � 0The idea of the proof is to 
lassify the representations of the (real) Lie algebra sl2(C).To do so, one 
lassi�es the holomorphi
 representation of its 
omplexi�
ationsl2(C)
R C = sl2(C)� sl2(C):Holomorphi
 irredu
ible representations of sl2(C) are 
lassi�ed by a weight, a nonnegativeinteger that is the largest eigenvalue of a semisimple element of sl2(C). Hen
e irredu
iblerepresentations of sl2(C) are 
lassi�ed by a pair of nonnegative integers.For example Sym0;0 is the trivial representation, Sym1;0 the tautologi
al one, andSym0;1, its 
omplex 
onjugate. We will see later that Sym1;1 is the 
omplexi�
ation ofthe isomorphism of (real) Lie groups between PSL(2;C) and SO(3; 1), as the orientationpreserving isometry group of hyperboli
 spa
e.The group SL(n1+1)(n2+1)(C) may be too large to have rigidity, for this we remarkthat Symn1;n2 preserves a bilinear form. We start by viewing the determinant as a skew(antisymmetri
) bilinear form:det : C2 �C2 ! C( a
 ) ; ( bd ) 7! det ( a b
 d ) = ad� b
whi
h is invariant by the a
tion of SL2(C). Sin
e Vn:0 is the n-th symmetri
 power ofC2 �= V1;0, taking symmetri
 powers and tensor produ
ts, it indu
es a bilinear form:� : Vn1;n2 � Vn1;n2 ! C:This form is Symn1;n2-invariant, nondegenerate and� symmetri
 if n1 + n2 is even;skew if n1 + n2 is odd.Thus Symn1;n2 : SL2(C)! G = � SO((n1 + 1)(n2 + 1);C) if n1 + n2 is even;Sp( (n1+1)(n2+1)2 ;C) if n1 + n2 is odd.We may look also for representations with real image. Let SO(p; q) � SLp+q(R) denotethe spe
ial real orthogonal group of signature p; q.Proposition 2.2. The image of Symn;n is 
ontained in SO(p; q), withp = n2 + 3n+ 22 and q = n2 + n2 :Noti
e that p+ q = (n+1)2. For instan
e the image of Sym1;1 is 
ontained in SO(3; 1)and in fa
t it indu
es an isomorphism between PSL2(C) and the identity 
omponentof SO(3; 1), both the isometry group of hyperboli
 spa
e. Also the image of Sym2;2 is
ontained in SO(6; 3). 157



3. Rigidity and non-rigidity resultsLet �n1;n2 denote the representation(1)�n1;n2 = Symn1;n2 Æfhol : �1(M3)! G = � SO((n1 + 1)(n2 + 1);C) if n1 + n2 is evenSp( (n1+1)(n2+1)2 ;C) if n1 + n2 is odd.Theorem 3.1 (In�nitesimal rigidity in G). Let M3 be a 
losed, oriented, and hyperboli
three manifold and let �n1;n2 : �1(M3)! G be as in (1). ThenH1(�1(M3); gAd�n1;n2 ) = 0:Corollary 3.2. Under the hypothesis of Theorem 3.1, �n1;n2 is rigid in hom(�1(M3); G).The fa
t that �n1;n2 is rigid in hom(�1(M3); G) does not mean that it is rigid inhom(�1(M3); SL(n1+1)(n2+1)(C)):This is des
ribed by the following two results.Theorem 3.3. Let M3 be a 
losed, oriented hyperboli
 three manifold. For n � 1, �n;0and �0;n are in�nitesimally rigid (and rigid) in hom(�1(M3); SLn+1(C)):H1(�1(M3); sln+1(C)Ad�n;0) = H1(�1(M3); sln+1(C)Ad�0;n) = 0:Theorem 3.4. Let M3 be a 
losed, oriented hyperboli
 three manifold. Assume thatn1; n2 � 1 and that M3 
ontains a totally geodesi
 surfa
e. ThenH1(�1(M3); sl(n1+1)(n2+1)(C)Ad�n1;n2 ) 6= 0:Moreover �n;n is nonrigid in SL(n+1)2(C).Noti
e that for some manifolds �n1;n2 
an still be rigid in SL(n1+1)(n2+1)(C). This is the
ase for manifolds that are proje
tively rigid for n1 = n2 = 2. Some other representationsfor those manifolds are rigid be
ause of the following:Proposition 3.5. Let M3 be as above and assume that n = min(n1; n2) � 1. ThenH1(�1(M3); sl(n1+1)(n2+1)(C)Ad�n1;n2 ) �= H1(�1(M3); sl(n+1)2(C)Ad�n;n):Thus �n1;n2 is in�nitesimally rigid in hom(�1(M3); SL(n1+1)(n2+1)(C)) if and only if �n;nis in�nitesimally rigid in hom(M3; SL(n+1)2(C)).Re
all from Proposition 2.2 that the image of �n;n is 
ontained in SO(p; q) withp = n2 + 3n+ 22 and q = n2 + n2 :From Theorems 3.1 and 3.4, sin
eso((n + 1)2;C) �= so(p; q)
R C and sl(n+1)2(C) �= sl(n+1)2(R)
R Cwe obtain:Corollary 3.6. Let M3 be as above. For n � 1,H1(�1(M3); so(p; q)Ad�n;n) = 0:In parti
ular �n;n is rigid in hom(�1(M3); SO(p; q)). If in addition M3 
ontains a totallygeodesi
 surfa
e, then �n;n is nonrigid in hom(�1(M3); SL(n+1)2(R)).158



Proposition 3.7. Let M3 be as above. For n � 1, �n;n : �1(M3) ! X(M3; SO(p; q)) isin�nitesimally rigid with 
oeÆ
ients sl(n+1)2(R) i� it is so with 
oeÆ
ients su(p; q).As a parti
ular 
ase of Proposition 3.5 we get:Corollary 3.8. Let M3 be as above. Then for n � 1, M3 is in�nitesimally proje
tivelyrigid i� �n;1 is in�nitesimally rigid in hom(�1(M3); SL2(n+1)(C)).We �nally dis
uss the non
ompa
t 
ase. Assume that M3 is a topologi
ally �nitehyperboli
 manifold. This means that it has a �nite number of ends. By the solution ofMarden's 
onje
ture [1, 13℄ the ends are either 
usps (homeomorphi
 to T 2 � [0;+1))or have in�nite volume, homeomorphi
 to F 2g � [0;+1), where F 2g is a surfa
e of genusg � 2. In parti
ular it has a 
ompa
ti�
ation 
onsisting in adding boundary surfa
es.The variety of 
hara
ters is denoted by X(M3; G). Sin
e this paper only deals with lo
alrigidity and lo
al deformations, we may assume that X(M3; G) is lo
ally the quotient ofhom(�1(M3); G)=G, where G a
ts by 
onjugation.Theorem 3.9. Let M3 be a topologi
ally �nite, hyperboli
, and orientable three manifold.Let �(n1;n2) : �1(M3) ! G be as in Theorem 3.1 or 3.3. Then the 
hara
ter [�(n1;n2)℄ isa smooth point of X(M3; G). Moreover, If �M 3 is the union of k tori and l surfa
es ofgenus g1; : : : ; gl � 2, and N � 1, then the lo
al dimension of X(M3; G) isk rankG+X(gi � 1) dimG:4. Tangent spa
es and 
ohomologyIn [43℄ Andr�e Weil showed that the tangent spa
e at the variety of representations
an be identi�ed to the spa
e of group 
o
y
les, and the tangent spa
e to the orbit by
onjugation to the subspa
e of 
oboundaries.Here � denotes a �nitely generated group, though we are mainly interested in � =�1(M3).For a representation � : �! Gthe adjoint representation on the Lie algebra is denoted byAd� : �! Aut g:Re
all that the spa
e of group 
o
y
les isZ1(�; gAd�) = fd : �! g j d(
1
2) = d(
1) + Ad�(
1)d(
2); 8
1; 
2 2 �g;and the subspa
e of group 
oboundaries:B1(�; gAd�) = fda : �! g j 9a 2 g s.t. da(
) = (Ad�(
) � 1)a; 8
 2 �g:The group 
ohomology is thenH1(�; gAd�) = Z1(�; gAd�)=B1(�; gAd�):We view the Zariski tangent spa
e to an algebrai
 variety as the spa
e of germs ofpaths that satisfy the equations up to �rst order. Thus, in the variety of representations,a Zariski tangent ve
tor is represented by a �rst order deformation. Namely a path ofrepresentations �t : �! G that satis�es� �0 = ��t(
1
2) = �t(
1)�t(
2) +O(t2); 8
1; 
2 2 �:159



Weil's 
onstru
tion assigns to su
h a �rst order (or in�nitesimal) deformation the 
o
y
le(2) � ! g
 7! ddt�t(
)�0(
�1)��t=0 :Theorem 4.1 (Weil's 
onstru
tion). The map (2) de�nes an isomorphism between theZariski tangent spa
e to the variety of representations at � and the spa
e of group 
o
y
les:TZar� hom(�; G) �= Z1(�; gAd�):In addition, this isomorphism maps the Zariski tangent spa
e to an orbit by 
onjugationG� to the spa
e of 
oboundaries: TZar� G� �= B1(�; gAd�):Observe that when we have in�nitesimal rigidity, we have B1(�; gAd�) = Z1(�; gAd�),thus the in
lusion G� � hom(�1(M3); G) indu
es an isomorphism of tangent spa
es. Infa
t one 
an proveCorollary 4.2. If � is semisimple and H1(�; gAd�) = 0, then � is lo
ally rigid.De�nition 4.3. A linear representation � : �1(M3) ! G � GLN (C) is 
alled simple ifCN has no proper invariant subspa
es, and it is 
alled semisimple if it is the dire
t sumof simple ones.Remark 4.4. For 
o
ompa
t manifolds, the representations �n1;n2 : �1(M3) ! G aresimple, be
ause Symn1;n2 is irredu
ible and fhol(�1(M3)) is Zariski dense in SL2(C). Thisalways holds true for any M3 whi
h is not Fu
hsian nor elementary.A stronger formulation is the following one. We may think of the variety of 
hara
tersX(�; G) as (lo
ally) the quotient hom(�; G)=G, in neighbourhoods of semisimple points.Corollary 4.5. If � is semisimple thenTZar� X(�; G) �= H1(�; gAd�):See [30℄ for a proof of Theorem 4.1 and Corollaries 4.2 and 4.5.Now the strategy will be to de
ompose the SL2(C)-module gAd� into irredu
ible repre-sentations Vn1;n2 and to use Raghunathan's vanishing theorem in 
ohomology. We startwith Raghunatan's theorem in the next se
tion, then in Se
tions 6, 7 and 8 we study thede
ompositions of gAd�.5. Raghunathan's vanishing theoremBy Corollary 4.5, we are interested in 
omputing H1(�1(M3); gAd�). After de
omposinggAd� into irredu
ible modules, we must 
ompute H1(�1(M3); Vn1;n2). The key result is thefollowing:Theorem 5.1 (Raghunathan's vanishing [37℄). Let M3 be a 
ompa
t hyperboli
 threemanifold. If n1 6= n2 then H1(�1(M3); Vn1;n2) = 0:This theorem is proved using de Rham 
ohomology. Thus let En1;n2 denote the 
atbundle with �bre Vn1;n2 and monodromy �n1;n2:Vn1;n2 ! En1;n2 !M:160



Let 
p(M3; En1;n2) denote the p-forms on M3 valued on En1;n2. By de Rham's theorem,the 
ohomology of (
p(M3; En1;n2); d)is isomorphi
 to the group 
ohomology H�(�1(M3); Vn1;n2).There is a natural Hermitian produ
t in the bundle En1;n2 denoted by h; i. Let also �denote the Lapla
ian. Then Raghunathan proved his vanishing theorem as a 
onsequen
eof the following:Lemma 5.2 ([37, 38℄). Let M3 be a hyperboli
 three manifold, and assume that n1 6= n2.Then there exists a 
onstant C > 0 su
h that every ! 2 
p(M3; En1;n2) with 
ompa
tsupport satis�es h�!; !i > 
h!; !i:Sin
e by Hodge theorem every 
ohomology 
lass in a 
ompa
t manifold is representedby a harmoni
 form (i.e. a form ! satisfying �! = 0), Lemma 5.2 immediately impliesTheorem 5.1.The property of Lemma 5.2 is 
alled strong a
y
li
ity by Bergeron and Venkatesh in [11℄,and it is used to 
ompute the asymptoti
 behaviour of Reidemeister torsion or homologytorsion under 
overings.When M3 is not 
ompa
t, Lemma 5.2 gives a vanishing theorem, due to Matsushima-Murakami [32℄ and Andreotti-Vesentini [2℄:Theorem 5.3. Let M3 be a hyperboli
 three manifold, and assume that n1 6= n2. Thenevery 
losed form ! 2 
p(M3; En1;n2) that is L2 (square summable) is exa
t.This theorem will be used in Se
tion 12 for dis
ussing the situation for non
ompa
tmanifolds.It is normal to ask what happens when n1 = n2. This has been dis
ussed by Millson,who proved in [34℄ a more general result that implies:Proposition 5.4 (Millson [34℄). Let M3 be a 
ompa
t, orientable, hyperboli
 three man-ifold. Assume that M3 
ontains a totally geodesi
 surfa
e, thenH1(M3; Vn;n) 6= 0:We dis
uss its proof in Se
tion 9. This is related to bending.Noti
e also that there exist manifolds for whi
h H1(M3; Vn;n) = 0 for n = 1; 2. Whenn = 1 those are 
onformally 
at manifolds, and for n = 2 those are proje
tively rigid. Ithas been proved by Kapovi
h [26℄ and S
annell [40℄ (improved by Fran
aviglia and myself[19℄) that almost all Dehn �llings in a hyperboli
 two bridge not are 
onformally 
at.Moreover, we showed with Heusener that in�nitely many Dehn �llings on the �gure eightknot exterior are proje
tively rigid [24℄.Question 5.5. Is there any manifold M3 for whi
h H1(M3; Vn;n) = 0 for every n � 1?Amanifold for whi
h the question would have a positive answer would satisfy all possiblerigidity properties.6. De
omposing holomorphi
 representationsOn
e we have Theorem 5.1, in order to 
ompute the 
ohomology of gAd� the next stepis to de
ompose it as sum of Vn1;n2. 161



We start with some preliminaries in the holomorphi
 
ase, i.e. n2 = 0. Re
all thatVn;0 = fP (X; Y ) 2 C[X; Y ℄ j P homogeneous and degP = ng :As ve
tor spa
e, we view Vn;0 as its own tangent spa
e and we 
onsider the a
tion of theLie algebra sl2(C)y Vn;0:Consider the standard basis for sl2(C):h = �1 00 �1� ; f = �0 10 0� ; g = �0 01 0� :We also write, for i = 0; : : : ; n, ei = Xn�iY iso that fe0; e1; : : : ; engis a basis for Vn;0.A straightforward 
omputation gives that the ei are eigenve
tors for h:h � ei = (n� 2i)eiThose are the weights, and the maximal weight of the representation is n. We also may
ompute f � ei = (n� i)ei+1(3) g � ei = iei�1(4)with the 
onvention that e�1 = en+1 = 0.Proposition 6.1 (Clebs
h-Gordan formula).Vn;0 
 Vn;0 = nMi=0 V2i;0:Though the proof is well known, we give it in order to understand the de
ompositionsof g that we give later.Proof. The idea in representation theory is to look at the roots, namely at the eigenve
torsand eigenvalues of the a
tion of h. Consider the basisfei 
 ejg0�i;j�nfor Vn;0 
 Vn;0. Knowing that h � ei = (n� 2i)ei, we have:h � (ei 
 ej) = (h � ei)
 ej + ei 
 (h � ej) = 2(n� i� j)ei 
 ej:Thus the eigenvalues of the a
tion of h are given by the following table:
 e0 e1 � � � ene0 2n 2n� 2 0e1 2n� 2 2n� 4 � � � �2e2 2n� 4 2n� 6 �4... ... ...en 0 �2 �2n162



The largest eigenvalue is 2n, whi
h means that V2n;0 has to appear on
e in the de
om-position into irredu
ible fa
tors. The next largest eigenvalue is 2n � 2, whi
h appearstwi
e, one for V2n;0 and the other must be for V2n�2;0. Noti
e that by looking at the a
tionof f and g, we 
an des
ribe the eigenve
tors: sin
e e0
 e0 is the eigenve
tor of eigenvalue2n in V2n;0, f(e0 
 e0) is the eigenve
tor in V2n;0 of eigenvalue 2n � 2. In addition, theeigenve
tor in V2n�2;0 must lie in the kernel of g. More expli
itly, e0
 e1 and e1
 e0 spanthe eigenspa
e with eigenvalue 2n� 2, and:f � (e0 
 e0) = (f � e0)
 e0 + e0 
 (f � e0) = n(e0 
 e1 + e1 
 e0) 2 V2n;0:In addition, sin
e g � e0 = 0 and g � e1 = e0:g � (e0 
 e1 � e1 
 e0) = e0 
 (g � e1)� (g � e1)
 e0 = 0therefore e0 
 e1 � e1 
 e0 2 V2n�2. Without expli
itly des
ribing the eigenspa
es, theargument 
an be 
arried out to 
on
lude the lemma. �We 
an already apply Clebs
h-Gordan de
omposition to sln+1(C). Sin
e V �n;0 �= Vn;0 wededu
e that(5) gln+1(C)Ad�n;0 �= V �n;0 
 Vn;0 �= Vn;0 
 Vn;0 = nMi=0 V2i;0:In addition, sin
e(6) gln+1(C)Ad�n;0 �= sln+1(C)Ad�n;0 �C �= sln+1(C)Ad�n;0 � V0;0;we dedu
e(7) sln+1(C)Ad�n;0 �= nMi=1 V2i;0:Proof of Theorem 3.3. By the de
omposition in Equation (7), the 
ohomology splitsH1(M3; sln+1(C)Ad�n;0) �= nMi=1 H1(M3; V2i;0):Now, sin
e M3 is 
losed and i � 1. Raghunathan's vanishing applies to 
on
lude thatH1(M3; sln+1(C)Ad�n;0) = 0. �7. De
omposing a

ording to the bilinear produ
tWe re
all the invariant bilinear form� : Vn;0 
 Vn;0 ! C:For n = 1, � is just the determinant, so it has matrixJ = � 0 1�1 0� :Sin
e Vn;0 is the n-th symmetri
 produ
t of V1;0, the matrix of � on Vn;0 isJ = 0BB� 0 � � � 0 10 � � � �1 0... ...(�1)n � � � 0 01CCA163



whi
h is antisymmetri
 for n odd and symmetri
 for n even. The Lie algebra of thesubgroup G of J-isometries then isg = fa 2 gln+1(C) j atJ + Ja = 0g:In fa
t we need to 
ompute the J-antisymmetri
 part and the J-symmetri
 part.De�nition 7.1. We say that a 2 gln+1(C) is:� J-symmetri
 if atJ � Ja = 0, and� J-antisymmetri
 if atJ + Ja = 0.The Lie algebra gln+1(C) is the dire
t sum of its J-symmetri
 and its J-antisymmetri
part. Sin
e J is preserved by �n;0, the J-symmetri
 and J-antisymmetri
 part are pre-served, thus the irredu
ible fa
tors in the de
omposition (5),gln+1(C)Ad�n;0 �= nMi=0 V2i;0;are either J-symmetri
 or J-antisymmetri
.Proposition 7.2. Let V2i;0 be one of the irredu
ible fa
tors in the de
omposition (5) ofgln+1(C)Ad�n;0 . Then:� V2i;0 is J-symmetri
 if i is even,� V2i;0 is J-antisymmetri
 if i is odd.To prove the proposition, we �rst need the following lemma, whose proof is a straight-forward 
omputation:Lemma 7.3. The endomorphismsln+1(C) ! sln+1(C)a 7! J�1atJ(where at denotes the transpose) has the following expression in 
oordinates(ai;j)ij 7! ((�1)i+jan�j;n�i)ij:Noti
e that up to sign this endomorphism is the symmetry with respe
t to the antidi-agonal. As a 
onsequen
e of the lemma, the matri
es in gln+1(C) satisfy:� a 2 gln+1(C) is J-symmetri
 i�ai;j = (�1)i+jan�j;n�i; 8i; j = 0; : : : ; n:� a 2 gln+1(C) is J-antisymmetri
 i�ai;j = (�1)i+j+1an�j;n�i; 8i; j = 0; : : : ; n:Consider the antidiagonal of su
h a matrix, namely when i+ j = n. Then:� If a 2 gln+1(C) is J-symmetri
 thenai;n�i = (�1)nai;n�i; 8i = 0; : : : ; n:� If a 2 gln+1(C) is J-antisymmetri
 thenai;n�i = (�1)n+1ai;n�i; 8i = 0; : : : ; n:Thus we dedu
e:Remark 7.4. � When n is even the antidiagonal belongs to the J-symmetri
 part.164



� When n is odd, the antidiagonal belongs to the J-antisymmetri
 part.Proof of Proposition 7.2. We look at the weights in the proof of Proposition 6.1. Here wemust 
are of the ordering and the fa
t that we work with he dual in the tensor produ
tgln+1(C) = Vn;0 
 V �n;0:If we use the bilinear form for the isomorphism Vn;0 �= V �n;0, the ve
tor ei = Xn�iY i ismapped to �en�i = �X iY n�i, as X and Y are dual up to sign. Thus the weight of e�iis minus the weight of ei. The eigenve
tors of h in gln+1(C) = Vn;0 
 V �n;0 are pre
iselyei 
 e�j , namely the entries of a matrix, and the weights are given by the following table:
 e�0 e�1 e�2 � � � e�n�1 e�n(�n) (�n + 2) (�n + 4) � � � (n� 2) (n)e0 (n) 0 2 4 2n� 2 2ne1 (n� 2) �2 0 2 � � � 2n� 4 2n� 2e2 (n� 4) �4 �2 0 2n� 6 2n� 4... ... ...en�1 (�2n+ 2) �2n + 2 �2n+ 4 �2n + 6 � � � 0 2en (�n) �2n �2n+ 2 �2n + 4 �2 0By Lemma 7.3, it suÆ
es to des
ribe the weights on the upper left triangle of this matrix(i.e. above the antidiagonal) or the lower right triangle (i.e. below the antidiagonal).Moreover for n even the antidiagonal goes to the symmetri
 part and for n odd it goesto the antisymmetri
 one. Noti
e that by symmetry, being upper left of lower right isnot relevant, what makes the di�eren
e is whether the antidiagonal is 
ontained or not.Thus we shall use the notation large triangle and small triangle a

ording to whether it
ontains the antidiagonal or not.For n = 1, the weights of gl2(C) are 0 2�2 0:Sin
e 1 is odd the large triangle goes to the J-antisymmetri
 part, and the small one tothe symmetri
 part. The triangles are:0 2�2 and 0:The weights of the J-antisymmetri
 part (the large triangle) are pre
isely the weightsf�2; 0; 2g of V2;0, and the for small one are f0g, namely V0;0.For n = 2, the weights of gl3(C) are a matrix that we may view as obtained from theprevious one by adding a bottom row and a right most 
olumn0 2 4�2 0 2�4 2 0Sin
e 2 is even, the antidiagonal goes to the J-symmetri
 part, that we assume lowerright. The de
omposition is: 0 2�2 and 40 2�4 2 0:165



Thus the J-antisymmetri
 part for n = 2 is the same as for n = 1, but to the J-symmetri
part we have added the weights in boldfa
e, that are pre
isely those of V4;0. Thus theJ-antisymmetri
 part is V2;0 and the J-symmetri
 part is V0;0 � V4;0.For n = 3, we view the weights of sl3(C) as obtained from those of sl2(C) by adding atop row and a leftmost 
olumn: 0 2 4 6�2 0 2 4�4 �2 0 2�6 �4 2 0:Now the antidiagonal goes to the J-antisymmetri
 part. Thus the de
omposition oftriangles is 0 2 4 6�2 0 2�4 �2�6 and 40 2�4 2 0:Thus we have just added the weights of V6;0 to the J-antisymmetri
 part. Therefore theJ-symmetri
 part is V0;0 � V4;0 and the J-antisymmetri
 part is V2;0 � V6;0.As we in
rease the n of �n;0 we repeat this pattern:� When n is even, the weights of gln+1(C) are obtained by adding on the right andthe bottom the weights of V2n to those of gln(C). As the antidiagonal goes to thesymmetri
 part, the weights of V2n are added to the symmetri
 part.� When n is odd, the weights of gln+1(C) are obtained by adding on the left andthe top the weights of V2n to those of gln(C). Now the antidiagonal goes to theJ-antisymmetri
 part, hen
e the weights of V2n are added to the J-antisymmetri
part, while the J-symmetri
 part remains the same.This proves indu
tively that the de
omposition of gln+1(C) into J-symmetri
 and J-antisymmetri
 parts 
orrespond to fa
tors V2i;0 with i even and odd respe
tively. Thisproves the lemma. �8. De
omposing representations in generalNow we have all ingredients to 
ompute 
ohomology groups we are interested in. Re
allthat the image of �n1;n2 is 
ontained inG = � SO((n1 + 1)(n2 + 1);C) if n1 + n2 is evenSp( (n1+1)(n2+1)2 ;C) if n1 + n2 is odd.The Lie algebra of G isg = � so((n1 + 1)(n2 + 1);C) if n1 + n2 is evensp( (n1+1)(n2+1)2 ;C) if n1 + n2 is odd.Proposition 8.1. For sl(n1+1)(n2+1)(C) we havesl(n1+1)(n2+1)(C)Ad�n1;n2 = M0�i�n10�j�n2(i;j)6=(0;0)V2i;2j:166



For g as above, we have gAd�n1;n2 = M0�i�n10�j�n2i+j odd V2i;2j:Proof. Sin
e Symn1;n2 = Symn1;0
 Sym0;n2the de
omposition of sl(n1+1)(n2+1)(C)Ad�n1;n2 follows from (5). To get the de
omposition ofgAd�n1;n2 , we noti
e that it is the sum of fa
tors in the de
omposition of sl(n1+1)(n2+1)(C)that are J-antisymmetri
. Sin
e the form on Vn1;n2 is also a tensor produ
t, this is astraightforward 
onsequen
e of Proposition 7.2. �Now we 
an already prove some of the results of the introdu
tion.Proof of Theorem 3.1. By Proposition 8.1H1(M3; gAd�n1;n2 ) = M0�i�n10�j�n2i+j odd H1(M3; V2i;2j):Sin
e i + j is odd in this summation, i 6= j and by Raghunathan's vanishing theorem(Theorem 5.1) we have H1(M3; V2i;2j) = 0:Hen
e H1(M3; gAd�n1;n2 ) = 0;whi
h proves the theorem. �Proof of Proposition 3.5. By Proposition 8.1sl(m+1)(n+1)(C)Ad�m;n = M0�i�m0�j�n V2i;2j:Sin
e H�(M3; V2i;2j) = 0 by Raghunathan's vanishing theorem, assuming m � n, we get:H1(M3; sl(m+1)(n+1)(C)Ad�m;n) = M0�i�mH1(M3; V2i;2i);hen
e H1(M3; sl(m+1)(n+1)(C)Ad�m;n) �= H1(M3; sl(m+1)2(C)Ad�m;m):Namely the value of n is not relevant provided it is larger or equal than m, whi
h provesthe proposition. �9. Real representationsWe 
onsider now the representationVn;n = Vn;0 � V0;n = Vn;0 � Vn;0;whi
h is invariant under 
omplex 
onjugation. Hen
e we may take its real part:Wn := fP (X; Y;X; Y ) 2 Vn;n j P (X; Y;X; Y ) = P (X; Y;X; Y )gwhi
h is invariant, namely it is a real representation.We start by looking at the behaviour of the bilinear form:167



Proposition 9.1. The bilinear form � restri
ted to Wn takes real values and has signature(p; q) = �n2 + 3n+ 22 ; n2 + n2 � :Remark 9.2. Noti
e that for n = 1, (p; q) = (3; 1) and in fa
t this gives the isomorphismPSL2(C) �= Isom+(H3) �= SO0(3; 1):Proof. We 
onsider the following three families of elements:XkY n�kXkY n�k; for k = 0; : : : n;(8) XkY n�kX lY n�l +X lY n�lXkY n�k; for k; l = 0; : : : n; k 6= l;(9) i�XkY n�kX lY n�l �X lY n�lXkY n�k� ; for k; l = 0; : : : n; k 6= l:(10)Their union is a basis for Wn, and � takes real values on them (noti
e that elements in(10) are orthogonal to the ones in (8) and (9)).We use these families to des
ribe the signature. We group them in subspa
es that areorthogonal and then we 
ount their 
ontribution to the signature.� Assume �rst n is even. We group the elements in (8), (9) and (10) as follows:(a) When k = n=2, the element of (8) is self dual. It 
ontributes to the signatureas (1; 0):(b) When k 6= n=2, then the dual of an element in (8) is obtained by repla
ing kby n � k. Thus we obtain n=2 blo
ks ( 0 11 0 ). Hen
e their 
ontribution to thesignature is �n2 ; n2� :(
) When l+k = n, then the n2 elements of (9) are self dual, and so for (10) (noti
ethat elements of (9) and (10) are orthogonal). Hen
e their 
ontribution tothe signature is (n; 0):(d) Finally, when l + k 6= n, then the elements of (9) and their dual (obtainedmy repla
ing k by n � k and l by n � l) give a blo
k ( 0 11 0 ). Similarly forelements of (10). In the previous items (a), (b) and (
) we have a total of2n+ 1 elements, hen
e we have (n+ 1)2� (2n+ 1) = n2 elements remaining.Their 
ontribution to signature is therefore�n22 ; n22 � :Adding up all four 
ontributions we get �n2+3n+22 ; n2+n2 �, as 
laimed.� Assume now that n is odd. The grouping is simpler, as the 
ase k = n=2 does noto

ur:(e) The elements of (8) must be 
ounted as in item (b) of the even 
ase, as k isnever n=2. Thus we have n+ 1 elements that 
ontribute�n + 12 ; n + 12 � :168



(f) When l + k = n, then the n+12 elements of (9) are self dual, and so for (10),similarly as (
) in the even 
ase. So their 
ontribution to signature is(n+ 1; 0):(g) Finally, when l + k 6= n, then elements of (9) and (10) have a 
ontributionthat must be 
omputed as in item (d) in the even 
ase. Here the number ofelements is (n+1)2� 2(n+1) = n2� 1, so their 
ontribution to signature is:�n2 � 12 ; n2 � 12 � :Adding up all three 
ontributions we obtain again �n2+3n+22 ; n2+n2 �. �Lemma 9.3. The module Wn has a proper subspa
e where SL2(R) a
ts trivially.Proof. For n = 1 this is a 
onsequen
e that W1 is the representation that identi�esPSL2(C) with SO(3; 1). Hen
e the image of SL2(R) is 
ontained in SO(2; 1) in theembedding �SO(2; 1) 00 1� � SO(3; 1):Thus it a
ts trivially on a line. The invariant polynomial in V1;1 
an be given expli
itly:P (X; Y;X; Y ) = XY � Y X 2 V1;1:Namely, for A 2 SL2(R), P Æ At = P:Noti
e also that i P 2 W1. Now, inP n 2 Wn � Vn;nis a nontrivial element invariant by the a
tion of SL2(R). �Proof of Corollary 3.6. Noti
e that Vn;n = Wn 
C and thatso((n+ 1)2;C) = so(p; q)
Cas Ad�n;n-modules. Thus from the in�nitesimal rigidity for so((n + 1)2;C),H1(M3; so((n+ 1)2;C)) = 0;whi
h implies H1(M3; so(p; q)) = 0;namely in�nitesimal rigidity in SO(p; q).To prove that it 
an be deformed in SL(n+1)2(R), we use Lemma 9.3 and we 
onstru
tbending. Namely, assume that the surfa
e F separates M3 in two 
omponents M1 andM2. Then �1(M3) is an amalgamated produ
t�1(M3) �= �1(M1) ��1(F ) �1(M2):By Lemma 9.3, there exist a non trivial 1-parameter group at 2 SL(n+1)2(R) that 
om-mutes with the image of �1(F ) (take for instan
e dilatations in the subspa
e invariant by169



the image of F , and normalize them to have determinant 1). Then de�ne the deformation�t as: �t(
) = � �(
) for 
 2 �1(M1);at�(
)a�1t for 
 2 �1(M2):This deformation is non trivial, �t is not 
onjugate to �0 for t 6= 0, be
ause the image of�1(Mi) in SL2(C) is Zariski 
losed (use Chen-Greenberg's theorem [15℄) and Symn;n isirredu
ible. See [25℄ for details.When F does not separate M3, we use the HNN stru
ture of the group. Let M0be the result of 
utting of M3 along F , so that �M0 
onsists of two 
opies of F , andM3 nM0 = F � (0; 1). Then�1(M3) �= �1(M0)��1(F ) = �1(M3) � h�i=hi0�(
) = �i1�(
)��1 j 
 2 �1(F )i;where i0; i1 : �1(F ) ! �1(M0) are the in
lusions at the boundary 
omponents of M0.Again, by Lemma 9.3, there exist a non trivial 1-parameter group at 2 SL(n+1)2(R) that
ommutes with the image of �1(F ) and de�ne the deformation �t as:�t(
) = �(
) for 
 2 �1(M0);�t(�) = �(�):Again �t is not 
onjugate to �0 for t 6= 0, be
ause the image of �1(Mi) in SL2(C) is Zariski
losed and Symn;n is irredu
ible. See again [25℄ for details. �Noti
e that the deformation also implies the in�nitesimal deformability. In fa
t we mayprove dire
tly:Lemma 9.4. If M3 
ontains a totally geodesi
 surfa
e, thenH1(M3; Vn;n) 6= 0for n � 1.Noti
e that this is equivalent to saying thatH1(M3;Wn) 6= 0;as Vn;n = Wn 
C. This is proved by Millson in [34℄ and we follow his proof.Proof. By Lemma 9.3, Vn;n has a subspa
e where SL2(R) a
ts trivially. Let F � M3be the totally geodesi
 subsurfa
e of M3. In parti
ular its holonomy representation is
ontained in PSL2(R), and Vn;n has nontrivial elements invariant by the a
tion of �1F ,thus: H0(F; Vn;n) 6= 0:Now the proof follows from a Mayer-Vietoris argument. Assume �rst that F separatesM3 into two 
omponents M1 and M2. Firstly the holonomy of Mi is Zariski dense inPSL2(C) (use again Chen-Greenberg [15℄) hen
eH0(M1; Vn;n) = H0(M2; Vn;n) = 0:Thus Mayer-Vietoris to the pair (M1;M2) gives:0! H0(F; Vn;n)! H1(M3; Vn;n);whi
h implies H1(M3; Vn;n) 6= 0. 170



When F does not separate, the argument is similar. Namely, let M0 be the result of
utting o� M3 along F , so that M3 = M0[ (F � [0; 1℄) and M0\ (F � [0; 1℄) = F �f0; 1g.As before the holonomy of M0 is Zariski dense in PSL2(C), hen
eH0(M0; Vn;n) = 0:Again Mayer-Vietoris gives0! H0(F; Vn;n)! H0(F; Vn;n)�H0(F; Vn;n)! H1(M3; Vn;n);so H1(M3; Vn;n) 6= 0. �Proof of Theorem 3.4. Use Lemma 9.4 and Proposition 3.5. �10. Complex hyperboli
 stru
turesThe real representation of previous se
tion�n;n : �1(M3)! SO(p; q)may also be 
onsidered in the spe
ial unitary group by 
omposing it with the naturalembedding �n;n : �1(M3)! SO(p; q) � SU(p; q):Re
all so(p; q) is the subalgebra of sl(n+1)2(R) 
onsisting of matri
es that are J-anti-symmetri
. If sl(n+1)2(R)J�sym denotes the subspa
e of J-symmetri
 ones, then we havea de
omposition of �1(M3)-modules:sl(n+1)2(R)Ad�n;n = so(p; q)Ad�n;n � sl(n+1)2(R)J�symAd�n;n:If we now 
ombine J with 
omplex 
onjugation we have thatsu(p; q) = fa 2 sl(n+1)2(C) j atJ = �Jag:Taking real an imaginary parts, we obtain:Lemma 10.1. There is a natural isomorphism of �1(M3)-modules:su(p; q) = so(p; q)� isl(n+1)2(R)J�sym:Corollary 10.2. There is a natural isomorphism of real ve
tor spa
esH�(M3; sl(n+1)2(R)Ad�n;n) �= H�(M3; su(p; q)Ad�n;n):In parti
ular, for n = 1 we get (p; q) = (3; 1), thus:Corollary 10.3. The spa
e of in�nitesimal proje
tive deformations of a hyperboli
 threemanifold is isomorphi
 to its spa
e of in�nitesimal 
omplex hyperboli
 deformations.We also have the following proposition (whi
h was �rst noti
ed by Cooper, Long andThistlethwaite [18℄).Proposition 10.4. The following are equivalent:� �n;n is a smooth point of hom(M3; SL(n+1)2(R)) ,� �n;n is a smooth point of hom(M3; SU(p; q)),� �n;n is a smooth point of hom(M3; SL(n+1)2(C)).171



Proof. We prove �rst the equivalen
e between SL(n+1)2(R) and SL(n+1)2(C). For this,noti
e that hom(M3; SL(n+1)2(R)) is an algebrai
 variety embedded in SL(n+1)2(R)N{ here N is the number of generators of �1(M3) { whi
h in its turn is embedded inRN(n+1)4 . With this embedding, hom(M3; SL(n+1)2(C)) is just the 
omplexi�
ation ofhom(M3; SL(n+1)2(R)), and it is the zero set in CN(n+1)4 of the same family of polynomi-als (with real 
oeÆ
ients) as hom(M3; SL(n+1)2(R)). Thus being singular or not dependson whether we 
an �nd a subset polynomials of the right 
ardinality with nonzero Ja
o-bian, and this does not 
hange whether the ambient spa
e is RN(n+1)4 or CN(n+1)4 .The other equivalen
e is proved similarly, as SU(p; q) is a real form of SL(n+1)2(C). A
-
ording to Onish
hik and Vinberg [36℄, there are 
omplex 
oordinates for SL(n+1)2(C) sothat the interse
tion with R(n+1)4 gives SU(p; q). Otherwise, one 
an follow the transver-sality argument of Cooper, Long, and Thistlethwaite in [18, Theorem 2.2℄. �11. Conformally flat stru
turesNow we are interested in the embeddingSO(3; 1) � SO(4; 1):Noti
e that we have the de
omposition of SO(3; 1) modules of the Lie algebra(11) so(4; 1) = so(3; 1)� V1;1:De�nition 11.1. A 
losed hyperboli
 3-manifold M3 has an in�nitesimally rigid 
at
onformal stru
ture if H1(M3; V1;1) = 0.By [25, 26℄, manifolds with a totally geodesi
 surfa
e do not have an in�nitesimally rigid
at 
onformal stru
ture, due to bending. Apanasov [3, 5℄, Apanasov and Tetenov [4℄, andBart and S
annell [7℄ 
onstru
t 
onformally 
at deformations that are not bending (theyare 
alled stamping).Dehn �llings on hyperboli
 3-manifolds have been studied by Kapovi
h [26℄. Subse-quently, S
annell [40℄ and Fran
avliglia and myself [19℄, we have improved the results,using basi
ally the ideas of Kapovi
h:Theorem 11.2 (Fran
aviglia-P. [19℄). Let M3 be a 
ompa
t and oriented 3-manifold su
hthat int(M) is hyperboli
, with one 
usp and of �nite volume. Assume �1(M3) is generatedby two peripheral elements (e.g. M3 is the exterior of a two bridge knot).Then almost all Dehn �llings of M3 have an in�nitesimally rigid 
at 
onformal stru
-ture.In [26℄ Kapovi
h 
onje
tures that lo
al rigidity is equivalent to not having an embeddedfu
hsian surfa
e (not ne
essarily totally geodesi
). He gives eviden
e for this 
onje
turein several 
ases. In [22℄ Goldman shows that a hyperboli
 3-manifold with su
h a surfa
eis globally nonrigid (though lo
al rigidity is not known).12. Non 
ompa
t three manifolds of finite typeLet M3 be a non
ompa
t hyperboli
 three manifold of �nite type. Thus M3 is topolog-i
ally and geometri
ally tame, by the proof of Marden's 
onje
ture. It has �nitely manyends and it admits a 
ompa
ti�
ationM 3 su
h that �M 3 
onsists of �nitely many surfa
esof genus g � 1. Among them the surfa
es that are torus 
orrespond to 
usps, and the172



other ends have in�nite volume. We will not dis
uss whether these ends are geometri
ally�nite or not.We shall 
onsider the following groups G and representations � : �1(M3)! G.� � = �n;0 or �0;n and G = SL(n+1)(C).� � = �n1;n2 with n1 + n2 even and G = SO((n1 + 1)(n2 + 1);C).� � = �n1;n2 with n1 + n2 odd and G = Sp( (n1+1)(n2+1)2 ;C).Then Theorem 3.9 
an be restated as follows.Theorem 12.1. Let M3, � and G be as above, and let k be the number of 
usps. Then� is a smooth point of X(M3; G) of lo
al dimension��(M 3) dimG+ k rankG:For �1;0 and G = SL2(C), this result is due to Kapovi
h [27℄ (see also Bromberg [12℄).For � = �n;0 or �0;n and G = SLn+1(C), it was proved by Menal-Ferrer and myself in [33℄.All other 
ases seem to be new.Corollary 12.2. Let M3 be as above, k the number of 
usps and n � 1. Then �n;n is asmooth point of X(M3; SO(p; q)) of lo
al dimension��(M 3) dimSO(p; q) + k rankSO(p; q):We shall use Theorem 5.3 to prove that all deformations 
ome from the boundary. Firstwe need to 
ompute the 
ohomology of ea
h boundary 
omponent.Let F be a 
omponent of �M3, its 
ohomology will depend on whether it is a torusor it is a surfa
e of genus � 2. We 
onsider the restri
tion of the holonomy and the
orresponding �n1;n2 as in (1).Lemma 12.3. If F has genus g(F ) � 2 and n1 6= n2, thendimCH i(F ;Vn1;n2) = � ��(F )(n1 + 1)(n2 + 1) for i = 1;0 otherwise.Lemma 12.4. Assume that n1 6= n2, then Vn1;n2 has no nontrivial elements that are �xedby SL2(R).Proof of Lemma 12.4. We prove it by 
ontradi
tion and assume that su
h a nontrivial�xed element exists. Then the argument of Lemma 9.4 (that proves that the 
ohomology ofa 
losed 3-manifold 
ontaining a totally geodesi
 surfa
e with 
oeÆ
ients Vn;n is non zero)would apply to Vn1;n2. Hen
e there would exist 
losed three manifolds whose 
ohomologywith 
oeÆ
ients in Vn1;n2 is nontrivial, 
ontradi
ting Theorem 3.1. �Proof of Lemma 12.3. By Lemma 12.4 H0(F; Vn1;n2) = 0. Then the lemma follows fromPoin
ar�e duality and Euler 
hara
teristi
, asXi (�1)i dimH i(F; Vn1;n2) = �(F ) dimVn1;n2 : �Using the de
omposition of g in Proposition 8.1, we get:Corollary 12.5. If F has genus g(F ) � 2 and � and G are as in Theorem 12.1, thendimH i(F; gAd�) = � ��(F ) dimG for i = 1;0 otherwise.173



Lemma 12.6. Let � and G be as in Theorem 12.1. The restri
tion �j�1F is a smoothpoint of X(F;G), of lo
al dimension ��(F ) dimG:Proof. This is a 
onsequen
e of the fa
t that H2(F; gAd�) = 0. This is proved for instan
eby Goldman in [20℄. Namely, this vanishing implies that every in�nitesimal deformationin H1(F; gAd�) 
an be integrated (the obstru
tions to integration live in H2(F; gAd�)).Therefore H1(F; gAd�) is not only the Zariski tangent spa
e but the a
tual tangent spa
e toX(F;G). Sin
e the Zariski and the a
tual tangent spa
e are the same, we have smoothnessand their dimension is the lo
al dimension of the variety. �We next pro
eed with 
usps, and we start similarly, 
omputing the �xed subspa
es ofVn1;n2. In this 
omputation we do not require n1 6= n2. Let T 2 be a boundary 
omponentof �M of genus one (ie. 
orresponding to a 
usp).Lemma 12.7. The subspa
e of elements in Vn1;n2 �xed by �n1;n2(�1(T 2)) has dimension(dimVn1;n2)�n1;n2 (�1(T 2)) = 1:Proof. The (real) Zariski 
losure of the lift of the holonomy of �1(T 2) is a unipotentsubgroup U � SL2(C), U �= C. Up to 
onjuga
y,U = ��1 �0 1� ���� � 2 C� �= C:Sin
e U is the R-Zariski 
losure of the holonomy of �1(T 2) and the a
tion is polynomial,the subspa
es of �xed elements is the same for �n1;n2(�1(T 2)) and for Symn1;n2(U):(Vn1;n2)�n1;n2 (�1(T 2)) = (Vn1;n2)Symn1;n2 (U):Noti
e that the a
tion of U is equivalent to the a
tion of C on polynomials P 2 Vn1;n2:P (X; Y;X; Y ) 7! P (X; Y + �X;X; Y + �X);where � 2 C. Invarian
e implies that P does not have terms on Y and Y , hen
e it belongsto the span of Xn1Xn2 , whi
h is one dimensional. �Lemma 12.8. Let G and � be as above. The number of summands Vi:j in the de
ompo-sition of gAd� in Proposition 8.1 equals rank(G).This lemma follows from a straightforward 
omputations, be
ause� rankSLr+1(C) = r,� rankSO(2r;C) = r,� rankSO(2r + 1;C) = r, and� rankSp(r;C) = r.Lemma 12.8 may probably be 
onsequen
e of a more general fa
t, but I am not aware ofit.Combining Lemmas 12.7 and 12.8, we dedu
e:Corollary 12.9. Let G and � be as above. The dimension of the subspa
e of �xed elementsof the Lie algebra equals the rank:dim gAd�(�1(T 2)) = rank(G):174



As in Lemma 12.3 and its 
orollary, using Corollary 12.9, Poin
ar�e duality, and theEuler 
hara
teristi
 we get:Lemma 12.10. Let G and � be as above. ThendimCH i(T 2; gAd�) = � rankG; for i = 0; 2; and2 rankG; for i = 1:Lemma 12.11. Let � and G be as in Theorem 12.1. The restri
tion �j�1(T 2) is a smoothpoint of hom(�1(T 2); G).Proof. Here the se
ond 
ohomology does not vanish, and we must apply an argumentdi�erent from the higher genus 
ase. By the 
omputations of dimensions of Lemma 12.10,we getdimZ1(T 2; gAd�) = dimH1(T 2; gAd�) +B1(T 2; gAd�) = 2 rankG+ (dimG� rankG)= rankG+ dimG:On the other hand, if we want to 
ompute the dimension of 
omponents of hom(�1(T 2); G),we observe that one of the generators of �1(T 2) 
an be an arbitrary element of G, andthe other element must 
ommute with it. Thus the dimension of ea
h 
omponent ofhom(�1(T 2); G) is bounded below bydimG+ rankG:ThusdimG+ rankG � dim �hom(�1(T 2); G)� � �dimTZar hom(�1(T 2); G)�= dimZ1(T 2; gAd�) = dimG+ rankG;whi
h gives equality of dimensions and smoothness. �Proof of Theorem 12.1. Given a Zariski tangent ve
tor v 2 Z1(M3; gAd�n), we have toshow that it is integrable, i.e. that there is a path in the variety of representationswhose tangent ve
tor is v. For this, we use the algebrai
 obstru
tion theory, see [21, 23℄.There exist an in�nite sequen
e of obstru
tions that are 
ohomology 
lasses in the se
ond
ohomology group, ea
h obstru
tion being de�ned only if the previous one vanishes. Theseare related to the analyti
 expansion in power series of a deformation of a representation,and to Kodaira's theory of in�nitesimal deformations. Our aim is to show that this in�nitesequen
e vanishes. This gives a formal power series, that does not need to 
onverge, butthis is suÆ
ient for v to be a tangent ve
tor by a theorem of Artin [6℄ (see [23℄ for details).We do not give the expli
it 
onstru
tion of these obstru
tions, we just use that they arenatural and that they live in the se
ond 
ohomology group.By Theorem 5.3 and sin
e all Vn1;n2 that appear in the de
omposition of gAd� satisfyn1 6= n2, for p = 1; 2 we have(12) ker(Hp(M 3; gAd�)! Hp(�M 3; gAd�)) = 0;be
ause ea
h 
ohomology 
lass in this kernel is represented by a 
losed form in M3 with
ompa
t support, in parti
ular L2. By looking at the long exa
t sequen
e of the pair(13) H2(M 3; gAd�) �= H2(�M 3; gAd�):Now, H2(�M 3; gAd�) de
omposes as the sum of the 
onne
ted 
omponents of �M 3. If Fghas genus g � 2 then H2(Fg; gAd�) = 0. Thus, only the 
omponents of �M 3 that are tori175



appear in H2(�M 3; gAd�). By Lemma 12.11 and naturality, the obstru
tions vanish whenrestri
ted to H2(T 2; gAd�), hen
e they vanish in H2(M ; gAd�) by the isomorphism (13).This proves smoothness.To 
ompute the lo
al dimension, by Corollary 4.5 this lo
al dimension equals the di-mension of H1(M 3; gAd�). By the inje
tivity of the maps in Equation (12), the long exa
tsequen
e in 
ohomology of the pair gives a short exa
t sequen
e0! H1(M 3; gAd�)! H1(�M 3; gAd�)! H2(M 3; �M 3; gAd�)! 0:Sin
e H1(M 3; gAd�) is Poin
ar�e dual to H2(M 3; �M 3; gAd�),dimH1(M3; gAd�) = 12 dimH1(�M 3; gAd�):Now it suÆ
es to 
ount the 
ontribution of ea
h boundary 
omponent, from Corollary 12.5and Lemma 12.10. Using these 
ontributions and sin
e �(M 3) = 12�(�M 3), we get thatdimH1(M 3; gAd�) = ��(M 3) dimG+ k rankG;whi
h 
on
ludes the proof of the theorem. �Referen
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