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Abstract

The space of null geodesics of a spacetime carries a canonical contact structure which has proved to be

key in the discussion of causality in spacetimes. However, not much progress has been made on its nature

and not many explicit calculations for specific spacetimes can be found over the literature. We compute

the spaces of null geodesics and their canonical contact structures for the manifold S2 × S1 equipped with

the family of metrics {gc = g◦ − 1
c2 dt

2}c∈N+ . We obtain that these are the lens spaces L(2c, 1) and that

the contact structures are the pushforward of the canonical contact structure on STS2 ∼= L(2, 1) under the

projection map. We also study the applicability of Engel geometry on the discussion of three-dimensional

spacetimes. We show that, for a particular type of three-dimensional spacetimes, one can obtain the space

of null geodesics and its contact structure solely from the information of the Lorentz prolongation of the

spacetime. We present an approach that makes use of this result to recover the spacetime from its space of

null geodesics and skies.
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Introduction

At the turn of the twentieth century, inspired by the laws of nature that A. Einstein later framed under the

name of general relativity [15], mathematicians developed the tools of pseudo-Riemannian and Lorentzian

geometry and introduced the concept of Minkowski spacetime [30, 40]. This is the pseudo-Riemannian

manifold R4 with metric η = dx2
1 +dx2

2 +dx2
3−dx2

4. The negative eigendirection of the metric depicts time,

while the span of the others characterises the spatial components of the spacetime.

The theory rapidly evolved past physical meaning and became purely mathematical, and the concept of

Minkoswki spacetime was generalised. A spacetime is a Lorentzian manifold (that is, a pseudo-Riemannian

n-manifold with signature (n − 1, 1)) in which one can choose a vector field with negative length at each

point, called a choice of future. At each point of the manifold, the metric defines two hemicones of vectors

of length zero, which are called the null vectors of the spacetime.

In the 1980s, influenced by the work of R. Penrose [37,38], R. Low introduced the space of unparametrised

geodesics with null tangent vectors at all points, called the space of null geodesics of a spacetime, and

studied its topology and geometry [24–28]. When this space is a differentiable manifold, Low discovered

the existence of a canonical contact structure [25]. A contact structure is a distribution of hyperplanes

(that is, a smooth choice of a hyperplane on every tangent space) that is maximally non-integrable. The

contact structure on the space of null geodesics satisfies that every sky (the set of geodesics going through

a particular point of the spacetime) is everywhere tangent to the distribution.

The study of the contact structure on the space of null geodesics has proved to be essential in the theory,

yielding important results on causality, for instance, providing obstructions to two points in the spacetime

being related by a curve with non-positive tangent vectors [12,13,33]. However, apart from [2], there has not

been much progress in the understanding of the nature of this structure and on the possibility of recovering

the spacetime solely from its space of null geodesics. In addition, not many explicit calculations of spaces

of null geodesics and their contact structures can be found in the literature. The present work aims to

contribute to these directions.

In the first part, we compute the spaces of null geodesics and corresponding contact structures of the

manifold S2 × S1 for the family of Lorentzian metrics {gc = g◦ − 1
c2 dt

2}c∈N+ , where g◦ is the round metric

on S2 and t is the coordinate on S1. The spacetimes (S2 × S1, gc) provide an interesting example because

their spaces of null geodesics are not, in general, equivalent to the canonical contact structure of a unit

tangent bundle. The latter is always the case whenever there is a global hypersurface C such that every

curve with tangent vectors of non-positive length intersects C exactly once. Such a surface does not exist

for any of the spacetimes (S2 × S1, gc), since that would imply that S2 × S1 is non-compact [4].
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More precisely, by developing a quaternionic approach to the Hopf fibration, we show the following

result, see Theorem 2.4.5.

Theorem. Let Nc be the space of null geodesics on S2×S1 under the metric gc. Then, Nc is diffeomorphic

to the lens space L(2c, 1), that is,

Nc ∼= L(2c, 1).

The lens space L(p, 1) is the manifold obtained by quotienting the three-sphere S3 ⊂ C × C by the

finite Zp-action generated by (z1, z2) 7→ (e2πi/pz1, e
2πi/pz2). In addition, the canonical contact structure

on N1
∼= L(2, 1) ∼= STS2 is shown to be the canonical contact structure χ on STS2. We also show how

the spaces L(2c, 1) can be obtained by quotienting the unit tangent bundle STS2 by a finite Zc-action,

which recovers L(4, 1) ∼= STRP 2, see [21]. We totally characterise the contact structure on Nc ∼= L(2c, 1)

as follows, see Theorem 2.5.2.

Theorem. Let r : STS2 → L(2c, 1) ∼= Nc be the canonical projection. Let χ be the canonical contact

structure on STS2. Then, the contact structure on Nc is

Hc = r∗χ.

The second part of this dissertation focuses on the recovery of a spacetime given its contact manifold

of null geodesics. We discuss the three-dimensional case, for which we make use of Engel geometry. Given

a four-dimensional manifold M , an Engel structure on M is a rank-two distribution D satisfying that

E := [D,D] is a rank-three distribution such that [E , E ] = TM , see [31]. It can be shown that an Engel

structure defines a line field W, which completes the flag W ⊂ D ⊂ E ⊂ TM . In the 1920s, E. Cartan

discovered how, given a three-dimensional manifold equipped with a contact structure, one can define a

canonical Engel manifold, nowadays called its Cartan prolongation. Following these ideas, R. Casals, J.

Pérez, A. del Pino and F. Presas defined a canonical Engel structure coming from a Lorentzian three-

manifold, called its Lorentz prolongation [10]. We explore how Engel structures, prolongations, and their

inverse operations (deprolongations) can be helpful in recovering a Lorentzian manifold from its space of

null geodesics and its canonical contact structure.

We study the case of separable spacetimes, which we define as those for which, locally, the spatial com-

ponents of the metric are invariant under the negative eigendirection within the spacetime, and conversely,

see Definition 3.1.3. Our main contribution is the following result, which can be found in Theorems 3.1.5

and 3.1.7.

Theorem. Let M be a three-dimensional separable spacetime. Let PC be the Lorentz prolongation of M ,

with Engel flag W ⊂ D ⊂ E ⊂ TM . Then

N = PC/W.

In addition, if N is a differentiable manifold and the projection p : PC → PC/W is a submersion, the

contact structure H on N is given by

H = p∗E .
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This theorem allows us to obtain the contact manifold of null geodesics solely with the information

given by the Engel flag on the four-dimensional manifold. In addition, we discuss how this approach can be

useful in recovering a Lorentzian manifold from its space of null geodesics and its skies. Further research

is needed to find suitable hypotheses on the contact manifolds ensuring that the arguments hold, but our

initial results are encouraging.

This thesis is structured as follows. In Chapter 1, we introduce the main concepts and results in contact

and Lorentzian geometry, the space of null geodesics and Engel structures. Chapter 2 studies the model

S2 × S1 with the family of Lorentzian metrics {gc = g◦ − 1
c2 dt

2}c∈N+ , making use of the division algebra

of quaternions and their relation to STS2 and the Hopf fibration. Finally, in Chapter 3, we explore the

applicability of Engel geometry in the theory, arguing how one can obtain the spaces of null geodesics

of a separable spacetime and its contact structure from the Lorentz prolongation of the spacetime. We

also explore how this procedure allows us to obtain a Lorentzian manifold with a particular space of null

geodesics and contact structure.
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Chapter 1

Preliminaries

1.1 Introduction to Contact Geometry

In Section 1.1 we recall the main definitions and results of contact geometry and topology that will be

needed throughout this work. This section does not intend to be a thorough description of the field, we

refer to [17] for further details.

Let M be a differentiable manifold of dimension m and let TM denote its tangent bundle.

Definition 1.1.1. A codimension one distribution (or field of hyperplanes) on M is a smooth

subbundle ξ ⊂ TM of codimension one. We will write X ∈ ξ to denote that X is a smooth section of TM

with X(x) ∈ ξx for all x ∈ M . A rank n < m distribution on M is a smooth subbundle ξ ⊂ TM of rank

n.

It should be clear what is meant by smooth in Definition 1.1.1. We demand that, for all x ∈ M , there

exists a neighbourhood U ⊆M of x and n vector fields X1, . . . , Xn ∈ X(U) that span ξ|U , that is, such that

ξy = 〈〈〈X1(y), . . . , Xn(y)〉〉〉 for all y ∈ U . All through this work, all objects on a manifold will be assumed to

be smooth, unless stated otherwise.

A key observation that will be useful in defining contact structures is that one can always regard

codimension one distributions as the kernel of a one-form on M , at least locally.

Lemma 1.1.2. [17, Lem. 1.1.1] Locally, a codimension one distribution ξ can be written as the kernel of a

differential one-form α. In addition, it is possible to write ξ = kerα globally if and only if ξ is coorientable,

that is, the quotient bundle TM/ξ is trivial.

For the rest of this section, all fields of hyperplanes will be assumed to be coorientable unless specified.

We can now define what a contact structure on an odd-dimensional manifold M is.

Definition 1.1.3. Let M be a (2n+ 1)-dimensional manifold. Let ξ = kerα ⊂ TM be a codimension one

distribution on M such that

α ∧ (dα)n 6= 0,

that is, the top form α∧ (dα)n vanishes nowhere. The one-form α is called a contact form, and ξ = kerα

is called a contact distribution. The pair (M, ξ) is a contact manifold.

Note that if ξ is a contact distribution on M such that ξ = kerα globally, the top form α ∧ (dα)n is a

volume form on M , meaning that M must be orientable.
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Let us now provide some intuition for the definition of contact distributions. Let ξ = kerα be a field of

hyperplanes on M . Then, ξ is said to be integrable if, through any point x ∈M , there exists a submanifold

N ⊂ M with the property that TyN = ξy for all y ∈ N . Frobenius’ Theorem gives a characterisation of

such distributions.

Theorem 1.1.4 (Frobenius’ Theorem). [43, Prop 1.59 and Thm. 1.60] The following conditions are

equivalent.

i) The distribution ξ is integrable.

ii) For any X,Y ∈ ξ, it holds that [X,Y ] ∈ ξ, where [−,−] denotes the Lie bracket.

Condition ii) of Frobenius’ Theorem can be rewritten in terms of the defining one-form α of a field of

hyperplanes, which gives the following result.

Corollary 1.1.5. The codimension one distribution ξ = kerα is integrable if and only if

α ∧ dα ≡ 0,

where ≡ denotes that the differential form vanishes everywhere.

Proof. Assume α ∧ dα ≡ 0 holds and let X,Y ∈ ξ, that is, α(X) = α(Y ) = 0. Then,

α([X,Y ]) = Xα(Y )− Y α(X)− dα(X,Y ) = −dα(X,Y ).

Note also that

0 = ιX(α ∧ dα) = α ∧ ιXdα,

and hence

0 = ιY
Ä
ιX(α ∧ dα)

ä
= ιY (α ∧ ιXdα) = −α ∧ dα(X,Y ),

which implies that dα(X,Y ) = 0. Hence, [X,Y ] ∈ ξ, as needed.

Assume now that condition ii) in Frobenius’ Theorem holds. Let x ∈ M and U be an open subset

of M containing x such that one can define vector fields X1, . . . , Xm−1 ∈ ξ, and Y ∈ X(U) satisfying

TxM = 〈〈〈X1(y) . . . , Xm−1(y), Y (y)〉〉〉 for all y ∈ U . It is clear that, for any i, j, k ∈ {1, . . . ,m − 1}, one has

(α ∧ dα)(Xi, Xj , Xk) = 0, since α(Xi) vanishes for all i = 1, . . . ,m− 1. Now,

(α ∧ dα)(Xi, Xj , Y ) =
α(Y )

2

(
dα(Xi, Xj)− dα(Xj , Xi)

)
=
α(Y )

2

(
− α([Xi, Xj ]) + α([Xj , Xi])

)
= 0.

Hence, (α ∧ dα)(y) = 0 for all y ∈ U and, since x is arbitrary, we find that α ∧ dα = 0.

Contact distributions are, in a sense, the opposite of integrable distributions, for which they are some-

times referred to as maximally non-integrable distributions, and the condition α∧ (dα)n 6= 0 is called

the maximally non-integrable condition.

Example 1.1.6. Let M = R2n+1 with cartesian coordinates (x1, y1, . . . , xn, yn, z) and define the one-form

α = dz +

n∑
j=1

xjdyj .
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Let us compute dα =
n∑
j=1

dxj ∧ dyj, and hence

α ∧ (dα)n = dz ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn 6= 0,

which implies that α is a contact form. The field of hyperplanes ξ = kerα is known as the standard

contact distribution on R2n+1.

Example 1.1.7. Let (S, g) be a Riemannian surface and consider its unit tangent bundle

STS = {u ∈ TS | g(u, u) = 1},

which inherits a structure of S1-bundle over S. Indeed, if x ∈ S and (u, v) is an orthonormal basis of TxS,

the map
f : S1 → STxS

θ 7→ u cos θ + v sin θ

is a diffeomorphism.

It is known [17, p. 27] that g allows us to define a diffeomorphism Ψ from the tangent bundle TS to the

cotangent bundle T ∗S which is fibrewise given by

Ψx : TxS → T ∗xS

u 7→ g(u,−).

Such a diffeomorphism defines a metric g∗ on T ∗S given by g∗(ω1, ω2) = g(Ψ−1(ω1),Ψ−1(ω2)), which in

turn allows us to define the unit cotangent bundle as

ST ∗S = {ω ∈ T ∗S | g∗(ω, ω) = 1}.

The unit cotangent bundle ST ∗S carries a canonical contact structure defined as follows, see [12, Ex.

2.2] or [34]. Let π̃ : ST ∗S → S denote the canonical projection. A point ω ∈ ST ∗S may be regarded as

a linear form ω̃ ∈ T ∗π̃(ω)S up to multiplication by a positive scalar. Thus, ω̃ is totally determined by the

cooriented hyperplane lω = ker ω̃ ⊂ Tπ̃(ω)S, where the coorientation is given by the half-space on which ω̃ is

positive. The canonical contact distribution on ST ∗S is

ξω = (Tωπ̃)−1(lω).

Let us show that ξω is indeed a contact distribution. Let (x1, x2) be orthogonal coordinates on an

open subset U ⊂ S, which always exist due to the existence of isothermal coordinates [11]. Isothermal

coordinates are those for which the metric is pointwise proportional to the Euclidean metric. Let (∂x1
, ∂x2

)

be the basis of coordinate vectors and (dx1, dx2) be its dual basis pointwise. Let ||∂xi || =
√
g(∂xi , ∂xi) and

||dxi|| =
√
g∗(dxi, dxi). Note that

g
(
∂x1

,
∂x1

||∂x1
||2
)

= 1 and g
(
∂x2

,
∂x1

||∂x1
||2
)

= 0,

which implies that Ψ−1(dx1) =
∂x1
||∂x1 ||2

, and similarly for Ψ−1(dx2) =
∂x2
||∂x2 ||2

. Hence,

||dx1|| =

Ã
g

(
∂x1

||∂x1
||2
,

∂x1

||∂x1
||2

)
=

1

||∂x1
||
,
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and ||dx2|| = 1
||∂x2 ||

.

Let now θ be the coordinate on the fibres of ST ∗S, that is, the triplet (x1, x2, θ) represents the point

ω = cos θ dx1

||dx1|| + sin θ dx2

||dx2|| ∈ ST
∗
(x1,x2)S. It is clear that lω = 〈〈〈 sin θ ∂x1

||∂x1 ||
− cos θ

∂x2
||∂x2 ||

〉〉〉 ⊂ T(x1,x2)S, and

hence

ξω = 〈〈〈 sin θ ∂x1

||∂x1 ||
− cos θ

∂x2

||∂x2 ||
, ∂θ〉〉〉,

where we have made an abuse of notation denoting by ∂xi the coordinate vector fields on ST ∗S as well.

It is now clear that, on π̃−1(U), we can write ξ = kerα with

α = cos θ
dx1

||dx1||
+ sin θ

dx2

||dx2||
,

again by making an abuse of notation. Then,

dα = − sin θ

||dx1||
dθ ∧ dx1 +

cos θ

||dx2||
dθ ∧ dx2 + cos θ

∂

∂x2

1

||dx1||
dx2 ∧ dx1 + sin θ

∂

∂x1

1

||dx2||
dx1 ∧ dx2

and

α ∧ dα = − sin2 θ

||dx1||||dx2||
dx2 ∧ dθ ∧ dx1 +

cos2 θ

||dx1||||dx2||
dx1 ∧ dθ ∧ dx2 = − 1

||dx1||||dx2||
dx1 ∧ dx2 ∧ dθ 6= 0,

which shows that ξ is indeed a contact structure on ST ∗S.

Note now that the pushforward

χ = (Ψ−1)∗ξ

defines a contact structure on STS, which we will call the canonical contact structure on STS. Let

π : STS → S be the canonical projection and u ∈ STS. Then

χu =
Ä
(Ψ−1)∗ξ

ä
u

=TΨ(u)(Ψ
−1)(ξΨ(u))

=TΨ(u)(Ψ
−1) ◦ (TΨ(u)π

∗)−1(lΨ̃(u))

=
Ä
Tu(Ψ ◦ π∗)

ä−1Ä
ker g(u,−)

ä
=(Tuπ)−1(〈〈〈u〉〉〉⊥),

where 〈〈〈u〉〉〉⊥ denotes the orthogonal subspace to u in Tπ(u)S defined by g.

1.2 Introduction to Lorentzian Manifolds

Section 1.2 introduces the basics of pseudo-Riemannian manifolds and geodesics. Let M be a connected

manifold of dimension m.

Definition 1.2.1. A pseudo-Riemannian metric on M is a collection {gx}x∈M of non-degenerate

symmetric bilinear forms on the tangent bundle of M , that is, for any x ∈M , one has

gx : TxM × TxM → R

such that for all u, v, v′ ∈ TxM and a, b ∈ R

8



i) gx(u, v) = gx(v, u),

ii) gx(u, av + bv′) = agx(u, v) + bgx(u, v′),

iii) if gx(u, v) = 0 for all v ∈ TxM , then u = 0.

In addition, it is required that gx varies smoothly with respect to the base point x. That is, for any X,Y ∈

X(M), the function x 7→ gx(X(x), Y (x)) is smooth. We will simply denote the metric by g. The pair (M, g)

is called a pseudo-Riemannian manifold.

Note that it is not required for the metric to be positive definite. Actually, a Lorentzian manifold will

be a manifold equipped with a metric that has one negative direction. The next few results will allow us

to formalise this concept.

Theorem 1.2.2 (Sylvester’s law of inertia). [22, Prop. 2.65] Let h be a non-degenerate symmetric bilinear

form on a finite-dimensional vector space V . Let A be the matrix representation of h in some basis of V .

Then, A is diagonalisable and the number of positive and negative eigenvalues of A is independent of the

choice of basis.

Sylvester’s law of inertia allows us to define the signature of the metric g in each tangent space of M .

We will say that the signature of g at x ∈M is the pair (r, s), where r is the number of positive eigenvalues

of gx and s is the number of negative eigenvalues.

This last result allows us to define the signature of a metric g on M , which will simply be the signature

of gx for any x ∈M . It can be seen that the signature of the metric is locally constant.

Lemma 1.2.3. The signature of a metric g on M is locally constant.

Proof. Let x ∈ X and (U,ϕ) be a chart of M centred at x. Let ∂xi denote the coordinate vectors for

i = 1, . . . ,m defined by ϕ. Then,
Ä
∂x1

(y), . . . , ∂xm(y)
ä
provides a basis of TyM for all y ∈ U , and the

matrix representation of g in this basis is

G(y) =
Ä
gij(y)

ä
:=
Ä
g(∂xi , ∂xj )

ä
.

Thus, the fact that the signature of g is locally constant around x is equivalent to the number of positive

eigenvalues of G(y) being constant around x. Since G(y) is non-degenerate, it has no null eigenvalues. The

eigenvalues of G(y) are the roots of a monic polynomial of degree m whose coefficients ci ∈ R are products

and sums of the entries of G. Since the functions gij are smooth, the entries of G(y) depend smoothly on

y and so do the coefficients ci. It is known that the roots of a monic polynomial of positive degree depend

continuously on its coefficients [18], and hence the statement follows.

We can now give a precise definition of a Lorentzian manifold.

Definition 1.2.4. Let (M, g) be a connected pseudo-Riemannian manifold, where M is of dimension m.

We say that (M, g) is a Lorentzian manifold if the signature of g is (m− 1, 1).

9



We will say that the vectors u1, . . . , um−1, v ∈ TxM form an orthonormal basis of TxM if (u1, . . . , um−1, v)

is a basis of TxM and, in addition

i) g(ui, ui) = 1 and g(ui, v) = 0 for all i = 1, . . . ,m− 1,

ii) g(ui, uj) = 0 whenever i 6= j,

iii) g(v, v) = −1.

From now on until the end of the section, let (M, g) be a Lorentzian manifold.

Definition 1.2.5. Let x ∈M and u ∈ TxM . We say that u is

i) space-like if g(u, u) > 0 or u = 0,

ii) light-like or null if g(u, u) = 0 and u 6= 0,

iii) time-like if g(u, u) < 0,

iv) non-space-like if g(u, u) ≤ 0 and u 6= 0.

If c : I → M is a smooth curve, we say that c is space-like, light-like, time-like or non-space-like if ċ(t)

is respectively space-like, light-like, time-like or non-space-like for all t ∈ I.

Our next goal is to define the concept of geodesic on (M, g) and provide tools to compute them. We

need to present the Levi-Civita connection first.

Definition 1.2.6. An affine connection on a manifold M is a map

∇ : X(M)× X(M) → X(M)

(X,Y ) 7→ ∇XY

such that

i) ∇fX+Y Z = f∇XZ +∇Y Z,

ii) ∇X(fY + Z) = X(f)Y + f∇XY +∇XZ,

for all X,Y, Z ∈ X(M) and f ∈ C∞(M). We say that the connection ∇ is symmetric if ∇XY −∇YX =

[X,Y ] for all X,Y ∈ X(M). In addition, if M is equipped with a pseudo-Riemannian metric g, we say that

∇ and g are compatible if

Xg(Y, Z) = g(∇XY,Z) + g(Y,∇XZ).

Theorem 1.2.7 (Fundamental Theorem of Riemannian geometry). [35, Thm. 3.11] There exists a unique

affine connection ∇ on (M, g) which is symmetric and compatible with g. We call ∇ the Levi-Civita con-

nection of (M, g).

10



If (U,ϕ) is a local chart of M , let us denote by ∂xi(x) the coordinate vector fields induced by the chart.

Then, it is known that {∂xi(x)}mi=1 is a basis of TxM for all x ∈ U . Hence, there exist functions Γkij : U → R

such that

∇∂xi∂xj =

m∑
k=1

Γkij∂xk

in U for i, j, k = 1, . . . ,m. The smooth functions Γkij are known as the Christoffel symbols of the connection.

Recall that, in a local chart, one can also define the smooth functions gij : U → R given by gij(x) =

gx(∂xi(x), ∂xj (x)). It can be shown [35, Prop. 3.13.2] that the Christoffel symbols of the Levi-Civita

connection are given, in a local chart of M , by

Γkij =
1

2

m∑
n=1

gkn
(∂gjn
∂xi

+
∂gin
∂xj

− ∂gij
∂xn

)
(1.1)

where (gij) is the inverse matrix of (gij), and these completely determine ∇.

The Levi-Civita connection allows us to define the covariant derivative of a vector field on a curve as

follows. Let γ : I → M be a smooth curve on M . A vector field on γ is a map V : I → TM such that

V (t) ∈ Tγ(t)M for all t ∈ I. It can be shown [9, Rk. 2.2.2.3] that the value of ∇XY (x) depends solely on

X(x) and the values of Y on a curve tangent to X(x) at x, for all x ∈ M , X,Y ∈ X(M). Hence, one can

define the covariant derivative of V as the unique vector field on γ which is given by

D

dt
V := ∇γ̇V. (1.2)

In a local chart (U,ϕ), the covariant derivative operator reads [35, p. 66]

D

dt
V =

m∑
i=1

Vi
dt
∂xi +

m∑
i,j,k=1

Vj ẋiΓ
k
ij∂xk , (1.3)

if V =
m∑
i=1

Vi∂xi and ϕ ◦ γ(t) =
Ä
x1(t), . . . , xm(t)

ä
. The notion of covariant derivative allows us to define

the geodesics on (M, g).

Definition 1.2.8. A parametrised curve γ : I →M is a geodesic of (M, g) if

D

dt
γ̇ = ∇γ̇ γ̇ ≡ 0.

Equation (1.3) allows us to express the geodesic condition in a chart (U,ϕ). A curve γ : I → U given

by ϕ ◦ γ(t) =
Ä
x1(t), . . . , xm(t)

ä
is a geodesic if and only if

ẍk +

m∑
i,j=1

ẋiẋjΓ
k
ij ≡ 0, (1.4)

for all k = 1, . . . ,m. It can be shown [9, p. 61] that all geodesics γ : I →M have constant length, i.e.

d

dt
g(γ̇, γ̇) ≡ 0. (1.5)

We finish this section with the following result on existence and uniqueness of geodesics.

Proposition 1.2.9. [35, Prop. 3.22] Let x ∈ M and u ∈ TxM . There exists an interval I about 0 and a

unique geodesic γ : I →M of M such that γ(0) = x and γ̇(0) = u.
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1.3 The Space of Null Geodesics of a Spacetime

In this section we introduce the concept of spacetime and that of its space of null geodesics. We also present

the canonical contact structure of such space.

Consider a Lorentzian manifold (M, g). We say that (M, g) is time-orientable if there exists a time-like

vector field X ∈ X(M). That is, gx(X(x), X(x)) < 0 for all x ∈M . A choice of such a vector field is called

a choice of future within M .

Proposition 1.3.1. Let (M, g) be a Lorentzian manifold. For all x ∈M , the set of non-space-like vectors

in TxM forms a solid cone consisting in two solid hemicones, the boundary of which is precisely the set of

all null vectors in TxM . In addition, the cone varies smoothly with respect to the basepoint x.

Proof. Let x ∈ M and let (u1, . . . um−1, v) be an orthonormal basis of TxM . Let ICx denote the set of

non-space-like vectors in TxM .

Let now λ1, . . . , λm−1, µ ∈ R not all zero. Then,

m−1∑
i=1

λiui + µv ∈ ICx ⇐⇒ gx
Äm−1∑
i=1

λiui + µv,

m−1∑
i=1

λiui + µv
ä
≤ 0 ⇐⇒

⇐⇒
m−1∑
i=1

λ2
i − µ2 ≤ 0,

and the claim follows. It is clear that the boundary Cx of the cone is precisely formed by the null vectors

in TxM . The differentiable fashion in which the cone depends on x is clear from the fact that gx varies

smoothly with respect to x.

Definition 1.3.2. A spacetime is a time-orientable connected Lorentzian manifold of dimension m ≥ 3.

From now on, let (M, g) be a spacetime. We will denote by C the bundle of null vectors, which is

pointwise the boundary of the bundle of solid cones of non-spacelike vectors IC.

Proposition 1.3.1 ensures that C inherits a structure of manifold from TM . Now, a choice of future is

simply a differentiable choice of one of such hemicones on every tangent space. We will denote by C+ the

bundle of null future vectors of M , and by IC+ the bundle of future-pointing non-space-like vectors. A

curve γ : I → M is said to be future-pointing if γ̇(t) ∈ IC+
γ(t) for all t ∈ I. We can now define the set of

null geodesics of M .

Definition 1.3.3. The set of unparametrised future-pointing null geodesics of a spacetime (M, g), or simply

of the set of null geodesics, is

N = {γ(I) | γ : I →M is a maximal future-pointing null geodesic in (M, g)}.

Our next goal is to show that N can be defined as a quotient of the bundle C+ and that it can be given

structure of a manifold under mild assumptions on M . Let us first define the geodesic spray Xg ∈ X(TM).

Definition 1.3.4. The geodesic spray Xg ∈ X(TM) is the vector field on the tangent bundle of M whose

integral lines are the curves γ̇(t) ∈ Tγ(t)M , where γ : I →M is a geodesic of M .

12



It can be seen that the geodesic spray is tangent to the bundle C. Indeed, let us define f : TM → R

given by f(u) = g(u, u). Now, for any geodesic γ : I → M , one has that γ̇ is an integral line of Xg and

f(γ̇) = g(γ̇, γ̇) is constant, by Equation (1.5). For any u ∈ TxM , the integral line of Xg going through u at

time zero is γ̇(s), where γ(s) is a geodesic in M such that γ(0) = x and γ̇(0) = u. Then,

Tuf(Xg(u)) =
d

ds

∣∣∣
s=0

f(γ̇(s)) = 0,

and Xg is tangent to any level set of f and, in particular, to C = f−1(0). Moreover, if γ̇(s) is the integral

line of Xg through u ∈ C+
x at time zero, then γ(0) = x and γ̇(0) = u. In addition, γ̇(s) ∈ C+ for all

s ∈ (−ε, ε) for some ε > 0. Hence, the geodesic spray Xg is tangent to C+.

Let us also define the Euler vector field ∆ ∈ X(TM) as

∆(u) = T0c(∂s),

where u ∈ TxM and c : R → TxM is given by c(s) = esu. Note that the Euler field simply dilates vectors

in TxM . Note that

ċ(s) = Tsc(∂s) = ∆(c(s)),

and hence c is an integral line of ∆. If u ∈ C+, then c entirely lies in C+, which shows that the Euler field

∆ is tangent to C+.

We have showed that both fields Xg,∆ ∈ X(TM) are vector fields on C+. Let us give some intuition on

why these vector fields are useful for our argument. Firstly, quotienting C+ by ∆ is going to projectivise

the cones, which is relevant because in N we only care of unparametrised geodesics. Also, intuitively,

quotienting by the geodesic spray Xg will identify those vectors that define the same geodesic, that is,

those vectors in different cones for which there exists a geodesic going through both of them. This intuitive

idea is formalised by the fact that the integral lines of the geodesic spray are precisely the geodesics in M

together with their tangent vectors. In fact, by quotienting C+ by ∆ and Xg one obtains the manifold of

future-pointing unparametrised null geodesics N . The only thing left to show is that the distribution

D = 〈〈〈∆, Xg〉〉〉

is integrable on C+. A straightforward computation in coordinates [2, p. 15] shows that

[Xg,∆] = Xg ∈ D,

and hence, by Frobenius’ Theorem 1.1.4, the distribution D is integrable and

N = C+/D.

The previous description of the space of null geodesics allows us to formulate the following result, whose

proof can be found in [2, Sec. 2.2].

Theorem 1.3.5. Let (M, g) be a spacetime such that

i) for all x ∈ M and every neighbourhood U ⊂ M of x, there exists a neighbourhood V ⊂ U of x such

that any segment of non-space-like curve with endpoints in V is wholly contained in U ,
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ii) for any compact K ⊂ M , there exists a compact K ′ ⊂ M such that any null geodesic segment with

endpoints in K is totally contained in K ′.

Then, N inherits the structure of a smooth manifold from that of C+. In addition, such structure is the

only one for which the canonical projection

πN : C+ → N = C+/D

is a submersion.

Example 1.3.6. Let us consider the three-dimensional Minkowski space M3 = (R3, g), where

g = dx2 + dy2 − dz2.

Let ∂z ∈ X(R3) be a choice of future. It is clear that M satisfies condition i) in Theorem 1.3.5. The

matrix representation of g in the global chart (R3, id) is

G = diag(1, 1,−1),

and, using Equation (1.1), it is easy to see that all the Christoffel symbols vanish. Hence, the geodesic

equation implies that γ : R→M3 is a geodesic if and only if

γ(t) =
Ä
vxt+ x0, vyt+ y0, vzt+ z0

ä
,

where x0, y0, z0, vx, vy, vz ∈ R.

Let now K ⊂M3 be any compact subset of M3, then K is bounded and thus there exists a closed ball B

that contains it. Since B is convex, any geodesic segment with endpoints in K ⊂ B is wholly contained in

B. Hence, all hypotheses of Theorem 1.3.5 are satisfied and N = C+/D is a smooth manifold.

It is clear that γ is a null geodesic if and only if

0 = g(γ̇, γ̇) = g
Ä
(vx, vy, vz), (vx, vy, vz)

ä
= v2

x + v2
y − v2

z .

Imposing that γ is future-pointing is equivalent to vz > 0, and hence we can write

vz =
»
v2
x + v2

y.

One can always reparametrise γ so that z0 = 0 and vz = 1 = v2
x + v2

y. Then,

γ(t) =
Ä
v2
xt+ x0, v

2
yt+ y0, t

ä
,

and the geodesic is completely determined by (x0, y0) ∈ {z = 0} ∼= R2 and (vx, vy) ∈ ST(x0,y0){z = 0} ∼=

ST(x0,y0)R2. It is also clear that any two such pairs will determine a unique unparametrised future pointing

null geodesic and, hence, N ∼= STR2.

We now present the canonical contact structure on the space of null geodesics N . Let us introduce the

concept of sky.
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Definition 1.3.7. Let x ∈M . The sky of x is

Sx = {γ ∈ N | x ∈ γ ⊂M} ⊂ N ,

the set of geodesics that contain x.

Note that, for any x ∈ M , the sky of x is in correspondence with the projectivisation of C+
x , since

any one of such projectivised vectors defines an unparametrised null geodesic that contains x, and any null

geodesic through x is tangent to a line in C+
x . Hence, Sx

∼= Sm−2, where m is the dimension of M .

The contact structure on N is defined in terms of the skies of the points of M .

Definition 1.3.8. The canonical contact structure of the space of null geodesics N is the field of

hyperplanes H on N defined pointwise as follows. Let γ ∈ N and let x, y ∈ γ ⊂ M be close enough such

that TγSx ∩ TγSy = {0}. Then,

Hγ = TγSx ⊕ TγSy.

For H to be well defined it is necessary to show that one can always find such two points x, y ∈ γ. In

addition, one must show that the direct sum TγSx ⊕ TγSy is independent of x and y and that it varies

smoothly with respect to γ. It is also necessary to show that H is indeed a contact structure on N . All of

these verifications are beyond the scope of this work, so we refer to [2, Sec 2.4]. However, it is worth noting

that for any x ∈ γ, the sky of x is tangent to the contact distribution at γ.

1.4 Engel Structures and Prolongations

We finally move on to Engel structures and their relation to contact manifolds and Lorentzian manifolds

via prolongation and deprolongation maps, which will be central in Chapter 3.

Definition 1.4.1. Let M be a manifold and ξ1, ξ2 ⊆ TM distributions on M . We define the distribution

[ξ1, ξ2] =
⊔
x∈M
{[X,Y ]x | X ∈ ξ1, Y ∈ ξ2}.

Definition 1.4.2. Let M be a four-manifold. A rank-three distribution E ⊂ TM on M is said to be an

even-contact structure if it is everywhere non-integrable, i.e. if [E , E ] = TM .

Definition 1.4.3. Let M be a four-manifold. A rank-two distribution D ⊂ TM on M is an Engel

structure (or simply Engel) if E = [D,D] is an even-contact structure on M . We will say that D is an

Engel structure (or simply Engel) at x ∈ M if there exists a neighbourhood U of x in M such that D|U is

an Engel structure on U .

Let us now present some well-known results on Engel structures.

Proposition 1.4.4. Let M be a four-manifold. Then,

i) if E is an even-contact structure on M , there exists a unique line field W ⊂ E defined by [W, E ] ⊆ E.

The line field W is called the kernel (or characteristic line field) of the even-contact distribution.
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ii) if D is an Engel structure on M and E = [D,D], it holds that W ⊂ D.

Proof. Let M be a four-manifold and E an even-contact structure on M . Since E is a field of hyperplanes

on M , the distribution E can be represented, at least locally, as the kernel of a one-form θ ∈ Ω1(U), for a

neighbourhood U ⊂M , as stated in Lemma 1.1.2. Then, the non-integrability condition of E is equivalent

to dθ|Ey being a two-form of maximal rank for any y ∈ U , see [17, p. 3]. Since Ey is of odd dimension, the

two-form dθ|Ey will have a non-zero kernel. Since the two-form is of maximal rank, the kernel will be of

minimal dimension, that is, dimension one. These kernels define the line field Wy ⊂ Ey.

It is clear that, if X ∈ W and Y ∈ E , one has

θ([X,Y ]) = X(θ(Y ))− Y (θ(X))− dθ(X,Y ) = 0,

which implies that [X,Y ] ∈ E , and [W, E ] ⊆ E . If W ′ is another line field in E satisfying [W ′, E ] ⊆ E , by

the above expression, any vector field in W ′ must lie in the kernel of dθ necessarily.

Now, let D be an Engel structure onM such that [D,D] = E . LetW be the kernel of E . AssumeW ⊂ D

does not hold. Then, there exists x ∈ M for which Wx * Dx. Then, necessarily, Wy ⊕ Dy = Ey for all y

in a neighbourhood of x and therefore [E , E ]x = [D,D]x = Ex, which is a contradiction. Hence, the kernel

does lie within D.

Let B3 = {p ∈ R3 | ||p|| < 1} be the three-dimensional ball and consider the four-manifold B3 × [0, 1]

with coordinates (x, y, z, t). Let X ∈ X(B3 × [0, 1]) be such that X(x, y, z, t) ∈ T(x,y,z,t)(B
3 × {t}) and

define D = 〈〈〈∂t, X〉〉〉. Let us define Ẋ = [∂t, X] and Ẍ = [∂t, Ẋ], which are also tangent to the level sets

B3 × {t} for all t ∈ [0, 1]. Hence, the three vector fields X, Ẋ, Ẍ can be regarded as uniparametric families

of vector fields on B3 with parameter t ∈ [0, 1]. Let us denote such families by Xt, Ẋt, Ẍt.

Since (∂x, ∂y, ∂z) gives a basis of TpB3 for all p ∈ B3, all tangent spaces of B3 can be identified, as well

as all the fibres of the unit tangent bundle STB3. Hence, for p ∈ B3, the map t 7→ Xt(p) describes a curve

in S2, which allows us to see the distribution D as a B3-family of curves on S2. See [10, 39, 41] for more

details.

Definition 1.4.5. Let γ : [0, 1] → S2 be a smooth curve such that γ′(t) 6= 0 for all t ∈ [0, 1]. Let

t(t) = γ′(t)
||γ′(t)|| and n(t) be the unique vector field such that (t(t), n(t)) is an orthonormal oriented basis of

Tγ(t)S2.

We say a point γ(t) is an inflection point of γ if 〈t′(t), n(t)〉 = 0. We say that γ is convex if it has

no inflection points.

Theorem 1.4.6. [10, Prop. 8]. Following with the previous notation, a rank-two distribution D = 〈〈〈∂t, X〉〉〉

on B3 × [0, 1] is an Engel structure at (p, t) ∈ B3 × [0, 1] if both Ẋ(p, t) 6= 0 and one of the following two

conditions hold:

i) the curve Xp : [0, 1]→ S2 has no inflection point at t,

ii) the rank-two distribution 〈〈〈Ẋt, Ẍt〉〉〉 is a contact structure on N × {t} for some neighbourhood N ⊆ B3

of p.
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Theorem 1.4.6 allows us to define two types of Engel manifolds. We first present the Cartan prolongation

of a contact three-dimensional manifold.

Example 1.4.7 (The Cartan prolongation). Let (M, ξ) be a contact three-manifold and consider the bundle

S1 S(ξ)

M

πC

where we define S(ξ)x as the quotient of ξx − {0} by the equivalence relation v ∼ λv for all λ ∈ R+. Then,

S(ξ) carries a canonical Engel structure which is defined as follows. A point in S(ξ) is a pair (x, L) with

x ∈M and L ∈ S(ξ)x. Hence, L can be identified with an oriented line in ξx. The Engel structure is given

by

D(x,L) = (T(x,L)πC)−1(L).

Indeed, let x ∈M and N ⊆M be a chart of M centred at x and diffeomorphic to B3. Let Y, Z ∈ X(N)

such that 〈〈〈Y (y), Z(y)〉〉〉 = ξy for all y ∈ N . Since N is contractible, S(ξ)|N = N×S1, and we can parametriseÄ
x, L = 〈〈〈Y (x) cos t+ Z(x) sin t〉〉〉

ä
with t ∈ S1 on S(ξ)|N . Then, the described rank-two distribution reads

D(x,L(t)) = 〈〈〈∂t, X(t) = Y cos t+ Z sin t〉〉〉.

Let t ∈ S1. Since Ẋ(x, t) 6= 0 and condition ii) of Theorem 1.4.6 are satisfied, D is Engel at (x, t). Since

(x, t) is arbitrary, D is Engel on S(ξ).

Note that E = 〈〈〈∂t, X, Ẋ〉〉〉 = 〈〈〈∂t〉〉〉 ⊕ ξ, and, since [∂t, Ẍ] = −Ẋ ∈ E, we have W = 〈〈〈∂t〉〉〉.

The line field W is said to be nice if the topological space M/W formed by the integral lines of W is

a manifold and the canonical projection is a submersion. If we assume W is nice, then M ∼= S(ξ)/〈〈〈∂t〉〉〉 =

S(ξ)/W. Also, if we denote by p : S(ξ) → S(ξ)/W the canonical projection, the contact structure ξ on M

is identified with

ξ = p∗E .

A similar construction allows us to define an Engel manifold coming from a three-dimensional Lorentzian

manifold.

Example 1.4.8 (The Lorentz prolongation). Let L be a Lorentzian three-manifold. The set of null vectors

on L defines the subbundle of cones of TL, π|C : C → L, which induces a bundle

S1 PC

L

πL

where PC is fibrewise the projectivisation of the cone C. Then, PC carries an Engel structure defined as

follows. A point (x, s) ∈ PC consists of a point x ∈ L and a line s in Cx. Then, let us define

D(x,s) = (T(x,s)πL)−1(s).
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We will now show this distribution is indeed Engel. Let x ∈ L and N ⊆ L a chart centred at x

and diffeomorphic to B3 and take (V, Y, Z) an orthonormal framing of TM |N . Since N is contractible,

PC|N = N × S1. Let θ be the coordinate on the fibre S1. Then, the above defined distribution reads

D(x,s(θ)) = 〈〈〈∂θ, X(θ) = cos θV + sin θY + Z〉〉〉.

If we let the dot denote derivation by θ, it is clear that Ẋx(θ) = − sin θV + cos θY is non-zero. Also, the

curve Xx is the intersection between the cone of future null vectors at x and the unit sphere of TxL defined

as {aV + bY + cZ ∈ TxL | a2 + b2 + c2 = 1}. Hence, it is convex. Thus, since condition i) of Theorem 1.4.6

is satisfied, D is Engel. Note that the line field ∂θ is always transverse to W, since [∂θ, Ẋ] /∈ E = 〈〈〈∂θ, X, Ẋ〉〉〉.
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Chapter 2

The model S2 × S1

2.1 The Unit Tangent Bundle of S2

Consider the unit sphere S2 ⊂ R3 given by

S2 = {x ∈ R3 | 〈x, x〉 = 1},

where 〈−,−〉 denotes the Euclidean metric in R3. Let ι : S2 → R3 be the canonical inclusion and define the

standard metric on S2 by g◦ = ι∗〈−,−〉.

Let
F : R3 → R

x 7→ 〈x, x〉,

which can be shown to be a submersion. Then, S2 = F−1(1) and hence

TxS2 = ker(TxF ) = {u ∈ TxR3 | 〈x, u〉 = 0}

for all x ∈ S2. We define the unit tangent bundle of S2 at x ∈ S2 as

STxS2 = {u ∈ TxS2 | 〈u, u〉 = 1} ∼= {u ∈ S2 | 〈x, u〉 = 0},

and the unit tangent bundle of S2 as STS2 =
⊔
x∈S2

STxS2. Note that we can identify

STS2 ∼= {(x, u) ∈ S2 × S2 | 〈x, u〉 = 0}.

From Example 1.1.7, the unit tangent bundle STS2 inherits the structure of S1-bundle from TS2,

S1 STS2

S2

π

and carries a canonical contact structure χ given, for u ∈ STS2, by

χu = (Tuπ)−1(〈〈〈u〉〉〉⊥).

It can be shown that the geodesics of (S2, g◦) are curves of constant speed whose image is a great circle

in S2 [22, Prop. 5.27]. Hence, the unique, modulus reparametrisation, geodesic on (S2, gc) going through

x ∈ S2 with tangent vector u ∈ STxS2 is

γ(t) = x cos t+ u sin t,

where we make use of the identification STS2 ⊂ S2 × S2. This description of the geodesics of (S2, g◦) will

be repeatedly used in the following sections.
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2.2 The Lorentzian Manifold S2 × S1

Let (S2, g◦) be the unit sphere in R3 equipped with its standard Riemannian metric. Consider the manifold

M = S2 × S1 and let πS1 : M → S1 be the projection onto the second factor. Let ι′ : S1 → R2 be the

inclusion and 〈−,−〉2 be the Euclidean metric on R2. Define the pseudo-Riemannian metric

gc = g◦ −
1

c2
(ι′ ◦ πS1)∗〈−,−〉2

on M , for c ∈ N+. Note that if we let t be the angle coordinate on S1, the metric gc reads gc = g◦ − 1
c2 dt

2.

The pair (M, g) is a Lorentzian manifold in which S2 × {t} is a space-like surface for all t ∈ S1, that is,

the metric g restricted to the tangent space of S2 × {t} is positive-definite. In addition, for all (x, t) ∈ S2,

the eigenspace of g(x,t) associated with the unique negative eigenvalue of the metric is T(x,t)({x}×S1). One

can take the vector field (0, ∂t) ∈ T (S2×S1) ∼= TS2×TS1 as a choice of future, and henceM is a spacetime.

Similarly to Example 1.3.6, it is clear that M satisfies condition i) of Theorem 1.3.5. In addition, since M

is the cartesian product of two compact manifolds, it follows that M is compact and hence condition ii) of

Theorem 1.3.5 is satisfied. Hence, the space of null geodesics of (M, gc) is a differentiable manifold.

Consider (x, t) ∈M and (U,ϕ) a local chart of S2 centred at x. Let us also parametrise S1 around t by

the angle coordinate. The cartesian product of both charts provides a chart for M over an open subset V

of M around (x, t), for which the metric g has the following matrix representation,

(gc)ij =

á
0

(g◦)ij
0

0 0 − 1
c2

ë
,

where (g◦)ij is the matrix representation of g◦ in the local chart (U,ϕ). The inverse matrix of (gc)ij is

clearly

(gc)
ij =

á
0

(g◦)
ij

0

0 0 −c2

ë
.

It follows from Equation (1.1) that the Christoffel symbol Γkij vanishes whenever i, j or k equals 3,

and that all the others are exactly the Christoffel symbols of g◦ in the local chart (U,ϕ). Hence, a curve

γ : I → V given by γ(s) =
Ä
ϕ(y1(s), y2(s)), t(s)

ä
is a geodesic if and only if

ÿ1 + Γ1
11ẏ

2
1 + Γ1

12ẏ1ẏ2 + Γ1
22ẏ

2
2 = 0

ÿ2 + Γ2
11ẏ

2
1 + Γ2

12ẏ1ẏ2 + Γ2
22ẏ

2
2 = 0

ẗ = 0,

that is, if and only if t(s) = a+ bs for some a, b ∈ R and ϕ(y1(s), y2(s)) is a geodesic in S2. Let u(s) ∈ TS2

be the vector tangent to the curve ϕ(y1(s), y2(s)). Since S2 × {t} is a space-like surface for all t ∈ S1, we

can suppose, by reparametrising γ, that

gc
Ä
(u, 0), (u, 0)

ä
= g◦(u, u) = 1.
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Then, we find

gc(γ̇, γ̇) = g◦(u, u)− b2

c2
〈∂t, ∂t〉2 = 1− b2

c2
,

and it follows that γ is a future-pointing null geodesic if and only if b = c. By uniqueness in Theorem 1.2.9,

we can state that globally, all the null geodesics of (M, gc) modulus reparametrisation are of the form

γ(s) =
Ä
µ(s), a+ cs

ä
,

where µ is a unit-speed great circle in S2. Note that γ intersects S2 × {0} at least at one point, which

implies that, by reparametrising, we can suppose a = 0.

Thus, the space of null geodesics Nc of (M, gc) defined in Section 1.3 is

Nc = {(µ(s), cs) | µ is a unit-speed great circle in S2}.

We look first at the case c = 1. The speeds at which the time direction S1 and the great circle in

S2 are travelled are the same. Hence, the ratio at which the geodesic travels each of them is one to one.

This implies that there is a unique x ∈ S2 such that (x, 0) ∈ γ, for a geodesic γ ∈ N1. Thus, for a null

geodesic γ ∈ N1, let s0 ∈ R be such that γ(s0) = (x, 0) ∈ S2 × {0}. Then, γ is completely determined by

x ∈ S2 and by T(x,0)πS2
Ä
γ̇(s0)

ä
∈ TxS2, where πS2 : M → S2 is the projection onto the first factor. Note

that T(x,0)πS2
Ä
γ̇(s0)

ä
∈ TxS2 is simply the orthogonal projection of γ̇(s0) ∈ T(x,0)M onto the tangent space

T(x,0)(S2 × {0}), that is,

T(x,0)πS2
Ä
γ̇(s0)

ä
= µ̇(s0),

which is a unit length vector by definition. We have just showed that

N1
∼= STS2.

Let us now consider Nc with c > 1. It is clear that the number of turns the geodesic winds around

the time direction S1 versus the number of times it winds around a great circle becomes c to 1. Since all

geodesics are travelled at constant speed, every γ ∈ Nc intersects the submanifold S2 × {0} exactly at c

points, equidistantly spread over the great circle µ = πS2(γ).

Let x ∈ S2 and u ∈ STxS2. Then, u defines a unique great circle µ in S2 such that µ(0) = x and µ̇(0) = u,

which is parametrised by the arc. There is also a unique null geodesic γ in M such that πS2(γ(s)) = µ(s)

with γ(0) = (x, 0). It is clear that γ̇(0) ∈ T(x,0)M is the unique vector on the cone C(x,0) that orthogonally

projects onto (u, 0) ∈ T(x,0)M ∼= TxS2×T0S1 with respect to T(x,0)(S2×{0}). Now, the geodesic γ intersects

S2 × {0} exactly at
Ä
µ( 2πj

c ), 0
ä

=: (xj , 0) ∈ M for j = 0, . . . , c − 1. The vector γ̇( 2πj
c ) ∈ Tγ( 2πj

c )M is the

unique vector on Cγ( 2πj
c ) with the property that Tγ( 2πj

c )πS2(γ̇( 2πj
c )) = µ̇( 2πj

c ) := uj . That is, γ̇( 2πj
c ) is the

only vector on the light cone of γ( 2πj
c ) whose orthogonal projection onto Tγ( 2πj

c )(S
2 × {0}) is (uj , 0).

Hence, we have just showed that any pair (x, u) ∈ STS2 defines a geodesic in Nc. Conversely, any null

geodesic can be described by picking one such pair, but the choice is not unique. Indeed, any pair of the

form (xj , uj) as defined above describes the same null geodesic as (x, u). Hence, we need to identify all such

points in STS2 in order to get a proper description of Nc. This can be done as follows.
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Note that xj is obtained by a 2πj
c radians rotation of xj on µ, which is exactly the same as a rotation

of 2πj
c radians about the axis x× u ∈ S2, regarding (x, u) ∈ STS2 ⊂ S2 × S2. It is clear that

(xj , uj) =

Ñ
cos 2πj

c sin 2πj
c

− sin 2πj
c cos 2πj

c

éÑ
x

u

é
. (2.1)

Hence, if we define the Zc action on STS2 generated by

(y, v) 7→

Ñ
cos 2π

c sin 2π
c

− sin 2π
c cos 2π

c

éÑ
y

v

é
, (2.2)

we have showed that

Nc ∼= STS2/Zc,

where STS2/Zc denotes the orbit space of STS2 under the action of Zc. We shall now see that this space

is indeed a differentiable manifold. We will make use of the following well-known result.

Definition 2.2.1. Let N be a connected manifold. We say that a discrete Lie group Γ acts on N

i) smoothly if σ : N 7→ N is smooth for all σ ∈ Γ,

ii) properly if, for any compact subset K ⊂ N , the set {σ ∈ Γ | (σK) ∩K 6= ∅} is compact,

iii) freely if the only element in Γ that fixes all N is the identity.

Proposition 2.2.2. [23, Thm. 21.13] Let N be a connected manifold. Let Γ be a discrete Lie group acting

on N smoothly, properly and freely. Then, the orbit space N/Γ is a topological manifold and has a unique

smooth structure such that the projection p : N → N/Γ is a submersion.

It is known that Zc is a discrete Lie group, see [23, Ex. 7.3 m)], and it is clear from Equation (2.2) that

the defined action is smooth. Also, since Zc is finite, its action on STS2 is proper. Finally, it also follows

from Equation (2.2) that the action is free. Thus, the quotient space STS2/Zc is a smooth manifold.

2.3 A Quaternionic Approach to the Hopf Fibration and STS2

We present now some results on the relation between the three-sphere S3 and STS2 that will be useful for

the rest of our discussion. It is well known that S2 is a double cover of STS2. Here, we show how this

covering relates to the Hopf fibration. We believe the clearest way to get to the needed results is via the

use of the real division algebra of quaternions, which we denote by H. In particular, we show that there

exists a Hopf fibration for every unit-length pure imaginary quaternion.

Let V be the vector space of pure imaginary quaternions. Note that V can be canonically identified with

R3 via the isomorphism

ai+ bj + ck 7→ (a, b, c).

This identification provides V with a cross product induced by the cross product on R3, given by

u× v =
uv − vu

2
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for all u, v ∈ V.

Let ∗ : H → H be the conjugation on H. This operation allows us to define a norm on H given by

|q|2 = qq∗. The restriction of such norm on V induces, via the polarisation identity, an inner product on V

given by

〈u, v〉 = −uv + vu

2
.

Note that this is precisely the inner product induced by the Euclidean product in R3.

One can also identify S3 ∼= SH := {q ∈ H | |q| = 1} and S2 ∼= SV := {u ∈ V | 〈u, u〉 = −u2 = 1}.

Finally, one has STS2 ∼= ST (SV) := {(u, v) ∈ SV× SV | 〈u, v〉 = 0}.

Proposition 2.3.1. Let u, v ∈ SV be such that 〈u, v〉 = 0. Then, there exists a surjective local diffeomor-

phism

Φ(u,v) : SH → ST (SV)

q 7→ (quq−1, qvq−1)

such that the preimage of a point in ST (SV) consists of exactly two antipodal points of SH.

Proof. Let us first show that Φ(u,v) is well defined. We can compute

〈quq−1, quq−1〉 = −(quq−1)(quq−1) = −qu2q−1 = qq−1 = 1,

and similarly for 〈qvq−1, qvq−1〉 = 1. In addition, twice the real part of quq−1 is

quq−1 + (quq−1)∗ = quq−1 − (q−1)∗uq∗ = quq−1 − quq−1 = 0,

and similarly for qvq−1.

Also,

〈quq−1, qvq−1〉 = −quq
−1qvq−1 + qvq−1quq−1

2
= −q uv − vu

2
q−1 = 0,

and thus the map is well defined.

Let us now show surjectivity. Let (w, z) ∈ ST (SV). Assume that u and w are not colinear and let

θ = arccos〈u,w〉 ∈ (0, π). Let q1 = e
θ
2
u×w
|u×w| = cos θ2 + u×w

| sin θ| sin
θ
2 . Assume now that q1vq

−1
1 and z are

not colinear and let τ = arccos〈q1vq
−1
1 , z〉 ∈ (0, π). Let q2 = e

τ
2

q1vq
−1
1 ×z

|q1vq
−1
1 ×z| = cos τ2 +

q1vq
−1
1 ×z

| sin τ | sin τ
2 . Let

q = q2q1 ∈ SH. We will now make use of the following technical claim. Let z ∈ SV and s = cos α2 + sin α
2 z.

Then, for all r ∈ SV,

srs−1 = r cosα+ (z × r) sinα+ z〈z, r〉(1− cosα).

Hence, we can now compute

quq−1 = q2(q1uq
−1
1 )q−1

2 = q2

(
u cos θ +

(
(u× w)× u

) sin θ

| sin θ|
+ (u× w)〈u× w, u〉1− cos θ

sin2 θ

)
q−1
2

= q2

(
u〈u,w〉+ w − u〈u,w〉

)
q−1
2 = q2wq

−1
2

= w cos τ +
(

(q1vq
−1
1 )× z

)
× w + (q1vq

−1
1 × z)〈q1vq

−1
1 × z, w〉1− cos τ

sin2 τ

= w cos τ + (q1vq
−1
1 × z)〈q1vq

−1
1 × z, w〉1− cos τ

sin2 τ
= w cos τ + w(1− cos τ) = w,
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and

qvq−1 = q2(q1vq
−1
1 )q−1

2 = q1vq
−1
1 cos τ + (q1vq

−1
1 × z)× q1vq

−1
1 +

q1vq
−1
1 × z

sin τ2
〈q1vq

−1
1 × z, q1vq

−1
1 〉(1− cos τ)

= q1vq
−1
1 cos τ + (q1vq

−1
1 × z)× q1vq

−1
1 = q1vq

−1
1 cos τ + z − q1vq

−1
1 cos τ = z.

If, after conjugating by q1, one finds that q1vq
−1
1 and z are colinear, then q1vq

−1
1 = z or q1vq

−1
1 = −z.

For the first case, take q2 = 1. For the second case, take q2 = e
π
2w. If, from the beginning, w and u are

colinear, take q1 = 1 if w = u and q1 = e
π
2 z if w = −u. Then, find q2 as showed. Thus, the mapping is

onto.

Let us now compute Φ(u,v)(−q) =
(

(−q)u(−q)−1, (−q)v(−q)−1
)

= (quq−1, qvq−1) = Φ(q).

Let now q, p ∈ SH. Let then q = eθw and p = eτz, with θ, τ ∈ [0, 2π) and w, z ∈ V. Then, using the

previous technical claim, it is not hard to see that Φ(u,v)(q) = Φ(u,v)(p) implies that either θw = τz or

θw = (π + τ)z, which concludes the proof.

Differentiability of the mapping and its local inverse (constructed as showed in this proof) follow from

taking charts in SH ⊆ H ∼= R4 and ST (SV) ⊆ SV× SV ⊆ V× V ∼= R3 × R3.

It is clear now how any pair (u, v) ∈ ST (SV) provides a diffeomorphism from SH/Z2 onto ST (SV).

Corollary 2.3.2. Let Z2 act on SH via the antipodal map. Then, for all u, v ∈ SV such that 〈u, v〉 = 0,

there exists a diffeomorphism SH/Z2
∼= ST (SV). Hence, for all u, v ∈ S3 such that 〈u, v〉 = 0. there exists

a diffeomorphism S3/Z2
∼= STS2. We will denote both of these maps by Φ(u,v) when the context makes clear

which of them is being used.

Proof. The result follows from the fact that Φ(u,v) is a local diffeomorphism and that the preimage of a

point in SV is precisely a pair of antipodal points. The differentiability of such map and its inverse follows

from the differentiability of Φ(u,v) and its local inverse.

Note that choosing orthogonal vectors u, v ∈ ST (SV) is simply choosing the image of 1 ∈ SH. Once

this image is fixed, the diffeomorphism is completely determined. Equivalently, in terms of SH ∼= S3 and

ST (SV) ∼= STS2, it is enough to pick v ∈ TuS2 ⊂ TS2 as the image of the north pole of S3 (or any

other point of the three-sphere as a matter of fact) to completely determine the diffeomorphism between

S3/Z2
∼= RP 3 and STS2.

As seen at the end of Section 2.1, STS2 is an S1-bundle over S2 via the obvious projection

π : STS2 → S2

(x, u) 7→ x.

However, there is a more interesting projection

f : STS2 → S2

(x, u) 7→ x× u.

Hence, ST (SV) can be given a structure of S1-bundle over SV via

f : ST (SV) → SV

(u, v) 7→ u× v.
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Let us now show how these fibres look like.

Lemma 2.3.3. Let q ∈ SV. Then, the fibre of q under f : ST (SV)→ SV is

{(e−qθueqθ, e−qθveqθ) ∈ ST (SV) | θ ∈ R}

for any (u, v) ∈ f−1(q).

Proof. Let us compute
f(e−qθueqθ, e−qθveqθ) = (e−qθueqθ)× (e−qθveqθ)

=
1

2

[
e−qθuveqθ − e−qθvueqθ

]
= e−qθ

uv − vu
2

eqθ

= e−qθ(u× v)eqθ

= e−qθqeqθ = q = u× v.

This lemma provides any fibre of f : ST (SV)→ SV with a closed operation π−1(p)× π−1(p)→ π−1(p)

for all p ∈ SV via the identification π−1(p) ∼= S1.

The next result shows that, for all w ∈ SV, we can obtain a Hopf fibration of SH ∼= S3 over SV ∼= S2.

Proposition 2.3.4. Let w ∈ SV. Then, the projection

τw : SH → SV

q 7→ qwq−1

provides SH with a structure of S1-bundle over SV. The fibre of p ∈ SV is {qewθ | θ ∈ R}, for q ∈ τ−1
w (p).

Proof. The proof of Proposition 2.3.1 shows that τw is well defined and surjective.

Let q ∈ SH and θ ∈ R. Then,

τw(qewθ) = qewθw(qewθ)−1 = qewθw(ewθ)−1q−1 = qwewθ(ewθ)−1q−1 = qwq−1 = τw(q)

Similarly to the fibres of π : ST (SV) → SV, this last result provides any fibre τ−1
w (p) with a closed

operation τ−1
w (p)× τ−1

w (p)→ τ−1
w (p) via the identification τ−1

w (p) ∼= S1 for all p ∈ SV.

Lemma 2.3.5. The Z2-action on SH given by the antipodal map preserves the fibres of τw : SH → SV.

Hence, for all w ∈ SV, the map

τ̃w : SH/Z2 → SV

[q] 7→ τw(q)

provides SH/Z2 with a structure of S1/Z2
∼= S1-bundle over SV. Making an abuse of notation, we will

continue denoting τ̃w = τw when there is no possible confusion.

Proof. Trivially, if q ∈ SH, one has τ(−q) = (−q)w(−q)−1 = qwq−1 = τ(q).
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We conclude this section with the following result,

Proposition 2.3.6. Let u, v ∈ SV such that 〈u, v〉 = 0 and let Φ(u,v) : SH/Z2 → ST (SV) be their induced

diffeomorphism. Let τw : SH/Z2 → SV be the projection induced by w = u× v ∈ SV. Then, the following

diagram commutes.

SH/Z2 ST (SV)

SV

Φ(u,v)

τw f

In addition, for all p ∈ SV, Φ(u,v) induces a diffeomorphism between τ−1
w (p) and f−1(p).

Proof. Let q ∈ SH. Then,

f(Φ(u,v)(q)) =f(quq−1, qvq−1) = (quq−1)× (qvq−1) =
quq−1qvq−1 − qvq−1quq−1

2

=
quvq−1 − qvuq−1

2
= q

uv − vu
2

q−1 = q(u× v)q−1 = τw(q).

Since Φ(u,v) is bijective, for all p ∈ SV, it induces a bijection Φ(u,v)|τ−1
w (p) : τ−1(p)→ f−1(p). Differen-

tiability of this map and its inverse follow from the differentiability of Φ(u,v) and Φ−1
(u,v).

2.4 The Spaces of Null Geodesics as Lens Spaces

We will now make use of the results discussed in Section 2.3 to show that the spaces of null geodesics of

the spacetimes (S2 × S1, gc) are lens spaces.

Definition 2.4.1. Consider S3 ⊆ C×C. Let p, q ∈ Z+ be coprime integers. Consider the Zp action on S3

generated by

(z0, z1) 7→ (e
2πi
p z0, e

2πiq
p z1).

The lens space (p, q) is L(p, q) = S3/Zp, with the induced differentiable and topological structures.

Consider the lens space L(p, p− 1). The Zp action that generates it is

(z0, z1) 7→ (e
2πi
p z0, e

− 2πi
p z1).

One can also construct this space as a quotients of SH ∼= S3. Indeed, using the canonical isomorphism

(µ+ ai, b+ ci) 7→ µ+ ai+ bj + ck

between R4 ∼= C × C and H, the three-sphere S3 gets canonically identified with SH, as stated at the

beginning of Section 2.3. Note that by letting z0 = µ + ai, z1 = b + ci ∈ C, this isomorphism can be

rewritten as

(z0, z1) 7→ z0 + z1j.

Hence, one can translate the Zp action on S3 that defines the lens space L(p, p − 1) onto the unit

quaternions SH as

z0 + z1j 7→ e
2πi
p z0 + e−

2πi
p z1j = z0e

2πi
p + z1je

2πi
p = (z0 + z1j)e

2πi
p ,
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for z0, z1 ∈ C, that is,

q 7→ qe
2πi
p .

Then, trivially, L(p, p− 1) ∼= SH/Zp.

Note that the Z2-action on SH that defines the lens space L(2, 1) is precisely the given by the antipodal

map. Hence, we have showed

Proposition 2.4.2. We have ST (SV) ∼= SH/Z2
∼= L(2, 1). Also, STS2 ∼= L(2, 1) = RP 3.

The theory developed in Section 2.3 allows us to formalise and prove the following key result in our

discussion.

Proposition 2.4.3. Let Φ(j,k) be the diffeomorphism between SH/Z2 and ST (SV) induced by the pair

(j, k) ∈ SV × SV. Then, the Z2c-action on SH that generates the lens space L(2c, 2c − 1) descends to a

Zc-action on SH/Z2 that, via Φ(j,k), induces the Zc-action on ST (SV) generated by

(u, v) 7→

Ö
cos 2π

c sin 2π
c

− sin 2π
c cos 2π

c

èÑ
u

v

é
.

Hence, Φ(j,k) induces a diffeomorphism between ST (SV)/Zc and L(2c, 2c− 1).

Proof. Note first that, since the action that defines the lens space preserves the fibres of the map τi : SH→

SV induced by i = j × k, Proposition 2.3.6 assures that the induced action on ST (SV) will preserve the

fibres of f , just like the action defined on ST (SV) in the statement of the corollary.

Let q ∈ SH. The Z2c-action on SH that defines the lens space is generated by q 7→ qe
πi
c . Then,

Φ(j,k)(qe
πi
c ) =

(
qe

πi
c je−

πi
c q−1, qe

πi
c ke−

πi
c q−1

)
=
(
qje

−2πi
c q−1, qke

−2πi
c q−1

)
.

Now, consider Φ(j,k)(q) = (qjq−1, qkq−1). Then,

cos
2π

c
qjq−1 + sin

2π

c
qkq−1 = qj

(
cos

2π

c
− i sin

2π

c

)
q−1 = qje−

2πi
c q−1,

and

− sin
2π

c
qjq−1 + cos

2π

c
qkq−1 = qk

(
cos

2π

c
− i sin

2π

c

)
q−1 = qke−

2πi
c q−1,

as needed.

Let us present the following result on lens spaces.

Proposition 2.4.4. [6] Let p ∈ Z+ and q, q′ ∈ Z+ coprime with p. Suppose that q = ±q′ mod p. Then,

L(p, q) ∼= L(p, q′).

Thus, since −(2c− 1) = −2c+ 1 = 1 mod 2c, we find

L(2c, 2c− 1) ∼= L(2c, 1).

Hence, we have showed the most important result of this section,
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Theorem 2.4.5. Let (S2, g◦) be the unit sphere in R3 with its induced metric. Consider the manifold

M = S2×S1 and, being t the coordinate on S1, define the Lorentzian metric on M given by gc = g◦− 1
c2 dt

2.

Let Nc be the space of null geodesics on M under the metric gc. Then,

Nc ∼= L(2c, 1).

We conclude this section with the following remark. Note that we have showed that L(4, 1) ∼= STS2/Z2,

where the action of Z2 on STS2 is the one generated by (σ, dσ), where σ : S2 → S2 is the antipodal map.

If we denote by r : STS2 → STS2/Zc the projection, such an action induces a Z2 action on S2 given by

x 7→ r
Ä
(σ, dσ)(x, v)

ä
= σ(x) = −x,

for any v ∈ STxS2, i.e. the antipodal map. Thus, L(4, 1) is also an S1/Z2 ∼= S1 fibration over S2/Z2 = RP 2.

Since the fibration is induced by the canonical fibration of STS2 on S2, we have showed that L(4, 1) ∼=

STRP 2, the unit tangent bundle of the projective plane (for more details, see [21]).

2.5 The Contact Structure on Nc

In this section we explicitly compute the contact structure on the spaces Nc. We will show how the

contact structure on N1
∼= STS2 is precisely the canonical contact structure of STS2 defined in Section 2.1,

and that the contact structure on Nc for c > 1 is the pushforward of this under the projection mapping

r : STS2 → L(2c, 1).

Let us first consider the case c = 1. Let γ ∈ N1
∼= STS2. Recall that γ is given by the lift-up of the

great circle µ : R → S2 defined by the pair (x, u) ∈ STS2 representing γ, that is, such that µ(0) = x and

µ̇(0) = u. We will show that

Hγ = χ(x,u),

where χ is the canonical contact structure of STS2. Take (x, 0) ∈ γ and γ(τ) 6= (x, 0), with 0 < τ < π.

Note that all geodesics in the sky S(x,0) intersect S2 × {0} at (x, 0), so π(S(x,0)) = {x}. Hence,

Txπ(TγS(x,0)) = 〈〈〈0〉〉〉 ⊆ 〈〈〈u〉〉〉⊥. Thus, TγS(x,0) ⊂ χ(x,u).

Consider now γ(τ) 6= (x, 0). Since c = 1, we know that γ(s) =
Ä
µ(s), s

ä
and hence y := πS2

Ä
γ(τ)
ä

=

µ(τ). Let v ∈ STyS2 such that 〈µ̇(τ), v〉 = 0. Since all geodesics in S2 × S1 are travelled at the same speed,

it is clear that the projection of the sky of γ(τ) is parametrised by

π(Sγ(τ))(s) = y cos τ + (µ̇(τ) cos s+ v sin s) sin τ,

which is the set of points in S2 at distance τ of y, and π(γ) = π(Sγ(τ))(0). Hence,

Txπ(TγSγ(τ)) = 〈〈〈 d
ds

∣∣∣
s=0

Ä
y cos τ + (µ̇(τ) cos s+ v sin s) sin τ

ä
〉〉〉 = 〈〈〈v sin τ〉〉〉.

Since µ is the great circle defined by x and u, we have µ(R) = 〈〈〈x, u〉〉〉 ∩ S2. Since v is orthogonal to µ̇(τ),

it is orthogonal to 〈〈〈x, u〉〉〉, and hence Txπ(TγSγ(τ)) = 〈〈〈v sin τ〉〉〉 ⊂ 〈〈〈u〉〉〉⊥. This implies that TγSγ(τ) ⊂ χ(x,u).

28



Since the canonical contact structure of STS2 and the contact structure on STS2 coming from it being

a space of null geodesics both have rank 2, we have showed the following.

Theorem 2.5.1. The contact structure on N1 = STS2 is the canonical contact structure on STS2 defined

in Section 2.1.

Consider now the case c > 1. Then, Nc ∼= L(2c, 1). As discussed in Section 2.4, the lens spaces

L(2c, 1) ∼= Nc can be obtained as a quotient of STS2 by the action of Zc. Let

r : STS2 → L(2c, 1) ∼= Nc

be the projection map, which provides a surjective local diffeomorphism. In order to simplify the notation,

we will denote an element of STS2 by u ∈ STS2, understanding that u ∈ STπ(u)S2. Let us also denote by

[u] ∈ L(2c, 1) the class of u under the action of Zc.

Let [u] ∈ L(2c, 1) and let U ′ be an open subset of S2 such that u is the only preimage of [u] in

U := π−1(U ′). Then, U can be taken to be small enough so that

r|U : U → r(U),

is a diffeomorphism. We will show that

H[u] = (r|U )∗χu,

where r∗ is the pushforward of r.

It is necessary to show first that the pushforward of χ is well defined, that is,

(r|U )∗χu = (r|V )∗χv

for u, v ∈ r−1([u]), and taking open subsets U ′, V ′ ⊂ S2 as described above in order to restrict r to a

diffeomorphism on U = π−1(U ′) and V = π−1(V ′).

29



Consider χu. It is enough to show that two linearly independent vectors in χu map to linearly indepen-

dent vectors in χv via

(r|−1
V )∗ ◦ (r|U )∗.

Note that the mapping r|−1
V ◦ r|U need not be defined for all points in U , as there might be points in

r(U) not in r(V ). However, it is well defined for a neighbourhood W ⊂ STS2 of u, which is all that is

needed.

Assume x = π(u) and y = π(v) are not antipodal points, and take a curve

α : (−ε, ε)→W ⊆ STS2

such that α(0) = (x, u) and the image of α lies entirely in the fibre of x ∈ S2. Then, α̇(0) ∈ χu. Let

β = r|−1
V ◦ r|U ◦α. It is clear that β(0) = v. We will now show that β̇(0) ∈ χv. Consider the curve π ◦ β on

S2. Let u′ ∈ STxS2 such that 〈u, u′〉 = 0. Then, π ◦ β is an arc of the circle parametrised by

φ(s) = x cos τ + sin τ(u cos s+ u′ sin s),

where τ ∈ (0, π) is such that φ(0) = x cos τ + sin τu = y. We can compute

Tvπ
Ä
β̇(0)
ä

=
d

ds

∣∣∣
s=0

φ(s) = u′ sin τ ∈ 〈〈〈v〉〉〉⊥,

where the fact that u′ sin τ ∈ 〈〈〈v〉〉〉⊥ follows from the same argument as above. Thus, β̇(0) ∈ χv. It is also

clear that β̇(0) is nonzero.

Let us now consider the following curve in W . Let µ⊥ be the great circle in S2 defined by (x, u⊥), where

u⊥ in any vector in STxS2 orthogonal to u, and with µ⊥(0) = x. Let c : (−ε, ε) → W be the curve in

W defined by c(0) = (x, u) and c(s) = (µ⊥(s), z(s)), where z(s) ∈ STµ⊥(s)S2 is the vector tangent to the
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geodesic great circle that goes through the points µ⊥(s) and y, pointing to the same hemisphere as u. It is

clear that Tuπ
Ä
ċ(0)
ä

= u⊥ ∈ χu and that it is linearly independent to the previously defined α̇(0).

Let now θ(s) = r|−1
V ◦ r|U ◦ c(s). Clearly, θ(0) = (y, v). We will show that θ̇(0) ∈ χv. By construction,

we have π ◦ θ(s) = y, which implies that

Tvπ(θ̇(0)) = 0 ∈ 〈〈〈v〉〉〉⊥.

Hence, θ̇(0) ∈ χv. Also, θ̇(0) is clearly non-zero.

Consider now the case in which x and y are antipodal. Then, the image of α lies entirely in the fibre

of y and hence the projection of its tangent vector at time 0 onto S2 is null. Thus, the tangent vector lies

in χv. Now, take as c the curve c(0) = (µ⊥(s), z(s)), where z(s) ∈ STµ⊥(s)S2 is the perpendicular vector

to ˙(µ⊥)(s) that points to the same hemisphere as u. Then, the image θ of c projects onto S2 via π to the

great circle that contains x and y and is perpendicular to u and v. The claim follows.

31



Hence, we have showed

(r|U )∗χu = (r|V )∗χv,

and thus the pushforward of χ is well defined.

Let us now show that

H[u] = (r|U )∗χu.

Let x = π(u). We know that [u] describes the geodesic γ in S2 × S1 that intersects U ′ × {0} only at

(x, 0). Take (x, 0) ∈ γ and consider its sky S(x,0). It is clear that S(x,0) = {[v] | v ∈ STxS2}, and thusÄ
π ◦ r|−1

U

ä
∗

Ä
T[u]S(x,0)

ä
=Tx({π(v) | v ∈ STxS2})

=Tx({x}) = 〈〈〈0〉〉〉 ⊂ 〈〈〈u〉〉〉⊥,

from which we deduce that

(r|−1
U )∗
Ä
T[u]S(x,0)

ä
⊂ χu

and, thus,

T[u]S(x,0) ⊂ (r|U )∗(χu).

Take now γ(τ) 6= (x, 0) but close enough so that π(Sγ(τ)) ⊂ U ′. As discussed previously, π ◦r|−1
U (Sγ(τ))

describes a circle φ(s) in U ′ whose tangent vector at (x, 0) is orthogonal to u. Hence,

(π ◦ r|−1
U )∗
Ä
T[u]Sγ(τ)

ä
=Tx

(
π ◦ r|−1

U (Sγ(τ))
)

=Tx{φ(s) | s ∈ R} ⊂ 〈〈〈u〉〉〉⊥,
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which implies that

(r|−1
U )∗
Ä
T[u]Sγ(τ)

ä
⊂ χu,

and hence

T[u]Sγ(τ) ⊂ (r|U )∗(χu).

Thus, we have showed

Theorem 2.5.2. Let c ∈ N+. Let [u] ∈ Nc ∼= L(2c, 1). Let u ∈ r−1([u]) and U ′ an open neighbourhood

of π(u) in S2 such that u is the only preimage of [u] in U = π−1(U ′) and r|U is a diffeomorphism onto its

image. Then,

H[u] = (r|U )∗(χu)

where χ is the canonical contact structure on STS2 defined in Section 2.1.
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Chapter 3

Prolongations and Deprolongations

3.1 The Space of Null Geodesics as a Deprolongation

In Section 1.4, we discussed how a Lorentzian three-manifold defines a natural Engel manifold via the

Lorentz prolongation. Similarly, a contact three-manifold produces an Engel manifold by means of the

Cartan prolongation. The current section studies how these structures are related to each other and to the

space of null geodesics of a spacetime.

Let us present the following result, which was first derived in [14, Thm. 4.2] for Riemannian manifolds

and later generalised to the pseudo-Riemannian case in [20].

Theorem 3.1.1 ([20]). Let (M, g) be a pseudo-Riemannian three-manifold. Then, in a neighbourhood of

every point x ∈M , there is a local chart of M in which the metric is diagonal.

Let M be a three-dimensional spacetime and x ∈ M . Let (U,ϕ) be a chart of M around x for which g

is diagonal. Let

ϕ−1 : ϕ(U) → U

(x1, x2, x3) 7→ ϕ−1(x1, x2, x3).

The matrix representation of g in the chart (U,ϕ) is

G
Ä
ϕ−1(x1, x2, x3)

ä
=

á
g11(x1, x2, x3) 0 0

0 g22(x1, x2, x3) 0

0 0 g33(x1, x2, x3)

ë
for some smooth functions g11, g22, g33 ∈ C∞

Ä
ϕ(U)

ä
. Since the metric is non-degenerate at every point, two

of such functions will be always positive and one will be always negative. Thus, we can assume g11, g22 > 0

and g33 < 0, without loss of generality. In addition, the fact that the metric is diagonal in this chart implies

that the coordinate vector fields ui := Tϕ−1(ei) give the eigendirections of the metric at every point. This

implies that, for any y ∈ U , the fibre of the bundle of future null cones is

C+
y = {λ

Ä cos θ√
g11(ϕ−1(y))

u1(y) +
sin θ√

g22(ϕ−1(y))
u2(y) +

1√
−g33(ϕ−1(y))

u3(y)
ä
| λ ∈ R+ and θ ∈ [0, 2π)},

and the fibre over y of the projectivised bundle can be identified with

PCy ∼= C+u
y := { cos θ

√
g11

u1 +
sin θ
√
g22

u2 +
1√
−g33

u3 | θ ∈ [0, 2π)},
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where we have dropped the points in order to simplify the notation. This discussion allows us to define

local coordinates on PC via

Ψ−1 : ϕ(U)× (0, 2π) → Ψ−1
Ä
ϕ(U)× (0, 2π)

ä
(x1, x2, x3, θ) 7→ cos θ√

g11
u1 + sin θ√

g22
u2 + 1√

−g33
u3 ∈ Tϕ−1(x1,x2,x3)M.

Let us denote by ∂x1
, ∂x2

, ∂x3
, ∂θ the coordinate vector fields defined by Ψ−1.

Proposition 3.1.2. Following with the previous notation, the kernel W of the Engel distribution on PC

defined by the Lorentz prolongation is spanned on Ψ−1
Ä
ϕ(U)× (0, 2π)

ä
by the vector field

Z =
cos θ
√
g11

∂x1
+

sin θ
√
g22

∂x2
+

1√
−g33

∂x3
+ (A

√
g11 cos θ +B sin θ

√
g22 − C

√
−g33)∂θ,

where we define 
A = 1

2g11
√
g11g22

∂g11
∂x2

+ sin θ
2g11
√
−g11g33

∂g11
∂x3

B = − 1
2g22
√
g11g22

∂g22
∂x1
− cos θ

2g22
√
−g22g33

∂g22
∂x3

C = − sin θ
2g33
√
−g11g33

∂g33
∂x1

+ cos θ
2g33
√
−g22g33

∂g33
∂x2

.

Proof. Recall that the Engel structure D on PC defined by the Lorentz prolongation of M is

DΨ−1(x1,x2,x3,θ) = D cos θ√
g11

u1+ sin θ√
g22

u2+ 1√
−g33

u3
= (TπL)−1

(
〈〈〈 cos θ
√
g11

u1 +
sin θ
√
g22

u2 +
1√
−g33

u3〉〉〉
)
,

where πL : PC →M is the canonical projection. Let us compute

TπL(∂x1
) =

d

ds

∣∣∣
s=0

πL ◦Ψ−1(x1 + s, x2, x3, θ) =
d

ds

∣∣∣
s=0

ϕ−1(x1 + s, x2, x3) = u1,

and similarly for TπL(∂x2
) = u2 and TπL(∂x3

) = u3. In addition,

TπL(∂θ) =
d

ds

∣∣∣
s=0

πL ◦Ψ−1(x1, x2, x3, θ + s) =
d

ds

∣∣∣
s=0

ϕ−1(x1, x2, x3) = 0.

Hence, by linearity, the rank-two distribution D is given pointwise by

D = 〈〈〈X :=
cos θ
√
g11

∂x1
+

sin θ
√
g22

∂x2
+

1√
−g33

∂x3
, ∂θ〉〉〉.

If we define

Ẋ := [∂θ, X] = − sin θ
√
g11

∂x1 +
cos θ
√
g22

∂x2 ,

then the even-contact structure E on PC is

E = 〈〈〈X, Ẋ, ∂θ〉〉〉.
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The next step is to compute the kernel W of the Engel structure. Let us first calculate

[X, Ẋ] =
[ cos θ
√
g11

∂x1 +
sin θ
√
g22

∂x2 +
1√
−g33

∂x3 ,−
sin θ
√
g11

∂x1 +
cos θ
√
g22

∂x2

]
= cos2 θ

[ ∂x1√
g11

,
∂x2√
g22

]
− sin2 θ

[ ∂x2√
g22

,
∂x1√
g11

]
− sin θ

[ ∂x3√
−g33

,
∂x1√
g11

]
+ cos θ

[ ∂x3√
−g33

,
∂x2√
g22

]
=
[ ∂x1√

g11
,
∂x2√
g22

]
− sin θ

[ ∂x3√
−g33

,
∂x1√
g11

]
+ cos θ

[ ∂x3√
−g33

,
∂x2√
g22

]
=

∂

∂x1

( 1
√
g22

) ∂x2√
g11
− ∂

∂x2

( 1
√
g11

) ∂x1√
g22
− sin θ

(
∂

∂x3

( 1
√
g11

) ∂x1√
−g33

− ∂

∂x1

( 1√
−g33

) ∂x3√
g11

)

+ cos θ

(
∂

∂x3

( 1
√
g22

) ∂x2√
−g33

− ∂

∂x2

( 1√
−g33

) ∂x3√
g22

)

= − 1

2g22
√
g11g22

∂g22

∂x1
∂x2

+
1

2g11
√
g11g22

∂g11

∂x2
∂x1

+ sin θ

(
1

2g11
√
−g11g33

∂g11

∂x3
∂x1

− 1

2g33
√
−g11g33

∂g33

∂x1
∂x3

)
− cos θ

(
1

2g22
√
−g22g33

∂g22

∂x3
∂x2
− 1

2g33
√
−g22g33

∂g33

∂x2
∂x3

)
= A∂x1 +B∂x2 + C∂x3 ,

where we have defined 
A = 1

2g11
√
g11g22

∂g11
∂x2

+ sin θ
2g11
√
−g11g33

∂g11
∂x3

B = − 1
2g22
√
g11g22

∂g22
∂x1
− cos θ

2g22
√
−g22g33

∂g22
∂x3

C = − sin θ
2g33
√
−g11g33

∂g33
∂x1

+ cos θ
2g33
√
−g22g33

∂g33
∂x2

.

Since we know that the kernel W lies within D, there exist functions λ, µ ∈ C∞(PC) such that

W = 〈〈〈λX + µ∂θ〉〉〉.

Let us compute

[∂θ, λX + µ∂θ] = [∂θ, λX] + [∂θ, µ∂θ] = λẊ +
∂λ

∂θ
X +

∂µ

∂θ
∂θ ∈ E

regardless of λ, µ. Similarly,

[X,λX + µ∂θ] = [X,λX] + [X,µ∂θ] = X(λ)X +X(µ)∂θ − µẊ ∈ E .

Finally,

[Ẋ, λX + µ∂θ] = [Ẋ, λX] + [Ẋ, µ∂θ] = Ẋ(λ)X + λ[Ẋ,X] + Ẋ(µ)∂θ + µ[Ẋ, ∂θ]

= Ẋ(λ)X + Ẋ(µ)∂θ − λ(A∂x1
+B∂x2

+ C∂x3
)− µ

(
− cos θ
√
g11

∂x1
− sin θ
√
g22

∂x2

)
.

Since Ẋ(λ)X + Ẋ(µ)∂θ ∈ E , it is enough to impose that the last two terms belong to E . Then,

−λ(A∂x1
+B∂x2

+ C∂x3
)− µ

(
− cos θ√

g11
∂x1
− sin θ√

g22
∂x2

)
∈ E if and only if

−λ(A∂x1
+B∂x2

+ C∂x3
)− µ

(
− cos θ
√
g11

∂x1
− sin θ
√
g22

∂x2

)
+ λC

√
−g33X ∈ E .

The above vector field reads

−λ

((
A− C cos θ

 
−g33

g11

)
∂x1 +

(
B − C sin θ

 
−g33

g22
∂x2

))
+ µ

( cos θ
√
g11

∂x1 +
sin θ
√
g22

∂x2

)
,
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and, except for isolated pathological cases, for it to belong to E , it is enough to impose that it equals Ẋ.

This is equivalent to imposing
λ
(
A− C cos θ

»
−g33
g11

)
− µ cos θ√

g11
= sin θ√

g11

λ
(
B − C sin θ

»
−g33
g22

)
− µ sin θ√

g22
= − cos θ√

g22
.

Whenever
(
A− C cos θ

»
−g33
g11

)
sin θ√
g22
−
(
B − C sin θ

»
−g33
g22

)
cos θ√
g11
6= 0, the solution to the system is

λ =
1

A
√
g11 sin θ −B√g22 cos θ

and µ =
A
√
g11 cos θ +B

√
g22 sin θ − C

√
−g33

A
√
g11 sin θ −B√g22 cos θ

.

Hence, the kernel W is spanned by

W = 〈〈〈λX + µ∂θ〉〉〉 = 〈〈〈X +
µ

λ
∂θ〉〉〉 = 〈〈〈Z := X + (A

√
g11 cos θ +B

√
g22 sin θ − C

√
−g33)〉〉〉.

It can be seen that for the pathological cases for which
(
A−C cos θ

»
−g33
g11

)
sin θ√
g22
−
(
B−C sin θ

»
−g33
g22

)
cos θ√
g11

vanishes, the kernel W is also spanned by Z. Hence, regardless of A,B,C and θ, we have

W = 〈〈〈Z〉〉〉.

Definition 3.1.3. A three-dimensional spacetime (M, g) is said to be separable if, around every point

x ∈M , there exists a local chart (U,ϕ) for which the matrix representation of g is of the form

G
Ä
ϕ(x1, x2, x3)

ä
=

á
g11(x1, x2, x3) 0 0

0 g22(x1, x2, x3) 0

0 0 g33(x1, x2, x3)

ë
,

where:

i) g11, g22 > 0 and g33 < 0,

ii) g11(x1, x2, x3) = g11(x1, x2) and g22(x1, x2, x3) = g22(x1, x2),

iii) g33(x1, x2, x3) = g33(x3).

Note that we require the spatial components of the metric to be invariant under the flow of the negative

eigendirection of g, and the time component of the metric to be invariant under the flow of any space-

like vector field. Note that the spacetimes (S2 × S1, gc) studied in Section 2 are separable. For separable

spacetimes, a straightforward computation using Proposition 3.1.2 implies the following lemma.

Lemma 3.1.4. Let M be a separable three-dimensional spacetime. The kernel W on PC is spanned by

W = 〈〈〈Z =
cos θ
√
g11

∂x1 +
sin θ
√
g11

∂x2 +
1√
−g33

∂x3 +
( cos θ

2g11
√
g22

∂g11

∂x2
− sin θ

2g22
√
g11

∂g22

∂x1

)
∂θ〉〉〉.

We can now prove the most important result of the current section.
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Theorem 3.1.5. Let (M, g) be a separable spacetime. Then

N = PC/W.

Proof. Let x ∈ M and let (U,ϕ) be a coordinate chart around x satisfying the conditions of the definition

of separable manifold. Let

Ψ−1 : ϕ(U)× (0, 2π) → Ψ−1
Ä
ϕ(U)× (0, 2π)

ä
(x1, x2, x3, θ) 7→ cos θ√

g11
u1 + sin θ√

g22
u2 + 1√

−g33
u3 ∈ Tϕ−1(x1,x2,x3)M.

be coordinates on PC. By Lemma 3.1.4, we have

W = 〈〈〈Z =
cos θ
√
g11

∂x1
+

sin θ
√
g11

∂x2
+

1√
−g33

∂x3
+
( cos θ

2g11
√
g22

∂g11

∂x2
− sin θ

2g22
√
g11

∂g22

∂x1

)
∂θ〉〉〉.

Let us compute the integral lines of the vector field Z on PC. These integral lines are curves γ(s) =

Ψ−1
(
x1(s), x2(s), x3(s), θ(s)

)
with

x′1(s) = cos θ√
g11

x′2(s) = sin θ√
g22

x′3(s) = 1√
−g33

θ′(s) = cos θ
2g11
√
g22

∂g11
∂x2
− sin θ

2g22
√
g11

∂g22
∂x1

for s ∈ (−ε, ε) for some ε > 0. Note that

x′′1(s) =− sin θ
√
g11

( cos θ

2g11
√
g22

∂g11

∂x2
− sin θ

2g22
√
g11

∂g22

∂x1

)
+ cos θ

(
− 1

2g11
√
g11

∂g11

∂x1
x′1 −

1

2g11
√
g11

∂g11

∂x2
x′2

)
= − 1

2g11

∂g11

∂x2
x′1x
′
2 +

1

2g11

∂g22

∂x1
(x′2)2 − 1

2g11

∂g11

∂x1
(x′1)2 − 1

2g11

∂g11

∂x2
x′1x
′
2

= −Γ1
11(x′1)2 − 2Γ1

12x
′
1x
′
2 − Γ1

22(x′2)2,

which is precisely the geodesic equation in M for x1 under the assumptions that ∂g11
∂x3

= ∂g22
∂x3

= ∂g33
∂x1

=

∂g33
∂x2

= 0. It is clear that the same happens for x2. Now, for the third coordinate,

x′′3(s) = − 1

2g33
√
−g33

(∂g33

∂x3
x′3

)
= −(x′3)2

Ä
− 1

2g33

∂g33

∂x3

ä
= −(x′3)2Γ3

33,

and we also obtain the geodesic equation for x3. Thus, if γ : (−ε, ε)→ Ψ−1
Ä
ϕ(U)× (0, 2π)

ä
is an integral

line of Z, the projection µ := πL ◦ γ is a geodesic on M . Note that µ(s) = ϕ
Ä
x1(s), x2(s), x3(s)

ä
implies

that

µ̇(s) = x′1u1 + x′2u2 + x′3u3 =
cos θ
√
g11

u1 +
sin θ
√
g22

u2 +
1√
−g33

u3 = γ(s),

and hence the integral lines of Z are precisely the tangent vectors to the light geodesics of M . Since x ∈M

is arbitrary and we can define an alternative parametrisation Ψ̃−1 : ϕ(U)×(−π, π)→ Ψ̃−1(ϕ(U)×(−π, π)),

it is true globally that the integral lines of the kernel W are the tangent vectors to the light geodesics in

M . Hence, the kernel is spanned by the restriction of the geodesic spray Xg on TM to the bundle of cones.

Since clearly

PC = C+/∆,
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where ∆ is the Euler field, we have

PC/W = C+/∆/Xg = N ,

as claimed.

Hence, we can recover the space of light geodesics N of a separable spacetime M from its Lorentz

prolongation. The following results show that we can also recover the canonical contact structure on N .

Since the kernelW is always transverse to the coordinate ∂θ, the following proposition follows immediately.

Proposition 3.1.6. Let x ∈M . Then, the sky of x is

Sx = {p
Ä cos θ
√
g11

u1 +
sin θ
√
g22

u2 +
1√
−g33

u3

ä
| θ ∈ [0, 2π)},

where p : PC → PC/W is the canonical projection.

Theorem 3.1.7. Let M be a separable spacetime. Assume that the kernel W in PC is nice, that is, PC/W

is a differentiable manifold and the canonical projection

p : PC → PC/W

is a submersion. Then, the canonical contact structure on N = PC/W is

H = p∗E .

Proof. Firstly, as argued in [1, p. 246], the even-contact structure E is invariant under the flow of any vector

field generating W. Therefore, the pushforward p∗E is well defined.

Let γ ∈ N = PC/W. Then, γ is defined by a curve µ : (−ε, ε)→M which is a null geodesic in M , and

γ = p
Ä
µ̇(s)
ä

for all s ∈ (−ε, ε). Let q0 = µ(0) and define coordinates ϕ−1 : (x1, x2, x3) → ϕ−1(x1, x2, x3) around q0 as

defined in the proof of Theorem 3.1.5. Let also Ψ−1 : (x1, x2, x3, θ) → Ψ−1(x1, x2, x3, θ) be coordinates

around µ̇(0) in PC as defined at the beginning of the current section. Now, for all s ∈ [0, ε) small enough,

the point qs := µ(s) lies in the image of ϕ−1 and µ̇(s) lies in the image of Ψ−1. Hence, we can define, for s

small enough, µ̇(s) = Ψ−1
Ä
x1(s), x2(s), x3(s), θ(s)

ä
. Also, if s > 0 and s is small enough, the points q0 and

qs are not conjugate in M .

By the previous result, we have

Sq0 = {p ◦Ψ−1
Ä
x1(0), x2(0), x3(0), θ

ä
| θ ∈

Ä
θ(0)− π, θ(0) + π

ó
}

and

Sqs = {p ◦Ψ−1
Ä
x1(s), x2(s), x3(s), θ

ä
| θ ∈

Ä
θ(s)− π, θ(s) + π

ó
}.

Hence,

TγSq0 = Tµ̇(0)p(〈〈〈∂θ〉〉〉)

and

TγSqs = Tµ̇(s)p(〈〈〈∂θ〉〉〉).
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Fix now s > 0 small enough and let, for some open neighbourhood V of µ̇(s),

ΦZ−s : V → ΦZ−s(V )

be the flow at time −s of the vector field

Z = X + (A
√
g11 cos θ +B

√
g22 sin θ)∂θ

that generates the kernel W. If we take V small enough, then ΦZ−s is a diffeomorphism. In addition,

p ◦ ΦZ−s = p. Hence, since ΦZ−s
Ä
µ̇(s)
ä

= µ̇(0), we can compute

TγSqs = Tµ̇(s)p(∂θ) = Tµ̇(0)p ◦ Tµ̇(s)Φ
Z
−s(∂θ)

and
Hγ = TγSq0 ⊕ TγSqs = Tµ̇(0)p

Ä
〈〈〈∂θ, Tµ̇(s)Φ

Z
−s(∂θ)〉〉〉

ä
= Tµ̇(0)p

Ä
〈〈〈∂θ, Tµ̇(s)Φ

Z
−s(∂θ)− ∂θ〉〉〉

ä
= Tµ̇(0)p

Ä
〈〈〈∂θ,

Tµ̇(s)Φ
Z
−s(∂θ)− ∂θ
s

〉〉〉
ä

for all s > 0 small enough. Hence, the result is still true if we take the limit s→ 0. Thus, we obtain

Hγ = Tµ̇(0)p
Ä
〈〈〈∂θ, lim

s→0

Tµ̇(s)Φ
Z
−s(∂θ)− ∂θ
s

〉〉〉
ä

= Tµ̇(0)p
Ä
〈〈〈∂θ, [∂θ, Z]〉〉〉

ä
.

We can compute

[∂θ, Z] = [∂θ, X] + [∂θ, (A
√
g11 cos θ +B

√
g22 sin θ)∂θ] = Ẋ + (−A√g11 sin θ +B

√
g22 cos θ)∂θ.

We obtain

Hγ = Tµ̇(0)p
Ä
〈〈〈∂θ, [∂θ, Z]〉〉〉

ä
= Tµ̇(0)p

Ä
〈〈〈∂θ, Ẋ + (−A√g11 sin θ +B

√
g22 cos θ)∂θ〉〉〉

ä
= Tµ̇(0)p

Ä
〈〈〈∂θ, Ẋ〉〉〉

ä
= Tµ̇(0)p

Ä
〈〈〈∂θ, Ẋ, Z〉〉〉

ä
= Tµ̇(0)p

Ä
〈〈〈∂θ, Ẋ,X + (A

√
g11 cos θ +B

√
g22 sin θ)∂θ〉〉〉

ä
= Tµ̇(0)p

Ä
〈〈〈∂θ, Ẋ,X〉〉〉

ä
= Tµ̇(0)p(E).

This concludes the proof that

H = p∗E .

3.2 Recovering the Lorentzian Manifold

After the discussion in Section 3.1, it is natural to ask whether Engel structures can also be useful in

recovering a Lorentzian manifold from its space of null geodesics. Two main problems arise when considering

such approach. Firstly, it is not obvious how one can recover the direction ∂θ of the Lorentz prolongation

in terms of the Engel flag. Moreover, different spacetimes can define the same space of null geodesics and

the same contact structure, as the next example shows.

Example 3.2.1. LetM = S2×R. Let t be the coordinate in R and define the Lorentzian metric g = g◦−dt2

on M . Following the same arguments as in Section 2.2, we can see that the space of null geodesics of (M, g)

is

N ∼= STS2.
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In addition, if γ ∈ N , we can take s1, s2 ∈ R such that πR
Ä
γ(s1)

ä
, πR
Ä
γ(s2)

ä
∈ (−π, π), where πR :

M → R is the projection onto the second factor. Hence, the contact structure on N is exactly the same as

the contact structure on STS2 seen as the space of null geodesics of S2 × S1.

A difference between the Lorentzian manifolds S2 × S1 and S2 × R with the proposed metrics is that,

in the former, different points have different skies, while in the latter infinitely many points have the same

sky.

We present next a procedure that allows us to define a spacetime with a particular space of null geodesics

and contact structure given a set of skies, which we define as follows.

Definition 3.2.2. Let (M, ξ) be a compact contact manifold of dimension 3. A set of skies Σ on (M, ξ)

is a collection of subsets of Σ such that

i) for all S ∈ Σ, there exists a diffeomorphism ϕ : S1 → S,

ii) for all S ∈ Σ, the subset S is Legendrian, that is, everywhere tangent to the distribution ξ,

iii) for every x ∈M and v ∈ ξx, the exists a unique S ∈ Σ such that x ∈ S and TxS = 〈〈〈v〉〉〉.

Let us fix a compact contact three-manifold (M, ξ) and a set of skies Σ on (M, ξ). Consider the Cartan

prolongation πC : S(ξ) → (M, ξ), with Engel flag W ⊂ D ⊂ E ⊂ TM . Now, for every S ∈ Σ, let us

parametrise it via the diffeomorphism

ϕ : S1 → S

θ 7→ S(θ),

and consider the collection of embedded circles {Ṡ(S1)}S∈Σ in S(ξ). By point iii) in Definition 3.2.2, these

curves determine a foliation of S(ξ). The leaves can be parametrised by

ϕ̇ : S1 → Ṡ

θ 7→ Ṡ(θ).

Let Θ be the rank-one distribution defined by the tangent spaces of the foliation. Let L = S(ξ)/Θ and

p : S(ξ)→ S(ξ)/Θ.

Let us show that the space of leaves L = S(ξ)/Θ is Hausdorff. Indeed, take two different elements

S1, S2 ∈ S(ξ)/Θ, and let us make an abuse of notation by writing S1, S2 ∈ Σ, meaning that S1 = p(Ṡ1) and

S2 = p(Ṡ2). By definition, Ṡ1 and Ṡ2 are disjoint subsets of S(ξ). In addition, since they are embedded

circles in S(ξ), they are compact. Since S(ξ) is a smooth manifold, it is normal Hausdorff and hence there

exist open subsets U, V of S(ξ) that separate Ṡ1 and Ṡ2. Hence, S1 and S2 are separable. Let us assume

that Θ is nice, which implies that L is a differentiable manifold and p is a submersion. It is enough, for

instance, for the foliation to be regular, see [8, Prop. 11.4.2].

We claim that Θ ⊂ D. Indeed, let v ∈ S(ξ) and take S such that v = Ṡ(0), for a proper parametrisation

of S. Then, the leaf of the foliation defined by Θ and containing v is Ṡ. Thus,

(πC)∗
Ä
Θv

ä
= (πC)∗

Ä
〈〈〈 d
dθ

∣∣∣
θ=0

Ṡ(θ)〉〉〉
ä

= 〈〈〈 d
dθ

∣∣∣
θ=0

πC
Ä
Ṡ(θ)
ä
〉〉〉 = 〈〈〈 d

dθ

∣∣∣
θ=0

S(θ)〉〉〉 = 〈〈〈Ṡ(0)〉〉〉 = 〈〈〈v〉〉〉,
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and the claim follows.

We will now define a metric on L. Recall that, when Lorentz prolonging a spacetime, the Engel distri-

bution over a vector of the cone was spanned by the vector itself and the extra added coordinate. Hence,

it is natural to define the null cone on a point y := p(Ṡ(0)) of L as

Cy = p∗
Ä
D|Ṡ
ä
,

that is, for every preimage z ∈ p−1(y), the pushforward p∗
Ä
Dz
ä
defines a direction of the null cone over

y. Since D is a rank-two distribution that contains the rank-one distribution Θ, then p∗(Dz) is indeed a

one-dimensional vector subspace of Tp(z)L. The subset Cy might not, in general, be a geometric cone, which

we need to continue our discussion. The following lemma gives a characterisation of the Engel manifold

PC that ensures this is the case. However, further research is needed to find more suitable hypotheses.

Lemma 3.2.3. Let Ṡ ⊂ S(ξ). Assume there exists an open subset U of S(ξ) containing Ṡ and vector fields

V, Y, Z ∈ X(U) such that p∗(V ), p∗(Y ), p∗(Z) ∈ Tp(Ṡ)L are constant over all Ṡ, and for which

DṠ(θ) = 〈〈〈V cos θ + Y sin θ + Z〉〉〉 ⊕Θ.

Then, Cp(Ṡ) = p∗
Ä
D|Ṡ
ä
is a cone.

Proof. The cone on y = p(Ṡ) is given by

p∗
Ä
D|Ṡ
ä

= p∗
Ä
{〈〈〈V cos θ + Y sin θ + Z〉〉〉 | θ ∈ S1}

ä
= {p∗V cos θ + p∗Y sin θ + p∗Z | θ ∈ S2},

which is clearly a geometric cone if p∗V, p∗Y, p∗Z are constant over Ṡ.

Lemma 3.2.4. Let M be a three-dimensional manifold and C a bundle of cones over M that vary smoothly

with respect to the basepoint. Then, there exists a Lorentzian metric g in M whose bundle of cones is

precisely C.

Proof. Let x ∈ M . Let (U,ϕ) be a chart around x and ∂x1
, ∂x2

, ∂x3
the coordinate vectors induced by the

chart. For all y ∈ U , there exists a second-degree polynomial py(z1, z2, z3) such that z1∂x1
+z2∂x2

+z3∂x3
∈

Cy if and only if py(z1, z2, z3) = 0. Let us denote by cij = cji the coefficient in py of the monomial zizj .

Let now Gy = (gij)y ∈M3(R) be the symmetric matrix given by
gii = cii

gij =
cij
2
, if i 6= j.

By definition, a vector z1∂x1
+ z2∂x2

+ z3∂x3
∈ Cy if and only if (z1, z2, z3)Gy(z1, z2, z3)t = 0. Since Gy

represents a cone, necessarily the signature of Gy is (2, 1). Since Gy is diagonalisable and has three non-zero

eigenvalues, detGy 6= 0. Thus, we can define G̃y = 1
| detGy|Gy. It is clear that G̃y still represents the cone

and it is the only symmetric matrix with determinant −1 that does so. Since the cone Cy varies smoothly

with respect to y, so do the coefficients cij and hence the matrix G̃y. Thus, the collection {G̃y}y∈U is a

Lorentzian metric on U with bundle of null cones C|U .
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Let (V, ψ) be another local chart of M with U ∩ V 6= ∅ and z ∈ U ∩ V . By uniqueness, the matrices

G̃z and H̃z induced by the coordinate vectors of both charts are necessarily related by a change of basis

matrix. Hence, the Lorentzian metrics defined in U and V coincide in U ∩ V . Thus, taking an atlas of M ,

we can define a global Lorentzian matric with bundle of null cones C.

Then, any other metric g′ with the same cones is conformal with g, and produces the same space of null

geodesics, see [2, Lemm. 2.1.2 and Prop. 2.1.3]. Thus, we can fix any one such metric, say g. Suppose the

foliation {Ṡ(S1)}S∈Σ is oriented. This induces an orientation on each of the cones Cy on L which globally

gives an orientation of the bundle C. One can use the righ-hand rule to choose one of the two hemicones

on each tangent space, and given that the orientation of C is globally well-defined, this choice is globally

consistent. Hence, the manifold (L, g) is a spacetime. Assume it is separable. Further research is needed

to find suitable hypotheses on the initial data that ensure that this is the case. Define now the Lorentz

prolongation πL : PC → L, with Engel flag W̃ ⊂ D̃ ⊂ Ẽ ⊂ TL. The map

Φ : S(ξ) → PC

v → p∗
Ä
Dv
ä

provides a diffeomorphism. We claim that Φ∗(D) is precisely the canonical Engel structure D̃ on PC. Note

that, if v ∈ S(ξ), then

πL ◦ Φ(v) = πL
Ä
p∗(Dv)

ä
= p(v).

Thus, (πL)∗ ◦ Φ∗
Ä
Dv
ä

= (πL ◦ Φ)∗
Ä
Dv
ä

= p∗
Ä
Dv
ä

= Φ(v), and hence Φ∗D ⊂ D̃. It is only left to show

that Φ∗(D) is a rank-two distribution. Since Φ is a diffeomorphism, it is in particular a submersion and the

claim follows.

Thus, if N is the space of null geodesics of (L, g), we have, by Theorem 3.1.5,

N = PC/W̃ ∼= S(ξ)/W ∼= M,

and we recover the initial manifold M . In addition, if all the projections involved are submersions, the

canonical contact structure H on N is, by Theorem 3.1.6,

q∗Ẽ ,

where q : PC → PC/W̃ is the canonical projection. This contact structure gets carried to M as

(πC)∗E = ξ

and hence we also recover the contact structure on M .
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List of Notations

M Differentiable manifold

TM Tangent bundle of a manifold

ξ Field of hyperplanes

X(M) Space of smooth vector fields on a manifold

X,Y, Z, V Vector field

〈〈〈−,−〉〉〉 Span of vectors, span of vector fields

α, θ Differential form on a manifold, curve in a manifold

ker Kernel of a differential form, kernel of a linear map

TM/ξ Quotient bundle

dα Differential of a form

∧ Exterior product of forms

[−,−] Lie bracket, distribution generated by the Lie brackets of other distributions

ι Inner product of a differentiable form and a vector field, inclusion map

Rn Euclidean space of dimension n

STM Unit tangent bundle of a manifold
⊥ Orthogonal subspace in a tangent space

T ∗M Cotangent bundle of a manifold

Sn Sphere of dimension n

π̃ Projection of the cotangent bundle onto the manifold

π Ratio of circle’s perimeter to its diameter, projection from the tangent bundle to the

manifold

Tf Tangent map of a smooth map

∂x Coordinate vector field

δij Kronecker delta

dx Coordinate one-form

f∗ Pushforward of a smooth map

χ Canonical contact structure on a tangent manifold

g Pseudo-Riemannian metric
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G, (gij) matrix representation of a pseudo-Riemannian metric

(−,−) Signature of a pseudo-Riemannian metric

∇ Affine connection on a manifold, Levi-Civita connection on a pseudo-Riemannian man-

ifold

Γkij Christoffel symbols of a pseudo-Riemannian manifold in local chart

γ, µ, β, c Curve within a manifold, geodesic in a pseudo-Riemannian manifold
D
dt Covariant derivative in a manifold

α̇, θ̇, γ̇, µ̇, β̇, ċ Tangent vector on a curve

IC Bundle of non-spacelike vectors of a Lorentzian manifold

C Bundle of null vectors of a Lorentzian manifold

C+ Bundle of future pointing null vectors of a Lorentzian manifold

N Space of null geodesics of a spacetime

Xg Geodesic spray on the tangent bundle of a Lorentzian manifold

∆ Euler field on the tangent bundle of a Lorentzian manifold

D Rank-two distribution, Engel structure

M/ξ Space of leaves of a distribution, orbit space

πN Projection of C+ onto N

S Sky of a point

H Canonical contact structure on the space of null geodesics

E Even-contact structure

W Kernel of an Engel structure

θ Differential form on a manifold

B3 Ball of dimension 3 in R3

πC : S(ξ)→M Cartan prolongation of a contact manifold

p Canonical projection onto the space of leaves

PC Bundle of projectivised cones of a Lorentzian manifold

πL : PC →M Lorentz prolongation of a Lorentzian manifold

〈−,−〉 Inner product on Euclidean space, inner product in the division algebra of quaternions

g◦ Round metric on the sphere

ι′ Inclusion map

πM : M ×N →M Projection from a product manifold onto a factor

Zc Finite cyclic group of order c

H Division algebra of quaternions

C Field of complex numbers

i Complex unit in C, complex unit in H

j, k Complex unit in H

V Vector space of pure imaginary quaternions

SH Space of unit quaternions
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SV Space of unit pure imaginary quaternions

f Projection of STS2 onto S2 via the cross product

τω : SH→ SV Hopf fibration induced by unit pure imaginary quaternion ω

L(p, 1) Lens space

RPn Projective space of dimension n

r Projection of STS2 onto a lens space

σ Antipodal map on Sn
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