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Abstract

This thesis studies complex Dirac structures (i.e., Dirac structures in the complexification
(TM @ T*M)c of the generalized tangent bundle of a manifold M) with constant real index.
These objects extend generalized complex structures, which arise when the real index is zero, and
encode geometric structures such as presymplectic, transverse holomorphic and CR structures.
We introduce a new invariant that we call order, which is a nonnegative integer that allows us
to obtain a classification of complex Dirac structures at the linear-algebraic level. We prove
that complex Dirac structures with constant real index and order carry a presymplectic foliation
which comes from an underlying (real) Dirac structure (generalizing the Poisson structures as-
sociated with generalized complex structures). We prove a local splitting theorem for complex
Dirac structures with constant real index and order which extends the Abouzaid-Boyarchenko’s
splitting theorem for generalized complex structures. Finally we focus on complex Dirac struc-
tures with real index one; we study a pairing (-,-);, analogous to the Chevalley-Mukai pairing,
which gives information about the dimension of the intersection of the annihilators of two pure
spinors. We use it to give a spinorial description of complex Dirac structures with real index
one.
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Chapter 1

Introduction

The study of Dirac structures [13] grew out of Poisson geometry and is by now a well established
field of research with many applications (see e.g. [2,3,40]). From a modern perspective, Dirac
structures are viewed as part of what is now known as “generalized geometry” [25], a term
that refers to a broader viewpoint to the study of geometrical structures on manifolds based on
the idea of replacing the tangent bundle of a smooth manifold M by the “generalized tangent
bundle” TM @& T*M. A key observation is that TM @& T*M carries a natural symmetric pairing
(the usual pairing of vectors and covectors) and an extension of the Lie bracket of vector fields
known as the Courant-Dorfman bracket [13,16]. Dirac structures are defined as subbundles
L C TM @& T*M which are lagrangian with respect to the symmetric pairing and satisfy an
integrability condition with respect to the Courant-Dorfman bracket. Basic examples include
foliations, presymplectic and Poisson structures, illustrating how the Courant bracket codifies
the integrability conditions of different geometrical structures. The pairing and Courant bracket
found on the bundle TM @& T*M naturally extend to its complexification (TM & T*M)c =
(TM @ T*M) ® C; the main subject of study in this thesis are the much less explored Dirac
structures in (TM @& T*M)c, which we refer to as complex Dirac structures'.

The most studied area within generalized geometry is that of generalized complex geome-
try, as initiated by N. Hitchin in [24] in the context of low-dimensional geometry and further
developed by Gualtieri in [23]. The subject has become an active field of research in the last
15 years, especially due to its strong connections with physics (see e.g. [3,11,28]). Generalized
complex structures have a very rich geometry, encompassing complex and symplectic structures
as extreme examples. An important fact is that generalized complex structures are very special
types of complex Dirac structures: like any subbundle of a complex vector bundle, complex
Dirac structures have a pointwise real index, and generalized complex structures correspond
to complex Dirac structures L C (T'M @ T*M)c whose real indices vanish at all points (i.e.,
LN L =0). One of our main goals is to identify the geometrical structures encoded by complex
Dirac structures that do not necessarily satisfy the vanishing condition on the real index. In
contrast with generalized complex manifolds, which must be even dimensional, many of the more
general structures that we will encounter may exist in odd dimensions.

One of the motivations to pass from generalized complex structures to more general complex
Dirac structures is entirely analogous to the original motivation for considering Dirac structures
in Poisson geometry. Just as Poisson structures provide the geometrical description of phase
spaces in classical mechanics, Dirac structures were introduced to provide a geometric framework
for constrained mechanics. Constraints of mechanical systems are represented by submanifolds
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of their phase spaces, and the difficulty is that, in general, submanifolds of Poisson manifolds do
not inherit a Poisson structure. In turn, modulo mild regularity conditions, such submanifolds
are naturally equipped with Dirac structures. In a similar fashion, submanifolds of generalized
complex manifolds do not generally inherit a generalized complex structure, but always carry
(modulo the same regularity conditions) complex Dirac structures, usually with non-trivial real
indices (see e.g. [5,36] for a treatment of the special submanifolds which are again generalized
complex). In short, just as Dirac structures arise on submanifolds of Poisson manifolds, complex
Dirac structures appear on submanifolds of generalized complex manifolds.

In this thesis we begin a systematic study of complex Dirac structures; we now outline our
main contributions.

We start by studying invariants of complex Dirac structures on vector spaces. A fundamental
pointwise invariant of a generalized complex structure is an integer called its type; in fact, at
the linear-algebraic level, the type completely determines the generalized complex structure
(see [22, Theor. 4.13]). In this work we give a definition of type for any complex Dirac structure
which, in the case of generalized complex structures, is equivalent to the original notion in [22].
A complex Dirac structure of real index r is defined on spaces of dimension 2n + r, and its
type always varies from 0 to n. But in contrast with generalized complex structures, in order to
specify a complex Dirac structure at the linear-algebraic level we notice that the real index and
type are not enough; so we introduce a third invariant, which we call order (Definition 3.12),
that provides the missing information, see Proposition 3.18. The order is an integer varying from
0 to r (the real index), so for generalized complex structures, not only the real index vanishes
but also the order.

In generalized complex geometry, the examples of extreme types are symplectic (type 0) and
complex (type n). For complex Dirac structures, we have a richer situation: at the linear level,
we obtain different examples of extreme types for each order s, see Table 3.1.4. In other words,
we have one set of structures for each extreme type, 0 or n, parametrized by the order s. Passing
to manifolds, we notice that the subclass of complex Dirac structures with constant real index
and order (but not necessarily type) are the most tractable, so we focus on them. We identify
their key examples of extreme types, extending the description of extreme types of generalized
complex structures: in type 0 we have regular foliations with leafwise presymplectic forms with
regular kernel (i.e., regular Dirac structures with regular null distribution), while in type n we
have structures interpolating CR structures and transverse holomorphic structures (Proposition
4.7), which we call transverse CR structures (Definition 2.74).

Complex Dirac structures of constant real index and order include generalized complex struc-
tures and various aspects of their theory can be extended to this more general setting. For
example, an important feature of generalized complex structures is that they have an underlying
Poisson structure [14,23,28], which in turn determines a symplectic foliation on any generalized
complex manifold. More generally, we prove (Theorem 4.21)

Theorem 1.1. A complex Dirac structure with constant real index and order has an underlying
Dirac structure, which agrees with the Poisson structure of a generalized complex structure when
the real index is zero.

Since any Dirac structure gives rise to a presymplectic foliation, we obtain presymplectic
foliations associated with complex Dirac structures of constant real index and order. As we
will see below, these presymplectic leaves are a key ingredient in the local description of these
complex Dirac structures, playing a role similar to that of symplectic leaves in the local study
of generalized complex manifolds ( [1,22]).



We single out a class of complex Dirac structures having an associated split isotropic subbun-
dle (Definition 4.30). An interesting subset of this class is given by those having constant real
index equal to their order; in this case, their underlying Dirac structures are Poisson (Corollary
4.32); they are also special instances of the generalized CR structures of [27](Remark 4.36). Par-
ticular examples include regular foliations with leafwise generalized complex structures (Propo-
sition 4.35). Inside the complex Dirac structures having constant real index equal to their
order, those of maximal type are equivalent (via a B-transformation, possibly complex) to CR
structures (Proposition 4.7), so we refer to them as being of CR-type.

A central result in generalized complex geometry concerns the local description of generalized
complex manifolds. It is proven in [1] that, around any point, a generalized complex structure
is equivalent (via a diffeomorphism and B-transformation) to the direct product of a symplectic
structure and another generalized complex structure that, at the given point, has “complex type”
(i.e., its type at the point is maximal, or equivalently, its associated Poisson structure vanishes
at the point). Here the symplectic factor is a neighbourhood of the point in the symplectic leaf
through it, while the second factor is given by a transversal to this leaf. So this result should be
regarded as a version of Weinstein’s splitting theorem for Poisson structures [39] in generalized
complex geometry. When the type is constant around the point, this local splitting gives rise to
the generalized Darboux theorem [23, Theorem 4.35] of generalized complex structures. As we
mentioned above, in the more general context of complex Dirac structures with constant real
index and order, the analogue of points of “complex type” are the points of “CR-type” (i.e., the
real index and order coincide, and the type is maximal — or the underlying Poisson structure
vanishes). We prove in Theorem 5.10 the following local structure result:

Theorem 1.2. Let L be a complex Dirac structure with constant real index r and order s, and
let p € M be a point of type k. Then, locally around p, L is equivalent (via a diffeomorphism and
B-transformation) to the product of a presymplectic manifold (with (r — s)-dimensional kernel)
and a complex Dirac structure of constant real index and order equal to s and which is of CR-type
at the point p.

Analogously to the generalized complex situation, the presymplectic factor comes from the
leaf through the point, while the other factor is realized by small transversals. If the type is
constant around the point p, the transverse factor is a CR-manifold (Corollary 5.20). When
r = s = 0, we recover the known local results for generalized complex structures. Our main
tool to prove the result is the technique developed in [10] to obtain splitting theorems in various
contexts. We remark that, for generalized complex manifolds, their local description has a
further refinement proven in [4], asserting that a generalized complex structure of complex type
at a point is locally equivalent to a holomorphic Poisson structure, for some complex structure
near the point. It would be interesting to find a more general formulation of this result in our
context.

Another issue that we consider using complex Dirac structures concerns the odd dimensional
analogue of generalized complex geometry. One can view generalized complex structures as
complex Dirac structures on even dimensional manifolds with the smallest possible real index
(which is zero). Similarly, the smallest possible real index of a complex Dirac structure on an
odd-dimensional manifold is one. This leads us to give particular attention to complex Dirac
structures with real index one. We obtain in this case a complete description of these objects via
pure spinors, in a way that is parallel to the spinorial viewpoint to generalized complex structures
as in [22, Section 4.1]. We show that the pure spinors of complex Dirac structures of real index
one satisfy an additional equation that is similar to the equation for real index zero, but now



taking the order into account (Proposition 6.17). For the spinorial description of real-index
one lagrangian subbundles of (T'M @& T*M )¢, we introduce an analogue of the Chevalley-Mukai
pairing used to describe zero real index [22, Section 4.1]. The construction of this pairing, that
we denote by (-,-);, is an adaptation of one of the pairings described in [8]; similarly to the
Chevalley-Mukai pairing, this pairing has the property that for a pure spinor p with annihilator
L C (TM®T*M)c, the condition that dim(LNL) = 1 (i.e., L has real index one) is equivalent to
(p,p)1 # 0 (Proposition 6.6). It is mentioned in [8] that the family of pairings introduced there
has potential applications to general relativity, twistor theory and optical geometry; it would be
interesting to explore similar applications for the spinorial equation for the pairing (-, );.

Looking into the future, many aspects of the theory of complex Dirac structures remain
to be explored. We mention some directions. Regarding metrics, at the end of Chapter 4 we
propose a metric theory corresponding to complex Dirac structures with constant real index;
as an example we show how strictly pseudoconvex structures fit well into this theory. It is
also natural to investigate deformations of complex Dirac structures, having the interesting
deformation theory of generalized complex structures as a motivation. In another direction, one
should extend the spinorial viewpoint presented for the case of real index one to complex Dirac
structures with arbitrary real index; a possible way is to adapt the whole family of pairings in [§]
in order to obtain the equations that the spinors associated to complex Dirac structures with
constant real index should satisfy.

The thesis is structured as follows:

Chapter 2 contains some preliminaries, including a brief review of Lie and Courant algebroids,
Dirac and generalized complex structures. We also recall CR structures and introduce the more
general concept of transverse CR structure, which plays an important role in the study of complex
Dirac structures.

We start Chapter 3 with a motivation for complex Dirac structures with non-zero real index
coming from submanifolds of generalized complex manifolds. We then discuss foundational
aspects of complex Dirac structures on vector spaces, including a definition of type (extending
the notion for generalized complex structures) and the new invariant, order. The main result
(Proposition 3.19) in this chapter is the full classification of complex Dirac structures on vector
spaces in terms of these invariants. We also discuss some basic properties of complex Dirac
structures on manifolds, some natural distributions associated with them and present examples
illustrating how real index, type and order can change.

In Chapter 4, we focus our attention on complex Dirac structures with constant real index.
We mention some topological obstructions for the existence of these objects. Under the additional
assumption of constant order, we give a full description of examples of extreme types (Proposition
4.7). In this context we also describe the natural Dirac structure associated to a complex Dirac
structure (Theorem 4.21), and discuss situations where this Dirac structure is Poisson.

In Chapter 5, after recalling some results from [10], we present the local splitting theorem
for complex Dirac structures with constant real index and order (Theorem 5.10 and Corollary
5.20).

In the last Chapter 6, we study the special case of complex Dirac structures with real index
one, with focus on the spinorial viewpoint.

In Appendix A we introduce a new class of structures inspired by the maximally nonintegra-
bility of contact structures: the nondegenerate structures.



Chapter 2

Preliminaries

In this chapter we review some results of Lie and Courant algebroids, and Dirac and generalized
complex structures, which are fundamental for the reading of the thesis. We also show that in
order to study submanifolds of generalized complex structures we need to deal with complex
Dirac structures with nontrivial real index. At the end of the chapter we recall some classical
structures as CR structures and introduce the transverse CR structures, which will play an
important role in subsequent chapters.

2.1 Lie and Courant algebroids

We begin by recalling some definitions. In the whole thesis we deal with smooth manifolds. Let
E be a vector bundle over a manifold M, a distribution on F is an assignment to each point
p € M to a subspace D|, C E|,. We say that a distribution D is of constant rank, if the
dimension of D], is constant for all p € M. We say that the distribution is smooth if for every
p € M and e, € D|,, there exist an open neighbourhood U of p and a smooth section é € I'(E|)
such that é|, € D|,, for all ¢ € U and €|, = e,. A smooth distribution of constant rank is a
vector subbundle. A distribution D is called regular if it is of constant rank.

Every smooth distribution D on a vector bundle E defines a subsheaf I' : U + I'(D|y) of the
sheaf of smooth section of E, where I'(D|y) = {e € I'(E|v) | e, € D|,, Vp € U}. The function
which assigns to each point the dimension of each space D|, has a special property.

Lemma 2.1. Let D be a smooth distribution of a vector bundle E over M. Given a pointp € M,
there exists an open neighbourhood U of p such that dim D|, > dim D|,, for all g € U.

This lemma implies that if D is a smooth distribution of a vector bundle, then the function
d(p) = dim D, is lower semi-continuous.

Along this thesis a foliation is a partition F = {l,} of an m—dimensional manifold M in
a disjoint union of immersed connected submanifolds [, called leaves, which satisfies the local
foliation property at each point p € M: let [, be the leaf of F passing through p and d
the dimension of [,. Then there exists a chart (yi,...,y,) on a neighbourhood U(M) of p,

UXN ={-XA <y < A...,—X < yy < A} such that {yg41 = ... = ym = 0} = U NI,
and each submanifold {y; + 1 = ¢411,...,Ym = Cm} is contained in some leaf of F, where
Cdils---,Cmn € R are small enough. Foliations are called regular if their leaves have the same

dimension. A simple foliation is a regular foliation admitting a smooth manifold B and a
submersion ¢ : M — B such that the fibres of ¢ are the leaves of the foliation. The space B is
called the leaf space since the map ¢ makes a one-to-one correspondence between the points
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of B and the leaves of the foliation. Every foliation F has associated a smooth distribution T'F
defined as p € M + T,l,, where [, is the leaf passing through p.

In what follows we focus on distributions of T'M, assumed to be smooth from now on. An
integral manifold of a distribution D is an immersed connected submanifold N C M such that
T,N = D, for every p € N. We say that an integral manifold of a distribution D through p is
maximal if it contains every integral manifold passing through p. A distribution is integrable
if for every p € M, there exists an integral manifold of D passing through p. Every integrable
distribution defines a partition of M given by its maximal integral manifolds, this partition
satisfy the local foliation property and it so is a foliation, cf. [33,34]. An involutive distribution
on T'M is a distribution D such that VX,Y € I'(D), we have that [X,Y] € I'(D), where [-, ]
denotes the Lie bracket. The classical Frobenius theorem asserts that a regular distribution is
integrable if and only if it is involutive.

Involutive regular distributions are a special case of a more general kind of structures, Lie
algebroids.

Definition 2.2. A Lie algebroid over a manifold M is a vector bundle L over M together
with a Lie bracket
[,]]p : T(L) x T'(L) — T'(L)

and a bundle map p: L — TM called the anchor map satisfying the Leibniz property
[, f8] = flev, B] + p(@)(f)B,
for all o, 5 € I'(L) and f € C>®(M).

Example 2.3. The tangent bundle T'M is a Lie algebroid with a bracket given by the Lie bracket
and the identity map as anchor map.

Example 2.4. Poisson structures induce Lie algebroid structures on 7*M in the following way.
Consider 7 a Poisson bivector on M, then (T*M,r, [-,-]:) is a Lie algebroid. Here the anchor
map is the Poisson bivector itself seen as a map « : T*M — T'M; 7 defines naturally the bracket
[-, ]+ in the following way

[&7 /B]Tr = »Cﬂ'(a)/B - £7r(,6’)04 - d(ﬂ—(av ﬂ))v (21)
where o, € ['(T*M).
As a consequence of the local splitting theorem for Lie algebroids [21] we have the following:

Proposition 2.5. The distribution defined by the image of the anchor map of a Lie algebroid is
integrable.

There is a replacement for T'M more appropriate in our context, the generalized tangent
bundle T'M & T*M. This bundle has a natural nondegenerate symmetric pairing

(X+6Y +1) = 5(1(X) +€(V))

where X +&,Y +n € TM & T*M and inherits a bracket on I'(TM & T*M)
[X + €7Y + 77] = [X7Y] + [’XT] - LYd€7

where X + &Y +n € I'(TM & T*M), called the Courant-Dorfman bracket [13,16]. The
bundle T'"M & T*M with the pairing and bracket described above is a special case of a more
general structure.
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Definition 2.6 ([29], [31]). Let E be a vector bundle over the manifold M equipped with a
bundle map p : E — T'M, a nondegenerate symmetric pairing (-, -) and a bilinear bracket [, -].
We say that (E,(-,-),[-,"],p) is a Courant algebroid if it satisfies the following conditions:

a) [e1, [e2, €3]] = [[e1, €2], €3] + [e2, [e1, €3]], Ve, €2, €5 € T(E)
b) plex, 2] = [p(e1), plez)], Ve, €2 € I(E)

c) le1, fea] = fler, ea] + pler)(f)ez, Veq, eq,e3 € T(E)

d) ple){er, e2) = ([e, er], e2) + (1, [e, €2]), Ve, 1,2 € T(E)
e) le,e] = D{e,e),Ve € T'(F)

here we denote D the following map

D:C®(M) — I'(E)

1 k
where we see p*df as an element of E via the isomorphism given by twice the pairing.
From axiom e), we note that the bracket [, | is not skew-symmetric. However, the following
holds
le1, ea] = —[eq, e1] + 2D (eq, €2). (2.2)

We say that a distribution of a Courant algebroid is involutive if it is closed under the bracket.

Lemma 2.7. Let A be an involutive isotropic subbundle (A C A*) of a Courant algebroid E.
Then A inherits a Lie algebroid structure coming from the restriction of the anchor map and
bracket of E.

Proof. The bracket restricted to the isotropic A is skew-symmetric by equation (2.2), by item
a) is a Lie bracket and by item c) it satisfies the Leibniz property. O]

Examples 2.8. We give some examples of Courant algebroids:

a) The bundle TM & T*M itself with anchor the projection onto 7'M, the usual pairing and
the bracket
[X + S,Y + n]H - [X, Y] + EXT] - Lydé —+ Lybe,

for some H € Q3 (M).

b) Let g be a quadratic Lie algebra, i.e, a Lie algebra g together with a nondegenerate
symmetric pairing (-,-) : g X g — R such that

([X,Y],Z2) + (Y,[X, Z]) = 0.

Then, g is a Courant algebroid over a point.
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c¢) Suppose A is Lie algebroid, with anchor map a, such that its dual A* is a Lie algebroid with
anchor map a*. We call the pair (A, A*) a Lie bialgebroid if the differential d, associated
to A* satisfies
dylay, agla = [dyay, ag]a + [a1, d.as] 4,
where [+, -] 4 is the Schouten bracket associated to A. The vector bundle A® A* is a Courant
algebroid with the obvious pairing and the following bracket

[Xl + g, X2 + O{Q] = ([Xl, XQ] + LalXQ — Lazd*Xl) + ([Ozl, 042] + LXIOZQ — LXQdal), (23)
where X; + a1, Xo + a5 € F(A D A*)

Definition 2.9. Let (Ek, (-, )&, [, *]x, px) be two Courant algebroids over the manifold M, where
k = 1,2. An isomorphism of the Courant algebroids F; and E, is a pair (F f), where
F : Ey — F, is a bundle isomorphism covering a diffeomorphism f : M — M satisfying
the following:

a) f*<F(€1),F(€2)>2 = <€1,€2>1, Vey, ey € Eq,
b) F[el, 62]1 = [F(61>,F(62)]2, \V/€1,62 < E17

c) pooF = f.op.

When considering the same Courant algebroid (E, (,),[,],p) we obtain the definition of an
automorphism of a Courant algebroid. In what follows we focus on Courant automorphisms
rather than on isomorphisms. The set of all automorphisms of a Courant algebroid is a group
denoted by Autca(E).

We recall that the automorphisms of a Lie algebroid are vector bundle automorphism pre-
serving the Lie bracket. It is known that the automorphism group of the Lie algebroid 7'M with
the Lie bracket is Diff (M), cf. [22]. We will see that the automorphism group of the Courant
algebroid T'M @& T*M contains the automorphism group of the Lie algebroid T'M with the Lie
bracket. Consider ¢ € Diff(M); then the bundle map

T :TM & T*M — TM & T*M

To(X +&) = . X + (¢ 1)

is an automorphism of TM & T*M. The operator T is called generalized differential.
Given a two-form B, there is an automorphism of the vector bundle TM @& T* M denoted by
e?, defined in the following way

B(X +6&)=X+E+1xB.
These maps usually do not preserve the Courant-Dorfman bracket, actually we have the following
(X +6), (Y +n)] = e[ X + &Y + 1] + txivdB,

where X,Y € TM and &,n € T*M. So when B is closed, e is an automorphism of (T'M @
T*M, (-, [-,-], prra), called B-transformation or B-fields.

The automorphisms of (TM &T*M, (-,-), [, -], prrar) are generated by diffeomorphisms of M
and B-transformations.
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Proposition 2.10 ([23]). The automorphism group of (TM & T*M,{-,-),[-,:],prram), is given
by the pairs (F, B) € Diff (M) x Q%(M) via the map

Diff (M) x Q% (M) — Autca(TM & T*M)
(F,B) — TF o e”.
From the Proposition we obtain the following exact sequence:
0——=Q%(M)—— Autca(TM & T*M, (-,-), [-,-], prrar) —= Diff (M) ——0, . (2.4)

Definition 2.11. The infinitesimal automorphisms of a Courant algebroid Der(FE) are given
by first order differential operators D : T'(E) — I'(E) such that there exists X € X(M) satisfying:

a) X(ey,e2) = (Dey,e9) + (e, Des),
b) D[@l, 62] = [Del, 62] + [61, Deg],
where ey, ey € I'(E). The vector field X is called the symbol of D.

The set of all infinitesimal automorphisms of a Courant algebroid is a Lie algebra with bracket
given by the commutator and denoted by aut(E) as it is the Lie algebra of Autca(E).

Corollary 2.12 ([23]). We have that the map
X(M) x Q4(M) — aut(TM & T*M)

defined by the natural action of X(M) x Q% (M) over T(TM @& T*M) given by
(X,0)- (Y +n)=Lx(Y +n)+wb

s an isomorphism.

Examples 2.13. Consider X + ¢ € I'(T'M @& T*M). The map
adx. ¢ : T(TM & T*M) — T(TM & T*M)

adxe(Y +n) =[X +&Y +1n)

is an infinitesimal automorphism. Moreover, we have that it corresponds to the pair (X, —d¢) €

X (M) x Q(M).

From now on we also denote the Courant and the infinitesimal automorphisms as pairs
(F,w) € Diff (M) x Q2 and (X,w) € X(M) x Q, respectively.

cl»

Definition 2.14. An exact Courant algebroid F is a Courant algebroid fitting into the
following exact sequence:

0—T"MZE—"-TM——0. (2.5)

Remark 2.15. There is a classification of exact Courant algebroids given by Severa [32]. Given
an exact Courant algebroid (E, (-,-), [, ], p), there exist a closed three-form H such that E is
isomorphic to (TM & T*M, (-,-), [, |u, prora)-
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Until now we have only treated Courant and Lie algebroids over real vector bundles. However,
we will deal with these structures in the complex setting. So we make some remarks about
(TM & T*M)c as a “complex Courant algebroid”; later in Chapter 3 we will speak about
complex Lie algebroids. The bundle (T'M @& T*M )¢ inherits a pairing and a bracket which are
the complexification of both the canonical pairing and the Courant-Dorfman bracket, and has
anchor map prrag.. Its automorphisms are defined in the same way as for Courant algebroids.
On one hand we have the symmetries defined by Diff(M), given ¢ € Diff(M), we have that
the complexification of Ty is a symmetry. On the other hand we have the symmetries given
by complex two-forms: consider a complex closed two-form B, the bundle map e (defined as
in the real case) is also a symmetry of (M @ T*M )¢, we call these transformations complex
B-transformations.

2.2 Dirac structures on vector spaces

In this section we begin by recalling the definition and some results related to Dirac structures
on vector spaces and the spinors associated to them.

2.2.1 Dirac structures

Let V' be a finite dimensional vector space over the field K = R or C. The vector space V & V*
has a canonical pairing defined as:

(X+6Y +1) = () + (X))

where X + &Y +n €V @ V*. A lagrangian subspace of V' @ V* is an isotropic subspace of
V @ V* of maximal dimension.

Definition 2.16 ([13]). A Dirac structure on a vector space V is a lagrangian subspace of
V @ V* with respect to the canonical pairing.

There are some subspaces of V' related to these structures. The range of a Dirac structure
L is defined as pry L and the kernel of L is defined as ker L = LN V.
Note that associated to any Dirac structure, there is a map

er iprvL X pryL — K

5L(X7 Y) = 77(X>7

where X +&,Y +1n € L for some £, € V*. The map ¢, is well defined and skew-symmetric.
The subspace pry L and the two-form £, determine completely the Dirac structure L. Let
E CV and € € A2E*. We define

L(E,e) ={X +¢{|&|g = txel}.
We recover a Dirac structure from its range and two-form as L = L(pry L, er).

Proposition 2.17. Every Dirac structure of V& V* is of the form L(E,¢), for some E CV
and € € N*E*.
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Definition 2.18. Let ¢ be a linear map from V to W and Ly, Ly be Dirac structures on the
vector spaces V' and W, respectively. The backward image of Ly, denoted by B,(Lw) is the
subspace

X+ X+E€lyt SV OV

The forward image of Ly, denoted by F,(Ly) is the subspace
{p X+ X+ sely} CWa W™

Proposition 2.19 ([9]). Let ¢ be a linear map from V to W and Ly, Ly be Dirac structures
on V and W, respectively. Then, B,(Lw) and F,(Ly) are Dirac structures on 'V and W,
respectively.

We will see that the backward image of a Dirac structure fits into a exact sequence, a fact
that will be used in Chapter 4. Consider the linear map ¢ : V' — W and a Dirac structure Ly,
on W. Consider the subspace

Lo ={(Y +0, X+ |Y =p(X),{=¢"n} S (WO W) x (Va V),

where (V & V*) denotes the vector space V @& V* equipped with the pairing —(-,-). Note that
', is a lagrangian subspace of (W & W*) x (V @ V*). Then the backward image of Ly fits into
the following exact sequence

0 ——ker(¢*) N Ly —= (L & (V @ V) ATy — By (Ly) —= 0 (2.6)

where the first map is the inclusion 1 +— (n,0) and the second is the projection prygy«.
In order to recall the definition of a generalized complex structure, we make a discussion
about real parts that will be also useful in the following chapter.

Definition 2.20. Let W be a real vector space and A C We. If A = A or equivalently A = V¢
for some subspace V' of W, we say that A is real, and we call V' the real part of A and denote
it as Re A.

Note that the space AN A is always real and actually
Re(ANA)=ANW = {s € A| sis real},

here we use the identification W = W @ iW, where real elements are elements of WW. Note that
AN A is the maximal real subspace contained in A.

Definition 2.21. The real index of A is dim¢ A N A.

The real index measures how big the space of real elements of the vector space is. For example
if A is real, i.e. A = A, then its real index is dim A. However, if its real index is zero, then
AN A =0 implying that A = ker(Jc — i/d) for a complex structure J on Re(A & A).

Definition 2.22. Let V be a real vector space. A generalized complex structure on V is a
lagrangian subspace of (V @ V*)¢ which has real index zero.

As the existence of complex structures on a vector space implies that the dimension of the
vector space is even, the same happens for generalized complex structures.

Proposition 2.23 ([22]). If a vector space V' admits a generalized complez structure, then V is
even dimensional.

We will talk more about these structures in the next sections
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2.2.2 Spinors

Let V be a complex or real m—dimensional vector space and consider S = A°®V*, the space
of spinors associated to V. The elements of S are called spinors. There exists an action of
V@ V*on S, given by

(X+8 -p=wxp+ENp,

where X +&6 