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Dan Agüero Cerna

A thesis presented for the degree of
Doctor of Philosophy

Instituto de Matematica Pura e Aplicada
Rio de Janeiro

2020



Abstract

This thesis studies complex Dirac structures (i.e., Dirac structures in the complexification
(TM ⊕ T ∗M)C of the generalized tangent bundle of a manifold M) with constant real index.
These objects extend generalized complex structures, which arise when the real index is zero, and
encode geometric structures such as presymplectic, transverse holomorphic and CR structures.
We introduce a new invariant that we call order, which is a nonnegative integer that allows us
to obtain a classification of complex Dirac structures at the linear-algebraic level. We prove
that complex Dirac structures with constant real index and order carry a presymplectic foliation
which comes from an underlying (real) Dirac structure (generalizing the Poisson structures as-
sociated with generalized complex structures). We prove a local splitting theorem for complex
Dirac structures with constant real index and order which extends the Abouzaid–Boyarchenko’s
splitting theorem for generalized complex structures. Finally we focus on complex Dirac struc-
tures with real index one; we study a pairing (·, ·)1, analogous to the Chevalley-Mukai pairing,
which gives information about the dimension of the intersection of the annihilators of two pure
spinors. We use it to give a spinorial description of complex Dirac structures with real index
one.
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Chapter 1

Introduction

The study of Dirac structures [13] grew out of Poisson geometry and is by now a well established
field of research with many applications (see e.g. [2, 3, 40]). From a modern perspective, Dirac
structures are viewed as part of what is now known as “generalized geometry” [25], a term
that refers to a broader viewpoint to the study of geometrical structures on manifolds based on
the idea of replacing the tangent bundle of a smooth manifold M by the “generalized tangent
bundle” TM ⊕ T ∗M . A key observation is that TM ⊕ T ∗M carries a natural symmetric pairing
(the usual pairing of vectors and covectors) and an extension of the Lie bracket of vector fields
known as the Courant-Dorfman bracket [13, 16]. Dirac structures are defined as subbundles
L ⊆ TM ⊕ T ∗M which are lagrangian with respect to the symmetric pairing and satisfy an
integrability condition with respect to the Courant-Dorfman bracket. Basic examples include
foliations, presymplectic and Poisson structures, illustrating how the Courant bracket codifies
the integrability conditions of different geometrical structures. The pairing and Courant bracket
found on the bundle TM ⊕ T ∗M naturally extend to its complexification (TM ⊕ T ∗M)C =
(TM ⊕ T ∗M) ⊗ C; the main subject of study in this thesis are the much less explored Dirac
structures in (TM ⊕ T ∗M)C, which we refer to as complex Dirac structures1.

The most studied area within generalized geometry is that of generalized complex geome-
try, as initiated by N. Hitchin in [24] in the context of low-dimensional geometry and further
developed by Gualtieri in [23]. The subject has become an active field of research in the last
15 years, especially due to its strong connections with physics (see e.g. [3, 11, 28]). Generalized
complex structures have a very rich geometry, encompassing complex and symplectic structures
as extreme examples. An important fact is that generalized complex structures are very special
types of complex Dirac structures: like any subbundle of a complex vector bundle, complex
Dirac structures have a pointwise real index, and generalized complex structures correspond
to complex Dirac structures L ⊆ (TM ⊕ T ∗M)C whose real indices vanish at all points (i.e.,
L∩L = 0). One of our main goals is to identify the geometrical structures encoded by complex
Dirac structures that do not necessarily satisfy the vanishing condition on the real index. In
contrast with generalized complex manifolds, which must be even dimensional, many of the more
general structures that we will encounter may exist in odd dimensions.

One of the motivations to pass from generalized complex structures to more general complex
Dirac structures is entirely analogous to the original motivation for considering Dirac structures
in Poisson geometry. Just as Poisson structures provide the geometrical description of phase
spaces in classical mechanics, Dirac structures were introduced to provide a geometric framework
for constrained mechanics. Constraints of mechanical systems are represented by submanifolds

1Not to be confused with holomorphic Dirac structures on complex manifolds
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of their phase spaces, and the difficulty is that, in general, submanifolds of Poisson manifolds do
not inherit a Poisson structure. In turn, modulo mild regularity conditions, such submanifolds
are naturally equipped with Dirac structures. In a similar fashion, submanifolds of generalized
complex manifolds do not generally inherit a generalized complex structure, but always carry
(modulo the same regularity conditions) complex Dirac structures, usually with non-trivial real
indices (see e.g. [5, 36] for a treatment of the special submanifolds which are again generalized
complex). In short, just as Dirac structures arise on submanifolds of Poisson manifolds, complex
Dirac structures appear on submanifolds of generalized complex manifolds.

In this thesis we begin a systematic study of complex Dirac structures; we now outline our
main contributions.

We start by studying invariants of complex Dirac structures on vector spaces. A fundamental
pointwise invariant of a generalized complex structure is an integer called its type; in fact, at
the linear-algebraic level, the type completely determines the generalized complex structure
(see [22, Theor. 4.13]). In this work we give a definition of type for any complex Dirac structure
which, in the case of generalized complex structures, is equivalent to the original notion in [22].
A complex Dirac structure of real index r is defined on spaces of dimension 2n + r, and its
type always varies from 0 to n. But in contrast with generalized complex structures, in order to
specify a complex Dirac structure at the linear-algebraic level we notice that the real index and
type are not enough; so we introduce a third invariant, which we call order (Definition 3.12),
that provides the missing information, see Proposition 3.18. The order is an integer varying from
0 to r (the real index), so for generalized complex structures, not only the real index vanishes
but also the order.

In generalized complex geometry, the examples of extreme types are symplectic (type 0) and
complex (type n). For complex Dirac structures, we have a richer situation: at the linear level,
we obtain different examples of extreme types for each order s, see Table 3.1.4. In other words,
we have one set of structures for each extreme type, 0 or n, parametrized by the order s. Passing
to manifolds, we notice that the subclass of complex Dirac structures with constant real index
and order (but not necessarily type) are the most tractable, so we focus on them. We identify
their key examples of extreme types, extending the description of extreme types of generalized
complex structures: in type 0 we have regular foliations with leafwise presymplectic forms with
regular kernel (i.e., regular Dirac structures with regular null distribution), while in type n we
have structures interpolating CR structures and transverse holomorphic structures (Proposition
4.7), which we call transverse CR structures (Definition 2.74).

Complex Dirac structures of constant real index and order include generalized complex struc-
tures and various aspects of their theory can be extended to this more general setting. For
example, an important feature of generalized complex structures is that they have an underlying
Poisson structure [14,23,28], which in turn determines a symplectic foliation on any generalized
complex manifold. More generally, we prove (Theorem 4.21)

Theorem 1.1. A complex Dirac structure with constant real index and order has an underlying
Dirac structure, which agrees with the Poisson structure of a generalized complex structure when
the real index is zero.

Since any Dirac structure gives rise to a presymplectic foliation, we obtain presymplectic
foliations associated with complex Dirac structures of constant real index and order. As we
will see below, these presymplectic leaves are a key ingredient in the local description of these
complex Dirac structures, playing a role similar to that of symplectic leaves in the local study
of generalized complex manifolds ( [1, 22]).
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We single out a class of complex Dirac structures having an associated split isotropic subbun-
dle (Definition 4.30). An interesting subset of this class is given by those having constant real
index equal to their order; in this case, their underlying Dirac structures are Poisson (Corollary
4.32); they are also special instances of the generalized CR structures of [27](Remark 4.36). Par-
ticular examples include regular foliations with leafwise generalized complex structures (Propo-
sition 4.35). Inside the complex Dirac structures having constant real index equal to their
order, those of maximal type are equivalent (via a B-transformation, possibly complex) to CR
structures (Proposition 4.7), so we refer to them as being of CR-type.

A central result in generalized complex geometry concerns the local description of generalized
complex manifolds. It is proven in [1] that, around any point, a generalized complex structure
is equivalent (via a diffeomorphism and B-transformation) to the direct product of a symplectic
structure and another generalized complex structure that, at the given point, has “complex type”
(i.e., its type at the point is maximal, or equivalently, its associated Poisson structure vanishes
at the point). Here the symplectic factor is a neighbourhood of the point in the symplectic leaf
through it, while the second factor is given by a transversal to this leaf. So this result should be
regarded as a version of Weinstein’s splitting theorem for Poisson structures [39] in generalized
complex geometry. When the type is constant around the point, this local splitting gives rise to
the generalized Darboux theorem [23, Theorem 4.35] of generalized complex structures. As we
mentioned above, in the more general context of complex Dirac structures with constant real
index and order, the analogue of points of “complex type” are the points of “CR-type” (i.e., the
real index and order coincide, and the type is maximal – or the underlying Poisson structure
vanishes). We prove in Theorem 5.10 the following local structure result:

Theorem 1.2. Let L be a complex Dirac structure with constant real index r and order s, and
let p ∈M be a point of type k. Then, locally around p, L is equivalent (via a diffeomorphism and
B-transformation) to the product of a presymplectic manifold (with (r − s)-dimensional kernel)
and a complex Dirac structure of constant real index and order equal to s and which is of CR-type
at the point p.

Analogously to the generalized complex situation, the presymplectic factor comes from the
leaf through the point, while the other factor is realized by small transversals. If the type is
constant around the point p, the transverse factor is a CR-manifold (Corollary 5.20). When
r = s = 0, we recover the known local results for generalized complex structures. Our main
tool to prove the result is the technique developed in [10] to obtain splitting theorems in various
contexts. We remark that, for generalized complex manifolds, their local description has a
further refinement proven in [4], asserting that a generalized complex structure of complex type
at a point is locally equivalent to a holomorphic Poisson structure, for some complex structure
near the point. It would be interesting to find a more general formulation of this result in our
context.

Another issue that we consider using complex Dirac structures concerns the odd dimensional
analogue of generalized complex geometry. One can view generalized complex structures as
complex Dirac structures on even dimensional manifolds with the smallest possible real index
(which is zero). Similarly, the smallest possible real index of a complex Dirac structure on an
odd-dimensional manifold is one. This leads us to give particular attention to complex Dirac
structures with real index one. We obtain in this case a complete description of these objects via
pure spinors, in a way that is parallel to the spinorial viewpoint to generalized complex structures
as in [22, Section 4.1]. We show that the pure spinors of complex Dirac structures of real index
one satisfy an additional equation that is similar to the equation for real index zero, but now
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taking the order into account (Proposition 6.17). For the spinorial description of real-index
one lagrangian subbundles of (TM ⊕ T ∗M)C, we introduce an analogue of the Chevalley-Mukai
pairing used to describe zero real index [22, Section 4.1]. The construction of this pairing, that
we denote by (·, ·)1, is an adaptation of one of the pairings described in [8]; similarly to the
Chevalley-Mukai pairing, this pairing has the property that for a pure spinor ρ with annihilator
L ⊂ (TM⊕T ∗M)C, the condition that dim(L∩L) = 1 (i.e., L has real index one) is equivalent to
(ρ, ρ)1 6= 0 (Proposition 6.6). It is mentioned in [8] that the family of pairings introduced there
has potential applications to general relativity, twistor theory and optical geometry; it would be
interesting to explore similar applications for the spinorial equation for the pairing (·, ·)1.

Looking into the future, many aspects of the theory of complex Dirac structures remain
to be explored. We mention some directions. Regarding metrics, at the end of Chapter 4 we
propose a metric theory corresponding to complex Dirac structures with constant real index;
as an example we show how strictly pseudoconvex structures fit well into this theory. It is
also natural to investigate deformations of complex Dirac structures, having the interesting
deformation theory of generalized complex structures as a motivation. In another direction, one
should extend the spinorial viewpoint presented for the case of real index one to complex Dirac
structures with arbitrary real index; a possible way is to adapt the whole family of pairings in [8]
in order to obtain the equations that the spinors associated to complex Dirac structures with
constant real index should satisfy.

The thesis is structured as follows:
Chapter 2 contains some preliminaries, including a brief review of Lie and Courant algebroids,

Dirac and generalized complex structures. We also recall CR structures and introduce the more
general concept of transverse CR structure, which plays an important role in the study of complex
Dirac structures.

We start Chapter 3 with a motivation for complex Dirac structures with non-zero real index
coming from submanifolds of generalized complex manifolds. We then discuss foundational
aspects of complex Dirac structures on vector spaces, including a definition of type (extending
the notion for generalized complex structures) and the new invariant, order. The main result
(Proposition 3.19) in this chapter is the full classification of complex Dirac structures on vector
spaces in terms of these invariants. We also discuss some basic properties of complex Dirac
structures on manifolds, some natural distributions associated with them and present examples
illustrating how real index, type and order can change.

In Chapter 4, we focus our attention on complex Dirac structures with constant real index.
We mention some topological obstructions for the existence of these objects. Under the additional
assumption of constant order, we give a full description of examples of extreme types (Proposition
4.7). In this context we also describe the natural Dirac structure associated to a complex Dirac
structure (Theorem 4.21), and discuss situations where this Dirac structure is Poisson.

In Chapter 5, after recalling some results from [10], we present the local splitting theorem
for complex Dirac structures with constant real index and order (Theorem 5.10 and Corollary
5.20).

In the last Chapter 6, we study the special case of complex Dirac structures with real index
one, with focus on the spinorial viewpoint.

In Appendix A we introduce a new class of structures inspired by the maximally nonintegra-
bility of contact structures: the nondegenerate structures.
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Chapter 2

Preliminaries

In this chapter we review some results of Lie and Courant algebroids, and Dirac and generalized
complex structures, which are fundamental for the reading of the thesis. We also show that in
order to study submanifolds of generalized complex structures we need to deal with complex
Dirac structures with nontrivial real index. At the end of the chapter we recall some classical
structures as CR structures and introduce the transverse CR structures, which will play an
important role in subsequent chapters.

2.1 Lie and Courant algebroids

We begin by recalling some definitions. In the whole thesis we deal with smooth manifolds. Let
E be a vector bundle over a manifold M , a distribution on E is an assignment to each point
p ∈ M to a subspace D|p ⊆ E|p. We say that a distribution D is of constant rank, if the
dimension of D|p is constant for all p ∈M . We say that the distribution is smooth if for every
p ∈M and ep ∈ D|p, there exist an open neighbourhood U of p and a smooth section ê ∈ Γ(E|U)
such that ê|q ∈ D|q, for all q ∈ U and ê|p = ep. A smooth distribution of constant rank is a
vector subbundle. A distribution D is called regular if it is of constant rank.

Every smooth distribution D on a vector bundle E defines a subsheaf Γ : U 7→ Γ(D|U) of the
sheaf of smooth section of E, where Γ(D|U) = {e ∈ Γ(E|U) | ep ∈ D|p, ∀p ∈ U}. The function
which assigns to each point the dimension of each space D|p has a special property.

Lemma 2.1. Let D be a smooth distribution of a vector bundle E over M . Given a point p ∈M ,
there exists an open neighbourhood U of p such that dimD|q ≥ dimD|p, for all q ∈ U .

This lemma implies that if D is a smooth distribution of a vector bundle, then the function
d(p) = dimDp is lower semi-continuous.

Along this thesis a foliation is a partition F = {lα} of an m−dimensional manifold M in
a disjoint union of immersed connected submanifolds lα called leaves, which satisfies the local
foliation property at each point p ∈ M : let lp be the leaf of F passing through p and d
the dimension of lp. Then there exists a chart (y1, . . . , ym) on a neighbourhood U(λ) of p,
U(λ) = {−λ < y1 < λ, . . . ,−λ < ym < λ} such that {yd+1 = . . . = ym = 0} = U ∩ lp
and each submanifold {yd + 1 = cd+1, . . . , ym = cm} is contained in some leaf of F , where
cd+1, . . . , cm ∈ R are small enough. Foliations are called regular if their leaves have the same
dimension. A simple foliation is a regular foliation admitting a smooth manifold B and a
submersion q : M → B such that the fibres of q are the leaves of the foliation. The space B is
called the leaf space since the map q makes a one-to-one correspondence between the points
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of B and the leaves of the foliation. Every foliation F has associated a smooth distribution TF
defined as p ∈M 7→ Tplα, where lα is the leaf passing through p.

In what follows we focus on distributions of TM , assumed to be smooth from now on. An
integral manifold of a distribution D is an immersed connected submanifold N ⊆M such that
TpN = Dp for every p ∈ N . We say that an integral manifold of a distribution D through p is
maximal if it contains every integral manifold passing through p. A distribution is integrable
if for every p ∈ M , there exists an integral manifold of D passing through p. Every integrable
distribution defines a partition of M given by its maximal integral manifolds, this partition
satisfy the local foliation property and it so is a foliation, cf. [33,34]. An involutive distribution
on TM is a distribution D such that ∀X, Y ∈ Γ(D), we have that [X, Y ] ∈ Γ(D), where [·, ·]
denotes the Lie bracket. The classical Frobenius theorem asserts that a regular distribution is
integrable if and only if it is involutive.

Involutive regular distributions are a special case of a more general kind of structures, Lie
algebroids.

Definition 2.2. A Lie algebroid over a manifold M is a vector bundle L over M together
with a Lie bracket

[·, ·]L : Γ(L)× Γ(L)→ Γ(L)

and a bundle map ρ : L→ TM called the anchor map satisfying the Leibniz property

[α, fβ] = f [α, β] + ρ(α)(f)β,

for all α, β ∈ Γ(L) and f ∈ C∞(M).

Example 2.3. The tangent bundle TM is a Lie algebroid with a bracket given by the Lie bracket
and the identity map as anchor map.

Example 2.4. Poisson structures induce Lie algebroid structures on T ∗M in the following way.
Consider π a Poisson bivector on M , then (T ∗M,π, [·, ·]π) is a Lie algebroid. Here the anchor
map is the Poisson bivector itself seen as a map π : T ∗M → TM ; π defines naturally the bracket
[·, ·]π in the following way

[α, β]π = Lπ(α)β − Lπ(β)α− d(π(α, β)), (2.1)

where α, β ∈ Γ(T ∗M).

As a consequence of the local splitting theorem for Lie algebroids [21] we have the following:

Proposition 2.5. The distribution defined by the image of the anchor map of a Lie algebroid is
integrable.

There is a replacement for TM more appropriate in our context, the generalized tangent
bundle TM ⊕ T ∗M . This bundle has a natural nondegenerate symmetric pairing

〈X + ξ, Y + η〉 =
1

2
(η(X) + ξ(Y ))

where X + ξ, Y + η ∈ TM ⊕ T ∗M and inherits a bracket on Γ(TM ⊕ T ∗M)

[X + ξ, Y + η] = [X, Y ] + LXη − ιY dξ,

where X + ξ, Y + η ∈ Γ(TM ⊕ T ∗M), called the Courant-Dorfman bracket [13, 16]. The
bundle TM ⊕ T ∗M with the pairing and bracket described above is a special case of a more
general structure.
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Definition 2.6 ([29], [31]). Let E be a vector bundle over the manifold M equipped with a
bundle map ρ : E → TM , a nondegenerate symmetric pairing 〈·, ·〉 and a bilinear bracket [·, ·].
We say that (E, 〈·, ·〉, [·, ·], ρ) is a Courant algebroid if it satisfies the following conditions:

a) [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]],∀e1, e2, e3 ∈ Γ(E)

b) ρ[e1, e2] = [ρ(e1), ρ(e2)],∀e1, e2 ∈ Γ(E)

c) [e1, fe2] = f [e1, e2] + ρ(e1)(f)e2,∀e1, e2, e3 ∈ Γ(E)

d) ρ(e)〈e1, e2〉 = 〈[e, e1], e2〉+ 〈e1, [e, e2]〉,∀e, e1, e2 ∈ Γ(E)

e) [e, e] = D〈e, e〉, ∀e ∈ Γ(E)

here we denote D the following map

D : C∞(M)→ Γ(E)

Df =
1

2
ρ∗df,

where we see ρ∗df as an element of E via the isomorphism given by twice the pairing.
From axiom e), we note that the bracket [·, ·] is not skew-symmetric. However, the following

holds
[e1, e2] = −[e2, e1] + 2D〈e1, e2〉. (2.2)

We say that a distribution of a Courant algebroid is involutive if it is closed under the bracket.

Lemma 2.7. Let A be an involutive isotropic subbundle (A ⊆ A⊥) of a Courant algebroid E.
Then A inherits a Lie algebroid structure coming from the restriction of the anchor map and
bracket of E.

Proof. The bracket restricted to the isotropic A is skew-symmetric by equation (2.2), by item
a) is a Lie bracket and by item c) it satisfies the Leibniz property.

Examples 2.8. We give some examples of Courant algebroids:

a) The bundle TM ⊕ T ∗M itself with anchor the projection onto TM , the usual pairing and
the bracket

[X + ξ, Y + η]H = [X, Y ] + LXη − ιY dξ + ιY ιXH,

for some H ∈ Ω3
cl(M).

b) Let g be a quadratic Lie algebra, i.e, a Lie algebra g together with a nondegenerate
symmetric pairing 〈·, ·〉 : g× g→ R such that

〈[X, Y ], Z〉+ 〈Y, [X,Z]〉 = 0.

Then, g is a Courant algebroid over a point.
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c) Suppose A is Lie algebroid, with anchor map a, such that its dual A∗ is a Lie algebroid with
anchor map a∗. We call the pair (A,A∗) a Lie bialgebroid if the differential d∗ associated
to A∗ satisfies

d∗[a1, a2]A = [d∗a1, a2]A + [a1, d∗a2]A,

where [·, ·]A is the Schouten bracket associated to A. The vector bundle A⊕A∗ is a Courant
algebroid with the obvious pairing and the following bracket

[X1 + α1, X2 + α2] = ([X1, X2] + Lα1X2 − ια2d∗X1) + ([α1, α2] + LX1α2 − ιX2dα1), (2.3)

where X1 + α1, X2 + α2 ∈ Γ(A⊕ A∗).

Definition 2.9. Let (Ek, 〈·, ·〉k, [·, ·]k, ρk) be two Courant algebroids over the manifold M , where
k = 1, 2. An isomorphism of the Courant algebroids E1 and E2 is a pair (F, f), where
F : E1 → E2 is a bundle isomorphism covering a diffeomorphism f : M → M satisfying
the following:

a) f ∗〈F (e1), F (e2)〉2 = 〈e1, e2〉1, ∀e1, e2 ∈ E1,

b) F [e1, e2]1 = [F (e1), F (e2)]2, ∀e1, e2 ∈ E1,

c) ρ2 ◦ F = f∗ ◦ ρ1.

When considering the same Courant algebroid (E, 〈, 〉, [, ], ρ) we obtain the definition of an
automorphism of a Courant algebroid. In what follows we focus on Courant automorphisms
rather than on isomorphisms. The set of all automorphisms of a Courant algebroid is a group
denoted by AutCA(E).

We recall that the automorphisms of a Lie algebroid are vector bundle automorphism pre-
serving the Lie bracket. It is known that the automorphism group of the Lie algebroid TM with
the Lie bracket is Diff(M), cf. [22]. We will see that the automorphism group of the Courant
algebroid TM ⊕ T ∗M contains the automorphism group of the Lie algebroid TM with the Lie
bracket. Consider ϕ ∈ Diff(M); then the bundle map

Tϕ : TM ⊕ T ∗M → TM ⊕ T ∗M

Tϕ(X + ξ) = ϕ∗X + (ϕ−1)∗ξ

is an automorphism of TM ⊕ T ∗M . The operator T is called generalized differential.
Given a two-form B, there is an automorphism of the vector bundle TM ⊕ T ∗M denoted by

eB, defined in the following way

eB(X + ξ) = X + ξ + ιXB.

These maps usually do not preserve the Courant-Dorfman bracket, actually we have the following

[eB(X + ξ), eB(Y + η)] = eB[X + ξ, Y + η] + ιXιY dB,

where X, Y ∈ TM and ξ, η ∈ T ∗M . So when B is closed, eB is an automorphism of (TM ⊕
T ∗M, 〈·, ·〉 [·, ·], prTM), called B-transformation or B-fields.

The automorphisms of (TM⊕T ∗M, 〈·, ·〉, [·, ·], prTM) are generated by diffeomorphisms of M
and B-transformations.
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Proposition 2.10 ([23]). The automorphism group of (TM ⊕ T ∗M, 〈·, ·〉, [·, ·], prTM), is given
by the pairs (F,B) ∈ Diff(M)× Ω2

cl(M) via the map

Diff(M)× Ω2
cl(M)→ AutCA(TM ⊕ T ∗M)

(F,B) 7→ TF ◦ eB.

From the Proposition we obtain the following exact sequence:

0 // Ω2
cl(M) // AutCA(TM ⊕ T ∗M, 〈·, ·〉, [·, ·], prTM) // Diff(M) // 0, . (2.4)

Definition 2.11. The infinitesimal automorphisms of a Courant algebroid Der(E) are given
by first order differential operators D : Γ(E)→ Γ(E) such that there exists X ∈ X(M) satisfying:

a) X〈e1, e2〉 = 〈De1, e2〉+ 〈e1, De2〉,

b) D[e1, e2] = [De1, e2] + [e1, De2],

where e1, e2 ∈ Γ(E). The vector field X is called the symbol of D.

The set of all infinitesimal automorphisms of a Courant algebroid is a Lie algebra with bracket
given by the commutator and denoted by aut(E) as it is the Lie algebra of AutCA(E).

Corollary 2.12 ([23]). We have that the map

X(M)× Ω2
cl(M)→ aut(TM ⊕ T ∗M)

defined by the natural action of X(M)× Ω2
cl(M) over Γ(TM ⊕ T ∗M) given by

(X, b) · (Y + η) = LX(Y + η) + ιY b

is an isomorphism.

Examples 2.13. Consider X + ξ ∈ Γ(TM ⊕ T ∗M). The map

adX+ξ : Γ(TM ⊕ T ∗M)→ Γ(TM ⊕ T ∗M)

adX+ξ(Y + η) = [X + ξ, Y + η]

is an infinitesimal automorphism. Moreover, we have that it corresponds to the pair (X,−dξ) ∈
X(M)× Ω2(M).

From now on we also denote the Courant and the infinitesimal automorphisms as pairs
(F, ω) ∈ Diff(M)× Ω2

cl and (X,ω) ∈ X(M)× Ω2
cl, respectively.

Definition 2.14. An exact Courant algebroid E is a Courant algebroid fitting into the
following exact sequence:

0 // T ∗M
ρ∗ // E

ρ // TM // 0 . (2.5)

Remark 2.15. There is a classification of exact Courant algebroids given by Severa [32]. Given
an exact Courant algebroid (E, 〈·, ·〉, [·, ·], ρ), there exist a closed three-form H such that E is
isomorphic to (TM ⊕ T ∗M, 〈·, ·〉, [·, ·]H , prTM).
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Until now we have only treated Courant and Lie algebroids over real vector bundles. However,
we will deal with these structures in the complex setting. So we make some remarks about
(TM ⊕ T ∗M)C as a “complex Courant algebroid”; later in Chapter 3 we will speak about
complex Lie algebroids. The bundle (TM ⊕ T ∗M)C inherits a pairing and a bracket which are
the complexification of both the canonical pairing and the Courant-Dorfman bracket, and has
anchor map prTMC . Its automorphisms are defined in the same way as for Courant algebroids.
On one hand we have the symmetries defined by Diff(M), given ϕ ∈ Diff(M), we have that
the complexification of Tϕ is a symmetry. On the other hand we have the symmetries given
by complex two-forms: consider a complex closed two-form B, the bundle map eB (defined as
in the real case) is also a symmetry of (TM ⊕ T ∗M)C, we call these transformations complex
B-transformations.

2.2 Dirac structures on vector spaces

In this section we begin by recalling the definition and some results related to Dirac structures
on vector spaces and the spinors associated to them.

2.2.1 Dirac structures

Let V be a finite dimensional vector space over the field K = R or C. The vector space V ⊕ V ∗
has a canonical pairing defined as:

〈X + ξ, Y + η〉 =
1

2
(ξ(Y ) + η(X)),

where X + ξ, Y + η ∈ V ⊕ V ∗. A lagrangian subspace of V ⊕ V ∗ is an isotropic subspace of
V ⊕ V ∗ of maximal dimension.

Definition 2.16 ([13]). A Dirac structure on a vector space V is a lagrangian subspace of
V ⊕ V ∗ with respect to the canonical pairing.

There are some subspaces of V related to these structures. The range of a Dirac structure
L is defined as prVL and the kernel of L is defined as kerL = L ∩ V .

Note that associated to any Dirac structure, there is a map

εL : prVL× prVL→ K

εL(X, Y ) = η(X),

where X + ξ, Y + η ∈ L for some ξ, η ∈ V ∗. The map εL is well defined and skew-symmetric.
The subspace prVL and the two-form εL determine completely the Dirac structure L. Let

E ⊆ V and ε ∈ ∧2E∗. We define

L(E, ε) = {X + ξ | ξ|E = ιXε}.

We recover a Dirac structure from its range and two-form as L = L(prVL, εL).

Proposition 2.17. Every Dirac structure of V ⊕ V ∗ is of the form L(E, ε), for some E ⊆ V
and ε ∈ ∧2E∗.
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Definition 2.18. Let ϕ be a linear map from V to W and LV , LW be Dirac structures on the
vector spaces V and W , respectively. The backward image of LW , denoted by Bϕ(LW ) is the
subspace

{X + ϕ∗ξ | ϕ∗X + ξ ∈ LW} ⊆ V ⊕ V ∗.
The forward image of LV , denoted by Fϕ(LV ) is the subspace

{ϕ∗X + ξ | X + ϕ∗ξ ∈ LV } ⊆ W ⊕W ∗.

Proposition 2.19 ([9]). Let ϕ be a linear map from V to W and LV , LW be Dirac structures
on V and W , respectively. Then, Bϕ(LW ) and Fϕ(LV ) are Dirac structures on V and W ,
respectively.

We will see that the backward image of a Dirac structure fits into a exact sequence, a fact
that will be used in Chapter 4. Consider the linear map ϕ : V → W and a Dirac structure LW
on W . Consider the subspace

Γϕ = {(Y + η,X + ξ) | Y = ϕ(X), ξ = ϕ∗η} ⊆ (W ⊕W ∗)× (V ⊕ V ∗),

where (V ⊕ V ∗) denotes the vector space V ⊕ V ∗ equipped with the pairing −〈·, ·〉. Note that
Γϕ is a lagrangian subspace of (W ⊕W ∗)× (V ⊕ V ∗). Then the backward image of LW fits into
the following exact sequence

0 // ker(ϕ∗) ∩ LW // (LW ⊕ (V ⊕ V ∗)) ∩ Γϕ // Bϕ(LW ) // 0 (2.6)

where the first map is the inclusion η 7→ (η, 0) and the second is the projection prV⊕V ∗ .
In order to recall the definition of a generalized complex structure, we make a discussion

about real parts that will be also useful in the following chapter.

Definition 2.20. Let W be a real vector space and A ⊆ WC. If A = A or equivalently A = VC
for some subspace V of W , we say that A is real, and we call V the real part of A and denote
it as ReA.

Note that the space A ∩ A is always real and actually

Re(A ∩ A) = A ∩W = {s ∈ A | s is real},

here we use the identification WC = W ⊕ iW , where real elements are elements of W . Note that
A ∩ A is the maximal real subspace contained in A.

Definition 2.21. The real index of A is dimCA ∩ A.

The real index measures how big the space of real elements of the vector space is. For example
if A is real, i.e. A = A, then its real index is dimA. However, if its real index is zero, then
A ∩ A = 0 implying that A = ker(JC − iId) for a complex structure J on Re(A⊕ A).

Definition 2.22. Let V be a real vector space. A generalized complex structure on V is a
lagrangian subspace of (V ⊕ V ∗)C which has real index zero.

As the existence of complex structures on a vector space implies that the dimension of the
vector space is even, the same happens for generalized complex structures.

Proposition 2.23 ([22]). If a vector space V admits a generalized complex structure, then V is
even dimensional.

We will talk more about these structures in the next sections

15



2.2.2 Spinors

Let V be a complex or real m−dimensional vector space and consider S =
∧• V ∗, the space

of spinors associated to V . The elements of S are called spinors. There exists an action of
V ⊕ V ∗ on S, given by

(X + ξ) · ρ = ιXρ+ ξ ∧ ρ,

where X + ξ ∈ V ⊕ V ∗ and ρ ∈ S. Given a spinor ρ we associate an isotropic space

Lρ = {X + ξ ∈ V ⊕ V ∗ | (X + ξ) · ρ = 0},

which is called the annihilator of ρ. Note that the annihilator depends on the conformal class
of the spinor.

Definition 2.24. A spinor ρ is said to be pure if its annihilator Lρ is a lagrangian subspace of
V ⊕ V ∗.

We present some examples of pure spinors.

Example 2.25. (Exponential of two-forms) Let B ∈ ∧2V ∗, the exponential of B is the spinor

eB =
∑
j

Bj

j!
,

where Bj = B ∧ · · · ∧B, j times. We note that the annihilator of eB is the graph of B and thus
eB is a pure spinor.

Example 2.26. (Annihilator) Let θ1, . . . , θk ∈ V ∗ linearly independent; the spinor Ω = θ1 ∧
. . . ∧ θk is pure and its annihilator is L(E, 0), where E =

⋂
j ker θj.

We also have the following.

Proposition 2.27 ([12]). Any lagrangian subspace of V ⊕ V ∗ is the annihilator of some pure
spinor. This spinor is unique up to multiplication by scalars.

A spinor associated to a lagrangian subspace is given in the following way: given a lagrangian
L by Proposition 2.17, there exist E ⊆ V and ε ∈ ∧2E∗ such that L = L(E, ε). Consider a
two-form B extending ε and pick out a generator Ω of det AnnE. The spinor ρ = eB ∧Ω is pure
and actually its annihilator is L. Then we have the following.

Corollary 2.28 ([12]). Let ρ be a pure spinor over a complex vector space V . Then there exists
c ∈ C− {0}, B,ω ∈ ∧2V ∗ and linearly independent θ1, . . . , θk ∈ V ∗ such that

ρ = ceB+iω ∧ θ1 ∧ . . . ∧ θk.

The space of spinors decomposes as

S = Sev ⊕ Sodd,

where Sev = ∧evV ∗ and Sodd = ∧oddV ∗. Let ᵀ : S → S denote the anti-involution on S defined
on decomposable form in the following way

(e1 ∧ · · · ∧ ek)ᵀ = ek ∧ · · · ∧ e1,
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where ej ∈ V ∗. Then we extend linearly for the rest of elements of S. Recall that if α ∈ ∧kV ∗,
then

αᵀ = (−1)
k(k−1)

2 α. (2.7)

One important property of the spinors is that they can detect some transversality properties of
lagrangian subspaces of V ⊕ V ∗.

Definition 2.29 ([12]). The Chevalley pairing is defined as

(·, ·)0 : S × S → det(V ∗)

(ρ, τ)0 = (ρᵀ ∧ τ)top,

where ρtop denotes the homogeneous component of ρ with degree equal to the dimension of the
vector space.

The Chevalley pairing satisfies the following properties:

Lemma 2.30. If dimV is even then (·, ·)0 is zero when restricted to Sev×Sodd and to Sodd×Sev.
On the other hand, if dimV is odd then (·, ·)0 is zero when restricted to Sev × Sev and to
Sodd × Sodd.

Lemma 2.31. On an m−dimensional vector space V , the pairing (·, ·)0 satisfies

(ρ, τ)0 = (−1)
m(m−1)

2 (τ, ρ)0.

Lemma 2.32. Let ρ1, ρ2 be two spinors. Then

(u · ρ1, u · ρ2)0 = (ρ1, ρ2)0,

for all u ∈ Spin0(V ⊕ V ∗), where Spin0(V ⊕ V ∗) is the identity component of Spin(V ⊕ V ∗) =
{v1 . . . vr |〈vi, vi〉 = ±1 and r is even} in the Clifford algebra of V ⊕V ∗ with the canonical pairing.

The main property of the Chevalley pairing is the following.

Proposition 2.33. Let ρ and τ be pure spinors. Then Lρ ∩Lτ = {0} if and only if (ρ, τ)0 6= 0.

Next we recall the spinorial description of a generalized complex structure on a vector space V .

Proposition 2.34. Let ρ be a pure spinor on (V ⊕ V ∗)C, where V is a 2n-dimensional real
vector space and let B,ω ∈ ∧2V ∗, θ1, . . . , θk such that ρ = ceB+iω ∧ θ1 ∧ . . . ∧ θk. Then, Lρ is a
generalized complex structure on V if and only if

ωn−k ∧ θ1 ∧ . . . ∧ θk ∧ θ1 ∧ . . . ∧ θk 6= 0.

2.3 Dirac structures on manifolds

2.3.1 Dirac manifolds

Now we review some properties of Dirac structures on manifolds.
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General theory

Definition 2.35 ([13]). A Dirac structure is a lagrangian subbundle of TM ⊕ T ∗M , whose
space of sections is closed under the Courant-Dorfman bracket.

Examples 2.36. We give some examples of Dirac structures

a) Presymplectic structures: let ω ∈ Ω2(M) be a closed two-form. Then

Lω = {X + ιXω |X ∈ TM}

is a Dirac structure.

b) Poisson structures: let π be a Poisson structure. Then

Graph(π) = {ιξπ + ξ | ξ ∈ T ∗M}

is a Dirac structure.

The range distribution is defined as in the linear case by

E = prTML.

This is a smooth distribution which is not necessarily regular. By Lemma 2.7, Dirac structures
are Lie algebroids. Then by Proposition 2.5, the range distribution is integrable. Given a Dirac
structure L, we note that L|p is a Dirac structure on TpM . Consequently we obtain, as in the
linear case, a skew-symmetric bilinear map εL : E × E → R. If we take a leaf S of the range
distribution, the two-form εL|TS×TS becomes a presymplectic two-form on S.

Proposition 2.37 ([13]). The range distribution of a Dirac structure is integrable and each leaf
inherits a presymplectic form.

If we look back at the examples, we have that in the case of a Poisson structure we obtain
a symplectic foliation and in the case of a presymplectic structure the foliation consists of the
connected components of the manifold with the presymplectic structure itself. The leaves of the
range distribution associated to a Dirac structure satisfy a parity property.

Proposition 2.38 ([20]). Given a Dirac structure on a connected manifold, then the leaves of
its presymplectic foliation are all even-dimensional or all odd-dimensional.

Proposition 2.39 ([20]). Let L be a Dirac structure and a point p ∈ M . If the presymplectic
leaf passing through p is a single point, then on a neighbourhood of p, L is the graph of a Poisson
structure.

There is another distribution associated to a Dirac structure. The one given by

p 7→ kerL|p = L|p ∩ TpM

which is called the null distribution. It is not always smooth, although when the null distri-
bution is of constant rank then it is smooth and integrable. Its associated foliation is called the
null foliation. In the case of the graph of a Poisson structure, the null distribution is trivial.
In the case of the graph of a presymplectic structure the null distribution is the kernel of the
presymplectic structure. In fact, we have that if E ⊆ TM and ε ∈ ∧2E∗

L(E, ε) ∩ TM = ker ε.

We have the following characterization of Poisson and presymplectic structures in terms of its
intersection with TM and T ∗M .
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Proposition 2.40. Let L be a Dirac structure. Then

1. L is the graph of a Poisson structure if and only if L ∩ TM = 0.

2. L is the graph of a presymplectic structure if and only if L ∩ T ∗M = 0.

A regular Dirac structure is a Dirac structure whose range distribution is regular. Regular
Dirac structures are of the form L(E,ω) where E is a regular distribution of TM and ω ∈ ∧2E∗.
Actually we have the following.

Proposition 2.41 ([23]). Let L be a lagrangian subbundle of TM ⊕ T ∗M . Assume that there
exists a regular distribution E on TM and ε ∈ ∧2E∗ such that L = L(E, ε). Then L is a
Dirac structure if and only if E is involutive and dEε = 0, where dE is the differential along the
directions of E.

Backward and forward images

Next we study the backward and forward image of Dirac structures. Consider a map ϕ : M → N
and the Dirac structures LM and LN over M and N respectively. The backward and forward
image of these Dirac structures are defined as follows

Bϕ(LN)|x = {X + ϕ∗ξ | ϕ∗X + ξ ∈ LN |ϕ(x)} ⊆ TxM ⊕ T ∗xM,

Fϕ(LM)|x = {ϕ∗X + ξ | X + ϕ∗ξ ∈ LM |x} ⊆ Tϕ(x)N ⊕ T ∗ϕ(x)N,

where x ∈M . Note that Bϕ(LN) ⊆ (TM ⊕ T ∗M) and Fϕ(LM) ⊆ ϕ∗(TN ⊕ T ∗N) are pointwise
lagrangian but they are not necessarily smooth vector bundles. In order to assure smoothness
we need to impose some conditions on the map ϕ and the Dirac structures.

Proposition 2.42 ([9]). Suppose ϕ : M → N is a smooth map and LN is a lagrangian subbundle
of TN ⊕ T ∗N . If ker((dϕ)∗)∩ ϕ∗LN has constant rank, then Bϕ(LN) is a lagrangian subbundle.
If Bϕ(LN) is smooth and LN is integrable, then Bϕ(LN) is a Dirac structure.

The case of the forward image Fϕ(LM) is more delicate, since it does not define a Dirac
structure on the whole manifold N . For this reason we need an invariance condition on the Dirac
structure LM with respect to the map ϕ. We say that the Dirac structure LM is ϕ-invariant if

Fϕ(LM)|x = Fϕ(LM)|x′

for every x, x′ ∈M such that ϕ(x) = ϕ(x′).

Proposition 2.43 ([9]). Suppose ϕ : M → N is a surjective submersion and LM is a lagrangian
subbundle of TM ⊕ T ∗M . If ker(dϕ) ∩ LM has constant rank, then Fϕ(LM) is a lagrangian
subbundle of ϕ∗(TN ⊕T ∗N). If Fϕ(LM) is smooth and LM is ϕ-invariant, then Fϕ(LM) defines
a lagrangian subbundle of TN ⊕ T ∗N , which is integrable in case LM is integrable.

The property of ker((dϕ)∗)∩ϕ∗LN or ker(dϕ)∩LM having constant rank is usually referred
to as clean intersection.

The following well-known result tells us that the forward image and the null distribution play
a role in the reduction of a Dirac structure to a Poisson structure.

Proposition 2.44 ([13]). Consider a Dirac structure L with simple null foliation and leaf space
B realized by the submersion ϕ : M → B. Then Fϕ(L) defines a Poisson structure on B.

19



The proof is based on the following lemma:

Lemma 2.45 ([9]). If ϕ : M → N is a surjective submersion whose fibres are connected and L
is a lagrangian subbundle of TM ⊕ T ∗M such that ker dϕ ⊆ L ∩ TM , then L is ϕ-invariant.

Proof of Proposition 2.44. We note that ker dϕ = L ∩ TM . Since the fibres of ϕ are leaf of
L∩TM , they are connected. Consequently, L is ϕ-invariant and applying the clean intersection
property we obtain that Fϕ(L) is a Dirac structure over B. Note also that Fϕ(L)∩TB = 0 and
hence L is the graph of a Poisson structure.

For this reason Dirac structures are regarded as pre-Poisson structures.

Preliminaries on complex Dirac structures

Until now we only saw Dirac structure in the real setting, now we present its complex counterpart:
the complex Dirac structures.

Definition 2.46. A complex Dirac structure is an involutive lagrangian subbundle of (TM⊕
T ∗M)C.

We present one example of a complex Dirac structure. In Sections 2.5 and 3.2 we will give
more examples.

Examples 2.47. Consider ω ∈ Ω2
cl(M). Then Liω = L(TMC, iω) is a complex Dirac structure.

Complex Dirac structures do not satisfy the same properties of Dirac structures, to start
with the range of a complex Dirac structure is not a real distribution and so we cannot obtain a
foliation from the range distribution. But other properties are satisfied with slight modifications.

The definitions of backward and forward images remain the same. We next see the conditions
for the backward image being smooth. Let ϕ : M → N be a smooth map. Its differential defines
the bundle map dϕ : TM → ϕ∗TN . Let dϕC denote the complexification of this bundle map.

Proposition 2.48. Suppose ϕ : M → N is a smooth map and LN is a lagrangian subbundle of
(TN ⊕T ∗N)C. If ker((dϕC)∗)∩ϕ∗LN has constant rank, then Bϕ(LN) is a lagrangian subbundle
of (TM ⊕ T ∗M)C. If Bϕ(LN) is smooth and LN is integrable, then Bϕ(LN) is a complex Dirac
structure.

The proof is identical to the Dirac case. When the distribution ker((dϕC)∗) ∩ ϕ∗LN has
constant dimension, we say that the map ϕ and the complex Dirac structure satisfy the clean
intersection property.

Example 2.49. Let C
ι
↪−→ M be a submanifold and L a complex Dirac structure over M . The

clean intersection property is equivalent to Ann(TCC) ∩ L|C having constant rank.

Definition 2.50. Let C be a submanifold of M and L a complex Dirac structure. We say that
C is transversal to L if

TCC + prTMCL|C = (TMC)|C .

Remark 2.51. We note that if C is transversal to the complex Dirac structure L, then L satisfies
the clean intersection property with respect to the inclusion ι and so Bι(L) is a complex Dirac
structure over C.

In the next chapter we will develop the general theory of complex Dirac structures.
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2.3.2 Spinors on manifolds

Let M be a manifold, consider the bundle S

S = ∧•(T ∗M)C.

The sections of S are called spinors. As in Section 2.2.2, there is an action of (TM ⊕ T ∗M)C on
S, given by

(X + ξ) · ρ = ιXρ+ ξ ∧ ρ,
where X ∈ TMC, ξ ∈ TM∗

C and ρ ∈ S.
The annihilator of a spinor and pure spinors are defined as in Section 2.2.2. The annihilator

of a pure spinor is, by definition a lagrangian subbundle of (TM ⊕ T ∗M)C. If a lagrangian L
is the annihilator of a pure spinor ρ, we say that ρ is the spinor associated to L; note that if L
has associated a spinor ρ then ρ multiplied by any nowhere vanishing function is also a spinor
associated to L, consequently, is unique up to multiplication by scalars. It usually happens that
a lagrangian subbundle does not necessarily have associated a pure spinor. However, around
any point of M , there is neighbourhood U such that L|U has associated a pure spinor ρU and so
the trivial line subbundle of S having as generator ρU . Consequently, there is a cover of open
subsets of M and trivial lines subbundles of S on each open of this cover. Gluing these trivial
lines subbundle we obtain a line subbundle of S usually called the pure spinor line bundle.
Thus the object associated to a lagrangian subbundle is not a pure spinor but a line subbundle
of S.

All the other results and examples of Section 2.2.2 apply to the spinors on M , including the
results related to the Chevalley pairing. The involutivity of a lagrangian subbundle is represented
in term of spinors in the following way.

Proposition 2.52 ([23]). Let L be a lagrangian subbundle of (TM⊕T ∗M)C. Then L is involutive
if and only if for any local trivialization ρ of its associated spinor line bundle, there exist a local
section X + ξ of (TM ⊕ T ∗M)C such that

dρ = (X + ξ) · ρ.

2.4 Generalized complex structures

In this section we recall the basic properties of generalized complex structures. We can mimic
the definition of an almost complex structure for any vector bundle p : E → M by just asking
for maps J : E → E covering the identity map on M such that J2 = −Id. In order to define the
integrability condition for these almost complex structures, we need a bracket on sections of E.
Courant algebroids, in particular TM ⊕T ∗M , have this feature. Most of the material presented
here comes from [22].

Definition 2.53. A generalized almost complex structure is a bundle map

J : TM ⊕ T ∗M → TM ⊕ T ∗M,

J =

(
A π
ω −A∗

)
such that J 2 = −1 and J ∗ = −J . A generalized almost complex structure which satisfies that
NJ = 0, where

NJ = [JX,J Y ]− [X, Y ]− J ([JX, Y ] + [X,J Y ])
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is the Nijenhuis tensor associated to the Courant-Dorfman bracket, is called a generalized
complex structure.

In the classical setting, there are many alternative ways to define a complex structure. We
can define it as a maximal rank involutive complex distribution of TMC which is transversal to
its conjugate. Also as a local holomorphic volume form. In the generalized setting we obtain a
similar description.

Proposition 2.54. The following are equivalent:

a) A generalized complex structure.

b) A complex Dirac structure such that L ∩ L = 0.

c) A line subbundle K of ∧•T ∗MC satisfying the following

i) If ρp ∈ K|p − {0}, then ρp is a pure spinor.

ii) If ρp ∈ K|p − {0}, then (ρp, ρp)0 6= 0.

iii) For any local trivialization ρ of K, there exists X + ξ ∈ Γ(TM ⊕ T ∗M)C such that
(X + ξ) · ρ = dρ.

There are some obstructions for the existence of generalized almost complex structures.

Proposition 2.55. A manifold admits an generalized almost complex structure if and only if it
admits an almost complex structure.

As an immediate consequence we get the following:

Corollary 2.56. If a manifold admits an generalized almost complex structure, then it has even
dimension.

After this corollary we can ask what kind of structure an odd-dimensional manifold could
admit. We see in the following chapter that we need to weaken the condition of real index zero
on complex Dirac structures.

Examples 2.57. We present some basic examples:

a) Symplectic structures: let ω be a symplectic structure on a 2n-dimensional manifold M .
Then

Jω =

(
0 −ω−1

ω 0

)
is a generalized complex structure with associated subbundle

Liω = {X − iιXω | X ∈ TMC}

and spinor ρ = eiω.

b) Complex structures: let J be a complex structure on M2n. Then

JJ =

(
−J 0
0 J∗

)
is a generalized complex structure with associated subbundle

LJ = T0,1 ⊕ T ∗1,0
and spinor ρ = Ωn,0 a holomorphic volume form which is defined locally.

22



c) Holomorphic Poisson structures ([26]): let J be a complex structure over M and π be a
holomorphic Poisson structure with respect to J , i.e. π ∈ ∧2TMC such that π = P + iQ,
where P,Q ∈ ∧2TM , P is a Poisson structure, P = QJ∗, JQ = QJ∗ and

[α, β]QJ∗ = [J∗α, β]Q + [α, J∗β]Q − J∗[α, β]Q,

where α, β ∈ Γ(T ∗M) and [·, ·]Q and [·, ·]QJ∗ are the brackets associated to Q and QJ∗ as
in equation (2.1). Consider the bundle map given by

J =

(
−J P
0 J∗

)
.

Then J defines a generalized complex structure.

Each generalized complex structure L with associated bundle map J has associated the
following distributions

E = prTMCL ⊆ TMC, ∆ = ReE ∩ E ⊆ TM

and the pointwise defined two-form
ω∆ = Im ε|∆,

where Im means the imaginary part of the two-form. We have the following:

Proposition 2.58. The distribution (∆, ω∆) is integrable and every leaf inherits a symplectic
structure.

In this case the symplectic distribution (∆, ω∆) corresponds to the symplectic distribution
associated to the Poisson structure π = prTMJ |T ∗M :

Proposition 2.59 ([23]). The bivector π is a Poisson structure and its associated symplectic
foliation is given by (∆, ω∆).

Now we present the principal invariant of generalized complex structures.

Definition 2.60. The type of a lagrangian subbundle L of (TM ⊕ T ∗M)C at a point p ∈ M
is defined as codimC(prTMCL|p). If L is a generalized complex structure over a 2n-dimensional
manifold, then its type varies from 0 to n.

From the examples we note that symplectic structures have type 0, complex structures type n
and it can be proved that holomorphic Poisson structures has a type that could vary in-between
0 and n. Moreover we see that the extreme types are well identified.

Proposition 2.61. Let L be a generalized complex structures over a 2n-dimensional manifold.
If L has constant type 0, then L is a B−transformation of a symplectic structure. If L has
constant type n, then L = eBLJ , where LJ is the generalized complex structure associated to a
complex structure J on M and B ∈ Ω2(M,C) is a ∂-closed (2, 0)-form.

Consider generalized complex structures L1 and L2 over the manifolds M1 and M2 respec-
tively. Let πi : M1 ×M2 →Mi denote the canonical projections of the product manifold.

Proposition 2.62. The bundle L = π∗1L1⊕π∗2L∗2 is a generalized complex structure over M1×M2.
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We call L the product of generalized complex structures. If the spinors associated
to the generalized complex structures L1 and L2 are ρ1 and ρ2 respectively, then the spinor
associated to the product of generalized structures is π∗1ρ1 ∧ π∗2ρ2.

Abouzaid and Boyarshenko proved a Weinstein splitting-like theorem for generalized complex
structures.

Theorem 2.63 ([1]). Let L be a generalized complex structure over M and let p ∈ M . Then,
there exists a neighborhood U , a closed two-form B, a symplectic structure ω and a generalized
complex structure L′ such that

L|U ∼= eB(L′ × Liω).

Moreover, the Poisson structure π′ associated to L′ vanishes at p.

The previous theorem is more accurate for generalized complex structures having a regular
presymplectic distribution or equivalently having constant type.

Definition 2.64. Let L be a generalized complex structure. We say that a point p in M is
regular if there exist a neighborhood of p where the type is constant.

We next recall a more precise splitting theorem for generalized complex structures around
regular points which tells us what happens in-between the extreme types and also shows the
importance of the type in the local geometry of generalized complex structures.

Theorem 2.65. (Darboux theorem for regular generalized complex structures, [22]) Around any
regular point of type k of a generalized complex structure L, we can find a neighbourhood U of
the point such that L|U is equivalent via diffeomorphism and B-transformation to the product
of the generalized complex structure associated to the canonical complex structure of Ck and the
generalized complex structure associated to the canonical symplectic structure of R2(n−k).

2.5 Submanifolds of generalized complex structures

Now we study submanifolds of generalized complex structures from the point of view of pull-
backs of complex Dirac structures as suggested in [5,36]. This point of view is different from the
proposed originally in [22].

Consider a manifold M , a submanifold N
ι
↪−→ M and a generalized complex structure L on

M . The complex Dirac structure Bι(L) is no longer a generalized complex structure, as we can
see in the following examples.

Examples 2.66. Let N
ι
↪−→M be a submanifold.

a) Let ω ∈ Ω2(M) be a symplectic structure and Liω the generalized complex structure given
by the graph of iωC. Note that Bι(Liω) is the graph of the presymplectic structure iι∗ωC.
Moreover, Bι(Liω) ∩ Bι(Liω) = (ker ι∗ω)C and then Liι∗ω = Bι(Liω) has as real index the
dimension of ker ι∗ω. Consequently, Liω is not a generalized complex structure.

b) Let J be an almost complex structure on M , let LJ denote its associated generalized
almost complex structure and assume that N has codimension-one on M . Consider D =
TN ∩ J(TN), since J(D) = D, we have that (J |D)2 = −Id, i.e. (D, J) is an almost
CR structure of corank one in N . Let L = L(ker((J |D)C − iId), 0); then we have that
Bι(LJ) = L. We will see in Example 3.16 that L ∩ L = (AnnD)C. Therefore, L has real
index one and is not a generalized complex structure.
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Actually there is a characterization for Bι(L) to be a generalized complex structure on N .
But first we need the following definition.

Definition 2.67. Let M be a manifold with a Poisson structure π and consider a submanifold
N

ι
↪−→M . We say that N is a Dirac-Poisson submanifold of (M,π) if Bι(Lπ) is the graph of

a Poisson structure on N .

Proposition 2.68 ([36]). Let N
ι
↪−→M be a submanifold of M and let L be a generalized complex

structure on M with associated bundle map

J =

(
A π
σ −A∗

)
.

Then Bι(L) is a generalized complex structure on N if and only if

i) N is a Dirac-Poisson submanifold of (M,π).

ii) A(TN) ⊆ TN + π(T ∗M)|N = TN ⊕ π(AnnTN).

iii) prTN ◦ A is differentiable, where prTN comes from the projection onto TN of the direct
sum of ii).

The examples above point to the arising of lagrangian subbundles with nonzero real index
when studying submanifolds of generalized complex structures. We begin our study of lagrangian
subbundles with nontrivial real index by giving a bound for the real index we can obtain in
submanifolds of generalized complex structures.

Lemma 2.69. Let N be a codimension-r submanifold of M with ι : N →M the inclusion map.
Let L be a lagrangian subbundle of (TM ⊕ T ∗M)C with real index zero. Then

dim(Bι(L)|p ∩ Bι(L)|p) ≤ r,

for all p ∈ N . Furthermore, if Bι(L) is smooth and L is involutive, then Bι(L) is involutive too.

Proof. Suppose that dimBι(L)|p∩Bι(L)|p > r. As a consequence there exist linearly independent
real elements

X1 + ξ1, . . . , Xr+1 + ξr+1 ∈ Bι(L)|p,
where Xj ∈ TpN and ξj ∈ T ∗pN , for k = 1, . . . r + 1. By the definition of Bι(L)p there exist

X1 + τ1 + iη1, . . . , Xr+1 + τr+1 + iηr+1 ∈ L|p

such that τk, ηk ∈ T ∗pM , τk|TpN = ξk and ηk ∈ AnnTpN , for k = 1, . . . r+1. Since dim AnnTpN =

r, then there exist non all vanishing constants c1, . . . , cr+1 ∈ C such that
∑r+1

j=1 cjηj = 0. Conse-
quently,

r+1∑
j=1

cj(Xj + τj + iηj) =
r+1∑
j=1

cj(Xj + τj)

is real in L|p, yielding that
∑r+1

j=1 cj(Xj + τj) = 0 and thus

r+1∑
j=1

cj(Xj + ξj) = 0.

The last part of the lemma follows from Proposition 2.48.
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In submanifolds of codimension-one we control completely the real index.

Corollary 2.70. Consider a codimension-one submanifold N of M with inclusion map ι. Then

rank(Bι(L) ∩ Bι(L)) = 1.

Proof. By the lemma above rank(Bι(L) ∩ Bι(L)) ≤ 1. Since dimN is odd, then N does not
admit generalized almost complex structures and the corollary holds.

2.6 Other geometrical structures

The purpose of this section is to recall some classical structures that will appear in the fol-
lowing chapters and to introduce a structure that will play an important role in the theory
of complex Dirac structures, the transverse CR structures. A cosymplectic structure on a
2n+ 1-dimensional manifold M is a pair (θ, ω) ∈ Ω1(M)×Ω2(M) such that ωn ∧ θ 6= 0, dθ = 0
and dω = 0.

Definition 2.71 ([18]). An almost CR structure (Cauchy-Riemann/Complex-Real) is a pair
(D, J), where D is a regular distribution on M and J : D → D is a bundle map such that
J2 = −Id. A CR structure is an almost CR structure satisfying

[Γ(T1,0),Γ(T1,0)] ⊆ Γ(T1,0),

where T1,0 = ker(JC − iId) ⊆ TMC. A CR structure is equivalently an involutive regular
distribution T1,0 of TMC such that T1,0 ∩ T1,0 = 0.

CR structures appear naturally when studying real submanifolds of complex manifolds as we
have seen in the previous section. The distribution D is not necessarily involutive and, actually,
we can detect how far it is from being involutive with the following symmetric tensor.

Definition 2.72. Let (D, J) be CR structure and assume that there exists a η ∈ Ω1(M) such
that D = ker η. The Levi form of the CR structure is

L(X, Y ) = dη(X, JY ).

Note that when L = 0, then the distribution D is involutive and so we obtain a foliation
where each leaf carries a holomorphic structure.

The following definition plays an important role in the metric theory of CR structures.

Definition 2.73 ([18]). Let (D, J) be a CR structure and assume that there exists a contact
form η ∈ Ω1(M) such that D = ker η. We say that it is strictly pseudoconvex if the Levi
form is positive or negative definite.

Until now we just have treated the basic notions of CR geometry, next we introduce a
definition that will play a key role in the following chapters.

Definition 2.74. A transverse CR structure is a triple (R, S, J) consisting of two regular
distributions R ⊆ S ⊆ TM , where R is integrable and a bundle map J : S/R→ S/R such that
J2 = −Id and q−1(ker(JC − iId)) is involutive on TMC, where q : SC → (S/R)C is the quotient
map.
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Examples 2.75. We give some examples of transverse CR structures.

a) Let (D, J) be a CR structure. Then (0, D, J) is a transverse CR structure.

b) If S = TM , then (R, TM, J) recovers the transverse holomorphic structures.

Lemma 2.76. Consider the transverse CR structure (R, S, J). Then, for any point p ∈ M ,
there exists a neighbourhood U of p such that U/FU carries a CR structure, where FU is the
foliation associated to R restricted to U .

Proof. Let U be a neighbourhood of p where FU is simple. Let P be the leaf space associated
to FU and let t : M → P be a submersion such that its fibres are the leaves of FU ; note that
ker t∗ = R. Consider the distribution H1,0 = q−1(ker(JC − iId)). Note that the integrability
of H1,0 implies that [Γ(H1,0),Γ(RC)] ⊆ Γ(H1,0). The last fact implies that H1,0 descends to an
involutive regular distribution T1,0 on TPC. Note that T1,0 ∩ T1,0 = 0. Therefore, T1,0 defines a
CR structure on P .

Remark 2.77. There is in the literature an alternative definition of transverse CR structures,
cf. [17] which appears naturally in the context of CR geometry. However, our definition arises
naturally in the generalized context representing a whole family of structures (up to certain
transformations) as we will see in the next chapter. In particular, Definition 2.74 generalizes
both transverse holomorphic and CR structures.
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Chapter 3

Complex Dirac structures

In this chapter we focus on complex Dirac structures. We begin by studying its linear algebra
and then we pass to study them on manifolds.

3.1 Complex Dirac structures on vector spaces

In Section 2.2 we studied Dirac structures on real and complex vector spaces. Now we focus on
Dirac structures on VC or equivalently on lagrangian subspaces of VC ⊕ V ∗C ∼= (V ⊕ V ∗)C.

Definition 3.1. A complex Dirac structure on V is a lagrangian subspace of (V ⊕ V ∗)C.

Given that complex Dirac structures are special cases of Dirac structures, they satisfy all the
properties mentioned on section 2.2. What we will see along this section is that actually they
carry far more information than its real counterpart (Dirac structures on V ). They have more
associated distributions, more invariants and they carry a complex map.

3.1.1 Associated subspaces

We know that any complex Dirac structure on a vector space V has associated two natural
complex subspaces of VC called the range and the kernel. However we can also associate some real
subspaces that differentiate them from the usual Dirac structures on V and will be useful in the
future when working on real manifolds. So consider the complex Dirac structure L ⊆ (V ⊕V ∗)C,
we obtain naturally the following subspaces:

K = Re(L ∩ L) ⊆ V ⊕ V ∗, E = prVCL ⊆ VC,

∆ = Re(E ∩ E) ⊆ V, D = Re(E + E) ⊆ V,
(3.1)

note that E is the range and the other three subspaces are real and exclusively defined from a
complex Dirac structure. Note that K is the real part of L and so

K = {X + ξ ∈ L | X + ξ is real}.

We observe that K is isotropic since

K⊥ = Re(L ∩ L)⊥ = Re(L+ L), (3.2)

and we also have D = prVK
⊥. There exists a complex two-form ε ∈ ∧2E∗ such that L = L(E, ε).

Now consider the real two-form
ω∆ := Im(ε)|∆ ∈ ∧2∆∗,
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where Im(ε) means the imaginary part of ε. So we have a natural Dirac structure defined from L,

L∆ = L(∆, ω∆).

Remark 3.2. Let E ⊆ VC and ε ∈ ∧2E∗, denote by ER the space E considered as a real vector
space. Then ε = ε1 + iε2, where ε1, ε2 ∧2 E∗R. We denote ε2 by Im(ε). It is easily seen that given
any extension B + iω ∈ ∧2V ∗C of ε, we have that ω|∆ = Im(ε)|∆.

We have the following relationship between K and ω∆.

Lemma 3.3. For any linear complex Dirac structure L we have that

prVK = kerω∆.

Proof. Let E ⊆ VC and B + iω ∈ ∧2V ∗ such that L = L(E, ι∗(B + iω)), where ι is the inclusion
map of E into VC. First, we note that

L = L(E, ι∗(B − iω)). (3.3)

Given any X ∈ kerω∆ ⊆ ∆, we will construct a ξ ∈ V ∗C such that X + ξ ∈ L ∩ L. Let U be a
complement to (E +E) in VC, note that U could be the trivial subspace. Consider τ ∈ V ∗C such
that τ(Y ) = ιXωC, whenever Y ∈ E, and τ(Y ) = −ιXωC, whenever Y ∈ E ⊕ U . Note that τ is
well defined because X ∈ kerω∆ and τ in general is not real. Now consider ξ = ιXB + iτ ; we
see that X + ξ ∈ L since

ξ|E = ιXι
∗B + iι∗τ = ιX(ι∗(B + iω)).

Using equation (3.3), we obtain that X + ξ ∈ L ∩ L in a similar way as above. Let τ1, τ2 ∈ V ∗
such that τ = τ1 + iτ2. Then

1

2
((X + ξ) + (X + ξ)) = X + ιXB − τ2 ∈ K,

and one inclusion follows.
Conversely, consider X+ξ ∈ K, i.e. X+ξ is a real element of L. Then ιX(ι∗(B+ iω)) = ξ|E,

comparing the real and imaginary parts we obtain that X ∈ kerω∆.

Denote by ∆0 the subspace kerω∆. Note that we have the following inclusions

∆0 ⊆ ∆ ⊆ D.

Given a complex Dirac structure, we note that D just depends on K and by Lemma 3.3,
∆0 too. So from now on we associate to any isotropic subspace of V ⊕ V ∗ the real subspaces
D = prVK

⊥ and ∆0 = prVK, independently of any lagrangian subspace K.

3.1.2 Generalized complex viewpoint

In this section we will see that there exists a correspondence between complex Dirac structures
on a vector space and generalized complex structures on a possibly different vector space. For
that purpose we need to describe the geometry associated to the isotropic subspaces of V ⊕ V ∗.

So consider an isotropic subspace K of V ⊕ V ∗. The vector space K⊥/K naturally inherits
a pairing coming from V ⊕ V ∗

〈e1 +K, e2 +K〉K = 〈e1, e2〉,

where e1, e2 ∈ K⊥, it is easy to see that the pairing 〈·, ·〉K is nondegenerate. The following
lemma will be useful later.
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Lemma 3.4. Let L be a lagrangian subspace of V ⊕ V ∗, where V is a complex or real vector
space. If K is an isotropic subspace of V ⊕ V ∗, then SK = L∩K⊥+K is a lagrangian subspace
of V ⊕ V ∗ and LK = (L ∩K⊥ +K)/K is a lagrangian subspace of K⊥/K.

Proof. First we note that SK ⊆ L + K and since K is isotropic SK ⊆ K⊥. Then SK ⊆
(L+K) ∩K⊥ = S⊥K . Computing the dimensions

dimSK = dim(L ∩K⊥) + dimK − dim(L ∩K)

= dimL+ dimK⊥ − dim(L+K⊥) + dimK − (dimL+ dimK − dim(L+K))

= dimK⊥ − dim(L+K⊥) + dim(L+K)

= dimS⊥K ,

thus we obtain that SK = S⊥K . The result for LK follows from the previous one.

The vector space K⊥/K has many similarities with V ⊕ V ∗, actually we have the following
proposition which also appears in [19].

Proposition 3.5. Let K be an isotropic subspace of V ⊕V ∗, where dimV = m and dimK = r.
Then there exist a lagrangian subspace W of K⊥/K such that

(K⊥/K, 〈·, ·〉K) ∼= (W ⊕W ∗, 〈·, ·〉can),

where 〈·, ·〉can is the canonical pairing of W ⊕W ∗. Consequently, the pairing 〈·, ·〉K has signa-
ture (m− r,m− r).

Proof. First we need a lagrangian subspace S of V ⊕ V ∗ such that K ⊆ S ⊆ K⊥. For that it is
enough to take any lagrangian subspace L and set S = L ∩K⊥ + K; note that S satisfies the
desired properties. If S = L(E, ε), for some E ⊆ V and ε ∈ ∧2E∗, then the lagrangian subspace
T = L(E ′, 0), where E ∩ E ′ = 0, is a complement of S.

So we have that S ⊕ T = V ⊕ V ∗, we next see that there exists a subspace T0 ⊆ T such that
S ⊕ T0 = K⊥ and T0

∼= (S/K)∗. Since the pairing is nondegenerate, we have that T ∼= S∗ via
the isomorphism given by the pairing itself; let denote this isomorphism by Φ : S∗ → T . Since
K ⊆ S, we consider AnnK ⊆ S∗, the annihilator of K in S. Consider T0 = Φ(AnnK); note
that T0

∼= (S/K)∗. We can see that by construction T0 ⊆ K⊥, implying that S ⊕ T0 ⊆ K⊥ and
by counting dimension we obtain the equality. As a result K⊥/K ∼= S/K⊕T0

∼= S/K⊕ (S/K)∗.
Let denote by q : K⊥ → K⊥/K the quotient map; then q(S) and q(T0) are complementary

isotropic subspaces of K⊥/K with dimension m − r, i.e. lagrangian subspaces. Therefore, the
pairing in K⊥/K has signature (m− r,m− r).

As we saw in the proof of Proposition 3.5, the isomorphism of K⊥/K with W ⊕W ∗ is not
canonical, it depends on the choice of a lagrangian subspace K ⊆ S ⊆ K⊥. Instead we obtain
a canonical short exact sequence for K⊥/K, similar to the usual exact sequence associated to
W ⊕W ∗. Consider the subspaces

D = prTMK
⊥, ∆0 = prTMK,

and the map
pK : K⊥/K → D/∆0

X + ξ +K 7→ X + ∆0.
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Proposition 3.6 ([19]). The vector space K⊥/K fits into the following short exact sequence:

0 // (D/∆0)∗
p∗K // K⊥/K

pK // D/∆0
// 0 .

Any generalized complex structure on V is a complex Dirac structure on V . We have a kind
of converse for this statement.

Proposition 3.7. Let K ⊆ V ⊕ V ∗ be an isotropic subspace. There exist a one-to-one corre-
spondence between complex Dirac structures of (V ⊕ V ∗)C with associated isotropic K ⊆ V ⊕ V ∗
and linear maps J : K⊥/K → K⊥/K such that J 2 = −1 and J ∗ + J = 0.

Proof. Let L be a complex Dirac structure with associated isotropic K. We proceed to construct
the map J . We can see that L+ L = K⊥ ⊗C. Consider L0 = q(L), where q : K⊥C → (K⊥/K)C
denote the quotient map. We see that L0 ∩ L0 = {0} and then L0 ⊕ L0 = (K⊥/K)C. Let J ′ be
the linear map defined as J ′|L0 = iIdL0 and J ′|L0

= −iIdL0
. Constructed in this way, J ′ is a

real map and its real component J is the desired map.
Conversely, we construct L from J . Assume that K and J are as in the statement of the

theorem and t : (V ⊕ V ∗)C → (V ⊕ V ∗/K)C is the quotient map. Then L = t−1(ker(JC − iId))
is a complex Dirac structure such that L ∩ L = KC.

As a consequence of this proposition we get a first obstruction to the existence of a complex
Dirac structure:

Corollary 3.8. Let V be an m−dimensional vector space. If V admits a complex Dirac structure
with real index r, then there exist n ∈ N such that m = 2n+ r.

Proof. By Proposition 3.5,

K⊥/K = S/K ⊕ T0/K ∼= S/K ⊕ (S/K)∗,

with S a maximal isotropic containing K. According to Proposition 3.7 we have a map J :
S/K ⊕ (S/K)∗ → S/K ⊕ (S/K)∗ such that J 2 = −1 and J ∗ + J = 0. Consequently, by
Corollary 2.56, S/K is even-dimensional and thus dimV ≡ r (mod 2).

3.1.3 Order and type

In this section we introduce a new invariant associated to complex Dirac structures, the order.
We next see how this invariant identifies when a lagrangian has a certain real index. We also
give a new definition of the type that together with the real index and the order characterize
complex Dirac structures up to B-transformations as we will see in the next section. We recall
the following proposition.

Proposition 3.9 ([22]). The lagrangian subspace L(E, ε) of (V ⊕ V ∗)C has real index zero if
and only if E + E = VC and ω∆ is nondegenerate.

We generalize the previous proposition to arbitrary real index but first we need a lemma.

Lemma 3.10. Consider a subspace S of V ⊕ V ∗, then the following holds

Ann(prV S
⊥) = S ∩ V ∗ and Ann(prV ∗S

⊥) = S ∩ V.
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Proof. Note that Ann(prV S
⊥) = S∩V ∗, since ξ ∈ Ann(prV S

⊥) if and only if 〈ξ, e〉 = 0, ∀e ∈ S⊥,
i.e., ξ ∈ S ∩ V ∗.

Proposition 3.11. Let L(E, ε) be a complex Dirac structure of V . If L has real index r then,

codim(E + E) + dim kerω∆ = r.

Proof. Let K be the isotropic subspace associated to L. Note that K fits in the following short
exact sequence

0 // K ∩ V ∗ ι // K
prV // prVK // 0. (3.4)

As a consequence we have that

dimK = dim prVK + dimK ∩ V ∗.

By Lemma 3.10, we have that K ∩ V ∗ = AnnD, by Lemma 3.3, prVK = kerω∆ and then we
have

r = dimK = dim kerω∆ + dim AnnD = dim kerω∆ + codim(E + E).

In particular this proposition retrieves Proposition 3.9. It also motivates the following defi-
nition.

Definition 3.12. Let L be a linear complex Dirac structure. The order of L is defined as

order(L) = codimD.

By Proposition 3.11, the order is always less than or equal to the real index of the linear
complex Dirac structure. In particular, in a generalized complex structure the order is always
zero. Moreover, note that the order depends exclusively on K as order(L) = codim prVK

⊥.
The other invariant we introduce is a redefinition of the type, presented in Definition 2.60,

more appropriate to the study complex Dirac structures:

Definition 3.13. The type of a complex Dirac structure L is

type(L) = dim(E + E)− dimE.

Lemma 3.14. Let L be a complex Dirac structure on V with real index r and assume that
dimV = 2n + r as in Proposition 3.8; then the order, the real index and the type satisfy the
following:

a) order(L) + type(L) = codimE.

b) The type is always between 0 and n.

c) If L has order s and type k, then dim ∆ = 2(n− k) + r − s.

Proof. a)It is straightforward.

b)Counting dimensions, we have that:

2(dim(E + E)− dimE) = dim(E + E)− dim(E ∩ E).
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Since ∆C = E ∩ E and dim(E + E) = 2n+ r − s, we have

dim(E + E)− dimE = n− dim ∆ + s− r
2

. (3.5)

By Proposition 3.11 and the inclusion ∆0 ⊆ ∆, we have that dim ∆ + s ≥ dim ∆0 + s = r and
thus

0 ≤ dim(E + E)− dimE ≤ n.

c)It follows after equation (3.5).

As a consequence of item a) we have that our definition of type coincides with Definition
2.60 in the case of real index zero.

We present some examples of complex Dirac structures on V .

Example 3.15. (Presymplectic subspaces) Let S be a subspace of a (2n+ r)-dimensional vector
space V and ω ∈ ∧2S∗ such that codimS = s and dim kerω = r − s. Consider L = L(SC, iωC),
note that

L = {X1 + iX2 + ζ1 + iζ2 | X1, X2 ∈ S, ζ1|S = −ιX2ω, ζ2|S = ιX1ω}

and consequently
L ∩ L = (kerω ⊕ AnnS)C.

In this case its associated spaces are:

E = SC, D = S,

∆ = S, ∆0 = kerω.

Therefore L has real index r, order s and type 0.
Now we compute the associated map J : K⊥/K → K⊥/K. First, note that

K⊥/K ∼= D/ kerω ⊕ (D/ kerω)∗.

Then for X ∈ D and ξ ∈ V ∗

JC(X +KC) = JC(
1

2
(X + iω(X)) +

1

2
(X − iω(X)) +KC) = −ω(X) +KC,

JC(ξ +KC) = JC(− i
2

(ω−1(ξ) + iξ)− i

2
(−ω−1(ξ) + iξ) +KC) = ω−1(ξ) +KC.

Thus the map J has the form

J =

(
0 ω−1

−ω 0

)
.

Finally we compute the spinor associated to L. Let U be a complement of D in V . Consider a ba-
sis ofD, {d1, . . . , d2n+r−s} and complete it by elements of U to a basis {d1, . . . , d2n+r−s, u1, . . . , us}
with dual basis {d∗1, . . . , d∗2n+r−s, u

∗
1, . . . , u

∗
s}. Then taking ω0 ∈ ∧2V ∗ any extension of ω, we have

that the spinor associated to L is ρ = eiω ∧ u∗1 ∧ . . . ∧ u∗s.
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Example 3.16. (Transverse CR structures on linear spaces) Consider subspaces S,R of a (2n+
r)-dimensional vector space V such that R ⊆ S. Assume that there exists a map J : S/R →
S/R such that J2 = −Id. Let q : SC → (S/R)C denote the quotient map. Let E denote
q−1(ker(JC− iId)); consider the lagrangian subspace L(R,S,J) = L(E, 0). Now we pass to describe
its associated subspaces.
Claim A: We have the following

E = {X1 + iX2 ∈ SC | J(X1 +R) = −X2 +R}

and prVE = S.

Proof. An element X1 + iX2 is in E = q−1(ker(JC − iId)) if and only if

J(X1 +R) + iJ(X2 +R) = −X2 + iX1 +RC,

comparing the real and imaginary parts and using that J2 = −Id, this is equivalent to

J(X1 +R) = −X2 +R.

For the second assertion of the claim, given X ∈ S, then X + iY ∈ E for some Y ∈ S such that
J(X +R) = −Y +R.

Claim B: We have that L(R,S,J) has as associated isotropic subspace

K = R⊕ AnnS.

Proof. Let X + ξ ∈ K, i.e. a real element of L(R,S,J). Then X is a real element of E, i.e.
J(X + R) = 0 + R and since J is an isomorphism, X ∈ R. We have that ξ ∈ AnnE, so
ξ(Y1) + iξ(Y2) = 0 for all Y1 + iY2 ∈ E and then ξ ∈ AnnS. For the other inclusion assume that
ξ ∈ AnnS, take Y1 + iY2 ∈ E, note that Y2 − iY1 ∈ E and then ξ(Y1 + iY2) = 0.

With the previous claims we compute the subspaces associated to this complex Dirac struc-
ture:

E = q−1(ker(JC − iId)), ∆ = ∆0 = R,

D = S.

Consequently we can see that L(R,S,J) has real index r = dimR + codimS and order codimS.
Let n be the positive integer such that dimV = 2n+ r; then L has type n. Indeed,

K⊥/K = S/R⊕ (S/R)∗

and its associated map
J : S/R⊕ (S/R)∗ → S/R⊕ (S/R)∗

is of the form

J =

(
J 0
0 −J∗

)
.

Now we compute the associated spinor of L(R,S,J). Let E0 = ker(JC − iId) ⊆ (V/R)C and let
Ω0 ∈ ∧n+s(V/R)∗C be a generator of det AnnE0. Note that t∗Ω0 ∈ ∧n+sV ∗C is a generator of
det AnnE, where t : VC → (V/R)C is the quotient map. Consequently, the spinor associated to
L(R,S,J) is ρ = t∗Ω0.
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Remark 3.17. A transverse CR structure (R, S, J) on a vector space V is equivalent to a CR
structure (S/R, J) on V/R. Consider E0 = ker(JC−iId) and t−1E0. The complex Dirac structure
associated to (R, S, J) seen as a transverse CR structure is L(E, 0) and seen as CR structure is
L(E0, 0). Their associated spinors are t∗Ω0 and Ω0, where Ω0 is a generator of det AnnE0, as
it has been showed at the previous example. And thus we see that at the spinorial level these
complex Dirac structures are similar. Moreover, Bt(L(E0, 0)) = L(E, 0).

3.1.4 Classification

In this section we present a classification of complex Dirac structures in terms of its real index,
order and type. This classification has as key ingredients the associated presymplectic subspace
(∆, ω∆) and a certain complex structure onD/∆, and states that a complex Dirac structure is (up
to B-transformations) the product of (∆, ω∆) with the complex structure on D/∆. The complex
structure above mentioned is the one obtained from E/∆C, since E/∆C ∩ E/∆C = 0. We next
see how these two structures characterize the complex Dirac structure up to B-transformation.

Proposition 3.18. Let L be a complex Dirac structure with real index r and order s. Then L
is isomorphic to a B-transformation of the product of a complex Dirac structure defined by a
presymplectic structure with (r − s)-dimensional kernel with a complex Dirac structure defined
by a codimension-s CR structure.

Proof. LetN ⊆ V such that ∆⊕N = V. By Proposition 3.14, dimN = 2k+s. Since E+NC = VC,
we have that dim(E ∩N) = k. Consider a basis {γ1, . . . , γr0} of ∆C consisting of real elements,
where r0 = 2(n− k) + r − s. Then complete to a basis of E, {γ1, . . . , γr0 , α1, . . . αk}. Note that
{γ1, . . . , γr0 , α1, . . . αk} is a basis of E.

Let U ⊆ V such that (E + E) ⊕ UC = VC. Note that dimU = s. Taking {u1, . . . , us} as a
basis of U , we can see that

{α1, . . . αk, α1, . . . αk, u1, . . . , us}
is a basis of NC and

{γ1, . . . , γr0 , α1, . . . αk, α1, . . . αk, u1, . . . , us}
is a basis of VC with dual basis

{γ∗1 , . . . , γ∗r0 , α
∗
1, . . . α

∗
k, α

∗
1, . . . α

∗
k, u

∗
1, . . . , u

∗
s}.

Then
Ω = α∗1 ∧ . . . ∧ α∗k ∧ u∗1 ∧ . . . ∧ u∗s ∈ ∧k+sV ∗C

is a generator of det AnnE. Note that

Ω|N ∧ ιu1 . . . ιusΩ|N 6= 0

is a generator of detN∗C. Consider H1,0 = spanC{α1, . . . , αk}, we note that H1,0 ∩H1,0 = 0 and
H = Re(H1,0 ⊕H1,0) ⊆ N , so we have that there exists a complex structure J on H such that
H1,0 = ker(JC − iId); also note that U ⊕H = N .

Note that first, we can see that when considering

Ω1,0 = α∗1 ∧ . . . ∧ α∗k ∈ ∧kV ∗C ,

we have that Ω1,0|H1,0 is a generator of detH∗1,0. Second, Ω|N is the spinor associated to the
complex Dirac structure defined from the CR structure (H, J) on N .
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We have that
VC = ∆C ⊕H1,0 ⊕H0,1 ⊕ UC,

where H0,1 = H1,0. Thus,

∧2V ∗C =
⊕

p+q+t+w=2

∧p∆∗C ⊗ ∧qH∗1,0 ⊗ ∧tH∗0,1 ⊗ ∧wU∗C.

and so we obtain a four-graduation (p, q, t, w) on two-forms of VC. Let ρ be the associated spinor
to L = L(E, ε), then ρ = eB+iω ∧ Ω, where B + iω ∈ ∧2V ∗C is an extension of ε. Since U is
complementary to D = Re(E + E) and ε only depends on E, we can take the components on
U of B + iω to be zero; since Ω has as a factor Ω1,0 that restricts to a volume form of H∗1,0,
we have that just the elements (1, 0, 1, 0), (2, 0, 0, 0) and (0, 0, 2, 0) have an effect on Ω when
doing a wedge product. Let (B + iω)(p,q,t,w) denote the (p, q, t, w) component of B + iω in the
four-graduation. We note that

ω∆ = − i
2

((B + iω)(2,0,0,0) − (B + iω)(2,0,0,0)).

Consider the real two-form

B′ =
1

2
((B + iω)(2,0,0,0) + (B + iω)(2,0,0,0)) + (B + iω)(1,0,1,0) + (B + iω)(0,0,2,0)

+ (B + iω)(1,0,1,0) + (B + iω)(0,0,2,0).

Note that the two-forms (B + iω)(1,0,1,0) and (B + iω)(0,0,2,0) have no effect on Ω. Consequently
we have that

eB+iω ∧ Ω = eB
′+iω∆ ∧ Ω = eB

′
(eiω∆ ∧ Ω|N).

So the result holds.

From the proof we can see that the CR structure (H, J) on N is equivalent to the complex
structure on D/∆ described at the beginning of the section.

As a consequence of the previous proposition we have the description of the extreme-type
complex Dirac structures. Example 3.15 and Example 3.16 are a clear evidence of this descrip-
tion.

Corollary 3.19. Let L be a complex Dirac structure with real index r on a vector space V of
dimension 2n+ r. Then if L has order s and type 0, then L is a B-transformation of a complex
Dirac structure L(DC, iωC) as in Example 3.15 such that dimD = s and dim kerω = r − s. If
L has order s and type n, then it is a B-transformation of a complex Dirac structure L(E, 0) as
in Example 3.16 such that codimS = s and dimR = r − s.

In the following table we organize the information of the previous proposition up to B-
transformation. Recall that we are considering complex Dirac structures with order r over a
(2n+ r)-dimensional vector space V .
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In extreme order with extreme type we have a more accurate result than the one given in
Proposition 3.19:

Corollary 3.20. If L is a linear complex Dirac structure with real index r, order r and type n
over a vector space V of dimension 2n + r, then L is a B-transformation of a CR structure of
codimension r.

We end this section with an alternative description of the type. Consider a complex Dirac
structure L over a vector space V with associated isotropic K = Re(L∩L) and associated map J .
By Lemma 3.4, since V ∗ is a lagrangian subspace, then V ∗K = (V ∗ ∩K⊥+K)/K is a lagrangian
subspace of K⊥/K. We have the following characterization of the type which depends on J .

Proposition 3.21. If L is a complex Dirac structure with associated isotropic K and associated
map J , then

1

2
dim(J (V ∗K) ∩ V ∗K) = type(L).

Proof. The subspace J (V ∗K) ∩ V ∗K is invariant under J and then J |J (V ∗K)∩V ∗K is a complex map.
Let E ′ = ker((J |J (V ∗K)∩V ∗K )C − iId); then, we have the decomposition

(J (V ∗K) ∩ V ∗K)C = E ′ ⊕ E ′.

We have that

E ′ = {ξ +K − iJ (ξ +K) | ξ ∈ V ∗ and ξ +K = J (η +K) for some η +K ∈ V ∗K},

giving that E ′ = L0 ∩ (V ∗K)C, where L0 = ker(JC − iId). Consider the quotient map q : K⊥C →
(K⊥/K)C. Note that q(L ∩ V ∗C ) = L0 ∩ (V ∗K)C and consequently

1

2
dimJ (V ∗K) ∩ V ∗K = dimL0 ∩ (V ∗K)C

= dimL ∩ V ∗C − dimKC ∩ V ∗C
= codimE − codim(E + E)

= type(L).

This gives another justification of our definition of type as [23, Prop 3.6.] did in the generalized
complex setting. As a consequence we have another characterization of extreme-type complex
Dirac structures.

Corollary 3.22. Let L be a complex Dirac structure with real index r on a (2n+r)-dimensional
vector space V and J be its associated map. Then L has type 0 if and only if J (V ∗K) ∩ V ∗K = 0,
and L has type n if and only if J (V ∗K) = V ∗K.

3.2 Complex Dirac structures on manifolds

In this section we continue our study of complex Dirac structures on manifolds. First we con-
centrate on complex Lie algebroids, defining some of its invariants which are also extended to
complex Dirac structures. After that we study some examples of complex Dirac structures.
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Definition 3.23. A complex Lie algebroid over a manifold M is a complex vector bundle L
over M together with a Lie bracket on Γ(L)

[·, ·]L : Γ(L)× Γ(L)→ Γ(L)

and a bundle map ρ : L→ TMC called the anchor map satisfying the Leibniz property

[e1, fe2]L = f [e1, e2]L + ρ(e1)(f)e2,

for all e1, e2 ∈ Γ(L) and for any function f ∈ C∞(M,C).

Examples 3.24. We give some examples of complex Lie algebroids:

1. Involutive structures: an involutive structure E is an involutive vector subbundle of TMC,
cf. [35]. Then the pair (E, prTMC) defines a complex Lie algebroid. So complex and CR
structures define complex Lie algebroids.

2. Complexification of real Lie algebroids: if (E, ρ) is a Lie algebroid, then the complexifica-
tion of the bundle E and the anchor map ρ, (EC, ρC) is a complex Lie algebroid with the
complexification of the bracket of (E, ρ).

3. Generalized complex structures: if L is a generalized complex structure (Definition 2.53),
then the Courant-Dorfman bracket restricted to Γ(L) becomes a Lie bracket. Since L is a
lagrangian subbundle, the pair (L, prTMC) is a complex Lie algebroid with respect to the
restriction of the Courant-Dorfman bracket to L.

Note that the real index is not necessarily defined over arbitrary complex Lie algebroids; we
need an embedding into the complexification of some real vector bundle in order to define it as
we have for complex Dirac structures, see Section 2.3. Actually, the real index depends on the
embedding. However, we can define the order and the type in a natural way.

Definition 3.25. Consider a complex Lie algebroid L over M with anchor map ρ. The order
of L at p ∈M is

orderp(L) = codim(ρ(L|p) + ρ(L|p))
and the type at p is

typep(L) = codim ρ(L|p)− codim(ρ(L|p) + ρ(L|p)).

We can naturally associate to any complex Lie algebroid the following distributions:

E := ρ(L) ⊆ TMC, ∆ := Re(E ∩ E) ⊆ TM and D := Re(E + E) ⊆ TM. (3.6)

These distributions are not necessarily vector bundles since their fibres are not necessarily of
constant dimension. The distribution ∆ is not necessarily smooth as we will see in the Example
3.37 in the next section. It is a different case for E and D.

Lemma 3.26. The distributions E and D are smooth.

Proof. Since E is the image of L under the anchor map, we have that E is smooth. Since E is
smooth, E is smooth and then E + E is smooth as well. Then

E + E = D ⊕ iD ⊆ TM ⊕ iTM = TMC

and thus prTM(E + E) = D is smooth.
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Given a complex Lie algebroid, its order is defined pointwise, so we obtain a function
order(L) : M → Z, which satisfies the following:

Corollary 3.27. The order of a complex Lie algebroid is an upper semi-continuous function.

Proof. We see this from the fact that orderp(L) = codimD|p and that the dimension of D is a
lower semi-continuous function by Lemma 2.1.

In the next section we will prove the same property for the real index of a lagrangian sub-
bundle. We recall the definition of a complex Dirac structure.

Definition 3.28. A complex Dirac structure over a manifold M is a lagrangian subbundle of
(TM ⊕ T ∗M)C which is involutive with respect to the Courant-Dorfman bracket.

Clearly a complex Dirac structure is a complex Lie algebroid and then it has associated the
distributions E,∆ and D. Since complex Dirac structures are embedded in (TM ⊕ T ∗M)C we
have two additional distributions.

K = Re(L ∩ L) and ∆0 = prTMK. (3.7)

We see in Example 3.31 that K and ∆0 are not necessarily smooth. Note that

∆0 ⊆ ∆ ⊆ D.

We give some examples of complex Dirac structures and show its associated distributions.

Example 3.29. (Complexification of a Dirac structure) Let L be the complexification of a Dirac
structure L′ on M . Note that L is a complex Dirac structure and has associated the following
distributions:

K = L′

E = ∆C = DC = (∆0)C = (prTML
′)C.

(3.8)

In this case all distributions are smooth. Moreover, the real index of L is constant and equal to
dimM and

orderp(L) = typep(L) = codim(prTML
′|p),

for all p ∈M .

Example 3.30. (Regular Dirac structures) Let S ⊆ TM be a regular distribution and ω ∈ ∧2S∗.
Consider L = L(SC, iωC). By Proposition 2.41, L is a complex Dirac structure if and only if S
is involutive and dSω = 0. By Example 3.15, we have that

K = kerω ⊕ AnnS

and the associated distributions are:

E = SC, D = S,

∆ = S, ∆0 = kerω.

When S = TM , we will use the notation Liω for L(SC, iωC). Note that L has real index
dim kerω|p + corankS at p ∈M ,

orderp(L) = corankS and typep(L) = 0.

We note that in this example the real index could change depending on dim kerω|p. We use this
fact in the next example.
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Example 3.31. (K and ∆0 not necessarily smooth) Consider M = R2, ω = xdx∧ dy ∈ Ω2
cl(M)

and L = Liω, then L is a complex Dirac structure. The distribution K = ∆0 = kerω is not
smooth. Along the line Z = {x = 0}, we have that L = TMC so the real index is 2 whereas
outside Z we have that L has real index zero.

Example 3.32. (Transverse CR structure) Consider the transverse CR structure (R, S, J); let
q : TMC → (TM/R)C denote the quotient map and E = q−1(ker(JC−iId)). Since E is involutive
in TMC, the lagrangian subbundle L(R,S,J) = L(E, 0) is a complex Dirac structure. By Example
3.16 we have that

K = R⊕ AnnS

and the distributions associated to this complex Dirac structure are:

E = q−1(ker(JC − iId)), ∆ = ∆0 = R,

D = S. .

Consequently, the real index of L(R,S,J) is constant and equal to r = corankS + rankR. Let n
be the nonnegative integer such that dimM = 2n+ r. We have that

order(L(R,S,J)) = corankS and type(L(R,S,J)) = n.

We have two important cases of transverse CR structures.

Example 3.33. (CR structures) Let (S, J) be an almost CR structure. Consider E = ker(JC−
iId); the lagrangian subbundle L(S,J) = L(E, 0) is involutive if and only if E is involutive, which
is the integrability condition for the almost CR structure (S, J). Indeed, a CR structure is a
special case of Example 3.32, where R = 0. As a result,

K = AnnS, D = S and ∆ = ∆0 = 0.

Therefore, if r = codimS, then L(S,J) has constant real index r, constant order r and type n,
where dimM = 2n + r. The involutivity of E does not imply necessarily the involutivity of S.
If we assume that S is additionally involutive, then by the Frobenius Theorem we get a complex
foliation.

Example 3.34. (Transverse holomorphic structures) Let (TM,R, J) be a transverse holomor-
phic structure, i.e., R ⊆ TM is an r-dimensional distribution and J : TM/R → TM/R is an
almost complex structure on TM/R such that q−1(ker(JC − iId)) is involutive in TMC, where
q : TMC → (TM/R)C denotes the quotient map. This structure is a special case of Example
3.32, by taking S = TM . As in Example 3.32, consider L(TM,R,J) = L(q−1(ker(JC − iId), 0) and
note that

K = R, D = TM and ∆ = ∆0 = R.

Thus L(TM,R,J) has constant real index r, order 0 and type n, where dimM = 2n+ r.

3.3 Jumping phenomena

In Corollary 3.27 we observed how the order of a complex Lie algebroid changes. We will see that
the real index of a complex Dirac structure varies in the same way; we also provide examples of
these changes.
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Corollary 3.35. Let L be a lagrangian subbundle of (TM ⊕ T ∗M)C, then the function r(p) =
dim(L|p∩L|p) is upper semi-continuous. Furthermore, the function p 7→ r(p)(mod 2) is constant.

Proof. Since r(p) = dim(L|p∩L|p) = 2 dimM−dim(L|p+L|p) and L+L is a smooth distribution,
then by Lemma 2.1, r is upper semi-continuous. The second part of the statement follows from
Corollary 3.8.

In Examples 3.30 and 3.31 we have observed that the real index of a complex Dirac structure
can change, remaining the order and the type constant. We next see examples of complex
Dirac structures with some invariants changing while other remain constant. We also provide
an example of a complex Dirac structure with distribution ∆ not smooth.

Example 3.36. (Type change with constant order) Let M = C2×R, with coordinates (z1, z2, t).
Consider the spinor ρ = z1 + dz1 ∧ dz2 and the submanifold Z = {z1 = 0}. Then,

ρp =

{
dz1 ∧ dz2, if p ∈ Z
z1e

dz1∧dz2
z1 , if p 6∈ Z.

Let L be the annihilator of ρ. We can see that on the points of Z, we have that L = L(E, 0),
where E = Ann{dz1, dz2}, then L is a lagrangian subbundle over Z and thus ρ is pure on Z. On
the points of M − Z, the spinor comes from the complex two-form 1

z1
dz1 ∧ dz2, then ρ is pure

on M − Z and so on the whole manifold. Since

dρ = dz1 = ι∂z2
· ρ,

by Proposition 2.52, L is a complex Dirac structure.
Now we study in more detail the distributions associated to L as well as its order, type and

real index. We consider real coordinates (x1, y1, x2, y2, t), where z1 = x1 + iy1 and z2 = x2 + iy2.
On the points of Z, as we have observed above, L = L(E, 0) with E = Ann{dz1, dz2} or more
explicitly

E = spanC{∂x1 − i∂y1 , ∂x2 − i∂y2 , ∂t}.

Implying that E = q−1(ker(JC − iId)), where q : C2 × R → C2 denotes the projection onto C2

and J the canonical complex structure on C2. Note that C2 = TM/R · ∂t and the map q is
also the quotient map, yielding us that L is defined by a transverse holomorphic structure. By
Example 3.34,

D|Z = TM |Z and K|Z = ∆|Z = ∆0|Z = R · ∂t.

We observe that on the points of Z the order of L is zero, the rank of kerω∆ is one and the type
of L is 2 and so by Proposition 3.11 the real index is one.

On the points of M − Z, we have that L = L(TMC , B + iω) = eBL(TMC, iω), where
1
z1
dz1 ∧ dz2 = B + iω,

B =
x1

x2
1 + y2

1

(dx1 ∧ dx2 − dy1 ∧ dy2)− y1

x2
1 + y2

1

(dx1 ∧ dy2 − dy1 ∧ dx2)

and
ω =

x1

x2
1 + y2

1

(dx1 ∧ dy2 − dy1 ∧ dx2)− y1

x2
1 + y2

1

(dx1 ∧ dx2 − dy1 ∧ dx2).

42



We can see that the two-form ω ∈ Ω2(M − Z) is presymplectic and kerω = R · ∂t. Since L is a
B-transformation of a presymplectic structure, we have that the associated distributions remain
the same as in the presymplectic case, then

E = TMC, D = ∆ = TM and ∆0 = kerω = R · ∂t on M − Z.

However, since the B-transformation is real then

L ∩ L = eB(L(TMC, iω) ∩ L(TMC, iω))

and thus
K = eB(R · ∂t) = R · ∂t on M − Z.

Hence ρ defines a complex Dirac structure with constant real index one, constant order 0
which is type 0 along M − Z and type 2 along Z.

Example 3.37. (Order and type change with constant real index)
Consider M = R5, with coordinates (x1, x2, y1, y2, z), the canonical two-form

ω = dx1 ∧ dy1 + dx2 ∧ dy2 ∈ Ω2(R5)

and the regular distribution

Ep = spanC{∂x1 , ∂y1 , ∂x2 , (a(p)∂y2 + ib(p)∂z)},

where a and b are real functions and a(p) 6= 0 for all p.
Consider the lagrangian subbundle

L = L(E, iι∗Eω)

and the set Z = {p | b(p) = 0}. Since E is a regular distribution, L is smooth.
Since

AnnE = C · (adz − ibdy2),

we have that the spinor associated to L is

ρ = ei(dx1∧dy1+dx2∧dy2) ∧ (adz − ibdy2)

Taking a(x1, y1, x2, y2, z) = ey2 and b(x1, y1, x2, y2, z) = f(y2), where f ∈ C∞(R) has non-empty
zero set, we have that

dρ = ey2 ∧ dy2 ∧ dz + iey2 ∧ dx1 ∧ dy1 ∧ dy2 ∧ dz = dy2 · ρ

and thus L is a complex Dirac structure.
We study the real index, type and order of L. First, we note that rankE = 4. In case p ∈ Z,

the bundle E is real and thus

∆|p = D|p = spanR{∂x1 , ∂x2 , ∂y1 , ∂y2},

moreover, orderp(L) = codimD|p = 1 and typep(L) = 0. In case p ∈M − Z, we have that

∆|p = spanR{∂x1 , ∂x2 , ∂y1}, D|p = TpM,
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and thus orderp(L) = codimD|p = 0 and typep(L) = 1.
Note that ω∆ = ι∗∆ω and then

ω∆|p =

{
dx1 ∧ dy1 + dx2 ∧ dy2, whenever p ∈ Z
dx1 ∧ dy1, whenever p 6∈ Z

Thus ω∆ is nondegenerate on Z and has one-dimensional kernel outside Z. Using Proposition
3.11, we obtain that the real index of L is one.

We have seen that L has real index one, and type and order changing along Z.
It remains to compute K; we will prove that

K = R · (b∂x2 + adz).

By Lemma 3.3, we have that prTMK = kerω∆ = R · b∂x2 and so

K = R · (b∂x2 + ζ),

for some ζ ∈ T ∗M . Since b∂x2 + ζ is a real element of L, and L = L(E, iι∗Eω), we have that

ζ|E = ιb∂x2
iι∗EωC = ibdy2.

Consequently, ζ − ibdy2 ∈ AnnE = C · (adz − ibdy2) and then

ζ = (β1 + iβ2)(adz − ibdy2) + ibdy2

= β1adz + β2bdy2 + i(β2adz + (1− β1)bdy2)

for some β1 + iβ2 ∈ C. Since ζ is real, then

β2adz + (1− β1)bdy2 = 0

and thus β2 = 0 and b(1 − β1) = 0. Then ζ = β1adz. Whenever p ∈ M − Z, i.e. b(p) 6= 0, we
have that β1 = 1 and then ζ = adz, otherwise prTpMK|p = 0.

Another fact about L is that ∆ is not smooth, since it has dimension 4 on Z and dimension
3 elsewhere.
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Chapter 4

Complex Dirac structures with
constant real index

In this chapter we study the phenomena associated to complex Dirac structures with constant
real index. We begin by describing the conditions to assure the smoothness of the distributions
associated to a complex Dirac structure. We introduce the (real) Dirac structure associated
to a complex Dirac structure with constant real index and order as a generalization of the
Poisson structure associated to generalized complex structure. We also introduce the class of
split isotropic subbundles and study the complex Dirac structures related to them. At the end
of this chapter we discuss briefly a new notion of generalized metric.

4.1 More on complex Dirac structures on manifolds

In this section we study several properties related to complex Dirac structures with constant
real index. We also provide some topological obstructions for their existence.

4.1.1 Smoothness for the associated distributions

We now study the conditions for guaranteeing the smoothness of the distributions associated to
complex Dirac structures. Given a complex Dirac structure L, we saw that it has associated
real distributions K ⊆ TM ⊕ T ∗M , D,∆,∆0 ⊆ TM and the complex distribution E; we saw in
Proposition 3.26 that E and D are always smooth. However in Example 3.31 and Example 3.37
we observed that K, ∆ and ∆0 are not necessarily smooth. We will show that under certain
conditions we can assure the smoothness of these distributions and even the integrability of ∆
and ∆0. First we recall an elementary lemma.

Lemma 4.1. Let S be a smooth distribution of a vector bundle A over M . If S has constant
rank, then S is a vector subbundle of A.

Proof. Since S is a smooth distribution and has constant rank r, we have that around any point
p ∈ M we can construct a local frame of r sections of S and with them we obtain a local
trivialization for S, showing that S is a vector bundle of rank r.

The previous lemma together with Lemma 2.7 give us the following.
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Corollary 4.2. Let L be a lagrangian subbundle of (TM ⊕ T ∗M)C. If the real index of L is
constant and equal to r, then K and K⊥ are vector bundles of rank r and 2 dimM−r respectively.
Moreover, if L is involutive, then K is a Lie algebroid.

Corollary 4.3. Let L be a lagrangian subbundle of (TM ⊕T ∗M)C. If the order of L is constant
and equal to s, then D is a vector bundle of rank dimM − s.

Remark 4.4. The involutivity of D does not follow from the involutivity of L. An example of
this is the complex Dirac structure defined by the CR structure of S3 inherited by the complex
structure of C2, cf. [6].

For ∆0 we have the following.

Corollary 4.5. If L is a lagrangian subbundle of (TM ⊕ T ∗M)C with constant real index, then
∆0 is smooth. Moreover, if L is involutive, then ∆0 is integrable.

Proof. Since ∆0 = prTMK, the first part follows after Lemma 4.2. If L is involutive then K is
a Lie algebroid and by Proposition 2.5, ∆0 is integrable.

For the smoothness of ∆ we have the following.

Lemma 4.6. If L has constant order, then the distribution ∆ is smooth.

Proof. Consider the bundle map
Φ : L→ D

Φ(l) = i(prTMC(l)− prTMC(l)).

First we see that Φ is surjective. Note that E+E = D⊕ iD. Given d ∈ D, since prTMC(L+L) =
DC there exists τ ∈ T ∗MC such that d + τ ∈ L + L. Take l1 = X1 + iX2 + ξ ∈ L and
l2 = Y1 + iY2 + η ∈ L, where X1, X2, Y1, Y2 ∈ TM and η, ξ ∈ TMC such that d + τ = l1 + l2.
Consequently, l2 = d−X1 + iX2 + η ∈ L and Φ(− i

2
(l1 + l2)) = d.

Since L has constant order, D is a vector bundle. As we have proved that Φ is surjective,
ker Φ is a vector bundle and so ∆ = prTM(ker Φ) is smooth.

Constant real index does not imply the smoothness of ∆ as we observed in Example 3.37,
where ∆ is not smooth. We will prove in Section 4.2 that if the real index and the order of a
complex Dirac structure are constant, then ∆ is the presymplectic distribution associated to a
Dirac structure and so it is integrable.

4.1.2 Extreme-type complex Dirac structures

Now we give the smooth version of Proposition 3.19 and more examples of complex Dirac struc-
tures with constant real index.

Proposition 4.7. Let L be a complex Dirac structure with constant real index r over a (2n+r)-
dimensional manifold. We have the following:

a) If L has order s and type 0, then L = eBL(DC, ωC), where L(DC, ωC) is the complex Dirac
structure associated to a regular Dirac structure, L(D,ω) with D a corank-r involutive
distribution and ω ∈ ∧2D∗ is a presymplectic structure with (r − s)−dimensional kernel,
and B is a not necessarily closed real two-form. Moreover, the differential of B vanishes
in the direction of the distribution D.
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b) If L has order s and type n, then L = eBL(E, 0), where L(E, 0) is the complex Dirac
structure associated to a transverse CR structure and B ∈ Ω2(M,C) is not necessarily
closed.

Proof. a) The first assertion follows from Proposition 3.19. Suppose that L = eBL(DC, iω)

where D
ι
↪−→ TM is a corank-r smooth distribution, ω ∈ ∧2D∗ is the presymplectic structure

with (r− s)−dimensional kernel and B ∈ Ω2(M). Since L = L(DC, ι
∗B+ iω) is involutive, then

D is a regular integrable distribution, dD(ι∗B + iω) = 0, implying that dDι
∗B = 0, where dD

represents the differential on the directions of D.
b) Let E = prTMCL, ∆ = Re(E ∩ E) and D = Re(E + E). We see that E defines a

bundle map J : D/∆ → D/∆ satisfying J2 = −Id such that E = q−1(ker(JC − iId)), where
q : TMC → (TM/R)C denotes the quotient map. By Lemma 4.6 and the fact that L has constant
real index, order and type, ∆ and D are regular distributions. The involutivity of L implies
that E and ∆ are involutive and so (∆, D, J) defines a transverse CR structure. It follows that
L = eBL(∆,D,J), where B is an extension of ε.

Remark 4.8. Recalling that B-transformations are real and closed two-forms. In the previous
proposition, the two-form B does not define in general a B-transformation. For the case of
type 0, around any point we obtain a neighbourhood where B can be taken to be an honest
B-transformation. This is done using a foliated chart and extending ε remaining the same in
the directions of the distribution and vanishing on the other directions. It is not always possible
to obtain a global B-transformation, actually there is an obstruction that relies on the foliated
cohomology of the manifold with respect to the foliation associated to D, cf. [15]. On the other
hand, in type n, we find some difficulties to find a globally or locally defined B−transformation
taking L to the complex Dirac structure associated to a transverse CR structure. This differs
from what happens to generalized complex structures with type n, where the two-form is not
necessarily real and closed but locally we obtain an honest B-transformation, [22, Prop. 4.22].

Proposition 4.9. Let L be a complex Dirac structure with constant real index r and order r
over a (2n + r)-dimensional manifold. If L has type n, then there exist a CR structure (D, J)
and a real two-form B such that L is a transformation by B of the complex Dirac structure
associated to (D, J).

Proof. Since L has type n, we have that its associated Poisson structure is zero. So, if JN :
D ⊕D∗ → D ⊕D∗ is its associated bundle map, then

J =

(
A 0
Ω −A∗

)
.

Since J is a generalized complex structure, ΩA = A∗Ω and A2 = −Id. Then we have that
(D,A) is an almost CR structure. We next prove that it is actually a CR structure. Since

ker(JC − iId) = {X − iA(X) + ξ − i(Ω(X)− A∗ξ) ∈ (D ⊕D∗)C | X + ξ ∈ D ⊕D∗},

we have that

L = {X − iA(X) + ξ̂ − iη̂ ∈ (D ⊕ T ∗M)C | X ∈ D, ξ̂|D = ξ and η̂|D = Ω(X)− A∗ξ}.

Note that prTML = ker(AC−iId), so the involutivity of L implies the involutivity of ker(AC−
iId). Thus, we have obtained the condition of integrability of (D,A).
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Consider the lagrangian subbundle L0 = L/(AnnD)C ⊆ (D ⊕ D∗)C and the quotient map
q : (D ⊕ T ∗M)C → (D ⊕D∗)C. Now consider B0 = −ΩA/2 ∈ Γ(∧2D∗); note that

e−B0J eB0 =

(
A 0

Ω− A∗B0 −B0A −A∗
)

=

(
A 0
0 −A∗

)
= JA,

since A∗B0 + B0A = (−A∗ΩA − ΩA2)/2 = Ω. Let L′0 = ker((JA)C − iId), we observe that
L′0 = eB0L0. Let B1 be an extension of B0 to Ω2(M). We note that L′ = q−1L′0 is the complex
Dirac structure associated to the CR structure (D,A) and L′ = eB1L. This implies that eB1(L)
is the complex Dirac structure associated to a CR structure.

Examples 4.10. We give additional examples of complex Dirac structures with constant real
index.

a) Let L be a generalized complex structure. Note that L ∩ L = 0 and consequently we have
that K = 0, D = TM and ∆0 = 0.

b) Let (θ, ω) be a cosymplectic structure on a (2n+1)-dimensional manifold, i.e. θ ∈ Ω1
cl(M),

ω ∈ Ω2
cl(M) such that ωn∧θ is a volume form. The last condition implies that ker ι∗ω = 0,

where ι : ker θ → TM is the inclusion map. We can see that a cosymplectic struc-
ture defines a regular Dirac structure L(ker θ, ω) and so a complex Dirac structure L =
L((ker θ)C, iι

∗ω) with real index one and type 0.

c) Let p : M ×R→M be the projection of M ×R onto M . Let L be a generalized complex
structure on M . Then Bp(L) has real index one and order zero, since

Bp(L) ∩ Bp(L) = ker(p∗)C = C · ∂t.

4.1.3 Obstructions

In this section we study some topological obstructions to the existence of a complex Dirac
structure with real index r. In Corollary 3.8 we obtained a first obstruction that relies on the
dimension of the manifold: if M admits a lagrangian subbundle L of (TM⊕T ∗M)C with constant
real index r, then dimM ∼= r (mod 2).

Let K be an isotropic subbundle of TM⊕T ∗M with rank r and assume that dimM = 2n+r;
then rankK⊥/K = 4n. By Proposition 3.5, K⊥/K admits a pairing of signature (2n, 2n), thus
the structural group of the frame bundle of K⊥/K admits a reduction to O(2n, 2n). In the
same manner as generalized almost complex structures over a 2n-dimensional manifold M are
obtained from reduction of the structure group O(2n, 2n) on the frame bundle of TM ⊕T ∗M to
U(n, n), we will see that complex Dirac structures L with associated isotropic subbundle K(this
implies that L would have constant real index) are obtained from reduction of the structure group
O(2n, 2n) on the frame bundle K⊥/K. Since the existence of a complex Dirac structure with
associated isotropic subbundle K is equivalent to the existence of a pairing-preserving-map J :
K⊥/K → K⊥/K such that J 2 = −Id, we have a reduction to U(n, n) = GL(2n,C)∩O(2n, 2n).
Thus we obtain the following.

Lemma 4.11. Let K be an isotropic subbundle of TM ⊕ T ∗M with rank r. A lagrangian
subbundle L of TM ⊕ T ∗M with isotropic subbundle K is equivalent to a reduction of structure
from O(2n, 2n) to U(n, n) on the frame bundle of K⊥/K.
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Consider a lagrangian subbundle L of TM ⊕ T ∗M with isotropic subbundle K, by Lemma
4.11, there is a reduction from O(2n, 2n) to U(n, n) on K⊥/K. Since U(n)×U(n) is a maximal
compact subgroup of U(n, n), it is homotopic to U(n, n), so we can find a complex subbundle
C+ inside K⊥/K with orthogonal bundle C− = C⊥+ such that K⊥/K = C+ ⊕ C−. As a result
the bundle map

pK : C+ → D/∆0

X + ξ +K 7→ X + ∆0

is well-defined since prTMK
⊥ = D and prTMK = ∆0 and actually is an isomorphism. Therefore,

the vector bundle D/∆0 admits an almost complex structure by transporting the almost complex
structure of C+ via pK to D/∆0. Thus we have proved the following.

Proposition 4.12. Let L be a real index r Dirac structure. Then there exists an almost complex
structure on the bundle D/∆0.

In particular, when the order is equal to the real index, i.e. K⊥/K = D⊕D∗, the distribution
D admits an almost CR structure.

Corollary 4.13. If a manifold M admits a lagrangian subbundle with constant real index r and
order r, then it admits an almost CR structure of codimension r as well.

Proposition 4.12 gives a constraint on the existence of complex Dirac structure with under-
lying associated isotropic subbundle K such that prTMK

⊥ = D and prTMK = ∆0. We recall
the following proposition about the existence of almost complex structures on vector bundles is
proved exactly as in [22, Prop. 4.16].

Proposition 4.14. Let E be a vector bundle of rank 2n over M admitting an almost complex
map J . Then:

1. The odd Stiefel-Whitney classes w2i+1(E) ∈ H2i+1(M,Z/2Z) vanishes.

2. The Chern classes ci(E) ∈ H2i(M,Z) and the Pontrjagin classes pi(E) ∈ H4i(M,Z) satisfy

[n/2]∑
i=0

(−1)ipi =
n∑
j=0

cj ∪
n∑
k=0

(−1)kck.

So if the proposition above fails for D/∆0, we obtain that there is no lagrangian subbundle
with associated isotropic K such that prTMK = ∆0 and prTMK

⊥ = D. Note that the closer
rank of K is to dimM , the less information the proposition gives. In the case of real index zero,
the obstruction is the same as the existence of almost complex structure. On the other hand,
in the case where rankK = dimM , i.e. K is a lagrangian subbundle, Proposition 4.12 gives no
information, since D/∆0 = 0.

4.2 Associated Dirac structures

In this section we show another feature of generalized complex structures that is extended
to complex Dirac structures with constant real index and order, that is that complex Dirac
structures with constant real index and order carry a presymplectic foliation which comes from
a Dirac structure.
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Let L be a complex Dirac structure with constant real index r and order s. The presymplectic
distribution (∆, ω∆) has as kernel the distribution ∆0 which, by Proposition 3.11, is a regular
distribution of rank r − s. We see in this section that ∆ is integrable and actually

L∆ := L(∆, ω∆)

is a Dirac structure. Firstly, we study the relationship between L∆ and L, as well as its associated
bundle map J .

We recall that
K⊥ ∩ T ∗M = Ann ∆0

∼= (TM/∆0)∗.

The following three lemmas concern a complex Dirac structure L with constant real index r.

Lemma 4.15. If ξ ∈ K⊥∩T ∗M , then there exist X ∈ TM and η ∈ T ∗M such that X+iξ+η ∈ L.
If X ′ ∈ TM and ξ′, η′, we have that X ′ + iξ + η′ ∈ L if and only if X + η − (X ′ + η′) ∈ K.

Proof. Since ξ ∈ K⊥∩T ∗M ⊆ (L+L), then there exists l1 ∈ L, l2 ∈ L with lk = Xk+iYk+ηk+iτk,
such that ξ = l1 + l2. We can see that l2 = −X1 − iY1 − (ξ − η1)− iτ1. Then

i(l1 + l2) = −2Y1 + iξ − 2τ1 ∈ L.

The previous lemma allows us to see ξ as an element of L+L, by taking e = − i
2
(X + iξ+ η)

and seeing that ξ = e+ e.

Lemma 4.16. Let X ∈ TM and ξ, η ∈ T ∗M . If X + iξ + η ∈ L then X + ξ ∈ L∆. Conversely,
if X + ξ ∈ L∆, then there exists η ∈ T ∗M such that X + iξ + η ∈ L.

Proof. (→) Let E ⊆ TpMC and ε ∈ ∧2E|∗p such that L|p = L(E|p, ε). Let B + iω ∈ ∧2T ∗pM be
an extension of ε. Since X + iξ + η ∈ L|P , we have that

(iξ + η)|E = ιXε = ιX(B + iω) = ιXB + iιXω.

Restricting to ∆C and comparing the imaginary component we get that ξ|∆ = ιXω|∆ = ιXω∆.
Consequently, X + ξ ∈ L∆.

(←) Consider X + ξ ∈ L∆; then, ξ ∈ prT ∗M(L∆) = Ann ∆0. Thus by Lemma 4.15, there
exist Y ∈ TM , η ∈ T ∗M such that Y + iξ+η ∈ L. Applying the right-side direction of the proof
to Y + iξ + η ∈ L, we obtain that Y + ξ ∈ L∆. Then X − Y ∈ L∆ ∩ TM = ∆0 = prTMK and
thus there exists ζ ∈ T ∗M such that X−Y + ζ ∈ K. So by Lemma 4.15, X+ iξ+η+ ζ ∈ L.

Lemma 4.17. If ξ ∈ K⊥ ∩ T ∗M and Y ∈ TM , τ ∈ T ∗M satisfy J (ξ + K) = Y + τ + K,
then Y + ξ ∈ L∆. Conversely, if X ∈ TM , ξ ∈ T ∗M satisfy that X + ξ ∈ L∆, then there exists
τ ∈ T ∗M such that J (ξ +K) = X + τ +K.

Proof. (→) By Lemma 4.15, there exist X ∈ TM and η ∈ T ∗M such that X + iξ + η ∈ L =
L(E, ε) and by Lemma 4.16, X + ξ ∈ L∆.

Applying JC to ξ +KC and taking e = − i
2
(X + iξ + η), we get that

JC(ξ +KC) = JC(e+ e+KC) = i(e− e) +KC = X + η +KC.

If Y + τ +K ∈ K⊥/K is such that J (ξ +K) = Y + τ +K. Then

Y + τ +KC = X + η +KC
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and thus Y −X ∈ prTMCKC. Finally, Y −X ∈ ∆0 = L∆ ∩ TM and then Y + ξ ∈ L∆.
(←) Consider X+ξ ∈ L∆. By Lemma 4.16, there exist τ ∈ T ∗M such that l = X+iξ+τ ∈ L.

Taking e = − i
2
l, we have that ξ = e+ e and

JC(ξ +KC) = X + τ +KC.

Remark 4.18. If J is a generalized complex structure and ξ ∈ T ∗M , then J (ξ) = π(ξ) + η,
where π is the Poisson structure associated to J and η some element in T ∗M . We can see that
in this case L∆ = Graph(π).

From now on we consider a complex Dirac structure with constant real index r and order s.
Consider F = prT ∗M(L∆). We know that F = Ann(kerω∆) = Ann ∆0

∼= (TM/∆0)∗. Since
the order is constant, F is smooth and of constant rank.

Now consider
γ : F ∼= (TM/∆0)∗ → TM/∆0

ξ 7→ pKJ (ξ +K)

where
pK : K⊥/K → TM/∆0

X + ξ +K 7→ X + ∆0.

Note that γ ∈ Γ(∧2(TM/∆0)) is well defined globally. Let

r : TM → TM/∆0

be the quotient map.

Lemma 4.19. Let Lγ denote the graph of γ in TM/∆0 ⊕ (TM/∆0)∗. Then

Brp(Lγ|p) = L∆|p,

for all p ∈M . Here we are taking the backward image pointwise.

Proof. Let X + ξ ∈ Brp(Lγ)|p. Then there exists ξ̂ ∈ (TM/∆0)∗ such that r(X) + ξ̂ ∈ Lγ|p and

r∗ξ̂ = ξ, and then ξ ∈ Ann ∆0. Thus

X + ∆0 = γ(ξ̂) = pKJ (ξ +K).

Then by Lemma 4.17, X + ξ ∈ L∆|p. Consequently, Brp(Lγ)|p ⊆ L∆|p and the equality holds
since both are lagrangian subspaces of (TM ⊕ T ∗M)|p.

Before proving the main theorem, we prove a technical lemma.

Lemma 4.20. Let A and B be two vector subbundles of a vector bundle V . If the rank of A∩B
is constant, then A ∩B is a vector subbundle of V

Proof. Consider the map
Ψ : V × V → V

(v1, v2) 7→ v1 − v2.

Note that Ψ|A×B is smooth. By hypothesis ker Ψ|A×B = (A ∩ B)× (A ∩ B) has constant rank,
then Ψ(A×B) is a vector bundle. Consequently, ker Ψ|A×B is a vector bundle and so A∩B.
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Theorem 4.21. If L is a complex Dirac structure with constant real index and order, then the
space L∆ is a Dirac structure.

Proof. We divide the proof in two claims. The smoothness of γ allows us to prove the first claim.

Claim 4.22. The space L∆ is smooth.

By equation (2.6) and Lemma 4.19, we have the following exact sequence of bundles

0 // ker r∗ ∩ Lγ // (Lγ ⊕ (TM/∆0 ⊕ (TM/∆0)∗)) ∩ Γr // L∆
// 0. (4.1)

Recall that

Γr = {(Y + η,X + ξ) | Y = rX, ξ = r∗η} ⊆ (TM/∆0 ⊕ (TM/∆0)∗)× (TM ⊕ T ∗M)

is a lagrangian subbundle. Since ker r∗ ∩ Lγ = 0, we obtain that

(Lγ ⊕ (TM/∆0 ⊕ (TM/∆0)∗)) ∩ Γr ∼= L∆.

Finally, by Lemma 4.20, L∆ is a vector bundle.

Claim 4.23. The lagrangian subbundle L∆ is involutive.

Let X + ξ, Y + η ∈ Γ(L∆). Then, there exists ξ0, η0 ∈ Γ(T ∗M) such that

X + iξ + ξ0, Y + iη + η0 ∈ Γ(L).

Since L is involutive

[X + iξ + ξ0, Y + iη + η0] = [X, Y ] + LX(iη + η0)− ιY d(iξ + ξ0)

= [X, Y ] + i(LXη − ιY dη) + LXη0 − ιY dξ0 ∈ Γ(L).

Then by Lemma 4.16,
[X, Y ] + LXη − ιY dη ∈ Γ(L∆).

Corollary 4.24. If L is a complex Dirac structure with constant real index and order, then the
distribution ∆ is integrable.

Given F a subbundle of T ∗M and γ ∈ ∧2F ∗ we consider

L(F, γ) = {X + ξ | ιξγ = X|F},

which is a lagrangian subbundle.
Note that in our case we have that

L∆ = L(Ann ∆0, γ).

In conclusion we get that to each complex Dirac structure with constant real index r and order
s we assign a Dirac structure with (r − s)−dimensional kernel.

Examples 4.25. 1. Let (D,ω) be a presymplectic distribution, where D is involutive and
regular. Consider the complex Dirac structure L(DC, iωC), then the associated Dirac struc-
ture is given by L∆ = L(D,ω), since D is regular L∆ is a Dirac structure.
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2. If we consider the transverse CR structure (R, S, J) and its associated complex Dirac
structure, we obtain that in this case L∆ = R⊕ AnnR.

We do not have a direct relationship between K and L∆, but we have that

prTMK = ∆0 ⊆ ∆ = prTML∆ and

prT ∗MK
⊥ = AnnD ⊆ Ann ∆0 = prT ∗ML∆

The distribution L∆ is always well defined. In Proposition 4.21 we ask for the complex Dirac
to have constant real index and order in order to assure the smoothness of L∆. When there are
variations of the real index or the order we can no longer assure the smoothness of L∆.

It is known that the leaves of the foliation associated to a real Dirac structure have the same
parity. Given a complex Dirac structure L and a point p ∈M , denote by r(p) the real index of
L at p, s(p) to the order of L at p and k(p) to the type of L at p. By Remark 3.14.5, we know
that dim ∆|p = 2(n − k(p)) + r(p) − s(p). Hence, if we have a jumping of real index and order
then we have that depending on r − s the leaves could have different parities. Consider

δL : M → Z2

p→ r(p)− s(p) (mod 2) = s(p) (mod 2),

where the last equality follows from Corollary 3.35. Then we have the following.

Proposition 4.26. Let L be a complex Dirac structure. If δL is not constant, then L∆ is not
smooth.

Now we present some examples:

Example 4.27. (Real index changing and constant order) Let D be a regular involutive dis-
tribution and ω ∈ ∧2D∗ a presymplectic form with changes in the rank of its null-distribution.
Consider L = L(DC, iωC); then codimD + rank kerω|p = r(p). Since the changes in the rank of
the null-distribution of a two-form is always modulo 2, we have that δL is constant. Indeed, we
have that L∆ = L(D,ω) is a Dirac structure.

Example 4.28. (Order changing with associated smooth Dirac structure) Let L′ be a Dirac
structure and take L = L′C. Then, its associated Dirac structure is L′ itself. Since prTML

′ could
be non-regular, then the order of L changes but the Dirac structure remains smooth.

Example 4.29. (Constant real index does not imply smoothness of the distribution L∆) Let
L be the complex Dirac structure of example b) of Section 3.5, we have that the real index is
one but the order changes along the submanifold Z. We had observed that order(L) = 1 on
Z, whereas order(L) = 0 on M − Z. By Proposition 4.26, we get that the bundle L∆ is not
a Dirac structure. Consequently, constant real index does not necessarily assure that L∆ is a
Dirac structure.

4.3 Split isotropic subbundles

In this section we focus on complex Dirac structure having associated an isotropic subbundle K
that splits; we focus in the case of splitting K such that prTMK = 0 and observe how in this
case we obtain a foliation where each leaf carries a generalized complex structure.
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We observed in Examples 3.30 and 3.32 that some complex Dirac structures have an asso-
ciated isotropic subbundle K which is the direct sum of a subspace of TM with a subspace of
T ∗M . In this section we study this kind of isotropic subbundles and the complex Dirac struc-
tures having them as associated isotropic subbundles. We give special attention to isotropic
subbundles of the form K = AnnD.

Definition 4.30. Consider a rank-r isotropic subbundle K of TM ⊕ T ∗M . We say that K
splits if the exact sequence at (3.4)(extended to vector bundles) splits and ∆0 = prTMK has
constant rank.

Note that the condition on the exact sequence is equivalent to prTMK = K ∩TM . Consider
D = prTMK

⊥, by the additivity of the ranks of the exact sequence (3.4) and the fact that
K ∩ T ∗M = AnnD, if K splits then D has constant rank. As a result,

K = ∆0 ⊕ AnnD and K⊥ = D ⊕ Ann ∆0, (4.2)

yielding that
K⊥/K ∼= D/∆0 ⊕ (D/∆0)∗,

via the isomorphism

X + ξ +K 7→ X + ∆0 + ξ̂|D,

where ξ̂|D is the unique linear map satisfying ξ̂|D ◦ r = ξ|D, where r : D → D/∆0 is the quotient
map.

Now, consider a complex Dirac structure L with real part K as above. By Proposition 3.7
this is equivalent to a map

J : D/∆0 ⊕ (D/∆0)∗ → D/∆0 ⊕ (D/∆0)∗

J =

(
A Φ
Ω −A∗

)
such that J 2 = −I and J ∗ + J = 0. By Lemma 4.17, we have that

L∆ = {X + ξ ∈ D ⊕ Ann ∆0 | X + ∆0 = Φ(ξ̂|D)}.

If we take regular distributions ∆0 ⊆ D ⊆ TM and K = ∆0 ⊕AnnD, and consider the class of
all complex Dirac structures with real part K, we have that inside this class the complex Dirac
structures of extreme type are represented by presymplectic structures defined on D with kernel
∆0 (type 0) and transverse CR structures (∆0, D, J) (type n).

There is a case when the splitting of K occurs naturally.

Lemma 4.31. Let K be an isotropic subbundle of TM⊕T ∗M . We have rankK = corank(prTMK
⊥)

if and only if ∆0 = 0 and K splits (or equivalently K = AnnD for some subbundle of TM).

Proof. By Lemma 3.10, dimK ∩ T ∗M = dim Ann prTMK
⊥ = dim AnnD = r. Therefore K ∩

T ∗M = K and K splits.

We easily see that K = AnnD and K⊥ = D⊕T ∗M . From the perspective of a complex Dirac
structure, this is the case when the order and the real index of the complex Dirac structure are
constant and equal. From now on we focus on complex Dirac structures with associated isotropic
subbundle of the form AnnD.

As a consequence of the previous lemma and the discussion at the beginning of the section,
we obtain the following.
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Corollary 4.32. Let L be a complex Dirac structure with constant real index with associated
isotropic subbundle AnnD. Then, we have that the map associated to L is a map J : D⊕D∗ →
D⊕D∗ and its associated Dirac structure comes from the Poisson structure π(ξ) = prD ◦J (ξ|D)

The map of the corollary above resembles a generalized complex structure. Although in
general D ⊕ D∗ does not inherit the structure of a Courant algebroid, we next see that the
involutivity of D will assure that condition.

Lemma 4.33. If D is involutive then D ⊕D∗ is a Courant algebroid.

Proof. First we see how the bracket of TM ⊕ T ∗M descends to D ⊕ D∗. Since D ⊕ D∗ =
D⊕T ∗M/AnnD and the involutivity of D implies that Γ(D⊕T ∗M) is closed under the Courant-
Dorfman bracket, it is enough to show that Γ(AnnD) is an ideal of Γ(D ⊕ T ∗M). Consider
ξ ∈ Γ(AnnD) and Y + η ∈ Γ(D ⊕ T ∗M), then

[ξ, Y + η] = −ιY dξ.

Take Z ∈ Γ(D),
ιY dξ(Z) = Y (ξ(Z))− Z(ξ(Y ))− ξ([Y, Z]) = 0.

Consequently [ξ, Y + η] ∈ Γ(AnnD) and thus Γ(AnnD) is an ideal.
We can see that (D ⊕ D∗, 〈·, ·〉D, [·, ·]D, prD) is a Courant algebroid, where 〈·, ·〉D is the

canonical pairing of D ⊕D∗ and [·, ·]D is the bracket inherited by TM ⊕ T ∗M .

Under the hypothesis of the lemma above, the explicit form of the bracket of D ⊕D∗ is

[X + ξ, Y + η]D = [X, Y ] + LDXη − ιY dDξ,

where X + ξ, Y + η ∈ D ⊕D∗, dD denotes the differential along D and

LDX = ιXdD + dDιX .

Also, the involutivity of L does not imply the integrability of D, as we saw in Remark 4.4.
Let q : D ⊕ T ∗M → D⊕T ∗M

AnnD
= D ⊕D∗ denote the quotient map q(X + ξ) = X + ξ|D. There

exist a one-to-one correspondence between lagrangian subbundles of (TM ⊕ T ∗M)C such that
L ∩ L = (AnnD)C and lagrangian subbundles L0 of (D ⊕D∗)C such that L0 ∩ L0 = 0, via the
identification L 7→ qC(L), where qC is the complexification of the map q. Since L∩L = (AnnD)C,
we have that L ⊆ (D⊕ T ∗M)C. Then it is natural to ask whether this identification restricts to
complex Dirac structures. So we have the following.

Proposition 4.34. Let L be a lagrangian subbundle of (TM ⊕ T ∗M)C such that L ∩ L =
(AnnD)C. If D is involutive, then L is involutive if and only if qC(L) is involutive.

Proof. First we note that

q[X + ξ, Y + η] = [q(X + ξ), q(Y + η)]D,

for every X + ξ, Y + η ∈ D ⊕ T ∗M as the following holds

(LXη − ιY dξ)|D = LDXη − ιY dDξ.

Since L ∩ L = (AnnD)C, we have that L ⊆ (D ⊕ T ∗M)C. So by the first part of the proof and
the fact that (qC)−1(qC(L)) = L, the proposition holds.
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As an application of the proposition above we obtain a family of generalized complex struc-
tures on each leaf of the foliation associated to D.

Proposition 4.35. Let L be a complex Dirac structure with constant real index r, order r and
bundle map J , such that L ∩ L = (AnnD)C. If the distribution D is involutive, then J defines
a family of generalized complex structures given by the restriction of J to the leaves of D.

Proof. Let NJ denote the Nijenhuis tensor associated to [·, ·]D. In a similar way as in complex
structures, we can see that L is involutive if and only if NJ = 0. Let S be a leaf of D, when we
restrict J to TS ⊕ T ∗S we obtain a map

JS : TS ⊕ T ∗S → TS ⊕ T ∗S

such that J 2
S = −Id and JS + J ∗S = 0. Finally note that NJS = NJ |S = 0 and thus JS is a

generalized complex structure.

We deduce from the previous proposition that one way to glue generalized complex structures
on a regular foliation is via a complex Dirac structure of nonzero real index.

Remark 4.36. The complex Dirac structure having constant real index equal to its order are
referred to as generalized CR structures in [27].

4.4 Generalized metrics and strictly pseudoconvex struc-

tures

In this section we present some ideas towards a generalized metric theory in the more general
context of complex Dirac structures. We begin with a motivation for that construction. Let M
be an oriented manifold and assume it admits a strictly pseudoconvex structure, i.e. it admits
a codimension-one CR structure (D, J) such that D admits a contact form θ ∈ Ω1(M) and
its associated Levi form Gθ(X, Y ) = dθ(X, JY ) is positive or negative definite. For simplicity
assume that Gθ is positive definite.

The contact form θ defines a presymplectic structure on the distributionD and thus a complex
Dirac structure of real index one. This structure is L−idθ = L(DC,−idθ), it has associated the
bundle map J1 : D ⊕D∗ → D ⊕D∗

J1 =

(
0 −(dθ)−1

dθ 0

)
.

On the other hand the CR structure (D, J) also has associated a complex Dirac structure of real
index one, L(D,J) = L(ker(JC − iId), 0) with associated bundle map J2 : D ⊕D∗ → D ⊕D∗

J2 =

(
J 0
0 −J∗

)
.

By the symmetry of Gθ, we have that J1J2 = J2J1. Consider G = −J1J2; we can see that

G =

(
0 G−1

θ

Gθ 0

)
.

This justifies the following definition.
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Definition 4.37. Let K be an isotropic subbundle of TM⊕T ∗M . A K-generalized metric is a
bundle map G : K⊥/K → K⊥/K such that G2 = Id and it is positive definite, i.e. 〈G(e), e〉 > 0
for all nontrivial e ∈ K⊥/K.

When K = 0 we retrieve the definition of generalized metric on TM⊕T ∗M as defined in [23].
Our construction is mainly based on generalized Kahler structures. We recall that a general-

ized Kahler structure is a pair (L1, L2) of generalized complex structures on the same manifold
with associated bundle maps J1 and J2, respectively, such that J1J2 = J1J2 and G = −J1J2

is a generalized metric. If (M,ω, J) is a Kahler structure, then (Liω, LJ) is a generalized Kahler
structure. Note that an important ingredient for a generalized Kahler structure is the integra-
bility of its underlying generalized complex structures. However, the example we presented at
the beginning of the section fails in that, L−idθ is not involutive, actually it is a nondegenerate
structure, see Appendix A. This suggests the study of pairs (L1, L2) of lagrangian subbundles of
(TM ⊕ T ∗M)C such that L1 ∩L1 = L2 ∩L2 = KC, L1 is nondegenerate (see Definition A.7), L2

is a complex Dirac structure, J1J2 = J1J2 and G = −J1J2 is a K-generalized metric, where
J1 and J2 are the bundle maps associated to L1 and L2, respectively. Something that we leave
for future work.
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Chapter 5

Splitting theorems

In this chapter we obtain a splitting theorem for complex Dirac structures with constant real
index and order. In the first half of this chapter we give a general review of some the results
from [10]. In the second half we adapt the previously presented ideas to proceed to the proof of
the splitting theorem. The second part is completely independent of the first one, although we
are inspired by it. Along this chapter we use the notation ϕ!L instead of Bϕ(L) for the backward
image of a Dirac structure L by the map ϕ.

5.1 Splitting theorems in Poisson and related geometries

In this section we make an overview of the techniques introduced in [10] where all the material
presented here is from. One consequence of the results is the normal form for Dirac structures.
No results of this section are needed in the proof of our main theorem, though they motivate it.

The flow of a complete vector field X ∈ X(M) is the one-parameter group (ϕs)s∈R defined
by the following

X(f) =
d

dt

∣∣∣∣
t=0

ϕ∗−sf.

Let E be a vector bundle over M . For any t ∈ R consider the bundle map κt : E → E, κte = te;
note that κt ∈ Aut(E) for every t ∈ R−{0}, where Aut(E) denotes the automorphism group of
the vector bundle E. Moreover, s 7→ κe−s is a one-parameter group and since Aut(E) ⊆ Diff(E)
we have a one-parameter group in Diff(E) and thus a vector field on E.

Definition 5.1. Given a vector bundle over a manifold, the Euler vector field is the vector
field defined by the one-parameter group s 7→ κe−s usually denoted by E .

The Euler vector field has the following local description, let (xi, yi) be a fibred local co-
ordinates for E, where xi are the fibre directions and yi the base directions, we obtain that
locally

E =
∑
i

xi
∂

∂xi
.

Given a submanifold N of M , we denote the normal bundle of N by

ν(M,N) = TM |N/TN,

we usually denote its projection map by p : ν(M,N) → N . Let ϕ : (M ′, N ′) → (M,N) be a
map of pairs, i.e. a map ϕ : M → M satisfying that ϕ(N ′) ⊆ N . Then we can associate a map
ν(ϕ) : ν(M ′, N ′)→ ν(M,N).
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Given X ∈ X(M) tangent to N , then it defines a map of pairs X : (M,N) → (TM, TN).
Using the fact that Tν(M,N) = ν(TM, TN), we have that ν(X) is a vector field on ν(M,N).

Definition 5.2. Let N be a submanifold of M . A tubular neighbourhood embedding is
an embedding ψ : ν(M,N) → M such that it takes N0, the zero section of ν(M,N), to N
and ν(ψ) = Id, where ν(ψ) is induced by ψ : (ν(M,N), N0) → (M,N) and we are using the
identification ν(ν(M,N), N) = ν(M,N).

Let N be a submanifold and X be a vector field on M that is tangent to N . We say that X
is linearizable if there exist a tubular neighborhood embedding ψ such that ν(X) agrees with
ψ∗X on a neighborhood of N .

Lemma 5.3. Consider a submanifold N of M and X a vector field of M such that X|N = 0
and ν(X) is the Euler vector field associated to ν(M,N). Then X is linearizable.

Euler vector field are just defined on vector bundles, now we present an extension of this
definition to manifolds.

Definition 5.4. Let N be a submanifold of M and let X ∈ X(M). The vector field X is called
Euler-like (along N) if it is complete, X|N = 0 and ν(X) is the Euler vector field of ν(M,N).

Given a submanifold N of M , there is a one-to-one correspondence between tubular neigh-
bourhood embeddings and Euler-like vector fields. Given a tubular neighbourhood embedding
ψ, we retrieve a Euler-like vector field just by pushing forward the Euler vector field associated
to the normal bundle ν(M,N) to ψ(ν(M,N)) via ψ. For the other side we have the following.

Proposition 5.5. Let X ∈ X(M) be a Euler-like vector field along N ⊆ M . Then, there exists
a unique tubular neighborhood embedding ψ : ν(M,N)→M such that

E ∼ψ X,

where E denotes the Euler vector field of ν(M,N).

The main feature of the technique developed in [10] is the production of normal forms for
geometrical structures, such as Lie algebroids or Dirac structures L with anchor map ρ, from
a special section ε ∈ Γ(L) such that ε|N = 0 and ρ(ε) is an Euler-like vector field for certain
submanifold N . In the following lemma we observe a condition for the existence of such sections.

Lemma 5.6. Let L be a Lie algebroid over M with anchor map ρ and let N be a transversal
submanifold, i.e. ρ(L)|N + TN = TM |N . Then there exists ε ∈ Γ(L) such that ε|N = 0 and ρ(ε)
is an Euler-like vector field.

The existence of sections as in the corollary carry many consequences. We recall that given
a diffeomorphism ψ : M → N , its generalized differential is defined as

Tψ : TM ⊕ T ∗M → TN ⊕ T ∗N

T(X + ξ) = ψ∗X + (ψ−1)∗ξ.
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Proposition 5.7. (Normal form for Dirac structures) Let L ⊆ TM ⊕T ∗M be a Dirac structure

and N
ι
↪−→ M a submanifold transversal to L. Choose ε = X + α ∈ Γ(L) with ε|N = 0, X an

Euler-like vector field along N and let ψ : ν(M,N)→M be the associated tubular neighborhood
embedding. Then, there exist a neighbourhood U of N and a two-form B ∈ Ω2(ν(M,N)) such
that Tψ : Tν(M,N)⊕T ∗ν(M,N)→ TM⊕T ∗M restricts to an isomorphism of Dirac structures

L|U ∼= eB(p!ι!L),

where B =
∫ 1

0
1
τ
κ∗τψ

∗dαdτ.

Proof. We give a sketch of the proof. Let ε = X+α ∈ Γ(L) as specified in the hypothesis. Denote
by ϕs the flow associated to X and by ψ its tubular neighbourhood embedding. By Proposition
5.5, X and the Euler vector field E of ν(M,N) are related by ψ and so ϕs ◦ ψ = ψ ◦ κe−s , recall
that the flow of E is given by s 7→ κe−s . Consequently, we have λs ◦ψ = ψ ◦ κs, for s > 0, where
λs = ϕ−log(s). Consider

Bt =

∫ 1

t

1

τ
κ∗τψ

∗dαdτ.

Let Lt = eBt(κ!
tψ

!L). It is proved that Lt is independent of t (see proof of Theorem 5.10), when
t ≥ 0. So, we have that L1 = L0, i.e.

ψ!L = L1 = L0 = eB0(κ!
0ψ

!L) = eB0(p!ι!L).

Taking B = B0, the result holds.

The following lemma is straightforward.

Lemma 5.8. Let M and N two manifolds and L be a Dirac structure on a manifold M . Then,
we have

pr!
ML = L× TN,

where prM : M ×N →M is the usual projection map.

As a consequence of the previous proposition we present the splitting theorem for Dirac
structures.

Corollary 5.9. (Splitting theorem for Dirac structures, [7]) Let L be a Dirac structure on M

and p ∈ M . Let N
ι
↪−→ M be a submanifold containing p, such that TpN is complement to

P = prTML|p. Then, there exist a neighbourhood U of p, a two-form B ∈ Ω2
cl(P ×N) such that

L|U ∼= eB(ι!L× Lω) ⊆ T (P ×N)⊕ T ∗(N × P ),

where Lω is the Dirac structure associated to the presymplectic leaf passing through p. Moreover,
there exist a Poisson structure π over N such that ι!L = Graph(π) and π vanishes at p.

Proof. Since TpN ⊕P = TpM , we obtain, using an adapted chart of N , that exists a neighbour-
hood U ′ of p such that N × P = U ′, here we shrink N if necessary. Note that ν(M,N) =
TM |N/TN = N × P and the projection map p : ν(M,N) → N became the projection
p : N × P → N and by Lemma 5.8, p!ι!L = ι!L × TP . By Lemma 5.6, there exists a section
ε ∈ Γ(L) such that ε|N = 0 and prTMε is an Euler-like vector field. Then we apply Proposition
5.7 choosing ε, so there exist a neighbourhood U of N and a closed two-form B′ such that

L|U ∼= eB
′
(p!ι!L) = eB

′
(ι!L× TP ).
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Let ω0 ∈ Ω2(P ) be he presymplectic structure such that locally (P, ω0) ∼= (S, ω), where (S, ω) is
the presymplectic leaf passing through p. Consider B = B′ − pr∗Nω, where prN : N × P → N is
the projection map. Then

L|U ∼= eB
′
(ι!L× TP ) = eB(ι!L× L(TP, ω0)) ∼= eB(ι!L× Lω).

The presymplectic foliation associated to ι!L is given by the intersection of the leaves of the
presymplectic foliation of L with N . Consequently, the presymplectic leaf of ι!L passing through
p is {p} and by Proposition 2.39, there exist a neighbourhood V ⊆ U ∩ U ′ of p and a Poisson
bivector π such that ι!L = Graph(π) and vanishing at p.

In the next section, we will prove a complex Dirac version of the previous result, more
specifically a splitting theorem for complex Dirac structures L with constant real index and order.
As we have seen the splitting theorem for Dirac structures has two well identified factors, the
presymplectic leaf passing through p carrying the graph of its presymplectic two-form and a local

transversal submanifold N
ι
↪−→M carrying the Dirac structure ι!L which is the graph of a Poisson

bivector. On the other hand the splitting theorem for complex Dirac structure with constant
real index and order will have one factor which consists of the presymplectic leaf associated
to L passing through p carrying the complex Dirac structure associated to its presymplectic
two-form (note that in the previous case, the presymplectic leaf is locally isomorphic with the
image of the anchor map with the canonical presymplectic structure differing to this case when
the presymplectic leaf is locally isomorphic to the real part of the image of the anchor map) and

a second factor that will be a local transversal submanifold N
ι
↪−→M carrying the complex Dirac

structure ι!L with same constant real index and order having its associated Poisson bivector
vanishing at p.

5.2 Splitting theorem for complex Dirac structures with

constant real index and order

In Chapter 3, we proved that a complex Dirac structure L on a vector space is equivalent (up to
B-transformations) to the product of its associated presymplectic structure (∆, ω∆) and a CR
structure. This result is no longer true for complex Dirac structures on manifolds as we observed
in Section 4.1.2 that a complex Dirac structure with constant real index and order and type 0
is not necessarily a globally defined B-transformation of a presymplectic structure. Instead, we
will prove that around any point p ∈M , a complex Dirac structure with constant real index and
order is a B-transformation of a presymplectic structure and a complex Dirac structure with
same constant real index and order with associated Poisson bivector vanishing at p. In other
words we will prove a local splitting theorem.

Theorem 5.10. Let L be a complex Dirac structure of (TM ⊕ T ∗M)C with constant real index
r and order s, a point p ∈ M be a point of type k and n be a nonnegative integer such that

dimM = 2n+ r. Consider a (2k + s)-dimensional submanifold N ⊆ U
ι
↪−→M transversal to L∆

at p, i.e. TpN⊕∆|p = TpM . Then there exist a neighbourhood U of p and a closed real two-form
B defined on U , such that

L|U ∼= eB(ι!L× Liω),

where ι!L is a complex Dirac structure with constant real index s and order s and having as-
sociated Poisson bivector vanishing at p, Liω is the complex Dirac structure associated to the
presymplectic leaf S passing through p.
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The proof of the previous propositions is divided on two parts:

Step 1: The study of the properties of backward images of transversal submanifolds to L, Lemma
5.11 and Lemma 5.13.

Step 2: To prove that given a submanifold N
ι
↪−→M with dimension complementary to the dimen-

sion of the presymplectic leaf S passing through p and transversal to L∆ at p, we can find
a section ε ∈ Γ(L) such that ε|N = 0 and prTMε is Euler-like along N .

Also, we will see in the next section that the splitting theorem for complex Dirac structures
with constant real index and order induces a splitting theorem on their underlying Dirac struc-
tures which coincides with the usual splitting theorem for Dirac structures as stated in Corollary
5.9 in the following way: the splitting for a complex Dirac structure L with constant real index
and order around a point p is

L|U ∼= eB(ι!L× Liω),

whereas the splitting for its associated Dirac structure L∆ is

L∆|U ∼= eB
′
(ι!L∆ × Lω),

where B−B′ = pr∗Nω. Note that ι!L∆ and Lω are the real Dirac structures associated to ι!L and
LS,ω, respectively. Moreover, ι!L∆ = Graph(πN), where πN is the Poisson bivector associated to
ι!L which vanishes at p.

5.2.1 Step 1

As we mentioned above, the step 1 is about the properties of ι!L. We see along this section that
the Dirac structure associated to ι!L is the backward image of the Dirac structure associated to
L. Furthermore, the complete transversality of N with respect to L∆ at a point p implies that
the Dirac structure associated to ι!L is near p the graph of a Poisson bivector vanishing at p. At
the end of this section, we also provide a result about the additivity of the real index and order
with respect to the product.

Let N
ι
↪−→ M be a submanifold and L a complex Dirac structure over M with E = prTMCL,

∆ = Re(E ∩ E) and ε a skew-symmetric bilinear map such that L = L(E, ε). Assume that ι!L
is a complex Dirac structure. Let EN = prTNCι

!L and ∆N = Re(EN ∩ EN); then

EN = E|N ∩ TNC and ∆N = ∆|N ∩ TN.

Since ι!L is a lagrangian subbundle, then there exists a skew-symmetric bilinear map εN ∈ ∧2EN
∗

such that ι!L = L(EN , εN). Note that (εN)n = (ε|E∩TNC)n for all n ∈ N . The Dirac structure
associated to ι!L is, by definition, L∆N

= L(∆N , ω∆N
), where ω∆N

= Im εN |∆N
. So we have

obtained the following:

Lemma 5.11. Let L be a complex Dirac structure and N
ι
↪−→ M be a submanifold. If L∆ and

L∆N
are Dirac structures, then ι!L∆ = L∆N

.

A point of a generalized complex structure L is called of complex type if L has maximum
type at p. This is equivalent to its associated Poisson bivector vanishes at p. In our context we
have the following definition.
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Definition 5.12. Let L be a complex Dirac structure. We say that a point p ∈M is of CR-type
if L∆|p = T ∗pM . We say that L is of CR-type if it has real index constant and equal to its order
and every point of M is of CR-type.

We easily see that if a complex Dirac structure L with constant real index and order admits a
point of CR-type, then L has real index and order coinciding and its associated Poisson bivector
vanishes at p; additionally L has maximum type at p. So, by Proposition 4.9, a complex Dirac
structure of CR-type is a transformation by a real two-form of a CR structure. When L has real
index constant and equal to its order, its associated Dirac structure is the graph of a Poisson
structure(Corollary 4.32). So the set of points of CR-type is the zero set of the Poisson structure.

Proposition 5.13. Let L be a complex Dirac structure with constant real index and order, and

N
ι
↪−→M a submanifold. If TpN ⊕∆|p = TpM , then near p, ι!L is a complex Dirac structure and

L∆N
is a Dirac structure. Moreover, near p, L∆N

is the graph of a Poisson bivector vanishing
at p.

Proof. Let lp be the leaf of ∆ passing through p. Since ∆ is integrable, it satisfies the local
foliation property, so there exists a chart (y1, . . . ym) on a neighbourhood U = U(λ) of p such
that {yd+1 = . . . = ym = 0} = U ∩ lp and each dimensional disk {yd+1 = cd+1 . . . = ym =
cm} is contained in some leaf. As a consequence each leaf close to lp contains a disk. Since
TpN ⊕ Tplp = TpN ⊕∆|p = TpM , we have that each disk close enough to lp intersects with N in
a single point. Let B such disk and n be its intersection with N ; since the disks form a regular
foliation, TnN ⊕ TnB = TnM . Let n ∈ N be a point near p and B a disk containing it; then
TnN + Tnl = TnN + ∆|n = TnM , where l is the leaf containing B. So we have that there exist
a neighbourhood U of p such that, N is transversal to L∆, i.e. TN |U∩N + ∆|U∩N = TM |U∩N ,
after taking complexification and observing that ∆C ⊆ E, we obtain (TNC)|U∩N + E|U∩N =
(TMC)|U∩N , i.e. N is transversal to L. By Remark 2.51, ι!L|U is a complex Dirac structure
and by Proposition 2.42, L∆N

|U is a Dirac structure. Lemma 5.11 tells us that L∆N
|U = ι!L∆,

so its presymplectic leaves are the intersection of N ∩ U with the presymplectic leaves of L∆.
Consequently, we have that the leaf of L∆N

|U passing through p is a single point (we shrink U
if necessary) and by Proposition 2.39 the last part of the lemma follows.

The following result about the additivity of the real index and order of the product of complex
Dirac structures will be useful in the proof of Theorem 5.10.

Lemma 5.14. Let L1 and L2 be two complex Dirac structures over the manifolds M1 and M2

respectively and let πi : M1 ×M2 → Mi for i = 1, 2, be the projection maps. Denote by K1

and K2 to the real part of L1 and L2 respectively (which are not necessarily smooth). Then the
complex Dirac structure L1×L2 defined over M1×M2 has real part π∗1K1⊕ π∗2K2 (which is not
necessarily smooth).

Proof. Let X+ξ be a real element of L1×L2 = π∗1L1⊕π∗2L2. Since X+ξ is real it decomposes as
X+ ξ = X1 + ξ1 +X2 + ξ2, where X1 + ξ1 ∈ π∗1L1 and X2 + ξ2 ∈ π∗2L2 are real, so X1 + ξ1 ∈ π∗1K1

and X2 + ξ2 ∈ π∗2K2. Consequently, we have that Re(L1 × L2) ⊆ π∗1K1 ⊕ π∗2K2. The other
inclusion is straightforward.

Corollary 5.15. Let L1 and L2 be two complex Dirac structures over the manifolds M1 and M2.
The real index of L1×L2 at (p1, p2) ∈M1×M2 is the sum of the real index of L1 at p1 with the
real index of L2 at p2. The same happens for the order.

Proof. The additivity of the real index is a consequence of the lemma above. The additivity of
the order follows from the fact that (π∗1K1 ⊕ π∗2K2)⊥ = π∗1(K⊥1 )⊕ π∗2(K⊥2 ).
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5.2.2 Step 2

In this section we focus on finding a section of Γ(L) with the properties specified in step 2 above.

Lemma 5.16. Let L be a complex Dirac structure with constant real index r and order s,

a point p ∈ M of type k and let N
ι
↪−→ M be a submanifold such that TpN ⊕ ∆|p = TpM .

Then there exist a neighbourhood U of p, a diffeomorphism ψ : N × R2(n−k)+r−s → U sending
N × 0 to N and {p} × R2(n−k)+r−s to the presymplectic leaf passing through p, and a section
ε = X + iα + β ∈ Γ(ψ!L) such that ε|N×0 = 0, X is Euler-like,

α =
n−k∑
i=1

qidpi − pidqi

and β ∈ Γ(T ∗M) where (q1, . . . , qn−k, p1, . . . pn−k, z1, . . . zr−s) are the coordinates of R2(n−k)+r−s.

Proof. Since L has constant real index r and order s, we have that rank kerω∆ = r − s and the
null foliation of L∆ is regular. Since the type of L at p is k, then by Lemma 3.14, the dimension
of the presymplectic leaf passing through p is 2(n− k) + r − s.

Consider a small enough neighbourhood U of p such that the null foliation is simple. Let
P denote the leaf space associated to the null foliation, with submersion map u : U → P . By
Proposition 2.44, P inherits a Poisson structure π from L∆ and the presymplectic leaf passing
through p descends via u to a 2(n−k)-dimensional symplectic leaf of the Poisson structure passing
through u(p). Since ∆0 is regular and TpN ∩∆0|p = 0, we have that TN |U∩N ∩∆0|U∩N = 0 and
that u|U∩N is a diffeomorphism (again we shrink U if necessary). So N0 = u(U∩N) is transversal
to π at p. By applying the rank theorem to u and then applying the Weinstein splitting theorem
around u(p), [39, Theorem 1.4.5], with transversal N ∼= N0, we can assume that M = N ×
R2(n−k)+r−s with coordinates (yk) for the submanifold N , (q1, . . . qn−k, p1 . . . pn−k, z1, . . . zr−s) for
R2(n−k)+r−s; leaf space P = N×R2(n−k) with coordinates (yk, qi, pi) and with u = prN×R2(n−k) (the
projection from M to its first coordinates, deleting the last r − s coordinates) and the Poisson
structure splits as π = π0 + πN , where π0 =

∑
∂
∂pi
∧ ∂

∂qi
∈ ∧2(R2(n−k)+r−s) and πN ∈ ∧2(TN)

a Poisson bivector vanishing at p. Furthermore, the Poisson structure π on N × R2(n−k) is such
that u!Lπ = L∆.

Since L has real index r, order s and we have that kerω∆ = ∆0 = R · ( ∂
∂z1
, . . . , ∂

∂zr−s
), by

Lemma 3.3, we obtain a frame

{ ∂
∂z1

+ ζ1, . . . ,
∂

∂zr−s
+ ζr−s, ζr−s+1, . . . , ζr} (5.1)

for K, where ζj ∈ Γ(T ∗M) and ζj never vanishes whenever j ≥ r − s + 1 and could vanish
whenever j ≤ r − s.

Consider

X0 =
∑
i

(pi
∂

∂pi
+ qi

∂

∂qi
) ∈ X(N × R2n−2k) and

α0 =
∑
i

(qidpi − pidqi) ∈ Ω1(N × R2n−2k).

We observed that, π(α0) = π0(α0) = X0 and thus X0 + α0 ∈ Lπ.
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Now consider α = q∗α0 ∈ Ω1(M), where q : TM → TM/∆0 is the quotient map; note that
q coincides with u∗ since P is the leaf space of the foliation associated to ∆0. Since u!Lπ = L∆,
we have that taking

Y =
∑
i

(pi
∂

∂pi
+ qi

∂

∂qi
) ∈ X(N × R2n−2k+r−s),

we obtain that Y + α ∈ L∆. Denote by J the associated bundle map to L. By Lemma 4.17,
there exists β0 ∈ Γ(T ∗M) such that J (α + K) = Y + β0 + K. If we evaluate the previous
expression on points of N , we observe that β0|N ∈ (K ∩ T ∗M)|N . By equation (5.1),

{ζr−s+1, . . . , ζr}

is a frame for K ∩ T ∗M . So, there exist functions cj ∈ C∞(N), for j = r − s + 1, . . . , r
such that −β0|N =

∑r
j=r−s+1 cjζj|N . Extending the functions cj to M , we obtain a section

β1 ∈ K ∩ T ∗M such that β1|N = −β0|N . As a result, considering β2 = β0 + β1, we obtain that
J (α +K) = Y + β0 +K = Y + β0 + β1 +K = Y + β2 +K, where β2|N = 0.

Note that J (α +K) + i(α +K) is always in Γ(L/L ∩ L). Thus,

J (α +K) + i(α +K) = Y + iα + β2 +KC = Y + iα + β2 +
∑

zj(
∂

∂zj
+ ζj) +KC.

Let X = Y +
∑
zj

∂
∂zj

and β = β2 +
∑
zjζj, we have that

X + iα + β +KC ∈ Γ(L/L ∩ L).

Consequently, we obtain that
ε = X + iα + β ∈ Γ(L). (5.2)

We see that X is the Euler vector field of the trivial bundle N ×R2n−2k+r−s over N and ε|N = 0,
since N = {pi = qj = zk = 0}.

5.2.3 Proof of Theorem 5.10

Before we prove the splitting theorem, we make a review of the flow associated to derivations.

Proposition 5.17. [23] Let (X,B) ∈ X(M)×Ω2
cl(M) be an infinitesimal automorphism of the

Courant algebroid TM ⊕ T ∗M(see Section 2.1), with X complete and let ϕs be its flow. Then
(ϕs, γs) is the one-parameter group associated to (X,B), where

γs = −
∫ s

0

(ϕu)
∗Bdu.

Remark 5.18. Consider X + ξ ∈ Γ(TM ⊕ T ∗M), then adX+ξ is an infinitesimal automorphism
and so is a derivation of the Courant algebroid TM ⊕ T ∗M as a consequence it has associated
a flow by linear automorphism of TM ⊕ T ∗M , which in this case is the one-parameter group
(ϕs, γs) = Tϕs ◦ eγs ; note that the main property of the flow (ϕs, γs) is that

d

dt
(ϕt, γt)(Y + η) =

d

dt
Tϕt ◦ eγt(Y + η) = [X + ξ, Y + η].

If L is a real Dirac structure and X + ξ ∈ Γ(L), then [X + ξ,Γ(L)] ⊆ Γ(L). Implying that
its flow preserves L, Tϕs ◦ eγs(L) = L and so Tϕ−s(L) = eγs(L). Exactly the same applies to
(TM ⊕ T ∗M)C and complex Dirac structures.

65



Now we are prepared for the proof of Theorem 5.10.

Proof of Theorem 5.10. By Lemma 5.16, we can assume that M = N × R2(n−k)+r−s and that
we have found a section ε = X + iα + β ∈ Γ(L), where X ∈ Γ(TM), α, β ∈ Γ(T ∗M) such
that X is the Euler vector field associated to the trivial bundle N × R2(n−k)+r−s and ε|N = 0.
Note that the flow of X is ϕt = κe−t , where κt denotes the multiplication by t on the fibres of
N × R2n−2k+r−s. Consider the following two-forms

ωt =

∫ 1

t

1

τ
κ∗τ (dα)dτ, (5.3)

Bt =

∫ 1

t

1

τ
κ∗τ (dβ)dτ (5.4)

and also consider
Lt = eBt+iωt(κ!

tL).

Let ω =
∑
dqi ∧ dpi ∈ Ω2(N × R2n−2k+r−s); we have that

ω0 =

∫ 1

0

1

τ
κ∗τ (dα)dτ =

∫ 1

0

1

τ
κ∗τ (d(

∑
i

(qidpi − pidqi)))dτ = 2

∫ 1

0

1

τ
κ∗τωdτ = ω.

Let p : M = N×R2(n−k)+r−s → N denote the projection and ι denote the inclusion N
ι
↪−→M .

Since κ0 = ι ◦ p, we have that

L0 = eB0+iω0(κ!
0L) = eB0+iω0(p!i!L). (5.5)

We will prove that Lt is independent of t. If that happens, then L0 = L1 and since L1 = L, we
would obtain that

e−B0L = eiω0(p!ι!L).

By Proposition 5.17 and Remark 5.18, since X+iα+β ∈ Γ(L) and L is involutive, X+iα+β
induces an infinitesimal automorphism (X,−dβ − idα) with associated one-parameter group of
automorphisms (κe−s , σs), where

σs = −
∫ s

0

κ∗e−u(dβ + idα)du ∈ Ω2(M).

Implying that
(κe−s)!L = Tκes(L) = eσsL.

After applying the substitution rule using the function u = −log(τ) we get that

σs = −
∫ 1

e−s

1

τ
κ∗τ (dβ + idα)dτ

and taking s = −log(t) we get that

σ−log(t) = −
∫ 1

t

1

τ
κ∗τ (dβ + idα)dτ = −(Bt + iωt).

Then,
κ!
tL = eσ−log(t)L = e−(Bt+iωt)L (5.6)
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and thus Lt = L, for all t > 0. By continuity, it follows that L0 = L.
Finally, it follows from equations (5.5) and (5.6) that

e−BL = eiω(p!i!L) = eiω(i!L× TR(2n−k)+r−s) = ι!L× Liω.

Now we focus on the properties of ι!L. By Corollary 5.15, ι!L has constant real index s and
order s. By Proposition 5.13, ι!L is a complex Dirac structure with associated Poisson structure
vanishing at p. Taking B = B0, the theorem holds.

Remark 5.19. As we mentioned at the beginning of Section 5.2, Theorem 5.10 induces a
splitting on the associated Dirac structures. Let L be a complex Dirac structure with constant

real index r and order s, p ∈M a point of type k and chose a N
ι
↪−→M submanifold completely

transversal to L∆ at p, i.e. TpN ⊕ ∆|p = TpM ; then by Theorem 5.10, there exist a closed
two-form B and a neighbourhood U of p such that L|U ∼= eB(ι!L× Liω), where Liω denotes the
complex Dirac structure associated to the presymplectic leaf of L passing through p. Now we
prove that

L∆|U ∼= eB
′
(Graph(πN)× Lω),

where πN is the Poisson structure associated to ι!L, Lω is the real Dirac structure associated
to the presymplectic leaf (S, ω) of L(and so of L∆) passing through p and B − B′ = pr∗Nω. By
Lemma 5.16, there exists a local section ε = X + α + iβ ∈ Γ(L) such that ε|N = 0 and X is
an Euler-like vector field along N . By Lemma 4.16, ε̂ = X + β ∈ Γ(L∆) and satisfies the same
properties as ε. By Corollary 5.9, applied to L∆, using explicitly the section ε̂, we have that

L∆|U ∼= eB
′
(Graph(π)× Lω),

where Lω is the real Dirac structure associated to the presymplectic leaf (S, ω) passing through
p and π is a Poisson structure over N such that ι!L∆ = Graph(π), so π = πN . Along the proof
of Corollary 5.9 we can see that B −B′ = pr∗Nω.

Corollary 5.20. Let L be a complex Dirac structure with constant real index r and order s and
let p be a regular point of type k. Then there exist a neighbourhood U of p, a (2k+s)-dimensional
submanifold N such that

L|U ∼= eB(L(D,J) × Liωcan),

where Liωcan is the graph of the canonical presymplectic structure on R2(n−k)+r−s with kernel of
dimension r−s, L(D,J) is the complex Dirac structure associated to a CR structure of codimension
s over N and B is a real two-form on M which is closed on the directions of R2(n−k)+r−s.

Proof. By Theorem 5.10, there exist a neighbourhood U ′ of p, a local transversal submanifold

N
ι
↪−→ M such that L|U ∼= eB

′
(ι!L × Lω), where B′ is a closed two-form on U . We take U ′ such

that the type of L|U ′ is constant and equal to k. So the foliation associated to ∆ is regular on
U ′. Since TpN ⊕∆ = TpM at p, we have that TN |U∩N ⊕∆|U∩N = TM |U∩N , here we shrink U ′

if necessary. Consequently, ι!L is complex Dirac structure of constant real index s, order s and
maximum type, by Proposition 4.9 we have that there exists a real two-form B1 ∈ Ω2(U) not
necessarily closed defined on that neighbourhood such that eB1(ι!L) is a CR structure (D, J) on
N .

Consequently, we have that L|U ∼= eB
′−pr∗NB1(Lω × L(D,J)), where prN is the projection onto

N given by the splitting of M . Finally we note that B = B′ − pr∗NB1 is only closed on the
directions of R2(n−k)+r−s.
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Another consequence of Proposition 5.10 is the local form of generalized complex structures
given by Abouzaid and Boyarshenko.

Corollary 5.21 ([1]). Consider a generalized complex structure L and a point p ∈ M . Then
there exist a neighbourhood U of p, such that L|U is isomorphic to a B-transformation of the
product of a generalized complex structure carrying a Poison bivector vanishing at p with a a
generalized complex structure defined by a symplectic structure.

68



Chapter 6

Complex Dirac structures with real
index one

In this chapter we focus on the case of complex Dirac structures with real index one. First we
study a pairing on spinors that could detect when the intersection of the annihilator of two pure
spinors has dimension one. At the end of the chapter we present the description of the spinors
associated to complex Dirac structures as an application of this pairing.

6.1 Spinors revisited

6.1.1 The pairing (·, ·)1
Consider a vector space V over the over the fields R or C. We observed in Chapter 2 that the
Chevalley pairing characterizes when the annihilators of two pure spinors are transversal. In
the same spirit we characterize when the intersection of the annihilators of two pure spinors
has dimension one. For that reason we adapt the pairing B1 from [8] to the space of spinors
S = ∧•V ∗, putting it in a more geometrical context.

Definition 6.1. Let ρ and τ be two spinors, consider

(ρ, τ)1 : V ⊕ V ∗ → det(V ∗)

(ρ, τ)1(X + ξ) = (ρᵀ ∧ (X + ξ) · τ)top.

This defines a pairing (·, ·)1 on the space of spinors S, with values on Hom(V ⊕ V ∗, det(V ∗)).

Examples 6.2. We compute the pairing of some pure spinors.

a) Let ω be a two-form with one-dimensional kernel on a (2n+1)-dimensional vector space V
and let θ ∈ V ∗ such that ωn ∧ θ 6= 0. Consider the spinors ρ = eiω and ρ = e−iω in ∧•V ∗C .
Then

(ρ, ρ)1θ = (eiω ∧ θ ∧ eiω)top = (e2iω ∧ θ)top =
(2i)n

n!
ωn ∧ θ 6= 0,

whereas for the Chevalley pairing, we have

(ρ, ρ)0 = (eiω ∧ eiω)top = (e2iω)top = 0.

Note that the lagrangian subspace L(VC, iω) is the annihilator of ρ, so ρ and ρ are pure
spinors. By Example 3.15, L(VC, iω), has real index one, checking the previous computa-
tion.
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b) Let (θ, ω) be a cosymplectic structure, i.e., θ ∈ V ∗ nontrivial, ω ∈ ∧2V ∗ over a (2n + 1)-
dimensional vector space such that ωn ∧ θ 6= 0. Let R ∈ V such that θ(R) = 1. Consider
the spinor ρ = eiω ∧ θ and ρ = e−iω ∧ θ in ∧•V ∗C . Then

(ρ, ρ)1R = (θ ∧ eiω ∧ ιR(eiω ∧ θ))top
= (θ ∧ e2iω)top

=
(2i)n

n!
ωn ∧ θ 6= 0,

yielding that (ρ, ρ)1 6= 0. We also have that

(ρ, ρ)0 = (θ ∧ eiω ∧ eiω ∧ θ)top = 0.

We saw in Example 3.30 that the lagrangian subspace Lρ = L((ker θ)C, iι
∗ω) has real index

one.

From the previous examples we note that there is a relationship between the pairing (·, ·)1

and the dimension of L ∩ L, we will confirm this relationship later.
Next we study the main properties of the pairing (·, ·)1.

Lemma 6.3. Let Sev and Sodd denote the space of even and odd spinors. Then the two scenarios
follow: first if dimV is odd then (·, ·)1 is zero when restricted to Sev × Sodd and to Sodd × Sev.
Second, if dimV is even then (·, ·)1 is zero when restricted to Sev × Sev and to Sodd × Sodd.

This is completely opposite to what happened in Section 2.2.1 with the Chevalley pairing.
However, the symmetry or skew-symmetry of the pairing (·, ·)1 depends on the dimension of V
in the same fashion as with the Chevalley pairing.

Lemma 6.4. On an m−dimensional vector space V , the pairing (·, ·)1 satisfies

(ρ, τ)1 = (−1)
m(m−1)

2 (τ, ρ)1.

Proof. It is enough to prove the identity for ρ, τ ∈ S homogeneous of degree m1 and m2,
respectively, since we can extend the identity by linearity. If m1 +m2 6= m+ 1 andm− 1, then
(ρ, τ)1 = 0 = (τ, ρ)1.

First, we suppose m1 + m2 = m + 1, thus (τ, ρ)1ξ = 0 for any ξ ∈ V ∗ and we just need to
evaluate on vectors of V

(ρ, τ)1X = (ρᵀ ∧ ιXτ)top = ρᵀ ∧ ιXτ.
Since m1 +m2 = m+ 1, we have that ρᵀ ∧ τ = 0, implying that

0 = ιX(ρᵀ ∧ τ) = ιXρ
ᵀ ∧ τ + (−1)m2ρᵀ ∧ ιXτ.

Therefore,

(ρ, τ)1X = ρᵀ ∧ ιXτ
= (−1)m1+1ιXρ

ᵀ ∧ τ

= (−1)1+m1+(m1−1)m2+
m2(m2−1)

2
+

m1(m1−1)
2 τ ᵀ ∧ ιXρ

= (−1)
m(m−1)

2 (τ, ρ)1X.

70



The next case is when m1 +m2 = m− 1. Note that (τ, ρ)1X = 0 for any X ∈ V , so it remains
to evaluate on one-forms of V :

(ρ, τ)1ξ = (ρᵀ ∧ ξ ∧ τ)top

= ρᵀ ∧ ξ ∧ τ

= (−1)m1m2+
m2(m2−1)

2
+

m1(m1−1)
2

+m1+m2τ ᵀ ∧ ξ ∧ ρ

= (−1)
m(m−1)

2 τ ᵀ ∧ ξ ∧ ρ

= (−1)
m(m−1)

2 (ρ, τ)1ξ.

Combining both parts of the proof we obtain the identity.

The Chevalley pairing is invariant under the action of B-transformations. That is no longer
true for the pairing (·, ·)1. However, we have the following.

Lemma 6.5. For B ∈ ∧2V ∗,

(eB · ρ, eB · τ)1(X + ξ) = (ρ, τ)1e
−B(X + ξ).

Proof. We check the identity separately on vectors and one-forms. Consider X ∈ V . Then

(eB · ρ, eB · τ)1X = ((e−B ∧ ρ)ᵀ ∧ ιX(e−B ∧ τ))top

= (ρᵀ ∧ eB(−ιXB ∧ e−B ∧ τ + e−B ∧ ιXτ))top

= (−ρᵀ ∧ eB ∧ ιXB ∧ e−Bτ + ρᵀ ∧ eB ∧ e−BιXτ)top

= (−ρᵀ ∧ ιXB ∧ τ + ρᵀ ∧ ιXτ))top

= (ρ, τ)1e
−BX.

On the other hand, for ξ ∈ V ∗, we have the following

(eB · ρ, eB · τ)1ξ = ((e−B ∧ ρ)ᵀ ∧ ξ ∧ (e−B ∧ τ))top

= (ρᵀ ∧ eB ∧ ξ ∧ e−B ∧ τ)top

= (ρᵀ ∧ ξ ∧ τ)top

= (ρ, τ)1ξ.

The main property of the Chevalley pairing is Proposition 2.33. Next we prove a similar
statement for the pairing (·, ·)1.

Proposition 6.6. Let ρ and τ be two pure spinors. Then dim(Lρ ∩ Lτ ) = 1 if and only if
(ρ, τ)1 6= 0.

We broke the proof in several step.

Lemma 6.7. Let ρ be a pure spinor and m = dimV . Then dim(Lρ ∩ V ) = r if and only if
ρm−r 6= 0 and ρj = 0, for all j > m− r.
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Proof. We can deduce the case r = 0 from Proposition 2.33.
(⇒) Suppose that r is odd. Let E ⊆ V and ε ∈ ∧2E such that Lρ = L(E, ε). Since

L(E, ε) ∩ V = ker ε, we have dim ker ε = r, thus there exist q such that dim(E) = 2q + r and
also a basis {e1, · · · , e2q} of E with dual basis {e1, · · · , e2q} such that

ε = e1 ∧ eq+1 + · · ·+ eq ∧ e2q.

Completing the previous basis, we get another basis {ej, fj} of V with dual basis {êj, f j} and
consider

B = ê1 ∧ êq+1 + · · ·+ êq ∧ ê2q.

Note that B extends ε.
Since ρ is a pure spinor, then by Proposition 2.28 we have that ρ = eB ∧ Ω, where Ω is a

generator of the determinant of Ann(E). We take Ω = f 1 ∧ . . . ∧ fk. More explicitly,

ρ = Ω +B ∧ Ω · · ·+ 1

(q + (r − 1)/2)!
Bq+ r−1

2 ∧ Ω.

We note that Bq 6= 0 and Bq+1 = 0. Let ρj denote the homogeneous components of ρ in the
usual grading of ∧•V ∗. Then all the terms from ρm−r+2 vanish since they have a factor Bq+1,
the term ρm−r+1 also vanishes by the parity of ρ. Also, we note that

ρm−r =
1

q!
Bq ∧ Ω =

1

q!
ê1 ∧ · · · ∧ ê2q ∧ f 1 ∧ . . . ∧ fk 6= 0,

since {êj, f j} is a basis.
The case for r even is similar.
(⇐) Let ρ be a pure spinor and a nonnegative integer s such that ρm−s 6= 0 and ρj = 0, for

all j > m − s. Suppose that dim(Lρ ∩ V ) = r. By the first implication, ρm−r 6= 0 and ρj = 0,
for all j > m− r, so if we assume r 6= s we reach to a contradiction.

Lemma 6.8. Let ρ be a pure spinor and τ = voldet AnnE2, where E2 ⊆ V such that dim(Lρ∩Lτ ) =
1. Consider E1 ⊆ V ⊕ V ∗ and ε ∈ ∧2E∗ such that Lρ = L(E1, ε). Then,

a) dim(ker ι∗E1∩E2
ε) ≤ 1,

b) prV (Lρ ∩ Lτ ) ⊆ ker ι∗E1∩E2
ε1,

c) If prV (Lρ ∩ Lτ ) = 0, then there exists X ∈ V such that (ρ, τ)1X 6= 0,

d) If prV (Lρ ∩ Lτ ) 6= 0, then there exists ξ ∈ V such that (ρ, τ)1ξ 6= 0.

Proof. Since V is a real or complex vector space, we denote K = R or K = C.
a) Let E1 ⊆ V and ε1 ∈ ∧2V ∗ such that Lρ = L(E1, ε1); note that Lτ = L(E2, 0). Let k1 and k2

be the respective codimensions of E1 and E2.
Since Lρ +Lτ = (Lρ ∩Lτ )⊥, we have that codim(E1 +E2) ≤ 1. Let B ∈ ∧2V ∗ be a two-form

extending ε1 such that if Y ∈ ker ι∗E1∩E2
ε1, then B(Y ) ∈ Ann(E2) (we can extend ε1 by keeping

the extension vanishing on the remaining directions of E2). Then,

{Z + ιZB|Z ∈ ker(ι∗E1∩E2
ε1)} ⊆ L(E1, ε1) ∩ L(E2, 0), (6.1)

where the left-hand side is the graph of the two-form ι∗ker(ι∗E1∩E2
ε1)B, the right-hand side has

dimension one by hypothesis. Consequently, dim(ker ι∗E1∩E2
ε) ≤ 1 and depends precisely on the

72



parity of dim(E1 ∩ E2).

b) Let X + ξ ∈ Lρ ∩ Lτ . Then X ∈ E1 ∩ E2, ξ ∈ AnnE2 and ξ|E1 = ιXε1. Restricting
the last equation to E1 ∩ E2, as ξ|E2 = 0 we obtain that X ∈ ker ι∗E1∩E2

ε1.

c) Let ζ ∈ V ∗ such that Lρ ∩ Lτ = K · ζ. In this case

Lρ + Lτ = (Lρ ∩ Lτ )⊥ = (K · ζ)⊥ = ker ζ ⊕ V ∗.

Then E1 + E2 = prV (Lρ + Lτ ) equals ker ζ and so codim(E1 + E2) = 1. Now we prove that
dim(E1∩E2) is even and ker ι∗E1∩E2

ε1 = 0. We proceed by contradiction. Assume that dim(E1∩
E2) is odd. Then dim ker ι∗E1∩E2

ε1 = 1 and by projecting to V both terms of equation (6.1),
we get that ker ι∗E1∩E2

ε1 ⊆ prV (Lρ ∩ Lτ ), by the hypothesis we get a contradiction. Therefore,
dim(E1 ∩ E2) is even and ker ι∗E1∩E2

ε1 = 0.
Since ι∗E1∩E2

ε1 is nondegenerate there exists a nonnegative integer q and a basis {ei} of E
such that dim(E1 ∩ E2) = 2q and

ι∗E1∩E2
ε1 = e1 ∧ eq+1 + . . .+ eq ∧ e2q.

Consider X ∈ V such that

(Lρ + Lτ )⊕K ·X = V ⊕ V ∗.

Completing the basis {ei} to a larger basis of E1, {ei, fj}, and to a basis of E2, {ei, gj}, we
construct the basis {ei, fj, gk, X} of V with dual basis {ei, f j, gk, θ}. Note that

voldet AnnE1 = θ ∧ g1 ∧ . . . ∧ gk1−1 and

voldet AnnE2 = θ ∧ f 1 ∧ . . . ∧ fk2−1.

Since dimE1 ∩ E2 = 2q, we have 2q + k1 + k2 − 1 = dimV . Let B ∈ ∧2V ∗ such that ρ1 =
eB ∧ voldet AnnE1 . Then

(ρ, τ)1X = (−1)sBq ∧ voldet AnnE1 ∧ ιXvoldet AnnE2

= (−1)se1 ∧ eq+1 ∧ . . . ∧ eq ∧ e2q ∧ voldet AnnE1 ∧ ιXvoldet AnnE2

= (−1)se1 ∧ eq+1 ∧ . . . ∧ eq ∧ e2q ∧ θ ∧ g1 . . . gk1−1 ∧ ιXθ ∧ f 1 ∧ . . . ∧ fk2−1

= (−1)se1 ∧ eq+1 ∧ . . . ∧ eq ∧ e2q ∧ θ ∧ g1 . . . gk1−1 ∧ f 1 ∧ . . . ∧ fk2−1 6= 0

where s = 2q+k1(2q+k1−1)
2

.

d) We have that Lρ ∩ Lτ = K · (Z + ζ), for some Z + ζ ∈ V ⊕ V ∗, where Z 6= 0. In this
case, we decompose

Lρ + Lτ = ker ζ ⊕ AnnZ ⊕K · (W + β).

Since Z 6= 0, there exists ξ ∈ V ∗ such that ξ ⊕ Ann(Z) = V ∗ and then

(Lρ + Lτ )⊕K · ξ = V ⊕ V ∗.

By item b), we have that prV (Lρ ∩ Lτ ) ⊆ ker ι∗E1∩E2
ε1, implying that that ker ι∗E1∩E2

ε1 = K · Z.
Consequently, dim(E1 ∩ E2) is odd and dim(ker ι∗E1∩E2

ε1) = 1.
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Let q be a nonnegative integer such that dim(E1 ∩ E2) = 2q + 1. As in the previous case
dimV − k1 − k2 = 2q + 1.

Then there exists a basis {ei} of E1 ∩ E2 such that e2q+1 = Z and

ι∗E1∩E2
ε1 = e1 ∧ eq+1 + . . .+ eq ∧ e2q.

Since E1 + E2 = V , we complete {ei} to a basis {ei, fj} of E1, to a basis {ei, gj} of E2 and to
a basis {ei, fj, gk} of V with dual basis {ei, f j, gk}. Since {e1, . . . e2q−1, e2q, f j, gk} is a basis for
AnnZ and AnnZ ⊕K · ξ = V ∗, we have that {e1, . . . e2q−1, e2q, ξ, f j, gk} is a basis for V ∗. Then,

(ρ, τ)1ξ = Bq ∧ Ω1 ∧ ξ ∧ Ω2

= e1 ∧ eq+1 . . . ∧ e2q ∧ g1 ∧ . . . ∧ gk1 ∧ e2q+1 ∧ f 1 ∧ . . . ∧ fk2 6= 0

Lemma 6.9. Let ρ be a pure spinor and τ = voldet AnnE2, where E2 is a subspace of V . Then,
dim(Lρ ∩ Lτ ) = 1 if and only if (ρ, τ)1 6= 0.

Proof. (⇒) It follows from the previous lemma.

(⇐) We first prove the following technical identity: let X + ξ ∈ Lρ ∩ Lτ such that X 6= 0
and Z + ζ ∈ V ⊕ V ∗. Then, the following identity holds

ιX [(ρ, τ)1(Z + ζ)] =
(−1)

k1(k1+1)
2

+c0

c0!
〈X + ξ, Z + ζ〉Bc0 ∧ Ω1 ∧ Ω2, (6.2)

where c0 = dimV−k1−k2

2
, B ∈ ∧2V ∗ is an extension of ε1, and Ω1 and Ω2 are generators of det Ann1

and det Ann2 respectively.
We note that ρ = eB ∧ Ω1 and τ = Ω2. Let Z + ζ ∈ TM ⊕ T ∗M ; we make the following

computation

ιX [(ρ, τ)1(Z + ζ)] = (−1)
k1(k1−1)

2 ιX [(e−B ∧ Ω1 ∧ (Z + ζ) · Ω2)top]

= (−1)
k1(k1−1)

2 ιX((−1)c0+1 Bc0+1

(c0 + 1)!
∧ Ω1 ∧ ιZΩ2 + (−1)c0

Bc0

c0!
∧ Ω1 ∧ ζ ∧ Ω2)

=
(−1)

k1(k1−1)
2

+c0

(c0 + 1)!
ιX((c0 + 1)Bc0 ∧ Ω1 ∧ ζ ∧ Ω2 −Bc0+1 ∧ Ω1 ∧ ιZΩ2). (6.3)

We need to develop each term of the right side of the previous. Since X + ξ ∈ Lρ, we have
ιXρ+ ξ ∧ ρ = 0. Looking at the components of lower degree in the previous equation, we have

ξ ∧ Ω1 = −ιXB ∧ Ω1. (6.4)

On the one hand, using equation (6.4) and the fact that X ∈ E1 ∩E2 and ξ ∈ AnnE2, we have

ιX(Bc0 ∧ Ω1 ∧ ζ ∧ Ω2) = (−1)k1ζ(X)Bc0 ∧ Ω1 ∧ Ω2.

On the other hand, as X ∈ E1 ∩ E2, we have

ιX(Bc0+1 ∧ Ω1 ∧ ιZΩ2) = (c0 + 1)ιXB ∧Bc0 ∧ Ω1 ∧ ιZΩ2.
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Since ξ ∈ AnnE2, we obtain that

0 = ιZ(ξ ∧ Ω2) = ξ(Z)Ω2 − ξ ∧ ιZΩ2.

Then, using (6.4) and that ξ ∈ AnnE2, we have that

ιXB ∧Bc0 ∧ Ω1 ∧ ιZΩ2 = −ξ ∧Bc0 ∧ Ω1 ∧ ιZΩ2 = (−1)k1+1ξ(Z)Bc0 ∧ Ω1 ∧ Ω2.

Gathering the parts above we obtain

ιX [(ρ1, ρ2)1(Z + ζ)] =
(−1)

k1(k1−1)
2

+c0

c0!
((−1)k1ζ(X)Bc0 ∧ Ω1 ∧ Ω2 − (−1)k1+1ξ(Z)Bc0 ∧ Ω1 ∧ Ω2)

= c1(ζ(X)Bc0 ∧ Ω1 ∧ Ω2 + ξ(Z)Bc0 ∧ Ω1 ∧ Ω2)

= c1〈X + ξ, Z + ζ〉Bc0 ∧ Ω1 ∧ Ω2

where c1 = (−1)
k1(k1+1)

2 +c0

c0!
. So the identity holds.

Now we are prepared to retake the proof. Suppose that dim(Lρ∩Lτ ) 6= 1. If we assume that
dim(Lρ ∩Lτ ) = 0, then (ρ, τ)0 6= 0. Consequently, by Lemma 2.30 and by Lemma 6.3, we reach
to a contradiction.

Then we have that, dim(Lρ∩Lτ ) ≥ 2, yielding that there exist at least two linearly indepen-
dent elements X + ξ, Y + η ∈ Lρ ∩ Lτ . We have three situations:

a) X 6= 0 and Y 6= 0: Since X+ξ, Y +η ∈ Lρ∩Lτ we have that X, Y ∈ E1∩E2, ξ, η ∈ AnnE2.
By (6.2), as X 6= 0 and Y 6= 0

(X + ξ)⊥ ⊆ ker(ρ, τ)1, (Y + η)⊥ ⊆ ker(ρ, τ)1.

Since 〈·, ·〉 is nondegenerate, the different subspaces (X + ξ)⊥ and (Y + η)⊥ both have
codimension one and thus they generate V ⊕ V ∗. Therefore, (ρ, τ)1 = 0.

b) X = 0 and Y 6= 0: In this case ξ ∈ AnnE1 ∩AnnE2, implying that Ω1 ∧Ω2 = 0. Then we
have

(ρ, τ)1ζ = (e−B ∧ Ω1 ∧ ζ ∧ Ω2)top = 0, ∀ζ ∈ V ∗.

Consequently, V ∗ ⊆ ker(ρ, τ)1 and by equation (6.2), (Y + η)⊥ ⊆ ker(ρ, τ)1. Since, the
subspace (Y + η)⊥ has codimension one and does not contain V ∗, these two subspace
generate V ⊕ V ∗, yielding that (ρ, τ)1 = 0.

c) X = 0 and Y = 0: Since ξ, η ∈ AnnE1∩AnnE2 are linearly independent, then Ω1∧Ω2 = 0
and Ω1 ∧ ιZΩ2 = 0 for all Z ∈ V . Then

(ρ, τ)1Z = (e−B ∧ Ω1 ∧ ιZΩ2)top = 0, ∀Z ∈ V.

Thus, V ⊆ ker(ρ, τ)1. Since Ω1 ∧ Ω2 = 0, we have that V ∗ ⊆ ker(ρ, τ)1 and finally
(ρ, τ)1 = 0.

Proof of Proposition 6.6. Let ρ and τ = eB ∧ Ω be two spinors such that dim(Lρ ∩ Lτ ) = 1.
Then, dim(Le−Bρ ∩ LΩ) = 1. By Lemma 6.9, (e−Bρ,Ω)1 6= 0 and by Lemma 6.5, the conclusion
follows.
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Corollary 6.10. If dim(Lρ ∩ Lτ ) = 1, then ker(ρ, τ)1 = Lρ + Lτ and thus

V ⊕ V ∗

Lρ + Lτ
= det(V ∗).

Proof. By definition of the pairing, Lρ ⊆ ker(ρ, τ)1; by Lemma 6.4, Lτ ⊆ ker(ρ, τ)1. Since
(ρ, τ)1 6= 0, the subspaces Lρ+Lτ and ker(ρ, τ)1 have the same dimension and thus are equal.

This corollary has a stronger meaning in a geometrical context. Let M be a m-dimensional
manifold. Then Corollary 6.10 tells us that any line bundle complementary to the subbundle
Lρ + Lτ is isomorphic to det(T ∗M). In particular for orientable manifolds this line bundle is
trivial.

6.1.2 r-dimensional intersection of lagrangian subspaces

Until now we have focused on the study of spinors ρ and τ satisfying that dimLρ∩Lτ = 1. Now
we present an elementary method to see when dimLρ ∩ Lτ = r.

The idea is the following: the parity of a lagrangian vector space L is the parity of dim prVL.
The group SO(V ⊕ V ∗) acts on the space of lagrangian subspaces of V ⊕ V ∗ preserving the
parity, actually the action is transitive when restricted to the set of lagrangian having the same
parity, cf. [30, Chap. 1]. Let ρ, τ be two pure spinors with annihilators Lρ and Lτ , respectively.
Then, if Lτ has the same parity as V then there exists a linear map A ∈ SO(V ⊕ V ∗) such that
A(V ) = Lτ . Consider the lagrangian subspace L̂ = A−1(Lρ), then Lρ∩Lτ = A(L̂∩V ). Let σ be
a pure spinor such that Lρ∩Lτ = A(Lσ ∩V ). Then, dimLρ∩Lτ = r if and only dimLσ ∩V = r
and by Lemma 6.7, the last happens if and only if σm−r 6= 0 and σj = 0 for all j > m − r. In
what follows we give a method for constructing the map A and so the spinor σ under certain
hypotheses.

Given a lagrangian L there exist E ⊆ V and ε ∈ ∧2E∗ such that L = L(E, ε). Also we know
that

L = L(F, γ) = {X + ξ ∈ V ⊕ F | ιξγ = X|F},
for some F ⊆ V ∗ and γ ∈ ∧2F ∗; note that F = prV ∗(L). We will show that we can retrieve F
and γ from E and ε, and vice versa. Note that

ker ε = V ∩ L = Ann(F ) and

ker γ = V ∗ ∩ L = Ann(E),

obtaining that E = Ann(ker γ) and F = Ann(ker ε). For the relationship between ε and γ we
recall the definition of both,

ε : E → E∗

X ∈ E 7→ ξ + AnnE ∈ V ∗/AnnE ∼= E∗,

where ξ is such that X + ξ ∈ L, the definition of γ is just the same but replacing E by F . Then
we note that ε(E) = F/AnnE and ker ε = AnnF , defining the isomorphism

ε̂ : E/AnnF → F/AnnE

such that ε = ε̂ ◦ q, where q : E → E/AnnF is the quotient map. Analogously for γ we obtain
the isomorphism

γ̂ : F/AnnE → E/AnnF

such that γ = γ̂ ◦ p, where p : F → F/Ann(E) is the quotient map. From the definitions of ε
and γ, we observe that γ̂ = ε̂−1. In summary we have obtained.

76



Lemma 6.11. Given the data E ⊆ V , ε ∈ ∧2E∗, we have that γ = ε̂ ◦ p and F = Ann(ker(ε))
are such that L(E, ε) = L(F, γ). Conversely, given the data F ⊆ V ∗, γ ∈ ∧2F ∗, we have that
ε = γ̂ ◦ q and E = Ann(ker(γ)) are such that L(F, γ) = L(E, ε).

Finally we are prepared for the main result of this section.

Proposition 6.12. Let L be a lagrangian subspace of V ⊕ V ∗ and let F ⊆ V ∗, γ ∈ ∧2F ∗ such
that L = L(F, γ). If F is even dimensional, then there exists B ∈ ∧2V ∗ and β ∈ ∧2V , such that
L = e−βeB(V ).

Proof. Since dimF is even, there exists β ∈ ∧2V such that γ + ι∗β is nondegenerate on F . By
Lemma 6.11

eβL(E, ε) = L(F, γ + ι∗β) = L(V, ̂(γ + ι∗β)
−1

◦ q),

where q : Ann(ker(γ + ι∗β)) → Ann(ker(γ + ι∗β))/AnnF is the quotient map and the last
equality is given because Ann(ker(γ + ι∗β)) = V . Finally we get that

eβL(E, ε) = L(V,B) = eBV,

where B = ̂(γ + ι∗β)
−1

◦ q ∈ ∧2V ∗ and therefore L = e−βeBV .

Corollary 6.13. If ρ is a pure spinor such that prV ∗(Lρ) has even dimension, then there exist
B ∈ ∧2V ∗ and β ∈ ∧2V such that ρ = e−βeB · 1.

Corollary 6.14. Let ρ and τ be two spinors, with annihilators Lρ and Lτ , respectively. Assume
that prV ∗(Lτ ) has even dimension and that B ∈ ∧2V ∗ and β ∈ ∧2V are as in the corollary
above. Then dim(Lρ ∩ Lτ ) = r if and only if (e−Beβ · τ)m−r 6= 0 and (e−Beβ · τ)j = 0, whenever
j > m− r.

6.2 Spinors associated to complex Dirac structures with

real index one

By Corollary 3.8 the lowest possible real index on an odd-dimensional manifold is one and on
an even-dimensional manifold is zero. Thus, we study lagrangian subspaces of (V ⊕ V ∗)C with
real index one and show its resemblance to generalized complex structures.

The following proposition is a straightforward consequence of Proposition 3.11.

Proposition 6.15. Let V be a (2n + 1)-dimensional vector space, E ⊆ VC, ε ∈ ∧2E∗ and
ω∆ = Im(ε|E∩E). Then L = L(E, ε) has real index one if and only if one of the following
conditions are satisfied:

1. the form ω∆ is degenerate with dim(kerω∆) = 1 and E + E = VC, or

2. the form ω∆ is nondegenerate and codim(E + E) = 1.

Remark 6.16. From the previous proposition we deduce that ωn−k∆ 6= 0, where k = type(L).

The fact that L has real index one imposes new constraints on its spinor line. These con-
straints depend on the type and the order as we see next.
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Proposition 6.17. Let L be a lagrangian subspace of (V ⊕ V ∗)C with real index one, where
dimV = 2n+ 1, and let ρ = eB+iω ∧ Ω be its associated spinor. Then, we have:

a) For L with order one and type k, there exist X ∈ VC, such that

ωn−k ∧ Ω ∧ ιXΩ 6= 0.

b) For L with order zero and type k,

ωn−k ∧ Ω ∧ Ω 6= 0

Proof. Let E and ε ∈ ∧2E∗ such that L = L(E, ε). Then Ω is a generator of the space det AnnE.
a) If L has order one and type k, then by Proposition 3.11, prVK = 0 and so we have that

e−(B−iω)L and e−(B−iω)L satisfy the conditions of Lemma 6.8.c. Then there exists X ∈ V such
that

0 6= (e−(B−iω)ρ, e−(B−iω)ρ)1X = (e2iω ∧ Ω,Ω)1X = ((e2iω ∧ Ω)ᵀ ∧ ιXΩ)top

= (−1)
k(k−1)

2
(−2i)n−k

(n− k)!
ωn−k ∧ Ω ∧ ιXΩ.

b) If L has order zero and type k, then by Proposition 3.11, prVK 6= 0. Consequently, e−(B−iω)L
and e−(B−iω)L satisfy the conditions of Lemma 6.8.d and so there exist ξ ∈ V ∗ such that

0 6= (e−(B−iω)ρ, e−(B−iω)ρ)1ξ = (e2iω ∧ Ω,Ω)1ξ = ((e2iω ∧ Ω)ᵀ ∧ ξ ∧ Ω)top

= (−1)
k(k−1)

2
(−2i)n−k

(n− k)!
ωn−k ∧ Ω ∧ ξ ∧ Ω.
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Appendix A

Coorientable contact structures in
generalized geometry

In this appendix we will present some ideas of how contact forms could be seen inside the
lagrangian subbundles of (TM ⊕ T ∗M)C with real index one.

Let θ ∈ Γ(T ∗M) be a precontact form on M , i.e. θ is nowhere vanishing. Consider D = ker θ
the two-form εθ ∈ ∧2D∗ given by εθ(X, Y ) = −θ([X, Y ]). Note that εθ = ι∗dθ, where ι is the
inclusion map of D into TM . A precontact form is contact if and only if θ ∧ dθn 6= 0. The last
condition is usually called the maximally nonintegrability condition, which is equivalent
to the nondegeneracy of the two-form dθ on D. In other words, εθ is nondegenerate, which is
equivalent to the following condition: given X ∈ Γ(D), there exist Y ∈ Γ(D) such that [X, Y ]
is not in Γ(D). The last condition is much stronger that simply being non integrable and could
be adapted to other structures, as we do next.

Definition A.1. Let E be a smooth distribution on TM or TM ⊕ T ∗M or (TM ⊕ T ∗M)C, we
say that E is maximally nonintegrable if for every e1 in Γ(E), there exists e2 in Γ(E) such
that [e1, e2] is not in Γ(E).

Let θ ∈ Ω1(M) be a contact form, then D = ker θ and DC are maximally nonintegrable, so
DC is non integrable and we cannot define the operator dDC , as this operator is defined only
on regular involutive distributions. Thus L(DC, i(εθ)C) is not involutive, by Proposition 2.41.
Actually we have the following.

Proposition A.2. If E is a maximally nonintegrable regular distribution on TM or TMC, then
for any ε ∈ ∧2E∗, we have that L(E, ε) is maximally nonintegrable.

Proof. Consider X+ξ ∈ Γ(L), we have that X ∈ Γ(E) and then by the maximally nonintegrabil-
ity of E, there exists Y ∈ Γ(E) such that [X, Y ] /∈ Γ(E). Since Y ∈ Γ(E), there exists η ∈ Ω1(M)
such that Y + η ∈ Γ(L). Consequently, [X + ξ, Y + η] /∈ Γ(L), since prTM [X + ξ, Y + η] /∈ Γ(E).

Now we present some properties of maximally nonintegrable distributions.

Proposition A.3. Let E be a regular distribution on TM or TMC. If L(E, 0) is maximally
nonintegrable, then E is maximally nonintegrable

Proof. Given X ∈ Γ(E) ⊆ Γ(L(E, 0)), there exists Y + η ∈ Γ(L(E, 0)), such that

[X, Y + η] = [X, Y ] + LXη 6∈ Γ(L(E, 0)).
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Then we have just two options: [X, Y ] 6∈ Γ(E) or [X, Y ] ∈ Γ(E). If the first happens we are
done. So supose that [X, Y ] ∈ Γ(E), then LXη /∈ Ann(E), implying that there exists Z ∈ Γ(E)
such that LXη(Z) = −η([X,Z]) 6= 0. Consequently, [X,Z] /∈ Γ(E) and so E is maximally
nonintegrable.

Proposition A.4. The maps eB, where B ∈ Ω2
cl(M) preserve the condition of being maximally

nonintegrable on lagrangian subbundles of TM ⊕ T ∗M or (TM ⊕ T ∗M)C.

Proposition A.5. Let L be a Dirac or complex Dirac on M . Consider E = prTML in case L
is a Dirac structure or E = prTMCL in case L is a complex Dirac structure with inclusion map
ι. Let B be a two-form on M , such that ι∗dB is nondegenerate, i.e. for each X ∈ Γ(E), there
exist Y, Z ∈ Γ(E) such that dB(X, Y, Z) 6= 0. Then eBL is maximally nonintegrable.

Proof. Let X + ξ ∈ Γ(L); then there exists Y ∈ Γ(E) such that ιY ιXdB 6= 0. We also note that
there exists η ∈ Ω1(M) such that Y + η ∈ Γ(L). We proceed by contradiction. Suppose that
[eB(X + ξ), eB(Y + η)] ∈ Γ(eBL). Then

[eB(X + ξ), eB(Y + η)] = eB([X + ξ, Y + η] + ιY ιXdB) ∈ Γ(eBL).

Since L is involutive, [X + ξ, Y + η] ∈ Γ(L). Consequently, ιY ιXdB) ∈ Γ(L) and so ιY ιXdB ∈
AnnE, reaching to a contradiction. Finally [eB(X + ξ), eB(Y + η)] 6∈ Γ(eBL).

The proposition above says that we can take a complex Dirac structure into a maximally
nonintegrable lagrangian subbundle.

Proposition A.6. Let L be a maximally nonintegrable lagrangian subbundle of TM ⊕ T ∗M or
(TM ⊕ T ∗M)C such that E = prTML or E = prTMCL is involutive and ι be the inclusion map
of E into TM or TMC. Then dEε is nondegenerate.

Proof. Let ε ∈ ∧2E∗ such that L = L(E, ε). Let X ∈ Γ(E), then there exists ξ ∈ Ω1(M) such
that X + ξ ∈ Γ(L). Since L is maximally nonintegrable, there exists Y + η ∈ Γ(L) such that
[X + ξ, Y + η] = [X, Y ] + Lxη − ιY dξ 6∈ Γ(L). Since E is involutive, [X, Y ] ∈ Γ(E). Thus,
(Lxη − ιY dξ)|E − ι[X,Y ]ε 6= 0, but the left-hand side is equal to ιY ιXdEε (see the proof of [23]).
Consequently, there exists Y ∈ Γ(E) such that ιY ιXdEε 6= 0 and thus dEε is non degenerate.

As a consequence, any maximally nonintegrable lagrangian subbundle of the form L(E, ε)
with E a regular involutive distribution, is of the form eBL(E, 0), where B ∈ Ω2(M) is such
that ι∗dB is nondegenerate for ι denotes the inclusion map of E into TM or TMC .

Definition A.7. A nondegenerate structure of TM ⊕ T ∗M or (TM ⊕ T ∗M)C is a lagrangian
subbundle which is maximally nonintegrable.

Examples A.8. a) Let E be a coorientable codimension-one distribution on TM , let θ ∈
Ω1(M) such that ker θ = E. Let ι : E → TM the inclusion map and let εθ ∈ Γ(∧2E∗),
given by εθ(X, Y ) = −θ([X, Y ]). We have seen that θ is a contact form if and only if ε
is nondegenerate which is equivalent to the maximally nonintegrability of E. Thus we get
that L(EC, i(εθ)C) is a non degenerate structure with real index one.

b) Let (D, J) be an almost CR structure with codimension r and let L = L(ker(JC− iId), 0).
Let T1,0 = ker(JC − iId) ⊆ TMC and let

NJ : Γ(T1,0)× Γ(T1,0)→ Γ(T1,0)
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NJ(X, Y ) = J([JX, Y ] + [X, JY ]) + [X, Y ]− [JX, JY ]

be the Nijenhuis tensor. We know that [Γ(T1,0),Γ(T1,0)] ⊆ Γ(T1,0) if and only if NJ = 0
and that is equivalent to L being a complex Dirac structure. On the other hand we prove
that L is nondegenerate if and only if T1,0 is maximally nonintegrable: Let X, Y ∈ Γ(D);

[X − iJX, Y − iJY ] = [X, Y ]− [JX, JY ]− i([JX, Y ] + [X, JY ]),

thus [X − iJX, Y − iJY ] /∈ Γ(E) if and only if J([X, Y ]− [JX, JY ]) 6= [JX, Y ] + [X, JY ]
which is equivalent to NJ(X, Y ) 6= 0. Thus Γ(T1,0) is maximally nonintegrable if and only
if NJ is nondegenerate.

c) Let ω ∈ Ω2(M), such that dim kerω = 1. Consider L = L(TMC, iωC). Note that L has
real index one. And note that L is a nondegenerate structure if and only if dω is non
degenerate.

d) Any almost lagrangian subbundle L has an associated trilinear skew-symmetric map TL ∈
∧3E∗ defined in the following way TL(X1, X2, X3) = 〈[e1, e2], e3〉, where ej = Xj+ξj ∈ Γ(L);
the previous expression defines an element of ∧3E∗. We have that L is a Dirac structure
if and only if TL = 0. If L is a locally conformal Dirac, cf. [38], we have that TL = ωL ∧ ε
for some ωL ∈ E∗ called the Lee form and ε denotes the skew-symmetric bilinear map
associated to L. Finally, we have that L is a non degenerate structure if and only if TL is
nondegenerate, in the sense that given e1, there exist e2 and e3 such that TL(e1, e2, e3) 6= 0.

Let L be a lagrangian subbundle of TM⊕T ∗M . Let ρ be a local trivialization of its associated
spinor line bundle. Consider the Γ(∧•T ∗M |U)-valued two-form,

ΩL|U : Γ(L|U)× Γ(L|U)→ Γ(∧•T ∗M |U)

ΩL|U(X + ξ, Y + η) = [X + ξ, Y + η] · ρ.

We note that ΩL is nondegenerate if and only if L is a nondegenerate structure. The same
applies for lagrangian subbundle of (TM ⊕ T ∗M)C. In the same way we can see the generalized
almost complex structures from the point of view of the maximally nonintegrability condition,
obtaining the following.

Definition A.9. A nondegenerate generalized almost complex structure is a non-
degenerate structure of (TM ⊕ T ∗M)C with real index zero. This is equivalent to a map
J : TM ⊕ T ∗M → TM ⊕ T ∗M such that J 2 = −Id, J + J ∗ = 0 and with nondegener-
ate associated Nijenhuis tensor NJ .

Examples A.10. a) Let ω be a nondegenerate two-form, such that dω is non degenerate.
Then L(TMC, iω) is a nondegenerate generalized almost complex structure, since

[X + iιXω, Y + iιY ω] = [X, Y ] + iι[X,Y ]ω + iιY ιXdω.

b) Let J be an almost complex structure with nondegenerate Nijenhuis tensor. Then L(ker(JC−
iId), 0) is a nondegenerate generalized almost complex structure.

Remark A.11. Manifolds with nondegenerate Nijenhuis tensor are mentioned in the context of
nearly Kahler manifolds in [37].
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