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Abstract

In this thesis we study complex Dirac structures mainly from a linear viewpoint.

Motivated by the similarities that arise between linear symplectic and linear com-

plex structures, we present generalized linear algebra and linear generalized com-

plex structures as a means to encompass them both. In turn, these structures are

a particular case of linear complex Dirac structures, which we study through three

invariants: the real index, the order and the type. Ultimately, we give an overview

on how our linear study integrates to generalized geometry and we show with a

couple of examples that the invariants can vary over a manifold.
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Introduction

In differential geometry we deal with smooth manifolds through their tangent

bundle T , whose sections are endowed with the Lie bracket. Generalized geome-

try changes this mindset: in contrast, the main role is played by the generalized

tangent bundle T ⊕T ∗, which is equipped with the canonical pairing ⟨ , ⟩ and with

an extension of the Lie bracket to its sections, namely the Dorfman bracket [ , ].

If we take a step further and complexify this setup, we enter the realm of gener-

alized complex geometry. Specifically, in generalized complex geometry we work

with the vector bundle (T ⊕ T ∗)C and extend C-linearly both ⟨ , ⟩ and [ , ].

Generalized complex geometry was initially explored in [Hit03] by Hitchin and

more generally established by Gualtieri shortly afterwards in [Gua03]. Due to its

bonds with theoretical physics (see for instance [Zab06] or [KL07]), it had a rapid

breakthrough and has been an active field of research ever since.

Generalized complex structures are introduced with the idea of encompassing

two structures from differential geometry: symplectic and complex structures. In-

terestingly, though, if we restrict a generalized complex structure to a submanifold

we may not get a generalized complex structure. This suggests studying a bigger

class of structures called complex Dirac structures. A complex Dirac structure L

on a smooth manifold is defined as a subbundle of (T ⊕ T ∗)C that is maximally

isotropic for the canonical pairing and such that its sections are involutive for the

Dorfman bracket, this is [Γ(L),Γ(L)] ⊆ Γ(L). In particular, generalized complex

structures are complex Dirac structures that satisfy L ∩ L = 0.

Even though all these structures are purely geometrical, many of their features

can be discovered in terms of (generalized!) linear algebra by simply restricting

to each fiber. The main objective of this thesis is to give a linear approach of the

aforementioned phenomena (Chapters 1 and 2). Lastly, we will conclude with an

overview on how some of our pointwise study integrates to geometric structures

and what the purely geometric phenomena are (Chapter 3).
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In the first chapter, we study linear symplectic and linear complex structures.

Our driving force is to show their common properties that inspire our move to

generalized linear algebra. Furthermore, linear complex structures are a suitable

background to introduce the realification and complexification of a vector space.

These constructions give us a viewpoint of linear complex structures in terms of

their +i-eigenspace.

In the second chapter, we introduce the complexified generalized vector space

(V ⊕V ∗)C with its canonical pairing ⟨ , ⟩ and linear generalized complex structures.

Through some independent work, in Subsection 2.2.3 we see that a linear gener-

alized complex structure is equivalently given by a maximally isotropic subspace

L of (V ⊕V ∗)C that satisfies L∩L = 0. Afterwards, we give an alternative descrip-

tion of maximally isotropic subspaces. With this description we independently see

that if we restrict a maximally isotropic subspace of (V ⊕ V ∗)C to a subspace U

of V we obtain a maximally isotropic subspace of (U ⊕ U∗)C (Proposition 2.24).

Since this is not the case for linear generalized complex structures, we drop the

condition L ∩ L = 0 and refer to maximally isotropic subspaces as linear complex

Dirac structures. Up to this point, our main guideline is [Rub] and the majority of

our results are adapted from [Gua03]. To conclude our linear approach, in Section

2.3 we follow [Agu20] and [AR22] to study the real index, the order and the type,

three integers that suffice to classify linear complex Dirac structures.

Finally, the third chapter translates some of our previous work into geometry. We

start with a discussion on the integrability condition of complex structures that is

missed in the linear approach. Afterwards, we introduce generalized geometry and

the properties of the Dorfman bracket to finally define complex Dirac structures.

To reflect on the role played by manifolds, we conclude the dissertation showing

that the type (Example 3.12) and the order (Example 3.13) of a complex Dirac

structure can vary over a manifold. The first example was adapted from [Gua03]

with our tools while the second was developed independently.

Before we begin, let us remark that throughout the thesis we will only work with

finite-dimensional vector spaces over a field that is either R or C. Consequently, we

will use K to refer to any of this two fields and normally we will not specify that a

vector space is finite-dimensional. Similarly, in the last chapter about geometry we

assume that anything is smooth without further mention. Ultimately, we denote

the trivial vector space or bundle just as a 0 without brackets.
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Chapter 1

Linear algebra

Our starting point is to study linear symplectic and linear complex structures.

1.1. Preliminaries

To begin with, we recall some basic notions that will be useful later on.

Definition 1.1 (Annihilator of a subspace).

Let V be a vector space over K. Given a subspace U of V , the annihilator of U is

the subspace

AnnU := {α ∈ V ∗ : α(U) = 0} of V ∗. ♢

Proposition 1.2.

Let V be a vector space over K and U be a subspace of V , we have

dimK V = dimK U + dimKAnnU. (1.1)

Proof. In case U is a proper subspace of V ̸= 0, take a basis (uk)
m
k=1 of U and extend

it to a basis (uk)
n
k=1 of V , for certain integers n > m ≥ 1. It is easy to show that

(um+k)n−m
k=1 is a basis of AnnU , which gives equality (1.1). □

Definition 1.3 (Orthogonal complement of a subspace).

Let V be a vector space over K and B : V × V ! K be a bilinear map. Given a

subspace U of V , the orthogonal complement of U by B is the subspace

UB := {v ∈ V : B(U, v) = 0} of V. ♢
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Remark 1.4. One could also define the orthogonal complement through the condi-

tion B(v, U) = 0. However, both conditions are equivalent in case of a symmetric

or a skew-symmetric bilinear map. ▽

Definition 1.5 (Non-degenerate bilinear map).

Let V be a vector space over K, a bilinear map B : V × V ! K is called non-

degenerate if any non-zero v ∈ V gives that B(·, v) ∈ V ∗ is also non-zero. ♢

Note that there is a one-to-one correspondence between linear maps V ! V ∗

and bilinear maps V × V ! K. Indeed, a bilinear map B : V × V ! K induces a

linear map
B
Z
: V ! V ∗

v 7! B(·, v)
(1.2)

whilst a linear map f : V ! V ∗ induces a bilinear map

f
^
: V × V ! K

(u, v) 7! (f(v))(u).
(1.3)

Since we have B = (B
Z
)
^ and B = (f

^
)
Z, the correspondence is one-to-one. What

is more, B is non-degenerate if and only if B Z is injective, and as we exclusively

work with finite-dimensional vector spaces and dimK V ∗ = dimK V holds, B is

non-degenerate if and only if B Z is an isomorphism.

Proposition 1.6.

Let V be a vector space over K, U be a subspace of V and B : V × V ! K be a
non-degenerate bilinear map, we have

dimK V = dimK U + dimK UB. (1.4)

Proof. On the one hand, from the induced isomorphism (1.2) one can easily verify

the equality B
Z
(UB) = AnnU by double inclusion. On the other hand, the restric-

tion epimorphism |U : V ∗ ! U∗ trivially gives Ker |U = AnnU . As a consequence,

the composition |U ◦B Z : V ! U∗ is also an epimorphism and satisfies

Ker(|U ◦B Z) = (B
Z
)−1(Ker |U) = (B

Z
)−1(AnnU) = (B

Z
)−1(B

Z
(UB)) = UB,

which from the equality dimK U∗ = dimK U and the First Isomorphism Theorem

gives equality (1.4). □
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1.2. Linear symplectic structures

Definition 1.7 (Linear symplectic structure).

Let V be a vector space over K, a linear symplectic structure ω on V is a bilinear

map ω : V × V ! K that is non-degenerate and skew-symmetric. ♢

Remark 1.8. It is well-known that since charK ̸= 2 skew-symmetry is equivalent

to alternation. ▽

It follows that a one-dimensional vector space V does not admit a linear sym-

plectic structure because any alternate bilinear map ω : V ×V ! K must be trivial

and hence degenerate. What is more, we will show that a vector space admits a

linear symplectic structure if and only if it is even-dimensional. In order to give a

characterization of linear symplectic structures we require a previous result.

Lemma 1.9.

Let V be a vector space over K, U be a subspace of V and ω be a linear symplectic
structure on V , we have (Uω)ω = U . In addition, the equality U ⊕ Uω = V holds if
and only if ω|U is a linear symplectic structure on U .

Proof. In the first place and as Uω is a subspace of V , from equality (1.4) we get

dimK U + dimK Uω = dimK V = dimK Uω + dimK(U
ω)ω,

which gives dimK U = dimK(U
ω)ω. Furthermore, since by skew-symmetry we have

ω(Uω, u) = 0 for any u ∈ U , we get U ⊆ (Uω)ω and thus the equality U = (Uω)ω.

In the second place, observe that U ⊕ Uω = V is equivalent to U ∩ Uω = 0 due

to equality (1.4), which means that ω(U, u) ̸= 0 holds for any non-zero u ∈ U . In

turn, the latter corresponds to ω|U being non-degenerate and, since the restriction

is still bilinear and skew-symmetric, to ω|U being a symplectic structure on U . □

Theorem 1.10.

Let V be a vector space over K, there exists a linear symplectic structure ω on V if
and only if dimK V = 2n for a certain integer n ≥ 0. In addition, if n ≥ 1 there is a
basis B of V such that the induced isomorphism ω

Z from (1.2) gives

M2n×2n(ω
Z
,B,B∗) =

[
0 Idn

− Idn 0

]
. (1.5)
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Proof. Let V be a vector space over K together with a linear symplectic structure

ω. In case V ̸= 0, take a non-zero vector v1 ∈ V . By non-degeneracy, ω(·, v1) is

non-zero as well, so there exists u1 ∈ V such that ω(u1, v1) = 1. In particular, u1

must be non-zero and by alternation a linearly independent vector to v1. Defining

now V1 as the linear span of u1 and v1, the restriction ω|V1 results to be a linear

symplectic structure on V1. Indeed, for any non-zero vector λu1 + µv1, λ, µ ∈ K,

either λ or µ is non-zero, so assuming λ ̸= 0 without loss of generality we obtain

ω|V1(v1, λu1 + µv1) = λ ̸= 0

and hence ω|V1 is non-degenerate. Therefore, by Lemma 1.9 the equality

V = V1 ⊕ V ω
1 = (V ω

1 )ω ⊕ V ω
1

holds and ω1 := ω|V ω
1

is a linear symplectic structure on V ω
1 .

Likewise, observe that in case V ω
1 ̸= 0 we get a decomposition V ω

1 = V2 ⊕ V ω1
2 ,

where V2 is the linear span of a couple of linearly independent non-zero vectors

u2, v2 ∈ V ω
1 that satisfy ω1(u2, v2) = 1, and a linear symplectic structure on V ω1

2

that we call ω2 := ω1|V ω1
2

. Again, in case V ω1
2 ̸= 0 we proceed analogously. With

this construction, we reduce the dimension by two units at each step. Thus, since

we restrict to finite-dimensional vector spaces, clearly for a certain integer n ≥ 1

we eventually get to a decomposition V
ωn−2

n−1 = Vn ⊕ V ωn−1
n , where we set ω0 := ω

and V
ω−1

0 := V , that satisfies dimK V ωn−1
n < 2. Additionally, as ω|V ωn−1

n
is a linear

symplectic structure on V ωn−1
n this vector space cannot be one-dimensional and

instead we have V ωn−1
n = 0.

In conclusion, in case V ̸= 0 there exists a decomposition V = V1⊕· · ·⊕Vn such

that dimK Vj = 2, j = 1, . . . , n, and thus dimK V = 2n for a certain integer n ≥ 1.

What is more, this construction results in a basis

B = (u1, . . . , un, v1, . . . , vn)

of V for which it is easy to verify that (1.5) holds.

Conversely, let V be a vector space over K such that dimK V = 2n for a certain

integer n ≥ 0. On the one hand, in case n = 0 the trivial bilinear map is a linear

symplectic structure on V . On the other hand, in case n ≥ 1 take a basis B of V

and define an isomorphism f : V ! V ∗ by (1.5). Thereby, the induced bilinear

map ω := f
^ from (1.3) is a linear symplectic structure on V and by construction

(1.5) holds. □
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Remark 1.11. Observe that given any basis B = (ei)
2n
i=1 in fact we have

M2n×2n(ω
Z
,B,B∗) =

[
ω(ei, ej)

]2n
i,j=1

,

where the right-hand side is the usual matrix for bilinear maps. ▽

1.3. Linear complex structures

Definition 1.12 (Linear complex structure).

Let V be a vector space over K, a linear complex structure on V is a linear map

J : V ! V that satisfies J2 = − Id. ♢

1.3.1. Realification and complexification

Our first approach is to establish a one-to-one correspondence between vector

spaces over C and vector spaces over R together with a linear complex structure.

With this aim, we define the realification of a complex vector space.

Definition 1.13 (Realification of a complex vector space).

Let V be a vector space over C. The realification of V , which we denote as VR, is

the vector space over R consisting of the abelian group of V and its product by a

scalar restricted to R. ♢

Remark 1.14. Note that as abelian groups or sets we have VR = V . ▽

In turn, the multiplication by i from the product by a scalar · of V becomes a

linear complex structure on VR. Indeed,

J : VR ! VR

v 7! i · v

gives J2 = − Id. Conversely, let V be a vector space over R together with a linear

complex structure J . We can extend the product by a scalar · of V to C as

(a+ bi) · v := a · v + b · J(v) (1.6)

for any a, b ∈ R and v ∈ V . Accordingly, the abelian group of V and the extended

product form a vector space over C. Lastly, it is easy to verify that the correspon-

dence is one-to-one.
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Analogously to Definition 1.13, one may be tempted to call this last construction

the complexification of a real vector space. However, this is not a proper definition

since we will see next that not any vector space over R admits a linear complex

structure.

Remark 1.15. In contrast, it is relevant to note that any vector space V over C does

admit a linear complex structure since the multiplication by i is a linear complex

structure on V itself. ▽

Theorem 1.16.

Let V be a vector space over R, there exists a linear complex structure J on V if and
only if dimR V = 2n for a certain integer n ≥ 0. In addition, if n ≥ 1 there is a basis
B of V such that we have

M2n×2n(J,B,B) =

[
0 Idn

− Idn 0

]
. (1.7)

Proof. Let V be a vector space over R together with a linear complex structure J .

In case V ̸= 0, as det J ∈ R the equalities

(det J)2 = det J2 = det (− Id) = (−1)dimR V

imply dimR V = 2n for a certain integer n ≥ 1. In this instance, take any non-zero

v1 ∈ V and consider Jv1. In case n ≥ 2, take any non-zero v2 ∈ V which cannot

be written as a linear combination of v1 and Jv1 and consider Jv2. Inductively, we

can go on until getting a set

B = {v1, Jv1, . . . , vn, Jvn}

of non-zero vectors which satisfies that vk cannot be written as a linear combina-

tion of v1, Jv1, . . . , vk−1 and Jvk−1, for k = 2, . . . , n. Notice that if B were a linearly

independent set, by ordering it as

B = (Jv1, . . . , Jvn, v1, . . . , vn)

we would get a basis of V for which it is easy to verify that (1.7) holds. To prove

the latter, we will show that

Bk = {v1, Jv1, . . . , vk, Jvk}

is a linearly independent set for k = 1, . . . , n by induction.
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With regard to the case k = 1, by taking a linear combination λ1v1 + µ1Jv1 = 0,

λ1, µ1 ∈ R, and applying J to each side we get λ1Jv1 − µ1v1 = 0. If we multiply

these equations by λ1 and −µ1 respectively and add them afterwards we obtain

(λ2
1 + µ2

1) v1 = 0, which is only possible if λ1 = µ1 = 0.

With respect to the case 2 ≤ k ≤ n, by taking a linear combination

λ1v1 + µ1Jv1 + · · ·+ λkvk + µkJvk = 0,

with λ1, µ1, . . . , λk, µk ∈ R, and analogously applying J to each side we get

λ1Jv1 − µ1v1 + · · ·+ λkJvk − µkvk = 0.

If we multiply these equations by λk and −µk respectively and add them, in this

case we obtain

(λkλ1 + µkµ1) v1 + (λkµ1 − µkλ1) Jv1 + · · ·+ (λ2
k + µ2

k) vk = 0.

Since by construction vk is not a linear combination of v1, Jv1, . . . , vk−1 and Jvk−1,

we have λ2
k + µ2

k = 0, which is only possible if λk = µk = 0. Finally substituting

these into the first linear combination, as by induction hypothesis Bk−1 is a linearly

independent set, we also obtain

λ1 = µ1 = · · · = λk−1 = µk−1 = 0.

Conversely, let V be a vector space over R such that dimR V = 2n for a certain

integer n ≥ 1. On the one hand, in case n = 0 the trivial linear map is a linear

complex structure on V . On the other hand, in case n ≥ 1 by taking any basis B of

V and defining a linear map J by (1.7) we get that J is a linear complex structure

on V such that (1.7) holds. □

Corollary 1.17.

Let V be a vector space over C, we have dimR VR = 2dimC V .

Proof. In case V ̸= 0, take a basis (ek)nk=1 of V for a certain integer n ≥ 1. Recalling

that the multiplication by i is a linear complex structure on VR, which is a vector

space over R, it is easy to verify that we are able to take vk := ek in the construction

of the previous proof, for k = 1, . . . , n. Therefore, we obtain that

B = (ie1, . . . , ien, e1, . . . , en)

is a basis of VR and the result follows. □
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As a consequence of Theorem 1.16, if we want to associate a vector space over

C to any given vector space V over R through a linear complex structure we need

to somehow work with an even-dimensional vector space. For this, what we do is

doubling the dimension by using V ⊕ V instead of V .

Definition 1.18 (Complexification of a real vector space).

Let V be a vector space over R, consider V ⊕ V and the linear complex structure

J : V ⊕ V ! V ⊕ V

(u,w) 7! (−w, u).

The complexification of V , which we denote as VC, is the vector space over C
consisting of the abelian group of V ⊕ V and its product by a scalar extended to C
as (1.6) for any a, b ∈ R and v ∈ V ⊕ V . ♢

The next result is of straightforward proof and contrasts Corollary 1.17.

Proposition 1.19.

Let V be a vector space over R, any basis of V is also a basis of VC and particularly
we have dimC VC = dimR V .

Remark 1.20. As a mean to facilitate computations, we introduce a formal element

i, denote u+ iw := (u,w) and identify V inside either V ⊕V or VC as the first com-

ponent. In this way, everything works as one would expect, namely the notation

iw corresponds to the multiplication i · (0, w). ▽

Thereby, the following definition arises naturally.

Definition 1.21 (Conjugate and real part of a subspace).

Let V be a vector space over R. Given a subspace L of VC, the conjugate of L is

the subspace

L := {u− iw ∈ VC : u+ iw ∈ L}

of VC and the real part of L is the subspace ReL := LR ∩ V of V . ♢

Again, we omit the proof of the next result as it is straightforward.

Proposition 1.22.

Let V be a vector space over R and L be a subspace of VC, the conjugate vectors of
any basis of L form a basis of L and particularly we have dimC L = dimC L.

10



Finally, the following result will be useful in the last section of Chapter 2.

Proposition 1.23.

Let V be a vector space over R and L be a subspace of VC, the equalities L = L and
(ReL)C = L are equivalent.

Proof. Let L be a subspace of VC such that L = L. On the one hand, it is easy to

verify that the inclusion (ReL)C ⊆ L holds regardless of the hypothesis. On the

other hand, take u+ iw ∈ L. Since u− iw ∈ L ⊆ L, we have

u =
1

2
(u+ iw + u− iw) , w = − i

2
(u+ iw − (u− iw)) ∈ L

and as a consequence u,w ∈ ReL, which gives u+ iw ∈ (ReL)C.

Conversely, let L be a subspace of VC such that (ReL)C = L. On the one hand,

take u − iw ∈ L. Since u + iw ∈ L ⊆ (ReL)C, we have u,w ∈ ReL ⊆ L and thus

u− iw ∈ L. On the other hand, Proposition 1.22 gives L = L. □

1.3.2. Characterization of linear complex structures over R

Let J be a linear complex structure on a vector space V over R. Since J2 = − Id

holds, the minimal polynomial of J is x2+1 and thus its roots are ±i. This suggests

studying J from the view of VC, so we extend the linear map J to VC as

J : VC ! VC

u+ iw 7! Ju+ iJw.

Accordingly, this extension also called J is a linear complex structure on VC. Recall

that J in principle has no relation with the multiplication by i used to define VC,

which is a linear complex structure on VC itself but comes from a linear complex

structure on V ⊕ V . Since J2 = − Id holds, however, J has a +i-eigenspace and a

−i-eigenspace, which we denote as V 1,0 and V 0,1 respectively and that result in a

decomposition VC = V 1,0 ⊕ V 0,1. If we define

L := {v − iJv : v ∈ V },

it is easy to show by double inclusion that we have L = V 1,0 and also

L = {v + iJv : v ∈ V } = V 0,1.

This means that our decomposition is VC = L ⊕ L and thus any u + iw ∈ VC has

unique l1, l2 ∈ V 1,0 such that u+ iw = l1 + l2 and

J(u+ iw) = J(l1 + l2) = il1 − il2. (1.8)

11



Finally, from Corollary 1.17, Proposition 1.19 and Proposition 1.22 we get

dimR LR = 2dimC L = dimC L+ dimC L = dimC VC = dimR V.

Particularly, we have seen the following result.

Proposition 1.24.

Let V be a vector space over R, J be a linear complex structure on V and L be the
+i-eigenspace of J , we have that L is a subspace of VC that satisfies L ∩ L = 0 and
dimR LR = dimR V .

To conclude, we show that this information suffices to determine J uniquely.

Proposition 1.25.

Let V be a vector space over R. Given a subspace L of VC that satisfies L∩L = 0 and
dimR LR = dimR V , there exists a unique linear complex structure J on V such that
its +i-eigenspace is L.

Proof. Firstly, observe that {l + l : l ∈ L} is a subspace of V of dimension equal to

dimR LR = dimR V . Therefore, we obtain the equality

V = {l + l : l ∈ L}.

Furthermore, as L is a subspace of VC, given any l ∈ L we have il ∈ L. Since we

also have −il = il ∈ L, we get il − il ∈ V and hence we can define a linear map

J : V ! V

l + l 7! il − il.

Note that J is well-defined thanks to the hypothesis L ∩ L = 0. In this way, J is

clearly a linear complex structure on V and satisfies V 1,0 = L.

Finally, uniqueness comes precisely from the condition V 1,0 = L. Indeed, given

a linear complex structure J on V , its extension to VC is fully determined by V 1,0

as equality (1.8) holds. In other words, all linear complex structures on V which

give V 1,0 = L have the same extension to VC and thus coincide. □
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Chapter 2

Generalized linear algebra

This chapter introduces generalized linear algebra with the idea of encompass-

ing linear symplectic and linear complex structures. Its main goal is to approach

complex Dirac structures from a linear viewpoint before advancing to geometry in

the last chapter.

2.1. The generalized vector space

Definition 2.1 (Generalized vector space).

Let V be a vector space over K, the generalized vector space of V is the vector

space V ⊕ V ∗ equipped with the bilinear map

⟨ , ⟩ : (V ⊕ V ∗)× (V ⊕ V ∗) ! K
(X + α, Y + β) 7! 1

2
(β(X) + α(Y )),

called the canonical pairing. ♢

Remark 2.2. It is standard to use X + α := (X,α) and Y + β := (Y, β) to denote

arbitrary elements of V ⊕ V ∗. ▽

The canonical pairing is clearly symmetric. In case V ̸= 0, by taking any basis

(vi)
n
i=1 of V for a certain integer n ≥ 1 and its dual basis (vi)ni=1 of V ∗, we obtain a

basis

B = (v1 + v1, . . . , vn + vn, v1 − v1, . . . , vn − vn) := (ei)
n
i=1

of V ⊕ V ∗ such that we have

[⟨ei , ej⟩]2ni,j=1 =

[
Idn 0

0 − Idn

]
. (2.1)

13



Particularly, the canonical pairing is non-degenerate and we get the following.

Remark 2.3. As it is standard, we denote U⊥ := U ⟨,⟩ (recall Definition 1.3). ▽

Proposition 2.4.

Let V be a vector space over K and L be a subspace of V ⊕ V ∗, we have (L⊥)⊥ = L.

Proof. By replacing skew-symmetry for symmetry, Lemma 1.9 applies. □

2.2. Linear generalized complex structures

2.2.1. Generalization of linear symplectic and linear complex

structures over R

In the previous chapter, some similar properties of linear symplectic and lin-

ear complex structures emerged in the form of Theorem 1.10 and Theorem 1.16.

However, whereas the first holds both for vector spaces over R and C, the sec-

ond does only for vector spaces over R (recall Remark 1.15). Therefore, we are

interested in generalizing both classes of structures just in the real case.

Definition 2.5 (Linear generalized complex structure).

Let V be a vector space over R, a linear generalized complex structure on V is a

linear map

J : V ⊕ V ∗ ! V ⊕ V ∗

that satisfies J 2 = − Id and that is skew-symmetric for the canonical pairing, this

is ⟨J u, v⟩+ ⟨u,J v⟩ = 0 for any u, v ∈ V ⊕ V ∗. ♢

Proposition 2.6.

Let V be a vector space over R. Given a linear map J : V ⊕ V ∗ ! V ⊕ V ∗, the next
statements are equivalent.

(a) J is skew-symmetric for the canonical pairing.

(b) We have ⟨J v, v⟩ = 0 for any v ∈ V ⊕ V ∗.

Besides, if J 2 = − Id, the following statement is equivalent to the previous ones.

(c) We have ⟨J u,J v⟩ = ⟨u, v⟩ for any u, v ∈ V ⊕ V ∗.

14



Proof. We will see (a) ⇔ (b) and (a) ⇔ (c).

(a) ⇒ (b). Given v ∈ V ⊕ V ∗, since charR ̸= 2 we have

2 ⟨J v, v⟩ = ⟨J v, v⟩+ ⟨v,J v⟩ = 0 ⇒ ⟨J v, v⟩ = 0.

(a) ⇐ (b). Given u, v ∈ V ⊕ V ∗, we have

⟨J u, v⟩+ ⟨u,J v⟩ = 0 + ⟨J u, v⟩+ ⟨J v, u⟩+ 0

= ⟨J u, u⟩+ ⟨J u, v⟩+ ⟨J v, u⟩+ ⟨J v, v⟩ = ⟨J (u+ v), u+ v⟩ = 0.

(a) ⇒ (c). Given u, v ∈ V ⊕ V ∗, we have

⟨J u,J v⟩ = −⟨u,J 2v⟩ = ⟨u, v⟩.

(a) ⇐ (c). Given u, v ∈ V ⊕ V ∗, we have

⟨J u, v⟩+ ⟨u,J v⟩ = ⟨J u, v⟩ − ⟨J 2u,J v⟩ = ⟨J u, v⟩ − ⟨J u, v⟩ = 0. □

The following example shows how in the real case linear symplectic and linear

complex structures can be regarded as linear generalized complex structures.

Example 2.7.

Given an even-dimensional vector space V over R, we know from Theorem 1.10

and Theorem 1.16 that it admits a linear symplectic structure ω and a linear com-

plex structure J . In this case, consider the linear maps

Jω,JJ : V ⊕ V ∗ ! V ⊕ V ∗

defined by

Jω(X + α) := −(ω
Z
)−1(α) + ω

Z
(X) and JJ(X + α) := −J(X) + J∗(α),

where ω
Z
: V ! V ∗ is the isomorphism given in (1.2). It is appropriate to denote[

0 −(ω
Z
)−1

ω
Z

0

]
:= Jω and

[
−J 0

0 J∗

]
:= JJ .

After verifying from the definition that J∗ is a linear complex structure on V ∗, a

straightforward computation shows J 2
ω = J 2

J = − Id. Furthermore, we have

2 ⟨Jω(X + α), X + α⟩ = α(−(ω
Z
)−1(α)) + (ω

Z
(X))(X)

= −ω((ω
Z
)−1(α), (ω

Z
)−1(α)) + ω(X,X) = 0 + 0 = 0,
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where we used that ω is alternate (Remark 1.8), and

2 ⟨JJ(X + α), X + α⟩ = α(−J(X)) + (J∗(α))(X)

= −α(J(X)) + α(J(X)) = 0,

where we used the definition of J∗. Thus, by Proposition 2.6 we have that Jω and

JJ are linear generalized complex structures. ⃝

2.2.2. Characterization of linear generalized complex structures

Once seen these examples, note that any linear generalized complex structure

J on a vector space V over R is particularly a linear complex structure on V ⊕V ∗.

As V ⊕V ∗ is also a vector space over R, Proposition 1.24 gives that L := (V ⊕V ∗)1,0

is a subspace of (V ⊕ V ∗)C that satisfies dimLR = dimR (V ⊕ V ∗) and L ∩ L = 0.

We will see that the extra condition of linear generalized complex structures,

namely skew-symmetry for the canonical pairing, gives us now more information

about L. This motivates the following definition.

Definition 2.8 (Isotropic subspace).

Let V be a vector space over K, a subspace U of V ⊕ V ∗ is isotropic if U ⊆ U⊥. ♢

Remark 2.9. Given a vector space V over R one can canonically identify (V ⊕V ∗)C

and VC ⊕ (VC)
∗. When we talk about the canonical pairing, in the background we

work with VC ⊕ (VC)
∗ but to keep it simple we will always refer to (V ⊕ V ∗)C. ▽

A straightforward computation shows the next first result.

Proposition 2.10.

Let V be a vector space over R and L be an isotropic subspace of (V ⊕ V ∗)C, we have
that L is also isotropic.

Our next step is to prove analogous results to Proposition 1.24 and Proposition

1.25 for linear generalized complex structures.

Proposition 2.11.

Let V be a vector space over R, J be a linear generalized complex structure on V and
L be the +i-eigenspace of J , we have that L is an isotropic subspace of (V ⊕ V ∗)C

that satisfies L ∩ L = 0 and dimC L = dimR V .
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Proof. Corollary 1.17 gives dimR LR = 2dimC L. Since dimR V = dimR V
∗, we also

have dimR (V ⊕ V ∗) = 2 dimR V and due to Proposition 1.24 all that remains to be

proved is the isotropy of L.

If we take v ∈ L, for any u ∈ L we get

i⟨u, v⟩ = ⟨iu, v⟩ = ⟨J u, v⟩ = −⟨u,J v⟩ = −⟨u, iv⟩ = −i⟨u, v⟩.

Yet again from charK ̸= 2 it follows that ⟨u, v⟩ = 0, which gives v ∈ L⊥ and hence

L ⊆ L⊥ as intended. □

Example 2.12.

Let us consider JJ and Jω from Example 2.7. We define

Lω := {X − iω(X) : X ∈ VC} and LJ := V 0,1 ⊕ (V ∗)1,0,

where V 1,0 and (V ∗)0,1 refer to the −i and +i-eigenspace of J and J∗, respectively.

From Corollary 1.17, Proposition 1.19 and Proposition 1.24 we have

dimC Lω = dimC VC = dimR V and

dimC LJ = dimC V
1,0 + dimC (V

∗)0,1 = 2dimC V
1,0 = dimR (V

1,0)R = dimR V.

By Proposition 2.11, this means that dimC LJ and dimC Lω equal the dimension of

the +i-eigenspace of JJ and Jω, respectively. Since a straightforward computation

shows that LJ and Lω are subspaces of the corresponding +i-eigenspaces, we get

in fact an equality. Finally, one can verify that indeed both LJ and Lω are isotropic

subspaces of (V ⊕ V ∗)C. ⃝

Proposition 2.13.

Let V be a vector space over R. Given an isotropic subspace L of (V ⊕ V ∗)C that
satisfies L ∩ L = 0 and dimC L = dimR V , there exists a unique linear generalized
complex structure J on V such that its +i-eigenspace is L.

Proof. Analogously to the preceding proof, the equalities dimR LR = 2dimC L and

dimR (V ⊕ V ∗) = 2 dimR V along with Proposition 1.25 give a unique linear com-

plex structure J on V ⊕ V ∗ for which (V ⊕ V ∗)1,0 = L holds. Therefore, all that is

left to show is the skew-symmetry of J for the canonical pairing.

With this aim, recall that we have

V ⊕ V ∗ = {l + l : l ∈ L}
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and as a consequence we can write any v ∈ V ⊕ V ∗ as v = l+ l for a certain l ∈ L.

Thereby, we get

⟨J (l + l), l + l⟩ = ⟨il − il, l + l⟩ = i⟨l, l⟩+ i⟨l, l⟩ − i⟨l, l⟩ − i⟨l, l⟩ = i⟨l, l⟩ − i⟨l, l⟩.

As L is isotropic, Proposition 2.10 gives ⟨l, l⟩ = ⟨l, l⟩ = 0 and thus ⟨J v, v⟩ = 0. □

2.2.3. Maximally isotropic subspaces

We have seen in Proposition 2.11 and Proposition 2.13 that a linear generalized

complex structure on a vector space V over R is equivalently given by an isotropic

subspace L of (V ⊕ V ∗)C such that L ∩ L = 0 and dimC L = dimR V . We will now

work towards a first characterization of isotropic subspaces of (V ⊕ V ∗)C whose

dimension equals dimR V . Even though the outcome is well-known, let us remark

that the core of this study, this is the complex case of Lemma 2.14 and Proposition

2.16, was proved independently.

In the first place, given a vector space V over K note that since the canonical

pairing is bilinear and non-degenerate from equality (1.4) we get

dimK L+ dimK L⊥ = dimK (V ⊕ V ∗) = 2 dimK V (2.2)

for any subspace L of V ⊕ V ∗. In the second place, we need the following result.

Lemma 2.14.

Let V be a vector space over K and L be a subspace of V ⊕ V ∗ such that L ⊊ L⊥,
there exists a non-zero v ∈ L⊥ such that v ̸∈ L and ⟨v, v⟩ = 0.

Proof. To begin with, say C is the non-zero space that satisfies L⊥ = L⊕C. We see

first that dimKC = 1 is not possible, otherwise the equality

dimK L+ dimK L⊥ = 2dimK L+ dimK C = 2dimK L+ 1

would contradict equality (2.2). Therefore, we have dimK C ≥ 2. Moreover, from

equality (2.2) we also get

dimK L⊥ > dimK L = 2dimK V − dimK L⊥ =⇒ dimK L⊥ > dimK V. (2.3)

We distinguish now between the real and the complex case.

On the one hand, suppose that V ̸= 0 is a vector space over R, take a basis

(vi)
n
i=1 and its dual basis (vi)ni=1 for a certain integer n ≥ 1, and define P as the
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linear span of v1 + v1, . . . , vn + vn and N as the linear span of v1 − v1, . . . , vn − vn.

Clearly, we have

dimR P = dimR N = dimR V = n.

As a result, from equality (2.3) we get

2 dimR V = dimR (V ⊕ V ∗) ≥ dimR (L
⊥ + P ) = dimR L

⊥ + dimR P − dimR L
⊥ ∩ P

> 2 dimR V − dimR L
⊥ ∩ P,

which gives dimR L
⊥ ∩ P > 0 and L⊥ ∩ P ̸= 0. Analogously, we get L⊥ ∩ N ̸= 0.

Consequently, there exist non-zero vectors u1 ∈ L⊥ ∩ P and w1 ∈ L⊥ ∩N . What is

more, since L⊥ = L ⊕ C, there are decompositions u1 = u2 + u and w1 = w2 + w

with u2, w2 ∈ L ⊊ L⊥ and u,w ∈ C. Thus, we get

⟨u, u⟩ = ⟨u1 − u2, u1 − u2⟩ = ⟨u1, u1⟩ − ⟨u1, u2⟩ − ⟨u2, u1⟩+ ⟨u2, u2⟩

= ⟨u1, u1⟩+ 0 + 0 + 0 = ⟨u1, u1⟩ > 0

and in the same way also

⟨w,w⟩ = ⟨w1 − w2, w1 − w2⟩ = ⟨w1, w1⟩ − ⟨w1, w2⟩ − ⟨w2, w1⟩+ ⟨w2, w2⟩

= ⟨w1, w1⟩+ 0 + 0 + 0 = ⟨w1, w1⟩ < 0,

where in each last step we used that a non-zero v ∈ P satisfies ⟨v, v⟩ > 0 whereas

a non-zero v ∈ N satisfies ⟨v, v⟩ < 0 (recall (2.1)). Thereby, u and w are non-zero

and linearly independent. Besides, the polynomial

P (x) := ⟨u, u⟩x2 + 2⟨w, u⟩x+ ⟨w,w⟩ ∈ R[x]

has at least a root λ ∈ R. By construction, v := w+λu ∈ C is non-zero and satisfies

⟨v, v⟩ = 0.

On the other hand, suppose that V is a vector space over C. At the beginning of

the proof we saw dimC C ≥ 2, so we can take two linearly independent non-zero

vectors u,w ∈ C. Then, the polynomial

P (x) := ⟨u, u⟩x2 + 2⟨w, u⟩x+ ⟨w,w⟩ ∈ C[x]

has at least a root λ ∈ C. Again, by construction v := w + λu ∈ C is non-zero and

satisfies ⟨v, v⟩ = 0. □

Remark 2.15. As it is standard in algebra, an isotropic subspace is called maximally

isotropic if it is not strictly contained in an isotropic subspace. ▽
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Proposition 2.16.

Let V be a vector space over K. Given a subspace L of V ⊕ V ∗, the next statements
are equivalent.

(a) L is isotropic and dimK L = dimK V .

(b) L = L⊥.

(c) L is maximally isotropic.

Proof. We will see (a) ⇔ (b) and (b) ⇔ (c).

(a) ⇒ (b). It follows directly from the hypothesis L ⊆ L⊥ and from the equality

dimK L = dimK L⊥ given by the hypothesis dimK L = dimK V and equality (2.2).

(a) ⇐ (b). Similarly, isotropy and dimK L = dimK L⊥ follow from the hypothesis

and dimK L = dimK V does from the latter and equality (2.2).

(b) ⇒ (c). Once again, L is clearly isotropic. Given now an isotropic subspace M

of V ⊕ V ∗ such that L ⊆ M , which implies M⊥ ⊆ L⊥, the chain of inclusions

M⊥ ⊆ L⊥ = L ⊆ M ⊆ M⊥

holds and gives L = M as intended.

(b) ⇐ (c). As L is isotropic, we have L ⊆ L⊥. By contradiction, suppose L ⊊ L⊥.

From Lemma 2.14 there exists a non-zero v ∈ L⊥ such that v ̸∈ L and ⟨v, v⟩ = 0.

If we call S the linear span of v, we obtain an isotropic subspace L⊕S that strictly

contains L and hence a contradiction to the hypothesis. □

Corollary 2.17.

Let V be a vector space over R. A subspace L of (V ⊕ V ∗)C is maximally isotropic if
and only if it is isotropic and dimC L = dimR V .

Proof. Take the vector space VC, which is a vector space over C. The result is direct

from the complex version of Proposition 2.16 together with Proposition 1.19. □

Therefore, from Proposition 2.11 and Proposition 2.13 we get that any linear

generalized complex structure on a vector space V over R is equivalently given by

a maximally isotropic subspace L of (V ⊕V ∗)C that satisfies L∩L = 0. To conclude

this subsection, we show an analogous result to Theorem 1.10 and Theorem 1.16

for linear generalized complex structures.

20



Theorem 2.18.

Let V be a vector space over R, there exists a linear generalized complex structure J
on V if and only if dimR V = 2n for a certain integer n ≥ 0.

Proof. Let V be a vector space over R together with a linear generalized complex

structure J . In case V ̸= 0, take any non-zero v1 ∈ V . From Proposition 2.6 we

have ⟨J v1, v1⟩ = 0 and as ⟨v1, v1⟩ = 0 holds it also gives ⟨J v1,J v1⟩ = 0. Moreover,

since J is in particular a linear generalized complex structure on V ⊕V ∗ the same

argument given in the proof of Theorem 1.16 shows that v1 and J v1 are linearly

independent. Therefore, their linear span, say U1, is a two-dimensional isotropic

subspace of V ⊕ V ∗. If U1 is maximally isotropic, we stop here.

Otherwise, by Proposition 2.16 we have U1 ⊊ U⊥
1 and from the real version of

Lemma 2.14 there is a non-zero vector v2 ∈ U⊥
1 such that v2 ̸∈ U1 and ⟨v2, v2⟩ = 0.

Then, as before we have ⟨J v2, v2⟩ = 0 and ⟨J v2,J v2⟩ = 0. Moreover, our choice

gives ⟨U1, v2⟩ = 0 and since by construction JU1 = U1, it gives

⟨J v2, U1⟩ = −⟨v2,JU1⟩ = −⟨v2, U1⟩ = 0

as well. In addition, once again by the same argument of Theorem 1.16 we have

that v1,J v1, v2 and J v2 are linearly independent, and hence their linear span, say

U2, is a four-dimensional isotropic subspace of V ⊕V ∗. Since dimR U2 = dimR U1+2

and we only work with finite-dimensional vector spaces, if we go on inductively

sooner or later we will end up with an isotropic subspace Un, for a certain integer

n ≥ 1, which is maximally isotropic. By construction, we have dimR Un = 2n and

the real version of Proposition 2.16 gives

dimR V = dimR Un = 2n.

Finally, the converse has already been shown through Example 2.7. □

2.2.4. A description of maximally isotropic subspaces

After Proposition 2.16, our next step is to give a more descriptive characteriza-

tion of maximally isotropic subspaces.

Let V be a vector space over K and L be a subspace of V ⊕ V ∗. To begin with,

observe that given X + β ∈ L and α ∈ V ∗, we have

X + α = X + β + (α− β) (2.4)
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and thus X + α ∈ L if and only if α − β ∈ L, this is α − β ∈ L ∩ V ∗. In our case

of interest we have the following preliminary result, where we refer to the linear

projection maps V ⊕ V ∗ ! V and V ⊕ V ∗ ! V ∗ as πV and πV ∗, respectively.

Lemma 2.19.

Let V be a vector space over K and L be a subspace of V ⊕ V ∗, we have

L ∩ V ∗ = Ann (πVL
⊥) and L ∩ V = Ann (πV ∗L⊥).

Proof. Let us just see the first case as the second is analogous. On the one hand,

take β ∈ L ∩ V ∗. For any X ∈ πVL
⊥, there is one α ∈ V ∗ such that X + α ∈ L⊥.

Thus, we have

β(X) = 2 ⟨X + α, β⟩ = 0,

which gives β ∈ Ann (πVL
⊥). On the other hand, take β ∈ Ann (πVL

⊥). For any

X + α ∈ L⊥, we have X ∈ πVL
⊥ and thus

2 ⟨X + α, β⟩ = β(X) = 0,

which together with Proposition 2.4 gives β ∈ (L⊥)⊥ = L. □

Therefore, in case L is maximally isotropic this result gives that the linear map

ε : E ! E∗

X 7! α|E,
(2.5)

where E := πVL and α ∈ V ∗ is one such that X + α ∈ L, is well-defined. Indeed,

by Proposition 2.16 we have L = L⊥. Thus, if X ∈ E and α, β ∈ V ∗ are ones such

that X + α,X + β ∈ L from Proposition 2.16 and Lemma 2.19 we get

α− β ∈ L ∩ V ∗ = Ann (πVL
⊥) = AnnE,

which gives α|E = β|E. On top of that, for any X ∈ E there is one α ∈ V ∗ such

that X + α ∈ L and since L is isotropic we get

α|E(X) = α(X) = ⟨X + α,X + α⟩ = 0,

which gives that the induced bilinear map ε
^ from (1.3) is skew-symmetric (recall

Remark 1.8). Finally, by defining the subspace

L(E, ε) := {X + α ∈ E ⊕ V ∗ : α|E = ε(X)} (2.6)

of V ⊕ V ∗ we obtain the following result.
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Proposition 2.20.

Let V be a vector space over K and L be a maximally isotropic subspace L of V ⊕ V ∗,
we have L = L(E, ε), where E := πVL and ε is the linear map (2.5).

Proof. On the one hand, our construction gives L ⊆ L(E, ε). On the other hand,

take X + α ∈ L(E, ε). As X ∈ E, there is one β ∈ V ∗ such that X + β ∈ L and

thus we get ε(X) = β|E. Thereby, we have α|E = β|E and from Proposition 2.16

and Lemma 2.19 we get

α− β ∈ AnnE = AnnπVL
⊥ = L ∩ V ∗ ⊆ L,

which together with equality (2.4) gives X + α ∈ L. □

Observe now that one can define the subspace (2.6) of V ⊕V ∗ starting with any

subspace E of V and any linear map ε : E ! E∗. Correspondingly, the converse

result follows.

Proposition 2.21.

Let V be a vector space over K. Given a subspace E of V and a linear map ε : E ! E∗

such that the induced bilinear map ε
^ is skew-symmetric, the subspace L := L(E, ε)

of V ⊕ V ∗ is maximally isotropic, E = πVL and ε is the linear map (2.5).

Proof. Firstly, take Y + β ∈ L. Since ε
^ is alternate, for any X + α ∈ L we have

2 ⟨X + α, Y + β⟩ = β(X) + α(Y ) = β|E(X) + α|E(Y )

= (ε(X))(X) + (ε(Y ))(X) = ε
^
(X,X) + ε

^
(Y, Y ) = 0 + 0 = 0

and thus L is isotropic. Secondly, it is easy to verify that we have AnnE ⊆ L(E, ε)

and that the succession

0 −! AnnE ↪−! L(E, ε)
πV−−! E −! 0

X + α 7−! X
(2.7)

is exact, namely Ker πV = AnnE and πV (L(E, ε)) = E. In particular, the equality

(1.1) together with the First Isomorphism Theorem gives

dimK L(E, ε) = dimKE + dimK AnnE = dimK V

and thus from Proposition 2.16 we obtain that L is maximally isotropic. Finally,

by construction we get E = πVL and that ε is given by (2.5). □

23



2.2.5. Restriction to a subspace

Given a proper subspace U of V and a maximally isotropic subspace L of V ⊕V ∗,

we will now use the last results to study L from the viewpoint of U ⊕ U∗. Our

reason for this is to see what a linear generalized complex structure on V induces

on U . Let us remark that this section was inspired by Section 6 of [Bur13] and

developed independently.

Remark 2.22. For a proper subspace U of V , there is a restriction map |U : V ∗ ! U∗

and thus U∗ is a quotient rather than a subset of V ∗. ▽

This observation implies that we cannot just consider (U ⊕ U∗) ∩ L because this

intersection is not well-defined. However, one can easily show by double inclusion

that we have

U∗ = {α|U : α ∈ V ∗} and hence U ⊕ U∗ = {X + α|U : X + α ∈ U ⊕ V ∗}.

Thereby, we define the following.

Definition 2.23 (Restriction of a maximally isotropic subspace).

Let V be a vector space over K and L be a maximally isotropic subspace of V ⊕V ∗.

Given a subspace U of V , the restriction of L to U ⊕ U∗ is the subspace

LU := {X + α|U : X + α ∈ (U ⊕ V ∗) ∩ L} of U ⊕ U∗. ♢

In particular, we recover L by taking U = V , this is LV = L. We show next that

LU is in fact a maximally isotropic subspace of U ⊕ U∗.

Proposition 2.24.

Let V be a vector space over K, U be a subspace of V and L be a maximally isotropic
subspace of V ⊕ V ∗, the subspace LU of U ⊕ U∗ is maximally isotropic.

Proof. Recall that from Proposition 2.20 we have L = L(E, ε), where E := πVL

and ε is the linear map (2.5). To begin with, note that the linear map

εU : E ∩ U ↪−! E
ε−−! E∗ −! (E ∩ U)∗

α 7−! α|E∩U

induces a skew-symmetric bilinear map εÛ from (1.3). Since E ∩ U is a subspace

of U , Proposition 2.21 gives that L(E ∩U, εU) is a maximally isotropic subspace of

U ⊕ U∗. Therefore, it suffices to show that we have LU = L(E ∩ U, εU).
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By double inclusion, on the one hand take X + α|U ∈ LU , namely

X + α ∈ (U ⊕ V ∗) ∩ L.

In the first place, we have X ∈ U . In the second place, we have X + α ∈ L, which

gives X ∈ E and α|E = ε(X). Consequently, we get X ∈ E ∩ U and

(α|U)|E∩U = α|E∩U = (α|E)|E∩U = (ε(X))|E∩U = εU(X),

which give X + α|U ∈ L(E ∩ U, εU). On the other hand, take

X + β ∈ L(E ∩ U, εU).

We have X ∈ E ∩ U and that β ∈ U∗ satisfies β|E∩U = εU(X). In this instance, the

linear map
γ : E + U −! K

Y + Z 7−! (ε(X))(Y ) + β(Z)

is well-defined. Indeed, let Y1, Y2 ∈ E and Z1, Z2 ∈ U be such that Y1+Z1 = Y2+Z2.

We have

Y1 − Y2 = Z2 − Z1 ∈ E ∩ U

and hence we get

β(Z2 − Z1) = β|E∩U(Z2 − Z1) = (εU(X))(Z2 − Z1)

= (ε(X))|E∩U(Z2 − Z1) = (ε(X))(Z2 − Z1) = (ε(X))(Y1 − Y2),

which gives

(ε(X))(Y1) + β(Z1) = (ε(X))(Y2) + β(Z2).

Take now one α ∈ V ∗ such that α|E+U = γ and consider X + α. In the first place,

since X ∈ E ∩ U , we have X + α ∈ U ⊕ V ∗. In the second place, we have X ∈ E

and that α ∈ V ∗ satisfies

α|E = (α|E+U)|E = γ|E = ε(X),

which gives X + α ∈ L and thus we have

X + α ∈ (U ⊕ V ∗) ∩ L

and X + α|U ∈ LU . Finally, we have

α|U = (α|E+U)|U = γ|U = β,

which gives X + β ∈ LU . □
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At this point, consider any vector space V over R with dimR V = 2n for a certain

integer n ≥ 1. From Theorem 2.18, we know that V admits a linear generalized

complex structure J and Proposition 2.11 together with Proposition 2.16 assure

that its +i-eigenspace L is a maximally isotropic subspace of (V ⊕ V ∗)C such that

L ∩ L = 0. Consider now any subspace U of V with dimR U = 2n − 1. Firstly, UC

is a subspace of VC and the complex version of Proposition 2.24 gives that LUC is a

maximally isotropic subspace of (U ⊕U∗)C (recall Remark 2.9). Secondly, we have

LUC ∩LUC ̸= 0. Indeed, LUC ∩LUC = 0 would give by Proposition 2.13 that there is

a linear generalized complex structure JU of U , which contradicts Theorem 2.18.

Therefore, this suggests that we should set aside the condition L ∩ L = 0 and

study the bigger class of maximally isotropic subspaces.

2.3. Linear complex Dirac structures

The following definition is just a renaming of maximally isotropic subspaces.

Definition 2.25 (Linear complex Dirac structure).

Let V be a vector space over R. A linear complex Dirac structure on V is a maxi-

mally isotropic subspace L of (V ⊕ V ∗)C. ♢

In order to give an overview of linear complex Dirac structures, we will study

three integers that characterize them. Throughout this last section of the chapter,

our main guideline is Section 3.1 of [Agu20] and we also take some information

from Section 4 of [AR22].

Definition 2.26 (The invariants).

Let V be a vector space over R, L be a linear complex Dirac structure on V and

E := πVCL, the invariants of L are the following non-negative integers.

• The real index of L is r := dimC (L ∩ L).

• The order of L is s := dimC VC − dimC (E + E ).

• The type of L is t := dimC (E + E )− dimC E. ♢

The real index, introduced in [Gua03], is the most basic invariant. We have the

following fundamental result, analogous to Theorem 2.18.
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Theorem 2.27.

Let V be a vector space over R, there exists a linear complex Dirac structure L on V

with real index r if and only if dimR V = 2n+ r for a certain integer n ≥ 0.

The proof of the direct statement is developed in subsection 3.1.2 and concluded

in Corollary 3.8 of [Agu20]. Moreover, Example 3.15 or Example 3.16 also from

[Agu20] suffice to prove the converse.

In order to study some properties of the invariants, we have to introduce some

associated subspaces. Given a linear complex Dirac structure L on a vector space

V over R, recall Definition 1.21 and consider the subspaces

E := πVCL of VC,

K := Re (L ∩ L) of V ⊕ V ∗,

∆0 := πVK of V, (2.8)

∆ := Re (E ∩ E ) of V,

D := Re (E + E ) of V.

In the first place, from Proposition 1.19 and Proposition 1.23 we have

dimR K = dimC (L ∩ L), dimR Re (L+ L) = dimC (L+ L),

dimR ∆ = dimC (E ∩ E ), and dimR D = dimC (E + E ).
(2.9)

In the second place, we have the next results.

Lemma 2.28.

Let V be a vector space over R, L be a linear complex Dirac structure on V and K

and D be the associated subspaces of L from (2.8), we have D = πVK
⊥.

Proof. Firstly, we will show that the equality

K⊥ = Re (L+ L) (2.10)

holds. On the one hand, take u ∈ Re (L + L). We have u ∈ L + L (recall Remark

1.14) and hence there are u1 ∈ L and u2 ∈ L such that u = u1 + u2. Furthermore,

since L is isotropic, we have that L is isotropic as well (Proposition 2.10). Thereby,

for any w ∈ K we have w ∈ L ∩ L and we get

⟨w, u⟩ = ⟨w, u1 + u2⟩ = ⟨w, u1⟩+ ⟨w, u2⟩ = 0 + 0 = 0,
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which gives u ∈ K⊥ and thus Re (L+L) ⊆ K⊥. On the other hand, from equalities

(1.4) and (2.9), Corollary 2.17 and Proposition 1.22 we get

dimRK
⊥ = dimR (V ⊕ V ∗)− dimR K = 2dimR V − dimC (L ∩ L)

= 2 dimR V − (2 dimC L− dimC (L+ L))

= 2 dimR V − (2 dimR V − dimR Re (L+ L)) = dimR Re (L+ L),

which gives equality (2.10). Secondly, the chain of equalities

Re (E + E ) = Re (πVCL+ πVCL) = Re (πVC(L+ L)) = πV Re (L+ L)

holds, which together with equality (2.10) gives D = πVK
⊥. □

Corollary 2.29.

Let V be a vector space over R, L be a linear complex Dirac structure on V and K be
the associated subspace of L from (2.8), we have that K is isotropic.

Proof. It is direct from inclusion Re (L ∩ L) ⊆ Re (L+ L) and equality (2.10). □

Proposition 2.30.

Let V be a vector space over R, L be a linear complex Dirac structure on V and ∆0,
∆ and D be the associated subspaces of L from (2.8), we have ∆0 ⊆ ∆ ⊆ D.

Proof. It is easy to verify that the chain of inclusions

πVK = πV Re (L ∩ L) = Re (πVC(L ∩ L)) ⊆ Re ((πVCL) ∩ (πVCL))

= Re (E ∩ E ) ⊆ Re (E + E )

holds, which gives ∆0 ⊆ ∆ ⊆ D. □

Once seen this results for the associated subspaces, with regard to the invariants

we obtain the following result.

Proposition 2.31.

Let V be a vector space over R, L be a linear complex Dirac structure on V with real
index r, order s and type t and ∆0 and ∆ be the associated subspaces of L from (2.8),
the following equalities hold.

(a) dimR ∆0 = r − s.

(b) dimR ∆ = dimR V − s− 2t.
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Proof.

(a). It is easy to verify that the succession

0 −! K ∩ V ∗ ↪−! K
πV−−! ∆0 −! 0

is exact, which together with the First Isomorphism Theorem gives

dimRK − dimR K ∩ V ∗ = dimR ∆0.

Besides, Lemma 2.19 and Lemma 2.28 give

K ∩ V ∗ = Ann (πVK
⊥) = AnnD

and hence from equalities (1.1) and (2.9) together with Proposition 1.19 we get

dimR ∆0 = dimRK − dimR (K ∩ V ∗) = dimC (L ∩ L)− dimRAnnD

= r − (dimR V − dimRD) = r − (dimC VC − dimC (E + E )) = r − s.

(b). From Proposition 1.19 and Proposition 1.22, we get

dimR ∆ = dimC (E ∩ E ) = 2 dimC E − dimC (E + E ) = dimC E − t

= dimC VC − (dimC VC − dimC E)− t = dimR V − (s+ t)− t

= dimR V − s− 2t. □

Corollary 2.32.

Let V be a vector space over R and L be a linear complex Dirac structure of V with
real index r, order s and type t, the following inequalities hold.

(a) 0 ≤ r ≤ dimR V .

(b) 0 ≤ s ≤ r.

(c) 0 ≤ t ≤ 1
2
(dimR V − r).

Proof. Trivially, we have r, s, t ≥ 0. Moreover, (a) follows directly from Theorem

2.27 and (b) does from Proposition 2.31 (a) and the fact dimR∆0 ≥ 0.

(c). From Proposition 2.30 and Proposition 2.31 we get

r − s = dimR ∆0 ≤ dimR ∆ = dimR V − s− 2t = dimR V − r + r − s− 2t

=⇒ 0 ≤ dimR V − r − 2t =⇒ t ≤ 1

2
(dimR V − r). □
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Example 2.33.

Note that due to Proposition 2.11 and Proposition 2.13 linear generalized complex

structures correspond to linear complex Dirac structures with real index r = 0 and

hence by Corollary 2.32 also of order s = 0. In regard of the type, we will look at

the complex Dirac structures from Example 2.12. Let V be a vector space over R
such that dimR V = 2n for a certain integer n ≥ 0.

On the one hand, let ω be a linear symplectic structure on V and take the linear

complex Dirac structure Lω. Clearly, we have E = VC and thus the type of Lω is

t = dimC (E + E )− dimCE = dimC VC − dimC VC = 0.

On the other hand, let J be a linear complex structure on V and take the linear

complex Dirac structure LJ . We have E = V 0,1, where V 0,1 is the −i-eigenspace

of J , and thus Corollary, 1.17 Proposition 1.22 and Proposition 1.24 give that the

type of LJ is

t = dimC (V
0,1 + V 1,0)− dimC V

0,1 = 2dimC V
1,0 − dimC V

1,0

= dimC V
1,0 =

1

2
dimR (V

1,0)R =
1

2
dimR V,

and hence we get from Corollary 2.32 that this structures have extreme type. ⃝

To conclude this chapter, let us remark that the invariants we worked with are

relevant because they suffice to fully classify linear complex Dirac structures (see

Proposition 3.18 of [Agu20] or Proposition 4.15 of [AR22]). Finally, from Corollary

2.32 we get that any possible combination of the invariants is an integer triplet of

a tetrahedron (see Figure 2.1, original from [AR22] and where one can find more

information about the labelled structures we have not talked about).
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Figure 2.1: Tetrahedron representing the linear structures encompassed by linear

complex Dirac structures.
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Chapter 3

Geometry and generalized geometry

As we highlighted in the introduction, the bunch of structures we approached

from a linear viewpoint make their mark in geometry. Therefore, in this chapter

we integrate some of our study to geometry. This chapter is not as detailed as the

previous ones and assumes that the reader has some familiarity with manifolds.

3.1. Geometry

3.1.1. Preliminaries

To begin with, we gather without much detail some standard definitions and

properties that will be required afterwards. For further insight, see [Lee13].

Let M be a manifold, we denote its tangent and cotangent vector bundles by T

and T ∗, respectively. Consider any X ∈ Γ(T ). In the first place, the contraction by

X and the exterior derivative are linear maps

ιX , d : Ω•(M) ! Ω•(M)

that give ιXα ∈ Ωk−1(M) and dα ∈ Ωk+1(M) for any integer k ≥ 0 and α ∈ Ωk(M).

Particularly, for any α ∈ Ω1(M) and f ∈ C∞(M) we have ιXα = α(X) and

ιXdf = (df)(X) = X(f).

Moreover, for any integers k, l ≥ 0, α ∈ Ωk(M) and β ∈ Ωl(M) we have

ιX(α ∧ β) = (ιXα) ∧ β + (−1)kα ∧ (ιXβ) and (3.1)

d (α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ). (3.2)
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Besides, it is relevant to note that the exterior derivative satisfies d ◦ d = 0.

Secondly, the Lie derivative of forms LX : Ω•(M) ! Ω•(M) satisfies “Cartan’s

magic formula”, this is

LX = d ◦ ιX + ιX ◦ d. (3.3)

Thirdly, by understanding vector fields as derivations the bilinear map

[ , ] : Γ(T )× Γ(T ) ! Γ(T )

(X, Y ) 7! X ◦ Y − Y ◦X

gives that the couple (Γ(T ), [ , ]) is a Lie algebra, and hence is referred to as the Lie

bracket. Furthermore, for any X, Y ∈ Γ(T ) the Lie bracket satisfies

ι[X,Y ] = LX ◦ ιY − ιY ◦ LX (3.4)

and for any f ∈ C∞(M) we have

[X, fY ] = (Xf)Y + f [X, Y ]. (3.5)

Lastly, given an n-manifold M for a certain integer n ≥ 0, one extends C-linearly

the Lie bracket to TC and the contraction, the exterior and the Lie derivative to

Ω•
C(M) :=

n⊕
k=0

Γ
(
∧k (TC)

∗
)
.

3.1.2. Complex and symplectic structures

Let M be a manifold. In the place of a vector space, our starting point is now

the tangent bundle T of M . Thereby, the next definition naturally arises.

Definition 3.1 (Almost complex structure).

Let M be a manifold, an almost complex structure J on M is a vector bundle map

J : T ! T that satisfies J2 = − Id. A manifold together with an almost complex

structure is called an almost complex manifold. ♢

Nevertheless, from differential geometry we have the next definition.

Definition 3.2 (Complex manifold).

A complex 2n-manifold, for an integer n ≥ 0, is a manifold defined by an atlas of

charts to the unit disc of Cn and such that the transition maps are holomorphic. ♢

33



It is straightforward to show that any complex manifold M induces an almost

complex structure on M . In a nutshell, it suffices to consider the local coordinate

basis B at each fiber, define a map J : TM ! TM pointwise by (1.7) and verify

that indeed J is a vector bundle map.

Therefore, any complex manifold induces an almost complex structure, but we

would like both notions to be equivalent. The converse, however, does not hold

in general and requires an extra integrability condition given by the Newlander-

Nirenberg Theorem, originally proved in [NN57]. Briefly, given an almost com-

plex manifold (M,J) of +i-eigenbundle L, the theorem claims that if Γ(L) is invo-

lutive for the Lie bracket, this is

[Γ(L),Γ(L)] ⊆ Γ(L) (3.6)

there is a unique holomorphic atlas that endows M with the structure of a complex

manifold and such that the induced almost complex structure is precisely J (see

[Wel80] for more details). Therefore, the involutivity of Γ(L) for the Lie bracket

enables us to recover a complex manifold just from the information coded in its

tangent vector bundle. Consequently, we define the following.

Definition 3.3 (Complex structure).

Let M be a manifold, a complex structure J on M is an almost complex structure

on M such that its +i-eigenbundle L satisfies (3.6). ♢

With regard to symplectic geometry, one has a similar situation. In this case, the

corresponding integrability condition gives the next definition.

Definition 3.4 (Symplectic structure).

Let M be a manifold, an almost symplectic structure ω on M is a non-degenerate

2-form ω ∈ Ω2(M). A symplectic structure ω on M is a closed almost symplectic

structure on M , this is dω = 0. ♢

3.2. Generalized geometry

In this last section, to get the full picture we combine generalized linear algebra

with geometry. Let M be a manifold, our starting point is the generalized tangent
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bundle T ⊕T ∗, which we denote as T. This is the global version of the generalized

vector space V ⊕ V ∗ we took in Chapter 2. In this context, the canonical pairing

⟨ , ⟩ is naturally defined on the fibers of T. As in the last chapter, we will introduce

generalized geometry as a means to describe together both complex and symplec-

tic structures. With this aim and following the discussion of the last section, one

would like to encompass their integrability conditions.

3.2.1. The Dorfman Bracket

The joint description of symplectic and complex structures will be done with the

Dorfman bracket.

Definition 3.5 (The Dorfman bracket).

Let M be a manifold, the extension of the Lie bracket to Γ(T) as

[ , ] : Γ(T)× Γ(T) ! Γ(T)
(X + α, Y + β) 7! [X, Y ] + LXβ − ιY dα,

(3.7)

is called the Dorfman bracket. ♢

Clearly, the Dorfman bracket is bilinear. To see its properties, consider first the

projection map πT : Γ(T) ! Γ(T ), the isomorphism ⟨ , ⟩Z from (1.2) and define

D := (⟨ , ⟩Z)−1 ◦ (πT )
∗ ◦ d : C∞(M) ! Γ(T).

Lemma 3.6.

Let M be a manifold, we have D = 2d.

Proof. Take f ∈ C∞(M). In the first place, for any X + α ∈ Γ(T) we have

((πT )
∗(df)) (X + α) = df(πT (X + α)) = df(X) = 2 ⟨X + α, df⟩,

which gives (πT )
∗ ◦ d = 2 ⟨ , ⟩Z ◦ d and thus D = 2d. □

Proposition 3.7.

Let M be a manifold, for any f ∈ C∞(M) and u, v, w ∈ Γ(T) the following holds.

(a) [u, v] + [v, u] = D⟨u, v⟩.

(b) [u, [v, w]] = [[u, v], w] + [v, [u,w]].

(c) (πT (u)) (⟨v, w⟩) = ⟨[u, v], w⟩+ ⟨v, [u,w]⟩.
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(d) πT ([u, v]) = [πT (u), πT (v)].

(e) [u, fv] = (πT (u))(f) v + f [u, v].

Proof. (d) is trivial and (a), (b), (c) and (e) are direct computations. Let us see (a)

and (e) and omit the rest. Take u = X + α, v = Y + β ∈ Γ(T).

(a) From equality (3.3), we have

[u, v] = [X, Y ] + LXβ − ιXdα = [X, Y ] + d (ιXβ) + ιXdβ − ιY dα and

[v, u] = [Y,X] + LY α− ιY dβ = [Y,X] + d (ιY α) + ιY dα− ιXdβ.

Since the Lie bracket is skew-symmetric, adding this equations we get

[u, v] + [v, u] = [X, Y ] + [Y,X] + d (ιY β) + d (ιXα)

= [X, Y ]− [X, Y ] + d (ιY β + ιXα) = 2 d⟨u, v⟩,
(3.8)

which together with Lemma 3.6 gives the intended equality.

(e) Consider f ∈ C∞(M). From equalities (3.1), (3.2) and (3.3), we have

LX(fβ)− ιfY dα = ιXd (fβ) + d (fιXβ)− dα(fY )

= ιX(df ∧ β + fdβ) + (ιXβ) df + fd (ιXβ)− fdα(Y )

= (ιXdf) ∧ β + fιXdβ + fd (ιXβ)− fιY dα

= X(f)β + f(d (ιXβ) + ιXdβ − iY dα).

Thus, from equality (3.5) we get

[u, fv] = [X, fY ] + LX(fβ)− ιfY dα

= X(f)Y + f [X, Y ] +X(f)β + f(d (ιXβ) + ιXdβ − iY dα)

= X(f) v + f([X, Y ] + d (ιXβ) + ιXdβ − iY dα)

= (πT (u))(f) v + f [u, v]. □

Remark 3.8. In contrast to the Lie bracket, Proposition 3.7 (a) gives that the Dorf-

man bracket is not skew-symmetric. ▽

Remark 3.9. Proposition 3.7 gives that the quadruple (T, ⟨ , ⟩, πT , [ , ]) is a Courant

algebroid on M , a structure originally introduced in [LWX97] following Courant’s

theory of Dirac structures [Cou90]. Besides, we know from [Uch02] that equations

(d) and (e) are in fact a consequence of equations (a), (b) and (c). ▽
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3.2.2. Complex Dirac structures

As the Lie bracket, the canonical pairing and the Dorfman bracket can naturally

be extended C-linearly to TC and preserve their properties. Therefore, on account

of Proposition 2.11 and Proposition 2.13 we define the following.

Definition 3.10 (Complex Dirac structure and generalized complex structure).

Let M be a manifold, a complex Dirac structure on M is a subbundle L of TC that

is maximally isotropic for the canonical pairing and such that Γ(L) is involutive

for the Dorfman bracket, this is (3.6). A generalized complex structure L on M is

a complex Dirac structure on M that additionally satisfies L ∩ L = 0. ♢

Generalized complex structures were originally introduced in [Hit03] and fur-

ther developed in [Gua03]. As one would expect, the integrability condition of

complex and symplectic structures translates accordingly. Let us verify the latter

(check Example 3.34 of [Gua03] for the complex case).

Example 3.11.

Given a 2n-manifold M , for a certain integer n ≥ 0, on account of Example 2.7

and Example 2.12 any almost symplectic structure ω gives a maximally isotropic

subbundle

Lω := {X − iω
Z
(X) : X ∈ TC}

of TC. Given any X, Y ∈ TC, in the first place we have

[X − iω
Z
(X), Y − iω

Z
(Y )] = [X, Y ]− iLXω

Z
(Y ) + iιY d (ω

Z
(X)).

In the second place, from (3.3) and (3.4) we have

ω
Z
([X, Y ]) = ι[X,Y ] ω = LXιY ω − ιYLXω = LXιY ω − ιY d (ιXω)− ιY ιXdω

= LXω
Z
(Y )− ιY d (ω

Z
(X))− ιY ιXdω.

Thus, on the one hand dω = 0 gives

[X − iω
Z
(X), Y − iω

Z
(Y )] = [X, Y ]− iω

Z
([X, Y ]) ∈ Γ(L) (3.9)

for any X, Y ∈ TC. On the other hand, if (3.9) holds for any X, Y ∈ TC we obtain

dω = 0 and hence both conditions are equivalent. ⃝

After having translated the basics of our work with linear algebra to geometry,

we will study a peculiar phenomenon that now emerges. In section 2.3, we in-

troduced three integers associated to any linear complex Dirac structure, namely
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the real index, the order and the type, which where the key for the classification

of linear complex Dirac structures. For a complex Dirac structure on a manifold,

however, these integers do not need to be the same at all points. We show next

two examples where an invariant varies over a manifold. Let us note that the first

example was adapted from Section 4.1 of [Gua03], where it is treated in terms of

spinors (which we did not introduce) and translated to real coordinates whereas

the second was inspired by the first one and independently deduced.

Example 3.12 (Type change with constant real index and order).

Consider M = R4 with global coordinates (x, y, z, t). Let ∂x, ∂y, ∂z and ∂t be the

coordinate vector fields and dx, dy, dz and dt be their dual 1-forms, respectively.

Take the sections

v1 := ∂x + i∂y

v2 := ∂z + i∂t

v3 := (x+ iy) (∂x − i∂y)− 2 (dz + idt) and

v4 := (x+ iy) (∂z − i∂t) + 2 (dx+ idy)

of TC and define the vector subbundle L of TC as the linear span of v1(p), v2(p),

v3(p) and v4(p), for each p = (x, y, z, t) ∈ R4.

Firstly, we will see that L is a maximally isotropic subbundle of TC. Indeed, fix

any p = (x, y, z, t) ∈ R4. On the one hand, the vectors lj := vj(p), for j = 1, . . . , 4,

are linearly independent and thus dimC Lp = 4. On the other hand, we have

⟨l1, l1⟩ = ⟨l2, l2⟩ = ⟨l3, l3⟩ = ⟨l4, l4⟩ = 0, (3.10)

⟨l1, l2⟩ = ⟨l1, l3⟩ = ⟨l2, l4⟩ = 0,

⟨l1, l4⟩ = (dx+ idy) (∂x + i∂y) = dx ∂x − dy ∂y = 1− 1 = 0

⟨l2, l3⟩ = −(dz + idt) (∂z + i∂t) = −(1− 1) = 0 and

⟨l3, l4⟩ = −(dz + idt) ((x+ iy) · (∂z − i∂t)) + (dx+ idy) ((x+ iy) · (∂x − i∂y))

= −(x+ iy) + (x+ iy) = 0.

Since the canonical pairing is bilinear and symmetric, the latter gives that Lp is

isotropic and thus by Proposition 2.16 we obtain that Lp is maximally isotropic.

Secondly, we will show that Γ(L) is involutive for the Dorfman bracket. Equali-

ties (3.8) and (3.10) give

[v1, v1] = [v2, v2] = [v3, v3] = [v4, v4] = 0 ∈ Γ(L).
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Moreover, since by construction Γ(L) is a C∞(M)-module generated by v1, v2, v3
and v4, the computations

[v1, v2] = [∂x + i∂y, ∂z + i∂t] = 0 ∈ Γ(L)

[v1, v3] = [∂x + i∂y, (x+ iy) (∂x − i∂y)] + L∂x+i∂y(−2 (dz + idt))

= ((∂x + i∂y) (x+ iy)) · (∂x − i∂y) + 0 = (1− 1) (∂x − i∂y) = 0 ∈ Γ(L),

[v2, v4] = [∂z + i∂t, (x+ iy) (∂z − i∂t)] + L∂z+i∂t(2 (dx+ idy)) = 0 ∈ Γ(L),

[v1, v4] = [∂x + i∂y, (x+ iy) (∂z − i∂t)] + L∂x+i∂y(2 (dx+ idy))

= 0 + d (2 (dx+ idy) (∂x + i∂y)) = d (2 (1− 1)) = 0 ∈ Γ(L),

[v2, v3] = [∂z + i∂t, (x+ iy) (∂x − i∂y)] + L∂z+i∂t (−2 (dz + idt)) = 0 ∈ Γ(L) and

[v3, v4] = [(x+ iy) (∂x − i∂y), (x+ iy) (∂z − i∂t)]

+ L(x+iy) (∂x−i∂y) (2 (dx+ idy))− ι(x+iy) (∂z−i∂t) d (−2 (dz + idt))

= 2 (x+ iy) (∂z − i∂t)− (x+ iy) [∂z − i∂t, (x+ iy) (∂x − i∂y)]

+ d (2 (dx+ idy) ((x+ iy) · (∂x − i∂y))) + 0

= 2 (x+ iy) (∂z − i∂t) + 0 + d (4 (x+ iy))

= 2 (x+ iy) (∂z − i∂t) + 4 (dx+ idy) = 2 v4 ∈ Γ(L).

together with Proposition 3.7 (a) and (e) suffice to prove [Γ(L),Γ(L)] ⊆ Γ(L).

Thus, L is a complex Dirac structure on R4. Particularly, it is easy to verify that

L∩L = 0 holds and thus L is a generalized complex structure. Hence, at any point

p ∈ R4 the real index is rp = 0 and by Corollary 2.32 the order is also sp = 0.

Finally, let us look at the type. Consider the subbundle E := πTCL of TC. At any

point p = (x, y, z, t) ∈ R4, we get that Ep is the linear span of

∂x + i∂y, ∂z + i∂t, (x+ iy) (∂x − i∂y) and (x+ iy) (∂z − i∂t).

Therefore, it is clear that we get

dimC Ep =

{
2 if x = y = 0,

4 otherwise.
(3.11)

Since it is easy to verify that in any case we have dimC (Ep + Ep) = 4, the type is

tp = 2 in case x = y = 0 and tp = 0 otherwise. Thus, if we come back to Figure 2.1

this can be interpreted as a structure that is generally equivalent to a symplectic

structure but “blows up” to a complex structure at x = y = 0. ⃝
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Example 3.13 (Order change with constant real index and type).

Consider M = R4 with global coordinates (x, y, z, t) but take now the sections

v1 := ∂x − ∂y

v2 := ∂z − ∂t

v3 := (x+ y) (∂x + ∂y)− 2 (dz + dt) and

v4 := (x+ y) (∂z + ∂t) + 2 (dx+ dy)

of TC and define the vector subbundle L of TC as the linear span of v1(p), v2(p),

v3(p) and v4(p), for each p = (x, y, z, t) ∈ R4.

Analogously to Example 3.12, one can show that indeed L is a complex Dirac

structure on R4 (again, we obtain [v3, v4] = 2v4 and all other brackets vanish).

Fix any p = (x, y, z, t) ∈ R4. In this case, trivially we have Lp = Lp and Ep = Ep.

This way, on the one hand by and Proposition 2.11 the real index is

rp = dimC (Lp ∩ Lp) = 4.

On the other hand, we have

dimC (Ep + Ep) = dimC Ep =

{
2 if x = y = 0,

4 otherwise
(3.12)

and thus we get that the type is tp = 0 (which holds with Lemma 2.32) and that

the order is sp = 2 in case y + x = 0 and sp = 0 otherwise. Thus, if we come back

to Figure 2.1 this can be interpreted as a structure that lies in the vertical edge of

the tetrahedron and that is generally equivalent to a presymplectic structure but

“blows up” to a different structure at x+ y = 0. ⃝

To conclude, given a manifold M and a complex Dirac structure L of M , one

can define its real index, order and type as functions M ! Z≥0. For some infor-

mation on how this functions behave, check for instance Lemma 4.12 of [AR22].

Therefore, at each point of M the invariants are an integer triplet of a tetrahedron

(recall Figure 2.1), but interestingly we have just shown that this triplet does not

need to be the same at all points of M . Therefore, complex Dirac structures can

describe changing geometric structures.
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