
LOCAL AND INFINITESIMAL RIGIDITY OF REPRESENTATIONSOF HYPERBOLIC THREE MANIFOLDSJOAN PORTIAbstrat. We disuss loal and in�nitesimal rigidity for �nite dimensional represen-tations of hyperboli three manifolds. We are motivated by the fat that some of therepresentations have a geometri interpretation, though we disuss it in a general setting.1. IntrodutionLet M3 be a losed, ompat, hyperboli and orientable three-manifold. Fix a lift ofits holonomy representation fhol : �1(M3)! SL2(C):Let G denote a (real or omplex) Lie group and let� : SL2(C)! Gbe a linear representation, that does not need to be holomorphi. For simpliity, we shallassume that � is irreduible.Question 1.1. Is � Æ fhol : �1(M3)! G loally rigid?In order to properly de�ne loal rigidity, we onsider the variety of representationshom(�1(M3); G);whih naturally embeds in G � � � � � G, by onsidering the image of the elements in a(�nite) generating set. Then we de�ne:De�nition 1.2. A representation � : �1(M3)! G is loally rigid if a neighborhood of �in hom(�1(M3); G) onsist only of representations that are onjugate to �.We are interested in the stronger notion of in�nitesimal rigidity. For this we onsiderthe Lie algebra equipped with the adjoint ation, that we denote gAd�:De�nition 1.3. A representation � : �1(M3)! G is said to be in�nitesimally rigid ifH1(�1(M3); gAd�) = 0:In�nitesimal rigidity is stronger than loal rigidity, as H1(�1(M3); gAd�) may be viewedas the tangent spae to the variety of representations up to onjugay. We shall disusthis later in Setion 4. It is natural to arise the following question:Question 1.4. Is � Æ fhol : �1(M3)! G in�nitesimally rigid?The answer will vary for di�erent hoies of G. To desribe the possibilities, we needto reall the lassi�ation of irreduible representations of SL2(C). This will be done inSetion 2, before we want to disuss some motivating examples.Reeived Deember 27, 2012. 154



Example 1.5. Consider � to be the identity. Hene deformations of the representationorrespond to deformations of the hyperboli struture, f. [41, 14℄. By Mostow's theorem[35℄, it is rigid (globally and loally), but in�nitesimal rigidity is given by a theorem ofWeil that we reall next [43℄.Theorem 1.6 (Weil in�nitesimal rigidity [43℄). If M3 is a losed hyperboli three mani-fold, then H1(�1(M3); sl2(C)Adghol) = 0:Weil proved this theorem in dimension three and higher. When the manifold is non-ompat, there is a deformation spae oming from the ends of the manifold, that we shalldisuss in Setion 12Example 1.7. Consider the representation� : SL2(C)! SO(3; 1);whih indues an isomorphism between PSL2(C) and SO0(3; 1). The notation�1;1 = � Æ fhol : �1(M3)! SO(3; 1)will be lear later. Notie thatH1(�1(M3); so(3; 1)Ad�1;1) = 0 by Weil in�nitesimal rigidity.Then embed SO(3; 1) in SL4(R), so that rigidity of the representation in SL4(R) meansrigidity of the indued real projetive struture.De�nition 1.8. One says that M3 is projetively rigid if �1;1 is rigid as representation inSL4(R), and M3 is in�nitesimally projetively rigid ifH1(�1(M3); sl4(R)Ad�1;1 ) = 0:Cooper, Long, and Thistlethwaite ompute in [17℄ the deformation spae of projetivestrutures for a large number of hyperboli three manifolds. They show that all possibili-ties an our: in�nitesimally projetively rigid, projetively rigid but not in�nitesimally,and projetively non rigid (that they all exible).Historially, one of the �rst to study projetive strutures was Benz�eri in the 1960's[10℄. Ka and Vinberg [42℄ gave the �rst examples of suh deformations. Koszul [29℄ andGoldman later generalized these examples. Johnson and Millson provided deformationsof the anonial projetive struture by means of bending along totally geodesi surfaes[25℄. Examples of deformations for Coxeter orbifolds have been obtained by Benoist [8℄,Choi [16℄, and Marquis [31℄. See the survey by Benoist [9℄ and referenes therein for moreresults on onvex projetive strutures.With Heusener, we have proved in [24℄ the existene of in�nitely many hyperbolimanifolds that are in�nitesimally projetively rigid.Example 1.9. Next onsider the embeddingIsom(H3) ,! Isom(H4)and ask whether its omposition with the holonomy is rigid here or not. This is equivalentto the study of deformations of the at onformal struture, as Isom(H4) is the groupof M�obius transformations of S3 = �1H3. We may view them also as quasifuhsianstrutures. 155



Here we mention again the onstrution of Johnson and Millson on bending alongtotally geodesi surfaes [25℄, but also the results on rigidity by Kapovih, Sannell andFranaviglia and myself on (in�nitesimal, loal and global) rigidity of suh strutures[19, 26, 39, 40℄. Also Apanasov [3, 5℄, Apanasov and Tetenov [4℄, and Bart and Sannell[7℄ have onstruted deformations that do not orrespond to bending.The paper is addressed to readers in low dimensional topology and geometry and I donot assume any bakground in representation theory. Some of the statements are wellknown in representation theory, and most of the proofs are given or skethed here. Thereare of ourse a lot of results presented here that are known, but to my knowledge, someof them where not previously known in the literature.The paper is organized as follows. In Setion 2 we reall the lassi�ation of �nitedimensional representations of SL2(C), and we look at those that are real. The mainresults are then stated in Setion 3. In Setion 4 we reall some known fats on thetangent spae of the varieties of representations and ohomology required for the proofs,basially Weil's onstrution. Then we need two main tools for proving loal rigidity.The �rst one is Raghunathan's vanishing theorem, that will be realled in Setion 5.The seond tool is to deompose the Lie algebras as irreduible modules, in order toapply Raghunathan's vanishing. This deomposition is done in Setions 6, 7 and 8. Nextwe disuss real representations in Setion 9, inluding the projetive strutures. Thisalso onerns omplex hyperboli strutures in Setion 10 and onformally at ones inSetion 11. Finally, Setion 12 is devoted to nonompat hyperboli three manifolds of�nite type.Aknowledgements I am indebted to the organizers of the RIMS Seminar \Represen-tation spaes, twisted topologial invariants and geometri strutures of 3-manifolds",namely to Professors Teruaki Kitano, Takayuki Morifuji, and Yasushi Yamashita.My work is partially supported by the European FEDER and the Spanish Miinnthrough grant MTM2009{0759 and by the Catalan AGAUR through grant SGR2009{1207. I also reeived the prize \ICREA Aad�emia" for exellene in researh, funded bythe Generalitat de Catalunya.2. Finite dimensional representations of SL2(C)Given n � 0, onsiderVn;0 = fP (X; Y ) 2 C[X; Y ℄ j P homogeneous and degP = ng :Then SL2(C) ats on Vn;0 as follows:SL2(C)� Vn;0 ! Vn;0(A; P ) 7! P ÆAtwhere At denotes the transpose of A. Notie that instead of the transpose one an onsiderthe inverse, as transposing and taking the inverse are onjugate operations in SL2(C).Next de�ne Vn1;n2 = Vn1;0 
 Vn2;0where the bar denotes omplex onjugation. We have:dimC Vn1;n2 = (n1 + 1)(n2 + 1):156



The orresponding representation is denoted bySymn1;n2 : SL2(C)! AutC Vn1;n2 :The automorphisms in the image of Symn1;n2 have determinant oneSymn1;n2 : SL2(C)! SL(n1+1)(n2+1)(C):This gives the lassi�ation of �nite dimensional representations (f. [28℄):Theorem 2.1. Every irreduible and �nite dimensional representation of SL2(C) isequivalent to Symn1;n2 for some (unique) pair of integers n1; n2 � 0The idea of the proof is to lassify the representations of the (real) Lie algebra sl2(C).To do so, one lassi�es the holomorphi representation of its omplexi�ationsl2(C)
R C = sl2(C)� sl2(C):Holomorphi irreduible representations of sl2(C) are lassi�ed by a weight, a nonnegativeinteger that is the largest eigenvalue of a semisimple element of sl2(C). Hene irreduiblerepresentations of sl2(C) are lassi�ed by a pair of nonnegative integers.For example Sym0;0 is the trivial representation, Sym1;0 the tautologial one, andSym0;1, its omplex onjugate. We will see later that Sym1;1 is the omplexi�ation ofthe isomorphism of (real) Lie groups between PSL(2;C) and SO(3; 1), as the orientationpreserving isometry group of hyperboli spae.The group SL(n1+1)(n2+1)(C) may be too large to have rigidity, for this we remarkthat Symn1;n2 preserves a bilinear form. We start by viewing the determinant as a skew(antisymmetri) bilinear form:det : C2 �C2 ! C( a ) ; ( bd ) 7! det ( a b d ) = ad� bwhih is invariant by the ation of SL2(C). Sine Vn:0 is the n-th symmetri power ofC2 �= V1;0, taking symmetri powers and tensor produts, it indues a bilinear form:� : Vn1;n2 � Vn1;n2 ! C:This form is Symn1;n2-invariant, nondegenerate and� symmetri if n1 + n2 is even;skew if n1 + n2 is odd.Thus Symn1;n2 : SL2(C)! G = � SO((n1 + 1)(n2 + 1);C) if n1 + n2 is even;Sp( (n1+1)(n2+1)2 ;C) if n1 + n2 is odd.We may look also for representations with real image. Let SO(p; q) � SLp+q(R) denotethe speial real orthogonal group of signature p; q.Proposition 2.2. The image of Symn;n is ontained in SO(p; q), withp = n2 + 3n+ 22 and q = n2 + n2 :Notie that p+ q = (n+1)2. For instane the image of Sym1;1 is ontained in SO(3; 1)and in fat it indues an isomorphism between PSL2(C) and the identity omponentof SO(3; 1), both the isometry group of hyperboli spae. Also the image of Sym2;2 isontained in SO(6; 3). 157



3. Rigidity and non-rigidity resultsLet �n1;n2 denote the representation(1)�n1;n2 = Symn1;n2 Æfhol : �1(M3)! G = � SO((n1 + 1)(n2 + 1);C) if n1 + n2 is evenSp( (n1+1)(n2+1)2 ;C) if n1 + n2 is odd.Theorem 3.1 (In�nitesimal rigidity in G). Let M3 be a losed, oriented, and hyperbolithree manifold and let �n1;n2 : �1(M3)! G be as in (1). ThenH1(�1(M3); gAd�n1;n2 ) = 0:Corollary 3.2. Under the hypothesis of Theorem 3.1, �n1;n2 is rigid in hom(�1(M3); G).The fat that �n1;n2 is rigid in hom(�1(M3); G) does not mean that it is rigid inhom(�1(M3); SL(n1+1)(n2+1)(C)):This is desribed by the following two results.Theorem 3.3. Let M3 be a losed, oriented hyperboli three manifold. For n � 1, �n;0and �0;n are in�nitesimally rigid (and rigid) in hom(�1(M3); SLn+1(C)):H1(�1(M3); sln+1(C)Ad�n;0) = H1(�1(M3); sln+1(C)Ad�0;n) = 0:Theorem 3.4. Let M3 be a losed, oriented hyperboli three manifold. Assume thatn1; n2 � 1 and that M3 ontains a totally geodesi surfae. ThenH1(�1(M3); sl(n1+1)(n2+1)(C)Ad�n1;n2 ) 6= 0:Moreover �n;n is nonrigid in SL(n+1)2(C).Notie that for some manifolds �n1;n2 an still be rigid in SL(n1+1)(n2+1)(C). This is thease for manifolds that are projetively rigid for n1 = n2 = 2. Some other representationsfor those manifolds are rigid beause of the following:Proposition 3.5. Let M3 be as above and assume that n = min(n1; n2) � 1. ThenH1(�1(M3); sl(n1+1)(n2+1)(C)Ad�n1;n2 ) �= H1(�1(M3); sl(n+1)2(C)Ad�n;n):Thus �n1;n2 is in�nitesimally rigid in hom(�1(M3); SL(n1+1)(n2+1)(C)) if and only if �n;nis in�nitesimally rigid in hom(M3; SL(n+1)2(C)).Reall from Proposition 2.2 that the image of �n;n is ontained in SO(p; q) withp = n2 + 3n+ 22 and q = n2 + n2 :From Theorems 3.1 and 3.4, sineso((n + 1)2;C) �= so(p; q)
R C and sl(n+1)2(C) �= sl(n+1)2(R)
R Cwe obtain:Corollary 3.6. Let M3 be as above. For n � 1,H1(�1(M3); so(p; q)Ad�n;n) = 0:In partiular �n;n is rigid in hom(�1(M3); SO(p; q)). If in addition M3 ontains a totallygeodesi surfae, then �n;n is nonrigid in hom(�1(M3); SL(n+1)2(R)).158



Proposition 3.7. Let M3 be as above. For n � 1, �n;n : �1(M3) ! X(M3; SO(p; q)) isin�nitesimally rigid with oeÆients sl(n+1)2(R) i� it is so with oeÆients su(p; q).As a partiular ase of Proposition 3.5 we get:Corollary 3.8. Let M3 be as above. Then for n � 1, M3 is in�nitesimally projetivelyrigid i� �n;1 is in�nitesimally rigid in hom(�1(M3); SL2(n+1)(C)).We �nally disuss the nonompat ase. Assume that M3 is a topologially �nitehyperboli manifold. This means that it has a �nite number of ends. By the solution ofMarden's onjeture [1, 13℄ the ends are either usps (homeomorphi to T 2 � [0;+1))or have in�nite volume, homeomorphi to F 2g � [0;+1), where F 2g is a surfae of genusg � 2. In partiular it has a ompati�ation onsisting in adding boundary surfaes.The variety of haraters is denoted by X(M3; G). Sine this paper only deals with loalrigidity and loal deformations, we may assume that X(M3; G) is loally the quotient ofhom(�1(M3); G)=G, where G ats by onjugation.Theorem 3.9. Let M3 be a topologially �nite, hyperboli, and orientable three manifold.Let �(n1;n2) : �1(M3) ! G be as in Theorem 3.1 or 3.3. Then the harater [�(n1;n2)℄ isa smooth point of X(M3; G). Moreover, If �M 3 is the union of k tori and l surfaes ofgenus g1; : : : ; gl � 2, and N � 1, then the loal dimension of X(M3; G) isk rankG+X(gi � 1) dimG:4. Tangent spaes and ohomologyIn [43℄ Andr�e Weil showed that the tangent spae at the variety of representationsan be identi�ed to the spae of group oyles, and the tangent spae to the orbit byonjugation to the subspae of oboundaries.Here � denotes a �nitely generated group, though we are mainly interested in � =�1(M3).For a representation � : �! Gthe adjoint representation on the Lie algebra is denoted byAd� : �! Aut g:Reall that the spae of group oyles isZ1(�; gAd�) = fd : �! g j d(12) = d(1) + Ad�(1)d(2); 81; 2 2 �g;and the subspae of group oboundaries:B1(�; gAd�) = fda : �! g j 9a 2 g s.t. da() = (Ad�() � 1)a; 8 2 �g:The group ohomology is thenH1(�; gAd�) = Z1(�; gAd�)=B1(�; gAd�):We view the Zariski tangent spae to an algebrai variety as the spae of germs ofpaths that satisfy the equations up to �rst order. Thus, in the variety of representations,a Zariski tangent vetor is represented by a �rst order deformation. Namely a path ofrepresentations �t : �! G that satis�es� �0 = ��t(12) = �t(1)�t(2) +O(t2); 81; 2 2 �:159



Weil's onstrution assigns to suh a �rst order (or in�nitesimal) deformation the oyle(2) � ! g 7! ddt�t()�0(�1)��t=0 :Theorem 4.1 (Weil's onstrution). The map (2) de�nes an isomorphism between theZariski tangent spae to the variety of representations at � and the spae of group oyles:TZar� hom(�; G) �= Z1(�; gAd�):In addition, this isomorphism maps the Zariski tangent spae to an orbit by onjugationG� to the spae of oboundaries: TZar� G� �= B1(�; gAd�):Observe that when we have in�nitesimal rigidity, we have B1(�; gAd�) = Z1(�; gAd�),thus the inlusion G� � hom(�1(M3); G) indues an isomorphism of tangent spaes. Infat one an proveCorollary 4.2. If � is semisimple and H1(�; gAd�) = 0, then � is loally rigid.De�nition 4.3. A linear representation � : �1(M3) ! G � GLN (C) is alled simple ifCN has no proper invariant subspaes, and it is alled semisimple if it is the diret sumof simple ones.Remark 4.4. For oompat manifolds, the representations �n1;n2 : �1(M3) ! G aresimple, beause Symn1;n2 is irreduible and fhol(�1(M3)) is Zariski dense in SL2(C). Thisalways holds true for any M3 whih is not Fuhsian nor elementary.A stronger formulation is the following one. We may think of the variety of haratersX(�; G) as (loally) the quotient hom(�; G)=G, in neighbourhoods of semisimple points.Corollary 4.5. If � is semisimple thenTZar� X(�; G) �= H1(�; gAd�):See [30℄ for a proof of Theorem 4.1 and Corollaries 4.2 and 4.5.Now the strategy will be to deompose the SL2(C)-module gAd� into irreduible repre-sentations Vn1;n2 and to use Raghunathan's vanishing theorem in ohomology. We startwith Raghunatan's theorem in the next setion, then in Setions 6, 7 and 8 we study thedeompositions of gAd�.5. Raghunathan's vanishing theoremBy Corollary 4.5, we are interested in omputing H1(�1(M3); gAd�). After deomposinggAd� into irreduible modules, we must ompute H1(�1(M3); Vn1;n2). The key result is thefollowing:Theorem 5.1 (Raghunathan's vanishing [37℄). Let M3 be a ompat hyperboli threemanifold. If n1 6= n2 then H1(�1(M3); Vn1;n2) = 0:This theorem is proved using de Rham ohomology. Thus let En1;n2 denote the atbundle with �bre Vn1;n2 and monodromy �n1;n2:Vn1;n2 ! En1;n2 !M:160



Let 
p(M3; En1;n2) denote the p-forms on M3 valued on En1;n2. By de Rham's theorem,the ohomology of (
p(M3; En1;n2); d)is isomorphi to the group ohomology H�(�1(M3); Vn1;n2).There is a natural Hermitian produt in the bundle En1;n2 denoted by h; i. Let also �denote the Laplaian. Then Raghunathan proved his vanishing theorem as a onsequeneof the following:Lemma 5.2 ([37, 38℄). Let M3 be a hyperboli three manifold, and assume that n1 6= n2.Then there exists a onstant C > 0 suh that every ! 2 
p(M3; En1;n2) with ompatsupport satis�es h�!; !i > h!; !i:Sine by Hodge theorem every ohomology lass in a ompat manifold is representedby a harmoni form (i.e. a form ! satisfying �! = 0), Lemma 5.2 immediately impliesTheorem 5.1.The property of Lemma 5.2 is alled strong ayliity by Bergeron and Venkatesh in [11℄,and it is used to ompute the asymptoti behaviour of Reidemeister torsion or homologytorsion under overings.When M3 is not ompat, Lemma 5.2 gives a vanishing theorem, due to Matsushima-Murakami [32℄ and Andreotti-Vesentini [2℄:Theorem 5.3. Let M3 be a hyperboli three manifold, and assume that n1 6= n2. Thenevery losed form ! 2 
p(M3; En1;n2) that is L2 (square summable) is exat.This theorem will be used in Setion 12 for disussing the situation for nonompatmanifolds.It is normal to ask what happens when n1 = n2. This has been disussed by Millson,who proved in [34℄ a more general result that implies:Proposition 5.4 (Millson [34℄). Let M3 be a ompat, orientable, hyperboli three man-ifold. Assume that M3 ontains a totally geodesi surfae, thenH1(M3; Vn;n) 6= 0:We disuss its proof in Setion 9. This is related to bending.Notie also that there exist manifolds for whih H1(M3; Vn;n) = 0 for n = 1; 2. Whenn = 1 those are onformally at manifolds, and for n = 2 those are projetively rigid. Ithas been proved by Kapovih [26℄ and Sannell [40℄ (improved by Franaviglia and myself[19℄) that almost all Dehn �llings in a hyperboli two bridge not are onformally at.Moreover, we showed with Heusener that in�nitely many Dehn �llings on the �gure eightknot exterior are projetively rigid [24℄.Question 5.5. Is there any manifold M3 for whih H1(M3; Vn;n) = 0 for every n � 1?Amanifold for whih the question would have a positive answer would satisfy all possiblerigidity properties.6. Deomposing holomorphi representationsOne we have Theorem 5.1, in order to ompute the ohomology of gAd� the next stepis to deompose it as sum of Vn1;n2. 161



We start with some preliminaries in the holomorphi ase, i.e. n2 = 0. Reall thatVn;0 = fP (X; Y ) 2 C[X; Y ℄ j P homogeneous and degP = ng :As vetor spae, we view Vn;0 as its own tangent spae and we onsider the ation of theLie algebra sl2(C)y Vn;0:Consider the standard basis for sl2(C):h = �1 00 �1� ; f = �0 10 0� ; g = �0 01 0� :We also write, for i = 0; : : : ; n, ei = Xn�iY iso that fe0; e1; : : : ; engis a basis for Vn;0.A straightforward omputation gives that the ei are eigenvetors for h:h � ei = (n� 2i)eiThose are the weights, and the maximal weight of the representation is n. We also mayompute f � ei = (n� i)ei+1(3) g � ei = iei�1(4)with the onvention that e�1 = en+1 = 0.Proposition 6.1 (Clebsh-Gordan formula).Vn;0 
 Vn;0 = nMi=0 V2i;0:Though the proof is well known, we give it in order to understand the deompositionsof g that we give later.Proof. The idea in representation theory is to look at the roots, namely at the eigenvetorsand eigenvalues of the ation of h. Consider the basisfei 
 ejg0�i;j�nfor Vn;0 
 Vn;0. Knowing that h � ei = (n� 2i)ei, we have:h � (ei 
 ej) = (h � ei)
 ej + ei 
 (h � ej) = 2(n� i� j)ei 
 ej:Thus the eigenvalues of the ation of h are given by the following table:
 e0 e1 � � � ene0 2n 2n� 2 0e1 2n� 2 2n� 4 � � � �2e2 2n� 4 2n� 6 �4... ... ...en 0 �2 �2n162



The largest eigenvalue is 2n, whih means that V2n;0 has to appear one in the deom-position into irreduible fators. The next largest eigenvalue is 2n � 2, whih appearstwie, one for V2n;0 and the other must be for V2n�2;0. Notie that by looking at the ationof f and g, we an desribe the eigenvetors: sine e0
 e0 is the eigenvetor of eigenvalue2n in V2n;0, f(e0 
 e0) is the eigenvetor in V2n;0 of eigenvalue 2n � 2. In addition, theeigenvetor in V2n�2;0 must lie in the kernel of g. More expliitly, e0
 e1 and e1
 e0 spanthe eigenspae with eigenvalue 2n� 2, and:f � (e0 
 e0) = (f � e0)
 e0 + e0 
 (f � e0) = n(e0 
 e1 + e1 
 e0) 2 V2n;0:In addition, sine g � e0 = 0 and g � e1 = e0:g � (e0 
 e1 � e1 
 e0) = e0 
 (g � e1)� (g � e1)
 e0 = 0therefore e0 
 e1 � e1 
 e0 2 V2n�2. Without expliitly desribing the eigenspaes, theargument an be arried out to onlude the lemma. �We an already apply Clebsh-Gordan deomposition to sln+1(C). Sine V �n;0 �= Vn;0 wededue that(5) gln+1(C)Ad�n;0 �= V �n;0 
 Vn;0 �= Vn;0 
 Vn;0 = nMi=0 V2i;0:In addition, sine(6) gln+1(C)Ad�n;0 �= sln+1(C)Ad�n;0 �C �= sln+1(C)Ad�n;0 � V0;0;we dedue(7) sln+1(C)Ad�n;0 �= nMi=1 V2i;0:Proof of Theorem 3.3. By the deomposition in Equation (7), the ohomology splitsH1(M3; sln+1(C)Ad�n;0) �= nMi=1 H1(M3; V2i;0):Now, sine M3 is losed and i � 1. Raghunathan's vanishing applies to onlude thatH1(M3; sln+1(C)Ad�n;0) = 0. �7. Deomposing aording to the bilinear produtWe reall the invariant bilinear form� : Vn;0 
 Vn;0 ! C:For n = 1, � is just the determinant, so it has matrixJ = � 0 1�1 0� :Sine Vn;0 is the n-th symmetri produt of V1;0, the matrix of � on Vn;0 isJ = 0BB� 0 � � � 0 10 � � � �1 0... ...(�1)n � � � 0 01CCA163



whih is antisymmetri for n odd and symmetri for n even. The Lie algebra of thesubgroup G of J-isometries then isg = fa 2 gln+1(C) j atJ + Ja = 0g:In fat we need to ompute the J-antisymmetri part and the J-symmetri part.De�nition 7.1. We say that a 2 gln+1(C) is:� J-symmetri if atJ � Ja = 0, and� J-antisymmetri if atJ + Ja = 0.The Lie algebra gln+1(C) is the diret sum of its J-symmetri and its J-antisymmetripart. Sine J is preserved by �n;0, the J-symmetri and J-antisymmetri part are pre-served, thus the irreduible fators in the deomposition (5),gln+1(C)Ad�n;0 �= nMi=0 V2i;0;are either J-symmetri or J-antisymmetri.Proposition 7.2. Let V2i;0 be one of the irreduible fators in the deomposition (5) ofgln+1(C)Ad�n;0 . Then:� V2i;0 is J-symmetri if i is even,� V2i;0 is J-antisymmetri if i is odd.To prove the proposition, we �rst need the following lemma, whose proof is a straight-forward omputation:Lemma 7.3. The endomorphismsln+1(C) ! sln+1(C)a 7! J�1atJ(where at denotes the transpose) has the following expression in oordinates(ai;j)ij 7! ((�1)i+jan�j;n�i)ij:Notie that up to sign this endomorphism is the symmetry with respet to the antidi-agonal. As a onsequene of the lemma, the matries in gln+1(C) satisfy:� a 2 gln+1(C) is J-symmetri i�ai;j = (�1)i+jan�j;n�i; 8i; j = 0; : : : ; n:� a 2 gln+1(C) is J-antisymmetri i�ai;j = (�1)i+j+1an�j;n�i; 8i; j = 0; : : : ; n:Consider the antidiagonal of suh a matrix, namely when i+ j = n. Then:� If a 2 gln+1(C) is J-symmetri thenai;n�i = (�1)nai;n�i; 8i = 0; : : : ; n:� If a 2 gln+1(C) is J-antisymmetri thenai;n�i = (�1)n+1ai;n�i; 8i = 0; : : : ; n:Thus we dedue:Remark 7.4. � When n is even the antidiagonal belongs to the J-symmetri part.164



� When n is odd, the antidiagonal belongs to the J-antisymmetri part.Proof of Proposition 7.2. We look at the weights in the proof of Proposition 6.1. Here wemust are of the ordering and the fat that we work with he dual in the tensor produtgln+1(C) = Vn;0 
 V �n;0:If we use the bilinear form for the isomorphism Vn;0 �= V �n;0, the vetor ei = Xn�iY i ismapped to �en�i = �X iY n�i, as X and Y are dual up to sign. Thus the weight of e�iis minus the weight of ei. The eigenvetors of h in gln+1(C) = Vn;0 
 V �n;0 are preiselyei 
 e�j , namely the entries of a matrix, and the weights are given by the following table:
 e�0 e�1 e�2 � � � e�n�1 e�n(�n) (�n + 2) (�n + 4) � � � (n� 2) (n)e0 (n) 0 2 4 2n� 2 2ne1 (n� 2) �2 0 2 � � � 2n� 4 2n� 2e2 (n� 4) �4 �2 0 2n� 6 2n� 4... ... ...en�1 (�2n+ 2) �2n + 2 �2n+ 4 �2n + 6 � � � 0 2en (�n) �2n �2n+ 2 �2n + 4 �2 0By Lemma 7.3, it suÆes to desribe the weights on the upper left triangle of this matrix(i.e. above the antidiagonal) or the lower right triangle (i.e. below the antidiagonal).Moreover for n even the antidiagonal goes to the symmetri part and for n odd it goesto the antisymmetri one. Notie that by symmetry, being upper left of lower right isnot relevant, what makes the di�erene is whether the antidiagonal is ontained or not.Thus we shall use the notation large triangle and small triangle aording to whether itontains the antidiagonal or not.For n = 1, the weights of gl2(C) are 0 2�2 0:Sine 1 is odd the large triangle goes to the J-antisymmetri part, and the small one tothe symmetri part. The triangles are:0 2�2 and 0:The weights of the J-antisymmetri part (the large triangle) are preisely the weightsf�2; 0; 2g of V2;0, and the for small one are f0g, namely V0;0.For n = 2, the weights of gl3(C) are a matrix that we may view as obtained from theprevious one by adding a bottom row and a right most olumn0 2 4�2 0 2�4 2 0Sine 2 is even, the antidiagonal goes to the J-symmetri part, that we assume lowerright. The deomposition is: 0 2�2 and 40 2�4 2 0:165



Thus the J-antisymmetri part for n = 2 is the same as for n = 1, but to the J-symmetripart we have added the weights in boldfae, that are preisely those of V4;0. Thus theJ-antisymmetri part is V2;0 and the J-symmetri part is V0;0 � V4;0.For n = 3, we view the weights of sl3(C) as obtained from those of sl2(C) by adding atop row and a leftmost olumn: 0 2 4 6�2 0 2 4�4 �2 0 2�6 �4 2 0:Now the antidiagonal goes to the J-antisymmetri part. Thus the deomposition oftriangles is 0 2 4 6�2 0 2�4 �2�6 and 40 2�4 2 0:Thus we have just added the weights of V6;0 to the J-antisymmetri part. Therefore theJ-symmetri part is V0;0 � V4;0 and the J-antisymmetri part is V2;0 � V6;0.As we inrease the n of �n;0 we repeat this pattern:� When n is even, the weights of gln+1(C) are obtained by adding on the right andthe bottom the weights of V2n to those of gln(C). As the antidiagonal goes to thesymmetri part, the weights of V2n are added to the symmetri part.� When n is odd, the weights of gln+1(C) are obtained by adding on the left andthe top the weights of V2n to those of gln(C). Now the antidiagonal goes to theJ-antisymmetri part, hene the weights of V2n are added to the J-antisymmetripart, while the J-symmetri part remains the same.This proves indutively that the deomposition of gln+1(C) into J-symmetri and J-antisymmetri parts orrespond to fators V2i;0 with i even and odd respetively. Thisproves the lemma. �8. Deomposing representations in generalNow we have all ingredients to ompute ohomology groups we are interested in. Reallthat the image of �n1;n2 is ontained inG = � SO((n1 + 1)(n2 + 1);C) if n1 + n2 is evenSp( (n1+1)(n2+1)2 ;C) if n1 + n2 is odd.The Lie algebra of G isg = � so((n1 + 1)(n2 + 1);C) if n1 + n2 is evensp( (n1+1)(n2+1)2 ;C) if n1 + n2 is odd.Proposition 8.1. For sl(n1+1)(n2+1)(C) we havesl(n1+1)(n2+1)(C)Ad�n1;n2 = M0�i�n10�j�n2(i;j)6=(0;0)V2i;2j:166



For g as above, we have gAd�n1;n2 = M0�i�n10�j�n2i+j odd V2i;2j:Proof. Sine Symn1;n2 = Symn1;0
 Sym0;n2the deomposition of sl(n1+1)(n2+1)(C)Ad�n1;n2 follows from (5). To get the deomposition ofgAd�n1;n2 , we notie that it is the sum of fators in the deomposition of sl(n1+1)(n2+1)(C)that are J-antisymmetri. Sine the form on Vn1;n2 is also a tensor produt, this is astraightforward onsequene of Proposition 7.2. �Now we an already prove some of the results of the introdution.Proof of Theorem 3.1. By Proposition 8.1H1(M3; gAd�n1;n2 ) = M0�i�n10�j�n2i+j odd H1(M3; V2i;2j):Sine i + j is odd in this summation, i 6= j and by Raghunathan's vanishing theorem(Theorem 5.1) we have H1(M3; V2i;2j) = 0:Hene H1(M3; gAd�n1;n2 ) = 0;whih proves the theorem. �Proof of Proposition 3.5. By Proposition 8.1sl(m+1)(n+1)(C)Ad�m;n = M0�i�m0�j�n V2i;2j:Sine H�(M3; V2i;2j) = 0 by Raghunathan's vanishing theorem, assuming m � n, we get:H1(M3; sl(m+1)(n+1)(C)Ad�m;n) = M0�i�mH1(M3; V2i;2i);hene H1(M3; sl(m+1)(n+1)(C)Ad�m;n) �= H1(M3; sl(m+1)2(C)Ad�m;m):Namely the value of n is not relevant provided it is larger or equal than m, whih provesthe proposition. �9. Real representationsWe onsider now the representationVn;n = Vn;0 � V0;n = Vn;0 � Vn;0;whih is invariant under omplex onjugation. Hene we may take its real part:Wn := fP (X; Y;X; Y ) 2 Vn;n j P (X; Y;X; Y ) = P (X; Y;X; Y )gwhih is invariant, namely it is a real representation.We start by looking at the behaviour of the bilinear form:167



Proposition 9.1. The bilinear form � restrited to Wn takes real values and has signature(p; q) = �n2 + 3n+ 22 ; n2 + n2 � :Remark 9.2. Notie that for n = 1, (p; q) = (3; 1) and in fat this gives the isomorphismPSL2(C) �= Isom+(H3) �= SO0(3; 1):Proof. We onsider the following three families of elements:XkY n�kXkY n�k; for k = 0; : : : n;(8) XkY n�kX lY n�l +X lY n�lXkY n�k; for k; l = 0; : : : n; k 6= l;(9) i�XkY n�kX lY n�l �X lY n�lXkY n�k� ; for k; l = 0; : : : n; k 6= l:(10)Their union is a basis for Wn, and � takes real values on them (notie that elements in(10) are orthogonal to the ones in (8) and (9)).We use these families to desribe the signature. We group them in subspaes that areorthogonal and then we ount their ontribution to the signature.� Assume �rst n is even. We group the elements in (8), (9) and (10) as follows:(a) When k = n=2, the element of (8) is self dual. It ontributes to the signatureas (1; 0):(b) When k 6= n=2, then the dual of an element in (8) is obtained by replaing kby n � k. Thus we obtain n=2 bloks ( 0 11 0 ). Hene their ontribution to thesignature is �n2 ; n2� :() When l+k = n, then the n2 elements of (9) are self dual, and so for (10) (notiethat elements of (9) and (10) are orthogonal). Hene their ontribution tothe signature is (n; 0):(d) Finally, when l + k 6= n, then the elements of (9) and their dual (obtainedmy replaing k by n � k and l by n � l) give a blok ( 0 11 0 ). Similarly forelements of (10). In the previous items (a), (b) and () we have a total of2n+ 1 elements, hene we have (n+ 1)2� (2n+ 1) = n2 elements remaining.Their ontribution to signature is therefore�n22 ; n22 � :Adding up all four ontributions we get �n2+3n+22 ; n2+n2 �, as laimed.� Assume now that n is odd. The grouping is simpler, as the ase k = n=2 does notour:(e) The elements of (8) must be ounted as in item (b) of the even ase, as k isnever n=2. Thus we have n+ 1 elements that ontribute�n + 12 ; n + 12 � :168



(f) When l + k = n, then the n+12 elements of (9) are self dual, and so for (10),similarly as () in the even ase. So their ontribution to signature is(n+ 1; 0):(g) Finally, when l + k 6= n, then elements of (9) and (10) have a ontributionthat must be omputed as in item (d) in the even ase. Here the number ofelements is (n+1)2� 2(n+1) = n2� 1, so their ontribution to signature is:�n2 � 12 ; n2 � 12 � :Adding up all three ontributions we obtain again �n2+3n+22 ; n2+n2 �. �Lemma 9.3. The module Wn has a proper subspae where SL2(R) ats trivially.Proof. For n = 1 this is a onsequene that W1 is the representation that identi�esPSL2(C) with SO(3; 1). Hene the image of SL2(R) is ontained in SO(2; 1) in theembedding �SO(2; 1) 00 1� � SO(3; 1):Thus it ats trivially on a line. The invariant polynomial in V1;1 an be given expliitly:P (X; Y;X; Y ) = XY � Y X 2 V1;1:Namely, for A 2 SL2(R), P Æ At = P:Notie also that i P 2 W1. Now, inP n 2 Wn � Vn;nis a nontrivial element invariant by the ation of SL2(R). �Proof of Corollary 3.6. Notie that Vn;n = Wn 
C and thatso((n+ 1)2;C) = so(p; q)
Cas Ad�n;n-modules. Thus from the in�nitesimal rigidity for so((n + 1)2;C),H1(M3; so((n+ 1)2;C)) = 0;whih implies H1(M3; so(p; q)) = 0;namely in�nitesimal rigidity in SO(p; q).To prove that it an be deformed in SL(n+1)2(R), we use Lemma 9.3 and we onstrutbending. Namely, assume that the surfae F separates M3 in two omponents M1 andM2. Then �1(M3) is an amalgamated produt�1(M3) �= �1(M1) ��1(F ) �1(M2):By Lemma 9.3, there exist a non trivial 1-parameter group at 2 SL(n+1)2(R) that om-mutes with the image of �1(F ) (take for instane dilatations in the subspae invariant by169



the image of F , and normalize them to have determinant 1). Then de�ne the deformation�t as: �t() = � �() for  2 �1(M1);at�()a�1t for  2 �1(M2):This deformation is non trivial, �t is not onjugate to �0 for t 6= 0, beause the image of�1(Mi) in SL2(C) is Zariski losed (use Chen-Greenberg's theorem [15℄) and Symn;n isirreduible. See [25℄ for details.When F does not separate M3, we use the HNN struture of the group. Let M0be the result of utting of M3 along F , so that �M0 onsists of two opies of F , andM3 nM0 = F � (0; 1). Then�1(M3) �= �1(M0)��1(F ) = �1(M3) � h�i=hi0�() = �i1�()��1 j  2 �1(F )i;where i0; i1 : �1(F ) ! �1(M0) are the inlusions at the boundary omponents of M0.Again, by Lemma 9.3, there exist a non trivial 1-parameter group at 2 SL(n+1)2(R) thatommutes with the image of �1(F ) and de�ne the deformation �t as:�t() = �() for  2 �1(M0);�t(�) = �(�):Again �t is not onjugate to �0 for t 6= 0, beause the image of �1(Mi) in SL2(C) is Zariskilosed and Symn;n is irreduible. See again [25℄ for details. �Notie that the deformation also implies the in�nitesimal deformability. In fat we mayprove diretly:Lemma 9.4. If M3 ontains a totally geodesi surfae, thenH1(M3; Vn;n) 6= 0for n � 1.Notie that this is equivalent to saying thatH1(M3;Wn) 6= 0;as Vn;n = Wn 
C. This is proved by Millson in [34℄ and we follow his proof.Proof. By Lemma 9.3, Vn;n has a subspae where SL2(R) ats trivially. Let F � M3be the totally geodesi subsurfae of M3. In partiular its holonomy representation isontained in PSL2(R), and Vn;n has nontrivial elements invariant by the ation of �1F ,thus: H0(F; Vn;n) 6= 0:Now the proof follows from a Mayer-Vietoris argument. Assume �rst that F separatesM3 into two omponents M1 and M2. Firstly the holonomy of Mi is Zariski dense inPSL2(C) (use again Chen-Greenberg [15℄) heneH0(M1; Vn;n) = H0(M2; Vn;n) = 0:Thus Mayer-Vietoris to the pair (M1;M2) gives:0! H0(F; Vn;n)! H1(M3; Vn;n);whih implies H1(M3; Vn;n) 6= 0. 170



When F does not separate, the argument is similar. Namely, let M0 be the result ofutting o� M3 along F , so that M3 = M0[ (F � [0; 1℄) and M0\ (F � [0; 1℄) = F �f0; 1g.As before the holonomy of M0 is Zariski dense in PSL2(C), heneH0(M0; Vn;n) = 0:Again Mayer-Vietoris gives0! H0(F; Vn;n)! H0(F; Vn;n)�H0(F; Vn;n)! H1(M3; Vn;n);so H1(M3; Vn;n) 6= 0. �Proof of Theorem 3.4. Use Lemma 9.4 and Proposition 3.5. �10. Complex hyperboli struturesThe real representation of previous setion�n;n : �1(M3)! SO(p; q)may also be onsidered in the speial unitary group by omposing it with the naturalembedding �n;n : �1(M3)! SO(p; q) � SU(p; q):Reall so(p; q) is the subalgebra of sl(n+1)2(R) onsisting of matries that are J-anti-symmetri. If sl(n+1)2(R)J�sym denotes the subspae of J-symmetri ones, then we havea deomposition of �1(M3)-modules:sl(n+1)2(R)Ad�n;n = so(p; q)Ad�n;n � sl(n+1)2(R)J�symAd�n;n:If we now ombine J with omplex onjugation we have thatsu(p; q) = fa 2 sl(n+1)2(C) j atJ = �Jag:Taking real an imaginary parts, we obtain:Lemma 10.1. There is a natural isomorphism of �1(M3)-modules:su(p; q) = so(p; q)� isl(n+1)2(R)J�sym:Corollary 10.2. There is a natural isomorphism of real vetor spaesH�(M3; sl(n+1)2(R)Ad�n;n) �= H�(M3; su(p; q)Ad�n;n):In partiular, for n = 1 we get (p; q) = (3; 1), thus:Corollary 10.3. The spae of in�nitesimal projetive deformations of a hyperboli threemanifold is isomorphi to its spae of in�nitesimal omplex hyperboli deformations.We also have the following proposition (whih was �rst notied by Cooper, Long andThistlethwaite [18℄).Proposition 10.4. The following are equivalent:� �n;n is a smooth point of hom(M3; SL(n+1)2(R)) ,� �n;n is a smooth point of hom(M3; SU(p; q)),� �n;n is a smooth point of hom(M3; SL(n+1)2(C)).171



Proof. We prove �rst the equivalene between SL(n+1)2(R) and SL(n+1)2(C). For this,notie that hom(M3; SL(n+1)2(R)) is an algebrai variety embedded in SL(n+1)2(R)N{ here N is the number of generators of �1(M3) { whih in its turn is embedded inRN(n+1)4 . With this embedding, hom(M3; SL(n+1)2(C)) is just the omplexi�ation ofhom(M3; SL(n+1)2(R)), and it is the zero set in CN(n+1)4 of the same family of polynomi-als (with real oeÆients) as hom(M3; SL(n+1)2(R)). Thus being singular or not dependson whether we an �nd a subset polynomials of the right ardinality with nonzero Jao-bian, and this does not hange whether the ambient spae is RN(n+1)4 or CN(n+1)4 .The other equivalene is proved similarly, as SU(p; q) is a real form of SL(n+1)2(C). A-ording to Onishhik and Vinberg [36℄, there are omplex oordinates for SL(n+1)2(C) sothat the intersetion with R(n+1)4 gives SU(p; q). Otherwise, one an follow the transver-sality argument of Cooper, Long, and Thistlethwaite in [18, Theorem 2.2℄. �11. Conformally flat struturesNow we are interested in the embeddingSO(3; 1) � SO(4; 1):Notie that we have the deomposition of SO(3; 1) modules of the Lie algebra(11) so(4; 1) = so(3; 1)� V1;1:De�nition 11.1. A losed hyperboli 3-manifold M3 has an in�nitesimally rigid atonformal struture if H1(M3; V1;1) = 0.By [25, 26℄, manifolds with a totally geodesi surfae do not have an in�nitesimally rigidat onformal struture, due to bending. Apanasov [3, 5℄, Apanasov and Tetenov [4℄, andBart and Sannell [7℄ onstrut onformally at deformations that are not bending (theyare alled stamping).Dehn �llings on hyperboli 3-manifolds have been studied by Kapovih [26℄. Subse-quently, Sannell [40℄ and Franavliglia and myself [19℄, we have improved the results,using basially the ideas of Kapovih:Theorem 11.2 (Franaviglia-P. [19℄). Let M3 be a ompat and oriented 3-manifold suhthat int(M) is hyperboli, with one usp and of �nite volume. Assume �1(M3) is generatedby two peripheral elements (e.g. M3 is the exterior of a two bridge knot).Then almost all Dehn �llings of M3 have an in�nitesimally rigid at onformal stru-ture.In [26℄ Kapovih onjetures that loal rigidity is equivalent to not having an embeddedfuhsian surfae (not neessarily totally geodesi). He gives evidene for this onjeturein several ases. In [22℄ Goldman shows that a hyperboli 3-manifold with suh a surfaeis globally nonrigid (though loal rigidity is not known).12. Non ompat three manifolds of finite typeLet M3 be a nonompat hyperboli three manifold of �nite type. Thus M3 is topolog-ially and geometrially tame, by the proof of Marden's onjeture. It has �nitely manyends and it admits a ompati�ationM 3 suh that �M 3 onsists of �nitely many surfaesof genus g � 1. Among them the surfaes that are torus orrespond to usps, and the172



other ends have in�nite volume. We will not disuss whether these ends are geometrially�nite or not.We shall onsider the following groups G and representations � : �1(M3)! G.� � = �n;0 or �0;n and G = SL(n+1)(C).� � = �n1;n2 with n1 + n2 even and G = SO((n1 + 1)(n2 + 1);C).� � = �n1;n2 with n1 + n2 odd and G = Sp( (n1+1)(n2+1)2 ;C).Then Theorem 3.9 an be restated as follows.Theorem 12.1. Let M3, � and G be as above, and let k be the number of usps. Then� is a smooth point of X(M3; G) of loal dimension��(M 3) dimG+ k rankG:For �1;0 and G = SL2(C), this result is due to Kapovih [27℄ (see also Bromberg [12℄).For � = �n;0 or �0;n and G = SLn+1(C), it was proved by Menal-Ferrer and myself in [33℄.All other ases seem to be new.Corollary 12.2. Let M3 be as above, k the number of usps and n � 1. Then �n;n is asmooth point of X(M3; SO(p; q)) of loal dimension��(M 3) dimSO(p; q) + k rankSO(p; q):We shall use Theorem 5.3 to prove that all deformations ome from the boundary. Firstwe need to ompute the ohomology of eah boundary omponent.Let F be a omponent of �M3, its ohomology will depend on whether it is a torusor it is a surfae of genus � 2. We onsider the restrition of the holonomy and theorresponding �n1;n2 as in (1).Lemma 12.3. If F has genus g(F ) � 2 and n1 6= n2, thendimCH i(F ;Vn1;n2) = � ��(F )(n1 + 1)(n2 + 1) for i = 1;0 otherwise.Lemma 12.4. Assume that n1 6= n2, then Vn1;n2 has no nontrivial elements that are �xedby SL2(R).Proof of Lemma 12.4. We prove it by ontradition and assume that suh a nontrivial�xed element exists. Then the argument of Lemma 9.4 (that proves that the ohomology ofa losed 3-manifold ontaining a totally geodesi surfae with oeÆients Vn;n is non zero)would apply to Vn1;n2. Hene there would exist losed three manifolds whose ohomologywith oeÆients in Vn1;n2 is nontrivial, ontraditing Theorem 3.1. �Proof of Lemma 12.3. By Lemma 12.4 H0(F; Vn1;n2) = 0. Then the lemma follows fromPoinar�e duality and Euler harateristi, asXi (�1)i dimH i(F; Vn1;n2) = �(F ) dimVn1;n2 : �Using the deomposition of g in Proposition 8.1, we get:Corollary 12.5. If F has genus g(F ) � 2 and � and G are as in Theorem 12.1, thendimH i(F; gAd�) = � ��(F ) dimG for i = 1;0 otherwise.173



Lemma 12.6. Let � and G be as in Theorem 12.1. The restrition �j�1F is a smoothpoint of X(F;G), of loal dimension ��(F ) dimG:Proof. This is a onsequene of the fat that H2(F; gAd�) = 0. This is proved for instaneby Goldman in [20℄. Namely, this vanishing implies that every in�nitesimal deformationin H1(F; gAd�) an be integrated (the obstrutions to integration live in H2(F; gAd�)).Therefore H1(F; gAd�) is not only the Zariski tangent spae but the atual tangent spae toX(F;G). Sine the Zariski and the atual tangent spae are the same, we have smoothnessand their dimension is the loal dimension of the variety. �We next proeed with usps, and we start similarly, omputing the �xed subspaes ofVn1;n2. In this omputation we do not require n1 6= n2. Let T 2 be a boundary omponentof �M of genus one (ie. orresponding to a usp).Lemma 12.7. The subspae of elements in Vn1;n2 �xed by �n1;n2(�1(T 2)) has dimension(dimVn1;n2)�n1;n2 (�1(T 2)) = 1:Proof. The (real) Zariski losure of the lift of the holonomy of �1(T 2) is a unipotentsubgroup U � SL2(C), U �= C. Up to onjugay,U = ��1 �0 1� ���� � 2 C� �= C:Sine U is the R-Zariski losure of the holonomy of �1(T 2) and the ation is polynomial,the subspaes of �xed elements is the same for �n1;n2(�1(T 2)) and for Symn1;n2(U):(Vn1;n2)�n1;n2 (�1(T 2)) = (Vn1;n2)Symn1;n2 (U):Notie that the ation of U is equivalent to the ation of C on polynomials P 2 Vn1;n2:P (X; Y;X; Y ) 7! P (X; Y + �X;X; Y + �X);where � 2 C. Invariane implies that P does not have terms on Y and Y , hene it belongsto the span of Xn1Xn2 , whih is one dimensional. �Lemma 12.8. Let G and � be as above. The number of summands Vi:j in the deompo-sition of gAd� in Proposition 8.1 equals rank(G).This lemma follows from a straightforward omputations, beause� rankSLr+1(C) = r,� rankSO(2r;C) = r,� rankSO(2r + 1;C) = r, and� rankSp(r;C) = r.Lemma 12.8 may probably be onsequene of a more general fat, but I am not aware ofit.Combining Lemmas 12.7 and 12.8, we dedue:Corollary 12.9. Let G and � be as above. The dimension of the subspae of �xed elementsof the Lie algebra equals the rank:dim gAd�(�1(T 2)) = rank(G):174



As in Lemma 12.3 and its orollary, using Corollary 12.9, Poinar�e duality, and theEuler harateristi we get:Lemma 12.10. Let G and � be as above. ThendimCH i(T 2; gAd�) = � rankG; for i = 0; 2; and2 rankG; for i = 1:Lemma 12.11. Let � and G be as in Theorem 12.1. The restrition �j�1(T 2) is a smoothpoint of hom(�1(T 2); G).Proof. Here the seond ohomology does not vanish, and we must apply an argumentdi�erent from the higher genus ase. By the omputations of dimensions of Lemma 12.10,we getdimZ1(T 2; gAd�) = dimH1(T 2; gAd�) +B1(T 2; gAd�) = 2 rankG+ (dimG� rankG)= rankG+ dimG:On the other hand, if we want to ompute the dimension of omponents of hom(�1(T 2); G),we observe that one of the generators of �1(T 2) an be an arbitrary element of G, andthe other element must ommute with it. Thus the dimension of eah omponent ofhom(�1(T 2); G) is bounded below bydimG+ rankG:ThusdimG+ rankG � dim �hom(�1(T 2); G)� � �dimTZar hom(�1(T 2); G)�= dimZ1(T 2; gAd�) = dimG+ rankG;whih gives equality of dimensions and smoothness. �Proof of Theorem 12.1. Given a Zariski tangent vetor v 2 Z1(M3; gAd�n), we have toshow that it is integrable, i.e. that there is a path in the variety of representationswhose tangent vetor is v. For this, we use the algebrai obstrution theory, see [21, 23℄.There exist an in�nite sequene of obstrutions that are ohomology lasses in the seondohomology group, eah obstrution being de�ned only if the previous one vanishes. Theseare related to the analyti expansion in power series of a deformation of a representation,and to Kodaira's theory of in�nitesimal deformations. Our aim is to show that this in�nitesequene vanishes. This gives a formal power series, that does not need to onverge, butthis is suÆient for v to be a tangent vetor by a theorem of Artin [6℄ (see [23℄ for details).We do not give the expliit onstrution of these obstrutions, we just use that they arenatural and that they live in the seond ohomology group.By Theorem 5.3 and sine all Vn1;n2 that appear in the deomposition of gAd� satisfyn1 6= n2, for p = 1; 2 we have(12) ker(Hp(M 3; gAd�)! Hp(�M 3; gAd�)) = 0;beause eah ohomology lass in this kernel is represented by a losed form in M3 withompat support, in partiular L2. By looking at the long exat sequene of the pair(13) H2(M 3; gAd�) �= H2(�M 3; gAd�):Now, H2(�M 3; gAd�) deomposes as the sum of the onneted omponents of �M 3. If Fghas genus g � 2 then H2(Fg; gAd�) = 0. Thus, only the omponents of �M 3 that are tori175
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