
INTEGRAL GEOMETRY OF COMPLEX SPACE FORMS

GIL SOLANES

These are the notes of a series of lectures given at the Erasmus Workshop
Hermitian Integral Geometry that took place from July 17th to 19th, 2012
at the Goethe Universität Frankfurt.

Our aim is to describe how Alesker’s theory of valuations has been used to
determine the integral geometry of the complex space forms Cn, CPn, and
CHn. With this goal in mind, we focus on invariant valuations in isotropic
spaces. Accordingly, many important results about valuations are presented
in a weakened version. Nevertheless, their significance should remain visible
even in this simplified form.

1. Affine isotropic spaces

1.1. Classical theory. Let Kn denote the space of compact non-empty
convex bodies in Rn. A functional ϕ : Kn → R is a valuation if

ϕ(A ∪B) + ϕ(A ∩B) = ϕ(A) + ϕ(B)

whenever A,B,A ∪B ∈ Kn.
We denote by Val the space of continuous (with respect to the Hauss-

dorf topology) translation invariant valuations, and by ValG the subset of
valuations invariant under a subgroup G of GL(n).

Theorem 1.1 (Hadwiger).

ValSO(n) = 〈µ0, . . . , µn〉

where the valuations µi are the so-called intrinsic volumes given by

µj(A) =

∫
Grj

volj(πE(A))dmj(E) (1)

where mj is an SO(n)-invariant measure on the Grassmanian Grj.

We normalize mj in such a way that µj(A) = volj(A) when A has dimen-
sion j. For j = 0, n it is understood that µ0 = χ and µn = voln.

When ∂A is smooth, the intrinsic volumes are given by integration of
symmetric functions of the principal curvatures. More generally, there are
canonical differential forms κi ∈ Ωn−1(SRn) in the unit sphere bundle of Rn
such that, for any A ∈ Kn,

µi(A) =

∫
N(A)

κi (2)

where N(A) ⊂ SRn is the set of outward pointing unit normal vectors to A,
which is an oriented Lipschitz submanifold of SRn.

Hadwiger’s theorem easily implies Blaschke’s principal kinematic formula:
1
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Theorem 1.2. For A,B ∈ Kn,∫
SO(n)

χ(A ∩ gB) dg =
∑
i+j=n

(
n

i

)−1ωiωj
ωn

µi(A)µj(B), (3)

where SO(n) := SO(n)nRn and ωk is the volume of the unit ball of dimen-
sion k.

The proof is based on the observation that the left hand side above is a
valuation on both A,B. Application of Hadwiger’s theorem yields (3) except
for the constants. These can be found by examining the case of two spheres
of different radii. With the same argument one shows that similar formulas
exist when χ = µ0 is replaced by any µk in (3):∫

SO(n)
µk(A ∩ gB) dg =

∑
i+j=n+k

cikµi(A)µj(B), (4)

for certain constants cik.

1.2. Irreducibility theorem. A natural topology on Val is given by the
norm

‖φ‖ = sup{|φ(A)| : A ⊂ B(0, 1)}.
There is a natural action of GL(n) on Val given by

g · φ(A) = φ(g−1A).

Theorem 1.3 (Alesker, [2]). Let Valεi denote the space of valuations φ such
that φ(λA) = λi(A) for λ > 0, and φ(−K) = εφ(K). Then

Val =
⊕

i = 0, . . . , n
ε = ±

Valεi

is a decomposition into GL(n)-irreducible components (minimal closed GL(n)-
invariant subspaces).

Corollary 1.4 ([22]). Let G ≤ O(n) act transitively on Sn−1.

i) The space ValG of continuous valuations invariant under Ḡ = G n Rn
consists of valuations µ of the form

µ(A) =

∫
N(A)

ϕ+ λ vol(A)

with ϕ ∈ Ωn−1(SRn) invariant under Ḡ. In particular, ValG is finite
dimensional.

ii) ValG is spanned by valuations of the form

µGA =

∫
G

∫
Rn
χ(· ∩ (x− gA))dxdg.

Proof. i) It is easy to see that each irreducible component Valεk contains one
element of the form

µ(A) =

∫
N(A)

ϕ
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with ϕ ∈ Ωn−1(SRn) translation invariant. By the irreducibility theorem,
elements of this form are dense in Valεk. i.e., each φ ∈ ValGk can be ap-
proximated by a sequence φi of such valuations. By averaging gφi we get
a sequence of valuations given by invariant differential forms which still ap-
proximate φ. Hence, the valuations in the statement are dense in ValG.

Since Ωn−1(SRn)Ḡ is finite-dimensional, so is ValG. Hence, these valuations
span ValG.
ii) follows similarly. �

Remark 1.5. The ϕ above is not unique, but λ is unique:

λ = vol∗(µ) := lim
R→∞

µ(BR)

vol(BR)

That ValG is finite dimensional implies the existence of kinematic formulas
in the style of (3): if ϕ1, . . . , ϕN is a basis of ValG, then∫

Ḡ
ϕk(A ∩ gB) dg =

∑
i,j

ckijϕi(A)ϕj(B), (5)

for certain constants ckij . These constants can be encoded in a basis free
way, by defining

kG : ValG −→ ValG⊗ValG

ϕk 7−→
∑
i,j

ckijϕi ⊗ ϕj .

The groups G acting transitively on the sphere are known ([19, 26]):

SO(n), U(n), SU(n), Sp(n), Sp(n) ·U(1), Sp(n) ·Sp(1), G2, Spin(7), Spin(9).

The kinematic operator kG is known in the casesG = SO(n), U(n), SU(n), G2, Spin(7)
(cf. [17, 12, 13]).

1.3. Algebraic Integral Geometry.

Theorem 1.6. There is a product on ValG compatible with the linear struc-
ture, and characterized by the following property. For A ∈ Kn and ϕ ∈ ValG,

µGA · ϕ =

∫
Ḡ
ϕ(· ∩ gA)dg. (6)

This endows ValG with the structure of a commutative algebra with a
unit element: χ.

Proof. Suppose
∑

i aiµ
G
Ai

= 0. Then∑
i

aiµ
G
Ai · µ

G
B =

∑
i

ai

∫
Ḡ×Ḡ

χ(· ∩ gA ∩ hB)dgdh

=

∫
Ḡ

∑
i

aiµ
G
Ai(· ∩ hB)dh = 0.

�

The product allows to define the so-called Poincaré duality pd : ValG⊗ValG →
R as follows

pd(ψ,ϕ) = vol∗(ψ · ϕ).
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Proposition 1.7. pd ∈ ValG
∗ ⊗ ValG

∗ ≡ Hom(ValG,ValG
∗
) is inverse to

kG(χ) ∈ ValG⊗ValG ≡ Hom(ValG
∗
,ValG).

Proof. Note first that ValG
∗

is spanned by elements of the form evA(ϕ) =
ϕ(A) where A ∈ Kn. Then to show that pd ◦kG(χ) = idValG

∗ we just need

to check for ϕ ∈ ValG,

〈pd ◦kG(χ)(evA), ϕ〉 = pd(µGA, ϕ) = vol∗(ϕ · µGA) = vol∗(kG(ϕ)(A)) = ϕ(A).

�

In particular pd is non-degenerate. Note also that kG is fully determined
by pd and the product:

kG(χ) = pd−1, (χ⊗ µ)kG(χ) = (µ⊗ χ)kG(χ) = kG(µ).

Both facts are equivalent to the following statement, which has been called
fundamental theorem of algebraic integral geometry.

Theorem 1.8 ([16]). The following diagram commutes:

ValG

pd

��

k // ValG⊗ValG

pd⊗pd
��

ValG
∗ m∗ // ValG

∗ ⊗ValG
∗

Proof. Let ϕ1, . . . , ϕN be a basis of Val. Let κG(χ) = cijϕi ⊗ ϕj , and
pd(ϕi, ϕj) = cij where (cij) = (cij)

−1. Then

(pd⊗pd) ◦ κG(χ) = cij pd(ϕi)⊗ pd(ϕj),

whence

〈(pd⊗pd)◦κG(χ), ϕr⊗ϕs〉 = cij ·〈pd(ϕi)⊗pd(ϕj), ϕr⊗ϕs〉 = cij ·cri·csj = crs

since (cij) is symmetric. But

〈m∗(pd(χ)), ϕr ⊗ ϕs〉 = 〈pd(χ), ϕr · ϕs〉 = pd(ϕr, ϕs) = crs.

�

1.4. Fourier transform. Klain has shown that the volume is the unique
(up to a constant factor) even translation invariant valuation that vanishes
on degenerate sets (simple). Hence, given φ ∈ Val+k and E ∈ Grk there is a
factor Klφ(E) such that φ|E = Klφ(E) volk. This defines a map

Kl : Val+k → C(Grk).

This map is injective: if φ ∈ Val+k has identically vanishing Klain function,
then φ|F is simple for every F ∈ Grk+1. Hence φ|F is a multiple of volk+1.
But this contradicts homogeneity unless φ|F = 0 for every F ∈ Grk+1. In
other words, φ|E is simple for every E ∈ Grk+2. Repeating this argument
we see that φ vanishes on spaces of any dimension.

Theorem 1.9 (Alesker,[3]). There is a duality map Val+k −̂→ Val+n−k called
Fourier transform characterized by

Klµ̂(E) = Klµ(E⊥)
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Let G be a group as before, and assume that ValG ⊂ Val+ (it turns
out that this is always true). Let us show the existence of the restricted

Fourier transform ValGk −̂→ ValGn−k. First of all, as a consequence of the

irreducibility theorem, ValG is generated by elements of the form

µ =

∫
Grk

vol(πE(·))dm(E)

where m is some G-invariant measure on Grk. Then

µ̂ =

∫
Grk

∫
E⊥

χ(· ∩ (x+ E))dxdm(E)

1.5. Two operators. Let us consider the following operators L̃, Λ̃ : ValG →
ValG, of degrees +1,−1 respectively:

L̃φ := µ1 · φ, (7)

Λ̃φ :=
d

dt

∣∣∣∣
t=0

φ(·+ tB), (8)

where B is the unit ball of Rn. We renormalize these operators by taking

L :=
2ωk
ωk+1

L̃, (9)

Λ :=
ωn−k
ωn−k+1

Λ̃ (10)

on each homogeneous component ValGk .

Lemma 1.10 ([16]). The Fourier transform intertwines the operators L,Λ:

L ◦̂= ̂◦ Λ (11)

Proof. Let us write a generic φ ∈ ValG as a Crofton valuation:

φ =

∫
Grk

volk(πE(·))dmφ(E)

for some G-invariant measure mφ on Grk. The Fourier transform is

φ̂ =

∫
Grk

∫
E⊥

χ(· ∩ (x+ E))dxdmφ(E)

Recalling (1),

φ̂ · µ1 = φ̂ · µ̂n−1 =

∫
Grk ×Grn−1

∫
E⊥+H⊥

χ(· ∩ (x+ E) ∩ (y +H))dxdydHdmφ(E)

=

∫
Grk ×Grn−1

∫
(E∩H)⊥

χ(· ∩ (z + E ∩H))dz sin(E,H)dHdmφ(E)

Now

̂̂φ · µ1 =

∫
Grk

(∫
Grn−1

vol(π(E∩H)⊥(·)) sin(E,H)dH

)
dmφ(E).
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By SO(k)-invariance, the integral between brackets is a multiple of µk−1(πE(·)),
so

̂̂
φ · µ1 = c

∫
Grk

µk−1(πE(·))dmφ(E)

= c
d

dt

∣∣∣∣
t=0

∫
Grk

µk(πE(·+ tB))dmφ(E)

= c′Λφ.

Since the constants are independent of φ it is enough to check them in the
case φ = µk. �

2. Complex affine space

Next we study ValU(n), the space of translation, U(n)-invariant valuations.
The results in this section come mainly from [23] and [17].

2.1. Hermitian intrinsic volumes. Let (z, ζ) denote a generic point of
TCn ' Cn × Cn. Consider the following differential 1-forms on TCn

α = 〈dz, ζ〉, β = 〈dz, iζ〉, γ = 〈dζ, iζ〉, (12)

and the 2-forms

θ0 =
1

2
dγ =

1

2
〈idζ, dζ〉, θ1 = dβ = 〈idζ, dz〉, θ2 =

1

2
〈idz, dz〉, θs = −dα.

(here the inner product of 1-forms is antisymmetrized). The restrictions of
these forms to the sphere bundle SCn ' Cn×S2n−1 generate the algebra of
U(n)−invariant forms on that space. This was shown in [27] using invariant

theory. Thus each element in ValU(n) comes from a differential form of degree
2n− 1 obtained by exterior product of these forms. Since the contact form
α and its exterior derivative −θs vanish identically on any normal cycle, it
is enough to consider the products of β, γ, θ0, θ1, θ2.

Therefore, ValU(n) is spanned by the valuations defined by the following
differential forms

βk,q := cn,k,q β ∧ θn−k+q
0 ∧ θk−2q−1

1 ∧ θq2, (13)

γk,q :=
cn,k,q

2
γ ∧ θn−k+q−1

0 ∧ θk−2q
1 ∧ θq2, (14)

where the constants are chosen for later convenience as

cn,k,q :=
1

q!(n− k + q)!(k − 2q)!ω2n−k
.

For k, q ≥ 0 integers with max{0, k − n} ≤ q ≤ k
2 ≤ n, we set

θk,q := cn,k,qθ
n+q−k
0 ∧ θk−2q

1 ∧ θq2
We define the hermitian intrinsic volumes µk,q ∈ ValU(n) by

µk,q(A) :=

∫
N1(A)

θk,q, 0, k − n ≤ q ≤ k

2
(15)

where N1(A) ⊂ Cn ⊕ Cn denotes the set of (z, ζ) such that z ∈ A, ‖ζ‖ ≤ 1
and ζ·v ≤ 0 for every v in the tangent cone ofA at x. Since ∂N1(K) = N(K),
from Stokes’ theorem one easily computes that
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Proposition 2.1.

µk,q =

∫
N(·)

βk,q =

∫
N(·)

γk,q.

Note however that β2q,q and γn+q,q are not defined.

We know that µk,q span ValU(n). To see that they are independent, we
look at their Klain functions.

Let Grk,q denote the U(n)-orbit of Cq⊕Rk−2q inside Grk. In other words,
the elements of Grk,q are real linear k-planes containing a q-dimensional
complex subspace, and an orthogonal subspace to it which is isotropic with
respect to the Kähler form. The range for k, q is the same as in (15).

Theorem 2.2. The valuations µk,q ∈ Val
U(n)
k are uniquely determined by

Klµk,q(E
k,p) = δq,p, Ek,p ∈ Grk,p (16)

These valuations are invariant under the restriction map r : ValU(n) →
ValU(n−1), except that r(µ2n,n) = r(µ2n,n−1) = 0 and r(µk,k−n) = 0. They
satisfy the relations

µ̂k,q = µ2n−k,n−k+q. (17)

Proof. Let us evaluate the Klain function of µk,q on Ek,p := Cp ⊕ Rk−2p ∈
Grk. Let e1, . . . , en;u1, . . . , un be the canonical basis of TCn = Cn ⊕ Cn.
Then Klµk,q(E

k,p) equals

ω2n−kθk,q(e1, ie1, . . . , ep, iep, ep+1, ep+2, . . . , ek−p, iup+1, iup+2, . . . , iuk−p,

uk−p+1, iuk−p+1, . . . , un, iun) (18)

= ω2n−kcn,k,qδ
p
qp!(n− k + p)!θk−2p

1 (ep+1, ep+2, . . . , ek−p, iup+1, iup+2)

= δpq (19)

This proves (16). Since (Ek,q)⊥ = E2n−k,n−k+q, the relation (17) is im-
mediate. �

We conclude that the hermitian intrinsic volumes comprise a basis of
ValU(n). In particular,

dim Val
U(n)
k = dim Val

U(n)
2n−k =

⌊
k

2

⌋
+ 1, k ≤ n.

It turns out that everything works a little better in terms of the following
basis

Definition 2.3. The following are called Tasaki valuations

τk,q =

bk/2c∑
i=q

(
i

q

)
µk,i

2.2. Principal kinematic formula.

Lemma 2.4.

Lτk,p = (k − 2p+ 1) τk+1,p, (20)

Λτk,p = (2n− 2p− k + 1) τk−1,p + (k − 2p+ 1) τk−1,p−1. (21)
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Proof. The formulas above are equivalent to

Λµk,q = 2(n− k + q + 1)µk−1,q + (k − 2q + 1)µk−1,q−1, (22)

Lµk,q = 2(q + 1)µk+1,q+1 + (k − 2q + 1)µk+1,q. (23)

It is not hard to show that if µ ∈ Val is obtained by integration over
N1(·) of a differential form ψ then Λ̃µ is obtained by integration of the Lie
derivative LTψ with respect to the Reeb vector field T . It is easy to compute
that

LT θ0 = 0, LT θ1 = 2θ0, LT θ2 = θ1.

This yields

LT θk,q =
ω2n−k+1

ω2n−k
(2(n− k + q + 1)θk−1,q + (k − 2q + 1)θk−1,q−1) .

From this, (22) follows at once. Relation (23) follows from (22) using equa-
tion (17) and (11). �

Theorem 2.5. Let us consider the generators

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
of sl(2,R). The map

H 7→ (2k − 2n) id

X 7→ L

Y 7→ Λ

defines a representation of sl(2,R) on ValU(n).

Proof. Easy to check using Lemma 2.4. �

Every sl(2,R)-representation is the direct sum of irreducible representa-
tions (minimal invariant proper subspaces). Each of these irreducible com-
ponents is of the form

V =

r⊕
i=0

V2i−r

for some r ∈ N, where Vj is the eigenspace of H of eigenvector j. Moreover,
these eigenspaces are 1-dimensional and Vj = Xj(V−r). Note in particular
that V−r ⊂ kerY and Vr ⊂ kerX. Hence, each irreducible component
corresponds to a 1-dimensional subspace of elements π with Y (π) = 0. These
are called primitive elements.

In the case of ValU(n), the homogeneous components Val
U(n)
k are precisely

the eigenspaces of H with eigenvalues 2k − 2n. Looking at the dimensions

of Val
U(n)
k we see that there exists a unique (up to a multiplicative constant)

primitive valuation in ValU(n) in each even degree not larger than n.
For 0 ≤ 2r ≤ n we put

π2r,r := (−1)r(2n− 4r + 1)!!

r∑
i=0

(−1)i
(2r − 2i− 1)!!

(2n− 2r − 2i+ 1)!!
τ2r,i (24)
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which, by Lemma 2.4, is a primitive valuation of degree 2r. For 2r ≤ k ≤
2n− 2r we define

πk,r := Lk−2rπ2r,r (25)

= (−1)r(2n− 4r + 1)!!

r∑
i=0

(−1)i
(k − 2i)!

(2r − 2i)!

(2r − 2i− 1)!!

(2n− 2r − 2i+ 1)!!
τk,i

(26)

by (20). These valuations comprise a basis of ValU(n).

Proposition 2.6.

πk,r · π2n−k,s = 0, r 6= s.

Proof. Say r > s, then

πk,r ·π2n−k,s = Lk−2rπ2r,r ·L2n−k−2sπ2s,s = C ·L2n−2r−2sπ2r,r ·π2s,s = 0 (27)

since L2n−4r+1π2r,r = 0. �

Theorem 2.7. Let ankr be given by πkr · π2n−k,r = a−1
nkr vol2n, and put

p := min{
⌊
k
2

⌋
,
⌊
n− k

2

⌋
}. Then

kU(n)(χ) =
2n∑
k=0

p∑
r=0

ankrπkr ⊗ π2n−k,r.

We refer to [17] for the actual computation of the constants. It requires

a detailed study of the algebra structure of ValU(n), which is the subject of
the following subsection.

2.3. Algebra structure of ValU(n). The algebra structure of ValSO(n) is
very simple

ValSO(n) ≡ R[t]

(tn+1)
.

The generator t is usually taken as t = 2
πµ1.

Since Cn ≡ R2n we obviously have t ∈ ValU(n). In other words ValSO(2n) ⊂
ValU(n). Recalling that t is a multiple of the mean width, it is natural to
define its complex analog as

s :=

∫
GrC1

area(πE(·))dEm

where GrC1 = CPn is the space of complex directions, and m is the Haar
measure, normalized so that s(D1

C) = 1 where D1
C ⊂ E denotes the unit

disk inside some linear direction E ∈ GrC1 .

Theorem 2.8 ([1]).

sk =
1

4kω2k

k∑
q=0

(
2q

q

)(
2k − 2q

k − q

)(
k

q

)−1

τ2k,q (28)

The proof is based on the comparison of the first variation of the two
sides of the equation.
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Theorem 2.9.

τk,q =
πk

ωk(k − 2q)!(2q)!
tk−2quq (29)

where u = 2
πµ2,1 = 4s− t2.

Proof. The case k = 2q follows from (28), and the following consequence of
(20):

tjτk,p =
ωk+j

πjωk

(k − 2p+ j)!

(k − 2p)!
τk+j,p.

The remainig cases follow then also from this equation. �

A useful consequence of the relation above is

s · µk,q =
(k − 2q + 1)(k − 2q + 2)

2π(k + 2)
µk+2,q +

2(q + 1)(k − q + 1)

π(k + 2)
µk+2,q+1.

(30)

Theorem 2.10 ([23]).

ValU(n) =
R[s, t]

(µn+1,0, µn+2,0)
(31)

where

µk,0 =

b k
2
c∑

i=0

(−1)i
πk

ωk(k − 2i)!(2i)!
tk−2iui.

Proof. Let I be the kernel of the projection R[s, t] → ValU(n). It follows
from (29) that µn+1,0, µn+2,0 ∈ I. Let us show that these polynomial are
relatively prime. Indeed, suppose µn+1,0 = dn+1 · ω, µn+2,0 = dn+2 · ω with
dn+1, dn+2 relatively prime and 0 < k := degω ≤ n. Then one checks by
counting dimensions that the ideal (dn+1, dn+2) contains all the polynomials
of degree > 2n−2k. In particular, every polynomial of degree 2n−k vanishes
on W := R[s, t]/(dn+1, dn+2).

Since degω ≤ n we have ω 6= 0 in ValU(n). Then, by Alesker-Poincaré
duality there exists g ∈ R[s, t] of degree 2n−k such that ω ·g 6= 0 in ValU(n).
This is a contradiction since the map

R[s, t]
·ω−→ ValU(n)

factors through W .
We conclude that µn+1,0, µn+2,0 are relatively prime. Then, it is easy to

see that they generate I. �

3. Rank one symmetric spaces

The theory of valuations has been extended to manifolds in a series of
papers by S. Alesker [5, 6, 7, 8, 11]. In general, there is no convenient
convexity notion on general manifolds. Hence, valuations will be applied to
smooth submanifolds with boundary or even with corners (locally modeled
on {0} × [0,∞)k ⊂ Rn), altough the theory extends to much more general
classes of sets.

Let Mn be a riemannian manifold, and let P(M) be the set of compact
submanifolds with corners. Given A ∈ P(M) we define its normal cycle as
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the set N(A) of its outward pointing unit normal vectors. Then, N(A) is an
(n− 1)−dimensional Lipschitz submanifold of SM the unit tangent sphere
bundle of M .

Definition 3.1. A valuation on M is a functional µ : P(M) → R of the
form

µ(A) =

∫
N(A)

ω +

∫
A
η

where ω ∈ Ωn−1(SM) and η ∈ Ωn(M) are fixed. We denote by V(M) the
space of valuations of M .

A curvature measure on M associates to each A ∈ P(M) a Borel measure
Φ(A, ·) by

Φ(A,U) =

∫
N(A)∩π−1U

ω +

∫
A∩U

η

where π : SM → M is the projection. We denote by C(M) the space of
curvature measures of M .

Thus we have projections

Ωm−1(SM)× Ωm(M)
integ

−−−−→ C(M)
glob

−−−−→ V(M).

Let now G be a group acting isometrically on M , and let us restrict to
G-invariant differential forms. It is not hard to see that ΩG(M),ΩG(SM)
are finite dimensional if and only if M acts transitively on SM . We say
in this case that M is isotropic. Isotropic spaces are classified: besides the
affine ones there are only the rank one symmetric spaces. These are

M = Sn,RPn,CPn,HPn,OP2,

and their non-compact (hyperbolic) duals. We restrict for simplicity to the
compact case.

Theorem 3.2 ([21]). There exists a linear map KG : CG(M) → CG(M) ⊗
CG(M) such that

KG(Φ)(A,U,B, V ) =

∫
G

Φ(A ∩ gB,U ∩ gV )dg.

In particular there are kinematic formulas for valuations kG : VG(M) →
VG(M)⊗ VG(M).

In the case of real space forms M = Rn, Sn,RPn, Hn, the globalization
map glob: CG(M) → VG(M) is an isomorphism. Hence, KG and kG are
equivalent. For instance, putting ∆i for the curvature measures defined by
κi,∫

SO(n)
∆0(A∩ gB,U ∩ gV ) dg =

∑
i+j=n

(
n

i

)−1ωiωj
ωn

∆i(A,U)∆j(B, V ). (32)

Given A ∈ P(M), let

µGA =

∫
G
χ(· ∩ gA)dg ∈ VG .

These valuations span VG.
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There is a product in VG uniquely determined by

µGA · ψ =

∫
G
ψ(· ∩ gA)dg ∈ VG, ψ ∈ VG .

There is also a VG-module structure on CG fulfilling

µGA · Φ =

∫
G

Φ(· ∩ gA, ·)dg

Assuming M compact, we define a Poincaré pairing by

pd(µ, φ) =
µ · φ(M)

vol(M)
.

Again we have the fundamental theorem

Theorem 3.3. The following diagram commutes

VG(M)

pd

��

k // VG(M)⊗ VG(M)

pd⊗ pd

��

VG(M)∗
m∗ // VG(M)∗ ⊗ VG(M)∗

Theorem 3.4 (Transfer principle, Howard [25]). Let M = G/H be a rank
one symmetric space. There is a canonical isomorphism of vector spaces

τ : CG(M) −→ CurvH(TxM)

where CurvH = CH̄ denotes the space of H̄-invariant curvature measures.
Moreover

CG(M)

τ

��

KG // CG(M)⊗ CG(M)

τ⊗τ
��

CurvH
KH // CurvH ⊗ CurvH

There is a close relationship between K and the module structure:

K(φ · Φ) = (φ⊗ χ)K(Φ) = (χ⊗ φ)K(Φ).

However, we can not recover K from the module structure. The best we
have is

m̄ = (id⊗ PD) ◦ k̄
where m̄ : CurvG → CurvG ⊗ (ValG)∗ is the module structure and k̄ :=
(id⊗ glob)K is the so-called semi-local kinematic operator.

4. Complex space forms

Let CPnλ be the n-dimensional simply connected Kähler manifold of con-
stant holomorphic curvature 4λ. For λ > 0 this is the complex projective
space CPn with the (rescaled) Fubini-Study metric. For λ < 0 this is the
complex hyperbolic space. When λ = 0 it is Cn again. For λ 6= 0, let G be
the group of isometries of CPnλ. In the case λ = 0, put G = U(n) nCn.

By the transfer principle we will identify

CG(CPnλ) ≡ CurvU(n) = span{Bk,q,Γk,q},
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where Bk,q,Γk,q are the curvature measures defined respectively by βk,q, γk,q.
We consider the globalization map

globλ : CurvU(n) −→ Vnλ := VG(CPnλ)

Proposition 4.1 ([1]).

ker globλ = span{Γk,q−Bk,q+λ
(2n− k)(q + 1)

2π(n− k + q)
Bk+2,q+1}, k 6= 2q, n+q.

Proof. Use Stokes and

dα = −θs, dθ0 = −λ(α ∧ θ1 + β ∧ θs),
dβ = θ1, dθ1 = 0,
dγ = 2θ0 − 2λθ2 − 2λα ∧ β, dθ2 = 0.

�

We define
µλk,q := globλ(Bk,q), k 6= 2q

When k = 2q we make the recursive definition

µλ2q,q := globλ(Γ2q,q) + λ
(2n− 2q)(q + 1)

2π(n− q)
µλ2q+2,q+1

This yields a basis of Vnλ with very nice properties. Even better is the
following basis:

τλkq :=

b k
2
c∑

i=q

(
i

q

)
µλki.

4.1. The Lipschitz-Killing algebra. Let ι : Mn → RN be an isometric
immersion. The Lipschitz-Killing curvature measures of M are defined by
pull-back of the SO(N)−invariant curvature measures of RN :

ΛMk (A,U) = ι∗∆k(A,U) = ∆k(ιA, ιU).

H. Weyl discovered the remarkable fact that these curvature measures do
not depend on ι but only on the metric of M . This is a consequence of the
following description of Λk in terms of a pair of differential forms (Ψk,Φk) ∈
Ωn(M) × Ωn−1(SM). Let e1(ξ), . . . , en(ξ) = ξ be a local moving frame on
M defined for ξ ∈ SM . Let θi be the associated coframe, and ωi,j the
connection forms. Finally, let Ωij denote the curvature forms. Then (cf.
[20])

Ψk =
2

ωn−k+1k!(n− k + 1)!

∑
ε

sgn(ε)Ωε1ε2∧· · ·∧Ωεn−k−1εn−k∧θεn−k+1
∧· · ·∧θεn

(33)
when n− k is even, and Ψk = 0 if n− k is odd. Similarly

Φk =
∑

2i≤n−k−1

2

ω2i+1ωn−2i−k(2i+ 1)!(n− 2i− k)!
Φk,i (34)

where

Φk,i :=
∑
ε

sgn(ε)Ωε1ε2∧· · ·∧Ωε2i−1ε2i∧ωn,ε2i+1∧· · ·∧ωn,εn−k−1
∧θεn−k∧· · ·∧θεn−1

(35)
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Both Ψk and Φk, and in fact all of the Φk,i, are independent of the moving
frame, and hence globally defined differential forms on SM . Moreover Ψk

is the pullback of a differential form defined on M , which we denote again
by Ψk.

In particular, the globalization of the Lipschitz-Killing curvature measures
give a canonical family of valuations ι∗µi on every riemannian manifold. It
turns out that the product of valuations commutes with the pull-
back through immersions. Hence

LK(M) := span{glob Λ} = span{ι∗µi} =
R[t]

(tn+1)
where t =

2

π
ι∗µ1

is a subalgebra of V(M) called the Lipschitz-Killing algebra of M .

Let now M = CPnλ. Of course Λk ∈ CurvU(n) = span{Bk,q,Γk,q}. To
find them explicitly a key observation is the following. Let us say that a
translation invariant curvature measure Φ is angular if there is a function
cΦ on Grk such that

Φ(P, F ) = cΦ(F ) · ∠(P, F ),

for any polytope P and every k-dimensional face F of P . It is not hard to
see that the Lipschitz-Killing curvature measures are angular and that the
space of U(n)-invariant angular curvature measures is precisely

span{∆k,q :=
1

2n− k
(2(n− k + q)Γk,q + (k − 2q)Bk,q}

Hence, each Λr can be expanded in terms of ∆k,q. To do this explicitly, we

evaluate Λr on expo(E
k,q) where Ek,q ∈ Grk,q(ToCPnλ). The density Pfrkq of

this measure at o yields essentially the coefficient of ∆k,q in the expansion of
Λr. By using the explicit description of the curvature tensor of CPnλ one finds
a recurrence relation between the coefficients Pfrkq. From this recurrence,
using exponential generating functions, one gets the following.

Theorem 4.2. Define

gi(ξ, η) := ξi (1− ξ)−i−
1
2 (1− η)−

1
2

hi(ξ, η) := ξi (1− ξ)−i−
3
2 (1− η)−

1
2 .

Then

t2i =

(
2i

i

)
λ−i

∞∑
k,p=0

(
λ

π

)k+p ∂k+pgi
∂kξ∂pη

∣∣∣∣
ξ=η=0

τλ2k+2p,p (36)

t2i+1 =
22i+1

π
λ−i

∞∑
k,p=0

(
λ

π

)k+p ∂k+phi
∂kξ∂pη

∣∣∣∣
ξ=η=0

τλ2k+2p+1,p. (37)

4.2. About s. We define

s = sλ :=
n

π
(vol(CPn−1

λ ))−1

∫
G
χ(· ∩ gH)dg ∈ Vnλ

where H ⊂ CPnλ is a totally geodesic copy of CPn−1
λ .

Proposition 4.3. The action of sλ ∈ Vnλ on CurvU(n) is independent of λ.
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Proof. Given Φ ∈ CurvU(n),

s · Φ =
n

π
(vol(CPn−1

λ ))−1

∫
G

Φ(· ∩ gH, ·)dg (38)

=
n

π
(vol(CPn−1

λ ))−1K(Φ)(H,CPnλ, ·, ·).

The result follows by the transfer principle and explicit evaluation ofBk,q,Γk,q
on (H,CPnλ): they all vanish except Γ2n−2,n−1 which gives vol(CPn−1

λ ). �

Proposition 4.4.

s ·Bk,q ∈ span{Bk+2,p}

Proof. The key fact is that span{Bk,p} is exactly the space of curvature
measures Φ with the following property: if A ⊂ Cn is a smooth submanifold
then the measure Φ(A, ·) has density 0 at the points where TpA is complex.
This property is clearly invariant under restriction to complex submanifolds.
Hence, by (38), the property is invariant under multiplication by s. �

From (30) we deduce

s ·Bk,q =
(k − 2q + 1)(k − 2q + 2)

2π(k + 2)
Bk+2,q +

2(q + 1)(k − q + 1)

π(k + 2)
Bk+2,q+1.

(39)
Hence, for k 6= 2q

s · µλk,q =
(k − 2q + 1)(k − 2q + 2)

2π(k + 2)
µλk+2,q +

2(q + 1)(k − q + 1)

π(k + 2)
µλk+2,q+1.

(40)
Actually, the same is true for k = 2q. The proof in this case needs an extra
bit of information: the explicit expression of sk in terms of differential forms
given in [1].

4.3. Algebra and coalgebra isomorphism. The two last subsections
give enough information to write any given polynomial p(s, t) in terms of
τk,q. Actually, we can do the opposite.

Proposition 4.5. Denoting

v := t2(1− λs)
u := 4s− v

we have

τλk,q = (1− λs) πk

ωk(k − 2q)!(2q)!
v
k
2
−quq (41)

Proof. First one can use Theorem 4.2 and equation (40) to show that s, t
generate Vnλ. Then, one checks (41) on the Lipschitk-Killing algebra R[t]
using Theorem 4.2 again. Finally, it remains only to show the compatibility
with (40), which is straightforward. �

Theorem 4.6. There exists an algebra isomorphism Iλ : Vn0 → Vnλ such
that

Iλ(s) = s, Iλ(t) = t
√

1− λs.
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Proof. Let Ĩλ : R[s, t] → R[s, t] be the algebra isomorphism defined by

Ĩλ(s) = s, Ĩλ(t) = t
√

1− λs. We must show the existence of the algebra
morphism Iλ in the following diagram, where the vertical maps are restric-
tions:

R[s, t]

��

Ĩλ // R[s, t]

��

Vn0
Iλ // Vnλ

Recall that Vn0 ∼= R[s, t]/(µn+1,0, µn+2,0), and by Proposition 4.5

Ĩλ(µk,0) =

b k
2
c∑

i=0

(−1)i
πk

ωk(k − 2i)!(2i)!
(1− λs)

k
2
−itk−2i(4s− t2(1− λs))i

=
1

1− λs
µλk,0 (42)

whose image in Vnλ vanishes if n < k. Hence Iλ is well-defined. Since it is
surjective, by comparing dimensions it follows that Iλ is bijective. �

By the Fundamental Theorem 3.3, the following diagram commutes

Vnλ
kλ //

pdλ
��

Vnλ ⊗ Vnλ
pdλ⊗ pdλ

��

Vn∗λ
I∗λ

��

m∗ // Vn∗λ ⊗ Vn∗λ
I∗λ⊗I

∗
λ

��

Vn∗0
m∗ // Vn∗0 ⊗ Vn∗0

Vn0
k //

pd

OO

Vn0 ⊗ Vn0

pd⊗ pd

OO

Hence the map Jλ := pd−1
λ ◦(I

−1
λ )∗ ◦ pd is a co-algebra isomorphism from

Vn0 to Vnλ , i.e.

kλ ◦ Jλ = (Jλ ⊗ Jλ) ◦ k. (43)

Lemma 4.7 ([24]).

t2isj(CPnλ) =
1

λi+j

(
2i

i

)(
n− j + 1

i+ 1

)
.

Proposition 4.8. Jλ = (1− λs)2Iλ.

Proof. First, it is not hard to see that Jλ(ϕ · φ) = Iλ(ϕ) · Jλ(φ). Then, it is
enough to show Jλ(χ) = (1− λs)2. In turn, this boils down to

pd(χ, I−1
λ (t2isj)) = pdλ(t2isj , (1− λs)2) ∀i, j

which follows from the lemma above. �

From Propositions 4.5 and 4.8 it follows that

Jλ(τk,q) = (1− λs)τλk,q. (44)
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Let Fλ : Vn0 → Vnλ be given by Fλ = (1− λs)−1Jλ. Equivalently

Fλ(τkq) = τλkq.

Theorem 4.9. The principal kinematic formula in CPnλ is given by

kλ(χ) = (Fλ ⊗ Fλ) ◦ k(χ).

Proof.

kλ(χ) = ((1− λs)−1 ⊗ (1− λs)−1)kλ((1− λs)2)

= ((1− λs)−1 ⊗ (1− λs)−1)kλ(Jλ(χ))

= (1− λs)−1 ⊗ (1− λs)−1)(Jλ ⊗ Jλ)(k(χ))

which with (44) gives the desired relation. �

One can show similarly that

kλ(τλk,q) = (Fλ ⊗ Fλ) ◦ k((1− λs)τk,q). (45)
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