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xtolsa@mat.uab.cat



Contents

1 Introduction 1

2 Harmonic functions 2
2.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 The Caccioppoli inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Harnack’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The fundamental solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 The Dirichlet Problem 12
3.1 The weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 The Green function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Limitations of the weak formulation . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Solvability of the Dirichlet problem for continuous functions: the case of

the unit ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Double layer potential: exploiting the jump formulas . . . . . . . . . . . . . 21

4 Basic results from measure theory 24
4.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 The Riesz representation theorem . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 Image measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Weak convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Hausdorff measure and dimension . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Frostman’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Harmonic measure via Perron’s method 34
5.1 Subharmonic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Perron classes and resolutive functions . . . . . . . . . . . . . . . . . . . . . 39
5.3 Harmonic measure via Perron’s method . . . . . . . . . . . . . . . . . . . . 41
5.4 Wiener regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 The Dirichlet problem in unbounded domains with compact boundary . . . 47

6 Potential theory 54
6.1 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Relationship between Hausdorff content and capacity . . . . . . . . . . . . . 66
6.4 Wiener’s criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.1 Sufficiency of the criterion for Wiener regularity . . . . . . . . . . . 69

i



Contents

6.4.2 Necessity of the criterion for Wiener regularity . . . . . . . . . . . . 74
6.5 Kellogg’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.6 Removability of polar sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 Reduction to Wiener regular open sets . . . . . . . . . . . . . . . . . . . . . 86

7 Harmonic measure and Green function in Wiener regular open sets 91
7.1 The Green function in terms of harmonic measure in bounded open sets . . 91
7.2 The Green function in unbounded open sets with compact boundary . . . . 95
7.3 Newtonian capacity, harmonic measure, and Green’s function in the case

d ě 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4 Logarithmic capacity, harmonic measure, and Green’s function in the plane 100
7.5 Capacity density condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.5.1 The CDC and Wiener regularity . . . . . . . . . . . . . . . . . . . . 106
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1 Introduction

In these notes we provide a straightforward introduction to the topic of harmonic measure.
This is an area where many advances have been obtained in the last years and we think
that this book can be useful for people interested in this topic.

In the first Chapters 2-6 we have followed classical references such as [Fol95], [Car98],
[GM05], [Lan72], [AG01], and [Ran95], as well as some private notes of Jonas Azzam. A
large part of the content of Chapter 7 is based on Kenig’s book [Ken94], and on papers by
Aikawa, Hofmann, Martell, and many others. Chapter 8 is based on a paper by Jerison
and Kenig [JK82]. In Chapter 9, the proof of Jones-Wolff theorem about the dimension
of harmonic measure in the plane follows the presentation of [CVT18]1. In some parts of
Chapter 10 we follow the book of Caffarelli and Salsa [CS05] and some work by Mourgoglou
and the second named author of these notes. Most of the last chapter follows [AHM`16].

We apologize in advance for possible inaccuracies or lack of citation. Anyway, we remark
that this work is still under construction and we plan to add more content as well as more
accurate citations in future versions of these notes.

1We thank J. Cuf́ı and J. Verdera for allowing us to reproduce a large part of the content from [CVT18].
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2 Harmonic functions

2.1 Definition and basic properties

Given an open set Ω Ă Rd we say that a real-valued function u is harmonic in Ω if
u P C2pΩq and

∆upxq “

d
ÿ

j“1

B2
jupxq “ 0

for every x P Ω (later on we will see that the C2 hypothesis can be replaced by just locally
integrable if we consider the distributional Laplacian).
Let κd denote the area of the unit sphere Sd´1 Ă Rd, that is,

κd “
2π

d
2

Γpd{2q

see [Fol95, Proposition 0.7] for instance, and dσ denote the surface measure. Recall that
the volume of the unit ball is then |B1p0q| “

κd
d (see [Fol95, Corollary 0.8]). Below, we

denote Brpxq the open ball centered at x with radius r, and Srpxq “ BBrpxq.
Throughout the notes, ´

ş

U f dµ stands for the average integral with respect to the
measure µ, i.e., 1

µpUq

ş

U f dµ.

Lemma 2.1 (Mean value theorem). Let Ω Ă Rd be open. If u P C2pΩq is harmonic, then

upx0q “ ´

ż

Brpx0q

upyqdy “ ´

ż

B1p0q

upx0 ` ryqdy for every Brpx0q Ă Ω Ă Rd. (2.1)

Moreover

upx0q “ ´

ż

Srpx0q

upyqdσpyq “ ´

ż

S1p0q

upx0 ` ryqdσpyq for every Brpx0q Ă Ω Ă Rd. (2.2)

Proof. Changing variables, we have that

Apρq :“
1

ρd

ż

Bρpx0q

upxqdx “

ż

B1

upρx` x0qdx.

On the other hand, set

rApρq :“

ż

B1

∇upρx` x0q ¨ x dx

“

ż

Bρpx0q

∇upxq ¨ px´ x0q

ρ

dx

ρd
“

1

2ρd`1

ż

Bρpx0q

∇upxq ¨ ∇|x´ x0|2 dx.

2



2 Harmonic functions

Since u satisfies that ∆u “ 0 in Ω, we can apply Green’s formula twice to obtain

rApρq “
1

2ρd`1

ż

Sρpx0q

|x´ x0|2∇upxq ¨ ν dx´
1

2ρd`1

ż

Bρpx0q

∆upxq |x´ x0|2 dx

“
1

2ρd´1

ż

Sρpx0q

∇upxq ¨ ν dx “ 0, (2.3)

where ν stands for the normal vector to the sphere pointing outward.
Since u P C2pΩq, for every x we have

şr
ρ∇uptx` x0q ¨ x dt “ uprx` x0q ´ upρx` x0q by

the fundamental theorem of calculus. Applying Fubini’s Theorem we get

0
(2.3)
“

ż r

ρ

rAptq dt “

ż

B1

ż r

ρ
∇uptx` x0q ¨ x dt dx “

ż

B1

puprx` x0q ´ upρx` x0qq dx (2.4)

“ Aprq ´Apρq.

So Aprq “ Apρq for all ρ ă r.
On the other hand, taking the mean and using the continuity of u we obtain
ˇ

ˇ

ˇ

ˇ

upx0q ´
d

κd
lim
ρÑ0

Apρq

ˇ

ˇ

ˇ

ˇ

“ lim
ρÑ0

1

|Bρpx0q|

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bρpx0q

pupx0q ´ upxqq dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
ρÑ0

oρÑ0p1q “ 0.

To see the coincidence with the average on spheres, note that in polar coordinates we
have

Apρq “
1

ρd

ż

S1p0q

ż ρ

0
uptθqtd´1dt dθ.

From this formula one can easily show that (2.2) implies (2.1), but we need to prove the
converse. Let us differentiate this expression. We get that

0 “ A1pρq “
´d

ρd`1

ż

S1p0q

ż ρ

0
uptθqtd´1dt dθ `

1

ρd

ż

S1p0q

upρθqρd´1dθ (2.5)

“
´d

ρ
Apρq `

1

ρd

ż

Sρpx0q

upρθqdθ.

Since upx0q “ d
κd
Apρq by (2.1), we readily get (2.2) multiplying the last expression times

ρ
κd
.

Remark 2.2. Arguing as above, it follows that if u P C2pΩq satisfies ∆u ě 0 in Ω, then

upx0q ď ´

ż

Brpx0q

upyqdy ď ´

ż

Srpx0q

upyqdσpyq (2.6)

whenever Brpx0q Ă Ω Ă Rd. Indeed, instead of (2.3), we have

rApρq “
1

2ρd´1

ż

Sρpx0q

∇upxq ¨ ν dx´
1

2ρd`1

ż

Bρpx0q

∆upxq |x´ x0|2 dx

“
1

2ρd´1

ż

Sρpx0q

∆upxq dx´
1

2ρd`1

ż

Bρpx0q

∆upxq |x´ x0|2 dx

“
1

2ρd`1

ż

Bρpx0q

∆upxq pρ2 ´ |x´ x0|2q dx ě 0.

3



2 Harmonic functions

Then, as in (2.4), we deduce that

Aprq ´Apρq ě 0 if ρ ă r.

Then, letting ρ Ñ 0, the first inequality in (2.6) follows.
Further, notice that the preceding discussion shows that A1pρq ě 0, and then by (2.5)

it follows that

0 ď
´d

ρ
Apρq `

1

ρd

ż

Sρpx0q

upρθqdθ,

which is equivalent to the last inequality in (2.6).

And the converse is true:

Theorem 2.3 (Converse of the mean value Theorem). If u P CpΩq satisfies (2.1) or (2.2),
then u P C8 and it is harmonic.

Proof. Note that we have seen that (2.1) and (2.2) are in fact equivalent. Thus, it suffices
to assume that u satisfies (2.2).

Let ψ P C8pr0, 1sq be a non-negative function with
ş8

0 ψptqtd´1dt “ 1. Define ϕεpxq :“
1

κdεd
ψ
´

|x|

ε

¯

. Then
ş

ϕε “ 1 for every ε. Next consider the subset Ωε :“ tx P Ω : Bεpxq Ă

Ωu. If x P Ωε then we claim that

upxq “

ż

upyqϕεpx´ yq dy.

Indeed,

upxq ´

ż

upyqϕεpx´ yq dy “

ż

pupxq ´ upyqqϕεpx´ yq dy

“

ż ε

0

ψp
ρ
ε q

κdεd

ż

S1p0q

pupxq ´ upx` ρθqq dθ dρ
(2.2)
“ 0.

We can conclude that u is C8 in Ωε and, therefore, in the whole of Ω.
To get the harmonicity, note that the derivative with respect to r of

ş

S1p0q
upx`ryqdσpyq

is zero by assumption. That is

0 “
d

dr
´

ż

Srpxq

upyqdσpyq “ c
d

dr

ż

S1p0q

upx` ryqdσpyq “ c

ż

S1p0q

Bνupx` ryq dσ

“ c ´

ż

Srpxq

Bνu dσ
Green Thm

“
c

rd´1

ż

Brpxq

∆u dx.

Since the Laplacian vanishes on every ball, we deduce that it is actually zero everywhere.

In particular, every harmonic C2 function is C8. Therefore we can restate the definition
of harmonic function:
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2 Harmonic functions

Definition 2.4. We say that a function u : Ω Ñ R is harmonic if u P CpΩq and it satisfies
the mean value property (2.1).

As we have seen, every harmonic function satisfies also the mean value property in
spheres, it is C8pΩq and ∆u “ 0. This self-improvement property is also true for harmonic
distributions, we will see that later on.

Theorem 2.5 (The maximum principle). Let Ω be a domain (i.e. open and connected
set). If u is harmonic and real-valued and A :“ supΩ u ă 8, then either upxq ă A for
every x P Ω or upxq “ A for every x P Ω.

Proof. tx P Ω : upxq “ Au is relatively closed by continuity and open by the mean value
theorem.

Corollary 2.6. Let Ω be a bounded open set. If u P CpΩq is harmonic and real-valued,
then the supremum and the infimum are attained at the boundary.

Proof. Assume that the supremum is not attained at the boundary. Then, by compactness
it must be attained in the interior. This implies that u is constant in some component
of Ω, which in turn implies that the supremum is also attained at the boundary of that
component, a contradiction. Also the infimum is attained at the boundary since infΩ u “

´ supΩp´uq.

Theorem 2.7 (Uniqueness theorem). Let Ω be a bounded open set. If u1, u2 P CpΩq are
harmonic in Ω, and u1|BΩ ” u2|BΩ, then u1|Ω ” u2|Ω.

Proof. Apply the corollary to u1 ´ u2.

Theorem 2.8 (Liouville’s theorem). Let u be a bounded harmonic function in Rn. Then
u is constant.

Proof. Note that for r ą 2|x|

|upxq ´ up0q| “

ˇ

ˇ

ˇ

ˇ

ˇ

´

ż

Brpxq

upyqdy ´ ´

ż

Brp0q

upyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
d

κdrd

ż

Br`|x|p0qzBr´|x|p0q

|upyq|dy

ď
d}u}8

κd

|Br`|x|p0qzBr´|x|p0q|

rd
Àd

|x|}u}8

r
rÑ8
ÝÝÝÑ 0.

2.2 The Caccioppoli inequality

We have shown that every harmonic function u P CpΩq is C8pΩq. Next we turn our
attention to weakly harmonic functions.

5



2 Harmonic functions

Definition 2.9. Given an open set Ω Ă Rd, we say that u P W 1,2
loc pΩq is weakly harmonic

if every test function φ P C8
c pΩq satisfies that

x∆u, φy :“ ´x∇u,∇φy “ 0. (2.7)

We say that u P D1pΩq is distributionally harmonic if, instead, test functions satisfy

x∆u, φy :“ xu,∆φy “ 0. (2.8)

Arguing by density, if u is weakly harmonic then equation (2.7) is verified also for every
φ P W 1,2

c pΩq. Note that every harmonic function is weakly harmonic, and every weakly
harmonic function is distributionally harmonic, but the converse has not been established
yet (see Proposition 2.19 below).

Lemma 2.10 (Caccioppoli Inequality). Let Ω Ă Rd be an open set, and let u be weakly
harmonic in Ω. Then for every ball B Ă Ω of radius r we have

ż

B
|∇u|2 ď

4

prtq2

ż

pt`1qBzB
u2,

where rt ď distpB, BΩq

Proof. Let η be a Lipschitz function such that χB ď η ď χpt`1qB and with |∇η| ď 1
rt .

Since u is weakly harmonic and η is compactly supported in Ω, we have that

0 “

ż

pt`1qB
∇u ¨ ∇puη2q.

By the Leibniz rule, the former identity can be written as

ż

pt`1qB
η2|∇u|2 “ ´

ż

pt`1qB
2uη∇u ¨ ∇η,

and using Hölder’s inequality we get

ż

pt`1qB
η2|∇u|2 ď

˜

ż

pt`1qB
4u2|∇η|2

¸
1
2
˜

ż

pt`1qB
η2|∇u|2

¸
1
2

.

Thus,
ż

B
|∇u|2 ď

ż

pt`1qB
η2|∇u|2 ď

ż

pt`1qB
4u2|∇η|2 ď

4

prtq2

ż

pt`1qBzB
u2.

The Caccioppoli inequality is also valid for subharmonic functions, see Section 5.1. This
inequality implies the universal control for the gradient in terms of the distance to the
boundary and the L8 norm of u:

6



2 Harmonic functions

Lemma 2.11. Let Ω Ă Rd be an open set, and let u be harmonic in Ω. Then

|∇upxq| À
}u}L8pΩq

dΩpxq
, (2.9)

where dΩpxq :“ distpx, BΩq.

Proof. Since the derivatives of u are harmonic, by the mean value theorem and the Cac-
cioppoli inequality

|∇upxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

ż

B 1
2 dΩpxq

pxq

∇u dm

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝ ´

ż

B 1
2 dΩpxq

pxq

|∇u|2 dm

˛

‚

1
2

ď

˜

4

p12dΩpxqq2
´

ż

BdΩpxqpxq

|u|2 dm

¸
1
2

À
1

dΩpxq
}u}L8pΩq,

as claimed.

By iterating the estimate in Lemma 2.10, we immediately obtain the following.

Lemma 2.12. Let u be a harmonic function in B1p0q. Then, for all k ě 1,

}u}CkpB1{2p0qq ď Cpkq }u}L8pB1p0qq.

Then we deduce the following generalization of Liouville’s theorem.

Proposition 2.13. Let γ ą 0 and let u be harmonic in Rd such that |upxq| ď Cp1` |x|qγ

for all x P Rd. Then u is a polynomial of degree at most tγu.

Proof. For r ą 0, consider the function urpxq “ upr xq. Since ur is harmonic, for any
k ą 1, by Lemma 2.12 we have

}Dku}L8pBr{2p0qq “
1

rk
}Dkur}L8pB1{2p0qq ď

Cpkq

rk
}ur}L8pB1p0qq

“
Cpkq

rk
}u}L8pBrp0qq ď

C 1pkqp1 ` rqγ

rk
.

For k “ tγu`1, the term on the right hand side tends to 0 as r Ñ 8, and thusDku vanishes
identically in Rd. Consequently, u is a polynomial of degree at most k ´ 1 “ tγu.

Lemma 2.14. Every sequence of uniformly bounded harmonic functions in an open set Ω
is locally equicontinuous, it has a converging partial subsequence, and the limit is harmonic
as well.

Proof. Let tunun with ∆un “ 0 in Ω and }un}L8pΩq ď C ă 8.
By assumption un is a sequence of uniformly bounded and, by Lemma 2.11, uniformly

locally equicontinuous functions. By the Ascoli-Arzelá theorem, un has a partial converg-
ing uniformly in every compact subset of Ω.
To see that the limit is also harmonic just apply the converse to the mean value theorem

(see Theorem 2.3) to the limiting function.
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2 Harmonic functions

2.3 Harnack’s inequality

Lemma 2.15 (Harnack’s inequality). Let B be a ball and let u ě 0 be a harmonic function
in 2B. Then

sup
B
u ď C inf

B
u.

Proof. Set B “ Bpx0, rq. To prove the lemma it suffices to show that, for all y, z P B,
upyq À upzq, with the implicit constant depending only on d. Suppose first that |y ´ z| ď

r{4. Then we have Bpy, r{4q Ă Bpz, r{2q ĂĂ 2B, and so we have, by the mean value
property,

upyq “ ´

ż

Bpy,r{4q

u dx À ´

ż

Bpz,r{2q

u dx “ upzq.

In the case when |y ´ z| ą r{4, we partition the segment ry, zs into eight segments Ij
with equal length and disjoint interiors. So we write

ry, zs “
ď

0ďjď7

ryj , yj`1s,

and we assume that y “ y0, z “ y8. Since the length of ry, zs is at most diampBq “ 2r, it
holds |yj ´yj`1| ď r{4 for each j. By the previous estimate, then we have upyjq À upyj`1q

for each j. Thus,
upyq “ upy0q À upy1q À ¨ ¨ ¨ À upy8q “ upzq.

Note that by modifying the argument above we can get that for every t ě 0 there exists
an optimal constant ϵptq so that every harmonic function u ě 0 in p1 ` tqB satisfies

sup
B
u ď p1 ` εptqq inf

B
u.

The reader can prove that ε is non-increasing and εptq
tÑ0
ÝÝÑ 8. But the interesting asymp-

totic behavior is for t Ñ 8:

Lemma 2.16 (Asymptotic Harnack inequality). There exists a nonnegative function

ϵptq
tÑ8
ÝÝÝÑ 0 so that every harmonic function u ě 0 in p1 ` tqB satisfies that

sup
B
u ď p1 ` εptqq inf

B
u.

Proof. The proof follows by an argument very similar to the one in the preceding lemma.
Indeed, assume t ě 8, say, and consider arbitrary points x, z P B. Furthermore, assume
without loss of generality that rpBq “ 1. Then we have Bpx, t{2q Ă Bpz, 2`t{2q Ă p1`tqB
and so

upxq “
1

|Bpx, t{2q|

ż

Bpx,t{2q

u dy ď
1

|Bpx, t{2q|

ż

Bpz,2`t{2q

u dy

“
|Bpz, 2 ` t{2q|

|Bpx, t{2q|
upzq “

ˆ

4 ` t

t

˙d

upzq.

So we may choose ϵptq “
`

4`t
t

˘d
´ 1.
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2 Harmonic functions

Lemma 2.17. Let Ω Ă Rd be a domain and let x, y P Ω. Then there is a constant Cx,y ą 0
depending just on x, y, and Ω such that for any positive harmonic function u in Ω, it holds

C´1
x,y upxq ď upyq ď Cx,y upyq.

Remark that the important fact about the estimate above is that the constant Cx,y does
not depend on the particular function u.

Proof. Let γ Ă Ω be a compact curve contained in Ω whose end points are x and y, and
let δ “ distpγ, BΩq. By the compactness of γ, there is a finite covering of γ by open balls
Bi, i “ 1, . . . ,m, centered in γ with radpBiq “ δ{2 (with m depending on Ω and γ).
We reorder the balls Bi as follows. Suppose that x P B1 without loss of generality. If

m ě 2, because of the connectivity of γ, there exists another ball Bi, call it B2, such that
B1 X B2 ‰ ∅. Next, if m ě 3, by the connectivity of γ again, there exists another ball,
call it B3, such that pB1 Y B2q X B3 ‰ ∅, and so on. Denote Uk “

Ť

1ďiďk Bi, so that
Uk “ Uk´1 YBk, Uk´1 XBk ‰ ∅, and γ Ă Um.
Given u harmonic and positive in Ω, by Harnack’s inequality upzq « upz1q for all z, z1 P

Bi (since 2Bi Ă Ω). Then, by induction it follows easily that upzq « upz1q for all z, z1 P Uk

(with the implicit constant depending on k), for k “ 1, . . . ,m. In particular, upxq «m

upyq.

2.4 The fundamental solution

To conclude this chapter, we will see that every harmonic distribution (see Definition
2.9) is in fact a C8 function. This is a quite general fact for elliptic partial differential
equations with C8 fundamental solutions, see [Fol95, Theorem 1.58] for the details.
Let us define

Epxq “

$

’

’

’

’

&

’

’

’

’

%

|x|2´d

pd´ 2qκd
if d ą 2,

´ log |x|

2π
if d “ 2,

(2.10)

Note that, since κ2 “ 2π, for every n ě 1 its gradient is

∇Epxq “
´x

κd|x|d
. (2.11)

Proposition 2.18. The fundamental solution of p´∆q in Rd is precisely E, i.e. ´∆E is
the Dirac delta distribution δ0.

The preceding proposition must be understood in the sense that for every test function
φ P DpRdq :“ C8

c pRdq, we have

φp0q “: xδ0, φy “ ´x∆E , φy “ ´xE ,∆φy.

9



2 Harmonic functions

Proof of Proposition 2.18. Consider ϵ ą 0 and let ν be the normal vector to Sϵ pointing
towards the origin. For φ P C8

c we have

´xE ,∆φy “

ż

∇E ¨ ∇φ. (2.12)

Indeed,

ˇ

ˇ

ˇ

ˇ

´xE ,∆φy ´

ż

∇E ¨ ∇φ
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bϵ

E∆φ`

ż

Bc
ϵ

E∆φ`

ż

∇E ¨ ∇φ
ˇ

ˇ

ˇ

ˇ

ˇ

Green
ď

ˇ

ˇ

ˇ

ˇ

ż

Bϵ

E∆φ
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bc
ϵ

∇E ¨ ∇φ´

ż

∇E ¨ ∇φ
ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

Sϵ

E∇φ ¨ ν

ˇ

ˇ

ˇ

ˇ

À }∆φ}8}E}L1pBϵq `

ˇ

ˇ

ˇ

ˇ

ż

Bϵ

∇E ¨ ∇φ
ˇ

ˇ

ˇ

ˇ

` }E}L8pSϵq}∇φ}8ϵ
d´1.

For d “ 2, using (2.10) we have }E}L1pBϵq «
şϵ
0 r| log r|dr

ϵÑ0
ÝÝÑ 0 and }E}L8pSϵq “ c| log ϵ|.

In case d ą 2, then using (2.10) we have }E}L1pBϵq «
şϵ
0 rdr

ϵÑ0
ÝÝÑ 0 and }E}L8pSϵq “ cϵ2´d.

All in all, letting ϵ Ñ 0 we get (2.12).
Moreover,

| ´ xE ,∆φy ´ φp0q|
(2.12)

“

ˇ

ˇ

ˇ

ˇ

ż

∇E ¨ ∇φ´ φp0q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bϵ

∇E ¨ ∇φ`

ż

Bc
ϵ

∇E ¨ ∇φ´ φp0q

ˇ

ˇ

ˇ

ˇ

ˇ

Green
À }∇φ}8

ż

Bϵ

|x|
1´d

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Sc
ϵ

∇E ¨ νφ´ φp0q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bc
ϵ

∆Eφ
ˇ

ˇ

ˇ

ˇ

ˇ

Now,
ş

Bϵ
|x|

1´d
« ϵ

ϵÑ0
ÝÝÑ 0, and ∆E ” 0 in Bc

ϵ . Moreover, for y P Sϵ we get

∇Epyq ¨ νpyq “
´y

κd|y|d
¨

´y

|y|
“

1

κdϵd´1
“

1

σpSϵq
.

Thus,

| ´ xE ,∆φy ´ φp0q| À

ˇ

ˇ

ˇ

ˇ

ˇ

´

ż

Sc
ϵ

φ´ φp0q

ˇ

ˇ

ˇ

ˇ

ˇ

ϵÑ0
ÝÝÑ 0,

as claimed by the continuity of φ at the origin.

The preceding proposition implies that for every test function φ P DpΩq, we have

´∆pE ˚ φqpxq “ φpxq. (2.13)

Note that E ˚ φ P C8 because E P L1
loc.

In fact we obtain the following:
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2 Harmonic functions

Proposition 2.19. Let u be a harmonic distribution in an open set Ω. Then u P C8pΩq.

Remark that a distribution is called harmonic if it is distributionally harmonic.

Proof. Given a distibution T with compact support contained in a bounded open set V ,
for every φ P C8

c pRnq we can define

xE ˚ T, φy :“ xT, ψpE ˚ pφ´qq´y,

where ψ is any cuttof function ψ P C8
c with χsuppT ď ψ ď χV , and f´pxq :“ fp´xq.

This definition does not depend on the particular choice of ψ, because the test function
in the right-hand side will not vary in the support of T . Moreover, we claim that this
distribution is in fact C8 out of the support of T . Indeed, for any test function φ with
suppφ X suppT “ ∅, one can consider ε :“ distpsuppφ, suppT q, and given a C8 function
ϕ such that χBε{4

ď ϕ ď χBε{2
, one can infer that xE ˚ T, φy “ xpp1 ´ ϕqEq ˚ T, φy. The

latter can be shown to be a C8 distribution arguing as in the proof of [Gra08, Theorem
2.3.20].
When u is a distribution in an open set Ω such that ∆u “ 0, given a ball B Ă Ω we

can define a cut-off function ψB P C8 such that χ 1
2
B ď ψB ď χB. Then ∆pψBuq is a

distribution supported in Bz1
2B and therefore E ˚ p∆pψBuqq is a well-defined distribution.

Given φ P DpΩq :“ C8
c pΩq, assuming if necessary that ψB∇ψ ” 0, we have

xE ˚p´∆pψBuqq, φy “ xp´∆pψBuqq, ψpE ˚pφ´qq´y “ xψBu,´∆pE ˚pφ´qq´y
(2.13)

“ xψBu, φy,

i.e. E ˚ p´∆pψBuqq “ ψBu in the distributional sense. Since the former is in fact C8 out
of the support of ∆pψBuq, we conclude in particular that in 1

2B, the function u “ ψBu is
C8.

The approach above can be slightly modified in order to obtain the hypoellipticity of
the laplacian:

Theorem 2.20 ([Fol95, Theorem 1.58]). The laplacian ∆ is hypoelliptic, i.e., if u is a
distribution on a bounded open set Ω such that ∆u P C8pΩq then u P C8pΩq.

Remark 2.21. Note that E P Lp
loc for every p ă d

d´2 , and ∇E P Lp
loc for every p ă d

d´1 .

The integrability at infinity is obtained for p ą d
d´2 , and p ą d

d´1 respectively.
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3 The Dirichlet Problem

3.1 The weak formulation

Consider the problem of finding a solution u P C2pΩq X CpΩq in an open set Ω Ă Rd to
the Dirichlet problem with boundary data f P CpBΩq:

#

∆u “ 0 in Ω,

u “ f on BΩ.
(3.1)

To obtain a general theory of existence and uniqueness, we can work in Sobolev spaces
with only one derivative, and this requires a weak formulation of the Dirichlet problem.
Assume that u P C1pΩq, and let φ P C8

c pΩq. Then Green’s theorem implies that

0 “

ż

Ω
φ∆u “ ´

ż

Ω
∇u ¨ ∇φ`

ż

BΩ
φ∇u ¨ ν dσ “ ´

ż

Ω
∇u ¨ ∇φ. (3.2)

Equation (3.2) provides us with a weak formulation of ∆u “ 0. But how can we encode
the boundary behavior? Set

H1pΩq :“ W 1,2pΩq :“ tf P L2pΩq : Bif P L2pΩq for 1 ď i ď n` 1u,

and we define

H1
0 pΩq :“ C8

c pΩq
H1pΩq

and the quotient space
H1{2pBΩq :“ H1pΩq{H1

0 pΩq

(see [Sch02, Theorem 3.13], for instance). Given f P H1pΩq, its class in H1{2pBΩq is often
called “the trace of f”. Now, in a bounded open set Ω, if u “ f in BΩ and u, f P C2pΩq,
then one can show that u ´ f P H1

0 pΩq. Moreover, the identity (3.2) can be extended by
density to φ P H1

0 pΩq.
All in all, in an open set Ω, we say that u P H1pΩq is a (weak) solution to the Dirichlet

problem (3.1) if
$

&

%

ż

Ω
∇u ¨ ∇φ “ 0 for every φ P H1

0 pΩq, and

f ´ u P H1
0 pΩq.

(3.3)

Note that if u P C2pΩq XH1pΩq is a weak solution (3.3), then it is also a solution to (3.1)
for f regular enough.
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3 The Dirichlet Problem

Let us write v :“ u´ f . Solving (3.3) is equivalent to finding v P H1
0 pΩq solving

ż

Ω
∇v ¨ ∇φ “ ´

ż

Ω
∇f ¨ ∇φ for every φ P H1

0 pΩq, (3.4)

which in the strong formulation reads as

#

∆v “ ∆f in Ω,

v “ 0 on BΩ.

Proposition 3.1. Let Ω Ă Rd be open and let u P H1
0 pΩq be a harmonic function. Then

it is the null function.

Proof. There exist C8
c functions ψi such that ψi Ñ u in H1. Note that

ż

∇ψi ¨ ∇ψi “

ż

∇ψi ¨ ∇pu´ ψiq `

ż

∇ψi ¨ ∇u.

But the last integral is null because u is harmonic. Thus, using the Cauchy-Schwartz
inequality we get

}∇ψi}
2
L2 ď }∇ψi}L2}∇pu´ ψiq}L2 ,

i.e.
}∇ψi}L2 ď }∇pu´ ψiq}L2 .

Taking limits,
}∇u}L2 “ lim

iÑ8
}∇ψi}L2 ď lim

iÑ8
}∇pu´ ψiq}L2 “ 0.

Thus, u is constant and has trace 0, so it is the null function.

Remark 3.2. Note that the preceding result does not apply to log |x| in the complement
of B1, since it does not have trace 0 according to the definitions, neither to xd in Rd

`.
Indeed, C8

c functions cannot approach in L2 norm a function which does not belong to
L2. The condition u P H1pΩq is not satisfied in this case.

Theorem 3.3 (Riesz representation theorem for Hilbert spaces, see [Sch02, Theorem
2.1]). Let H be a Hilbert space with inner product p¨, ¨q, and let H˚ be its dual. Then for
each u˚ P H˚ there exists a unique u P H such that

xu˚, vy “ pu, vq.

Corollary 3.4. Let Ω be open and let f P H
1
2 pBΩq. If the Dirichlet problem (3.1) has a

solution u P H1pΩq, then this is unique and moreover u P C8pΩq. If Ω is bounded, then
the solution exists.

Proof. The uniqueness of the solution comes from Proposition 3.1 and the smoothness
from hypoellipticity (see Section 2.4).
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3 The Dirichlet Problem

Suppose now that Ω is bounded. Then }∇v}L2pΩq is a norm for the functions v P H1
0 pΩq

(because of the Poincaré inequality) and the associated scalar product equals

pv, φq “

ż

∇v ¨ ∇φ for all v, φ P H1
0 pΩq.

Let F denote a representative of f in H1. Consider the linear functional

´

ż

Ω
∇F ¨ ∇φ for every φ P H1

0 pΩq.

By the Riesz representation theorem, there exists a unique v P H1
0 pΩq solving (3.4). Note

that v does not depend on the particular choice of F . Indeed, let F1, F2 P H1pΩq with
F1 ´F2 P H1

0 pΩq, and let v1, v2 be the solutions to (3.4) with functions F1, F2 respectively.
Then

ż

∇pv1 ´ v2q ¨ ∇φ “ ´

ż

Ω
∇f ¨ ∇φ`

ż

Ω
∇f ¨ ∇φ “ 0.

Thus, v1 ´ v2 is weakly harmonic. Moreover, v1 ´ v2 has trace 0. By Proposition 3.1 it is
the null function.
Let u :“ v ` F . Then u solves (3.3).

3.2 The Green function

Let Ω Ă Rd be a bounded open set, let x P Ω, and define the fundamental solution (to
´∆) with pole at x as

Expyq :“ Epx´ yq,

see (2.10). Note that E0 “ E . The equation

#

∆v “ 0 in Ω,

v “ ´Exp¨q on BΩ
(3.5)

has a unique weak solution vx P H1pΩq by Corollary 3.4. Then we define the Green
function with pole at x as

Gxpyq :“ vxpyq ` Expyq. (3.6)

The thoughtful reader may notice that Ex is not an H1 function, but this can be fixed by
multiplying E times ψx

BΩ, which is defined to be a C8 function vanishing in a neighborhood
of x such that ψx

BΩ ” 1 in a neighborhood of BΩ, i.e., vx is the weak solution to

#

∆v “ 0 in Ω,

v “ ´ψx
BΩEx on BΩ.
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3 The Dirichlet Problem

Definition 3.5. Given x P Ω, define dΩpxq :“ distpx, BΩq and call Ux :“ B 1
2
dΩpxqpxq.

Then, since Ux X BΩ “ ∅, we can find a compact set Kx and open sets Vx, rVx such that
BΩ Ă Vx Ă rVx Ă Kx Ă Ux

c
and a bump function ψx

BΩ P C8pRdq satisfying

χVx ď ψx
BΩ ď χ

rVx
. (3.7)

Note that for every φ P C8
c pΩq one has

ż

∇Gxpyq ¨ ∇φpyq dy “

ż

∇vxpyq ¨ ∇φpyq dy `

ż

∇Expyq ¨ ∇φpyq dy

“ 0 `

ż

∇Epzq ¨ ∇zφpx` zq dz
P.2.18

“ φpxq. (3.8)

That is ∆Gx “ ´δx as a distribution in D1pΩq, with “vanishing” boundary values, i.e.,
with ψx

BΩG
x P H1

0 pΩq (see (3.7) above and Remark 2.21), so we say that Gx is the weak
solution to

#

´∆Gx “ δx in Ω,

Gx “ 0 on BΩ.
(3.9)

For any given φ P C8
c pΩq, we can write

φpxq “

ż

Ω
∇φpzq ¨ ∇Gxpzq

by (3.8). We want to apply this identity to Gxpyq, but it is not a test function.

Lemma 3.6. Let Ω Ă Rd be a bounded open set. Then

Gxpyq “

ż

Ω
∇Gx ¨ ∇Gy dm,

whenever x, y P Ω are different points. In particular,

Gxpyq “ Gypxq.

In other words, the Green function is symmetric and, therefore, it is harmonic also with
respect to x. As a consequence, vxpyq “ vypxq and it is harmonic with respect to x P Ω
as well. Note that for the lemma to make sense, we need that ∇Gx ¨ ∇Gy P L1pΩq. A

priori one may think that Ex P W
1, d

d´1

loc pRdq implies Gx P W
1, d

d´1

loc pRdq, and this fact is not
enough to grant integrability of ∇Gx ¨ ∇Gy. However, both terms are C8 away from the
pole, and since x ‰ y, then integrability comes from the local boundedness of the Green
function away from the pole together with the integrability of the singularity.

Proof of Lemma 3.6. In order to apply (3.8), we need to substitute the Green function by
a suitable test function approximating it. Let ψ :“ ψx

BΩψ
y
BΩ, and consider

Gx “ p1 ´ ψqGx ` ψGx. (3.10)
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3 The Dirichlet Problem

Let U :“ prVx Y rVyqzΩc (see Definition 3.5) so that supppψq XΩ Ă U . Since ψGx P H1
0 pUq,

there exists tφkukPN Ă C8
c pUq so that

φk
kÑ8

ÝÝÝÝÑ
H1pΩq

ψGx, (3.11)

which allows us to approximate the last term in (3.10). On the other hand, let η P

C8pRq such that χp0,1{2q ď η ď χp0,1q and write ηkpzq :“ ηpk|x ´ z|q, which allows us to
approximate the Green function around the pole p1 ´ ψqGx in (3.10) by p1 ´ ηk ´ ψqGx.

Next, we define
fkpzq :“ p1 ´ ηkpzq ´ ψpzqqGxpzq ` φkpzq,

which is in C8
c pΩq for k large enough. Note that subtracting ηk skips the pole x where

the Green function is not C8, and subtracting ψ skips the boundary, while the values of
ψGx are substituted by the approximation φk. Since ψpyq “ φkpyq “ ηkpyq “ 0, for k
large enough

Gxpyq “ fkpyq
(3.8)
“

ż

Ω
∇fk ¨ ∇Gy dm

“

ż

Ω
∇Gx ¨ ∇Gy dm`

ż

Ω
∇pfk ´Gxq ¨ ∇Gy dm. (3.12)

The lemma follows if we prove that
ˇ

ˇ

ˇ

ˇ

ż

Ω
∇pfk ´Gxq ¨ ∇Gy dm

ˇ

ˇ

ˇ

ˇ

kÑ8
ÝÝÝÑ 0 (3.13)

Indeed,
Gx ´ fk “ pηk ` ψqGx ´ φk,

and
∇pGx ´ fkq “ ∇ηkGx ` ηk∇Gx ` ∇pψGx ´ φkq.

Since y R supp∇pGx´fkq, ∇Gy stays bounded in the integral (3.13). For z P U ĂĂ Rdztxu

also Gx and ∇Gx stay bounded. Therefore we only need to show that

11 :“

ż

U
|∇pψGx ´ φkq|

kÑ8
ÝÝÝÑ 0,

and

22 :“

ż

B1{kpxq

|∇ηkpzqGxpzq ` ηkpzq∇Gxpzq|
kÑ8
ÝÝÝÑ 0.

By the Cauchy-Schwartz inequality, since |U | ă 8, using (3.11) we get the integrability
of the first term:

11 ď |U |
1
2 }∇pψGx ´ φkq}2

kÑ8
ÝÝÝÑ 0.

Finally, for d ě 3 and k large enough, we can neglect the vx term and bound the last
term by

22 À

ż

B1{kpxq

k|x´ z|2´d ` |x´ z|1´d ď k
1

k2
`

1

k
kÑ8
ÝÝÝÑ 0,
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3 The Dirichlet Problem

proving (3.13). When d “ 2 the limit is also 0:

ż

B1{kpxq

k| logp|x´ z|q| ` |x´ z|´1 À k
1

k2

ˆ

´ logpkq `
1

2

˙

`
1

k
kÑ8
ÝÝÝÑ 0.

Consider f P C8
c pΩq. Then define

vpxq :“ ´

ż

Ω
Gxpyqfpyq dy “ ´f ˚ Epxq ´

ż

Ω
vxpyqfpyq dy.

Since vx is harmonic, ∆v “ f in Ω. Moreover, if Gx is continuous up to the boundary,
then Gxpyq vanishes for x P BΩ. So v is the natural candidate to be the solution to the
Dirichlet problem

#

∆v “ f in Ω,

v “ 0 on BΩ.
(3.14)

Assuming regularity on BΩ, we can define the Poisson kernel

P xpξq :“ ´BνG
xpξq for every x P Ω, ξ P BΩ.

If u P CpΩq is harmonic in Ω, then we can write formally

upxq “

ż

upzqδxpzq “

ż

Ω
pupzqp´∆Gxpzqq ` ∆upzqGxpzqq

Green
“

ż

BΩ
p´upζqBνG

xpζq ` BνupζqGxpζqqdζ.

If Gx vanishes continuously in the boundary, we get that

upxq “

ż

BΩ
upζqP xpζqdζ.

Therefore, we expect that the Dirichlet problem (3.1) may be solved by integrating the
boundary values times the Poisson kernel for regular enough domains. Harmonic measure
will be a generalization of the Poisson kernel to more rough domains.

3.3 Limitations of the weak formulation

The weak solution to the Dirichlet problem exposed above is only half-satisfactory. We
get existence and uniqueness for every domain, but it is not quite clear what does it mean
to have 0 trace. In practical applications of (3.1) we would like to prescribe boundary
values f only in the boundary of the domain, and not in a neighborhood of it. Moreover,
one should expect that in case f is continuous, then the solution u is continuous up to the
boundary, with u|BΩ ” f . However, the weak solutions above may not be continuous up
to the boundary.
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3 The Dirichlet Problem

Example 3.7. Let Ω “ B1zt0u Ă Rd with d ě 3, and take f “ 0 in BB1p0q and fp0q “ 1.
A natural candidate to “represent” f in H1pΩq is the function F pxq “ 1 ´ |x|χB1 is in
H1pΩq. Let us see that its class in H1

0 pΩq coincides with the class of Gpxq ” 0, i.e., let’s

show that F ´G “ F P C8
c pΩq

H1pΩq
.

Let η P C8pRq such that χp´8,1{2q ď η ď χp´8,1q. Then let φεpxq “ ηpε´1|x|q and let
ψεpxq “ ηpε´1p|x| ´ 1` εqq, and consider hε :“ ψεp1´φεqF P C8

c pΩq. Then we have that
F “ hε in Bc

1 Y pB1´εzBεq

}F ´ hε}2 “ }p1 ´ ψεp1 ´ φεqqp1 ´ |x|χB1q}2 ď p|B1zpB1´ε YBε|q
1
2

εÑ0
ÝÝÝÑ 0.

On the other hand, since

}∇φε}8 ` }∇ψε}8 ď ε´1
›

›η1
›

›

8
,

and using that the support of F ´hε is contained in B1zB1´ε YBε, using the product rule
we deduce that

}∇pF ´ hεq}2 “ }∇rp1 ´ ψεp1 ´ φεqqp1 ´ |x|χB1qs}L2pB1zB1´εYBεq

ď

´

}ε∇ψε}
2
L2pB1zB1´εq ` }∇φε}

2
L2pBεq

¯
1
2

` }∇p|x|χB1q}L2pB1zB1´εYBεqq

εÑ0
ÝÝÝÑ 0.

We have seen that F P C8
c pΩq

H1pΩq
and therefore F ” 0 in H1

0 pΩq. Thus, the weak
solution to the Dirichlet problem

#

∆u “ 0 in Ω,

u “ F on BΩ
(3.15)

is u “ 0.

The example above is related to the fact that a point has capacity zero in Rd for every
d ě 2, see Chapter 6. We will see in further chapters that, in fact, there exists no harmonic
function u in Ω “ B1zt0u Ă Rd such that limzÑ0 upzq “ 1 for d ě 2.

Further, is there a one-to-one relation between H
1
2 pBΩq and some class of functions

defined in BΩ? If the boundary of the domain is regular enough (existence of local bi-

lipschitz, C1 parameterizations should suffice, for instance), then the traces H
1
2

`εpBΩq of

W 1`ε,2 coincide with the Besov space B
1{2`ε
2,2 pBΩq, with an appropriate definition using

partitions of the unity and local parameterizations, see [Tri83, Section 3.3.3], for instance.

3.4 Solvability of the Dirichlet problem for continuous functions:
the case of the unit ball

Definition 3.8. We say that the Dirichlet problem (3.1) in an open set Ω is solvable for
continuous functions if there exists a function uf P CpΩq for every f P CpBΩq such that
∆u “ 0 in Ω and upyq “ fpyq for y P BΩ.

18



3 The Dirichlet Problem

Note that such a solution would be unique by the Uniqueness Theorem 2.7.

Next we will study the sovability of the Dirichlet problem for continuous functions in
the case Ω is the unit ball. First we will need to introduce the Green function in the unit
ball, which has a nice algebraic expression.

Lemma 3.9. Let x, y P Rdzt0u. Then
ˇ

ˇ

ˇ

ˇ

x

|x|
´ |x|y

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

|y|x´
y

|y|

ˇ

ˇ

ˇ

ˇ

.

Proof. Let t P R, t ą 0. Then

ˇ

ˇ

ˇ

x

t
´ ty

ˇ

ˇ

ˇ

2
“

|x|2

t2
´ 2x ¨ y ` t2|y|2.

Evaluating for t “ |x| and for t “ |y|´1 we reach the same expression.

Define

vxpyq :“

#

´Ep x
|x|

´ |x|yq if x ‰ 0,

´Epe1q if x “ 0.

Note that for |ξ| “ 1, x ‰ 0 we get that
ˇ

ˇ

ˇ

x
|x|

´ |x|ξ
ˇ

ˇ

ˇ
“ |x´ ξ| from the previous lemma,

so vxpξq “ ´Epx ´ ξq. The same happens when x “ 0 because the fundamental solution
depends only on the modulus. Moreover, for fixed x P B1, v

x has no singularity in B1,
given that

x

|x|
´ |x|y “ 0 ùñ y “

x

|x|2
ùñ y R B1.

Therefore vx P C1pB1q Ă H1pΩq and ∆vx “ 0 in B1. So the Green function (3.6) in the
unit ball is

Gxpyq :“

#

Epx´ yq ´ Ep x
|x|

´ |x|yq if x ‰ 0,

Ep´yq ´ Epe1q if x “ 0.

Note that Gxpyq “ Gypxq by Lemma 3.9.
Now we can compute the Poisson kernel: for x “ 0, |ξ| “ 1, it is

BνG
0pξq “ ξ ¨ ∇Epξq

(2.11)
“ ξ ¨

´ξ

κd|ξ|d
“ ´

1

κd
,

and for x ‰ 0, |ξ| “ 1 we get

BνG
xpξq “ ξ ¨ ∇y

ˆ

Epx´ yq ´ E
ˆ

x

|x|
´ |x|y

˙˙

|y“ξ

(2.11)
“ ξ ¨

¨

˚

˝

x´ ξ

κd|x´ ξ|d
´

x
|x|

´ |x|ξ

κd

ˇ

ˇ

ˇ

x
|x|

´ |x|ξ
ˇ

ˇ

ˇ

d
|x|

˛

‹

‚

L. 3.9
“ ξ ¨

˜

x´ ξ ´
`

x´ |x|2ξ
˘

κd |x´ ξ|
d

¸

“ |ξ|2
|x|2 ´ 1

κd |x´ ξ|
d

“
|x|2 ´ 1

κd |x´ ξ|
d
.
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3 The Dirichlet Problem

Summing up, for x P B1 and |ξ| “ 1 we get

P xpξq “
1 ´ |x|2

κd |x´ ξ|
d
. (3.16)

Theorem 3.10. Let f P L1pBB1q and define

uf pxq :“

ż

BB1

P xpζqfpζq dσpζq for x P B1.

Then u is harmonic on B1. If f is continuous, then uf P CpB1q, with uf |BB1 “ f . If
f P LppBB1q, then uf pr¨q Ñ f in LppBB1q as r Ñ 1.

Proof. The function uf is well defined because the Poisson kernel is bounded for x fixed.
Since G is harmonic on x, P is also harmonic on x and so is uf .
We claim that for every x P BB1, P

x dσ is a probability measure, i.e.,

ż

BB1

P x dσ “ 1. (3.17)

Indeed, for x “ 0 it is trivial. By (3.16), the mean value theorem and Lemma 3.9 we get

1

κd

(3.16)
“ P 0

ˆ

x

|x|

˙

(2.2)
“ ´

ż

P |x|ξ

ˆ

x

|x|

˙

dσpξq
L. 3.9

“ ´

ż

P x pξq dσpξq,

as claimed.
If f is continuous and ξ P BB1, then

|fpξq ´ uf prξq|
(3.17)

“

ˇ

ˇ

ˇ

ˇ

ż

BB1

P rξpζqpfpξq ´ fpζqq dσpζq

ˇ

ˇ

ˇ

ˇ

ď

ż

|ζ´ξ|ďδ

ˇ

ˇ

ˇ
P rξpζq

ˇ

ˇ

ˇ
|fpξq ´ fpζq| dσpζq `

ż

|ζ´ξ|ąδ

ˇ

ˇ

ˇ
P rξpζq

ˇ

ˇ

ˇ
|fpξq ´ fpζq| dσpζq

(3.17)
ď sup

|ζ´ξ|ďδ
|fpξq ´ fpζq| ` 2}f}8 sup

|ζ´ξ|ąδ

ˇ

ˇ

ˇ
P rξpζq

ˇ

ˇ

ˇ
.

The first term in the right-hand side of the last estimate can be made arbitrarily small
by fixing δ small enough, and then the second term can also be made small by choosing
r close enough to 1. Choices can be made independently of ξ. This shows that uf pr¨q

converges uniformly to uf , and this implies global continuity.
If f P LppBB1q, then we can use the density of C8 on Lp to find a function fε P C8pBB1q

with }f ´ fε}LppBB1q ď ε. Now,

}f ´ uf pr¨q}LppBB1q
ď }f ´ fε}LppBB1q ` }fε ´ ufεpr¨q}LppBB1q

` }ufεpr¨q ´ uf pr¨q}LppBB1q
.

Choosing ε small enough and r close enough to 1, the two first terms can be made arbi-
trarily small.
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3 The Dirichlet Problem

Regarding the last one, we claim that }ufεpr¨q ´ uf pr¨q}LppBB1q
ď }fε ´ f}LppBB1q. In-

deed, for p “ 1 we have

}ugpr¨q}L1pBB1q
ď

ż

BB1

ż

BB1

P rξpζq |gpζq| dσpζq dσpξq ď }g}L1pBB1q

ż

BB1

P rξpζq dσpξq.

Note that the mean value theorem
ż

BB1

P rξpζq dσpξq “ κdP
0pζq “ 1,

so g ÞÑ ug is bounded in L1pBB1q with norm 1. On the other hand,

}ugpr¨q}L8pBB1q
ď sup

ξPBB1

ż

BB1

P rξpζq |gpζq| dσpζq ď }g}8 sup
ξPBB1

ż

BB1

P rξpζq dσpζq
(3.17)

“ }g}8.

By interpolation we get that f ÞÑ uf pr¨q is a bounded operator in LppBB1q with norm 1.
This fact proves the claim and, therefore, the Lp convergence follows.

Remark 3.11. For the ball Brp0q, with r ą 0, we have a similar result. In this case the
Poisson kernel for Brp0q equals

P x
Brp0qpξq “

r2 ´ |x|2

κd r |x´ ξ|
d
.

Then the same result as in Theorem 3.10 holds for f P L1pBBrp0qq, with P xpζq replaced
by P x

Brp0q
pζq. That is, the function

uf pxq :“

ż

BBrp0q

P x
Brp0qpζq dσpζq for x P Brp0q,

solves the Dirichlet problem with boundary data f in Brp0q when f is continuous. Also,
for f P LppBBrp0qq, we have that uf pr¨q Ñ f in LppBBrp0qq as r Ñ 1.

3.5 Double layer potential: exploiting the jump formulas

When a domain Ω has bounded and smooth boundary, say BΩ P C1`ϵ, then a usual way to
solve the Dirichlet problem (3.1) for continuous functions is via the double layer potential.
We will not prove here the results, but we will sketch the main ideas, which can be found
for instance in [Fol95, Chapter 3].
Consider the gradient of the fundamental solution

∇Expyq “
px´ yq

κd|x´ y|d
,

21



3 The Dirichlet Problem

which is the kernel of the so-called Riesz transform of homogeneity 1 ´ d. In particular,
the normal derivative of E in the boundary of Ω,

Kxpζq :“ BνExpζq “ νpζq ¨ ∇Expζq “
px´ ζq ¨ νpζq

κd|x´ ζ|d

for ζ P BΩ and x P Rdztζu is well defined whenever BΩ has C1 parameterizations. Then
for every g P CpBΩq and every x P RdzBΩ, we can consider the double layer potential

Dgpxq :“

ż

BΩ
Kxpζqgpζqdσpζq,

which is harmonic in pBΩqc.
The double layer potential is not well defined a priori in the boundary of the domain,

but it makes sense to define its principal value for ξ P BΩ as

TKpgqpξq :“ p.v.Dgpξq “ lim
εÑ0

ż

BΩzBεpξq

Kxpζqgpζqdσpζq. (3.18)

This pointwise definition does not coincide with the (non-tangential) limit of the double
layer potential,

Dgpξq :“ n.t. lim
xÑξ

Dgpxq “ lim
xÑξ:2dΩpxqě|x´ξ|

Dgpxq,

where dΩpxq “ distpx, BΩq. However, they are related by the so-called jump formula:

Dgpξq “
1

2
gpξq ` TKpgqpξq,

which is a consequence of the identities

ż

Kxpζq dσpζq “

$

’

&

’

%

1 if x P Ω,

1{2 if x P BΩ, understood as a principal value,

0 if x P Ω
c
.

When the boundary has parameterizations in C1`ε, the normal vector becomes Hölder
continuous and the singularity of Kx is of homogeneity below d ´ 1, and it is therefore
integrable with respect to the surface measure, so we can omit the principal value in (3.18).
Then the kernel Kx becomes somewhat smoothing in this case, in the sense that TK maps
L8pBΩq to CpBΩq for instance, and it is compact in L2pBΩq, and the operator 1

2 I`TK is
Fredholm in L2pBΩq. Moreover, if p12 I`TKqpgq P CpΩq with g P L2pBΩq, then g P CpBΩq.

In fact, if Ω is simply connected and C1`ε, then 1
2 I`TK happens to be invertible in

L2pBΩq. Thus, given f P CpΩq, one can find a unique solution to the Dirichlet problem
by finding the unique solution to the equation f “ p12 I`TKqpgq. Then u :“ Dpgq, i.e.
u “ Dp12 I`TKq´1pfq satisfies (3.1) in the sense that

#

∆u “ 0 in Ω,

n.t. limxÑξ upxq “ fpξq on BΩ.
(3.19)
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3 The Dirichlet Problem

If Ω is multiply connected, some modifications related to the connectivity of the com-
plement need to be done in order to find an inverse operator in a suitable function space.
The Dirichlet problem in the unbounded component can also be solved in this way, and

assuming a priori that the solution uf satisfies that uf pxq “ OxÑ8p|x|3´dq one can get
also uniqueness.
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4 Basic results from measure theory

4.1 Measures

Following [Mat95], we will define a measure on a set X as a function on the parts of X,
regardless of the σ-algebra of measurable sets. This is often called exterior measure in
some references, but it is quite elementary to define the σ-algebra of measurable sets once
the (exterior) measure is given. Conversely, every countably additive non-negative set
function on a σ-algebra of subsets of X can be extended to every set, see [Mat95]. Let us
assume that X is a metric space.

Definition 4.1. We say that µ : tA : A Ă Xu Ñ R is a measure if

1. µpHq “ 0,

2. µpAq ď µpBq whenever A Ă B Ă X and

3. µ
`
Ť8

i“1Ai

˘

ď
ř8

i“1 µpAiq, whenever Ai Ă X for every 1 ď i ă 8.

We say that A Ă X is µ-measurable if

µpEq “ µpE XAq ` µpEzAq for every E Ă X.

Definition 4.2. Given a set X, we say that a collection Σ of subsets of X is a σ-algebra
whenever Σ is closed under complement, countable unions, and countable intersections.
When X is a topological space, we define the collection of Borel sets of X as the minimal
σ-algebra containing all the open sets in the topology.

Lemma 4.3. The measurable sets form a σ-algebra. If tAiu
8
i“1 is a collection of µ-

measurable and pairwise disjoint sets, then

µ

ˆ

ď

i

Ai

˙

“
ÿ

i

µpAiq. (4.1)

If Bi Õ B, i.e., if B1 Ă B2 Ă ¨ ¨ ¨ and B “
Ť

iBi, then µpBq “ limi µpBiq.
If Ci Œ C, i.e., if C1 Ą C2 Ą ¨ ¨ ¨ and C “

Ş

iCi, and moreover µpC1q ă `8, then
µ pCq “ limi µpCiq.

Definition 4.4. Let µ be a measure on a metric space X.

1. µ is a Borel measure if all Borel sets are µ-measurable.

2. µ is a Radon measure if it is Borel,
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4 Basic results from measure theory

a) µpKq ă 8 for every compact set K Ă X,

b) µpV q “ suptµpKq : K Ă V is compactu for every open set V Ă X,

c) µpAq “ inftµpV q : V Ą A is openu for every set A Ă X.

3. In those cases, if the metric space is separable we say that suppµ :“
č

F“F :µpF cq“0

F .

4.2 Integration

Let µ be a measure in Rd. We say that ϕ : Rd Ñ R is a simple function whenever there
exist a finite number of µ-measurable sets tAju

N
j“1 and coefficients tαju

N
j“1 Ă R such that

ϕ “

N
ÿ

j“1

αjχAj .

We can define its integral by
ż

ϕdµ :“
N
ÿ

j“1

αjµpAjq.

The set of simple functions is denoted by Sµ. Note that for ϕ P Sµ, the decomposition de-
scribed above is not unique, but its choice does not change the value of the integral. Given
a non-negative measurable function f : Rd Ñ R (i.e., a function such that f´1pr,`8q is
measurable for every r P R), we define its integral

ż

f dµ :“ sup

"
ż

ϕdµ : ϕ P Sµ with 0 ď ϕ ď f

*

.

Integration in measurable subsets is defined as

ż

A
f dµ :“

ż

fχA dµ.

Theorem 4.5 (Fubini’s theorem). Suppose that µ, ν are locally finite Borel measures on
Rd1 and Rd2 respectively. If f is a non-negative Borel function on Rd1`d2, then

ż ż

fpx, yq dµpxq dνpyq “

ż ż

fpx, yq dνpyq dµpxq.

Corollary 4.6. Suppose that µ is a locally finite Borel measure on Rd. If f is a non-
negative Borel function on Rd, then

ż

fpxq dµpxq “

ż 8

0
µptx P Rd : fpxq ě tuq dt.
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Given a µ-measurable function f : Rd Ñ R, and 0 ă p ă 8, we say that f P Lppµq

whenever
ş

|f |p ă `8. In case f P L1pµq, we can define

ż

f dµ :“

ż

f` dµ´

ż

f´ dµ,

where
f` :“ maxtf, 0u, and f´ :“ maxt´f, 0u.

Note that f “ f` ´ f´, with f`, f´ ě 0.

4.3 The Riesz representation theorem

Theorem 4.7 (Riesz representation Theorem). Let X be a locally compact metric space
and L : CcpXq Ñ R a positive linear functional. Then there is a unique Radon measure µ
such that

Lf “

ż

f dµ for f P CcpXq.

The approach presented below is based on the proof of [Rud87, Chapter 2], where the
reader may find all the details and the proofs of every single lemma used here.

Proof. Given an open set V Ă X we write f ă V whenever f P CcpV q, and 0 ď f ď χV .
We define

µpV q :“ suptLf : f ă V u.

Note that for open sets U Ă V it follows immediately that µpUq ď µpV q. Therefore it
makes sense to define for every E Ă X

µpEq :“ inftµpV q : V Ą E and V is openu.

We will use often the following immediate consequence of the positivity of Lf :

If f, g P CcpXq are such that 0 ď f ď g, then Lf ď Lg (4.2)

First we claim that µ is a measure.

1. Since H is open, µpHq “ suptLf : f ă Hu “ L0 “ 0.

2. Given sets A Ă B Ă X,

tV : V Ą A and V is openu Ą tV : V Ą B and V is openu

trivially, and taking infimum in a subset always increases the result, so

µpAq ď µpBq. (4.3)
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3. Let Ai Ă X for 1 ď i ă 8, and let ε ą 0. Consider open sets Vi Ą Ai such that
µpViq ď µpAiq ` ϵ

2i
, and let f ă V :“

Ť

i Vi so that µpV q ď Lf ` ε.

Since K :“ suppf is compactly contained in V we infer that there exist n P N and
a finite subcovering, i.e., a subset tiju

n
j“1 Ă N so that K Ă

Ťn
j“1 Vij .

There exists a partition of the unity in K for the covering Vij , i.e., there exist
functions hj ă Vij with χK ď

ř

j hj ď 1. Then

µ

˜

ď

i

Ai

¸

ď µpV q ď Lf ` ε “ Lf
ř

j hj
` ε “

ÿ

j

Lfhj
` ε

ď
ÿ

j

µ
`

Vij
˘

` ε ď
ÿ

i

´

µpAiq `
ε

2i

¯

` ε ď
ÿ

i

µpAiq ` 2ε, (4.4)

concluding the proof that µ is a mesaure.

Next we show that µ is in fact a Radon measure. To show that we begin by aq ´ cq in
Definition 4.4:

a) Let K Ă X be a compact set. Then K is contained in a ball B. Consider a continuous
function χK ď f ď χB, which exists by Urysohn’s lemma. Then call V :“ tx : fpxq ą

1{2u. Every function g ă V satisfies that g ď 2f . Therefore

µpKq ď µpV q “ suptLg : g ă V u
(4.2)
ď 2Lf ă 8.

b) Let V be an open set. We will prove that its measure coincides with the supremum of
the measures of its compact subsets. Let ε ą 0 and f ă V such that µpV q ď Lf ` ε.
Then write K :“ suppf and consider an open set U Ą K. It is clear that f ă U and
thus µpUq ą Lf . Since this holds for every such U , passing to the infimum we can infer
that µpKq ě Lf . All in all,

µpV q ď Lf ` ε ď µpKq ` ε.

Since such a compact set can be obtained for every ε, we conclude that

µpV q ď suptµpKq : K Ă V u.

The converse inequality follows from (4.3).

c) µpEq :“ inftµpV q : V Ą E and V is openu follows by definition.

To complete the proof that µ is Radon, we will check that it is Borel regular. First of
all, let K1, K2 be compact, disjoint subsets of X. We claim that

µpK1q ` µpK2q “ µpK1 YK2q. (4.5)

Indeed, it is well known that there exist open sets Vi Ą Ki, such that V1 X V2 “ H (see
[Rud87, Theorem 2.7], for instance), and also there exists an open set W Ą K1 Y K2
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such that µpW q ă µpK1 Y K2q ` ε. Moreover, there exist functions fi ă Vi X W so that
µpVi XW q ď Lfi ` ε. Then, since the supports of fi are disjoint, f1 ` f2 ă W and we get

µpK1q ` µpK2q
(4.3)
ď µpV1 XW q ` µpV2 XW q ď Lf1 ` Lf2 ` 2ε

“ Lf1`f2 ` 2ε ď µpW q ` 2ε ă µpK1 YK2q ` 3ε,

proving the claim.
Since the µ-measurable sets form a σ-algebra, to show that µ is a Borel measure we

only need to check that every open set V is µ-measurable, i.e., every E Ă X satisfies that

µpEq “ µpE X V q ` µpE X V cq.

By the subadditivity shown in (4.4), it suffices to prove that

µpEq ě µpE X V q ` µpE X V cq (4.6)

and for this we may assume that µpEq ă 8.
First let us assume that E is an open set with finite measure. Then write rV “ V X E,

so E X V c “ E X pV c Y Ecq “ E X pV X Eqc “ E X rV c, i.e. we have to show that

µpEq ě µprV q ` µpE X rV cq.

Let K1 Ă rV be a compact set such that

µprV q ď µpK1q ` ε.

Then consider an open set U Ą E X rV c so that µpUq ď µpE X rV cq ` ε. Define rU :“
U X E XKc

1 which is again an open set. Then

µprUq
(4.3)
ď µpUq ď µpE X rV qc ` ε,

and
E X rV c “ U X E X rV c Ă U X E XKc

1 “ rU Ă Kc
1 X E. (4.7)

To end consider a compact set K2 Ă rU such that µprUq ď µpK2q ` ε. All in all,

µprV q ` µpE X rV cq
(4.7)
ď µpK1q ` ε` µprUq ď µpK1q ` µpK2q ` 2ε

(4.5)
“ µpK1 YK2q ` 2ε

(4.3)
ď µpEq ` 2ε,

and (4.6) follows for open sets.
Consider a set E Ă X (without the openness assumption). Then there exists an open

set VE Ą E such that µpVEq ď µpEq ` ε. Then

µpE X V q ` µpE X V cq
(4.3)
ď µpVE X V q ` µpVE X V cq “ µpVEq ď µpEq ` ε,
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proving (4.6) for general sets.
To end we have to check that Lf “

ş

f dµ for every f P CcpXq. For simplicity we may
assume that f is real valued. Moreover, it suffices to show

Lf ď

ż

f dµ, (4.8)

since we can apply the same inequality to ´f to obtain the converse estimate.
Let ra, bsYt0u be the range of f . For every n consider tyiu

n`1
i“0 with y0 ă a, yn`1 “ b and

0 ă yi`1 ´yi ď pb´aq{n “: ε for every i ď n. Let Ei :“ f´1ppyi´1, yisqX suppf , which are
Borel sets and, thus, measurable. Consider open sets Vi Ą Ei with µpViq ă µpEiq ` ε

n`1
and such that fpxq ă yi `ε for every x P Vi; and let hi be a partition of the unity of suppf
with respect to the covering tViu, that is hi ă Vi with χtsuppfu ď

ř

i hi ď 1. Then

Lf “
ÿ

i

Lhif

(4.2)
ď

ÿ

i

pyi ` εqLhi
ď
ÿ

i

pyi ` εqµpViq ď
ÿ

i

pyi ´ ε` 2εq

ˆ

µpEiq `
ε

n` 1

˙

“
ÿ

i

µpEiqpyi ´ εq ` 2ε
ÿ

i

µpEiq `
ε

n` 1

ÿ

i

yi ` ε2
(4.1)
ď

ż

f dµ` εp2µpsuppfq ` b` εq

and (4.8) follows choosing ε arbitrarily small.
As for uniqueness, assume that µ1, µ2 are Radon measures satisfying the hypotheses of

the Theorem. Since Radon measures are determined by their values on compact sets, we
only need to check that µ1pKq “ µ2pKq for every compact set K Ă X. Consider such a
compact set, and let V Ą K be an open set such that µ2pV q ď µ2pKq ` ε. By Urysohn’s
lemma, there exists f ă V such that χK ď f . Then

µ1pKq “

ż

χK dµ1 ď

ż

f dµ1 “ Lf “

ż

f dµ2 ď

ż

χV dµ2 “ µ2pV q ď µ2pKq ` ε.

4.3.1 Image measure

Definition 4.8. The image of a measure µ under a mapping f : X Ñ Y (also known as
push-forward measure) is defined by f#µpAq “ µpf´1pAqq for A Ă Y .

Theorem 4.9. If X, Y are separable metric spaces, f is continuous and µ is a compactly
supported Radon measure, then f#µ is a Radon measure, with suppf#µ “ fpsuppµq.

Theorem 4.10. If X, Y are metric spaces, f is a Borel mapping, µ is a Borel measure
and g is a nonnegative Borel function, then

ż

g df#µ “

ż

pg ˝ fq dµ.
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4.3.2 Weak convergence

Let tµiu
8
i“0 be a collection of Radon measures in a metric spaceX. We say that µi converge

weakly to µ, and write
µi á µ0,

if

lim
iÑ8

ż

φdµi “

ż

φdµ for every φ P CcpXq.

As a consequence of the Riesz representation theorem, one can prove that a uniformly
locally finite collection of measures has a weakly convergent subsequence:

Theorem 4.11. If tµiu
8
i“1 is a collection of Radon measures in Rd, with

sup
i
µipKq ă `8,

for every compact set K Ă Rd, then there is a weakly convergent subsequence tµiku8
k“1,

and a Radon measure µ with
µik á µ.

Consider the Dirac delta measure δi in i P N. Note that the sequence δi á 0. This
example shows that the weak convergence of measures does not imply the convergence of
the measure of a particular set. However, the following semicontinuity properties hold:

Theorem 4.12. Let tµiu
8
i“0 be a collection of Radon measures in a locally compact metric

space X. If µi á µ0, K Ă X is compact and G Ă X is open, then

µpKq ě lim sup
iÑ8

µipKq,

and
µpGq ď lim inf

iÑ8
µipGq.

4.4 Hausdorff measure and dimension

For every subset A Ă Rd, 0 ď s ă `8 and 0 ă δ ď `8, define

Hs
δpAq :“ inf

#

ÿ

i

diampEiq
s : A Ă

ď

i

Ei with diampEiq ď δ

+

,

and let
HspAq :“ lim

δŒ0
HspAq

be the s-dimensional Hausdorff measure of A. The quantity Hs
8pAq also plays an im-

portant role and is called s-dimensional Hausdorff content of A. The Hausdorff measure
happens to be a Radon measure. The 0-dimensional Hausdorff measure is the counting
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measure, the 1-dimensional measure is a generalization of the length measure in Rd, and
the d-dimensional measure is a multiple of the Lebesgue measure.

If A is a set with HspAq ă `8, then Hs|A is locally finite and, in fact, it happens to be
a Radon measure (see [Mat95, chapter 4]).
Another interesting fact is that although

Hs
8pAq ď Hs

δpAq Õ HspAq,

having null Hausdorff content is equivalent to having zero Hausdorff measure:

Hs
8pAq “ 0 ðñ HspAq “ 0.

Theorem 4.13. For 0 ď s ă t ă 8 and A Ă Rd,

1. HspAq ă `8 implies HtpAq “ 0, and

2. HtpAq ą 0 implies HspAq “ `8.

This leads to the concept of Hausdorff dimension:

Definition 4.14. The Hausdorff dimension of a set A Ă Rd is

dimHA “ supts : HspAq ą 0u.

From the previous theorem, one can infer that

dimHA “ supts : HspAq “ `8u “ infts : HspAq ă `8u “ infts : HspAq “ 0u.

4.5 Frostman’s lemma

The following result is Frostman’s Lemma, which is a fundamental tool in geometric
measure theory and in potential theory.

Theorem 4.15. Let E be a Borel set in Rd. Then HspEq ą 0 if and only if there exists
a finite Radon measure µ compactly supported in E such that

µpBrpxqq ď rs for every x P Rd and r ą 0.

Further,

Hs
8pEq « sup

␣

µpEq : suppµ Ă E, µpBrpxqq ď rs for every x P Rd and r ą 0
(

,

with the implicit constant depending only on d.

Below we provide a proof for the case when E is a compact set. The case when E is
σ-compact is easily deduced from this. These two cases suffice for the purposes of these
notes.
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Proof. Suppose first that such a measure µ exists, and let us see that Hs
8pEq Á µpEq.

Indeed, consider a covering
Ť

iAi Ą E, and take for each i a point xi P Ai. Since the
union of the balls BdiampAiq

pxiq covers E, we get

ÿ

i

diampAiq
s ě c´1

ÿ

i

µ
`

BdiampAiq
pxiqq

˘

ě c´1µpEq.

Taking the infimum over all possible coverings of E, we obtain Hs
8pEq ě c´1 µpEq.

For the converse implication of the theorem, assume that E is contained in a dyadic
cube Q0. The measure µ will be constructed as a weak limit of measures µn, n ě 0. The
first measure is

µ0 “ Hs
8pEq

Ld|Q0

LdpQ0q
.

For n ě 1, each measure µn vanishes in RdzQ0, it is absolutely continuous with respect
to Lebesgue measure, and in each cube from DnpQ0q (this is the family of dyadic n-
descendants of Q0), it has constant density. It is defined from µn´1 as follows. If P P

DnpQ0q and P is a dyadic child of Q P Dn´1pQ0q (then we write P P ChpQq), we set

µnpP q “
Hs

8pP X Eq
ř

RPChpQq Hs
8pR X Eq

µn´1pQq. (4.9)

Observe that
ÿ

PPChpQq

µnpP q “ µn´1pQq for all Q P Dn´1pQ0q,

and thus µnpRdq “ µn´1pRdq.
As said above, µ is just a weak limit of the measures µn. The fact that µ is supported

on E is easy to check: from the definition of µn in (4.9), µnpP q “ 0 if P P DnpQ0q does
not intersect E. As a consequence, µkpP q “ 0 for all k ě n too, and thus,

supppµkq Ă U2´n`1diampQ0qpEq for all k ě n.

From this condition, one gets that supppµq Ă U2´n`1diampQ0qpEq, for all n ě 0, which
proves the claim.
Next we will show that

µnpP q ď Hs
8pP X Eq for all P P DnpQ0q.

This follows easily by induction: it is clear for n “ 0, and if it holds for n´ 1 and Q is the
dyadic parent of P , then

µn´1pQq ď Hs
8pQX Eq ď

ÿ

RPChpQq

Hs
8pR X Eq.

Thus, from (4.9), we infer that µnpP q ď Hs
8pP X Eq, as claimed. As a consequence, for

all j ě n,
µjpP q ď Hs

8pP X Eq for all P P DnpQ0q.
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Moreover, by construction, all the dyadic cubes which do not intersect Q0 have zero
measure µj .
Since every open ball Br of radius r with 2´n´1ℓpQ0q ď r ă 2´nℓpQ0q is contained in a

union of at most 2d dyadic cubes Pk with side length 2´nℓpQ0q, we get

µjpBrq ď

2d
ÿ

k“1

µjpPkq ď

2d
ÿ

k“1

Hs
8pPk X Eq ď 2d diampPkqs ď c rs,

for all j ě n. Letting j Ñ 8, we infer that µpBrq ď c rs.
So we have constructed a measure µ supported on E such that µpEq “ Hs

8pEq with
µpBrpxqq ď rs for all x P Rd and all r ą 0, which implies

Hs
8pEq À sup

␣

µpEq : suppµ Ă E, µpBrpxqq ď rs @x P Rd, r ą 0
(

.
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5 Harmonic measure via Perron’s method

To solve the Dirichlet problem for a very general class of open sets, it is convenient to
use harmonic measure. Before introducing this notion, we will introduce subharmonic
functions and we will show the solution of the Dirichlet problem via Perron’s method.

5.1 Subharmonic functions

Definition 5.1. For Ω Ă Rd open, we say that u : Ω Ñ r´8,8q is subharmonic if it is
upper semicontinuous in Ω and upxq ď ´

ş

Brpxq
u whenever Brpxq ĂĂ Ω.

On the other hand, u : Ω Ñ p´8,`8s is superharmonic if it lower semicontinuous and
upxq ě ´

ş

Brpxq
u whenever Brpxq ĂĂ Ω.

Recall that u is called upper semicontinuous at x P Ω if lim supyÑx upyq ď upxq, and it is
lower semicontinuous if lim infyÑx upyq ě upxq. It is easily checked that, if K is compact
and u : K Ñ r´8,8q is upper semicontinuous, then u attains the maximum on K.
Analogously, if u : K Ñ p´8,8s is lower semicontinuous, then u attains the minimum on
K. Note that upper semicontinuity does not imply local Lebesgue integrability. However,
the function is locally bounded above and therefore, the average ´

ş

Brpxq
u in the previous

definition is in r´8,`8q.
Of course, any function that is harmonic in Ω is both subharmonic and superharmonic.

Further, u is subharmonic if and only if ´u is superharmonic. Other immediate properties
are stated below.

Lemma 5.2. If u, v are subharmonic in Ω, then u`v and maxpu, vq are both subharmonic
in Ω. On the other hand, if u, v are superharmonic in Ω, then u ` v and minpu, vq are
both superharmonic in Ω.

Proof. This is immediate.

Subharmonic functions satisfy the maximum principle (and superharmonic functions
satisfy the minimum principle):

Lemma 5.3 (Maximum principle). If u is a subharmonic function in a bounded open set
Ω such that

lim sup
xÑξ

upxq ď 0 for every ξ P BΩ,

then u ď 0 in Ω. If moreover Ω is connected, then either u ” 0 or u ă 0 in Ω.
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5 Harmonic measure via Perron’s method

Proof. By considering each component of Ω separately, we can assume that Ω is con-
nected and it is enough to prove the second statement of the lemma. Suppose first that
u does not achieve a supremum in Ω. If xj P Ω is such that limj upxjq “ supΩ u, then
limj distpxj , BΩq “ 0, for otherwise we could extract a subsequence converging to a point
inside Ω and obtain a contradiction. Using that Ω is bounded, by passing to a subsequence
we may assume that xj Ñ ξ P BΩ. By assumption, this implies that every x P Ω satisfies

upxq ă sup
Ω
u “ lim

j
upxjq ď lim sup

yÑξ
upyq ď 0.

If u achieves the supremum at some x P Ω, then there exists r such that Brpxq Ă Ω.
Assume that there exists y P Brpxq such that upyq ă upxq “ supΩ u. Then, by upper
semicontinuity we would get

sup
Ω
u “ upxq ď ´

ż

Brpxq

u ă sup
Ω
u,

reaching a contradiction. Therefore, the function is constant in the ball Brpxq. This
implies that the set where the supremum is achieved is open. But it is also relatively
closed in Ω by semicontinuity and so u is constant in Ω.

Next we give a couple of characterizations of subharmonicity under a certain priori
regularity conditions. First, we check the behavior of the Laplacian when a subharmonic
function has two derivatives, and then we use it to show that the fundamental solution to
´∆, see (2.10), is an example of superharmonic function.

Lemma 5.4. Let Ω Ă Rd be open and u P C2pΩq. The function u is subharmonic in Ω if
and only if ∆u ě 0 in Ω.

Proof. The fact that ∆u ě 0 in Ω implies the subharmonicity of u is a direct consequence
of Remark 2.2. To prove the converse implication, we have to show that ∆upxq ě 0 for
every x P Ω. To this end, consider the function

vpyq “ upyq ´ upxq ´ ∇upxq py ´ xq.

Since u is subharmonic and any affine function is harmonic, it follows that v is also
subharmonic. The Taylor expansion of v in x equals

vpyq “
1

2
py ´ xqT D2upxq py ´ xq ` op|y ´ x|2q,

where D2upxq is the Hessian matrix of u. For any ball Brpxq Ă Ω, we have

0 “ vpxq ď ´

ż

Brpxq

v dy “
1

2
´

ż

Brpxq

py ´ xqT D2upxq py ´ xq dy ` opr2q

“
1

2

ÿ

i,j

Bi,jupxq ´

ż

Brpxq

pyi ´ xiq pyj ´ xjq dy ` opr2q

“ c∆upxq r2 ` opr2q,
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5 Harmonic measure via Perron’s method

where we took into account that
ş

Brpxq
pyi ´xiq pyj ´xjq dy vanishes if i ‰ j and is positive

otherwise. Dividing by cr2, we deduce

∆upxq ` op1q ě 0,

with op1q Ñ 0 as r Ñ 0. This implies that ∆upxq ě 0, and the proof of the lemma is
concluded.

Lemma 5.5. The fundamental solution of ´∆ is harmonic in Rdzt0u and superharmonic
in Rd.

Proof. Harmonicity can be easily checked. To prove superharmonicity, notice first that E
is lower semicontinuous. Next, for every ε ą 0 let φε be a C

8, positive, radially decreasing,
function supported on Bεp0q with

ş

φε “ 1. Then E ˚ φε P C8pRdq. Further,

∆pE ˚ φεq “ ´φε ď 0.

Thus, by Lemma 5.4, E ˚φε is superharmonic in Rd. Consequently, for any ball B centered
in x0 ‰ 0 and any ε ą 0,

´

ż

B
E ˚ φε ď E ˚ φεpx0q.

Letting ε Ñ 0, we deduce

´

ż

B
E ď Epx0q.

In case x0 “ 0, we have Epx0q “ `8 and the last inequality is satisfied trivially.

Next we characterize continuous subharmonic functions as those functions whose interior
values in balls lie below the solution to the Dirichlet problem with the same boundary
values.

Lemma 5.6. Let Ω Ă Rd be open and u P CpΩq. Then u is subharmonic if and only if
for every ball B ĂĂ Ω and every harmonic function v such that upxq ď vpxq for every
x P BB, it holds either v ą u or v ” u in B.

Proof. The only if implication follows by the maximum principle to the subharmonic
function u´ v. To see the converse, let Brpxq ĂĂ Ω and let v be the harmonic function in
Br continuous up to the boundary that agrees with u on BBr (see Theorem 3.10). Then

´

ż

BBr

u dσ “ ´

ż

BBr

v dσ “ vpxq ě upxq.

Thus,

´

ż

Br

u dm “
d

κdrd

ż r

0

ż

BBt

u dσ dt “
d

rd

ż r

0
´

ż

BBt

u dσ td´1dt ě
dupxq

rd

ż r

0
td´1 dt “ upxq.
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Let u P CpΩq be subharmonic in a ball B. Let ũ be the harmonic function in B that
agrees with u on BB and set U :“ χΩzBu` χBũ. Note that U ě u by Lemma 5.6. This is
called the harmonic lift of u in B.

Lemma 5.7. Let Ω Ă Rd be open. If u P CpΩq is subharmonic in Ω, x P Ω and B “

Brpxq ĂĂ Ω, then the harmonic lift of u in B is also subharmonic in Ω.

Proof. Let U be the harmonic lift of u in B. Consider v harmonic in a ball B1 Ă Ω with
B1 X B ‰ H and v ě U in the boundary of B1. We want to prove that either v ą U or
v ” U in B1.

Case 1: BB XB1 “ ∅, that is B1 Ă B and U is harmonic in B1. Then the claim follows
by Lemma 5.6 applied to U .

Case 2: BB X B1 ‰ ∅ and vpyq ą Upyq in BB X B1. Using the continuity of U and the
maximum principle applied to U ´ v in B1zB and B1 X B separately, we get that v ą U
in B1.
Case 3: BB X B1 ‰ ∅ and there exists y P BB X B1 such that vpyq ď Upyq “ upyq. In

this case, since v ě u in BB1, Lemma 5.6 implies that v ” u in B1. If BB1 X B ‰ H, the
identity v ” u in B1 implies the existence of a point in BB1 XB ‰ H where upyq ď Upyq ď

vpyq “ upyq and therefore U ” u by Lemma 5.6. If, instead, BB1 X B “ H, that is if
B Ă B1, then u is harmonic in B and, therefore, U ” u as well and the claim follows.

Next we provide a couple of properties of subharmonic functions, again under certain
a priori conditions. First we see that subharmonicity is preserved by an approximation
of the identity. Then we use this fact to show that subharmonic Sobolev functions are
weakly subharmonic, see Remark 5.10 below. This properties will be used to show the
Caccioppoli inequality for subharmonic functions.

Lemma 5.8. Let Ω Ă Rd be open and let u P L1
locpΩq be subharmonic. For ρ ą 0, denote

Ωρ “ tx P Ω : distpx,Ωcq ą ρu. Then following holds:

(a) If µ is a (non-negative) Radon measure supported in Bρp0q and u ˚ µ is upper semi-
continuous in Ωρ, then u ˚ µ is subharmonic in Ωρ.

(b) If φ be a continuous non-negative function supported in Bρp0q, then u ˚φ is subhar-
monic in Ωρ.

Proof. Clearly, the statement (b) is a consequence of (a), since u˚φ is continuous because
φ is continuous and compactly supported. To prove (a), we have to check that for any
x P Ωρ and r ą 0 such that Brpxq Ă Ωρ, we have u ˚ µpxq ď ´

ş

Brpxq
u ˚ µdm. Without

loss of generality, assume x “ 0 and that Brp0q Ă Ωρ. Denoting rupyq “ up´yq and
pχBrp0q “ mpBrp0qq´1χBrp0q, we have

´

ż

Brp0q

u ˚ µdm “
@

u ˚ µ, pχBrp0q

D

“
@

µ, ru ˚ pχBrp0q

D

.

Notice now that for any y P suppµ, Bρpyq Ă Ω (because Brp0q Ă Ωρ and suppµ Ă Bρp0q)
and so

ru ˚ pχBrp0qpyq “ ´

ż

Brpyq

ru dm ě rupyq.
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Consequently,

´

ż

Brp0q

u ˚ µdm ě
@

µ, ru
D

“ u ˚ µp0q.

Lemma 5.9. Let Ω Ă Rd be open, let u P L1
locpΩq be subharmonic in Ω, and φ P C8

c pΩq,
with φ ě 0. Then, its distributional derivatives satisfy

x∇u,∇φy ď 0.

Consequently, if u P W 1,p
loc pΩq with 1 ă p ď 8 and φ P W 1,p1

c pΩq with φ ě 0, we have

ż

∇u ¨ ∇φ ď 0. (5.1)

Proof. For every ε ą 0, let ψε be a C8, positive, radially decreasing, function supported
on Bεp0q with

ş

ψε “ 1. Let Ωε “ tx P Ω : distpx,Ωcq ą εu and take ε small enough such
that suppφ Ă Ωε. Then we have

x∇u,∇φy “ ´

ż

u∆φdx “ ´ lim
εÑ0

ż

pu ˚ ψεq∆φdx “ ´ lim
εÑ0

ż

∆pu ˚ ψεqφdx.

Since u˚ψε is C
8 and subharmonic in Ωε, it follows that ∆pu˚ψεq ě 0 in Ωε, see Lemmas

5.4 and 5.8. Thus,
ż

∆pu ˚ ψεqφdx ě 0

for any ε ą 0 small enough, and so x∇u,∇φy ď 0.
The second statement in the lemma follows easily by a density argument.

Remark 5.10. A function f P W 1,2pΩq satisfying (5.1) is called weakly subharmonic.
Note that we don’t ask for semicontinuity in this definition. What we call weakly subhar-
monic is sometimes called a subsolution to ∆u “ 0, see [Ken94, Section 1.1], for instance.

Lemma 5.11 (Caccioppoli Inequality). Let Ω Ă Rd be open and let u P W 1,2
loc pΩq be weakly

subharmonic in Ω and non-negative. Then for every ball B Ă Ω of radius r we have
ż

B
|∇u|2 ď

4

prtq2

ż

pt`1qBzB
u2,

where t “ distpB, BΩq

Proof. The arguments are very similar to the ones in Lemma 2.10. Let η be a Lipschitz
function such that χB ď η ď χpt`1qB and with |∇η| ď 1

rt . Since u is weakly subharmonic,
η is compactly supported, and uη2 ě 0, by Leibniz’ rule and Lemma 5.9 we have

ż

pt`1qB
η2|∇u|2 “

ż

pt`1qB
∇u ¨ ∇puη2q ´

ż

pt`1qB
2uη∇u ¨ ∇η ď ´

ż

pt`1qB
2uη∇u ¨ ∇η.

38



5 Harmonic measure via Perron’s method

By Hölder’s inequality we get

ż

pt`1qB
η2|∇u|2 ď

˜

ż

pt`1qB
4u2|∇η|2

¸
1
2
˜

ż

pt`1qB
η2|∇u|2

¸
1
2

,

and so
ż

B
|∇u|2 ď

ż

pt`1qB
η2|∇u|2 ď

ż

pt`1qB
4u2|∇η|2 ď

4

prtq2

ż

pt`1qBzB
u2.

5.2 Perron classes and resolutive functions

Throughout this section we assume that Ω Ă Rd is a bounded open set (not necessarily
connected).
For f P CpBΩq, the Perron method, that we will describe below, associates a harmonic

function uf : Ω Ñ R to f . Even if f is continuous, the function uf may not extend
continuously to the boundary. However, We will see that if Ω is regular enough in some
sense, then uf extends continuously to BΩ and its boundary values coincide with f .

Definition 5.12. Given a bounded function f : BΩ Ñ R, define the lower Perron class as

Lf “
␣

u P CpΩq : is subharmonic and lim sup
xÑξ

upxq ď fpξq for all ξ P BΩ
(

,

and the upper Perron class as

Uf “
␣

u P CpΩq : u is superharmonic and lim inf
xÑξ

upxq ě fpξq for all ξ P BΩ
(

.

Note that the constant function x ÞÑ supBΩ f is an element of Uf (and x ÞÑ infBΩ f is an
element of Lf ). Therefore, Uf and Lf are non-empty and we can define the real-valued
functions

Hf pxq “ sup
uPLf

upxq, Hf pxq “ inf
uPUf

upxq

for x P Ω, which we call lower Perron solution and upper Perron solution respectively.

Remark 5.13. If f P CpΩq is harmonic in Ω, for every u P Lf we can apply the maximum
principle (see Lemma 5.3) to u´ f to infer that u ď f in Ω. In particular, we deduce that
f “ Hf “ Hf . So if the solution of the Dirichlet problem with continuous boundary data
exists, then it coincides with the lower and upper Perron solutions.

Lemma 5.14. For every bounded function f : BΩ Ñ R, the functions Hf and Hf are
harmonic.

Proof. We will show only the case Hf . The other follows by noting that Hf “ ´H´f .
Fix x P Ω and B “ Brpxq ĂĂ Ω. Let tuju

8
j“1 Ă Lf be a sequence of subharmonic

functions so that ujpxq
jÑ8
ÝÝÝÑ Hf pxq. By replacing uj by maxpuj , infBΩ fq if necessary (see
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Lemma 5.2), we may assume that the sequence of functions uj is uniformly bounded from
below.
Let Uj be the harmonic lift of uj in B, which is subharmonic by Claim 5.7 and therefore

Uj ď Hf . This sequence is uniformly bounded above by supBΩ f by the maximum principle
and it is also bounded below since the uj ’s are uniformly bounded from below. Thus,
passing to a subsequence if necessary, we may assume that Uj converges pointwise in B to
a harmonic function U (see Lemma 2.14). As we have seen, uj ď Uj ď Hf and, therefore,
Upxq “ Hf pxq.

We claim that U ” Hf in B. Assume not. Then there is y P B so that Upyq ă Hf pyq,
and by definition of Hf , there must be v P Lf so that Upyq ă vpyq ď Hf pyq. Set
vj “ maxtUj , vu (which is again subharmonic by Lemma 5.1) and let Vj be the harmonic
lift of vj in B, so now Vj is harmonic in B. Passing to a subsequence, we may assume
Vj converges pointwise to a harmonic function V in B. Since Uj ď Vj , we have that
U ď V ď Hf in B, and so Upxq “ V pxq “ Hf pxq, which implies U “ V in B by
the maximum principle. However, Upyq ă vpyq ď Vjpyq which implies Upyq ă V pyq, a
contradiction.

Lemma 5.15. Every bounded function f : BΩ Ñ R satisfies Hf ď Hf .

Proof. Let u P Uf and v P Lf . Then v ´ u is subharmonic with lim supxÑξpv ´ uq ď

fpξq ´ fpξq “ 0 for all ξ P BΩ, and so by the maximum principle, v ď u. Taking infimum
and supremum over Uf and Lf respectively, we get Hf ď Hf .

Definition 5.16. We say that a bounded function f : BΩ Ñ R is resolutive if Hf “ Hf .

Lemma 5.17. If f, g are resolutive so are ´f and f ` g.

Proof. Note that if u P Uf and v P Ug, then u`v P Uf`g, and so Hf`g ď u`v. Therefore,
Hf`g ď Hf `Hg. Similarly, Hf`g ě Hf `Hg “ Hf `Hg. Therefore Hf`g ď Hf`g and
the converse inequality follows from Lemma 5.15.
Also being f resolutive implies that H´f “ ´Hf “ ´Hf “ H´f .

Lemma 5.18. If f P CpΩq is subharmonic in Ω, then f |BΩ is resolutive.

Proof. Since f is subharmonic and continuous up to the boundary, we have f P Lf , and
so f ď Hf . Note that Hf is harmonic (hence superharmonic) and lim infxÑξHf pxq ě

lim infxÑξ fpxq “ fpξq, so Hf P Uf , hence Hf ě Hf .

Lemma 5.19. Polynomials are resolutive in every bounded open set.

Proof. Let u be a polynomial. Note that the function vpxq “ |x|2 satisfies ∆v “ 2d ą 0. In
particular v is subharmonic in Rd by Lemma 5.4. Since ∆u is a polynomial, it is bounded
in any bounded open set Ω. Thus, for k ą 0 large enough, ∆pu ` kvq ą 0 in Ω. So both
v and u ` kv are subharmonic in Ω and continuous in Ω. Hence they are resolutive, and
therefore u “ pu` kvq ´ kv is resolutive too.
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Theorem 5.20 (Wiener). CpBΩq functions are resolutive.

Proof. Let f P CpBΩq and ε ą 0. By the Stone-Weierstrass theorem [Sto48], we may find
a polynomial u such that |f ´ u| ă ε on BΩ. Thus,

Hf ď Hu`ε “ Hu ` ε “ Hu ` ε ď Hf ` 2ε,

and letting ε Ñ 0 gives that f is resolutive.

In this way, we can associate to a continuous function f a harmonic function Hf :“
Hf “ Hf . The fact that f is resolutive is not the reason we can define an association.
For example, we could just associate to any bounded function f on the boundary the
harmonic function Hf . The property of being resolutive is not significant for us because
it allows us define a harmonic extension of f . Instead, this property will be useful in using
maximum principle arguments when trying to prove continuity at the boundary of the
Perron solution.
As mentioned earlier, Hf may not coincide with f at the boundary, even if f is contin-

uous. To give an example, consider Ω “ B1p0qzt0u Ă Rd, and let fpξq “ 0 for ξ P BB1p0q,
fp0q “ 1. Define

uεpxq :“
ε

|x|d´2

for d ě 3 (for d “ 2 use the logarithm). Since uε ą 0 is harmonic and goes to `8 at the
origin, we immediately get uε P Uf , so

Hf pxq ď
ε

|x|d´2

εÑ0
ÝÝÝÑ 0.

Since 0 P Lf trivially, we get that Hf pxq ě 0 and Lemma 5.15 implies that Hf pxq “ 0.
That is, Hf is the same for Ω “ B1p0q and for Ω “ B1p0qzt0u.

5.3 Harmonic measure via Perron’s method

Throughout this section we assume that Ω Ă Rd is a bounded open set, unless otherwise
stated. Next we provide the definition of harmonic measure via the so-called Perron’s
method.

Definition 5.21. Let Ω Ă Rd be open and bounded and let x P Ω. The harmonic measure
for Ω based at x (or with pole in x) is the unique Radon measure ωx on BΩ such that

Hf pxq “

ż

BΩ
fpξqdωxpξq for all f P CpBΩq.

The existence and uniqueness of ωx is ensured by the Riesz representation theorem, i.e.
Theorem 4.7. Abusing notation we extend ωx by 0 to the whole Rd, that is ωxpRdzBΩq :“ 0.
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Remark 5.22. Note that 1 P L1 X U1, so H1pxq “ 1 regardless of any consideration on
the geometry of Ω by Lemma 5.15. Therefore

ωxpBΩq “

ż

1dωx “ H1pxq “ 1.

So ωx is a probability measure.

Example 5.23. Consider the case of the unit ball B1. We showed in Theorem 3.10
that the Dirichlet problem is solvable in B1 and that, for any f P CpBB1q, its harmonic
extension equals

uf pxq “

ż

BB1

P xpζqfpζq dσpζq for x P B1,

where P xpξq is the Poisson kernel:

P xpξq “
1 ´ |x|2

κd |x´ ξ|
d
.

Since uf “ Hf for all f P CpBB1q, by the uniqueness of ωx it follows that

dωxpξq “ P xpξq dσpξq.

In the case x “ 0, we have

dω0pξq “
1

κd
dσpξq.

That is, ω0 is the normalized surface measure on the unit sphere.

In many geometric and qualitative analytic properties of harmonic measure, the choice
of the pole plays no role. This is due to the fact that harmonic measures with different
poles are mutually absolutely continuous in (connected) domains. To prove this fact, we
start by checking the harmonicity with respect to the pole of the harmonic measure of a
given compact set.

Lemma 5.24. Let Ω Ă Rd be a bounded open set and let ωx be the harmonic measure for
Ω. Let K Ă BΩ be compact. Then the function upxq :“ ωxpKq is harmonic in Ω.

Proof. For each n ě 1, let Un be the p1{nq-neighborhood of K, i.e. Un “ tx : distpx,Kq ă

1{nu. Consider a sequence of functions fn P CpBΩq such that χK ď fn ď χUnXBΩ, so that
fn Ñ χk pointwise in BΩ.

By dominated convergence theorem, it follows that, for any fixed x P Ω,

upxq “ ωxpKq “ lim
nÑ8

ż

fn dω
x ď ωxpU1q ď 1.

Since unpxq :“
ş

fndω
x, with n ě 1, is a uniformly bounded sequence of harmonic func-

tions, the limit is also harmonic (see Lemma 2.14).
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Lemma 5.25. Let Ω Ă Rd be a bounded domain and let ωx be the harmonic measure for
Ω. For all x, y P Ω, the measures ωx and ωy are mutually absolutely continuous.

Proof. By the inner regularity of Radon measures, it suffices to show that ωxpKq « ωypKq

for any compact set K, with the implicit constant depending only on Ω, x, y, but not on
K. This is an immediate consequence of Lemma 2.17, as upxq :“ ωxpKq is a positive
harmonic function in Ω,

As a matter of fact, the harmonicity with respect to the pole is also satisfied when the
set is Borel regular. The proof in this case is a bit more technical, since the approximating
open sets given by Borel regularity in Definition 4.4 depend on the particular pole.

Lemma 5.26. Let Ω Ă Rd be a bounded open set, let ωx be the harmonic measure for Ω,
and let A Ă BΩ be a Borel set. Then the function upxq :“ ωxpAq is harmonic in Ω.

Proof. If A is compact, this has already been shown in Lemma 5.24. If A is open, then
ωxpAcq is harmonic and we write upxq “ ωxpAq “ 1 ´ ωxpAcq. So u is harmonic in Ω.

Let A Ă Ω be now an arbitrary Borel set A and fix x P Ω. By the regularity of ωx,
there exists a sequence of open sets Un Ą A such that ωxpUnzAq ď 1{n. Moreover, we can
take Un`1 Ă Un by redefining the sequence suitably. Then, letting G “

Ş

ně1 Un, we have
ωxpGzAq “ 0. By the mutual absolute continuity of all the harmonic measures ωy, with
y P Ω, it follows that ωypGzAq “ 0 for all y P Ω. Thus, since A is Borel (and therefore, it
is measurable), we get

ωypGq “ ωypGzAq ` ωypGXAq “ ωypAq “ upyq

for all y P Ω.
Now it just remains to notice that ωypGq is a harmonic function, since it equals a

pointwise limit of uniformly bounded harmonic functions, because Lemma 4.3 implies

ωypGq “ lim
nÑ8

ωypUnq.

Remark 5.27. In the preceding lemma we have considered Borel sets because they are
measurable for every pole. There may be sets which are not Borel, but which are mea-
surable for certain ωx, however mesurability for other poles should be discussed in this
setting. However, the preceding lemma and its proof can be extended to any set A us-
ing the exterior measure of possibly non-measurable sets ωypAq :“ inftωypEq : A Ă

E with E measurableu, see [Mat95] for instance.

The next result will be useful in other chapters when studying the properties of harmonic
measure.

Lemma 5.28. Let Ω, rΩ Ă Rd be bounded open sets such that rΩ Ă Ω and BΩ X BrΩ ‰ ∅.
Denote by ωΩ and ω

rΩ
the respective harmonic measures for Ω and rΩ. For any x P rΩ and

any Borel set A Ă BΩ X BrΩ, it holds

ωx
rΩ

pAq ď ωx
ΩpAq.
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Proof. To simplify notation we write ω “ ωΩ and rω “ ω
rΩ
. By the regularity properties

of harmonic measure, it suffices to prove that rωxpAq ď ωxpAq for any compact subset
A Ă BΩ X BrΩ. Consider an arbitrary function φ P CpBΩq such that φ “ 1 on A. To
illustrate the main idea of the proof, suppose first that Dirichlet problem is solvable in
Ω for any continuous boundary data, so that the Perron solution v “ Hφ in Ω of the
Dirichlet problem with boundary data φ extends continuously to BΩ and v|BΩ “ φ. Then,

rωxpAq ď

ż

BrΩ
v drωx “ vpxq “

ż

BΩ
φdωx.

Then taking the infimum over all the functions φ P CpBΩq as above, we deduce that
rωxpAq ď ωxpAq.
In the general case, we need a more careful argument. For φ as above and any ε ą 0,

let u P UΩ
φ (the upper Perron class for φ in Ω) be such

ż

BΩ
φdωx ě upxq ´ ε.

By the definition of UΩ
φ , we have

lim inf
yÑξ

upyq ě φpξq “ 1 for all ξ P A.

Then, by the compactness of A, there exists δ-neighborhood UδpAq such that upyq ě 1´ ε
for all y P UδpAq XΩ. Consider now a function rφ P CpBrΩq supported on UδpAq X BrΩ which

equals 1 on A and is bounded above uniformly by 1. Then we claim that u|
rΩ

P U rΩ
p1´εqrφ

(the upper Perron class for p1 ´ εqrφ in rΩ). Indeed, u is superharmonic in rΩ and

lim inf
yÑξ

upyq ě 0 “ rφpξq for all ξ P BrΩzUδpAq,

and
lim inf
yÑξ

upyq ě 1 ´ ε ě p1 ´ εqrφpξq for all ξ P BrΩ X UδpAq.

Therefore,

p1 ´ εq rωxpAq ď

ż

BrΩ
p1 ´ εqrφdrωx ď upxq ď

ż

BΩ
φdωx ` ε.

Since ε is arbitrarily small, we have rωxpAq ď
ş

BΩ φdω
x. Taking the infimum over all the

functions φ P CpBΩq such that φ “ 1 on A, we derive rωxpAq ď ωxpAq.

5.4 Wiener regularity

In this section we continue to assume that Ω Ă Rd is a bounded open set, unless stated
otherwise. In view of Lemma 5.26 it is tempting to refer to the harmonic measure of any
set A Ă BΩ as the harmonic function in Ω having boundary values χA. Unfortunately, χA
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is not a continuous function, and it is not clear what does it mean to have a discontinuous
function as trace, for instance, when A is a dense subset with null harmonic measure.
If the boundary is regular enough, this limit may be understood in the Lp sense, for
instance, see Theorem 3.10, but the limit would be defined almost everywhere in some
sense. We could expect, however, that limxÑξ ω

xpAq “ 1 if distpξ, BΩ X Acq ą 0, and
limxÑξ ω

xpAq “ 0 if distpξ, Aq ą 0. Unfortunately, we cannot grant yet that Hf |BΩ ” f
for continuous functions. We need to describe when this happens, that is, we need to
study regular points.

Definition 5.29. We say that ξ P BΩ is a regular point if whenever f P CpBΩq, Hf pxq Ñ

fpξq as Ω Q x Ñ ξ, i.e.
ż

BΩ
fpζqdωxpζq

ΩQxÑξ
ÝÝÝÝÑ fpξq. (5.2)

We say that Ω is Wiener regular if every point in the boundary is regular.

From the definition above, it follows easily that if a domain Ω is Wiener regular, then
the support of harmonic measure is the whole boundary of Ω.
A method for proving regularity at a point ξ P BΩ consists in showing the existence of

a barrier function for ξ, that is, a function v : Ω Ñ R such that

1. v is superharmonic in Ω.

2. lim infyÑζ vpyq ą 0 for all ζ P BΩztξu.

3. limyÑξ vpyq “ 0.

Notice that, by the minimum principle applied to each component of Ω, v ą 0 in Ω.

Theorem 5.30. If ξ P BΩ has a barrier function, then for any bounded function f on BΩ
which is continuous at ξ, we have

lim
xÑξ

Hf pxq “ lim
xÑξ

Hf pxq “ fpξq.

In particular, ξ is a regular point.

Proof. Let v be a barrier for ξ and let ε ą 0. Since f is continuous in ξ, there is δ ą 0 so
that |ζ ´ ξ| ď δ implies |fpζq ´ fpξq| ă ε. Since v is superharmonic, the infimum of v in
Ωδ :“ ΩzB̄δpξq is attained in BΩδ, see Lemma 5.3. That is, there exists some y P BΩδ such
that

inf
Ωδ

v “ lim inf
zÑy

vpzq.

If y P BΩ, then lim infzÑy vpzq ą 0 by the definition of barrier, and if y P ΩX BBδpξq, then
lim infzÑy vpzq ě vpyq ą 0 too, by the lower semicontinuity of v and the fact that v ą 0
in Ω. Thus infΩδ

v ą 0. So we can pick k ą 0 such that

k lim inf
zÑζ

vpzq ą 2 sup |f |
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on BΩzB̄δpξq (we can do this because f is bounded).
Now, since fpζq ă fpξq ` ε on B̄δpξq X BΩ and fpζq ď 2 sup |f | ` fpξq on BΩzB̄δpξq, we

have
fpζq ď k lim inf

zÑζ
vpzq ` fpξq ` ε for all ζ P BΩ.

Thus, k v ` fpξq ` ε P Uf and therefore Hf pxq ď kvpxq ` fpξq ` ε in Ω and so

lim sup
xÑξ

Hf pxq ď lim sup
xÑξ

k vpxq ` fpξq ` ε ď 0 ` fpξq ` ε.

Letting ε Ñ 0 we get lim supxÑξHf pxq ď fpξq, and arguing analogously we can also prove
that lim infxÑξHf pxq ě fpξq. The theorem is an immediate consequence of this fact, by
Lemma 5.15.

The preceding theorem asserts that the existence of a barrier for ξ P BΩ implies that ξ
is a regular point. The converse result is also true:

Theorem 5.31. Let Ω be a bounded open set and let ξ P BΩ be a regular point. Then
there exists a barrier for ξ. This barrier can be chosen to be harmonic in Ω.

Proof. Let upxq “ |x ´ ξ|2. Obviously, f :“ u|BΩ P CpBΩq. We claim that v “ Hf is a
barrier for ξ. Indeed, this is harmonic in Ω and limyÑξHf pyq “ fpξq by the regularity of
ξ. Also, u is subharmonic (because ∆u ą 0) and so u P Lf and then u ď Hf “ Hf “ v in
Ω. Therefore, for all ζ P BΩztξu,

lim inf
yÑζ

vpyq ě lim inf
yÑζ

upyq “ upζq ą 0.

As a consequence, the harmonic measure of any open set with pole approaching to a
boundary point interior to this set tends to 1.

Corollary 5.32. Let Ω be a bounded open set and let ξ P BΩ be a regular point. For every
open set A Ă Rd containing ξ,

lim
ΩQxÑξ

ωxpAq “ 1.

Also
lim

ΩQxÑξ
ωxpA

c
q “ 0.

Proof. By Urysohn’s lemma, there exists a continuous function f : BΩ Ñ R such that
fpξq “ 1 and f |AcXBΩ ” 0. Then we have

Hf pxq “

ż

f dωx ď

ż

χA dω
x “ ωxpAq

by the monotonicity of integration. Since ξ is a regular point we have

1 ě lim sup
ΩQxÑξ

ωxpAq ě lim inf
ΩQxÑξ

ωxpAq ě lim
ΩQxÑξ

Hf pxq “ fpξq “ 1.

The other estimate follows by an analogous reasoning assuming fpξq “ 0 and f |A
c
XBΩ ”

1.
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Remark 5.33. There is a thickness property described in terms of capacity which char-
acterizes regularity as well, see Chapter 6 for more details.

Remark 5.34. One easy criterion for ξ to have a barrier is the existence of an exterior
tangent ball, that is, the existence of B “ Brpyq Ă Ωc so that BΩX BB “ tξu. In this way,
the function wpxq “ |ξ ´ y|2´d ´ |x´ y|2´d is a barrier function at ξ.

Note that harmonic measure associates a function Hf pxq to each continuous function f
on the boundary, although we don’t necessarily know if it is a “true” extension in the sense
that it is continuous up to the boundary and coincides with f there; all we know is that
it is a harmonic function. If it happens that Ω is Wiener regular, then

ş

fdωx “ Hf pxq is
a harmonic function continuous up to the boundary with boundary values f .

5.5 The Dirichlet problem in unbounded domains with compact
boundary

In order to study the properties of harmonic measure it is convenient to extend the study
of the Dirichlet problem to unbounded open sets with compact boundary and to define
the harmonic measure for this type of domains too. This the objective of this section.
Let Ω Ĺ Rd be un unbounded open set with compact boundary. Solving the Dirichlet

problem in Ω for a function f P CpBΩq consists in finding a function u P C2pΩq X CpΩq

satisfying the following:
$

’

’

’

’

&

’

’

’

’

%

∆u “ 0 in Ω,

u “ f on BΩ,

}u}8,Ω ă 8,

when d ě 3, limxÑ8 upxq “ 0.

(5.3)

Proposition 5.35. Let Ω Ĺ Rd be un unbounded open set with compact boundary and let
f P CpBΩq. If there exists a solution u P C2pΩq XCpΩq satisfying (5.6), then it is unique.

Proof. Let u, v P C2pΩq X CpΩq be two solutions of (5.6) and let us check that they are
equal. Suppose first that d ě 3. For R ą 0, denote Ωr “ ΩXBrp0q. Let r be large enough
so that BΩ Ă Brp0q. For 0 ă r0 ă r, by the maximum principle, taking into account that
u “ v on BΩ,

}u´ v}8,Ωr0
ď }u´ v}8,Ωr “ }u´ v}8,BΩr “ }u´ v}8,Srp0q ď }u}8,Srp0q ` }v}8,Srp0q.

By the last condition in (5.6), }u}8,Srp0q ` }v}8,Srp0q Ñ 0 as r Ñ 8, and so u “ v in Ωr0 ,
with r0 arbitrarily large.
Next we consider the case d “ 2. Without loss of generality, we assume that BΩ Ă

B1{4p0q. Let ξ P BΩ, and for a given δ ą 0, consider the function

hδpxq “ upxq ´ vpxq ´ δ log |x´ ξ|.
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By the continuity of u and v at ξ, for any ε ą 0 there exists some ρ P p0, 1{4q such that

|upxq ´ vpxq| ď ε for all x P Ω such that |x´ ξ| ď r.

For r " ρ, consider the domain Ωρ,r “ Ω X BrpξqzBρpξq. We assume r large enough so
that BΩ Ă Brpξq. Notice that

BΩρ,r Ă BΩ Y pΩ X Sρpξqq Y Srpξq.

Notice that |u´ v| ď ε and | log | ¨ ´ξ|| ď δ| log ρ| in BΩ Y pΩ X Sρpξqq Ă B1{2p0q. Thus,

|hδ| ď ε` δ| log ρ| in BΩ Y pΩ X Sρpξqq.

On the other hand, for x P Srpξq, log |x ´ ξ| “ log r. So for a given δ ą 0, if r is large
enough taking into account also that u and v are bounded, we have

hδ ď 0 in Srpξq.

From the last estimates and the maximum principle, we deduce that

hδ ď ε` δ| log ρ| in Ωρ,r,

Letting r Ñ 8, we get infer that the same estimate is valid in ΩzBρpξq. That is,

upxq ´ vpxq ´ δ log |x´ ξ| ď ε` δ| log ρpεq| for all x P Ωρpεq,

where we wrote ρpεq to emphasize the dependence of ρ on ε. Since this inequality holds
for all δ ą 0, we derive that u ď v ` ε in Ωρpεq. Finally, letting ε Ñ 0 and ρpεq Ñ 0, it
follows that u ď v in Ω. Interchanging the roles of u and v in the arguments above, we
deduce v ď u in Ω, and so we are done.

Definition 5.36. Let Ω be an unbounded open set with bounded boundary. We say that
Ω is Wiener regular if for r ą 0 such that BΩ Ă Brp0q, the set Ωr :“ Ω XBrp0q is Wiener
regular. Also, we say that ξ P BΩ is a regular point for Ω if it is regular for Ωr.

Let us check that the definition does not depend on the precise r ą 0 such that BΩ Ă

Brp0q. Notice first that BΩr “ BΩ Y BBrp0q. By the exterior tangent ball criterion in
Remark 5.34 it follows all the points ξ P BBrp0q are Wiener regular (for the open set Ωr).
To deal with the points from BΩ, let 0 ă r1 ă r2 be such that BΩ Ă Br1p0q. If v2 is barrier
for ξ P BΩ in Ωr2 , then it is also a barrier in Ωr1 , and so the Wiener regularity of ξ in
Ωr2 implies the Wiener regularity in Ωr1 . Conversely, let v1 be a barrier for ξ in Ωr1 and
consider r0 ă r1 such that we still have BΩ Ă Br0p0q. Then

mr0 :“ inf
BBr0 p0q

v1pxq ą 0
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because of the superharmonicity of v1, the other properties in the definition of a barrier,
and the minimum principle. Then we define

v2pxq “

"

minpv1pxq,mrq in Ω XBr0p0q,
mr in Br2p0qzBr0p0q.

It is easy to check that v2 is superharmonic in Ωr2 and moreover it is a barrier for this set
at ξ. Thus the Wiener regularity of ξ in Ωr1 implies the Wiener regularity in Ωr2 .

We will show below that if Ω Ĺ Rd is an unbounded open set with compact boundary
which is Wiener regular, then the Dirichlet problem in (5.6) is solvable for all f P CpBΩq.
The main step is contained in the following theorem.

Theorem 5.37. Let Ω Ĺ Rd be an unbounded open set with compact boundary and let
f P CpBΩq. For r ą 0 such that BΩ Ă Brp0q, denote Ωr “ Ω X Brp0q and let Hr

f be the
Perron solution of the Dirichlet problem in Ωr with boundary data equal to f in BΩ and
equal to 0 in Srp0q. Then the following holds:

(a) The functions Hr
f converge uniformly in bounded subsets of Ω to a function harmonic

and bounded in Ω as r Ñ 8.

(b) In the case d ě 3, the limiting function Hf satisfies limxÑ8 Hf pxq “ 0.

(c) If ξ P BΩ is a regular point, then limΩQxÑξHf pxq “ fpξq.

Remark that (a) asserts that the convergence of the functions Hr
f to Hf is uniform in

ΩXBr1p0q for any r1 ą 0. This a stronger statement than just asking for the local uniform
convergence in compact subsets of Ω.

By the theorem above, it is clear that if Ω Ĺ Rd is a Wiener regular unbounded open set
with compact boundary, then Hf is the solution of the Dirichlet problem stated in (5.6).

Proof of Theorem 5.37. We claim that it suffices to prove the theorem for f ě 0. Indeed,
for an arbitrary function f P CpBΩq, we can write f “ f` ´ f´, so that the functions f˘

are non-negative and continuous. Then we have

Hr
f “ Hr

f` ´Hr
f´ ,

and it is enough to prove the statements (a), (b), (c) for f˘.

(a) Let r0 ą 0 be such that BΩ Ă Br0{2p0q. The fact that 0 ď f ď supBΩ f , ensures that

0 ď Hr
f ď sup

BΩ
f in Ωr, for all r ě r0. (5.4)

Next we will show that, for r0 ă r ă R,

Hr
f ď HR

f in Ωr. (5.5)
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5 Harmonic measure via Perron’s method

This is an easy consequence of the maximum principle. Indeed, for s ą r0 denote by
Ls
f and Us

f the respective lower and upper Perron classes in Ωs for the function fs which
equals f on BΩ and vanishes in Ssp0q. Given u P Lr

f , let ru : ΩR Ñ R be defined by

ru “

$

&

%

maxpu, 0q in Ωr,

0 in BRp0qzBrp0q.
(5.6)

It is immediate to check that ru is subharmonic in ΩR and so that ru P LR
f . So for all x P Ωr

we have
upxq ď rupxq ď HR

f pxq “ HR
f pxq.

Taking the supremum over all u P Lr
f , we deduce Hr

f pxq ď HR
f pxq, so that (5.5) holds.

From the monotonicity of the family of function tHr
furą0 ensured by (5.5) and the

bound in (5.4), we infer that the limit limrÑ8 Hr
f pxq exists for all x P Ω and that the limit

function Hf is bounded. Since the functions Hr
f , for r ą 0, are harmonic and uniformly

bounded, it follows that the preceding limit is uniform on compact subsets of Ω.
Next we will show that for any r1 ą r0, the functions Hr

f converge uniformly on Ωr1 .
Observe first that they converge uniformly in Sr1p0q since this is a compact subset of Ω.
So given ε ą 0, there exists r2 ą r1 such that

}Hs
f ´Hf }8,Sr1 p0q ă ε for all s ą r2.

For R ą r ą r2, consider now two arbitrary functions ur P Ur
f and uR P LR

f . Notice that

lim sup
ΩQxÑξ

uRpxq ď fpξq ď lim inf
ΩQxÑξ

urpxq on BΩ.

Since }Hr
f ´HR

f }8,Sr1 p0q ă 2ε, we also have

uR ď HR
f ď Hr

f ` 2ε ď ur ` 2ε in Sr1p0q.

Using that uR ´ ur is subharmonic in Ωr1 and the maximum principle, it follows that

uR ď ur ` 2ε in Ωr1 .

Taking the supremum over all uR P LR
f and the infimum over all ur P Ur

f and using that
continuous functions are resolutive, we deduce that

HR
f ď Hr

f ` 2ε in Ωr1 .

Together with (5.5), this implies }Hr
f ´HR

f }8,Ωr1
ď 2ε. Letting R Ñ 8, it follows that

}Hr
f ´Hf }8,Ωr1

ď 2ε for all r ą r2,

which proves (a).
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5 Harmonic measure via Perron’s method

(b) Suppose d ě 3. Let M ą 0 be large enough so that

upξq ď M Epξq for all ξ P BΩ.

By the maximum principle, we easily infer that u ď M E in Ωr for all u P Lr
f , for r ą r0.

This implies that Hr
f ď M E in Ωr. Letting r Ñ 8, it follows that Hf ď M E in Ω, and so

lim sup
xÑ8

Hf pxq ď lim sup
xÑ8

Epxq “ 0.

Since Hf is non-negative, this implies that Hf vanishes at infinity.

(c) For all r ą r0, since ξ P BΩ is regular point for Ωr, then limΩQxÑξH
r
f pxq “ fpξq.

Together with the uniform convergence of Hr
f to Hf in Ωr1 for any given r1 ą r0, this

easily yields limΩQxÑξHf pxq “ fpξq.

Under the assumptions and notation of Theorem 5.37, it is immediate to check that, for
any x P Ω, the functional CpBΩq Q f ÞÑ Hf pxq is linear and bounded. Indeed, the linearity
is due to the linearity of CpBΩq Q f ÞÑ Hr

f pxq and the boundedness follows from the fact
that infBΩ f ď Hr

f ď supBΩ f for all r ě r0, which yields

}Hf }8,Ω ď }f}8,BΩ (5.7)

letting r Ñ 0.

Definition 5.38. Let Ω Ă Rd be an unbounded open set with compact boundary and let
x P Ω. The harmonic measure for Ω with pole at x is the unique Radon measure ωx on
BΩ such that

Hf pxq “

ż

BΩ
fpξqdωxpξq for all f P CpBΩq,

where is Hf defined as in Theorem 5.37. The existence and uniqueness of ωx is ensured
by the Riesz representation theorem, i.e. Theorem 4.7. Abusing notation we extend ωx

by 0 to the whole Rd, that is ωxpRdzBΩq :“ 0.

Remark 5.39. By the definition, for any unbounded open set with compact boundary
Ω Ă Rd, for any f P CpBΩq, and any x P Ω, we have

ż

BΩ
fpξqdωxpξq “ lim

rÑ8

ż

BΩ
fpξqdωx

Ωr
pξq.

By Theorem 5.37, the convergence is uniform in bounded subsets of Ω.

Observe that, by (5.7) it follows that

0 ď ωxpBΩq ď 1 for all x P Ω. (5.8)

The following proposition provides additional information.
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5 Harmonic measure via Perron’s method

Proposition 5.40. Let Ω Ă Rd be a Wiener regular unbounded open set with compact
boundary and let x P Ω. In the case d “ 2, ωxpBΩq “ 1, that is, ωx is a probability measure.
In the case d “ 3, if x belongs to the unbounded component of Ω, then 0 ă ωxpBΩq ă 1.

In particular, the proposition implies that the statement (b) in Theorem 5.37 may fail
in the case d “ 2. Without the Wiener regular assumption on Ω, further information will
be obtained later in Proposition 6.35.

Proof. Since Ω is Wiener regular, in the case d “ 2 the function identically 1 in Ω solves
the Dirichlet problem (5.6) for f “ 1 in BΩ. By the uniqueness of the solution, Hf “ 1
indentically in Ω and thus ωxpBΩq “ 1.
In the case d ě 3, again we have ωxpBΩq “ H1pxq by Theorem 5.37. On the other hand,

the statement (b) in the same theorem asserts that H1pxq Ñ 0 as x Ñ 8. So H1 is a
non constant non negative harmonic function in the unbounded component of Ω which is
bounded above by 1, by (5.7). By the strong maximum principle (applied to Ω X Brp0q

and r large enough) it follows that 0 ă ωxpBΩq “ H1pxq ă 1.

Example 5.41. Let Ω “ RdzB̄1p0q for d ě 3. The solution of the Dirichlet problem for
f ” 1 in BΩ is the function upxq “ |x|2´d. Thus,

ωxpBΩq “
1

|x|d´2
for all x P Ω.

Next we wish to show that, in the case d “ 2, we can easily define the notion of harmonic
measure with pole at 8. First we need the following auxiliary result, which has its own
interest.

Proposition 5.42. Let Ω Ă Rd be an open set and let x0 P Ω. Let u : Ωztx0u Ñ R
be a harmonic function such that upxq “ opEpx ´ x0qq as x Ñ x0. Then u extends as a
harmonic function to the whole Ω.

Of course, the proposition applies to the particular case where u is bounded and har-
monic in Ωztx0u. See also Theorem 6.34 for a related result.

Proof. Let B̄rpx0q be a closed ball contained in Ω, with r ă 1, and let v be the solution
of the Dirichlet problem in Brpx0q with boundary data u|Srpx0q. For any ε ą 0, consider
the function

hεpxq “ upxq ´ vpxq ´ ε Epx´ x0q, for x P Brpx0qztx0u.

This is harmonic in Brpx0qztx0u and limxÑx0 hεpxq “ ´8. By the maximum princi-
ple applied to any annulus As,rpx0q with s sufficiently small, we deduce that hε ď 0 in
Brpx0qztx0u. Since this holds for any ε ą 0, we get u ď v in Brpx0qztx0u. Reversing the
roles of u and v, we obtain the opposite inequality. Thus u “ v in Brpx0qztx0u and so the
proposition follows just letting u “ v in the whole Brpx0q.
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5 Harmonic measure via Perron’s method

Corollary 5.43. For some r ą 0, let u : CzB̄rp0q Ñ R be a harmonic and bounded
function. Then limzÑ8 upzq exists and the function defined by vpzq :“ up1{zq can be
extended to a harmonic function in B1{rp0q.

Proof. The function vpzq :“ up1{zq is harmonic and bounded in B1{rp0qzt0u. So it extends
to a harmonic function in B1{rp0q by the preceding proposition. Thus,

lim
zÑ8

upzq “ lim
zÑ0

vpzq

exists.

Now we can define harmonic measure with pole at 8 for unbounded open set with
compact boundary in the plane as in Definition 5.38, just putting x “ 8 there:

Definition 5.44. Let Ω Ă R2 be an unbounded open set with compact boundary. The
harmonic measure for Ω with pole at 8 is the unique Radon measure ω8 on BΩ such that

lim
xÑ8

Hf pxq “

ż

BΩ
fpξqdω8pξq for all f P CpBΩq,

where Hf is defined as in Theorem 5.37. The existence and uniqueness of ω8 is ensured
by the Riesz representation theorem.

Obviously, for any function f P CpBΩq (and Ω as in the definition),

ż

BΩ
fpξqdω8pξq “ lim

zÑ8

ż

BΩ
fpξqdωzpξq.

Observe that for any z belonging to the unbounded component of Ω, the measures ωz

and ω8 are mutually absolutely continuous. Indeed, for any Borel set E Ă BΩ, it follows
easily from the strong maximum principle applied to the function vpzq “ ω1{zpEq in a
neighborhood of the origin that vp0q “ 0 if and only if v vanishes identically.
In the case d ě 3, one can also the define the notion of harmonic measure with pole at

8 for unbounded open set with compact boundary in Rd, at least under the assumption
of Wiener regularity, following a different approach. We postpone this task to Chapter 7.
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6 Potential theory

6.1 Potentials

Recall that the fundamental solution of the minus Laplacian in Rd equals

Epxq “

$

’

’

’

’

&

’

’

’

’

%

|x|2´d

pd´ 2qκd
if d ě 3,

´ log |x|

2π
if d “ 2,

For a Radon measure µ in Rd, we consider the potential Uµ defined by

Uµpxq “ E ˚ µpxq “

ż

Epx´ yq dµpyq, (6.1)

and the energy integral

Ipµq :“

ĳ

Epx´ yqdµpyqdµpxq. (6.2)

For d ě 3, Uµ is called the Newtonian potential of µ, and for d “ 2, the logarithmic or
Wiener potential of µ.

Lemma 6.1 (Semicontinuity properties). For non-negative Radon measures µn á µ with
compact support we have:

(a) lim infyÑx Uµpyq ě Uµpxq for all x P Rd. So the potential Uµ is lower semicontinuous
in Rd.

(b) lim infnÑ8 Uµnpxq ě Uµpxq for all x P Rd.

(c) lim infnÑ8 Ipµnq ě Ipµq.

(d) The potential Uµ is superharmonic.

The proof of this lemma is an easy exercise that we leave for the reader. The superhar-
monicity of Uµ is a consequence of the lower semicontinuity of Uµ, the superharmonicity
of E , and Lemma 5.8 (a). For more details, alternatively, the reader may have a look at
[Lan72] or [Ran95].

Theorem 6.2 (Continuity principle for potentials). Given a compactly supported Radon
measure µ in Rd, if Uµ P Cpsuppµq, then Uµ P CpRdq.
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6 Potential theory

Proof. In the case d “ 2, by a suitable contraction we can assume that diampsuppµq ď 1{2,
so that Epx´ yq ą 0 for all x, y P suppµ.
Since Uµ is continuous in Rdzsuppµ we only have to check the continuity in suppµ. For

each n ě 1, let

fδpxq “

ż

|x´y|ěδ
Epx´ yq dµpyq.

Since the family of functions tfδu is monotone in δ and Uµ|suppµ is continuous, the conver-
gence of fδ to Uµ is uniform in suppµ, by Dini’s theorem. Equivalently, UχBδpxqµpxq Ñ 0
uniformly on x P suppµ as δ Ñ 0.

To prove the continuity of Uµ at a given x P suppµ, fix ε ą 0, and take δ P p0, 1{4q

such that UχBδpzqµpzq ă ε for all z P suppµ and such that µpBδpxqq ă ε (that the latter
condition holds for δ small enough is due to the fact that µ has no point masses, because
Uµpzq ă 8 for all z P suppµ). For y P Bδ{4pxq, we write

|Uµpxq ´ Uµpyq| ď

ż

|x´z|ăδ{2
Epx´ zq dµpzq `

ż

|x´z|ăδ{2
Epy ´ zq dµpzq

`

ˇ

ˇ

ˇ

ˇ

ż

|x´z|ěδ{2
pEpx´ zq ´ Epy ´ zqq dµpzq

ˇ

ˇ

ˇ

ˇ

.

The first integral on the right hand side is bounded above by ε. The third one tends to
0 as y Ñ x, because for a fixed δ ą 0, the function gpyq “

ş

|x´z|ěδ{2 Epy ´ zq dµpzq is

continuous in Bδ{4pxq. To estimate the second integral on the right hand side, let y1 be the
closest point to y from suppµ. Notice that |y1 ´ y| ď |x´ y| ď δ{4, and thus y1 P Bδ{2pxq.
It is immediate to check that then

|z ´ y1| À |z ´ y| for all z P suppµ.

Thus, in the case d ě 3, Epy ´ zq À Epy1 ´ zq, and so, using that y1 P suppµ,

ż

|x´z|ăδ{2
Epy ´ zq dµpzq À

ż

Bδ{2pxq

Epy1 ´ zq dµpzq À

ż

Bδpy1q

Epy1 ´ zq dµpzq À ε.

In the case d “ 2, we have |y´z| ě |y1 ´z| for z P B|y´y1|py
1q and so Epy´zq ď Epy1 ´zq

for such z. On the other hand, for z P suppµzB|y´y1|py
1q, we have |y ´ z| « |y1 ´ z| and

thus

Epy ´ zq “ Epy1 ´ zq `
1

2π
log

|y1 ´ z|

|y ´ z|
ď Epy1 ´ zq ` C.

Therefore,

ż

|x´z|ăδ{2
Epy ´ zq dµpzq ď

ż

Bδ{2pxq

Epy1 ´ zq dµpzq ` C µpBδ{2pxqq

ď

ż

Bδpy1q

Epy1 ´ zq dµpzq ` C µpBδ{2pxqq À ε.
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So for any dimension, we have

lim sup
yÑx

|Uµpxq ´ Uµpyq| À ε` lim sup
yÑx

ˇ

ˇ

ˇ

ˇ

ż

|x´z|ěδ{2
pEpx´ zq ´ Epy ´ zqq dµpzq

ˇ

ˇ

ˇ

ˇ

« ε.

Since ε is arbitrary, we have that Uµpyq Ñ Uµpxq as y Ñ x.

Theorem 6.3 (Maximum principle for potentials). Given a compactly supported Radon
measure µ in Rd, if Uµpxq ď 1 µ-a.e., then Uµpxq ď 1 everywhere in Rd.

Proof. Again, by contracting suitably suppµ, we can assume that diampsuppµq ď 1{2 in
the case d “ 2.

Let E “ suppµ. For any τ ą 0, by Egorov’s theorem, there is a compact subset
F “ Fτ Ă E such that µpEzF q ă τ and so that UχBεpxqµpxq converges uniformly to 0 in F
as ε Ñ 0.
We claim that UχFµ is continuous in Rd. Indeed, by the preceding theorem, if suffices

to show that UχFµ P CpF q. To prove this, for any ε P p0, 1{2q and x, x1 P F such that
|x´ x1| ď εd, we write

|UχFµpxq ´ UχFµpx1q| ď

ż

|x´y|ďε
Epx´ yqdµ|F pyq `

ż

|x´y|ďε
Epx1 ´ yqdµ|F pyq

`

ż

|x´y|ąε

ˇ

ˇEpx´ yq ´ Epx1 ´ yq
ˇ

ˇ dµ|F pyq

The first integral on the right hand side tends to 0 as ε Ñ 0 (uniformly on x P F ), and
the same happens with the second one, taking into account that ty : |x ´ y| ď εu Ă ty :
|x1 ´ y| ď 2εu. For the last one, in the case d ě 3, for y, x, x1 P F such that |x ´ y| ą ε
and |x´ x1| ď εd, we have

ˇ

ˇEpx´ yq ´ Epx1 ´ yq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

c

|x´ y|d´2
´

c

|x1 ´ y|d´2

ˇ

ˇ

ˇ

ˇ

À
|x´ x1|

|x´ y|d´1
À ε.

In the case d “ 2, observe that

ˇ

ˇ

ˇ

ˇ

|x1 ´ y|

|x´ y|
´ 1

ˇ

ˇ

ˇ

ˇ

ď
|x1 ´ x|

|x´ y|
ď ε, for y, x, x1 such that |x´ y| ą ε and |x´ x1| ď ε2,

and thus, for some constant C ą 0,

ˇ

ˇEpx´ yq ´ Epx1 ´ yq
ˇ

ˇ «

ˇ

ˇ

ˇ

ˇ

log
|x1 ´ y|

|x´ y|

ˇ

ˇ

ˇ

ˇ

À ε.

Then, for any dimension d,

ż

|x´y|ąε

ˇ

ˇEpx´ yq ´ Epx1 ´ yq
ˇ

ˇ dµ|F pyq À εµpF q.
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Therefore,
lim
εÑ0

sup
x,x1PF :|x´x1|ďε2

|UχFµpxq ´ UχFµpx1q| “ 0,

and thus the claim holds.
Notice that UχFµpxq ď Uµpxq ď 1 for all x P F . Further, in the case d ě 3, UχFµpxq Ñ 0

when x Ñ 8, while in the case d “ 2 we get UχFµpxq Ñ ´8. Since UχFµ is harmonic in
RdzF and continuous in Rd, by the maximum principle (applied to ΩR “ BRp0qzF and
letting R Ñ 8), we deduce that UχFµpxq ď 1 for all x P RdzE Ă RdzF. Now we just have
to write

Uµpxq “ UχFµpxq ` UχEzFµpxq ď 1 ` UχEzFµpxq,

and note that UχEzFµpxq Ñ 0 for any x P RdzE, as τ Ñ 0 (recall that µpEzF q ď τ).

6.2 Capacity

Definition 6.4. Given a bounded set E Ă Rd, we define its capacity CappEq by

CappEq “
1

infµPM1pEq Ipµq
, (6.3)

where the infimum is taken over all probability measures µ supported on E. When d ě 3,
CappEq is also called the Newtonian capacity of E, and for d “ 2, the Wiener capacity
of E.

In the case d “ 2, quite often we will write CapW pEq instead of CappEq. Remark that
CapW pEq may be negative, and we allow this to be infinite too. On the other hand, if
diampEq ă 1, then Epx ´ yq ě p2πq´1 log 1

diampEq
ą 0 for all x, y P E, and it follows that

infµPM1pEq Ipµq ą 0, and so 0 ď CapW pEq ă 8.1

Definition 6.5. Given a set E Ă R2, we define its logarithmic capacity by

CapLpEq “ e´2π infµPM1pEq Ipµq
“ e

´ 2π
CapW pEq .

It is immediate to check that if E Ă F , then CappEq ď CappF q for d ě 3 and CapLpEq ď

CapLpF q for d “ 2.2 Another trivial property is that the capacities Cap, CapW , and CapL
are invariant by translations. Further, the Newtonian capacity is homogeneous of degree
d´ 2 when d ě 3. That is, for a given λ ą 0 and E Ă Rd, we have

CappλEq “ λd´2 CappEq.

This follows easily from the fact that the fundamental solution E is homogeneous of degree
2 ´ d in Rd, d ě 3. In the case d “ 2, E is not homogeneous, and the behavior of CapW

1We will see below that this also holds if E is contained in B1p0q.
2In the case d “ 2, the inequality CapW pEq ď CapW pF q fails if CapW pF q ă 0, and it holds if CapW pF q ą

0, and in particular if diampF q ă 1.
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under dilations is more complicated. To study this, denote Tλpxq “ λx, so that if µ is a
probability measure supported on E, then the image measure Tλ#µ (see definition 4.8) is
another probability measure supported on λE. Then, by Theorem 4.10 we have

IpTλ#µq “
1

2π

ĳ

log
1

|x´ y|
dTλ#µpxq dTλ#µpyq

“
1

2π

ĳ

log
1

|λx´ λy|
dµpxq dµpyq “ Ipµq ´

1

2π
log λ.

Taking the infimum, we derive

inf
ηPM1pλEq

Ipηq “ inf
µPM1pEq

Ipµq ´
1

2π
log λ,

So we get

CapW pλEq “
1

1

CapW pEq
´ 1

2π log λ
.

In particular, notice that for λ big enough we have CapW pλEq ă 0 3. On the contrary, in
the case d ě 3, Newtonian capacity is always non-negative. The rather strange behavior
of the Wiener capacity under dilations and other related technical issues is one of the
motivations for the introduction of logarithmic capacity. Clearly, CapLpEq ě 0 for any
compact set E, and moreover for any λ ą 0,

CapLpλEq “ e
´ 2π

CapW pEq
`log λ

“ λCapLpEq.

So the logarithmic capacity is homogeneous of degree 1.

Remark 6.6. Note that given a bounded set E, the potential of the Lebesgue measure
restricted to E is bounded. In particular, if E has positive Lebesgue measure then its
capacity is not zero. One can also check that if Uµ is a bounded potential, then µ must
vanish for sets of capacity zero.

Lemma 6.7 (Outer regularity of capacity). For any compact set E Ă Rd and let Vn,
n ě 1, a decreasing sequence (i.e., Vn Ą Vn`1) of open sets such that and E “

Ş

n Vn.
Then

lim
nÑ8

CappVnq “ CappEq for d ě 3

and
lim
nÑ8

CapLpVnq “ CapLpEq for d “ 2.

Proof. This is a straightforward consequence of the semicontinuity property of the energies
Ipµnq in Lemma 6.1 and Theorems 4.11 and 4.12. We leave the details for the reader.

3Also, formally, CapW pλEq “ 8 in case that
1

CapW pEq
“ 1

2π
log λ.

58



6 Potential theory

We say that a property holds q.e. (quasi everywhere) if it holds except on a set of
capacity zero.

Theorem 6.8 (Existence of equilibrium measure). Let E Ă Rd be a compact set with
CappEq ą 0. There exists a Radon probability measure µ supported on E such that

CappEq “
1

Ipµq
.

Further, any such measure satisfies Uµpxq “ pCapEq´1 q.e. x P E and Uµpxq ď pCapEq´1

for all x P E.

Proof. Remark first that, for the case d “ 2, by contracting E suitably, we can assume
that diampEq ď 1{2, so that Epx´ yq ą 0 for all x, y P E.
Let

γ :“ inftIpµq : suppµ Ă E and µpEq “ 1u. (6.4)

By the lower semicontinuity of I, see Lemma 6.1 c), there exists a measure µ realizing this
infimum. Since all the measures in the infimum are supported in the compact set E, so is
the minimizer µ, which is also a probability measure, see Theorems 4.11 and 4.12.
Next we claim that

Uµpxq ě γ q.e. x P E. (6.5)

We prove this claim by contradiction. Let

Tε :“ tx P E : Uµpxq ă γ ´ εu

and assume that CappTεq ą 0. Then there exists a probability measure τ supported on Tε
with Ipτq ă 8. By Chebyshev and reducing and rescaling τ if necessary, we may assume
that Uτ pxq ď K ă 8 for a suitable K ą 0. For δ P p0, 1q, let

µδ :“ p1 ´ δqµ` δτ,

which is also a probability measure. Note that

Ipµδq “

ĳ

Epx´ yq pp1 ´ δqdµpyq ` δdτpyqq pp1 ´ δq dµpxq ` δ dτpxqq

“ p1 ´ δq2Ipµq ` 2δp1 ´ δq

ĳ

Epx´ yq dµ dτ ` δ2Ipτq

“ γ ´ 2δγ ` 2δ

ż

Uµdτ ` opδ2q ď γ ´ 2δγ ` 2δpγ ´ εq ` opδ2q ă γ

for δ small enough. This contradicts the fact that µ minimizes (6.4). Therefore, CappTεq “

0 for every ε ą 0, that is, the claim (6.5) holds.
We also claim that

Uµpxq ď γ for every x P E. (6.6)
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Let ν :“ µ|Tε . Then Uνpxq ď Uµpxq ă γ ´ ε for x P Tε. By the maximum principle Uν

is bounded and therefore νpTεq “ 0 (see Remark 6.6), i.e., µpTεq “ 0. Since Tε Õ T0, by
Lemma 4.3 we get that µpT0q “ 0. We have that

γ “ Ipµq “

ż

tUµąγu

Uµ dµ`

ż

tUµ“γu

Uµ dµ`

ż

tUµăγu

Uµ dµ.

The third integral is zero and therefore, since µ is a probability measure, we infer that
the first integral must be zero as well, so µptUµ ą γuq “ 0 and therefore (6.6) holds µ-
almost everywhere. The lower semicontinuity property of Uµ (see Lemma 6.1 a)) implies
that (6.6) holds everywhere in the support of µ and by the maximum principle it holds
everywhere.

We will show soon that, for a compact set E with positive capacity, the probability
measure µ supported on E such that CappEq “ 1

Ipµq
is unique. This probability measure

µ is called the equilibrium measure of E, and its potential Uµ, the equilibrium potential
of E.

Corollary 6.9. Let E be compact with CappEq ą 0 and let µ be an equilibrium measure
of E. Let ν be another Radon measure and let A “ tx P E : Uνpxq ă 8u. Then Uµ equals
pCapEq´1 ν-a.e. in A.

Proof. In the case d “ 2, we assume that E Ă B1{2p0q. For k ą 1, let Ak “ tx P E :
Uνpxq ď k and Uµpxq ă pCappEqq´1u. If νpAkq ą 0, then the (non-zero) measure τ “ ν|Ak

satisfies
Uτ pxq ď Uνpxq ď k for all x P Ak.

So we deduce that Ipτq ă `8 and so CappAkq ą 0. This contradicts the fact that
Uµpxq “ pCappEqq´1 q.e. in E.

Before proving the uniqueness of the equilibrium measure, we need to prove the following
positivity result for the energy of signed measures. Remark that for a signed measure, its
potential and its energy are defined in the same way as in (6.1) and (6.2), as soon as the
corresponding integrals make sense.

Theorem 6.10. Let ν be a compactly supported Radon signed measure in Rd such that
Ip|ν|q ă 8. Assume also that νpRdq “ 0 in the case d “ 2. Then

Ipνq ě 0.

Further, Ipνq ą 0 unless ν “ 0.

The fact that Ipνq is always non-negative (under the assumptions above) is quite re-
markable. Observe that in the case d “ 2 the assumption that νpRdq “ 0 cannot be
eliminated. Indeed, if E is a compact set with CapLpEq ą 1, then its equilibrium measure
µ satisfies Ipµq ă 0.
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Proof. Assume first that, besides satisfying the assumptions in the theorem, ν is of the
form ν “ gLd, where Ld is the Lebesgue measure and g P C8

c pRdq. Then E ˚ g is a C8

function and we have
g “ ´∆pE ˚ gq.

In the case d ě 3, since 0 ď Epxq À |x|2´d, we have

|E ˚ gpxq| Àg
1

|x|d´2
and |∇E ˚ gpxq| Àg

1

|x|d´1
(6.7)

as x Ñ 8. Then, by integrating by parts, it easily follows that

IpgLdq “

ż

pE ˚ gq g dLd “ ´

ż

pE ˚ gq∆pE ˚ gq dLd (6.7)
“

ż

|∇pE ˚ gq|2 dLd (6.8)

(notice that all the integrals above make sense because of (6.7). In the case d “ 2, since
νpRdq “ 0, it is immediate to check that we have the improved decay

|E ˚ gpxq| Àg
1

|x|d´1
and |∇E ˚ gpxq| Àg

1

|x|d
(6.9)

as x Ñ 8. Then we can integrate by parts again to deduce that (6.8) also holds. In any
case, in particular, the identity (6.8) shows that IpgLdq ě 0.

Consider now an arbitrary signed measure satisfying the assumptions of the theorem.
Consider a radial non-increasing C8 bump function φ such that 0 ď φ ď χB2p0q with
ş

φ “ 1 and, for ε ą 0, set φεpxq “ 1
εd
φpε´1xq. Then the measure νε “ φε ˚ ν is of the

form νε “ gε, with gε P C8
c pRdq, and has zero mean in the case d “ 2. So by (6.8) it holds

Ipνεq “

ż

|∇E ˚ νε|2 dLd ě 0. (6.10)

So to prove that Ipνq ě 0 it suffices to show that Ipνεq Ñ Ipνq as ε Ñ 0. To this end,
applying Fubini we write

Ipνεq “

ż

pφε ˚ E ˚ νqφε ˚ ν dLd “

ż

pφε ˚ φε ˚ E ˚ νq dν.

Observe now that, for any x P Rd, since φε ˚ φε is C8 with unitary mass, radial non-
increasing, and compactly supported, then it is a convex combination of functions of the
form 1

mpBrp0qq
χBrp0q (see the proof of Lemma 5.8). Since E is superharmonic, by Lemma

5.8,
φε ˚ φε ˚ Epxq ď Epxq for all x P Rd (6.11)

(this could also be checked by a direct computation), and also φε ˚ φε ˚ Epxq Ñ Epxq as
ε Ñ 0 for all x ‰ 0.

We claim that in the case d “ 2 we can assume that suppν Ă B1{4p0q. Indeed, for any
λ ą 0, consider the dilation Tλx “ λx. Then, for a suitable λ ą 0, it turns out that the
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image measure pTλq#ν is supported on B1{4p0q and it satisfies

IppTλq#νq “
1

2π

ĳ

log
1

|x´ y|
dpTλq#νpxq dpTλq#νpyq

“
1

2π

ĳ

log
1

|λx´ λy|
dνpxq dνpyq “ Ipνq ´

1

2π
νpRdq2 log λ “ Ipνq,

which yields the claim.
So for any d ě 2 and ε small enough we can assume that Epx ´ yq ą 0 for all x, y P

suppν Y suppνε. Then, by the dominated convergence theorem, for all x P suppν such
that E ˚ |ν|pxq ă 8, taking into account (6.11) and the fact that φε ˚φε ˚ Epxq Ñ Epxq for
all x ‰ 0, it follows that

lim
εÑ0

φε ˚ φε ˚ E ˚ νpxq “ E ˚ νpxq,

and moreover E ˚ νpxq ď E ˚ |ν|pxq. By another application of dominated convergence,
since Ip|ν|q ă 8, we infer that

lim
εÑ0

Ipνεq “ lim
εÑ0

ż

pφε ˚ φε ˚ E ˚ νq dν “ Ipνq, (6.12)

which concludes the proof of the fact that Ipνq ě 0.
Next suppose that Ipνq “ 0. From the identity in (6.10) and (6.12) , we deduce that

lim
εÑ0

ż

|∇E ˚ νε|2 dLd “ 0.

By an easy application of Fubini’s theorem, it follows that E ˚ ν P L1
locpRdq. Now, we

can compute the distributional Laplacian of the induced distribution, which happens to
be precisely ∆pE ˚ νq “ ´ν. On the other hand, it is well know that E ˚ νε “ φε ˚ E ˚ ν
tends to E ˚ ν in L1

locpRdq, that is in L1pBrp0qq for any r ą 0. Together with the Poincaré
inequality, denoting by mBrp0qpE ˚ νq the mean of E ˚ ν in Brp0q, this implies

´

ż

Brp0q

|E ˚ ν ´mBrp0qpE ˚ νq| dLd “ lim
εÑ0

´

ż

Brp0q

|E ˚ νε ´mBrp0qpE ˚ νεq| dLd

À lim
εÑ0

ˆ

´

ż

Brp0q

|∇pE ˚ νεq|2 dLd

˙1{2

rpBq “ 0.

So we deduce that E ˚ ν is constant a.e. with respect to Lebesgue measure. Since this
happens for any ball Brp0q and E ˚ ν tends to 0 at 8, it turns out that E ˚ ν vanishes
a.e. Then, from the fact that ν “ ´∆pE ˚ νq in the sense of distributions, we infer that
ν “ 0.

Theorem 6.11. Let E Ă Rd be a compact set with CappEq ą 0. Then the equilibrium
measure for E is unique.
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Proof. Aiming for a contradiction, suppose that there are two equilibrium measures µ and
ν for E. For t P p0, 1q, consider the measure

σt “ t µ` p1 ´ tq ν.

Obviously, σt is a probability measure. Let us see that Ipσtq ă Ipµq for t small enough.
Indeed, we have

Ipσtq “

ż

E ˚ σt dσt “ t2 Ipµq ` tp1 ´ tq

ż

E ˚ µdν ` tp1 ´ tq

ż

E ˚ ν dµ` p1 ´ tq2 Ipνq

“ p1 ´ 2tq Ipνq ` t

ż

E ˚ µdν ` t

ż

E ˚ ν dµ`Opt2q.

The sum of the two integrals on the right hand side can be rewritten as
ż

E ˚ µdν `

ż

E ˚ ν dµ “

ż

E ˚ pµ´ νq dν ` Ipνq `

ż

E ˚ pν ´ µq dµ` Ipµq

“ 2Ipνq ´

ż

E ˚ pµ´ νq dpµ´ νq “ 2 Ipνq ´ Ipµ´ νq

From the identities above, we deduce

Ipσtq “ p1 ´ 2tq Ipνq ` 2t Ipνq ´ tIpµ´ νq `Opt2q “ Ipνq ´ tIpµ´ νq `Opt2q.

By Theorem 6.10, if µ ‰ ν, then Ipµ ´ νq ą 0, and so Ipσtq ă Ipνq “ Ipµq for t small
enough, which yields the desired contradiction.

Theorem 6.12. Let E Ă Rd be compact, and suppose also that diampEq ă 1 in the case
d “ 2. Then we have

CappEq “ sup
!

µpEq : µ P M`pRdq, suppµ Ă E, sup
Rd

Uµ ď 1
)

. (6.13)

Here M`pEq stands for the set of (non-negative) Radon measure supported on E.

Proof. The fact that diampEq ă 1 in the case d “ 2 implies that Epx´yq ě 1
2π log 1

diampEq
ą

0 for all x, y P E, which in turn implies that Ipµq is positive and bounded away from 0 for
any measure µ supported on E, and so CapW pEq “ CappEq ě 0.

Denote by SE the supremum in (6.13). In case CappEq “ 0, then every µ P M`pEq

satisfies Ipµq “ `8. In particular, we infer that the potential Uµ is not bounded above
in the support of µ. Thus, the only measure in the left-hand side of (6.13) is the null
measure and SE “ 0 “ CappEq.

Let us assume CappEq ą 0. The fact that CappEq ě SE is immediate: for ε ą 0, let µ
be supported on E such that supRd Uµ ď 1 and such that µpEq ` ε ě SE . Consider the
probability measure ν “ µpEq´1µ. Then

Ipνq “ µpEq´2 Ipµq “ µpEq´2

ż

Uµpxq dµpxq ď µpEq´1.
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Therefore,
CappEq ě Ipνq´1 ě µpEq ě SE ´ ε.

For the converse inequality, consider the equilibrium measure ν of E, so that Uνpxq ď

CappEq´1 for all x P Rd, by Theorem 6.8 and Theorem 6.3. Then the measure µ “

CappEq ν satisfies supRd Uµ ď 1 in Rd and thus SE ě µpEq “ CappEq.

Remark that the supremum in (6.13) is attained for E uniquely by the measure CappEq ν,
where ν stands for the equilibrium measure of E. This can be shown arguing as in Theorem
6.12.

Corollary 6.13 (Subadditivity of capacity). For Borel sets En Ă Rd, with diamp
Ť

nEnq ă

1 in the case d “ 2, we have

Cap
´

ď

n

En

¯

ď
ÿ

n

CappEnq.

Proof. Let F Ă
Ť

nEn be compact and let µ be supported on
Ť

nEn be such that }Uµ}8 ď

1 in Rd and µpF q “ CappF q. Then }UχEnXFµ}8 ď }Uµ}8 ď 1 for any n, and thus
µpEn X F q ď CappEn X F q ď CappEnq. Therefore,

CappF q “ µpF q ď
ÿ

n

µpEn X F q ď
ÿ

n

CappEnq.

Since this holds for any compact set F Ă
Ť

nEn, we are done since, by the definition of
capacity,

CappEq “ sup
FĂE:F is compact

CapF.

Lemma 6.14. For any Radon measure µ in Rd with compact support and let λ ą 0. In
the case d ě 3 we have

Cap
`␣

x P Rd : Uµpxq ě λu
˘

ď
}µ}

λ
.

In the case d “ 2,

Cap
`␣

x P B1{2p0q : Uµpxq ě λu
˘

ď
}µ}

λ
.

Proof. Consider a compact set E Ă
␣

x P Rd : Uµpxq ě λu (in the case d “ 2, E Ă
␣

x P B1{2p0q : Uµpxq ě λu) and let ν be supported on E be such that supRd Uν ď 1 and
CappEq “ νpEq. Then we have

CappEq “ νpEq ď
1

λ

ż

Uµ dν “
1

λ

ż

Uν dµ ď
}µ}

λ
.

Taking the supremum on such sets E, the lemma follows.
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Proposition 6.15. For a ball B̄ Ă Rd, we have

CappB̄q “ pd´ 2qκd rpB̄qd´2 if d ě 3,

and
CapLpB̄q “ rpB̄q if d “ 2.

Proof. Without loss of generality, assume that B̄ is centered in the origin and that it is
closed. In the case d “ 2, by homogeneity we can assume rpB̄q ă 1{2. Let x P B̄c and
notice that Expyq :“ Epx´yq is harmonic in the interior of B̄. Let σ be the surface measure
on BB̄. Then by the mean value theorem,

Uσpxq “

ż

BB̄
Epx´ yq dσpyq “ σpBB̄q Epx´ 0q “ σpBB̄q Epxq.

Note that Uσ is constant in BB̄ by symmetry, and therefore it is continuous in Rd by
the continuity principle. Thus, the same identity holds on BB̄. Therefore, using also the
maximum principle, in the case d ě 3, we get

sup
Rd

Uσ “ sup
BB̄

Uσ “ σpBB̄q EprpB̄qq “
κd rpB̄qd´1

pd´ 2qκd rpB̄qd´2
“
rpB̄q

d´ 2
.

Therefore, the measure µ “ pd´ 2qrpB̄q´1σ satisfies supRd Uµ “ 1 and so

CappB̄q ě µpB̄q “ pd´ 2qrpB̄q´1σpB̄q “ pd´ 2qκd rpB̄qd´2.

For the converse estimate, remark that in fact the measure µ satisfies Uµ ” 1 in BB̄.
Since µ is supported on BB̄ and Uµ is harmonic in the interior of B̄ and continuous in its
closure, by the maximum principle it is identically 1 in the whole B̄. Then, from Lemma
6.14 we deduce that CappB̄q ď µpB̄q “ pd´ 2qκd rpB̄qd´2, which proves the lemma in the
case d ě 3.

In the case d “ 2 we argue analogously. Indeed, it is straightforward to check that,
for all x P BB̄ we have we have Uσpxq “ rpB̄q log 1

rpB̄q
. Then, by the same arguments as

before, it follows that

CapW pB̄q “
2π

log 1
rpB̄q

,

and so CapLpB̄q “ rpB̄q.

As a corollary of the preceding estimate for the logarithmic capacity, we obtain:

Corollary 6.16. Let µ be Radon measure supported on the (open) ball B1p0q Ă R2. Then
Ipµq ą 0.

Proof. Let E “ suppµ. Since E Ă B1p0q, there exists some ρ P p0, 1q such that E Ă Bρp0q.
Consequently, CapLpEq ď CapLpB̄ρp0qq “ ρ ă 1. Thus, e´2πIpµq ă 1, which implies that
Ipµq ą 0.
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A quick inspection of the arguments above shows that CappB̄q “ CappBB̄q for any ball.
This also holds for any arbitrary compact set. In fact, we show below that the capacity of
a compact set equals the capacity of its outer boundary. For E Ă Rd compact, its outer
boundary, denoted by BoE, is the boundary of the unbounded component of RdzE.

Theorem 6.17. For any compact set E Ă Rd, we have CappEq “ CappBoEq (and so
CapLpEq “ CapLpBoEq in the case d “ 2).

Proof. First we show that CappEq “ CappBEq. To this end, it suffices to show that the
equilibrium measure µ of E is supported on BE (in the case d “ 2, if necessary, we can
assume that E Ă B1{2p0q). To prove this, recall that by Theorem 6.8 Uµpxq “ pCapEq´1

q.e. x P E. In particular, this holds a.e. in the interior of E with respect to Lebesgue
measure, see Remark 6.6. Since ´∆Uµ “ µ in the sense of distributions, for any C8

function φ supported on the interior of E, it holds

ż

φdµ “ ´xUµ,∆φy “ ´pCapEq´1

ż

suppφ
∆φ “ 0.

Thus µ vanishes identically on the interior of E, which shows that suppµ Ă BE.
To show that CappEq “ CappBoEq, let Ω be the unbounded component of RdzE and

let pE “ RdzΩ (so that pE coincides with the union of E and the bounded components of
RdzE). Then we have BoE “ B pE and

BoE Ă BE Ă E Ă pE.

Since Capp pEq “ CappBoEq, we also have CappEq “ CappBoEq.

Remark 6.18. From the uniqueness of the equilibrium measure and the fact that CappEq “

CappBoEq, it follows that the equilibrium measure of E is supported on BoE.

6.3 Relationship between Hausdorff content and capacity

Lemma 6.19. Let E Ă Rd be compact and d´ 2 ă s ď d. In the case d ě 3, we have

Hs
8pEq

d´2
s Às,d CappEq Àd Hd´2

8 pEq.

In the case d “ 2, we have

CapLpEq Ás Hs
8pEq

1
s .

Proof. First we consider the case d ě 3. To check that CappEq À Hd´2
8 pEq, for any ε ą 0

we consider a covering of E by a family of open balls Bi, i ě 1, such that

ÿ

i

rpBiq
d´2 Àd Hd´2

8 pEq ` ε.

66



6 Potential theory

Since E is compact, we may assume that the family of balls Bi is finite. Then, using the
subadditivity of the Newtonian capacity (see Corollary 6.13) and Proposition 6.15, we get

CappEq ď
ÿ

i

CappB̄iq «
ÿ

i

rpBiq
d´2 Àd Hd´2

8 pEq ` ε,

which shows that CappEq Àd Hd´2
8 pEq.

To see that CappEq Ás,d Hs
8pEq

d´2
s , we apply Frostman’s Lemma 4.15. This tells us

that there exists some Borel measure µ supported on E such that

Hs
8pEq «d µpEq (6.14)

and
µpBrpxqq ď rs for all x P Rd and r ą 0. (6.15)

Then, for all x P Rd we have

cUµpxq “

ż

1

|x´ y|d´2
dµpyq “

ż 8

0
µ
`␣

y : |x´ y|2´d ą t
(˘

dt

“

ż 8

0
µ
`

B
`

x, t
1

2´d
˘˘

dt
(6.15)

ď

ż µpEq
2´d
s

0
µpEq dt`

ż 8

µpEq
2´d
s

t
s

2´d dt «s,d µpEq1´ d´2
s .

Therefore,

CappEq
(6.13)

ě
µpEq

}Uµ}8

Ás,d
µpEq

µpEq1´ d´2
s

“ µpEq
d´2
s

(6.14)
« d Hs

8pEq
d´2
s .

In the case d “ 2, we may and will assume that diampEq ă 1 since, for any λ ą 0.

CapLpλEq “ λ CapLpEq and Hs
8pλEq

1
s “ λHs

8pEq
1
s .

We apply again Frostman’s Lemma to get a measure µ supported on E satisfying (6.14)
and (6.15). Then, for any τ ě 0 for x P suppµ we have

2π Uµpxq “

ż

log
1

|x´ y|
dµpyq “

ż 8

0
µ
´!

y : log
1

|x´ y|
ą t

)¯

dt

“

ż 8

0
µ
`

B
`

x, e´t
˘˘

dt
(6.15)

ď

ż τ

0
µpEq dt`

ż 8

τ
e´ts dt “ τ µpEq `

1

s
e´τs.

We choose τ “ ´1
s logµpEq (notice that τ ě 0 because µpEq

(6.15)
ă 1, since diampEq ă 1),

and then we obtain

2π Uµpxq ď
µpEq

s

ˆ

log
1

µpEq
` 1

˙

.

Hence, for the probability measure σ “ µpEq´1µ, we have

2π Ipσq ď
1

s

ˆ

log
1

µpEq
` 1

˙

.
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Therefore,

CapW pEq ě
1

Ipσq
ě

2πs

log 1
µpEq

` 1
,

or equivalently,

CapLpEq ě e
log µpEq´1

s “ CpsqµpEq
1
s

(6.14)
« s Hs

8pEq
1
s .

Remark 6.20. It can be shown that if Hd´2pEq ă 8, then CappEq “ 0. See [Mat95,
Theorem 8.7], for example.

6.4 Wiener’s criterion

Given a bounded open set Ω Ă Rd, by Theorem 5.30 and Theorem 5.31, a point ξ P BΩ
is regular (for the Dirichlet problem) if and only if there is a barrier function for ξ in Ω.
In this section we show a characterization of more metric-geometric type. This is the so
called Wiener’s criterion.

Theorem 6.21 (Wiener’s criterion). For d ě 2, let Ω Ă Rd be a bounded open set and let
ξ P BΩ. The following are equivalent:

(a) ξ is a regular point.

(b)
8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzΩq

CappB̄pξ, 2´kqq
“ 8.

Here Āpξ, r1, r2q denotes the closed annulus centered at ξ with inner radius r1 and outer
radius r2. Recall also that in the case d ě 3, CappB̄pξ, 2´kqq « 2´kpd´2q, and in the case
d “ 2, CappB̄pξ, 2´kqq “ CapW pB̄pξ, 2´kqq « 1{k. Thus, in the latter case, the condition
(b) is equivalent to

(b’)
8
ÿ

k“1

k CapW pĀpξ, 2´k´1, 2´kqzΩq “ 8.

Remark 6.22. In the case d ě 3, the condition (b) is equivalent to

(b”)
8
ÿ

k“1

CappB̄pξ, 2´kqzΩq

CappB̄pξ, 2´kqq
“ 8.
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Indeed, it is trivial that (b) ñ (b”). To see that (b”) ñ (b) we use the subadditivity of
Newtonian capacity to write

ÿ

kě1

CappB̄pξ, 2´kqzΩq

CappB̄pξ, 2´kqq
À

ÿ

kě1

ÿ

jěk

CappĀpξ, 2´j´1, 2´jqzΩq

CappB̄pξ, 2´jqq

“
ÿ

jě1

CappĀpξ, 2´j´1, 2´jqzΩq
ÿ

kďj

1

CappB̄pξ, 2´jqq
.

Now observe that the last sum on the right hand side is comparable to
ř

kďj 2
kpd´2q «

2jpd´2q « CappB̄pξ, 2´jqq´1. Thus,

ÿ

kě1

CappB̄pξ, 2´kqzΩq

CappB̄pξ, 2´kqq
À

ÿ

jě1

CappĀpξ, 2´j´1, 2´jqzΩq

CappB̄pξ, 2´jqq
,

which yields the desired implication.

6.4.1 Sufficiency of the criterion for Wiener regularity

Proof of (b) ñ (a) in Theorem 6.21 in the case d ě 3. We will construct a barrier rw :
Ω Ñ R for the point ξ. We will show that there exists a harmonic function w : Ω Ñ R
satisfying:

(i) limΩQxÑξ wpxq “ 1.

(ii) lim supxÑζ wpxq ă 1 for all ζ P BΩztξu.

Then we just have to take rw “ 1 ´ w to get the desired barrier.
To shorten notation, write Āk “ Āpξ, 2´k´1, 2´kq, Bk “ Bpξ, 2´kq, and B̄k “ Bk. For

a fixed large constant Λ ě 10 to be chosen below and for any n0 ą 1, the condition (b)
ensures the existence of natural numbers N,M , with n0 ď N ă M such that

Λ ď
ÿ

NďkďM

CappĀkzΩq

CappB̄kq
ď Λ ` 1

(notice that each summand in the sum above is at most 1). For each k ě n0, if CappĀkzΩq “

0, define µk ” 0 and if CappĀkzΩq ą 0 let µk be the equilibrium measure for ĀkzΩ. Con-
sider the function

ukpxq “ CappĀkzΩqUµk
pxq;

and set
vpxq “

ÿ

NďkďM

ukpxq.

Claim 6.23. Let d ě 3. For any ε ą 0, if Λ “ Λpεq is chosen large enough, the function
v satisfies

vpξq « Λ, (6.16)
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vpxq ď p1 ` εq vpξq for all x P Ω, (6.17)

|vpxq ´ vpξq| ď C
|x´ ξ|

rpB̄M q
vpξq for all x P Ω X B̄M , (6.18)

and

vpxq ď
1

10
vpξq for all x P ΩzB̄N´k0 if k0 ě 2 is large enough. (6.19)

Remark that the constant k0 in the last estimate does not depend on ε. In the case
N ´ k0 ď 0, we understand that B̄N´k0 “ 2k0B̄N .

Proof of the Claim. The estimate (6.16) is easy: for each k P rN,M s we have

ukpξq “ CappĀkzΩqUµk
pξq « CappĀkzΩq EprpBkqq «

CappĀkzΩq

CappB̄kq
.

Thus,

vpξq «
ÿ

NďkďM

CappĀkzΩq

CappB̄kq
« Λ. (6.20)

Next we turn our attention to (6.17), which is the most delicate part of the claim.
Notice first that, by the maximum principle, it suffices to prove this for x P B̄NzBM “
Ť

NďiďM Āi. So fix x P Ai, with N ď i ď M . For some h ě 1 to be chosen soon, we write

vpxq “

i´h´1
ÿ

k“N

ukpxq `

M^i`h
ÿ

k“N_i´h

ukpxq `

M
ÿ

k“i`h`1

ukpxq “: vapxq ` vbpxq ` vcpxq.

To estimate vbpxq we just take into account that

ukpyq ď CappĀkzΩqUµk
pyq ď 1 for all y P Rd,

by Theorem 6.8. So we deduce
vbpxq ď 2h` 1.

To deal with vapxq, we will use the fact that, |x ´ ξ| ď rpB̄iq ă 2´k2´h for k ă i ´ h,
implying

ukpxq “ ukpξq ` pukpxq ´ ukpξqq “ ukpξq ` CappĀkzΩq pUµk
pxq ´ Uµk

pξqq (6.21)

ď ukpξq ` C CappĀkzΩq
|x´ ξ|

distpξ, Ākqd´1

ď ukpξq ` C CappĀkzΩq
rpB̄iq

rpB̄kqd´1

ď ukpξq ` C 2´h CappĀkzΩq

CappB̄kq
.

For vcpxq, we take into account that for k ą i` h we get rpB̄iq ą 2hrpB̄kq, so

ukpxq ď C
CappĀkzΩq

distpx, Ākqd´2
ď C

CappĀkzΩq

rpB̄iq
d´2

ď C 2´hpd´2qCappĀkzΩq

CappB̄kq
.
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Consequently, gathering the estimates obtained for k ă i´ h and for k ą i` h and using
also (6.20), we get

vapxq ` vcpxq ď
ÿ

NďkďM

ukpξq ` C 2´h
ÿ

NďkďM

CappĀkzΩq

CappB̄kq
ď vpξq ` C 2´h vpξq.

Thus,

vpxq “ vapxq ` vbpxq ` vcpxq ď vpξq ` p2h` 1q ` C 2´h vpξq ď vpξq

´

1 `
C h

Λ
` C 2´h

¯

.

So choosing h large enough and then Λ large enough as well, (6.17) follows.
To prove (6.18), we can assume x P 1

2B̄M because of (6.17). Arguing as in (6.21), we
obtain

|ukpxq ´ ukpξq| ď C CappĀkzΩq
|x´ ξ|

distpξ, Ākqd´1
À C

CappĀkzΩq

CappB̄kq

|x´ ξ|

rpB̄M q
.

Summing over k P rN,M s and using (6.20), we deduce (6.18).
Finally we deal with (6.19). So we take x P ΩzB̄N´k0 , for k0 ě 2. Then we have

ukpxq «
CappĀkzΩq

distpx, B̄kqd´2
ď

CappĀkzΩq

2pd´2qk0 rpB̄kqd´2
« 2p2´dqk0 ukpξq.

Hence, summing on k P rN,M s, we obtain

vpxq À 2p2´dqk0
ÿ

NďkďM

ukpξq “ 2p2´dqk0 vpξq.

Applying the preceding claim, we construct sequences of natural numbers Nj , Mj ,
and functions vj , for j ě 1, as follows. We choose N0 “ 1, M0 “ 2. Assuming that
Nj´1 ă Mj´1 have already been chosen, by applying Claim 6.23 with some ε P p0, 1{2q

to be fixed below and n0 “ Mj´1 ` k0, for some k0 ě 2 to be fixed below too, we find
Mj ą Nj ě n0 so that the function

vjpxq “
ÿ

NjďkďMj

ukpxq

satisfies (6.16), (6.17), (6.18), and (6.19) (with vj in place of v). Now we define

wpxq “
ÿ

jě1

2´j vjpxq

vjpξq
. (6.22)

Obviously, wpξq “ 1 and it is easy to check that w is superharmonic in Rd (since each
function vj is superharmonic by Lemma 6.1). Consequently,

lim inf
yÑξ

wpyq ě wpξq “ 1. (6.23)
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Our next objective is to show that

lim sup
yÑζ

wpyq ă 1 for all ζ P BΩztξu and wpyq ă 1 for all y P Ω. (6.24)

Observe that the latter condition together with (6.23) implies the condition (i) above, i.e.,
limΩQyÑξ wpyq “ 1. To prove (6.24) it suffices to show that for any h ě 1 there exists
δh ą 0 such that

wpxq ď 1 ´ δh for all x P B̄Mh
zB̄Mh`1

. (6.25)

To prove this, for a given x P B̄Mh
zB̄Mh`1

, we split

wpxq “

h´1
ÿ

j“1

2´j vjpxq

vjpξq
` 2´h vhpxq

vhpξq
` 2´h´1 vh`1pxq

vh`1pξq
`

ÿ

jěh`2

2´j vjpxq

vjpξq
“: S1 `S2 `S3 `S4.

(6.26)
By (6.18), the first sum satisfies

S1 “

h´1
ÿ

j“1

2´j vjpxq

vjpξq
ď

h´1
ÿ

j“1

2´j `

h´1
ÿ

j“1

2´j |vjpxq ´ vjpξq|

vjpξq

ď p1 ´ 2´h`1q ` C
h´1
ÿ

j“1

2´j rpB̄Mh
q

rpB̄Mj q
ď p1 ´ 2´h`1q ` C

h´1
ÿ

j“1

2´j 2k0pj´hq,

where we took into account that rpB̄Mj`1q ď 2´k0rpB̄Mj q for each j, by the construction
of the sequence Mj . For k0 ě 3, we have

h´1
ÿ

j“1

2´j2k0pj´hq “
2´h

2k0´1 ´ 1
ď

2´h

2k0´2
“ 2´h´k0`2.

Thus,
S1 ď p1 ´ 2´h`1q ` C2´h´k0 .

For S2 and S3 we apply (6.17):

S2 ` S3 ď p1 ` εqp2´h ` 2´h´1q.

Finally we estimate S4. For this term we use the fact that if x R B̄Mh`1
and j ě h` 2,

then by (6.19) we have vjpxq ď 1
10 vjpξq, assuming k0 large enough. Therefore,

S4 ď
1

10

ÿ

jěh`2

2´j “
1

10
2´h´1. (6.27)

Gathering the estimates for S1, . . . , S4, we obtain

wpxq ď p1 ´ 2´h`1q ` C2´h´k0 ` p1 ` εqp2´h ` 2´h´1q `
1

10
2´h´1

“ 1 ´ 2´h

ˆ

9

20
´ C2´k0 ´

3ε

2

˙

.

Then, choosing ε small enough and k0 large, we derive wpxq ď 1 ´ 2´h´2, which proves
(6.25) and completes the proof of (b) ñ (a).
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Proof of (b) ñ (a) in Theorem 6.21 in the case d “ 2. The proof is very similar to the
one above for d ě 3 and so we only point out the differences in the argument. Given
1 ă n0 ď N ă M , we define the functions uk and v as above. Then the estimates (6.16),
(6.17), and (6.18) in Claim 6.23 also hold if Λ is chosen large enough, while for (6.19) we
require now that k0 ě 10N{11 and N large enough.
The proof of this variant of Claim 6.23 for the case d “ 2 is very similar to the one for d “

3. Indeed, (6.16) has the same proof. Regarding (6.17), we split vpxq “ vapxq`vbpxq`vcpxq

as in the case d ě 3. We have vbpxq ď 2h` 1 by the same arguments as for d ě 3. To deal
with vapxq we estimate the functions uk for k ă i ´ h by arguments quite similar to the
ones in (6.21). Indeed, notice that

|Uµk
pxq ´ Uµk

pξq| À

ż

ˇ

ˇ

ˇ

ˇ

log
|x´ y|

|ξ ´ y|

ˇ

ˇ

ˇ

ˇ

dµkpyq

Writing
ˇ

ˇ

ˇ

ˇ

log
|x´ y|

|ξ ´ y|

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

log

ˆ

1 `
|x´ y| ´ |x´ ξ|

|ξ ´ y|

˙ˇ

ˇ

ˇ

ˇ

ď
|x´ ξ|

|x´ y|
,

we deduce

|Uµk
pxq ´ Uµk

pξq| À
|x´ ξ|

distpξ, Ākq
.

Thus,

ukpxq “ ukpξq ` CappĀkzΩq pUµk
pxq ´ Uµk

pξqq (6.28)

ď ukpξq ` C CappĀkzΩq
|x´ ξ|

distpξ, Ākq

ď ukpξq ` C CappĀkzΩq
rpB̄iq

rpB̄kq

ď ukpξq ` C 2´h CappĀkzΩqUµk
pξq,

where we used the trivial bound Uµk
pξq ě 1 in the last inequality for N large enough. For

vcpxq, we take into account that for k ą i` h we have

ukpxq ď CappĀkzΩq Epdistpx, Ākqq ď CappĀkzΩq Epc rpB̄iqq

ď CappĀkzΩq

ż

Epξ ´ yq dµkpyq
Epc rpB̄iqq

infyPĀk
Epξ ´ yq

ď ukpξq,

since Epc rpB̄iqq ď infyPĀk
Epξ ´ yq for k ą i` h with h large enough.

Consequently, gathering the estimates obtained for k ă i ´ h and for k ą i ` h and
using also (6.16) and (6.20), we get

vapxq ` vcpxq ď p1 ` C2´hq
ÿ

NďkďM

ukpξq “ p1 ` C2´hq vpξq.

Thus,

vpxq “ vapxq ` vbpxq ` vcpxq ď vpξq ` p2h` 1q ` C 2´h vpξq ď vpξq

´

1 `
C h

Λ
` C 2´h

¯

.
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So choosing h large enough and then Λ large enough, we get (6.17).
The proof of (6.18) also follows by arguments very similar to the ones for the case d “ 2

and so we skip them.
Finally we deal with (6.19). So we take x P ΩzB̄N´k0 , for k0 ě 10N{11 and N large

enough. For x P B1{2pξq, then we have

Uµk
pxq “

ż

Epx´ yq dµkpyq ď

ż

Epξ ´ yq dµkpyq
supyPĀk

Epx´ yq

infyPĀk
Epξ ´ yq

ď Uµk
pξq

logpc 2k0 rpB̄N qq

logpc1 rpB̄N qq
ď Uµk

pξq
C `N ´ k0
C 1 `N

.

From the condition that k0 ě 10N{11 we deduce that N ´ k0 ď N{11, and thus for N
large enough it holds C`N´k0

C1`N ď 1
10 . Hence, multiplying by CappĀkzΩq and summing on

k P rN,M s, we obtain

vpxq ď
1

10

ÿ

NďkďM

ukpξq “
1

10
vpξq for all x P ΩzB̄N´k0 .

To complete the proof of (b) ñ (a) we choose sequences Nj andMj as in the case d ě 3,
but with the additional requirement that Nj ě 20Mj´1 for each j, say. This condition
ensures that we will be able to apply (6.19) to estimate the term S4 in (6.26) arguing as
in (6.27). Then almost the same arguments as the ones for the case d ě 3 show that the
function w defined in (6.22) is barrier for ξ. We leave the details for the reader.

6.4.2 Necessity of the criterion for Wiener regularity

Recall that in Definition 5.36 we introduced the notion of Wiener regularity for unbounded
open sets with compact boundary. Before proving the necessity part in Theorem 6.21, i.e.,
the implication (a) ñ (b), we need the following auxiliary result.

Lemma 6.24. Let E Ă Rd be compact with CappEq ą 0 and let ΩE be the unbounded
component of RdzE. Suppose that ΩE is Wiener regular and let µ be the equilibrium mea-
sure for E. Then the equilibrium potential Uµ is continuous in Rd and Uµ “ pCappEqq´1

identically on E.

Proof. Without loss of generality, we assume that E Ă B1{2p0q. For r ą 2 we denote
ΩE,r “ ΩE X Brp0q and we let ur be the solution of the Dirichlet problem in ΩE,r with
boundary data:

ur “

"

pCappEqq´1 in BΩE ,
Uµ in BBrp0q.

We extend ur to pE “ RdzΩE by setting urpxq “ pCappEqq´1 for x P pE, so that ur is
continuous in Brp0q, by the Wiener regularity of ΩE,r.
Observe that, for all ξ P BΩE ,

0 ď lim sup
xÑξ

purpxq ´ Uµpxqq ď pCappEqq´1.
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Therefore, since ur “ Uµ in BBrp0q, by the maximum principle we get

}ur ´ Uµ}8,ΩE,r
ď pCappEqq´1.

As this estimate is uniform in r, we deduce that there exists a sequence rk Ñ 8 such that
urk converges locally uniformly on compact subsets of ΩE to some function u harmonic
in ΩE . In particular, it converges uniformly on BB1p0q. Since urk equals pCappEqq´1 in
BΩE for all k, by the maximum principle it follows that the convergence is also uniform in
ΩE X B̄1p0q. Then we deduce that u is continuous in ΩE and so it extends continuously to
the whole Rd. Further, u equals pCappEqq´1 in pE, u ď pCappEqq´1 in ΩE , and together
with the fact that u is continuous in Rd and harmonic in ΩE , this implies that u is
superharmonic in Rd. Notice also that

}u´ Uµ}8,Rd ď pCappEqq´1.

The preceding estimate implies that u is non-constant in the case d “ 2, since Uµpxq Ñ

´8 as |x| Ñ 8. In the case d ě 3, it is also easy to check that u is non-constant. Indeed,
let rur : Ā1,rp0q Ñ R be defined by

rurpxq “ CappEq´1 Ep1q´1 Epxq ` max
BBrp0q

Uµ,

where, abusing notation, we wrote Ep1q “ Epyq for |y| “ 1. It is immediate to check that
ur ď rur in BĀ1,rp0q, and thus also in A1,rp0q by the maximum principle. Then, letting
r Ñ 8, it follows that upxq ď CappEq´1 Ep1q´1 Epxq for |x| ą 1, which implies that u is
non-constant.
The superharmonicity of u in Rd implies that ´∆u is a non-negative measure in the

sense of distributions. This is an immediate consequence of Lemma 5.9 and the Riesz
representation theorem. The fact that u is non-constant and the maximum principle
ensures that ∆u is not the zero measure.

Now we claim that there exists some constant c0 P R such that

u “ ´E ˚ ∆u` c0 (6.29)

in the L1
locpRdq sense. To prove this, observe first that the function v :“ u ` E ˚ ∆u is

harmonic in Rd, and for |x| " 1 it satisfies

|vpxq| ď |upxq| ` |E ˚ ∆upxq| ď pCappEqq´1 ` Uµpxq ` |E ˚ ∆upxq| ď C0 ` C1 |Ep|x|q|,

where C0 and C1 depend on u. In the case d ě 3, this implies that v is bounded and so it
is constant, by Liouville’s theorem. In the case d “ 2, we also deduce that v is constant.
This follows easily from Lemma 2.11 applied to v in BRp0q, letting R Ñ 8:

}∇v}8,BR{2p0q À
}v}8,BRp0q

R
À
C0 ` C1 logR

R
Ñ 0.

So in any case (6.29) holds.
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Let us see now that the pointwise identity

upxq “ ´E ˚ ∆upxq ` c0 (6.30)

holds for all x P Rd. Indeed, this holds in ΩE by the continuity of E ˚∆u and u in ΩE . So
it remains to show that

pCappEqq´1 “ ´E ˚ ∆upxq ` c0 for all x P pE.

To this end, notice that for each t ą 0, by the identity (6.29) in the L1
loc sense and the

continuity of u,

c0 ` ´

ż

Btpxq

E ˚ p´∆uq dm “ ´

ż

Btpxq

u dm
tÑ0
ÝÑ upxq.

On the other hand, by the superharmonicity of E ˚ p´∆uq (recall that ´∆u is a positive
measure), ´

ş

Btpxq
E ˚ p´∆uq dm ď E ˚ p´∆uqpxq, and so

CappEq´1 “ upxq “ c0 ` lim sup
tÑ0

´

ż

Btpxq

E ˚ p´∆uq dm ď c0 ` E ˚ p´∆uqpxq.

For the converse inequality, we take into account that c0 ` E ˚ p´∆uq ď CappEq´1 a.e. in
Rd, and thus the same estimate happens everywhere in Rd by the lower semicontinuity of
E ˚ p´∆uq (see Lemma 6.1(a)). So (6.30) holds for all x P Rd.
From (6.30) we deduce that

E ˚ p´∆uqpxq “ pCappEqq´1 ´ c0 “: c1 for all x P pE.

Since ´∆u is a non-zero positive measure supported on pE Ă B1{2p0q, it follows that c1 ą 0.
So letting k “ pc1CappEqq´1, it turns out that E ˚p´k∆uqpxq “ pCappEqq´1 for all x P E.
Next we will show that this implies that ´k∆u “ µ. To this end, by Theorem 6.10 it
suffices to prove that ´k∆u is a probability measure and that Ipµ` k∆uq “ 0.

To prove that ´k∆u is a probability measure we first apply Theorem 6.12, taking into
account that }E ˚p´kCappEq∆uq}8 “ 1, and then we derive CappEq ě }´kCappEq∆u},
or equivalently, } ´ k∆u} ď 1. For the converse inequality we apply Lemma 6.14 and we
obtain CappEq ď } ´ kCappEq∆u}, so that } ´ k∆u} “ 1.

Next we will show that Ipµ ` k∆uq “ 0. Notice first that Ip|µ ` k∆u|q ă `8 because
both E ˚ µ and E ˚ p´k∆uq are uniformly bounded in E. We write

Ipµ` k∆uq “

ż

Upµ`k∆uq dpµ` k∆uq “

ż

`

Uµ ´Up´k∆uq

˘

dµ` k

ż

`

Uµ ´Up´k∆uq

˘

dp∆uq.

Both integrals on the right hand side vanish because Up´k∆uq equals identically pCapEq´1

in E Ą suppµ, while Uµ equals pCapEq´1 µ-a.e. and p´k∆uq-a.e. by Corollary 6.9. Hence,
Ipµ ` k∆uq “ 0 and thus µ “ ´k∆u. In turn, this implies that Uµ “ ´k E ˚ ∆u, and so

Uµ is continuous in Rd and identically equal to pCapEq´1 in pE.
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Proof of (a) ñ (b) in Theorem 6.21. As above, we write Āk “ Āpξ, 2´k´1, 2´kq, Bk “

B2´kpξq, and B̄k “ Bk. To get a contradiction, suppose that ξ P BΩ is a regular point
such that

8
ÿ

k“1

CappĀkzΩq

CappB̄kq
ă 8.

Without loss of generality, assume also that Ω Ă B1{2p0q.

We will replace Ω by an auxiliary Wiener regular open subset rΩ Ă Ω so that ξ P BΩXBrΩ.
We define rΩ as follows. For each k ě 1 such that ĀkzΩ ‰ ∅, let ρk P p0, 2´k´3q be such
that

CappUρkpĀkzΩqq ď CappĀkzΩq ` 2´k CappB̄kq,

where UℓpGq stands for the ℓ-neighborhood of G. We cover ĀkzΩ by a finite number of
closed balls Bk,j centered in ĀkzΩ with the same radius ρk, and we let Ek “

Ť

j Bj,k. In

case that ĀkzΩ “ ∅, then we let Ek “ ∅ be a closed ball Bk,1 contained in Āk such that
CappBk,1q “ 2´k CappB̄kq. Finally, we let

rΩ “ Ωz
ď

kě1

Ek.

It is easy to check that rΩ is open. Further,

ÿ

kě1

CappĀkzrΩq

CappB̄kq
ď

ÿ

kě1

CappEk´1 Y Ek Y Ek`1q

CappB̄kq
.

Using that CappEk´1 Y Ek Y Ek`1q ď CappEk´1q ` CappEkq ` CappEk`1q and that
CappB̄k´1q « CappB̄kq « CappB̄k`1q, it follows that

ÿ

kě1

CappĀkzrΩq

CappB̄kq
À

ÿ

kě1

CappEkq

CappB̄kq
ď

ÿ

kě1

CappĀkzΩq

CappB̄kq
`

ÿ

kě1

2´k ă 8. (6.31)

Also ξ P BrΩ because the preceding estimate implies that, for k large enough, CappĀkzrΩq !

CappB̄kq « CappĀkq, so that Āk X rΩ ‰ ∅.
To check that rΩ is Wiener regular, notice first that ξ is a Wiener regular point for rΩ,

because if v : Ω Ñ R is a barrier for ξ in Ω, then v|
rΩ
is a barrier of ξ in rΩ. Further, it

is immediate to check that any other point ζ P BrΩ with ζ ‰ ξ belongs to the boundary
of some ball Bk.j , and so ζ is Wiener regular because of the existence of an outer tangent

ball in ζ (namely, Bk.j). So rΩ satisfies the required properties.
For k ě 1 we denote

Fk “ tξu Y
ď

jěk

Ej .

Notice that Fk is a compact set such that Fk Ă B̄k´1, and by the same arguments as
above, it follows easily that RdzFk is Wiener regular and that ξ P BFk.
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Next we will derive a contradiction from the fact that ξ is a regular point for rΩ and the
condition (6.31). For 0 ă ε ă 1{4, let N ě 2 be such that

ÿ

kěN

CappEkq

CappB̄kq
ă ε. (6.32)

Because of the Wiener regularity of rΩ, there exists a function f P C
`

rΩ
˘

, harmonic in rΩ,

with 0 ď f ď 1, with fpξq “ 0 and f “ 0 in BrΩzB̄N`1. By the continuity of f , there exists

s ă 2´N´1 such that fpxq ą 1 ´ ε in rΩ X B̄spξq.
Let us see that there exists M ě 1 large enough such that 2´M ă s{4 and such that the

equilibrium potential UFM
for FM satisfies

CappFM qUFM
pxq ď ε for all x P RdzB̄spξq.

Indeed, we have

CappFM qUFM
pxq ď CappB̄M´1q EpdistpFM , BBspξqq À

Epsq

Ep2´M`1q
,

which tends to 0 as M Ñ 8. We denote VFM
“ CappFM qUFM

.
Let AN,M “

Ť

NďkďM Ek. Again, RdzAN,M is Wiener regular because because AN,M

is the union of a finite number of balls, and we can apply the criterion of the outer
tangent ball. Let UAN,M

be the equilibrium potential of AN,M and denote VAN,M
“

CappAN,M qUAN,M
. By Lemma 6.24, it turns out that VFM

and VAN,M
are continuous and

VFM
`VAN,M

ě 1 on FM YAN,M . Then, by the definition of f and the maximum principle

it follows that VFM
` VAN,M

ě f in rΩ. Therefore,

VAN,M
ě f ´ VFM

ě 1 ´ 2ε in BBspξq X rΩ.

We also have VAN,M
“ 1 ą 1 ´ 2ε in AN,M , and so by the maximum principle applied to

the set BspξqzAN,M (recall that 2´M`2 ă s ă 2´N´1), it follows that

VAN,M
pξq ě 1 ´ 2ε. (6.33)

Now we intend to contradict this estimate. To this end, notice that for x P BB1{2pξq,

VAN,M
pxq “ CappAN,M qUAN,M

pxq

ď CappBN´1q Epdistpx,AN,M qq À CappBN´1q « Ep2´N q´1.

In AN,M we also have

VAN,M
pxq “ 1 ď

ÿ

NďkďM

VEk
pxq “

ÿ

NďkďM

CappEkqUEk
pxq.

Then, by the maximum principle and by (6.32),

VAN,M
pξq ď

ÿ

NďkďM

CappEkqUEk
pξq ` C Ep2´N q´1

«
ÿ

NďkďM

CappEkq

CappB̄kq
` Ep2´N q´1 À ε` Ep2´N q´1,

which contradicts (6.33).
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6.5 Kellogg’s theorem

A set E Ă Rd is called polar if CappEq “ 0. Of course, in the case d “ 2, this is equivalent
to saying that CapLpEq “ 0. Kellogg’s theorem asserts that, for any bounded open set
Ω Ă Rd, the set of (Wiener) irregular points is polar. In order to prove this, we will need
some auxiliary results, which have their own interest.
Recall that in Section 5.4 we introduced the notion of barrier functions, whose existence

characterizes the regularity of boundary points. Next we introduce the weaker notion of
generalized barrier, which also can be used to characterize regular points, as we will see
below. Given an open set Ω Ă Rd, function v : Ω Ñ R is called a generalized barrier for Ω
at ξ P BΩ if

1. v is superharmonic in V X Ω,

2. v ą 0 in Ω, and

3. limxÑξ vpxq “ 0.

It is immediate to check that a barrier for ξ is also a generalized barrier. The converse
statement is not true. However, we have the following key result.

Theorem 6.25. Let Ω Ă Rd be open and bounded. A point ξ P BΩ is regular for Ω if and
only there exists a generalized barrier for Ω at ξ.

To prove this theorem, we will use the following simple result:

Lemma 6.26. For r ą 0, let V Ă Srp0q be relatively open in Srp0q, and for any x P Brp0q

let

gpxq “

ż

Srp0q

P x
Brp0qpζqχVr,εpζq dσpζq,

where σ is the surface measure on Srp0q. Then,

lim
Brp0qQxÑξ

gpxq “ 1 for all ξ P V .

Recall that P x
Brp0q

is the Poisson kernel for the ball Brp0q, which was introduced in
Remark 3.11.

Proof. For ξ P V , let φ P CpSrp0qq be such that φpξq “ 1, 0 ď φ ď 1, and suppφ Ă V , so
that

φ ď χV ď 1.

Since the Poisson kernel is a positive function, for all x P Brp0q we have
ż

Srp0q

P x
Brp0qpζqφpζq dσpζq ď

ż

Srp0q

P x
Brp0qpζqχV pζq dσpζq ď

ż

Srp0q

P x
Brp0qpζq dσpζq. (6.34)

The integral on the left hand side equals the harmonic extension of φ to Brp0q evaluated
at x, and this tends to φpξq “ 1 as x Ñ ξ, by Theorem 3.10 and Remark 3.11. On the
other hand, the last integral is identically 1 for all x P Brp0q. Thus, letting x Ñ ξ in
(6.34), the lemma follows.
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Proof of Theorem 6.25. The statement in the theorem is equivalent to saying that there
exists a barrier at ξ P BΩ for Ω if and only if there exists a generalized barrier. Since
any barrier is also a generalized barrier, we are left wit showing that the existence of a
generalized barrier at ξ P BΩ for Ω implies the existence of a “usual” barrier. To this end,
consider the function φ : Ω Ñ R defined by φpxq “ |x ´ ξ|2. The fact that ∆φ ě 0 away
from ξ ensures that φ is subharmonic in Ω. The function f :“ φ|BΩ is continuous in BΩ,
and thus it is also resolutive. Further, since φ P Lf (recall that this is the lower Perron
class for Ω, introduced in Definition 5.12), we have v :“ Hf “ Hf ě φ in Ω. Thus, v is a
positive harmonic function in Ω such that for all ζ P BΩztξu,

lim inf
ΩQxÑζ

vpxq ě fpζq ą 0.

Hence to show that v is a “usual” barrier for ξ, it suffices to prove that

lim
ΩQxÑξ

vpxq “ 0. (6.35)

To prove (6.35), without loss of generality, assume that ξ “ 0. Let u be a generalized
barrier at 0 for Ω and let r ą 0 be such that Srp0q X Ω ‰ ∅. For a given ε ą 0, consider
a compact subset Er,ε Ă Srp0q X Ω such that σppSrp0q X ΩqzEr,εq ď ε σpSrp0qq, where σ
is the surface measure on Srp0q. Notice that γr,ε “ infEr,ε u ą 0 (recall that u is lower
semicontinuous in Ω and so the infimum on any compact subset of Ω is attained in that
compact subset). Consider the set Vr,ε “ pSrp0q X ΩqzEr,ε, which is relatively open in
Srp0q. Let g : Srp0q Ñ R be defined by the “harmonic extension” of χVr,ε to Brp0q, that
is,

gpxq “

ż

Srp0q

P x
Brp0qpζqχVr,εpζq dσpζq.

Let h : Ω XBrp0q be the function defined by

h “ r2 ` γ´1
r,ε diampΩq2 u` diampΩq2 g,

where P x
Brp0q

is the Poisson kernel for Brp0q with pole at x. Notice that h is superharmonic

in Ω. We claim that for any function s P Lf (recall that this means that s P CpΩq is a
subharmonic function such that lim supxÑη spxq ď fpηq for all η P BΩ), it holds that

lim inf
xÑη

hpxq ě lim sup
xÑη

spxq for all η P BpΩ XBrp0qq. (6.36)

Indeed, if η P Vr,ε “ Brp0q X BΩ, then

lim inf
xÑη

hpxq ě r2 ě fpηq ě lim sup
xÑη

spxq.

On the other hand, if η P Er,ε, since u is lower semicontinuous in Ω,

lim inf
xÑη

hpxq ě γ´1
r,ε diampΩq2 lim inf

xÑη
u ě γ´1

r,ε diampΩq2 upηq ě diampΩq2 ě fpηq.

80



6 Potential theory

Finally, for η P Srp0q X ΩzEr,ε, by Lemma 6.26,

lim inf
xÑη

hpxq ě diampΩq2 lim inf
xÑη

gpxq “ diampΩq2 ě fpηq.

So our claim holds.
From the superharmonicity of h´ s and the maximum principle in Lemma 5.3 (applied

to s´ h) and (6.36), we deduce that

spxq ď hpxq for all x P Brp0q X Ω.

Since this estimate holds for all s P Lf , we deduce that Hf pxq ď hpxq for all x P Brp0qXΩ.
Thus,

lim sup
xÑ0

Hf pxq ď r2 ` γ´1
r,ε diampΩq2 lim sup

xÑ0
u` diampΩq2 lim sup

xÑ0
g

“ r2 ` 0 ` gp0q “ r2 ` diampΩq2
σpVr,εq

σpSrp0qq
ď r2 ` diampΩq2 ε.

Choosing ε “ r2 diampΩq´2, we get lim supxÑ0Hf pxq ď 2 r2. Since r can be taken arbi-
trarily small and Hf is positive, we deduce that

lim
xÑ0

vpxq “ lim
xÑ0

Hf pxq “ 0,

as wished.

Theorem 6.27. Let E Ă Rd be compact with CappEq ą 0 and let ΩE be the unbounded
component of RdzE. Let µ be the equilibrium measure for E. If a point ξ P BΩE is irregular
for ΩE, then Uµpξq ă CappEq´1. In particular, the set of irregular points for ΩE is polar,
and moreover it is contained in an Fσ polar set.

Proof. Let us see that if Uµpξq ě CappEq´1, then ξ is regular. Remark that the inequality
Uµpξq ě CappEq´1 is equivalent to Uµpξq “ CappEq´1 because }Uµ}8,Rd ď CappEq´1.
We claim that the function v “ CappEq´1 ´ Uµ is a generalized barrier at ξ for ΩE (i.e.,
for ΩE X Brp0q for any r ą 0 such that E Ă Brp0q). To check this, notice first that v is
harmonic and that v ą 0 in ΩE . The latter assertion follows from the fact that v is non-
constant and non-negative in Ω and Ω is connected. By the semicontinuity property (a)
in Lemma 6.1, we know that lim infyÑξ Uµpyq ě Uµpξq. Consequently, lim infyÑξ vpyq ď

vpξq “ 0. So v is a generalized barrier at ξ for ΩE , and by Theorem 6.25 ξ is a regular
point for ΩE .

To prove the second statement of the theorem observe that, by what we have just proved,
the set of irregular points for ΩE is contained in the set

S “ tx P E : Uµpxq ă CappEq´1u,

which is a polar set, by Theorem 6.8. Therefore, the set of irregular points for ΩE is also
polar. Further, writing S “

Ť

jě1 Sj , with

Sj “
␣

x P E : Uµpxq ď CappEq´1 ´ 1
j

(

,

by the lower semicontinuity of Uµ it is clear that S is an Fσ set, since each Sj is closed.
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Remark 6.28. In fact, the converse of the first statement in Theorem 6.27 also holds.
That is, for ΩE and µ as in Theorem 6.27, a point ξ P BΩE is irregular if and only if
Uµpξq ă CappEq´1. However, we will not need this result and so we skip the proof.

Theorem 6.29. Let Ω Ă Rd be open and bounded. A point ξ P BΩ is irregular for Ω if
and only if there exists some component Ω0 of Ω such that ξ P BΩ0 and x is irregular for
Ω0. In particular, if x is not in the boundary of any component of Ω, then it is regular for
Ω.

Proof. Denote by tΩjujPJ the family of components of Ω. If ξ P BΩj and ξ is irregular for
Ωj , then there is not any barrier at ξ for Ωj , which it readily implies that there is not any
barrier at ξ for Ω. Thus, ξ is irregular for Ω.
In the converse direction, suppose that there is not any Ωj such that ξ is irregular for

Ωj . To prove that ξ is regular for Ω, we intend to define a generalized barrier v at ξ for
Ω. For any Ωj such that ξ P BΩj , since ξ is regular for Ωj , there exists a barrier vj at ξ
for Ω. For such Ωj , we define v “ minpvj , 1{jq. For the components Ωj such that ξ R BΩj ,
we let v “ 1{j on Ωj .

To check that v is a generalized barrier at ξ for Ω, notice first that v is superharmonic
and positive in Ω. To see that limxÑξ vpxq “ 0, let ε ą 0 and consider the finite set
Jε “ tj P J : j ď ε´1u. If Jε “ ∅, then u ď ε on Ω. Otherwise, for each j P Jε there
exists an open neighborhood Vj of ξ such that either Vj X Ωj “ ∅ or v ď ε in Vj X Ωj . So
letting V “

Ť

jPJε
Vj it turns out that V is an open neighborhood of y where v ď ε on V .

So limxÑξ vpxq “ 0 as wished, and thus v is the desired generalized barrier.

Theorem 6.30 (Kellogg’s theorem). Let Ω Ă Rd be open and bounded. Then the set of
irregular points for Ω is polar. Further, this is contained in an Fσ polar set.

Proof. By Theorem 6.29, it suffices to show that the set of irregular points for any com-
ponent of Ω is irregular, taking into account that the number of components is at most
countable and that a finite or countable union of polar sets is polar. So to prove the
theorem we can assume that Ω is connected.
Given a bounded connected set Ω, for any ξ P BΩ let Bξ be an open ball centered in

ξ such that Ω X BBξ ‰ ∅. Consider the domain Ωξ “ Ω Y pRdzBξq. Notice that Ωξ is
an unbounded connected set with bounded boundary, and then by Theorem 6.27 the set
of irregular points for Ωξ is polar (we can assume that CappBΩξq ą 0 because otherwise
any subset of BΩξ is polar) and it is contained in an Fσ polar set. Now remark that
Bξ X BΩ Ă BΩξ and that any point ξ P Bξ X BΩ which is irregular for Ω is also irregular
for Ωξ. This follows immediately from Wiener’s criterion for regularity (although it could
be also easily deduced from the characterization of regularity in terms of existence of
barriers). Therefore, the subset of irregular points for Ω that belong to Bξ X BΩ is polar
and it is contained in an Fσ polar set.
Finally, since BΩ is compact, there exists a finite covering of BΩ with balls Bξi , for a

finite subset of points ξi P BΩ. By the preceding discussion, the set of irregular points for
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Ω that belong to Bξi X BΩ is polar. Since a finite union of polar sets is also polar and a
finite unions of Fσ sets is an Fσ set, the theorem follows.

Remark 6.31. In fact, the set of irregular points for an open set Ω Ă Rd with compact
boundary is itself an Fσ set. This follows easily from Wiener’s criterion. Indeed, it is
immediate to check that an equivalent form of the criterion is the following: a point
ξ P BΩ is regular for the Dirichlet problem in Ω if and only if

F pξq :“

ż 1

0

CappApξ, r, 2rq X Ωcq

CappBpξ, rqq

dr

r
“ 8.

so that x is regular if and only if Spxq “ 8. Since F is lower semicontinuous, for all λ ą 0
the set tx P Rn`1 : F pxq ą λu is open and thus the set of Wiener regular point is a Gδ set
(relative to BΩ). Thus the set of the irregular points from BΩ is an Fσ set.

6.6 Removability of polar sets

Theorem 6.32. Let Ω Ă Rd be bounded and open, and let Z Ă BΩ be a Borel polar set.
Then, for any x P Ω,

ωxpZq “ 0.

Proof. In the case d “ 2, we will assume that Ω Ă B1{2p0q. The measure ωx is Radon and
thus it is inner regular. Then it is enough to prove the theorem for Z being a compact
(polar) set. Under this assumption, by the outer regularity of capacity (see Lemma 6.7),
for any ε ą 0 there is an open set V Ą Z such that CappV q ă ε. By the compactness
of Z, we can find finitely many open balls Bi, i “ 1, . . . ,m, centered on Z such that
2Bi Ă V XB1{2p0q and

Z Ă
ď

1ďiďm

Bi.

Consider the compact set E “
Ť

1ďiďmBi and let ΩE “ RdzE. Since E consists of a
union of finitely many balls, it follows either by Wiener’s criterion or by the exterior ball
criterion in Remark 5.34 that ΩE is Wiener regular. Then, by Lemma 6.24, if µ stands for
the equilibrium measure for E, the potential Uµ is continuous in Rd and Uµ “ pCappEqq´1

identically on E.
Consider now the function fpxq “ CappEqUµpxq, and notice that it is superharmonic

and continuous in Rd, and it equals 1 on E. Also, it is positive in Ω since Ω Ă B1{2p0q in
the planar case. So we have

ωxpZq ď ωxpEq ď

ż

f dωx. (6.37)

By definition, letting g “ f |BΩ, the last integral above equals Hgpxq. Since f belongs to
the upper Perron class for g, we have Hgpxq ď fpxq. Thus,

ωxpZq ď fpxq “ CappEqUµpxq ď CappV qUµpxq ď εUµpxq. (6.38)
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As µ is a probability measure supported on E,

Uµpxq “

ż

Epx´ yq dµpyq ď sup
yPE

Epx´ yq Ñ sup
yPZ

Epx´ yq as ε Ñ 0.

Since supyPZ Epx´ yq ă 8, letting ε Ñ 0 in (6.43), we deduce that ωxpZq “ 0.

Definition 6.33. Let Ω be a bounded open set and let E Ă Ω be a compact set. We say
that E is removable for bounded harmonic functions in Ω if every function f : ΩzE Ñ R
which is harmonic and bounded can be extended to the whole Ω as a harmonic function.

Theorem 6.34. Let Ω be a bounded open set and let E Ă Ω be a compact polar set. Then
E is removable for bounded harmonic functions in Ω if and only if E is polar.

Notice that, in particular, the removability of a compact set E for bounded harmonic
functions does not depend on the bounded open set Ω containing E.

Proof. First we show that if CappEq ą 0 then E is not removable. To this end, let µ be
the equilibrium measure of E and Uµ the corresponding equilibrium potential. Then Uµ

is a bounded harmonic function in ΩzE. Further, it is easy to check that Uµ cannot be
extended harmonically to a function f harmonic in the whole Ω. Otherwise, f would be
a function continuous in Ω and harmonic in Ω such that maxΩ f is not attained in BΩ,
because supE f “ CappEq´1 ą maxBΩ f . So we get a contradiction.
To prove the converse implication, let Ω Ă Rd be bounded and open and let E Ă Ω be a

compact polar set. Without loss of generality we can assume that Ω Ă B1{2p0q in the case

d “ 2. We claim that there exists a Wiener regular open set rΩ which contains E and such

that rΩ Ă Ω. For example rΩ can be constructing as the interior of the union of finitely
many dyadic cubes of the same size in a suitable way. We leave the details for the reader.
Given ε ą 0, let Vε be an open set such that E Ă Vε and CappVεq ă ε. By the

compactness of E, we can find finitely many open balls Bi, i “ 1, . . . ,m, centered on Z
such that 3Bi Ă V XB1{2p0q and

E Ă
ď

1ďiďm

Bi.

Consider the compact set Fε “
Ť

1ďiďm 2Bi and let rΩε “ rΩzFε. Notice that

BrΩε “ BrΩ Y BFε.

For x P rΩε, we bound ωx
rΩε

pBFεq as in Theorem 6.32: by considering the equilibrium

measure µ of Fε, as in (6.44) we deduce that

ωx
rΩε

pBFεq ď CappFεqUµpxq ď εUµpxq ď Cpxq ε,

with Cpxq independent of ε (assuming ε small enough).
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Next we will show that if f : ΩzE Ñ R is harmonic and bounded, then f extends to
the whole Ω as a harmonic function. To this end, let g be the harmonic extension of f |

BrΩ

to rΩ and fix x P rΩ. Take ε ą 0 small enough such that x P rΩε. Observe that both f and

g are harmonic in rΩε and continuous in rΩε and their boundary values coincide in BrΩ. So
we have

fpxq ´ gpxq “

ż

BrΩε

pf ´ gq dωx
rΩε

“

ż

BFε

pf ´ gq dωx
rΩε

ď }f ´ g}
8,rΩ

ωx
rΩε

pFεq À }f}8,ΩCpxq ε.

Since ε is a positive constant which can be taken arbitrarily small, we infer that fpxq “

gpxq. So we deduce that f “ g in rΩ. That is, f extends harmonically to the whole rΩ, just
defining f “ g in E.

Next we will apply some of the results obtained in this chapter to prove an enhanced
version of Proposition 5.40 about the harmonic measure for unbounded open set with
compact boundary.

Proposition 6.35. Let Ω Ă Rd be an unbounded open set with compact boundary and let
x P Ω. Then the following holds:

(a) If CappBΩq “ 0, then ωxpBΩq “ 0.

(b) If CappBΩq ą 0 and d “ 2, then ωxpBΩq “ 1, that is, ωx is a probability measure.

(c) If CappBΩq ą 0 and d ě 3, then 0 ă ωxpBΩq ă 1 whenever x belongs to the unbounded
component of Ω.

Proof. (a) Suppose that CappBΩq “ 0. Recall that

ωxpBΩq “ lim
rÑ8

Hr
f pxq “: Hf pxq,

where Hr
f is the Perron solution of the Dirichlet problem in Ωr :“ ΩXBrp0q with boundary

data equal to 1 in BΩ and to 0 in Srp0q. So Hr
f pxq “ ωx

Ωr
pBΩq. For r large enough so that

BΩ Ă Brp0q, we have ωx
Ωr

pBΩq “ 0, by Theorem 6.32. Thus, Hr
f pxq “ 0 for any r large

enough and so ωxpBΩq “ 0.

(b) Suppose now that CappBΩq ą 0 and d “ 2. By (5.8), ωxpBΩq ď 1, so we only have to
show the converse inequality. Consider the function

uε “ 1 ` εUµ,

where µ is the equilibrium measure for BΩ. Since Uµpxq Ñ ´8 as x Ñ 8, for any
r large enough we have BΩ Ă Brp0q and moreover uε ă 0 on Srp0q. Notice also that
uε ď 1 ` ε CappBΩq´1 on R2. So the function

vε “
1

1 ` ε CappBΩq´1
uε
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belongs to the class Lr
f , the lower Perron class in Ωr for the function fr which equals f

on BΩ and vanishes on S0p0q. Thus, for any x P Ωr,

Hr
f pxq ě vεpxq “

1

1 ` ε CappBΩq´1
p1 ` εUµpxqq.

Recalling that this holds for any r large enough, we can take the limit as r Ñ 8 to deduce
that the same estimate holds for Hf pxq. That is,

ωxpBΩq ě
1

1 ` ε CappBΩq´1
p1 ` εUµpxqq.

Letting ε Ñ 0, we infer that ωxpBΩq ě 1, which completes the proof of (b).

(c) In this case CappBΩq ą 0 and d ě 3. Denote by Ωo the unbounded component of Ω.
The same arguments as in Proposition 5.40 show that ωxpBΩq ă 1 for x P Ωo. So we only
have to check that ωxpBΩq ą 0. By Theorem 5.37 (c), if ξ P BΩ is a regular point, then

lim
ΩQxÑξ

ωxpBΩq “ lim
ΩQxÑξ

Hf pxq “ 1. (6.39)

By Theorem 6.17,
CappBΩoq “ CappR2zΩoq ě CappBΩq ą 0.

By Kellogg’s theorem, the set of irregular points is polar, and thus there exists some
regular point ξ P BΩo. Therefore, (6.39) holds for this point ξ, and thus ωxpΩq does not
vanish identically in Ωo. Since ω

xpBΩq ě 0 for all x P Ω, by the strong maximum principle
it follows that ωxpBΩq ą 0 in the whole Ωo.

6.7 Reduction to Wiener regular open sets

In this section we show some results which will be used later in these notes to reduce the
proof of some properties for harmonic measure in general open sets to the case when these
sets are Wiener regular. More precisely, the results in this section will be used to prove
the Jones-Wolff theorem about the dimension of harmonic in the plane and to show the
rectifiability of harmonic measure when it is absolutely continuous with Hausdorff measure
of codimension 1 in Rd.

Proposition 6.36. Let Ω Ă Rd be open with compact boundary and let p P Ω. Let Z Ă BΩ
be the family of irregular points of Ω. For any ε ą 0, then there exists a covering of Z by
a countable or finite family of closed balls tBiuiPI satisfying the following properties:

(i) The balls Bi are centered in BΩ and they have bounded overlap.

(ii) Capp
Ť

iPI 2Biq ď ε.

(iii) rΩ :“ Ωz
Ť

iPI Bi is open.
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(iv) BrΩ Ă

ˆ

BΩz
Ť

iPI Bi

˙

Y
Ť

iPI BBi.

(v) rΩ is Wiener regular.

(vi) For any x P rΩ, if either d “ 2 with Ω Ă B1{2p0q, or d ě 3, we have

ωx
rΩ

´

ď

iPI

2Bi

¯

ď ε sup
yPBrΩ

Epx´ yq. (6.40)

In the case when d “ 2 and Ω is unbounded, suppose that CappBΩq ą 0, that x
belongs to the unbounded component of Ω, and that ε is small enough. Then,

ωx
rΩ

´

ď

iPI

2Bi

¯

ď Cε. (6.41)

Proof. Let Z Ă BΩ be the subset of irregular points of BΩ. By Kellogg’s theorem CappZq “

0, and moreover Z is contained in an Fσ set Z0 such that CappZ0q “ 0. By the outer
regularity of capacity for compact sets and the fact that Z0 is an Fσ set, we deduce that
there exists an open set U containing Z0 with CappUq ď ε. Now, for each x P Z0 we
consider a closed ball Bx contained in U , and by Besicovitch covering theorem we find a
subamily tBiuiPI Ă tBxuxPZ0 with bounded overlap which covers Z0, so that the properties
(i) and (ii) in the lemma hold.
Next we will show that the set rΩ “ Ωz

Ť

iPI Bi is open. Indeed, we claim that

ď

iPI

Biz
ď

iPI

Bi Ă BΩ. (6.42)

This inclusion implies that

Ω z
ď

iPI

Bi “ Ωz

«˜

ď

iPI

Biz
ď

iPI

Bi

¸

Y
ď

iPI

Bi

ff

“ Ωz
ď

iPI

Bi “ rΩ,

and thus ensures that rΩ is open.
To show the claim (6.42) consider x P

Ť

iPI Biz
Ť

iPI Bi and recall that, by construction
each ball Bi is closed. Then x must be the limit of a sequence of points belonging to
infinitely many different balls Bik , ik P I. It turns out that then we have rpBikq Ñ 0.
This is a straightforward consequence of the fact that any family of balls Bj , j P J Ă I,
such that distpBj , xq ď 1 and 0 ă ε ď rpBjq ď 1 must be finite, by the finite overlap of
the family tBiuiPI . The fact that rpBikq Ñ 0 implies that x P BΩ, since the balls Bi,k are
centered in BΩ.

To prove (iv), write

BrΩ “ B

ˆ

Ωz
ď

iPI

Bi

˙

Ă BΩ Y
ď

iPI

Bi “ BΩ Y

ˆ

ď

iPI

Biz
ď

iPI

Bi

˙

Y
ď

iPI

Bi

“ BΩ Y
ď

iPI

Bi “

ˆ

BΩz
ď

iPI

Bi

˙

Y
ď

iPI

Bi.
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On the other hand, by construction the interior of each ball Bi lies in the exterior of rΩ,
and thus

BrΩ “ BrΩzextprΩq Ă

„ˆ

BΩz
ď

iPI

Bi

˙

Y
ď

iPI

Bi

ȷ

zextprΩq Ă

ˆ

BΩz
ď

iPI

Bi

˙

Y
ď

iPI

BBi,

which proves (iv).
Next we check that rΩ is Wiener regular. That is, all the points x P BrΩ are Wiener

regular for rΩ. We have to show that

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzrΩq

CappB̄pξ, 2´kqq
“ 8

for all x P BrΩ. By (iv) we know that either x P pBΩz
Ť

iPI Biq or x P BBi for some i P I.
In the latter case we have

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzrΩq

CappB̄pξ, 2´kqq
ě

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzBiΩq

CappB̄pξ, 2´kqq
“ 8,

since the complement of any ball Bi is Wiener regular. If x P BΩz
Ť

iPBi
Bi, then we know

that x is Wiener regular for Ω, because Z Ă
Ť

iPI Bi. Thus, using just that rΩc Ą Ωc, we
obtain

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzrΩq

CappB̄pξ, 2´kqq
ě

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzΩq

CappB̄pξ, 2´kqq
“ 8.

So the proof that rΩ is Wiener regular is concluded.
The arguments to prove (vi) are quite similar to the ones for Theorem (6.32). For

any d ě 2 we consider any finite subfamily J Ă I of the closed balls Bi, and we let
E “

Ť

iPJ Bi, so that E is compact and CappEq ď ε, by (ii). Since E consists of a union
of finitely many closed balls, it follows either by Wiener’s criterion or by the exterior
ball criterion in Remark 5.34 that ΩE is Wiener regular. Then, by Lemma 6.24, if µE
stands for the equilibrium measure for E, the potential UµE is continuous in Rd and
UµE “ pCappEqq´1 ě ε´1 in E.

Suppose first that d ě 3 or d “ 2 with Ω Ă B1{2p0q. Consider the function fpxq “

CappEqUµE pxq, and notice that it is superharmonic and continuous in Rd, and it equals
1 on E. Also, it is positive in Ω since Ω Ă B1{2p0q in the planar case. So we have

ωx
rΩ

pEq ď

ż

f dωx
rΩ
. (6.43)

By definition, letting g “ f |
BrΩ

, the last integral above equals Hgpxq. Since f belongs to

the upper Perron class for g in rΩ, we have Hgpxq ď fpxq. Thus,

ωx
rΩ

pEq ď fpxq “ CappEqUµE pxq ď εUµE pxq ď εUµE pxq ď ε sup
yPE

Epx´ yq, (6.44)
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using that µ is a probability measure supported on E for the last inequality. Since the
estimate above holds for any finite subfamily J Ă I, (6.40) holds.

In the case when d “ 2 and Ω is unbounded, we can assume that CappBΩq ą 0. Then
consider the function

gpxq “ UµE pxq ´ UµBΩ
pxq,

where µBΩ is the equilibrium measure for BΩ. Notice that g is superharmonic in Ω and

gpxq ě
1

CappEq
´

1

CappBΩq
ě

1

ε
´

1

Cap BΩ
for x P E.

Then for ε small enough, gpxq ě 1
2ε ą 0 on E, and since g vanishes at 8, by the maximum

principle g is positive in the unbounded component of Ω. Thus, for x in this component,

ωx
rΩ

pEq ď 2ε gpxq “ 2εpUµE pxq ´ UµBΩ
pxqq

“
ε

π

ż

log
diamBΩ ` distpx, BΩq

|x´ y|
dµEpyq ´

ε

π

ż

log
diamBΩ ` distpx, BΩq

|x´ y|
dµΩpyq

ď
ε

π

ż

log
diamBΩ ` distpx, BΩq

|x´ y|
dµEpyq ď

ε

π
log

diamBΩ ` distpx, BΩq

distpx,Eq
,

where in the before to last inequality we took into account that log diamBΩ`distpx,BΩq

|x´y|
is

positive in BΩ. For ε small enough, distpx,Eq ě 1
2distpx, BΩq, and then (6.41) follows.

Lemma 6.37. Let Ω Ă Rd be open with compact boundary and let p P Ω. For any ε ą 0,
denote by rΩε the Wiener regular set rΩ constructed in Proposition 6.36. Suppose either
that Ω is bounded with d ě 3, or that d “ 2 and CapLpBΩq ą 0. Then, for any Borel set
A Ă BΩ,

lim
εÑ0

ωp
rΩε

pAq “ ωp
ΩpAq. (6.45)

In fact, the lemma also holds in the case d ě 3 and Ω unbounded with compact boundary.
However, we will not need this result and so we will not show this.

Proof. In the case d “ 2 we can assume that BΩ Ă B1{2p0q by a suitable dilation. Let
A Ă BΩ be a Borel set. Then, by Lemma 5.28,

ωp
rΩε

pAq “ ωp
rΩε

pAX BΩ X BrΩεq ď ωp
ΩpAX BΩ X BrΩεq ď ωp

ΩpAq.

To estimate ωp
ΩpAq in terms of ωp

rΩε
pAq, we take into account that ωΩpBΩq “ ωp

rΩε
pBrΩεq “ 1

and we apply the previous estimate to BΩzA: write

ωp
ΩpAq “ 1 ´ ωp

ΩpBΩzAq ď 1 ´ ωp
rΩε

pBΩ X BrΩεzAq

“ ωp
rΩε

pBrΩεzBΩq ` ωp
rΩε

pBrΩε X BΩq ´ ωp
rΩε

pBrΩε X BΩzAq

“ ωp
rΩε

pBrΩεzBΩq ` ωp
rΩε

pBrΩε X BΩ XAq “ ωp
rΩε

pBrΩεzBΩq ` ωp
rΩε

pAq.
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Hence,
|ωp

rΩε
pAq ´ ωp

ΩpAq| ď ωp
rΩε

pBrΩεzBΩq. (6.46)

Since BrΩε is contained in the union of the balls Bi, i P I, in Proposition 6.36, by the
proeprty (vi) in the proposition ωp

rΩε
pBrΩεzBΩq tends to 0 aas ε Ñ 0.

Notice that, by (6.46), the convergence in (6.45) is uniform on the set A Ă BΩ.
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7 Harmonic measure and Green function in
Wiener regular open sets

In this section we will assume that Ω is an open Wiener regular set.

7.1 The Green function in terms of harmonic measure in
bounded open sets

For a bounded open Wiener regular set Ω Ă Rd, we may write the Green function in terms
of harmonic measure. Let us see how.
Given x P Ω, define the harmonic extension

vxpyq :“ ´

ż

BΩ
Expzq dωypzq for y P Ω, (7.1)

where Ex is the fundamental solution of the minus Laplacian with pole at z. Note that Ex

is continuous in z P BΩ and Ω is Wiener regular, then vx P CpΩq and its boundary values
are opposite to those of the fundamental solution. Thus,

Gxpyq “

#

Expyq ` vxpyq for y P Ωztxu,

0 otherwise,
(7.2)

is continuous away from the pole, and harmonic in RdzBΩ.
Thus, in a sense G is the continuous solution to the Dirichlet problem

#

´∆Gx “ δx in Ω,

Gx “ 0 on BΩ.

Lemma 7.1. Let Ω Ă Rd be a Wiener regular bounded open set. The Green function for
Ω is non-negative in Ω, and positive in the component of Ω that contains x. Further, it is
subharmonic in Rdztxu.

Proof. To prove the first statement, notice that Gx ” 0 in any component V of Ω which
does not contain x, by the maximum principle, since Gx is harmonic in V and vanishes
continuously in BV . If Vx is the component of Ω that contains x, we consider any ε ą 0
small enough such that B̄2εpxq Ă Vx, and we set Vx,ε “ VxzB̄εpxq. For ε small enough,
Gx ą 0 in BB̄εpxq, and then by the maximum principle, it follows that Gx ą 0 in Vx,ε. So
Gx ą 0 in Vx.
Regarding the second statement, using the maximum principle for harmonic functions,

one can check that the Green function satisfies the condition in Lemma 5.6, implying the
subharmonicity of the Green function (7.2) away from the pole.
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7 Harmonic measure and Green function in Wiener regular open sets

Here there is a small trouble. We have defined the Green function in two different
ways, solving the Dirichlet problem in the Sobolev sense and in the continuous sense.
Fortunately, both definitions coincide in Wiener regular open sets:

Lemma 7.2. Let vx and Gx be defined as in (7.1) and (7.2), and let ψx be a bump
function satisfying χB2tpxqc ď ψx ď χBtpxqc for t ă 1

2distpx, BΩq. Then vx P H1pΩq, and
ψxGx P H1

0 pΩq. So Gx coincides with the other Green function defined in Section 3.2.

Proof. First we will check that Gx P H1pΩzB2tpxqq. Since Ω is bounded, it is enough to
check that }Gx}L2pBXΩq ă `8 for every ball B such that 2B XB2tpxq “ H. To show this
fact we will use Caccioppoli inequality, but in order to apply it, we need to know a priori
the finiteness of the L2 norm of the gradient. To avoid a circular argument, we need to
define uεpyq :“ maxtGxpyq ´ ε, 0u for y P B2tpxqc.
Let us check the properties of uε. First, since Gx P C8pΩzB2tpxqq, we can infer that

uε P H1p2Bq (see [EG15, Theorem 4.4]). On the other hand, since Gx is subharmonic
away from the pole, also uε is subharmonic. Moreover, it is non-negative. Finally, we can
apply the Caccioppoli inequality and the maximum principle to get

ż

B
|∇uε|2 À

ż

2B
|uε|2 ď

ż

2B
pGxq2 ď |2B| max

BB2tpxq
pGxq2,

which is independent of ε.
By the monotone convergence theorem, we get

ż

BXΩ
|∇Gx|2 “ lim

εÑ0

ż

B
|∇uε|2 À |2B| max

BB2tpxq
pGxq2 ă `8,

i.e.,
Gx P H1

locpΩzBεpxqq,

and thus vx “ Gx ´ Ex P H1
locpΩzBεpxqq as well. Since it is C8 in a neighborhood of the

pole, we get vx P H1
locpΩq.

It remains to check ψxGx P H1
0 pΩq. For every y P Ω define uεpyq :“ maxtψxpyqGxpyq ´

ε, 0u. Then

lim
εÑ0

uεpyq “ ψxpyqGxpyq, and lim
εÑ0

∇uεpyq “ ∇pψxGxqpyq.

Moreover, by the triangle inequality

}uε ´ ψxGx}H1pΩq ď }uε}H1pΩq ` }ψxGx}H1pΩq ď 2}ψxGx}H1pΩq.

Thus, by the dominated convergence theorem, we get

}uε ´ ψxGx}H1
εÑ0
ÝÝÝÑ 0.

Note that uε is compactly supported in ΩzBtpxq, and it is Lipschitz. Thus, we have
shown the existence of Lipschitz functions (not C8 in general) with compact support
converging to ψxGx in the Sobolev norm. Proving that this implies that ψxGx P H1

0 pΩq

is an exercise left for the reader.
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Remark 7.3. In fact, when a Sobolev function vanishes continuously in the boundary, its
gradient can be extended by zero in the complement of the open set, the proof is similar to
[EG15, Theorem 4.4]. Thus, we have shown that Gx P H1

locpRdzBεpxqq, with ∇Gxpyq ” 0
for y P Ωc.

For x P RdzΩ and y P Ω, we will also set

Gxpyq “ 0. (7.3)

This choice, together with Lemmas 3.6 and 7.2 implies that

Gxpyq “ Gypxq for all px, yq P Rd ˆ RdzΩc ˆ Ωc with x ‰ y. (7.4)

Note that the equation (7.2) is still valid for x P RdzΩ and y P Ω. The case when x P BΩ
and y P Ω is more delicate and the identity (7.2) may fail. However, we have the following
partial result:

Lemma 7.4. Let Ω Ă Rd be bounded and Wiener regular and let y P Ω. For m-almost all
x P Ωc we have

Expyq ´

ż

BΩ
Expzq dωypzq “ 0. (7.5)

Clearly, in the particular case where mpBΩq “ 0, this result is a consequence of the
aforementioned fact that (7.2) also holds for all x P RdzΩ, y P Ω, with Gxpyq “ 0.

Proof. Let A Ă Ωc be a compact set with mpAq ą 0. Observe that the potential UA :“
UχAm “ E ˚χA is continuous, bounded in Rd, and harmonic in Ac, see Remark 6.6. Then,
by Fubini we have for all y P Ω,

ż

A

ˆ

Expyq ´

ż

BΩ
Expzq dωypzq

˙

dmpxq “ UApyq ´

ż

BΩ

ż

A
Expzq dmpxq dωypzq

“ UApyq ´

ż

BΩ
UApzq dωypzq “ 0,

using that UA is harmonic in Ω Ă Ac and bounded on BΩ for the last identity. Since the
compact set A Ă Ωc is arbitrary, the lemma follows.

Remark 7.5. As a corollary of the preceding lemma we deduce that

Gxpyq “ Expyq ´

ż

BΩ
Expzq dωypzq for m-a.e. x P Rd.

Lemma 7.6. For all x P Ω and all φ P C8
c pRdq, we have

ż

φdωxpyq ´ φpxq “

ż

Ω
∆φpyqGxpyq dy “ ´

ż

Ω
∇φpyq ¨ ∇Gxpyq dy.
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Proof. The first identity follows from Lemma 3.6 and (7.3), the preceding remark, and
Fubini. Indeed,

ż

Ω
∆φpyqGxpyq dy “

ż

Rd

∆φpyqGypxq dy “

ż

∆φpyq

ˆ

Eypxq ´

ż

BΩ
Eypzq dωxpzq

˙

dy

“ p∆φ ˚ Eqpxq ´

ż

BΩ
p∆φ ˚ Eqpzq dωxpzq

“ ´φpxq `

ż

BΩ
φpzq dωxpzq.

The last identity in the lemma follows integrating by parts and a density argument.

Notice that, by the preceding lemma, in the sense of distributions, that is in the dual
space D1pRdq (here, as in the literature in functional analysis, D stands for C8 functions
with compact support, equipped with a certain topology, see [Rud91, Chapter 6]), we have

∆Gx “ ωx ´ δx for all x P Ω.

For smooth domains with smooth Green function, we have the following:

Proposition 7.7. Let Ω Ă Rd be a bounded C1 domain, x P Ω and suppose that Gx P

C1pΩq. Then
ωx “ ´pBνG

xqσ,

where ν is the unit outer normal to BΩ and σ is the surface measure on BΩ.

Proof. It suffices to show that for any φ P D “ C8
c pRdq it holds

ż

BΩ
φdωxpyq “ ´

ż

BΩ
φpyq BνG

xpyq dσpyq.

We may assume that φ vanishes in a neighborhood of x by modifying suitably φ far away
from BΩ, since the domain of integration in both integrals above is BΩ. So consider r ą 0
such that B2rpxq Ă Ω and suppφ Ă RdzB2rpxq. Denote Ωr “ ΩzB̄rpxq. Using that Gx

is harmonic in Ωr and that φ vanishes in B2rpxq, by Lemma 7.6 and Green’s formula we
have

ż

φdωxpyq “

ż

Ω
∆φpyqGxpyq dy “

ż

Ωr

∆φpyqGxpyq dy

“ ´

ż

BΩr

φpyq BνG
xpyq dσpyq “ ´

ż

BΩ
φpyq BνG

xpyq dσpyq.

Lemma 7.8. Let B be a ball centered in BΩ and let x P Ωz2B. Then,

ωxpBq À rpBqd´2 ´

ż

2B
Gxpyq dy.
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Proof. Let φ be a bump function such that χB ď φ ď χ2B with }D2φ} À 1
rpBq2

. By

Lemma 7.6, we have

ωxpBq ď

ż

φdωx “

ż

∆φpyqGxpyq dy À
1

rpBq2

ż

2B
Gxpyq dy “ rpBqd´2 ´

ż

2B
Gxpyq dy.

As we shall see in further chapters, when Ω is an NTA or CDC uniform domain, for x
and B as in the preceding lemma, we have

ωxpBq « rpBqd´2GxpX in
B q,

where X in
B is an interior corkscrew point for B. One can view the result in the preceding

lemma as a weak version of the estimate ωxpBq À rpBqd´2GxpX in
B q. In the next sections

we will obtain some estimates in the converse direction.

7.2 The Green function in unbounded open sets with compact
boundary

Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary. In the case
d ě 3, we defined the Green function for Ω in the same we did for bounded open sets.
That is, given x P Ω, we consider the harmonic extension

vxpyq :“ ´

ż

BΩ
Expzq dωypzq for y P Ω, (7.6)

Then we define the Green function with pole at x as follows:

Gxpyq “

#

Expyq ` vxpyq for y P Ωztxu,

0 otherwise.
(7.7)

Notice that Gx is continuous away from the pole, harmonic in RdzBΩ, and Gxpyq Ñ 0 as
y Ñ 8.

In the case d “ 2 we cannot define Gx as above because otherwise this will have a pole
at 8, which is not convenient. Instead we want Gx to be bounded at 8. If Ω is not
dense in Rd, we can take a point ξ P R2zΩ and we can define Gx as above, replacing Ex

in (7.6) and (7.7) by Ex ´ Eξ. Notice that Ex ´ Eξ has a logarithmic singularity (i.e., a
pole) at x, it is continuous in BΩ, and it is bounded at 8. Then it easily follows that the
Green function Gx defined in this way has a pole at x, it is bounded at 8, and vanishes
continuously on BΩ.
For an arbitrary a Wiener regular unbounded open set with compact boundary in the

plane, we defineGx as in (7.6) and (7.7), replacing Ex by Ex´Uµ, where µ is the equilibrium
measure for BΩ. Again it turns out that the Green function Gx defined in this way has a
pole at x, it is bounded at 8, and vanishes continuously on BΩ. Indeed, recall that the
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equilibrium potential is continuous in Rd when Ω is Wiener regular. Further, this can be
written as follows, for y P Ω,

Gxpyq “
1

2π

ż

BΩ
log

|y ´ ξ|

|y ´ x|
dµpξq ´

1

2π

ż

BΩ

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωypzq. (7.8)

The analog of Lemma 7.1 holds for unbounded domains with compact boundary:

Lemma 7.9. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary.
The Green function for Ω is non-negative in Ω, and positive in the component of Ω that
contains x. Further, it is subharmonic in Rdztxu. In the case d “ 3, Gx vanishes at 8,
and in the case d “ 2, it is bounded at 8

The proof is similar to the one of Lemma 7.1 and we leave this for the reader.
Next we show that the Green function Gx is “locally” in the Sobolev space H1

0 pΩq. More
precisely:

Lemma 7.10. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary
and let x P Ω. Let Gx be defined as in (7.7) in the case d ě 3 and as in (9.19) in the
case d “ 2. For 0 ă t ă 1

2distpx, BΩq, let ψx be a bump function satisfying χB2tpxqc ď

ψx ď χBtpxqc. For any r ą 0 such that BΩ Ă Brp0q, let ψr be a bump function such that
χBrpxq ď ψr ď χB2rpxq. Then ψx ψrG

x P H1
0 pΩq.

The arguments for this lemma are similar to the ones for Lemma 7.2 and so we omit
them again.

Lemma 7.11. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary.
For r ą 0 such that BΩ Ă Brp0q, let Ωr “ Ω X Brp0q. For x P Ω and r ą |x|, let Gx and
Gx

r the respective harmonic functions for Ω and Ωr with pole at x. Then Gx
r Ñ Gx as

r Ñ 8 uniformly on bounded sets.

Proof. In the the case d ě 3, for x, y P Ω with x ‰ y, we have

Gxpyq “ Expyq ´

ż

BΩ
Expzq dωy

Ωpzq.

The same identity holds for Gx
r , replacing BΩ and ωΩ by BΩr and ωΩr , respectively. Thus,

Gx
r pyq ´Gxpyq “

ż

BΩ
Expzq dωy

Ωpzq ´

ż

BΩr

Expzq dωy
Ωr

pzq

“

ˆ
ż

BΩ
Expzq dωy

Ωpzq ´

ż

BΩ
Expzq dωy

Ωr
pzq

˙

´

ż

BBrp0q

Expzq dωy
Ωr

pzq.

By Remark 5.39, the term in parentheses on the right hand side tends to 0 as r Ñ 8. On
the other hand, the second term can be bounded as follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBrp0q

Expzq dωy
Ωr

pzq

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

distpx, BBrp0qqd´2
ωy
Ωr

pBBrp0qq ď
1

distpx, BBrp0qqd´2
,
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which also tends to 0 uniformly on bounded subsets of Ω.
In the case d “ 2, the Green function Gx for Ω can be written as in (9.19). The Green

function Gx
r for Ωr can be written in a similar fashion, for y P Ωr:

Gx
r pyq “

1

2π

ż

BΩ
log

|y ´ ξ|

|y ´ x|
dµpξq ´

1

2π

ż

BΩr

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωr
pzq. (7.9)

Here µ is the equilibrium measure for BΩ. To check the preceding identity, notice that µ
is a probability measure and we have

1

2π

ż

BΩ
log |y ´ ξ| dµpξq ´

1

2π

ż

BΩr

ż

BΩ
log |z ´ ξ| dµpξq dωy

Ωr
pzq “ 0,

because the function gpyq :“ 1
2π

ş

BΩ log |y ´ ξ| dµpξq is harmonic and continuous in Ωr.
Then, by (9.19) and (7.9), we get

Gx
r pyq ´Gxpyq “

ż

BΩ

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωpzq ´

ż

BΩr

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωr
pzq

“

ˆ
ż

BΩ

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωpzq ´

ż

BΩ

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωr
pzq

˙

´

ż

BBrp0q

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωr
pzq.

By Remark 5.39 (applied with fpzq :“
ş

BΩ log |z´ξ|

|z´x|
dµpξq), it follows that the first term in

parentheses tends to 0 uniformly in bounded subsets of Ω. Using the fact that fpzq Ñ 0 as
z Ñ 8, we also get easily that that the last term tends to 0 uniformly in bounded subsets
of Ω.

Thanks to the preceding lemma, many of the results obtained in the previous section
for the Green function in Wiener regular bounded open sets can be extended to the case
of unbounded open sets with compact boundaries. First, we easily get that the Green
function is symmetric:

Lemma 7.12. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary.
For all x, y P Ω, with x ‰ y, the Green function for Ω satisfies Gxpyq “ Gypxq.

Proof. Let Ωr “ Ω XBrp0q, with r ą 0 big enough so that BΩ Ă Brp0q and x, y P Ωr. Let
Gr denote the Green function for Ωr. Then we have

Gxpyq “ lim
rÑ8

Gx
r pyq “ lim

rÑ8
Gy

rpxq “ Gypxq.

From now on, quite often we will write

Gpx, yq “ Gxpyq “ Gypxq.
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Lemma 7.13. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary.
For all x P Ω and all φ P C8

c pRdq, we have
ż

φdωxpyq ´ φpxq “

ż

Ω
∆φpyqGxpyq dy “ ´

ż

Ω
∇φpyq ¨ ∇Gxpyq dy.

Proof. The first identity follows from the one derived for bounded open sets in Lemma 7.6
and from the uniform convergence of Gx

r to Gx in bounded subsets of Ω. The second one
follows from the first one by integration by parts.

Proposition 7.14. Let Ω Ă Rd be an unbounded C1 domain with compact boundary,
x P Ω and suppose that Gx P C1pΩq. Then

ωx “ ´pBνG
xqσ,

where ν is the unit outer normal to BΩ and σ is the surface measure on BΩ.

Proof. This follows from the preceding lemma, arguing as in Proposition 7.7.

Lemma 7.15. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary.
Let B be a ball centered in BΩ and let x P Ωz2B. Then,

ωxpBq À rpBqd´2 ´

ż

2B
Gxpyq dy.

Proof. This is proven in the same way as Lemma 7.8 for the case of bounded open sets.

7.3 Newtonian capacity, harmonic measure, and Green’s
function in the case d ě 3

In this whole section we assume either that Ω is a Wiener regular open set in Rd, with
d ě 3, and that either it is bounded or it is unbounded with compact boundary.

Lemma 7.16. Let d ě 3 and Ω Ă Rd be an open Wiener regular set with compact
boundary. Let B be a closed ball centered at BΩ. Then

ωxpBq ě cpdq
Capp14BzΩq

rpBqd´2
for all x P 1

4B X Ω,

with cpdq ą 0.

Proof. We can assume that Ω is bounded. Otherwise, the estimate above follows from the
analogous estimate applied to Ωr “ Ω XBrp0q letting r Ñ 8.

Let µ 1
4
BXBΩ be the equilibrium measure for 1

4BzΩ, and let µ “ Capp14BzΩqµ 1
4
BzΩ, so

that }Uµ}8 ď 1 and }µ} “ Capp14BzΩq. Notice that, for all x P Bc,

Uµpxq “

ż

cd
|x´ y|d´2

dµpyq ď
cd}µ}

p34rpBqqd´2
.
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Consider the function fpxq “ Uµpxq ´
cd}µ}

p 3
4

pBqqd´2 . Using that fpxq ď 0 in Bc, }f}8 ď 1,

and that f is harmonic in Ω, by Corollary 5.32 and the maximum principle we deduce
that, for all x P Ω,

ωxpBq ě fpxq.

In particular, for x P 1
4B we have

ωxpBq ě

ż

cd
|x´ y|d´2

dµpyq ´
cd}µ}

p34rpBqqd´2

ě
cd}µ}

p12rpBqqd´2
´

cd}µ}

p34rpBqqd´2
“ cd

`

2d´2 ´ p43qd´2
˘ Capp14BzΩq

rpBqd´2
,

which proves the lemma.

Lemma 7.17. Let d ě 3 and Ω Ă Rd be an open Wiener regular set with compact
boundary. Let B be a closed ball centered at BΩ. Then, for all a ą 2,

ωxpaBq Á inf
zP2BXΩ

ωzpaBq rpBqd´2Gxpyq for all x P Ωz2B and y P B X Ω, (7.10)

with the implicit constant independent of a.

Proof. We can assume that Ω is bounded. Otherwise, the estimate above follows from the
one applied to Ωr “ Ω XBrp0q letting r Ñ 8.

Fix y P BXΩ and note that for every x P Bp2BqXΩ we have infzP2BXΩ ω
zpaBq ď ωxpaBq

and, therefore

Gxpyq ď Expyq «
1

|x´ y|d´2
ď

c

rpBqd´2
ď

c ωxpaBq

rpBqd´2 infzP2BXΩ ωzpaBq
. (7.11)

Let us observe that the two non-negative functions

upxq “ c´1Gxpyq rpBqd´2 inf
zP2BXΩ

ωzpaBq and vpxq “ ωxpaBq

are harmonic, hence continuous, in ΩzB. Note that (7.11) says that u ď v in Bp2Bq X Ω
and hence limΩz2BQzÑxpv ´ uqpzq “ pv ´ uqpxq ě 0 for every x P Bp2Bq X Ω. On the other

hand, for a fixed y P BXΩ, one has that limΩQzÑxG
zpyq “ 0 for every x P BΩ. Gathering

all these we conclude that
lim inf

Ωz2BQzÑx
pv ´ uqpzq ě 0

for every x P BpΩz2Bq. The lemma follows by the maximum principle.

Combining the two preceding lemmas, choosing a “ 8, we obtain:

Lemma 7.18. Let d ě 3 and Ω Ă Rd be an open Wiener regular set with compact
boundary. Let B be a closed ball centered at BΩ. Then,

ωxp8Bq Án Capp2BzΩqGxpyq for all x P Ωz2B and y P B X Ω. (7.12)
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Observe that, in the case when Ω is an NTA domain, we have ωxp8Bq « ωxpBq and
Capp2BzΩq « CappBq “ rpBqd´2, so that we recover the estimate

ωxpBq Á rpBqd´2Gxpyq,

for y P 1
4B. Thus, Lemma 7.18 is a weak version of the converse inequality to the one

in 7.8. Lemma 7.17 can be shown without the assumption on Wiener regularity adapting
the same proof above, but at certain inequalities are to be shown modulo polar sets. The
appropriate maximum principle can be found in [Hel14, Lemma 5.2.21], and requires as
an extra step to check the boundedness above of u´ v.

7.4 Logarithmic capacity, harmonic measure, and Green’s
function in the plane

Lemma 7.19. Let Ω Ă R2 be a Wiener regular open set with compact boundary and let
B be a closed ball centered at BΩ. Then

ωxpBq Á
1

log
CapLpBq

CapLp14BzΩq

“
1

log
rpBq

CapLp14BzΩq

for all x P 1
4B X Ω.

Remark the estimate in the lemma is equivalent to saying that

ωxpBq Á
1

1

CapW p14BzΩq
´

1

CapW pBq

for all x P 1
4B X Ω.

Proof. We can assume that Ω is bounded by proving first the estimate above for Ωt “

ΩXBtp0q and then letting t Ñ 8. We denote r “ rpBq. Replacing Ω by 1
4r Ω if necessary,

we can assume that diampBq ă 1. Then, denoting E “ 1
4BzΩ, the identity (6.13) holds.

Let µ be the optimal measure for the supremum in (6.13), so that suppµ Ă E, µpEq “

CapW pEq, and the function u :“ E ˚µ is harmonic out of E and it satisfies }u}8 ď 1. For
all z P 1

4B and all y P E we have |z ´ y| ď 1
2 r. Therefore,

upzq “
1

2π

ż

log
1

|z ´ y|
dµpyq ě

1

2π

ż

log
2

r
dµpyq “

µpEq

2π
log

2

r
for all z P 1

4B.

Also, for z P Bc, we have distpz, suppEq ě 3
4rpBq, and thus

upzq ď
1

2π

ż

log
4

3r
dµpyq “

µpEq

2π
log

4

3r
for all z P Bc.

Consider now the function

v “ u´
µpEq

2π
log

4

3r
.
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Observe that

vpzq ě
µpEq

2π
log

2

r
´
µpEq

2π
log

4

3r
“
µpEq

2π
log

3

2
for all z P 1

4B

and
vpzq ď 0 for all z P Bc.

Combining the maximum principle with Corollary 5.32, and using the fact that x P 1
4B

we deduce that

ωxpBq ě
vpxq

sup v
ě

µpEq

2π sup v
log

3

2
“ c

CapW pEq

sup v
.

Regarding sup v, taking into account that }u}8 ď 1, it is clear that

sup v ď 1 ´
1

2π
log

4

3r
µpEq “ 1 ´

1

2π
log

4

3r
CapW pEq ď 1 ´

1

2π
log

1

r
CapW pEq.

Therefore,

ωxpBq ě c
CapW pEq

1 ´ 1
2π log 1

r CapW pEq
“ c1 1

log
1

CapLpEq
´ log

1

r

“ c1 1

log
r

CapLpEq

.

Remark 7.20. It is easy to check that the constant 1{4 in the preceding lemma can be
replaced by any constant α P p1{4, 1{3q, with the implicit constant depending on α.

Lemma 7.21. Let Ω Ă R2 be an open Wiener regular set with compact boundary and let
B be a closed ball centered at BΩ. Then, for all a ą 2,

ωxpaBq Á inf
zP2BXΩ

ωzpaBq ´

ż

B
|Gxpyq ´mBpGxq| dy for all x P Ωz2B. (7.13)

Proof. We can assume that Ω is bounded by proving first the estimate above for Ωt “

Ω XBtp0q and then letting t Ñ 8.

Let fpxq “
ωxpaBq

infzP2BXΩ ωzpaBq
. Then (7.13) can be written as

´

ż

B
|Gxpyq ´mBpGxq| dy ď fpxq.

Consider a continuous function φB such that χ 3
2
B ď φB ď χ 7

4
B. For x P Ωz2B, we

write using (7.4)

2πGxpyq “ 2πGypxq “ log
1

|x´ y|
´

ż

log
1

|ξ ´ y|
dωxpξq “ g1pyq ` g2pyq,
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with

g1pyq “ log
1

|x´ y|
´

ż

p1 ´ φBpξqq log
1

|ξ ´ y|
dωxpξq

and

g2pyq “ ´

ż

φBpξq log
1

|ξ ´ y|
dωxpξq,

for every fixed x. We will treat separately the local and the non-local parts:

´

ż

B
|Gxpyq ´mBpGxq| dy ď ´

ż

B
|g1 ´mBg1| dy ` ´

ż

B
|g2 ´mBg2| dy “: I1 ` I2.

First we will estimate the local term I2. To this end, let r denote the radius of B and
let

rg2pyq “ ´

ż

φBpξq log
4r

|ξ ´ y|
dωxpξq,

so that rg2 “ g2 ´ CpB, rq, for a suitable constant CpB, rq. Then we have

I2 “ ´

ż

B
|rg2 ´mBrg2| dy ď 2mB|rg2| “ 2 ´

ż

B

ż

φBpξq log
4r

|ξ ´ y|
dωxpξq dy

ď 2

ż

2B
´

ż

B
log

4r

|ξ ´ y|
dy dωxpξq À

ż

2B
´

ż

Bpξ,3rq

log
4r

|ξ ´ y|
dy dωxpξq,

By a change of variable, we have

´

ż

Bpξ,3rq

log
4r

|ξ ´ y|
dy “ ´

ż

Bp0,3q

log
4

|y|
dy “ C,

and thus

I2 À ωxp2Bq ď ωxpaBq ď
ωxpaBq

infzP2BXΩ ωzpaBq
“ fpxq

for any a ě 2.
To deal with the non-local term I1, we write

I1 ď ´

ż

B
´

ż

B
|g1pyq ´ g1pzq| dy dz

ď ´

ż

B
´

ż

B

ˇ

ˇ

ˇ

ˇ

log
|x´ z|

|x´ y|
´

ż

p1 ´ φBpξqq log
|ξ ´ z|

|ξ ´ y|
dωxpξq

ˇ

ˇ

ˇ

ˇ

dy dz.

Denote

Ay,zpxq “ log
|x´ z|

|x´ y|
´

ż

p1 ´ φBpξqq log
|ξ ´ z|

|ξ ´ y|
dωxpξq,

so that
I1 ď sup

y,zPB
|Ay,zpxq|.

To estimate Ay,zpxq (for y, z P B) notice that both Ay,z and f are harmonic in Ωz2B.
Further, since

|x´ z|

|x´ y|
«

|ξ ´ z|

|ξ ´ y|
« 1 for all x P Ωz2B, ξ P BΩz3

2B, and y, z P B,
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we infer that
|Ay,zpxq| À 1 for all x P Ωz2B and y, z P B.

Further, using (5.2) it is immediate to check that

lim
ΩQxÑζ

Ay,zpxq “ 0 for all ζ P BΩz2B and y, z P B.

On the other hand,
fpxq ě 1 for all x P Ω X aB

and
fpxq ě 0 for all x P Ω.

Then, by the maximum principle, it follows that

Ay,zpxq ď C fpxq for all x P Ωz2B and all y, z P B.

Consequently,
I1 “ I1pxq ď sup

y,zPB
|Ay,zpxq| À fpxq.

Together with the estimate we obtained for I2, this proves the lemma.

Lemma 7.22. Let Ω Ă R2 be an open Wiener regular set with compact boundary. Let B̄
be a closed ball centered at BΩ. Then,

Gxpyq À ωxp8B̄q

ˆ

log
CapLpB̄q

CapLp14B̄zΩq

˙2

for all x P Ωz2B̄ and y P 1
5B̄ X Ω. (7.14)

Proof. We can assume that Ω is bounded by proving first the estimate above for Ωt “

Ω XBtp0q and then letting t Ñ 8.
To prove the lemma we will estimate ´

ş

1
4
B G

xpzq dmpzq in terms of ´
ş

B

ˇ

ˇGxpzq ´

mBG
x
ˇ

ˇ dmpzq and then we will apply Lemmas 7.21 and 7.19.
Let B̄ “ B̄rpξq, with ξ P BΩ. For 9

10r ă s ď r, consider the open set Ωs “ Bspξq X Ω.
Then, for all x P Ωz2B̄ and y P 1

4B X Ω, we have

Gxpyq “

ż

BΩs

Gxpzq dωy
Ωs

pzq “

ż

BBspξq

Gxpzq dωy
Ωs

pzq,

where ωΩs is the harmonic measure for Ωs and we took into account that Gxpzq vanishes
when z P BΩ. Notice that Ωs may not be connected, in this case the harmonic measure is
defined to be zero outside the boundary of the component containing the pole.
Remark that, for all y P 1

4B X Ω there exists some function ρys : BBspξq Ñ r0,8q such
that

ωy
Ωs

|BBspξq “ ρys
H1|BBspξq

2πs
,
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with }ρys}8 À 1. This follows easily from the fact that, by the maximum principle,

ωy
Ωs

pEq ď ωy
Bspξq

pEq for all E Ă BBspξq

and the explicit formula for ωy
Bspξq

, see Example 5.23. Writing

ρypzq “ ρy
|z´ξ|

pzq,

by Fubini we have

Gxpyq “
1

0.1r

ż r

0.9r

ż

BBspξq

Gxpzq dωy
Ωs

pzq ds (7.15)

“
10

r

ż r

0.9r

ż

BBspξq

Gxpzq ρypzqdH1pzq
ds

2πs
“

ż

Apξ,0.9r,rq

Gxpzq dµypzq,

where µy is the measure

dµypzq “
10

2π r |z ´ ξ|
ρypzq dm|Apξ,0.9r,rqpzq.

Averaging (7.15) over y P 1
4B and applying Fubini, we get

m 1
4
BG

x “ ´

ż

1
4
B

ż

Apξ,0.9r,rq

Gxpzq dµypzq dy “

ż

Apξ,0.9r,rq

Gxpzq dµpzq, (7.16)

where

dµpzq “ ρpzq dm|Apξ,0.9r,rqpzq, ρpzq “
10

2π r |z ´ ξ|
´

ż

1
4
B
ρypzq dy

understanding that ρypzq ” 0 when y R Ω. Notice that }ρ}8 À r´2, since }ρy}8 À 1 for
all y P 1

4B.
Observe now that, by Lemma 7.19 and the subsequent remark, we have

ωy
Ωs

pB0.9spξqq Á
1

log
s

CapLpB0.29spξqzΩq

for all y P B0.29spξq X Ωs.

Since 1
4B Ă Bpξ, 0.29sq for 9

10r ă s ď r, we infer that

ωy
Ωs

pBpξ, 0.9sqq Á
1

log
s

CapLp14BzΩq

«
1

log
r

CapLp14BzΩq

for all y P 1
4B X Ωs.

Thus,
ωy
Ωs

pBBspξqq ď 1 ´ ε0,

where
ε0 “

c

log
r

CapLp14BzΩq

,
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for some c ą 0. Thus,

}µ} “ µpApξ, 0.9r, rqq “ ´

ż

1
4
B

1

0.1r

ż r

0.9r
ωy
Ωs

pBBspξqq ds dy ď 1 ´ ε0.

Next we consider the measure

ν “
1

2

ˆ

µ`
m| 1

4
B

mp14Bq

˙

,

so that
1

2
ď νpBq “

1

2

`

µpBq ` 1
˘

ď 1 ´
ε0
2
.

From (7.16) and this estimate we infer that

m 1
4
BG

x “
1

2

ż

Apξ,0.9r,rq

Gxpzq dµpzq `
1

2
m 1

4
BG

x

“ νpBq ´

ż

B
Gxpzq dνpzq ď

´

1 ´
ε0
2

¯

´

ż

B
Gxpzq dνpzq.

Therefore,

ε0
2

´

ż

B
Gxpzq dνpzq ď ´

ż

B
Gxpzq dνpzq ´m 1

4
BG

x (7.17)

ď

ˇ

ˇ

ˇ

ˇ

´

ż

B
Gxpzq dνpzq ´mBG

x

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
mBG

x ´m 1
4
BG

x
ˇ

ˇ

ˇ

ď ´

ż

B

ˇ

ˇGxpzq ´mBG
x
ˇ

ˇ dνpzq ` ´

ż

1
4
B

ˇ

ˇGxpzq ´mBG
x
ˇ

ˇ dmpzq.

Recall now that νpBq « 1 and that

ν “
1

2

´

ρχApξ,0.9r,rq `
1

mp14Bq
χ 1

4
B

¯

m|B “: rρm|B,

it is clear that }rρ}L8pBq À r´2. Hence,

´

ż

B

ˇ

ˇGxpzq ´mBG
x
ˇ

ˇ dνpzq À
1

r2

ż

B

ˇ

ˇGxpzq ´mBG
x
ˇ

ˇ dmpzq

À ´

ż

B

ˇ

ˇGxpzq ´mBG
x
ˇ

ˇ dmpzq.

By the definition of ν, (7.17), and the preceding estimate, we obtain

ε0
4

´

ż

1
4
B
Gxpzq dmpzq ď

ε0
2

´

ż

B
Gxpzq dνpzq À ´

ż

B

ˇ

ˇGxpzq ´mBG
x
ˇ

ˇ dmpzq,
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From the preceding estimate, taking into account that Gx is subharmonic in R2ztxu and
using Lemmas 7.21 and 7.19, for all y P 1

5B we get

Gxpyq À ´

ż

1
4
B
Gxpzq dmpzq À ε´1

0 ´

ż

B

ˇ

ˇGxpzq ´mBG
x
ˇ

ˇ dmpzq

À
ωxp8Bq

infzP2BXΩ ωzp8Bq
log

r

CapLp14BzΩq
À ωxp8Bq log

8r

CapLp2BzΩq
log

r

CapLp14BzΩq

À ωxp8Bq

ˆ

log
r

CapLp14BzΩq

˙2

.

Notice that, in the case when Ω is an NTA domain, we have ωxp8Bq « ωxpBq and
CapLp14BzΩq « CapLpBq “ rpBq, so that we recover the estimate

ωxpBq Á Gxpyq,

for y P 1
5B, as in the case d ě 3.

7.5 Capacity density condition

7.5.1 The CDC and Wiener regularity

Let Ω Ĺ Rd be an open set in Rd and let ξ P BΩ and r0 ą 0. We say that Ω satisfies the
pξ, r0q-local capacity density condition if there exists some constant c ą 0 such that, for
any r P p0, r0q,

CappBrpξqzΩq ě c rd´2 in the case d ě 3,

and
CapLpBrpξqzΩq ě c r in the case d “ 2.

We say that Ω satisfies the capacity density condition (CDC) if it satisfies the pξ, r0q-local
capacity density condition for all ξ P BΩ and all r0 ą 0. For example, a Jordan domain
in the plane satisfies the CDC, or more generally, any planar bounded domain whose
boundary consists of finitely many curves (we do not allow degenerate curves consisting
of a single point).
The CDC can be understood as a strong form of Wiener regularity. In fact, we have:

Proposition 7.23. Let Ω Ă Rd be an open set with compact boundary and let ξ P BΩ and
r0 ą 0. If the pξ, r0q-local capacity density holds for Ω, then ξ is a regular point for the
Dirichlet problem.

As a corollary, if Ω satisfies the CDC, then it is Wiener regular.
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Proof. This is an easy consequence of the Wiener criterion, more precisely of the impli-
cation (b) ñ (a) in Theorem 6.21. Indeed, we just have to check that the pξ, r0q-local
capacity density condition implies that

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzΩq

CappB̄pξ, 2´kqq
“ 8.

As shown in Remark 6.22, in the case d ě 3 this is equivalent to the fact that

8
ÿ

k“1

CappB̄2´kpξqzΩq

CappB̄2´kpξqq
“ 8.

Now we just have to observe that pξ, r0q-local capacity density condition is equivalent to
the fact that CappBrpξqzΩq ě c CappBrpξqq for 0 ă r ă r0, which clearly implies the
above estimate.
The case d “ 2 a little trickier. Notice first that, for r P p0, 1q the estimate CapLpB̄rpξqzΩq ě

c r implies that

CapW pB̄rpξqzΩq

CapW pB̄rpξqq
“

log 1
CapLpB̄rpξqq

log 1
CapLpB̄rpξqzΩq

ě
log 1

r

log 1
c r

“
log 1

r

log 1
r ´ C

ě
1

2
,

assuming r small enough in the last inequality. Observe now that CapW pB̄r4pξqq “
1
4 CapW pB̄r4pξqq. Then, by the subadditivity of CapW we deduce

1

2
ď

CapW ppB̄rpξqzΩqzBr4pξqq ` CapW pBr4pξqq

CapW pB̄rpξqq
“

CapW pĀr4,rpξqzΩq

CapW pB̄rpξqq
`

1

4
.

Hence
CapW pĀr4,rpξqzΩq

CapW pB̄rpξqq
ě

1

4
. (7.18)

Now we can estimate the Wiener’s series from below as follows, considering j0 large
enough,

ÿ

jěj0

ÿ

4jďkď4j`1´1

CapW pĀpξ, 2´k´1, 2´kqzΩq

CapW pB̄pξ, 2´kqq

ě
ÿ

jěj0

ÿ

4jďkď4j`1´1

CapW pĀpξ, 2´k´1, 2´kqzΩq

CapW pB̄pξ, 2´4j qq
ě

ÿ

jěj0

CapW pĀpξ, 2´4j`1
, 2´4j qzΩq

CapW pB̄pξ, 2´4j qq
.

By (7.18), each of the summands on the right hand side is at least 1{4 and so the sum is
infinite.

Remark that, by Lemmas 7.16, 7.19, 7.17, and 7.21, if Ω satisfies the CDC, then it holds

ωxpBq Á 1 for all x P 1
4B X Ω

and

Gxpyq À
ωxp8Bq

rpBqd´2
for all x P Ωz2B and y P 1

5B X Ω.
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7.5.2 Hölder continuity at the boundary

Lemma 7.24. Let Ω Ă Rd be an open set with compact boundary, let ξ P BΩ, and let
r ą 0. Suppose that Ω satisfies the pξ, r0q-local capacity density condition. Let u be a
nonnegative function which is continuous in Brpξq X Ω and harmonic in Brpξq X Ω, and
vanishes on Brpξq X BΩ. Then there is α ą 0 such that for all r P p0, r0q,

upxq À

ˆ

|x´ ξ|

r

˙α

sup
BrpξqXΩ

u for all x P Ω XBrpξq. (7.19)

Proof. For very k ě 0, let Bk “ B6´krpξq and Ωk “ Ω X Bk. Since u vanishes identically
on BΩ XBk, for all x P BBk`1 X Ω we have

upxq “

ż

BΩk

upyq dωx
Ωk

pyq “

ż

BBkXΩ
upyq dωx

Ωk
pyq ď ωx

Ωk
pBBk X Ωq sup

BBkXΩ
u.

By the pξ, r0q-local capacity density condition and Lemmas 7.16 and 7.19,

ωx
Ωk

pBBk X Ωq “ 1 ´ ωx
Ωk

pBΩ XBkq ď 1 ´ c0

for some c0 P p0, 1q. Thus,

sup
BBk`1XΩ

u ď p1 ´ c0q sup
BBkXΩ

u.

By the maximum principle and iterating, we deduce that

sup
BkXΩ

u “ sup
BBkXΩ

u ď p1 ´ c0qk sup
BB0XΩ

u.

This readily proves the lemma.

As an easy corollary we get a result about Hölder regularity:

Lemma 7.25. Let Ω Ă Rd be an open set with compact boundary and let B be a ball
with radius r0 centered in BΩ. Suppose that Ω satisfies the pξ, r0q-local CDC for every
ξ P BΩX2B. Let u be a nonnegative function which is continuous in 2B X Ω and harmonic
in 2B X Ω, and vanishes continuously on 2B X BΩ. Then there is α ą 0 such that

|upxq ´ upyq| À

ˆ

|x´ y|

r0

˙α

sup
2BXΩ

u for all x, y P B X Ω. (7.20)

Proof. By replacing Ω by Ω X 2B if necessary, we can assume that the pξ, r0q-local CDC
holds for all ξ P BΩ, so that in particular Ω is Wiener regular.

To prove the lemma, clearly we may assume that |x ´ y| ď r{4. Denote as usual
dΩpzq :“ distpz, BΩq, and suppose first that

|x´ y| ď
1

2
maxpdΩpxq, dΩpyqq “:

1

2
dΩpx, yq.
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Assume that dΩpyq ď dΩpxq “ dΩpx, yq, say, and consider the ball B1 “ Bpx, dΩpx, yqq.
Notice that B1 Ă Ω X 2B and x, y P 1

2B
1. So by standard arguments it follows that

|upxq ´ upyq| ď }∇u}8, 1
2
B1 |x´ y| À }u}8,B1

|x´ y|

rpB1q
ď }u}8,2B

|x´ y|

dΩpx, yq

ď }u}8,2B

ˆ

|x´ y|

dΩpx, yq

˙α

.

(7.21)

Notice also that the same estimate holds trivially in case that |x´ y| ą 1
2 dΩpx, yq.

On the other hand, by Lemma 7.24,

upxq À

ˆ

dΩpxq

r0

˙α

}u}8,2B,

and the same estimate holds replacing x by y. Thus,

|upxq ´ upyq| ď upxq ` upyq À

ˆ

dΩpxq

r0

˙α

}u}8,2B `

ˆ

dΩpyq

r0

˙α

}u}8,2B

À

ˆ

dΩpx, yq

r0

˙α

}u}8,2B.

(7.22)

Taking the geometric mean of (7.21) and (7.22), the lemma follows (with α{2 instead of
α).

As another immediate corollary of Lemma 7.24 we get the following:

Lemma 7.26. Let Ω Ă Rd be a Wiener regular open set with compact boundary, let
ξ P BΩ, and let r0 ą 0. Suppose that Ω satisfies the pξ, r0q-local capacity density condition.
Then there is α ą 0 such that, for all r P p0, r0q,

ωxpBpξ, rqcq À

ˆ

|x´ ξ|

r

˙α

for x P Ω XBrpξq. (7.23)

7.5.3 Improving property of the CDC

As shown in Lemma 6.19, if a set E Ă Rd satisfies CappEq ą 0, then Hd´2
8 pEq ą 0.

Further, this estimate is sharp in the sense that one cannot infer that Hs
8pEq ą 0 for

any s ą d ´ 2. In fact, it is not difficult to construct a compact set E Ă Rd such that
CappEq ą 0 with dimHpEq “ d´ 2. On the other hand, if Ω Ă Rd satisfies the CDC, then
it easily follows that

Hd´2
8 pΩc XBrpξqq Á rd´2 for all ξ P BΩ, r ą 0.

From the previous discussion, it would appear that the exponent d ´ 2 in this estimate
might be sharp. Surprisingly, this can be improved, as the following theorem shows.
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Theorem 7.27. Let r0 ą 0 and let Ω Ă Rd be an open set with compact boundary
satisfying the pξ, r0q-local capacity density condition for every ξ P BΩ. Then there exists
some s ą d´ 2 and some c ą 0 such that

Hs
8pΩc XBrpξqq ě c rs for all ξ P BΩ, 0 ă r ď r0.

The constant c ą 0 and the precise s ą d´2 depend only on d and on the constant involved
in the local CDC.

Proof. We consider first the case d ě 3. Denote E “ Ωc. Observe first that the fact that
Ω satisfies the pξ, r0q-local CDC for every ξ P BΩ is equivalent to saying that

CappE XBrpxqq Á rd´2 for all x P E, 0 ă r ď r0.

Fix now a point ξ P BΩ and 0 ă R ď r0, and let us see that Hs
8pE X BRpξqq Á Rs for

some s ą d´ 2, with both s and the implicit constant depending only on the local CDC.
To this end, define E1 “ BR{4pξq and, inductively, for m ě 2,

Em “ E X
ď

xPEm´1

B2´mRpxq.

It is immediate to check that the closure F of
Ť

mě1Em is contained in BRpξq X E and
satisfies

CappF XBrpxqq Á rd´2 for all x P F , 0 ă r ď R.

Equivalently, the open set RdzF satisfies the CDC.
Let µF be the equilibrium measure of F , and denote ηs “ RsµF . We intend to show

that there exists some s ą d´ 2 such that

ηspBrpxqq À rs for all x P F , 0 ă r ď R. (7.24)

By Frostman’s lemma, clearly this implies that

Hs
8pE XBRpξqq ě Hs

8pF q Á Rs,

as wished. To prove (7.24), let η “ ηd´2 “ Rd´2 µF , and notice that the CDC satisfied by
F c ensures that F c is Wiener regular, so that by Lemma 6.24,

Uηpxq “ Rd´2 1

CappF q
for all x P F .

So the function

fpxq “ Rd´2 1

CappF q
´ Uηpxq

is continuous in Rd, harmonic in F c, it vanishes in F , and it is non-negative in F c, by the
properties of the equilibrium potential. Further }f}8 ď Rd´2 1

CappF q
À 1. So by Lemma

7.25, f is Hölder continuous and, for some α ą 0 depending on the CDC it holds

|Uηpxq ´ Uηpyq| “ |fpxq ´ fpyq| À

ˆ

|x´ y|

R

˙α

for all x, y P B2Rpξq. (7.25)
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To prove (7.24), fix x P F and 0 ă r ď R, and let φ be a bump function such that
χBrpxq ď φr ď χB2rpxq, with }∇φr}8 À 1{r. Since ´∆Uη “ η in the sense of distributions,
we have

ηpBrpxqq ď

ż

φr dη “ ´x∆Uη, φry “ ´

ż

Uη ∆φr dy “ ´

ż

pUηpyq ´ Uηpxqq∆φr dy,

where, in the last identity, we used the fact that
ş

∆φr dy “ 0. Plugging the estimate
(7.25), we deduce

ηpBrpxqq À
1

r2

ż

Bpx,2rq

|Uηpyq ´ Uηpxq| dy À rd´2
´ r

R

¯α
,

or equivalently,
ηd´2`αpBrpxqq À rd´2`α.

So (7.24) holds with s “ d´ 2 ` α.
In the case d “ 2, by a suitable dilation, we may assume that R “ 1{4, say. Then the

arguments above work in a similar fashion, so that at the end we deduce that ηαpBrpxqq À

rα.

7.6 Harmonic measure and Green’s function with pole at infinity

In this section we will study the connection between harmonic measure with pole at
infinity and Green’s function with pole at infinity for unbounded open sets with compact
boundary. We will study first the case of the plane, which is simpler, and later the higher
dimensional case.

7.6.1 The case of the plane

Recall that for an unbounded open set with compact boundary the notion of harmonic
measure with pole at 8 was introduced in Definition 5.44. From that definition, it follows
that for any function f P CpBΩq,

ż

BΩ
fpξqdω8pξq “ lim

zÑ8

ż

BΩ
fpξqdωxpξq. (7.26)

Analogously, for any Borel set E Ă BΩ, we have ωzpEq Ñ ω8pEq as z Ñ 8.
In the context above, denote by G : ΩˆΩ Ñ R the Green function for Ω. For any fixed

point y P Ω, the function Gpy, ¨q is harmonic at 8 (i.e., it has a removable singularity at
8), by Corollary 5.43. Thus we can define

G8pyq “ Gpy,8q “ lim
zÑ8

Gpy, zq. (7.27)
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Theorem 7.28. Let Ω Ă R2 be a Wiener regular unbounded open set with compact bound-
ary. Let tpkuk Ă Ω be a sequence of points such that pk Ñ 8. Then the functions Gpk

converge uniformly in bounded subsets of Ω to G8, the measures ωpk |BΩ converge weakly
to ω8, and the following holds:

(a) ω8 is a probability measure which is mutually absolutely continuous with ωp, for
every p belonging to the unbounded component of Ω.

(b) For every φ P C8
c pR2q,

ż

Ω
G8pzq∆φpzq dmpzq “

ż

φdω8.

(c) ω8 coincides with the equilibrium measure of BΩ and moreover, for every z P Ω,

G8pzq “
1

CapW pBΩq
´

1

2π

ż

BΩ
log

1

|ξ ´ z|
dω8pξq.

Proof. The weak convergence of ωpk to ω8 is equivalent to (7.26). It is clear that this
implies that ω8 is a probability measure (this can also be derived directly from the def-
inition of ω8 and the Riesz representation theorem). Further, we already discussed the
mutual absolute continuity of ω8 and ωp after Definition 5.44.

From the pointwise convergence given by (7.27) and an easy application of the Arzela-
Ascoli theorem, it follows that the functions Gpk converge uniformly in compact subsets of
Ω to G8 as pk Ñ 8. To prove the uniform convergence in bounded subsets of Ω, let r ą 0
be an arbitrary radius such that BΩ Ă Srp0q. Since the functions Gpk vanish continuously
on BΩ, by the maximum principle the sequence tGpkukě1 is a uniform Cauchy sequence in
ΩXBrp0q, and so the convergence in uniform in ΩXBrp0q. So the convergence in uniform
in bounded subsets of Ω.
The statement (b) of the theorem is a consequence of the fact that, for φ P C8

c pR2q and
ξ away from the support of φ,

ż

Ω
Gξpzq∆φpzq dmpzq “

ż

φdωξ.

Then we let ξ Ñ 8 and use the uniform convergence of Gξ to G8 in bounded sets and
the weak convergence of ωξ to 8, and (b) follows.

To prove (c), recall that

Gpz, ξq “
1

2π

ż

BΩ
log

|ξ ´ x|

|ξ ´ z|
dµpxq ´

1

2π

ż

BΩ

ż

BΩ
log

|y ´ x|

|y ´ z|
dµpxq dωξpyq,

where µ is the equilibrium measure of BΩ. Letting ξ Ñ 8, we obtain

2πG8pzq “ 0 ´

ż

BΩ

ż

BΩ
log

|y ´ x|

|y ´ z|
dµpxq dω8pyq

“

ĳ

log
1

|y ´ x|
dµpxq dω8pyq ´

ĳ

log
1

|y ´ z|
dµpxq dω8pyq.
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Since µ is a probability measure, the double integral term on the right hand side equals
ż

log
1

|y ´ z|
dω8pyq. For the first summand we take into account that

E ˚ µpwq “
1

CapW pBΩq
for allw P BΩ,

since Ω is Wiener regular, and so

2πG8pzq “
2π

CapW pBΩq
´

ż

log
1

|y ´ z|
dω8pyq.

By continuity, this identity also holds for all z P BΩ, and so integrating with respect to
ω8 we get

0 “

ż

G8pzq dω8pzq “
1

CapW pBΩq
´

1

2π

ĳ

log
1

|y ´ z|
dω8pyq dω8pzq.

So the energy associated with the measure ω8 coincides with the equilibrium energy
1

CapW pBΩq
. Since any measure σ supported on BΩ minimizing the energy

ş

E ˚σ dσ coincides

with the equilibrium measure µ, we infer that ω8 “ µ.

7.6.2 The higher dimensional case

For d ě 3, let Ω Ă Rd be an unbounded Wiener regular open set with compact boundary.
In this case we cannot define the harmonic measure with pole at infinity directly as the
weak limit of the measures ωp with p Ñ 8 because this limit is always zero. Instead we can
define harmonic measure and the Green function with pole at infinity by a limiting process
involving renormalization The construction is summarized in the following theorem:

Theorem 7.29. For d ě 3, let Ω Ă Rd be an unbounded Wiener regular open set with
compact boundary. Let tpkuk Ă Ω be a sequence of points such that pk Ñ 8. Then
the functions Eppkq´1Gpk converge uniformly in bounded subsets of Ω to some function
G8 : Ω Ñ R, the measures Eppkq´1ωpk converge weakly to some measure ω8 supported in
BΩ, and the following holds:

(a) The limiting function G8 and the limiting measure ω8 do not depend on the chosen
sequence tpkuk.

(b) G8 is harmonic and positive in Ω.

(c) ω8 is mutually absolutely continuous with ωp, for every p P Ω.

(d) For every φ P C8
c pRn`1q,

ż

Ω
G8pxq∆φpxq dx “

ż

φdω8.
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(e) ω8 is the equilibrium measure of BΩ times CappBΩq (and, so }ω8} “ CappBΩq) and
moreover, for every x P Ω,

G8pxq “ 1 ´ E ˚ ω8pxq “ 1 ´ ωxpBΩq.

Proof. Let µ be the equilibrium measure of BΩ. Observe first that, for all p P Ω,

ωppBΩq “ CappBΩqUµppq, (7.28)

since the right hand side is a function that is harmonic in Ω and continuous in Ω, it equals
1 in BΩ, and vanishes at 8.

Consider now an arbitrary sequence tpkuk Ă Ω such that pk Ñ 8. We write

Eppkq´1ωpk “ CappBΩq
Uµppkq

Eppkq

1

ωpkpBΩq
ωpk . (7.29)

It is immediate to check that

lim
pkÑ8

Uµppkq

Eppkq
“ 1.

Thus there exists a subsequence tpkjuj such that Eppkj q´1ω
pkj converges weakly ˚ to some

measure rω supported on BΩ, with total mass CappBΩq.
Notice also that the Green function satisfies

Eppkq´1Gpx, pkq ď Eppkq´1Epx´ pkq Ñ 1 as k Ñ 8, for all x P Ω.

Thus there exists another subsequence tpkhuh such that the functions Eppkhq´1Gpkh con-
verge locally uniformly in compact subsets of Ω to some harmonic function rg : Ω Ñ R
such that }rg}8 ď 1. Without loss of generality, we may assume that the subsequences
tpkjuj and tpkhuh coincide. Using that the functions Eppkhq´1Gpkh vanish continuously in
BΩ, and using the maximum principle, as in the proof of Theorem, it follows that they
converge uniformly on bounded subsets of Ω.
Given φ P C8

c pRn`1q, we have

Eppkj q´1

ż

Ω
gpx, pkj q∆φpxq dx “ ´Eppkj q´1φppkj q ` Eppkj q´1

ż

φdω
pkj .

By the uniform convergence of Eppkj q´1gp¨, pkj q to rg in bounded subsets of Ω, the left hand
side converges to

ş

Ω rg∆φdx as j Ñ 8, and by the weak ˚ convergence of Eppkj q´1ω
pkj

and the fact that φppkj q “ 0 for j big enough, it is clear that the right hand side converges
to

ş

φdrω. So we deduce that
ż

Ω
rg∆φdx “

ż

φdrω.

From this fact, it is clear that rg does not vanish identically on Ω. Taking into account
that rg is non-negative by construction and harmonic in Ω, it follows that rg is (strictly)
positive in Ω.
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Next we will show that rω coincides with the measure CappBΩqµ. To this end, recall
that for any x P Ω,

G
pkj pxq “ Epx´ pkj q ´

ż

Epx´ zq dω
pkj pzq.

Hence,

Eppkj q´1G
pkj pxq “ Eppkj q´1Epx´ pkj q ´ Eppkj q´1

ż

Epx´ zq dω
pkj pzq.

The left side converges to rgpxq as j Ñ 8, while the first term on the right hand side tends
to 1 and the last one to

ş

Epx´ zq drωpzq. So we deduce that

rgpxq “ 1 ´

ż

Epx´ zq drωpzq “ 1 ´ U
rωpxq. (7.30)

Since rgpxq is positive in Ω, we deduce that U
rωpxq ă 1 for all x P Ω, and thus U

rωpxq ď 1
for all x P BΩ. Since }rω} “ CappBΩq, by the uniqueness of the equilibrium measure µ of
BΩ, it follows that rω “ CappBΩqµ, as claimed.

In particular, the identity rω “ CappBΩqµ ensures that the measure rω does not depend on
the chosen subsequence tpkjuj , which in turn implies that the initial sequence of measures
Eppkq´1ωpk converges to rω. From the relationship between rg and rω in (7.30), we deduce
that rg does not depend on the subsequence tpkjuj either, and analogously this implies the
local uniform convergence in bounded subsets of Ω of the functions Eppkq´1Gpk .

The preceding arguments show that setting ω8 “ rω and G8 “ rg, the properties (a),
(b), (d) and (e) hold. In particular, notice that the identities stated in (e) follow from
(7.30) and (7.28). So it just remains to prove (c).
Consider a ball B Ă Rn`1 centered at the origin such that BΩ Ă 1

2B. It suffices to show
that ω8 is absolutely continuous with respect to p P BB. To this end, observe first that,
by a Harnack chain argument,

ωppEq « ωp1

pEq for all p, p1 P BB and all E Ă BΩ,

with the implicit constant independent of p, p1 P E. Consider the function

fEpxq “
rpBqn´1

|x|n´1
ωppEq.

Observe that fEppq “ ωppEq « ωqpEq for all q P BB. Also, limqÑ8 fEpqq “ limqÑ8 ωqpEq “

0. So by the maximum principle we deduce that fEpxq « ωxpEq uniformly for all x P Bc

and E Ă BΩ. So we get

ωxpEq

ωppEq
«
fEpxq

fEppq
“
rpBqn´1

|x|n´1
“
fBΩpxq

fBΩppq
«
ωxpBΩq

ωppBΩq
.

Thus,
ωppEq

ωppBΩq
«

ωxpEq

ωxpBΩq
for all x P Bc,
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and then
ωppEq

ωppBΩq
« lim sup

yÑ8

ωypEq

ωypBΩq
« lim inf

yÑ8

ωypEq

ωypBΩq
.

By the identity (7.29) and for k large enough, it follows that for p P BB,

Eppkq´1ωpkpEq

CappBΩq
“
Uµppkq

Eppkq

ωpkpEq

ωpkpBΩq
«
Uµppkq

Eppkq

ωppEq

ωppBΩq
.

Letting k Ñ 8, we derive

CappBΩq´1ω8pEq «
ωppEq

ωppBΩq

for any measurable set E Ă BΩ, which proves (c).

Remark 7.30. Notice that the estimate in Lemma 7.17 also holds for the harmonic
measure and the Green function with pole at 8. To check this, just multiply the inequality
(7.10) by Epxq´1 and take the limit as x Ñ 8.
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8 Harmonic measure in CDC uniform and
NTA domains

This chapter deals with properties of harmonic measure on CDC uniform and NTA do-
mains. Most of the material is based on [JK82]. For simplicity, in this chapter we assume
that the domain Ω is bounded. We will use the following notation.

Definition 8.1. Let Ω Ă Rd. For every ξ P BΩ and r ą 0 we write the boundary ball

∆r,ξ :“ ∆rpξq :“ Brpξq X BΩ.

We also use the classical notation for rescaled balls to the boundary balls:

t∆r,ξ :“ ∆tr,ξ

8.1 CDC, uniform, and NTA domains

Definition 8.2. A CDC domain is a domain satisfying the CDC condition.

Recall that CDC domains are Wiener regular.

Definition 8.3. A domain Ω Ă Rd satisfies the exterior corkscrew condition if for every
ξ P BΩ and r ă r0 there exists a point Xex

r pξq “ Xex
r,ξ “ Xex

∆r,ξ
P Ω

c
such that |Xex

r pξq´ξ| ă

r and dΩpXex
r pξqq :“ distpXex

r pξq, BΩq ą A´1r. We call Xex
r pξq an exterior corkscrew point

of ξ at scale r, and Bex
∆r,ξ

:“ Bex
r,ξ :“ B r

2A
pXex

r,ξq is called exterior corkscrew ball. Note that

Bex
r,ξ Ă 2Bex

r,ξ Ă Ω
c
.

It is immediate to check that, for any bounded domain, the exterior corkscrew condition
implies the CDC condition, and thus the Wiener regularity of Ω.
Next we recall one of the Hölder regularity properties already shown for CDC domains.

Theorem 8.4. Let Ω Ă Rd be a CDC domain, let u P C0pBrpξq XΩq be non-negative har-
monic, vanishing continuously on ∆r,ξ with ξ P BΩ and r ă r0. Then there are constants
C0 and α depending on d and the CDC character so that

upxq ď C0

ˆ

|x´ ξ|

r

˙α

sup
BrpξqXΩ

u for every x P Brpξq X Ω.

Definition 8.5. A uniform domain Ω Ă Rd is a domain satisfying
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8 Harmonic measure in CDC uniform and NTA domains

• Interior corkscrew condition: For every ξ P BΩ and r ă r0 there exists a point
X in

r pξq “ X in
r,ξ “ X in

∆r,ξ
P Ω such that |X in

r pξq ´ ξ| ă r and dΩpX in
r pξqq ą A´1r. We

call X in
r pξq a (interior) corkscrew point of ξ at scale r, and Bin

∆r,ξ
:“ Bin

r,ξ :“ B r
2A

pξq

is called interior corkscrew ball. Note that Bin
r,ξ Ă 2Bin

r,ξ Ă Ω
c
.

• Harnack chain condition: for ε ą 0 and x1, x2 P Ω with dΩpxjq ą ε and |x1 ´ x2| “

r ă r0, there exists N depending only on r
ε and a collection of balls tBju

N
j“1 with

x1 P B1, x2 P BN such that 2Bj Ă Ω for every 0 ď j ď N and Bj X Bj´1 ‰ H for
every 1 ď j ď N . This collection of balls is called a Harnack chain joining x1 and
x2.

From now on, for short we will say that a domain is CDC uniform it is both CDC and
uniform.

Lemma 8.6. A domain Ω Ă Rd is uniform if and only if for every x0, x1 P Ω with
|x0 ´ x1| ă r0 there exists a path γ : r0, 1s Ñ Ω such that

1. γpjq “ xj for j P t0, 1u,

2. the length of the curve ℓpγq ď rA|x´ y| and

3. for t P p0, 1q we have dΩpγptqq ě distpγptq, tx0, x1uq{ rA.

Proof. We can show first the ‘if’ part. Let ξ P BΩ, r ă mintr0, diamΩu. Consider x0 P

B r
4
pξq X Ω and x1 P BBrpξq X Ω (which exists by connectedness) and consider the path γ

connecting x0 and x1. Then the point X in
r pξq :“ y P γp0, 1q X BB r

2
pξq is a corkscrew point,

so Ω satisfies de corkscrew condition.
Let us prove that the Harnack chain condition is also satisfied. To this end just consider

ε ą 0 and x1, x2 P Ω with distpxj , BΩq ą ε and |x1 ´ x2| “ r ă r0. Take the collection
of balls tB 1

10
dΩpyqpyquyPγpr0,1sq. By the 5r-covering theorem there exists a subcollection of

disjoint balls Bj such that 5Bj cover γpr0, 1sq. The radii of the balls are bounded below
by a constant times distpγpr0, 1sq, BΩq ą C´1

rA
ε by the third condition.

We claim that for every k ą 0 the number of balls with 2kC´1
rA
ε ď rpBjq ă 2k`1C´1

rA
ε

is bounded by a constant C1 depending on d and perhaps on rA. It is enough to consider
the balls whose center is closer to the endpoint x0 and ε “ dΩpx0q.
First consider k so that 2kC´1

rA
ď 1. Writing xpBq for the center of the ball and rpBq

for its radius, in this case,

distpxpBq, x0q ď dΩpxpBqq « rpBq ď 2ε

and, therefore, since the balls are disjoint, the number of such balls is bounded by a
dimensional constant times C´d

rA
.

So let us consider the balls such that dΩpx0q ď 2kC´1
rA
ε ď rpBq ă 2k`1C´1

rA
ε. Since

10B Ă Ω, we can infer that dΩpx0q ď 9|xpBq ´x0|. By the third property and the triangle
inequality, it follows that

|xpBq ´ x0| À
rA
dΩpxpBqq ď |xpBq ´ x0| ` dΩpx0q « |xpBq ´ x0|.
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8 Harmonic measure in CDC uniform and NTA domains

The number of disjoint balls whose size is comparable to their distance from a point is
bounded by a dimensional constant, and the claim follows.
Also the maximum size of the balls is bounded by rpBq “ 1

10dΩpxpBqq ď ℓpγq`ε À r`ε
by the second condition. Thus, the number of balls is bounded by

N ď C1plog2pr ` εq ´ log2pC´1
rA
εqq “ C1 log2

˜

r ` ε

C´1
rA
ε

¸

“ C1 log2

˜

r
ε ` 1

C´1
rA

¸

.

To show the converse, assume that Ω is uniform and let x0, x1 P Ω with ε ď |x0´x1| ă r0.

Let ξj P BΩ be points minimizing distpxj , ξq, and for every 0 ď k ď k0 :“ tlog2p
|x0´x1|

ε qu

consider the corkscrew point yjk :“ X in
2kε

pξjq. The number of balls in a Harnack chain

between two consecutive points yjk and yjk`1 is uniformly bounded. The same can be said
about the Harnack chain joining y0k0 and y1k0 . Joining the centers of the balls in these
Harnack chains between consecutive points we find a path satisfying the three conditions
above. Indeed 1 holds trivially, 2 is a consequence of the fact that the number of balls of
each scale is uniformly bounded and, therefore, the length of the curve can be controlled
by a geometric sum whose bigger term is comparable to |x0 ´ x1|. The third condition
follows from the fact that for every ball B from the Harnack chains dΩ is comparable with
rpBq in γpr0, 1sq X B and the distance from the ball to the closest end-point is bounded
again by a geometric series whose bigger term is comparable to rpBq.

Put in plain words, the definition we give here of uniform domains in terms of corkscrew
points and Harnack chains coincides with the definition in terms of “cigar paths” from the
Sobolev extension domains in [Jon81]. Also from the previous proof we can infer that the
definition coincides with the one in [GO79], where the distance distpγptq, tx0, x1uq in the
third condition is replaced by the arc-length distance to the endpoints.
Roughly speaking, the domain cannot have outer cusps, thin tubes or slits. In two

dimensions inner cusps are also banned.
The Harnack chain condition gives us that, whenever u is a positive harmonic function

on Ω,

C´NpΛqupyq ď upxq ď CNpΛqupyq whenever
|x´ y|

dΩptx, yuq
ď Λ.

By the previous proof, uniformity tells us that for k ě 1 we haveNp2kq ď C1 log2
`

CA2
k
˘

ď

C1pk ` log2pCAqq, that is whenever |x´ y| ď mint2kdΩptx, yuq, r0u with k ě 2 we have

C´k
A upyq ď upxq ď Ck

Aupyq. (8.1)

Note that the value of CA may have increased in our reasoning, but depends only on the
constant A and the dimension d.
In particular, for CDC uniform domains, by the results in Chapter 7 and the Harnack

chain property we have:

Lemma 8.7. Let Ω Ă Rd be a CDC uniform domain and let ξ P BΩ and r ă r0. Then

ωXin
r,ξp∆r,ξq ě cA.

119



8 Harmonic measure in CDC uniform and NTA domains

Definition 8.8. A non-tangentially accessible domain (NTA domain for short) is a uni-
form domain satisfying also the exterior corkscrew condition.

It is clear that any NTA domain is CDC uniform. The notion of NTA domain was
introduced by Jerison and Kenig in [JK82]. In this work they studied the behavior of
harmonic measure in this type of domains.
Roughly speaking, NTA domains cannot have outer cusps, inner cusps, thin tubes, slits

or isolated points in the boundary. In fact, for every E ‰ H contained in a simply
connected NTA domain Ω Ă Rd with |E| “ 0, ΩzE is not an NTA domain. In other
words, if Ω is bounded, consider rΩ to be the complement of the unbounded component of
the complement of Ω, which is a simply connected containing Ω. Then rΩzΩ consists of a
(perhaps empty) collection of connected closed sets with positive Lebesgue measure. This
is in contrast to uniform domains, since the complement of the planar 1{4-Cantor set is a
uniform domain in R2.
If the domain is bounded, we may assume without loss of generality that r0 “ diampΩq.

Indeed, just by taking worse constants depending on the ratio r0
diampΩq

we can check that
both corkscrew conditions and the Harnack chain condition are satisfied as well for r0 ă

r ă diampΩq.

8.2 Green’s function for CDC uniform domains

Next we show that the supremum of a nonnegative harmonic function in a ball coincides
modulo constant with the value at the corkscrew point:

Lemma 8.9. Let Ω be a CDC uniform domain. Let u ě 0 harmonic in Ω, vanishing
continuously on ∆2r,ξ with ξ P BΩ and 2r ă r0, then we have

sup
ΩXBrpξq

u ď CAupX in
r,ξq.

Proof. To simplify notation, let us assume that 4r ă r0, let us assume that u vanishes on
4∆ with ∆ :“ ∆r,ξ, and let us assume that upX in

2∆q “ 1. We will prove that

sup
ΩXB2rpξq

u À 1.

Theorem 8.4 implies the existence of a constant A1 ą 1 s.t. for every ζ P 3∆ and every
s ă r

sup
Bpζ,A´1

1 sqXΩ

u ď
1

2
sup

Bpζ,sqXΩ
u. (8.2)

The second observation is about the quantitative behavior of Harnack chains described
in (8.1): if x P Brpζq X Ω with ζ P 3∆, n P N, and dΩpxq ě A´n

1 r, then

|X in
2r,ξ ´ x| ă 6r ď 6An

1dΩpxq ùñ C´k
A upxq ď upX in

2r,ξq “ 1,
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8 Harmonic measure in CDC uniform and NTA domains

where k “ 1 ` tlog2p6An
1 qu « n. Thus, we can pick A2 :“ C

k{n
A ą 1 above, and we deduce

that whenever x P B2rpζq X Ω, we have

upxq ą An
2 ùñ dΩpxq ă A´n

1 r. (8.3)

Now we argue by contradiction: consider N so that 2N ą A2 and let n “ N`3. Assume
that there exists y0 P Ω X B2rpξq with upy0q ą An

2 . Then, by (8.3) we can find ξ0 P BΩ
satisfying that

|y0 ´ ξ0| ă A´n
1 r.

Note also that
|ξ ´ ξ0| ď |ξ ´ y0| ` |y0 ´ ξ0| ď 2r `A´n

1 r ă 3r.

and by (8.2) we have

sup
Bpξ0,A

´n`N
1 rq

u ą 2N sup
Bpξ0,A

´n
1 rq

u ą A2 ¨An
2 “ An`1

2 .

We have proven the existence of y1 P Bpξ0, A
´n`N
1 rq with upy1q ą An`1

2 . Since N ´n ă

0, we can apply (8.3) to find ξ1 P BΩ so that

|y1 ´ ξ1| ă A´n´1
1 r.

Note also that

|ξ ´ ξ1| ď |ξ ´ ξ0| ` |ξ0 ´ y1| ` |y1 ´ ξ1| ď p2 `A´n
1 `A´n`N

1 `A´n´1
1 qr ă 3r,

and by (8.2) we have

sup
Bpξ1,A

´n´1`N
1 rq

u ą 2N sup
Bpξ1,A

´n´1
1 rq

u ą A2 ¨ upy1q ą An`2
2 .

Iterating the construction, we find yk P Bpξk´1, A
´n`N´k`1
1 rq with upykq ą An`k

2 . We
can apply (8.3) to find ξk P BΩ so that

|yk ´ ξk| ă A´n´k
1 r.

Note also that

|ξ´ξk| ď |ξ´ξk´1|`|ξk´1´yk|`|yk´ξk| ď

˜

2 `A´n
1 `

k
ÿ

j“1

´

A´n`N´j`1
1 `A´n´j

1

¯

¸

r ă 3r,

form A1 large enough, and by (8.2) we have

sup
Bpξ1,A

´n´k`N
1 rq

u ą 2N sup
Bpξ1,A

´n´k
1 rq

u ą A2 ¨ upykq ą An`k`1
2 ,

so the induction can be carried on.
Note that yk is a Cauchy sequence converging to a point in 3∆. Therefore, we reach a

contradiction with the continuity of u.
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8 Harmonic measure in CDC uniform and NTA domains

Recall that for a bounded Wiener regular domain (and so for a CDC domain) the Green
function equals, for x P Ω and y P Rdztxu:

Gx
Ωpyq “

#

Eypxq ´
ş

Eypξqdωxpξq ě 0 if y P Ω,

0 otherwise.

In fact, the following holds, as shown in the preceding chapter.

Lemma 8.10. Let Ω be a CDC uniform domain and let G :“ GΩ be its Green function.
For every x P Ω and a.e. y P Rd we have

Gxpyq “ Eypxq ´

ż

Eypξqdωxpξq.

Moreover, Gx vanishes continuously in BΩ, and therefore it is continuous in Rdztxu.

Lemma 8.11. Let Ω be a CDC uniform domain, let G :“ GΩ be its Green function and
let x P ΩzBpξ, 8rq, with ξ P BΩ and 4r ă r0. Then the boundary ball ∆ :“ ∆r,ξ satisfies

ωxp∆q ď CAr
d´2GxpX in

∆ q

Proof. Let ϕ P C8 bump function so that χBrpξq ď ϕ ď χB3r{2pξq (so ϕpxq “ 0) and

|D2ϕ| À r´2. Then

ż

Ω
Gxpyq∆ϕpyq dmpyq “

ż

Rd

ˆ

Eypxq ´

ż

Eypξqdωxpξq

˙

∆ϕpyq dmpyq

“ ´ϕpxq ´

ż ż

Rd

∆ϕpyq Eξpyq dmpyq dωxpξq

“ 0 `

ż

ϕpξq dωxpξq ě ωxp∆q.

Now, since Gx is harmonic in the CDC uniform domain ΩzB 1
2
dΩpxqpxq (with perhaps

worse constants than the original one) and vanishes on the boundary, we can use Lemma
8.9 to conclude that Gxpyq ÀA G

xpX in
2∆q on B2rpξq X Ω. Thus,

ωxp∆q ď

ż

Ω
Gxpyq∆ϕpyq dmpyq ď

ż

B2rpξq

Gxpyq|∆ϕpyq| dmpyq
L 8.9
À A,d r

d´2GxpX in
2∆q.

The lemma follows by the Harnack chain condition.

Next we want to show that the two terms in the conclusion of Lemma 8.11 are in fact
comparable.
By the results in Chapter 7 and the Harnack chain condition, the following also holds.

Lemma 8.12. Let Ω be a CDC uniform domain, and let ∆ :“ ∆r,ξ with ξ P BΩ and
r ă r0. If x P ΩzBin

1
2
∆
, then

rd´2GxpX in
1
2
∆

q ÀA ω
xp∆q
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8 Harmonic measure in CDC uniform and NTA domains

Combining Lemmas 8.11 and 8.12 we get the following remarkable fact.

Theorem 8.13. Let Ω be a uniform CDC domain, and let ∆ :“ ∆r,ξ with ξ P BΩ and
4r ă r0. For x P ΩzBpξ, 8rq

ωxp∆q

rd´2GxpX in
∆ q

« 1

with constants depending on A.

8.3 The doubling condition

Lemma 8.14 (Doubling condition). Let Ω be a CDC uniform domain. If ∆ :“ ∆r,ξ with
ξ P BΩ and x P Ω, then

ωxp2∆q ď Cωxp∆q,

with C depending on dΩpxq, d, r0, A and diampΩq.

Proof. Without loss of generality, we may assume that r0 ă diamΩ. Then take r1 “ A´1r0
Let us assume that 2dΩpxq ą r1.
The case 16r ą r1 follows by Lemma 8.7 and the Harnack inequality. Indeed, we can

find a finite family of points ξj so that ∆pξj , r0{8q cover the boundary, so

ωxp∆r0{8,ξq
Harnack

Á ω
Xin

r0{8,ξp∆r0{8,ξq
L. 8.7

ě cA,

the constants of the first estimate depending only on d, r1 and diampΩq. Now, there is a
ξj0 so that ξ P ∆pξj0 , r0{8q and thus ∆pξj0 , r0{8q Ă ∆. Therefore

ωxp∆q ě ωxp∆r0{8,ξq Á cA ě cAω
xp2∆q.

If 16r ă r1, then we can use Theorem 8.13 twice and the Harnack chain:

ωxp2∆q
T 8.13

« crn´2GxpX in
2∆q

Harnack
« crn´2GxpX in

∆ q
T 8.13

« ωxp∆q.

For the cases not included in the previous ones, consider x0 so that dΩpx0q « r1. Then,
since ωxp∆q and ωxp2∆q are harmonic functions, we get that

ωxp∆q «x ω
x0p∆q ď cωx0p2∆q «x ω

xp2∆q.

Lemma 8.15. Let Ω be a CDC uniform domain. There exists a constant CA such that
for every ξ P BΩ and r ď CAr0, there exists a CDC uniform domain Ωr,ξ such that

Ω XBC´1
A rpξq Ă Ωr,ξ Ă Ω XBCArpξq.

The constants of the CDC uniform domain are independent of ξ and r. Moreover, for
ζ P BΩr,ξzB r

2
pξq, we have that dΩpζq Á cAr.
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8 Harmonic measure in CDC uniform and NTA domains

Proof. Consider a Whitney covering of Ω. That is, denote by W :“ WpΩq the set of
maximal dyadic cubes Q Ă Ω such that 4QX Ωc “ ∅. These cubes have disjoint interiors
and can be easily shown to satisfy the following properties:

(a) distpQ,Ωcq À ℓpQq À distpQ,Ωcq, where ℓpQq denotes the side length of the cube.

(b) If Q,R P W and 4QX 4R ‰ ∅, then ℓpQq «d ℓpRq.

(c)
ř

QPW χ2Q Àd χΩ.

Now, let ∆ :“ ∆A´1r,ξ0 . For every ζ P ∆ and ρ ă r, there exists Qin
r,ζ P W so that

ℓpQq « A´1r and Qin
r,ζ XBin

r,ζ ‰ H. Denote

F1 :“ tQ P W : Q “ Qin
r,ζ for some ζ P ∆ and ρ ă ru.

We can identify Q P F1 with a pair prQ, ζQq so that Q “ Qin
rQ,ζQ

. Then, for Q,R P F1 there

exists a Harnack chain of balls tBQ,R
j u

NQ,R

j“1 joining Bin
rQ,ζQ

with Bin
rR,ζR

as in Definition 8.5,

that is, NQ,R À
DpQ,Rq

mintℓpQq,ℓpRqu
, BQ,R

j X BQ,R
j`1 ‰ H and rpBQ,R

j q “ distpBQ,R
j , BΩq. Note

that
BQ,R

j Ă tx P Ω : distpx,∆q ď 2ru

and by Lemma 8.6 we get

distpBQ,R
j ,∆q ď mintdistpBQ,R

j , Qq ` CℓpQq, distpBQ,R
j , Rq ` CℓpRqu ď CArpBQ,R

j q.

Next we define

F2 :“ tQ P W : QXBR,S
j ‰ H for some R,S P F1 and j ď NR,Su.

At this point the reader may note that every pair of cubes in F1 can be connected by a
chain of cubes in F2, whatever that means. However, we still need to show the existence
of Harnack chains joining cubes in F2zF1.
Given Q P F2, we claim that there exists ΨpQq P F1 so that

ℓpQq « ℓpΨpQqq « DpQ,ΨpQqq. (8.4)

Indeed, note that there exists a couple of cubes RQ, SQ P F1 so that QXB
RQ,SQ

j ‰ H for
some j ď NRQ,SQ

. In particular,

distpQ,∆q ď distpB
RQ,SQ

j ,∆q ` 2rpB
RQ,SQ

j q ď mint4r, CAℓpQqu.

Let ζQ P CAQX ∆. Then ΨpQq :“ Qin
ζQ,AℓpQq

satisfies (8.4).

Next we define

F3 :“ tQ P W : distpQ,∆q ď mint4r, CAℓpQquu.

We get that F2 Ă F3 as discussed above. Moreover, for Q P F3 we can reason as above to
define ζQ P CAQX ∆, so that ΨpQq :“ Qin

ζQ,AℓpQq
satisfies (8.4) as well.
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8 Harmonic measure in CDC uniform and NTA domains

Estimate (8.4) means in particular that all the balls in the chain tB
Q,ΨpQq

j u joining Q
and ΨpQq are roughly of the same size and their number is bounded by universal constants
depending only on A and d. Therefore, we define

F4 :“ tR P W : B
Q,ΨpQq

j XR ‰ H for some Q P F2, j ď NQ,ΨpQqu,

and let
rΩ :“

ď

QPF4

p1 ` cdqQ.

The Harnack chain condition is satisfied by construction: Ψ can easily be extended to F4

so that (8.4) is satisfied. Now, for points in neighboring Whitney cubes the chain can be
constructed thanks to the dilation p1 ` cdq. For points in Whitney cubes Q1, Q2 further
away, connect each cube Qj to ΨpQjq and then connect ΨpQ1q and ΨpQ2q by a Harnack

chain of balls B
ΨpQ1q,ΨpQ2q

j . Then the number of balls depends only on DpQ1,Q2q

mintℓpQ1q,ℓpQ2qu
.

To see that rΩ satisfies the interior corkscrew condition, just notice that if ζ P BrΩ and
distpζ,∆q ď ρ{2, then there are interior corkscrew balls contained in Bρpζq which are also
interior corkscrew balls (with perhaps worse constants) for the new domain. If, instead,
distpζ,∆q ą ρ{2, then we have that ρ À ℓpQq for any Q P W such that ζ P Q. Since

ζ P BrΩ, then there is an interior cube Q1 Ă rΩ and a cube Q2 with p1 ´ cdqQ2 Ă rΩ
c

(perhaps decreasing the constant c2), so that ζ P Qj . Finding corkscrew balls of size
comparable to ρ is possible because cubes are also uniform CDC domains. The fact that
the CDC condition holds for rΩ is proved by similar arguments.

Theorem 8.16 (Uniform boundary Harnack principle). Let Ω be a CDC uniform domain,
and let ∆ :“ ∆r,ξ with ξ P BΩ and r ă C´1

A r0. Let u, v ě 0 harmonic in Ω vanishing
continuously on CA∆ and upX in

∆ q “ vpX in
∆ q. Then u

v « 1 on C´1
A Brpξq X Ω.

Proof. Consider the intermediate domain rΩ :“ Ω2r,ξ from Lemma 8.15. We write r∆r,ξ :“
rΩ XBrpξq, rω for the harmonic measure in rΩ and so on.
Denote

L1 :“ tζ P BrΩzBΩ : distpζ, BΩq ă pCAq´1ru

and
L2 :“ BrΩzpL1 Y BΩq.

Take a minimal covering of L1 with surface balls r∆j “ r∆jpζj , p10CAq´1rq Ă rΩ with
j P t1, Nu. Since the covering is minimal, N only depends on d and A.

On the other hand, there is a point ζ0 P BrΩzB2C´1
A rpξq. Then the surface ball in BrΩ

defined as r∆0 “ r∆pCAq´1r,ζ0 Ă L2.
Now, by Theorem 8.13 and the Harnack chain condition, we get

rωxpr∆jq «

ˆ

r

10CA

˙d´2

GxpX in
r∆j

q «

ˆ

r

10CA

˙d´2

GxpX in
r∆0

q « rωxpr∆0q,
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and therefore

rωxpL1q ď

N
ÿ

j“1

rωxpr∆jq « N rωxpr∆0q À rωxpL2q, (8.5)

the constants not depending on x P C´1
A Brpξq X Ω.

Applying Lemma 8.9 an the Harnack chain condition applied in Ω, assuming CA large
enough, we obtain

sup
rΩ

u ÀA upX in
∆ q. (8.6)

On the other hand, by Harnack inequality again infL2 v ÁA vpX in
∆ q “ upX in

∆ q. All in all
we get, for x P C´1

A Brpξq X Ω,

upxq
Max.P.

ď ωx
rΩ

ppBΩqcq sup
rΩ

u
p8.6q

À ωx
rΩ

ppBΩqcqupX in
∆ q

p8.5q

À ωx
rΩ

pL2q inf
L2

v
Max.P.

ď vpxq.

Lemma 8.17 (Universal doubling constant). In Lemma 8.14, if x P Brpξq YB8rpξqc then
C does not depend on x.

Proof. The case 16r ą r1 “ A´1r0 and 2dΩpxq ą r1 is already settled in the proof of
Lemma 8.14.
If x P Bpξ, rq and 2dΩpxq ă r0, then we have

ωxp∆q ě ωxpB2dΩpxqpxq X ∆q
L 8.7
ě cA ě cAω

xp2∆q,

and the lemma follows.
Note also that the case x P Bpξ, rq and 2dΩpxq ě r1, 16r ď r1 cannot happen.
If 16r ă r1 and x P Bpξ, 8rqc, then we can use Theorem 8.13 twice and the Harnack

chain:

ωxp2∆q
T 8.13

« crn´2GxpX in
2∆q

Harnack
« crn´2GxpX in

∆ q
T 8.13

« ωxp∆q.

The case 16r ą r1, dΩpxq ă r1, x P Bpξ, 8rqc can be obtained using the boundary
Harnack principle. Indeed, let x0 be such that dΩpx0q ě r1

sup
dΩpxqăr1, xPBpξ,8rqc

dΩpxqăA´2r

ωxp2∆q

ωxp∆q

L 8.16
À sup

dΩpxqăr1, xPBpξ,8rqc

dΩpxqěA´2r1

ωxp2∆q

ωxp∆q
«
ωx0p2∆q

ωx0p∆q
.

Note that one cannot expect to avoid the dependence on x: if x Ñ 2∆z∆, then ωxp∆q Ñ

0 and ωxp2∆q Ñ 1.

Theorem 8.18. Let Ω be a CDC uniform domain, and let ∆ :“ ∆r,ξ with ξ P BΩ and

9r ă r0. Assume that distpx,∆q

distpx,2∆q
ą 2. Then there exits constants α and β depending on the

dimension and A so that
ˆ

distpx,∆q

distpx, 2∆q

˙α

Àd,A
ωxp2∆q

ωxp∆q
Àd,A

ˆ

distpx,∆q

distpx, 2∆q

˙β

.
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Proof. Let λx :“ distpx,∆q

distpx,2∆q
, and let Ωk :“ tx P Ω : 2k´1 ă λx ď 2ku. We divide Ωk in two

subregions.
Ω1
k :“ tx P Ωk : dΩpxq ě distpx, 2∆qu,

Ω2
k :“

"

x P Ωk : dΩpxq ă
distpx, 2∆q

2C2
A

*

,

and
Ω3
k “ ΩkzpΩ1

k Y Ω2
kq.

By Lemma 8.17, we may assume that x P B8rpξqczBrpξq. First let us consider x P Ω2
k.

Note that distpx,∆q´r ď distpx, 2∆q ă 8r implies in particular that distpx,∆q ă 9r ă r0.
Applying the boundary Harnack principle from Theorem 8.16, it is enough to show the
result for Ω3

k.
But in this case the result can be compared to Ω1

λ using a Harnack chain.
It remains to study the case x P Ω1

kzΩ2
k. If 0 ď k ď 1, then we can compare to the case

x P Brpξq by a Harnack chain. Therefore we may assume that k ě 2. For x P Ω1
λ, let

ξx P 2∆ such that |x´ ξx| “ dΩpxq. Then

ωxp2∆q
Harnack

« ω
Xin

dΩpxq,ξx p2∆q
L 8.7
« 1.

To estimate ωxp∆q from above we use the exterior corkscrew: by Theorem 8.4 we obtain

ωxp∆q ď C

ˆ

dΩpxq

distpξ,∆q

˙α

ď C

ˆ

distpx,∆q

distpx,∆q ´ distpx,∆q

˙α

ď C

ˆ

distpx,∆q

2distpx,∆q

˙α

,

implying the first estimate.
To estimate ωxp∆q from below, let ρ :“ distpξ,∆q ď 2distpx,∆q. Then we use the

uniform character (8.1). To do so, note that

|x´X in
ρ,ξx | ď |x´ ξx| ` |ξx ´X in

ρ,ξx | ď dΩpxq ` 2distpx,∆q « 2kdΩpxq.

Therefore, we get

ωxp∆q
p8.1q

ě C´k
A ωXin

ρ,ξx p∆q
L 8.7
ě c

ˆ

distpx,∆q

2distpx,∆q

˙β

.

Lemma 8.19 (Change of pole formula). Let 2r ă r0, ∆s,ξ Ă ∆r{2,ξ0 and x P ΩzB8rpξ0q.
Then

ω
Xin

r,ξ0 p∆s,ξq «
ωxp∆s,ξq

ωxp∆r,ξ0q

Proof. By Theorem 8.13, the lemma is equivalent to showing that

G
Xin

r,ξ0 pX in
s,ξq « r2´d

GxpX in
s,ξq

GxpX in
r,ξ0

q
.
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Now this estimate can be obtained using Theorem 8.16 with u “ G
Xin

r,ξ0 and v “ Gx

after normalizing with the value of an appropriate point of the boundary of the corkscrew
ball: let Y P BBin

r,ξ0
. Then

G
Xin

r,ξ0 pY q
T 8.13 & L 8.7

« r2´d.

Thus,

G
Xin

r,ξ0 pX in
s,ξq

GxpX in
s,ξq

L 8.16
«

G
Xin

r,ξ0 pY q

GxpY q

Harnack
«

r2´d

GxpX in
r,ξ0

q
, (8.7)

and the lemma follows. Note that the Green function is not harmonic in the domain,
but in the domain minus a ball, which is CDC uniform with worse constants. Thus, to
establish the first estimate in (8.7) one needs to apply the Harnack inequality to localize
to a region where the conditions for Theorem 8.16 to apply hold, the details are left to
the reader.

8.4 Estimates for the Radon-Nikodym derivative

Remark 8.20. Fix a pole x0 and ω :“ ωx0 . Then the Radon-Nykodim derivative

Kpx, ξq “ dωx

dω pξq equals limrÑ0
ωxp∆r,ξq

ωp∆r,ξq
for ω-a.e. ξ.

Proof. To see that ωx ! ωx0 , note that given a Borel set E Ă BΩ with ωx0pEq “ 0, there
exists an open set Un Ą E such that ωx0pUnq ă 1

n . Moreover, there exists a compact set
Kn Ă Un so that ωxpUnq ă ωxpKnq ` 1

n . Consider un to be a harmonic function with
value 1 in Kn X BΩ and value 0 in U c

n X BΩ. Then

ωxpEq ď ωxpUnq ă ωxpKnq `
1

n
ď unpxq `

1

n

Harnack ineq.
«x0,x unpx0q `

1

n
ď ωx0pUnq `

1

n
ď

2

n
.

Once this is settled, by [Rud87, Theorem 6.9] we obtain that
ş

∆r,ξ

dωx

dω pζqdωpζq “

ωxp∆r,ξq and, therefore, using the Lebesgue differentiation theorem (see [Mat95, Corollary
2.14]), we get

ωxp∆r,ξq

ωp∆r,ξq
“

1

ωp∆r,ξq

ż

∆r,ξ

dωx

dω
pζqdωpζq

rÑ0
ÝÝÝÑ

dωx

dω
pξq for ω ´ a.e. ξ P Rn.

Lemma 8.21. Let x “ X in
r,ξ0

, ∆j “ ∆2jr,ξ0 and Rj “ ∆jz∆j´1. Then

sup
ξPRj

Kpx, ξq ď
Cx0C2

´γj

ωp∆jq
,

with γ,C ą 0 depending only on Ω.
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Proof. Note that the Harnack chain condition implies that for rx P Ω, we have

ωrxp∆q «
rx,x0

ωx0p∆q.

In particular, open sets have comparable measures and, therefore, the measures are com-
parable. Thus, without loss of generality, we may assume that distpx, BΩq ě r1 “ C´1

A r0.
For 2jr ă r0 and ∆1 Ă Rj , the idea is to combine Theorem 8.4, Lemma 8.9, and

Harnack’s inequality to get

ωxp∆1q ď CAω
Xin

∆j p∆1q

ˆ

|y ´ ξ0|

2jr

˙γ

.

After that, use the change of pole formula (see Lemma 8.19). For 2jr ą r0, just use that
the number of Rj is finite and apply Lemma 8.9 and Harnack’s inequality.

Lemma 8.22. Let r ă r0. Then

sup
ξPBΩz∆r,ξ0

Kpx, ξq
xÑξ0
ÝÝÝÑ 0.

Proof. Apply Lemma 8.9 and Harnack’s inequality to get

ωxp∆ϵ,ξq ď CAω
x0p∆ϵ,ξq

Using that ωxp∆ϵ,ξq is a harmonic function vanishing at ∆r{2,ξ0 , one can use Theorem 8.4
to get the quantitative estimates of Hölder type.

Let ξ be a boundary point, r ă r1 (so that x0 R Brpξq). Consider the intermediate do-
main rΩ “ Ωr,ξ as in Lemma 8.15, x “ X in

r,ξ with respect to Ω, y P Bpx,A´3{2rqzBpx,A´2rq,

∆ “ ∆pξ, A´2Rq. Then
G

rΩ
py, xq « r2´n

and, by Theorem 8.13 and Harnack,

GΩpy, x0q « r2´nωp∆q.

Compare both functions on y using Theorem 8.16 to get

Claim 8.23. For z P BA´2rpξq X Ω

G
rΩ

pz, xq «
GΩpz, x0q

ωp∆q
.

By Claim 8.23 and Theorem 8.13 we get

Claim 8.24. For every surface ball ∆1 Ă ∆, we have

ωx
rΩ

p∆1q «
ωp∆1q

ωp∆q

Finally, from Claim 8.24 and Lemma 8.19 (maybe it is enough to use 5r-covering) we
obtain

Claim 8.25. For every Borel set E Ă ∆, we have

ωx
rΩ

pEq «
ωpEq

ωp∆q
.

129
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8.5 Global boundary behavior of harmonic functions in CDC
uniform domains

An immediate consequence of Theorem 8.16 is the following global boundary Harnack
principle.

Theorem 8.26 (Global boundary Harnack principle). Let Ω be a CDC uniform domain,
and let V be an open set. For any compact set K Ă V , there exists a constant C such that
for all positive harmonic functions u, v in Ω that vanish continuously on BΩXV , then for
every x, y P Ω XK

C´1upxq

vpxq
ď
upyq

vpyq
ď C

upxq

vpxq
.

Lemma 8.27. Let Ω be a CDC uniform domain. Let u be harmonic and positive in Ω,
with ξ P BΩ. If u vanishes continuously on BΩz∆ where ∆ :“ ∆r,ξ with r ă r0, then for
all x P ΩzB2r,

upxq «A upX in
∆ qωxp∆q.

Proof. Cover BB2rpξq X BΩ with balls Bρpξjq of radius ρ :“ C´2
A mintr0, ru, where CA is

the constant from Theorem 8.16, so that every x P Bρpξjq satisfies that

upxq

ωxp∆q

T 8.16
«

upX in
ρ,ξj

q

ω
Xin

ρ,ξj p∆q

Harnack
«

upX in
∆ q

ωXin
∆ p∆q

L 8.7
« upX in

∆ q.

The estimates extend to x P BB2rpξqXΩ by the Harnack inequality, and the lemma follows
by the maximum principle.

A kernel function in Ω at ξ P BΩ is a positive harmonic function u in Ω that vanishes
continuously on BΩztξu and such that upx0q “ 1. Note that lim supxÑξ upxq “ 8. Other-
wise tξu would have positive harmonic measure, and this cannot happen (one can check
that sets with zero capacity have always zero harmonic measure).

Lemma 8.28. Let Ω be a CDC uniform domain. There exists a kernel function u at every
boundary point.

Proof. Let ξ P BΩ, and denote

umpxq “
ωxp∆2´m,ξq

ωp∆2´m,ξq
,

so that umpx0q “ 1.

By Harnack’s inequality and Lemma 2.14 there is a partial umj

jÑ8
ÝÝÝÑ u uniformly on

compact subsets of Ω, with u positive and harmonic in Ω.
Let r ă r0 and let ∆ :“ ∆r,ξ. For j big enough, we get

umj pxq
L 8.27

« A umj pX in
∆ qωxp∆q

Harnack
« r,x0,A umj px0qωxp∆q “ ωxp∆q
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for every x P ΩzB2r. Therefore,

upxq « ωxp∆q for every x P ΩzB2r

and therefore u vanishes in BΩz2∆. The lemma follows letting r Ñ 0.

Lemma 8.29. Let Ω be a CDC uniform domain. Assume that u1 and u2 are kernel
functions for Ω at ξ. Then

u1pxq «A u2pxq for every x P Ω.

Proof. Let r ą 0 be small enough and ∆ :“ ∆r,ξ. By Lemma 8.27

1 “ ujpx0q «A ujpX
in
∆ qωp∆q.

and
ujpxq «A ujpX

in
∆ qωxp∆q.

Therefore

u1pxq «A
ωxp∆q

ωp∆q
«A u2pxq

for all x P ΩzB2rpξq for r small enough.

Theorem 8.30. Let Ω be a CDC uniform domain. For every boundary point the kernel
function is unique.

Proof. We follow the approach of [CFMS81, Theorem 3.1]. Assume that u1, u2 are kernel

functions for Ω at ξ P BΩ. Then, for x P Ω we have u1pxq

u2pxq
ď C0

u1px0q

u2px0q
by Lemma 8.29.

Therefore
u1 ď C0u2. (8.8)

holds for every pair of kernel functions u1, u2.
If C0 “ 1 the lemma follows, so we may assume that C0 ą 1. In that case,

C0

C0 ´ 1
u2 ´

1

C0 ´ 1
u1 “ u2 `

1

C0 ´ 1
pu2 ´ u1q

is a kernel function as well. Therefore (8.8) holds for this function, namely

u1 ď C0

ˆ

u2 `
1

C0 ´ 1
pu2 ´ u1q

˙

so

C0

C0 ´ 1

ˆ

u2 `
1

C0 ´ 1
pu2 ´ u1q

˙

´
1

C0 ´ 1
u1 “ u2 `

2

C0 ´ 1
pu2 ´u1q `

1

pC0 ´ 1q2
pu2 ´u1q

is also a kernel function.
In general, if

u2 `

ˆ

k

C0 ´ 1
` tk

˙

pu2 ´ u1q (8.9)
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is a kernel function, then (8.8) holds for this function as well, namely

u1 ď C0

ˆ

u2 `

ˆ

k

C0 ´ 1
` tk

˙

pu2 ´ u1q

˙

,

so

C0

C0 ´ 1

ˆ

u2 `

ˆ

k

C0 ´ 1
` tk

˙

pu2 ´ u1q

˙

´
1

C0 ´ 1
u1

“ u2 `
k ` 1

C0 ´ 1
pu2 ´ u1q `

k ` tkpC0 ´ 1q

pC0 ´ 1q2
pu2 ´ u1q

is also a kernel function. By induction, a kernel function as in (8.9) can be obtained for
every k P N with tk ą 0.
Now, applying (8.8) again, we get that for every k

u2 `
k

C0 ´ 1
pu2 ´ u1q ď u2 `

ˆ

k

C0 ´ 1
` tk

˙

pu2 ´ u1q ď C0u2.

This implies that u2 ď u1. But interchanging the roles of u1 and u2 we obtain the converse
inequality and the lemma follows.

Definition 8.31. A non-tangential region at ξ P BΩ is denoted by

Γαpξq :“ tx P Ω : |x´ ξ| ă p1 ` αqdΩpxqu .

The non-tangential maximal function is denoted

Nαupξq :“ sup
Γαpξq

|u|

for u defined in Ω.
Usually the value of α is of little importance when dealing with harmonic functions

because typically the boundedness of the operator Nα does not depend on α. Therefore
we usually denote Nu for some value of α.

The centered Hardy-Littlewood maximal function with respect to ω is defined as

Mωfpξq :“ sup
r

´

ż

∆r,ξ

|f | dω

for every f P L1
locpωq, and, more generally,

Mωµpξq :“ sup
r

µp∆r,ξq

ω∆r,ξ

for every µ P MpBΩq :“ tFinite Radon measures supported in BΩu.
We say that u converges to f non-tangentially at ξ if for any α,

lim
ΓαpξqQxÑξ

upxq “ fpξq.
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The maximal function satisfies a weak-p1, 1q estimate, i.e.

ωtMωf ą λu ď
C

λ
}f}L1pωq, (8.10)

and for every 1 ă p ď 8

}Mωf}Lppωq ď C}f}Lppωq, (8.11)

see [Mat95, Theorem 2.19], for instance. In fact the weak estimate also holds for Radon
measures, by the same covering arguments used to prove the weak p1, 1q bounds:

Lemma 8.32. For µ P MpBΩq we have

ωtMωµ ą λu ď
C

λ
|µpBΩq|. (8.12)

Theorem 8.33. Let Ω be a CDC uniform domain. If µ is a finite Borel measure on BΩ
with Radon-Nykodim decomposition (see [Mat95, Theorem 2.17]) dµ “ fdω ` dν, where
ν is mutually singular with ω, and uµpxq :“

ş

Kpx, ζq dµpζq, then Nαuµ ď CαMων, and u
converges to f non-tangentially at ω-a.e. boundary point.

Proof. Consider the operator rN defined on MpBΩq by

rNµ :“ Nαuµ,

where α is fixed (and the constants may depend on its value). First we claim that

rNµ ď CMωµ. (8.13)

Indeed, let us assume that y P Γαpξq, with distpy, ξq ď r ! r0, and let ∆ :“ ∆r,ξ. By
the Harnack inequality we have that

uµpyq
Harnack
«α,A uµpX in

∆ q “

ż

KpX in
∆ , ζq dµpζq.

Decomposing as in Lemma 8.21 we get

uµpyq À
ÿ

j

ż

Rj

KpX in
∆ , ζq dµpζq

L 8.21
ÀA

ÿ

j

2´γAj

ωp∆jq

ż

Rj

dµpζq ď Mωµpξq
ÿ

j

2´γAj ÀA Mωµpξq.

Since rNµpξq “ supyPΓαpξq |uµpyq|, estimate (8.13) follows.
Note that combining (8.12) with (8.13) we obtain the weak type estimate

ωt rNµ ą λu ď
C

λ
|µpBΩq|. (8.14)

It remains to compute the nontangential limit of uµ, proving that it coincides with f at
ω-a.e. boundary point. Let us write n.t. lim supyÑξ :“ lim supΓαpξqQyÑξ. Given ε, λ ą 0,
we want to prove that

0µ,λ0µ,λ :“ ω

#

n.t. lim sup
yÑξ

|uµpyq ´ fpξq| ą λ

+

ă ε. (8.15)
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First we will compute the case ν “ 0. Whenever f P CpBΩq, we have that

uf pxq “

ż

fpζqKpx, ζq dωpζq “

ż

fpζq dωxpζq “ Hfpxq,

so
uf pxq Ñ fpξq as x Ñ ξ P BΩ (8.16)

by Wiener regularity.
For f P L1pBΩq, consider simple functions tfnun converging in L1pωq to f . Since ω is a

Radon measure, we can find continuous functions tfn,juj converging to f in L1pωq. By a
diagonal argument, we find a sequence of continuous functions tgnun converging in L1pωq

to f .
Using the triangle inequality, we can decompose the left-hand side of (8.15) as

0fω,λ0fω,λ ď ω

#

n.t. lim sup
yÑξ

|uf pyq ´ ugnpyq| ą
λ

3

+

` ω

#

n.t. lim sup
yÑξ

|ugnpyq ´ gnpξq| ą
λ

3

+

` ω

"

|gnpξq ´ fpξq| ą
λ

3

*

“ 11 ` 22 ` 33 .

By (8.10),

33 ď
C

λ
}f ´ gn}L1pωq.

The continuity of gn implies that ugn “ Hgn . By (8.16) Since Ω is Wiener regular, we get
that

22 “ 0.

Finally,

11 ď ω

"

rNpf ´ gnqpξq ą
λ

3

*

(8.14)
ď

C

λ
}f ´ gn}L1pωq.

Combining the three estimates, we obtain

ω

"ˇ

ˇ

ˇ

ˇ

n.t. lim sup
yÑξ

uf pyq ´ fpξq

ˇ

ˇ

ˇ

ˇ

ą λ

*

ď
C

λ
}f ´ gn}L1pωq ă ε

for n big enough (depending on λ and f), so (8.15) is settled whenever ν “ 0.
If ν ‰ 0, we write

0µ,λ0µ,λ ď ω

#

n.t. lim sup
yÑξ

|uµpyq ´ fpξq| ą λ{2

+

` ω

#

n.t. lim sup
yÑξ

|uνpyq ´ 0| ą λ{2

+

“ 0fω,λ{20fω,λ{2 ` ω

#

n.t. lim sup
yÑξ

|uνpyq ´ 0| ą λ

+

.
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Let E Ă BΩ be a measurable given by the Radon-Nykodim decomposition, i.e. so that
ωpEq “ 0 “ νpBΩzEq. Since ν, ω are Radon measures, we can find a compact set K Ă E
and an open set U Ą E so that νpEzKq ă δ and ωpUq ă δ.
Now,

0µ,λ0µ,λ ď 0fω,λ{20fω,λ{2 ` ω

#

n.t. lim sup
yÑξ

ˇ

ˇ

ˇ
uν|EzK

pyq

ˇ

ˇ

ˇ
ą λ{4

+

` ω

#

n.t. lim sup
yÑξ

ˇ

ˇuν|K
pyq

ˇ

ˇ ą λ{4

+

“ 0fω,λ{20fω,λ{2 ` 44 ` 55 .

We have already shown that 0fω,λ{20fω,λ{2 ď ε{3 for every ε ą 0. The weak estimate (8.14)

implies that

44 ď ω

#

n.t. lim sup
yÑξ

ˇ

ˇ

ˇ

rNνEzKpyq

ˇ

ˇ

ˇ
ą λ{4

+

ď
C

λ
νpEzKq ď

C

λ
δ.

Note also that

55 ď ωpUq ` ω

#

ξ P U c : n.t. lim sup
yÑξ

ˇ

ˇuν|K
pyq

ˇ

ˇ ą λ{4

+

.

We claim that r :“ distpK,U cq ą 0. Indeed, for every x P K there exists a ball Bx

so that 2Bx Ă U and by compactness, there is a finite collection of balls tBju so that
K Ă

Ť

Bj with 2Bj Ă U . Since the collection is finite, it has a minimal radius, which is
a lower bound for the distance, implying the claim.

Now, for every ξ P U c, y P Γαpξq we have that

uν|K
pyq :“

ż

K
Kpx, ζq dνpζq ď νpKq sup

ζPBΩz∆r,ξ

Kpy, ζq
L 8.22
ÝÝÝÑ
yÑξ

0,

so

ω

#

ξ P U c : lim sup
yÑξ

ˇ

ˇuν|K
pyq

ˇ

ˇ ą λ{4

+

“ 0.

Combining all the estimates, we get

0µ,λ0µ,λ ď ε{3 `
C

λ
δ ` δ ă ε

as long as we take δ small enough.

Remark 8.34. Note that we can say that uf “ ufω is the harmonic extension of f .
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9 Harmonic measure in the complex plane

9.1 Harmonic measure and conformal mappings

One of the basic facts that makes the study of harmonic measure in the plane different
from higher dimensions is the availability of many formal mappings in the plane and the
good behavior of harmonic measure under conformal mappings.

Proposition 9.1. Let Ω,Ω1 Ă C be bounded Wiener regular domains, and let φ : Ω Ñ Ω1

be a continuous surjective map such that φpBΩq “ BΩ1. Suppose also that φ is holomorphic
in Ω, and let x P Ω and x1 “ φpxq. Denote by ωΩ and ωΩ1 the respective harmonic measures
for Ω and Ω1. Then,

ωx1

Ω1 “ φ#ω
x
Ω.

In particular, for any Borel set A Ă BΩ1, we have ωx1

Ω1pAq “ ωx
Ωpφ´1pAqq.

Recall that give a continuous map φ : G Ñ G1 and a Borel measure µ on G, then the
image measure φ#µ is a measure on G1 defined by

φ#µpAq “ µpφ´1pAqq

for any Borel set A Ă G1. Then, for any Borel function f : G1 Ñ R, it holds
ż

f ˝ φdµ “

ż

f dφ#µ.

See Chapter 1 from [Mat95], for more details.

Proof. Let f : BΩ1 Ñ R be an arbitrary continuous function and let uΩ1,f be its harmonic
extension to Ω1. Then uΩ1,f ˝φ is continuous in Ω, harmonic in Ω, and it it coincides with
the harmonic extension of f ˝ φ : Ω Ñ R, i.e., uΩ1,f ˝ φ “ uΩ,f˝φ. Therefore,

ż

f dωx1

Ω1 “ uΩ1,f px1q “ uΩ1,f pφpxqq “ uΩ,f˝φpxq “

ż

f ˝ φdωx
Ω “

ż

f dφ#ω
x
Ω.

Since this holds for any continuous function f on BΩ1, the proposition follows.

Corollary 9.2. Let Ω Ă Rd be simply connected. Let φ : B1p0q Ñ Ω be a conformal
mapping which extends to a continuous map B̄1p0q Ñ Ω. Then

ω
φp0q

Ω “
1

2π
φ#H1|BB1p0q.
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9 Harmonic measure in the complex plane

Proof. By topological arguments, φpBB1p0qq “ BΩ. By Proposition 9.1, we deduce that

ω
φp0q

Ω “ φ#ω
0
B1p0q “

1

2π
φ#H1|BB1p0q.

Remark that, by Cathédory’s theorem, if Ω is a Jordan domain, then the conformal
mapping φ : B1p0q Ñ Ω extends continuously to BB1p0q, and thus the preceding corollary
applies. Notice also that whenever we know how to find the conformal map φ : B1p0q Ñ Ω,
we know how to find the harmonic measure ωΩ.

9.2 The Riesz brothers theorem

In this section and the following one in this chapter we state some important theorems
about harmonic measure for domains in the complex plane. For the moment, we skip the
proofs.

Theorem 9.3 (F. and M. Riesz Theorem). Let Ω Ă C be a simply connected domain
such that BΩ has finite length, and let φ : D Ñ Ω be conformal. Then, for any Borel set
A Ă BΩ,

ωpAq “ 0 ðñ H1pAq “ 0.

Notice that the preceding result. does not depend on the precise pole for harmonic
measure, since harmonic measures for different poles (and the same domain) are mutually
absolutely continuous. We also have the following version result in terms of the Hardy
space H1pDq.

Theorem 9.4 (F. and M. Riesz Theorem). Let Ω Ă C be a Jordan domain and let
φ : D Ñ Ω be conformal. Then BΩ has finite length if and only if φ1 P H1pDq. If
φ P H1pDq, then

}φ1}H1pDq “ H1pBΩq

and for any Borel set A Ă BD,

H1pφpAqq “
1

2π

ż

A
|φ1| dH1.

In these notes we do not include the proofs of these important theorems (for the mo-
ment). See Chapter VI from [GM05], for example.

9.3 The dimension of harmonic measure in the plane

The dimension of a Borel measure µ in Rd is defined as follows.

dimpµq “ inftdimpGq : G Ă Rd Borel , µpGcq “ 0u.
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9 Harmonic measure in the complex plane

This does not have to be confused with the dimension of suppµ. For example, let Q “

tqkukě1 be the set of all rational numbers, ordered in some way. Then consider the
following measure in R:

µ “
ÿ

kě1

2´k δqk ,

where δqk is the Dirac delta on qk. It is immediate to check that dimµ “ 0, while
suppµ “ R and so dimpsuppµq “ 1.
For simply connected domains Makarov [Mak85] proved in 1985 the following:

Theorem 9.5. Let Ω Ă C be a simply connected domain. Then dimω “ 1. Further,
ωpEq “ 0 for any set E Ă BΩ with Hausdorff dimension dimpEq ă 1.

Remark that the dimension of harmonic measure is independent of the chosen pole in
the domain. For arbitrary planar domains, Jones and Wolff proved the following result in
1988 [JW88]:

Theorem 9.6. For any open set Ω Ă C, the associated harmonic measure satisfies

dimpωq ď 1.

Observe that the boundary of a planar domain may have Hausdorff dimension larger
than 1. This is the case, for example, of the Jordan domain enclosed by the von Koch
snowflake. It is well known that this curve has dimension log 4{ log 3. Further, it is easy to
check that, because of connectedness, the (closed) support of harmonic measure coincides
with the full boundary for any domain Ω. In spite of this fact, the dimension of harmonic
measure is always at most 1. So there is a set G Ă BΩ with dimG ď 1 with full harmonic
measure. Clearly, such set G must be dense in BΩ.
The Jones-Woff theorem was sharpened by Wolff [Wol93] a few years later:

Theorem 9.7. For any open set Ω Ă C, there exists a set E Ă BΩ with σ-finite length
and full harmonic measure.

The rest of this chapter is devoted to the proof of the Jones-Wolff Theorem 9.6. We
will not prove the other theorems by Makarov and Wolff mentioned above.

9.4 Preliminary reductions for the proof of the Jones–Wolff
Theorem

We will prove Theorem 9.6 assuming BΩ to be bounded, since we have defined harmonic
measure in this case. The case where BΩ is unbounded easily follows from the bounded
case (once harmonic measure is properly defined). We will show first below that we may
assume that Ω is Wiener regular.

Lemma 9.8. To prove Theorem 9.6, it suffices to prove it when Ω is Wiener regular.
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9 Harmonic measure in the complex plane

Proof. For each ε “ 1{k, let rΩk be the Wiener regular open set constructed in Proposition
6.36 (denoted by rΩ there). Also, denote by Fk the union of the balls Bi, i P I, in the
construction of rΩk. Suppose k ě k0 small enough so that p P rΩk. Denote by ω and ωk the
respective harmonic measures for Ω and rΩk. By Theorem 9.6 applied to rΩk, there exists
a subset Gk Ă BrΩk with full harmonic measure ωp

k and with Hausdorff dimension at most

1. Since rΩk Ă Ω, by the maximum principle (see Lemma 5.28),

ωppBΩ X BrΩkzGkq ď ωp
kpBΩ X BrΩkzGkq “ 0.

Since BΩ “ pFk X BΩq Y pBrΩk X BΩq, the set pFk X BΩq YGk has full harmonic measure ωp

for each k ě k0. So
Ş

kěk0
ppFk X BΩq YGkq has also full measure ωp. Now notice that

č

kěk0

ppFk X BΩq YGkq Ă
č

kěk0

pFk X BΩq Y
ď

kěk0

Gk.

The set G :“
Ť

kěk0
Gk has Hausdorff dimension at most 1, and F :“

Ş

kěk0
ppFk X BΩq Y

Gkq has zero capacity, because the CappFkq ď 1{k for all k. In particular, H1pF q “ 0.
So G Y F has full harmonic measure ωp and has Hausdorff dimension at most 1. Thus,
dimωp ď 1.

The next reduction is the following.

Lemma 9.9. To prove Theorem 9.6, we may assume that Ω is an unbounded domain with
compact boundary and that the pole for harmonic measure is 8.

Proof. We may assume that Ω is connected because the harmonic measure for Ω with pole
at p P Ω coincides with the harmonic measure for the component of Ω containing p, with
pole at p.
Suppose now that p ‰ 8. Consider the map φpzq “ 1{pz ´ pq. This is a conformal

mapping of the Riemann sphere, and by Proposition 9.1 (which also holds for unbounded
domains with compact boundary), denoting Ω1 “ φpΩq, we have

ω8
Ω1 “ φ#ω

p
Ω.

Hence, assuming that Theorem 9.6 holds for ω8
Ω1 , we infer that there exists some subset

G Ă BΩ1 with dimHG ď 1 and full measure ω8
Ω1 . Then φ´1pGq has full measure ωp

Ω and,
since φ|BΩ : BΩ Ñ BΩ1 is bilipschitz, we also have dimH φ

´1pGq ď 1.

Recall that in Theorem 7.28 we showed the following properties for the harmonic mea-
sure and for the Green function with pole at 8, for any unbounded Wiener regular domain
Ω with compact boundary:

(i) For every φ P C8
c pR2q,

ż

Ω
G8pzq∆φpzq dmpzq “

ż

φdω8.
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9 Harmonic measure in the complex plane

(ii) ω8 coincides with the equilibrium measure of BΩ and moreover, for every z P Ω,

G8pzq “
1

CapW pBΩq
´

1

2π

ż

BΩ
log

1

|ξ ´ z|
dω8pξq. (9.1)

Recall also that, for any compact set E Ă C,

1

CapW pEq
“ inf

µ
Ipµq “ inf

µ

ż

E ˚ µdµ,

where the infimum is taken over all probability measure supported on E. The number

γE “
1

CapW pEq

is called the Robin constant of E. So we have CapLpEq “ e´2π γ´1
E .

Lemma 9.10. To prove Theorem 9.6, it is enough to prove that for any ε ą 0 the following
holds:

For each η ą 0 there is a set A Ă K with H1`ε
8 pAq ă η and ωpKzAq ă η. (9.2)

Proof. The statement (9.2) implies that for η ą 0 there is a set A Ă BΩ with H1`ε
8 pAq ă

η and ωpBΩzAq “ 0, which in turn implies that there is A Ă BΩ with H1`ε
8 pAq “ 0

and ωpBΩzAq “ 0. Now taking εn Ñ 0, one gets sets An Ă BΩ with H1`εn
8 pAnq “ 0 and

ωpBΩzAnq “ 0. Letting G “
Ş

nAn we have H1`εn
8 pGq “ 0, for each n, which gives that

the Hausdorff dimension of G is less than or equal to one, and ωpBΩzGq “ 0.

Sketch of the proof of Theorem 9.6
One makes a reduction to the case in which K :“ BΩ is a finite union of pieces of small

diameter and rather well separated. Then one constructs an auxiliary compact K˚, which
is a finite union of closed discs, using two special modification methods, which one calls “the
disc construction” and the “annulus construction”. It is crucial to compare the harmonic
measure associated with Ω and that associated with the new domain Ω˚ “ C˚zK˚. This
is simple for the annulus construction, but much more delicate for the disc construction;
Lemma 9.11 below takes care of this issue. The gradient of the Green function g of Ω˚

with pole at 8 can be estimated on some special curves surrounding K˚ and contained
in level sets of g. All these ingredients allow to estimate the harmonic measure of Ω in
terms of the integral of the gradient of g on these curves. Lemma 9.14 is the main tool to
end the proof estimating this integral in the appropriate way. An ingredient in the proof
of Lemma 9.14 yields in the limiting case, assuming BΩ smooth, the formula

ż

BΩ
|Bνg| log |Bνg| ds ą ´c0,

where g is now the Green function of Ω with pole at 8, ν is the outer unit normal to BΩ
and c0 ą 0. By Proposition 7.14, the harmonic measure is (in the smooth case)

dω8pzq “ ´Bνgpzq ds.
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9 Harmonic measure in the complex plane

Assume that at the point z the “dimension” of ω8 at z is dpzq, which means that
ωpBpz, rqq „ rdpzq. Since

|Bνgpzq| “ lim
rÑ0

ω8pBpz, rqq

2r
,

we have

lim
rÑ0

ż

BΩ
pdpzq ´ 1q logp2rq dω8pzq ě ´c0.

From this fact, we deduce that the integrand in the left hand side of the preceding identity
does not tend ot ´8 in a set of positive measure as r Ñ 0, that is dpzq ď 1 for ω8-a.e.
z P BΩ, and so, ω8 lives in a set of dimension not greater than 1.

From now on, in the rest of this chapter, unless otherwise stated, we assume that Ω
is a Wiener regular unbounded domain with compact boundary, and we denote by ω its
harmonic measure with pole at 8. We will also write K “ BΩ.

9.5 The disc and the annulus construction

Let us start with the disc construction.

Disc construction

Fix ε ą 0. Let Q be a square with sides parallel to the axes and side length ℓ “ ℓpQq and
set E “ QXK. Replace E by a closed disc B with the same center as Q and radius rpBq

defined by

rpBq “
1

2

CapLpEq1`ε

ℓε
“

1

2

e´γEp1`εq

ℓε
. (9.3)

So we get a new compact set rK “ pKzEq Y B, a new domain rΩ “ C˚z rK “ pΩ Y EqzB
and a new harmonic measure rω “ rω8

rΩ
.

Note that B Ă Q. In fact, since the logarithmic capacity of a disc is the radius

CapLpEq ď

?
2

2
ℓ,

so that

rpBq ď
1

2

`?
2{2

˘1`ε
¨ ℓ1`ε

ℓε
“
ℓ

2

´?
2{2

¯1`ε
ď ℓ{2.

Annulus construction

Let Q be a square with sides parallel to the axis and take the square RQ, where R is a
number larger than 1 that will be chosen later. One has to think that R is very large.
Delete K X pRQzQq0 from K to obtain a new domain rΩ “ Ω Y pRQzQq0 and a new
harmonic measure rω “ ω

rΩ
.

It is important to have some control on the harmonic measure of the new domain
obtained after performing the disc or the annulus construction. For the annulus this is
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easy: any part of K which has not been removed has larger or equal harmonic measure.
In other words, if A satisfies AX pRQzQq “ H, then rωpAq ě ωpAq. This is a consequence
of the fact that A Ă BΩ X BrΩ and Ω Ă rΩ (the domain increases and the set lies in the
common boundary).

Estimating the harmonic measure after the disc construction is a difficult task. The
result is the following.

Lemma 9.11. Let Q be a square with sides parallel to the axis. Fix ε ą 0 and perform the
disc construction for this ε. Assume that RQzQ Ă Ω. Then there exists a number R0pεq
such that for R ě R0pεq one has

(a) rωpBq ě CpεqωpQXKq, where Cpεq is a positive constant depending only on ε.

(b) rωpAq ě ωpAq, if A Ă BΩzRQ.

Above rω and ω are harmonic measures with pole at 8.
The proof of Lemma 9.11 will be presented in Section 9.10 and we will use it as a black

box in the arguments below.

9.6 The Main Lemma and the domain modification

Let Ω “ C˚zK, CapLK ą 0 and assume that K Ă t|z| ă 1{2u (this assumption will be
convenient later on, but it is not essential). Fix ε ą 0 and let R ą 2 ` R0pεq, R integer,
where R0pεq is the constant given by Lemma 9.11. We let M stand for a large constant
that will be chosen later and we let ρ be a small constant so thatM ď log 1{ρ, and ρ “ 1

2N
,

N a positive integer. Consider the grid G of dyadic squares of side length ρ and lower left
corner at the points of the form tpm ` niqρ; m,n P Zu. For each 1 ď p, q ď R, let Gpq be

the family of (closed) squares Q P G with pm,nq ” pp, qq (mod RˆR). Then G “
R
Ť

p,q“1
Gpq.

Write Kpq “
Ť

QPGpq

K XQ, Ωpq “ C˚zKpq, ωpqpAq “ ω8
Ωpq

. We will show the following:

Main Lemma 9.12. For any ε ą 0 and for any η ą 0, one can choose Rpεq ą 0 large
enough and ρpη, εq small enough so that for all 1 ď p, q ď R there is a Borel set Apq Ă Kpq

satisfying
H1`ε

8 pApqq ă η and ωpqpKpqzApqq ă η. (9.4)

An important fact about the previous statement is that the constant R “ Rpεq does not
depend on η, so that η can be chosen later depending on Rpεq.

Let us see how Lemma 9.10, and so the Jones-Wolff theorem, is derived from Main
Lemma 9.12. Write A “

Ť

1ďp,qďRApq. Then, we have

H1`ε
8 pApqq ď

ÿ

1ďp,qďR

H1`ε
8 pApqq ď R2 η,
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and, by Lemma 5.28,

ωpKzAq ď
ÿ

1ďp,qďR

ωpKpqzAq ď
ÿ

1ďp,qďR

ωpKpqzApqq ď
ÿ

1ďp,qďR

ωpqpKpqzApqq ď R2η.

Recalling that η can be taken arbitrarily small, for any given R, (9.2) follows.

Our next objective is to prove the Main Lemma 9.12. To this end, we need to perform
a domain modification which we proceed to describe.

Domain modification.
From now on we fix p, q and let Ω “ Ωpq, K “ Kpq, ω “ ωpq. We let tQjuj be the
family of squares in Gpq. We remark that, by the construction, for each square Qj one has
RQjzQ Ă Ω, so that we will be able to apply Lemma 9.11.

Fix ε ą 0 and perform the disc construction for ε in every square Qj , so that we get a
finite family of closed discs tBju, whose union is a compact set K1, a new domain Ω1 “

C˚zK1 and a new harmonic measure ω1 “ ω8
Ω1
.

Next choose a dyadic square Q1 of largest side ℓpQ1q, not necessarily from Gpq, such
that

ℓpQ1q ě ρ and ω1pQ1q ě MℓpQ1q.

If such Q1 does not exist we stop the domain modification. If Q1 exists we perform
the annulus construction on Q1 (with constant R) and after this we perform the disc
construction on the square Q1, replacing K1 X Q1 by a disc B1. So we obtain a new
compact K2, a new domain Ω2 “ C˚zK2 and a new harmonic measure ω2 “ ω8

Ω2
.

Now we continue and take Q2 dyadic with largest side such that Q2 Ć Q1, ℓpQ2q ě ρ
and ω2pQ2q ě MℓpQ2q. If such Q2 does not exist we stop. Otherwise we perform the
annulus construction on Q2 but with a special rule: If B1 X pBpRQ2zQ2qq ‰ H, then we
do not remove the set B1 X pRQ2zQ2q from K2. The reason for this rule is to get full balls
in all cases.
After that we perform the disc construction on Q2, replacing K2 X Q2 by the corre-

sponding disc B2, getting a new compact K3, a new domain Ω3 and a new harmonic
measure ω3.

We continue this process so that if K1 X Q1, K2 X Q2, . . . ,Kn´1 X Qn´1 have been
substituted by B1, . . . , Bn´1 we choose now (if there exists) a dyadic cube Qn with largest
side so that

Qn Ć Qj , j “ 1, . . . , n´ 1, ℓpQnq ě ρ, ωnpQnq ě MℓpQnq.

Then (if we do not stop) we perform the annulus construction with respect to Qn but
without removing Bj X pRQnzQnq, j “ 1, . . . , n ´ 1 in case that Bj X pBpRQnzQnqq ‰ H

(this is the special rule). Finally we perform the disc construction on Qn, getting Bn,
Kn`1, Ωn`1 and ωn`1.
At each step there are only finitely many candidate dyadic squares, because ρ ď ℓpQq ď

1{M. Since no Qj can be repeated (because Qj Ć Qℓ, ℓ “ 1, . . . , j ´ 1) the modification
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process stops after finitely many steps. Let K˚,Ω˚ “ CzK˚, ω˚ “ ω8
Ω˚ be the final

outcome so that K˚ is the disjoint union of the non removed discs; more precisely,

K˚ “
ď

kPS

Bk Y
ď

jPT

Bj (some finite sets of indices S and T ),

where the Bj are the original discs and the Bk are the new discs produced after performing
the annulus and the disc constructions.
Now we want to prove by means of Lemma 9.11 the following estimates:

ω˚pBjq ě CpεqωpQjq, j P T, (9.5)

ω˚pQjq ě CpεqMℓpQjq, j P S. (9.6)

For (9.5) note first that we always have RQjzQj Ă Ω. Since Qj has survived all steps we
cannot have RQk Ą Qj at some step k. Since RQk is a union of dyadic squares, the other
possibility is RQk XQj “ H for all k and we can apply both inequalities in Lemma 9.11.

For (9.6), when we select Qj we have ωjpQ
jq ě MℓpQjq and after performing the

annulus and the disc constructions, we get ωj`1pBjq ě CpεqωjpQ
jq ě CpεqMℓpQjq. If

k ą j there are three possibilities: i) Bj Ă RQkzQk, in which case Bj has disappeared
and j would not be in S; ii) Bj X pRQkzQkq “ H in which case ωk`1pBjq ě ωj`1pBjq and
iii) Bj X BpRQkzQkq ‰ H.

Qj

Bj Qk

RQk

R(ε)Qk

In this last case we have ℓpQkq ě ℓpQjq since otherwise Qk would had disappeared. But
now since R “ 2`R0pεq we get that Bj XpR0pεqQkzQkq “ H and so ωk`1pBjq ě ωj`1pBjq

by Lemma 9.11 part b). At the end we obtain

ω˚pQjq ě ω˚pBjq ě ωk`1pBjq ě ωj`1pBjq ě CpεqωjpQ
jq ě CpεqMℓpQjq.

We will also need the following estimate.
If z0 P Qj , j P T (or z0 P Qk, k P S) and r ě ℓpQjq (r ě ℓpQkq), then

ω˚t|z ´ z0| ă ru ď CMr. (9.7)
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Let us discuss the case of Qj , z0 P Qj . We remark that if Q is a dyadic square with
Q Ą Qj , then one has ω˚pQq ď MℓpQq because otherwise the process would not have
been stopped.

Q

r

Qj

z0

Qk

Q′

Take now a dyadic square Q Ą Qj with side
length 2mℓpQjq such that r ď 2mℓpQjq ď 2r.
We just said that ω˚pQq ď Mr. Now the
disc t|z´z0| ă ru is contained in 4 dyadic squares
of the same side length as Q. Take one of these
squares Q1 different from Q. If Q1 does not con-
tain any Qj1 or Qk then ω˚pQ1q “ 0. Otherwise
ω˚pQ1q ď Mr.
The case z0 P Qk is dealt with similarly.

The next lemma shows that the union of the family of squares tQjujPT and a dilation
of the family tQkukPS contains K.

Lemma 9.13. K Ă
Ť

kPS

2RQk Y
Ť

jPT

Qj.

Proof. Recall that now K “ Kpq “
Ť

QPGpq

K X Q. So let Q P Gpq and E “ K X Q. If

Q “ Qj for some j P T then E Ă Qj and so E Ă
Ť

k

2RQk Y
Ť

jPT

Qj .

If Q ‰ Qj for every j P T then there is a first index j1 such that Q Ă RQj1zQj1 ; if j1 P S
then Q Ă RQj1 , j1 P S, and we are done. If j1 R S there is a first index j2 such that
Qj1 Ă RQj2zQj2 . In this case ℓpQj2q ě 2ℓpQj1q because if we had ℓpQj1q ě ℓpQj2q then
Qj2 Ă RQj1 and Qj2 Ă RQj1zQj1 , so that Qj2 would have disappeared. If j2 P S we have
Q Ă RQj2 and we are done. If j2 R S there is a first j3 such that

Qj2 Ă RQj3zQj3

and so on.
We get a sequence j1 ă j2 ă ¨ ¨ ¨ ă jn with j1, . . . , jn´1 R S, jn P S so that Qjk Ă

RQjk`1zQjk`1 and ℓpQji`1q ě 2ℓpQjiq, which implies Q Ă 2RQjn . The double radius
appears because we need to argue on two steps: in the first we use that Qjn´1 Ă RQjn

and in the second that Q Ă RQjn´1 .

9.7 Surrounding K˚ by level curves of the Green function

To continue the proof of the Theorem, let Q be a square Q “ Qj , j P T or Q “ Qk, k P S
and let B be the corresponding disc. Let gpzq “ gΩ˚pz,8q be the Green function of the
domain Ω˚ with pole at 8. The goal of this section is to find a closed curve σ surrounding
B, contained in a level set of g, and such that

|∇gpzq| ď CM2 log 1{ℓpQq, z P σ, (9.8)
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for a positive constant C.
The Green function g is the logarithmic potential of the equilibrium measure plus the

Robin constant, that is,

gpzq “
1

2π

ż

K˚

log |z ´ w| dω˚pwq ` γK˚

“
1

2π

ż

B
log |z ´ w| dω˚pwq `

1

2π

ż

K˚zB
log |z ´ w| dω˚pwq ` γK˚ “: upzq ` vpzq ` γK˚ .

We have the estimate

|∇vpzq| ď C

ż

K˚zB

dω˚pwq

|z ´ w|
ď CM log 1{ℓpQq, z P QzB. (9.9)

To show this inequality, fix z P QzB and set ω˚ptq “ ω˚pBpz, tqq. We have

ż

K˚zB

dω˚pwq

|z ´ w|
ď

ż 1

ℓpQq

dω˚ptq

t
ď ω˚pBpz, 1qq `

ż 1

ℓpQq

ω˚ptq

t2
dt

ď 1 ` CM

ż 1

ℓpQq

dt

t
ď 1 ` CM log 1{ℓpQq ď CM log 1{ℓpQq,

where we have used (9.7).

We would like to estimate the derivative Bu
Br pzq from below. Assume for simplicity that

the center of the square Q, and so of the disc B, is the origin, and write z “ reiθ.
Since

2π upreiθq “
1

2

ż

B
log |reiθ ´ w|2 dω˚pwq,

we have

2π
Bu

Br
pzq “

1

2

ż

B

1

|reiθ ´ w|2

B

Br

´

preiθ ´ wqpre´iθ ´ w̄q

¯

dω˚pwq

“

ż

B
Re

ˆ

pz ´ wq z̄

|z ´ w|2 |z|

˙

dω˚pwq,

which in particular tells us that Bu
Br pzq ě 0.

Now we write

Re

ˆ

pz ´ wq z̄

|z ´ w|2|z|

˙

“
1

|z ´ w|

B

z ´ w

|z ´ w|
,
z

|z|

F

and we look for the minimum value of
A

z´w
|z´w|

, z
|z|

E

when |w| “ τ , τ being the radius rpBq

of B.
Assuming that z

|z|
“ 1, set

A

z´w
|z´w|

, 1
E

“ cos θ (see the figure). The cosine Theorem

yields

cos θ “
1

2|z|

ˆ

|z ´ w| `
|z|2 ´ τ2

|z ´ w|

˙
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τ

0 z/|z|
θ

w

so that the minimum is attained for

|z ´ w| “
a

|z|2 ´ τ2,

that is, when z ´ w is orthogonal to w.
We then have

Re

ˆ

pz ´ wq z̄

|z ´ w|2|z|

˙

ě

a

|z| ´ τ
a

|z| ` τ

|z ´ w||z|
ě

a

|z| ´ τ

|z|
a

|z| ` τ
,

and also
a

|z| ´ τ

|z|
a

|z| ` τ
ě

1

|z|

ˆ

1 ´
τ

|z|

˙

.

Returning to the case of a square Q centered at the point z0 with τ “ rpBq we get the
estimate of Bu

Br pzq we are looking for, namely,

2π
Bu

Br
pzq ě

a

|z ´ z0| ´ rpBq
a

|z ´ z0| ` rpBq

ω˚pBq

|z ´ z0|
ě

ω˚pBq

|z ´ z0|
´
rpBqω˚pBq

|z ´ z0|2
, |z´z0| ą rpBq. (9.10)

We are now ready to estimate the gradient of the Green function g. Define

α “ αpBq “ max

ˆ

ω˚pBq

M2 log 1{ℓpQq
, 2rpBq

˙

and distinguish two cases:

Case 1: α “ 2rpBq, that is,
ω˚pBq

M2 log 1{ℓpQq
ď 2rpBq.

We let σ to be the circle BB so that we need to prove the estimate

|∇gpzq| ď CM2 log 1{ℓpQq, z P BB.

This is a consequence of the inequality

sup
BB

|∇g| ď C inf
BB

|∇g| (9.11)
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for some constant C.
In fact, using (9.11) one gets

ω˚pBq “ ´

ż

BB
Bνg ds ě inf

BB
|∇g| rpBq

and for z P BB

|∇gpzq| ď sup
BB

|∇gpzq| ď C inf
BB

|∇gpzq| ď C
ω˚pBq

rpBq
ď CM2 log 1{ℓpQq. (9.12)

In order to prove (9.11) assume that z0 “ 0 and take two points z and z1 with |z| “ |z1| “

2rpBq. Then we have
m´1gpz1q ď gpzq ď mgpz1q

for some constant m; this follows by applying Harnack’s inequality to discs of radius δ ă

rpBq centered at points on the circle t|z| “ 2rpBqu, chosen so that the discs of radius δ{2
cover this circle.
Take now z and z1 with rpBq ă |z| “ |z1| ă 2rpBq. We also have

m´1gpz1q ď gpzq ď mgpz1q.

Indeed, for θ P r0, 2πs, write gθpzq “ gpeiθzq, then

m´1gθpzq ď gpzq ď mgθpzq

holds for |z| “ 2rpBq, and trivially also holds for |z| “ rpBq, θ P r0, 2πs. By the maximum
principle we get

m´1gθpzq ď gpzq ď mgθpzq, rpBq ď |z| ď 2rpBq, θ P r0, 2πs.

As a consequence, for |z| “ |z1| “ rpBq and n, n1 the unit exterior normal vectors to BB
at z and z1, we have

m´1gpz1 ` tn1q

t
ď
gpz ` tnq

t
ď
mgpt1 ` tn1q

t

and so
m´1|Bνg|pz1q ď |Bνg|pzq ď m|Bνg|pz1q, |z| “ |z1| “ rpBq

and finally sup
|z|“rpBq

|∇g| ď C inf
|z|“rpBq

|∇g|, as required.

Case 2: α ą 2rpBq, that is, α “
ω˚pBq

M2 log 1{ℓpQq
.

We note that

α ď
ω˚pQq

M2 log 2
ď

2MℓpQq

M2 log 2
ď

4

M
ℓpQq. (9.13)
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The inequality ω˚pQq ď MℓpQq, for Q “ Qj , comes from the fact that Qj has survived

the process to get to ω˚. If Q “ Qk, take the dyadic square rQ with side length 2 ℓpQkq

and containing Qk. Since the process has stopped, ω˚pQkq ď ω˚p rQq ď Mℓp rQq “ 2MℓpQq.
Taking in (9.13) M ą 8, we obtain α ď ℓpQq{2 and so t|z ´ z0| “ αu Ă Q.
Now we want to prove that

|∇gpzq| ď 4M2 log 1{ℓpQq, α ď |z ´ z0| ď µα, (9.14)

where µ is such that µ ą e20π, a condition that will be used later. Choosing M ą 8µ we
obtain αµ ă ℓpQq{2, by (9.13). Hence the annulus α ď |z´ z0| ď µα is contained in QzB,
a fact that will be used in the sequel without further mention.

Let us show
Bu

Br
pzq ě |∇vpzq|, α ď |z ´ z0| ď µα. (9.15)

By (9.10) we get

2π
Bu

Br
pzq ě

a

|z ´ z0| ´ rpBq
a

|z ´ z0| ` rpBq

ω˚pBq

|z ´ z0|
ě

a

α ´ rpBq
a

α ` rpBq

ω˚pBq

µα
, α ă |z ´ z0| ď µα,

where we have used that the function x Ñ

?
x´rpBq

?
x`rpBq

is increasing.

Since α ą 2rpBq, taking the quotient M{µ big enough, we have

2π
Bu

Br
pzq ě

1
?
3

ω˚pBq

µα

“
1

?
3µ

M2 log 1{ℓpQq ě CM log 1{ℓpQq ě |∇vpzq|, α ď |z ´ z0| ď µα,

by (9.9).
Therefore

|∇gpzq| ď |∇upzq| ` |∇vpzq| ď 2|∇upzq| ď C

ż

BB

dω˚pwq

|z ´ w|
, α ď |z ´ z0| ď µα,

and |z ´ w| ě |z ´ z0| ´ |w ´ z0| ě α ´ rpBq ě α
2 , which gives

|∇gpzq| ď C
ω˚pBq

α
“ CM2 log 1{ℓpQq, α ď |z ´ z0| ď µα,

as required.

Assume z0 “ 0, let c “ suptgpzq : |z| “ αu and take as σ the connected component
of tg “ cu that contains a point on |z| “ α. The curve σ encloses a domain that contains
the disc t|z| ă αu.
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Q

r

α

σ

B

We claim that σ remains inside t|z| ď µαu, which, in view of (9.14), yields the required
estimate (9.8).
We have

2π |∇upzq| ď

ż

B

dω˚pwq

|z ´ w|
ď 2

ω˚pBq

|z|
, |z| ą α,

because

|z ´ w| ě |z| ´ |w| ě
|z|

2
`
α

2
´ rpBq ą

|z|

2
.

By (9.10)

2π
Bu

Br
pzq ě

ω˚pBq

|z|
´
rpBqω˚pBq

|z|2
, |z| ą rpBq.

Note that
rpBqω˚pBq

|z|2
ď

1

2

ω˚pBq

|z|

because |z| ě α ě 2 rpBq. Then, for |z| ą α,

2π
Bu

Br
pzq ě

1

2

ω˚pBq

|z|
and |∇upzq| ď 4

Bu

Br
pzq.

Therefore, by (9.15),

|∇gpzq| ď |∇upzq| ` |∇vpzq| ď 5
Bu

Br
pzq, α ď |z| ď µα. (9.16)
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0

r

s

σ

∇g

Note that since the quotientM{µ can be taken as large
as we want, we can improve (9.15) to

1

2

Bu

Br
pzq ě |∇vpzq|, α ď |z ´ z0| ď µα.

Then

Bg

Br
pzq “

Bu

Br
pzq `

Bv

Br
pzq

ě
Bu

Br
pzq ´ |∇gpzq| ą 0, α ď |z| ď µα.

(9.17)

The curve σ contains at least a point a on the circle t|z| “ αu. Consider the maximal
subarc τ of σ containing a and contained in the disc t|z| ď µαu. By (9.17), each ray
emanating from the origin intersects τ only once, and so τ can be parametrized by the
polar angle θ in the form rpθqeiθ with θ1 ď θ ď θ2. Without loss of generality assume
θ1 ă 0 ă θ2 and rp0q “ a.

If τ “ σ we are done. If not, rpθ2q “ µα and we will reach a contradiction. If r is the
radial direction and s is the orthogonal direction to r, then (9.16) yields

ˇ

ˇ

ˇ

ˇ

Bg

Bs
pzq

ˇ

ˇ

ˇ

ˇ

ď |∇gpzq| ď 5
Bu

Br
pzq ď 10

Bg

Br
pzq.

Since gprpθqeiθq “ c, taking the derivative with respect to θ one gets

0 “ x∇gprpθqeiθq, r1pθqeiθ ` irpθqeiθy “ r1pθq
Bg

Br
` rpθq

Bg

Bs

that gives

|r1pθq|
Bg

Br
“ rpθq

ˇ

ˇ

ˇ

ˇ

Bg

Bs

ˇ

ˇ

ˇ

ˇ

and so
|r1pθq|

rpθq
ď 10.

Therefore

log
rpθ2q

rp0q
“

ż θ2

0

r1pθq

rpθq
dθ ď

ż θ2

0

|r1pθq|

rpθq
dθ ď 20π

and, recalling the way µ has been chosen,

rpθ2q ď e20πrp0q “ e20πα ă µα,

which is a contradiction. By (9.14) we obtain the desired inequality (9.8).
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9.8 The estimate of the gradient of Green’s function on the
level curves

In the previous section we have exhibited for each disc B “ Bj , j P T or B “ Bk,
k P S, a simple curve σ contained in a level curve of g and surrounding B, on which the
estimate (9.8) holds. Let now Γ be the curve formed by the set of σ’s corresponding to
each disc Bj or Bk. Then Γ separates K˚ from infinity.
In this section we prove the estimate

ż

Γ
|log|∇g| Bνg| ds ď C log logp1{ρq. (9.18)

Since we are assuming that M ď logp1{ρq, we have, by (9.8),

log` |∇gpzq| ď logpCM2 log 1{ℓpQqq ď C log logp1{ρq, z P Γ.

Note that

´

ż

Γ
Bνg ds “

ÿ

σ

ż

σ
Bνg ds “

ÿ

B

ω˚pBq

which is clear for those terms for which σ “ BB and follows from the divergence theorem
for the others, because σ surrounds BB.
Hence

ż

Γ
|Bνg| log` |∇g| ds ď C log logp1{ρq

ż

Γ
|Bνg| ds

“ C log logp1{ρq
ÿ

B

ω˚pBq ď C log logp1{ρq.

In order to estimate the integral on Γ of Bνg log
´ |∇g| we need the following lemma.

Lemma 9.14. Let gpzq “ gΩpz,8q be the Green function of the domain Ω with pole at

infinity and let Γ “
N
Ť

j“1
Γj be the union of finitely many closed Jordan curves Γj so that

Γ Ă t|z| ă 1u, Γ separates K “ C˚zΩ from infinity and there are constants cj, j “ 1, . . . , N
such that Γj Ă tgpzq “ cju, j “ 1, . . . , N . Then

ż

Γ
|Bνg| log |∇g| ds ą ´ log 4π,

where n is the outward unit normal to Γ.

The proof of this lemma will be discussed in Section 9.10.

By Lemma 9.14 we have
ż

Γ
|Bνg| log´ |∇g| ds ď

ż

Γ
|Bνg| log` |∇g| ds` log 4π,

which completes the proof of (9.18).
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9.9 End of the proof of the Main Lemma 9.12 and of the
Jones-Wolff Theorem

Recall from (9.2) that for a fixed ε ą 0 and for each η ą 0 we have to find a set A Ă K
with H1`ε

8 pAq ă η and ωpKzAq ă η.

Decompose the set of indices T as T “ T1 Y T2 with

T1 “ tj P T : ω˚pBjq ě ρε{2 rju,

T2 “ tj P T : ω˚pBjq ď ρε{2 rju,

where rj “ rpBjq.
Set

A “

«

K X

˜

ď

kPS

2RQk

¸ff

Y

«

K X

˜

ď

jPT1

Qj

¸ff

.

We know, by Lemma 9.13, that

KzA “
ď

jPT2

pK XQjq.

The inequality (9.6) yields, using that
ř

kPS ω
˚pQkq ď 1,

H1`ε
8

˜

K X

˜

ď

kPS

2RQk

¸¸

À p2Rq1`ε
ÿ

kPS

ℓpQkq1`ε

ď
R1`ε

pM Cpεqq1`ε

ÿ

kPS

ω˚pQkq1`ε ď

ˆ

R

M Cpεq

˙1`ε

ď η

for M big enough. By Lemma 6.19 with s “ 1 ` ε and the definition of the radius of Bj

in the disc construction (9.3) we obtain
˜

ď

jPT1

pK XQjq

¸

ď
ÿ

jPT1

H1`ε
8 pK XQjq ď C

ÿ

jPT1

CapLpK XQjq
1`ε

“ C
ÿ

jPT1

rj ρ
ε “ C

ÿ

jPT1

rj ρ
ε{2 ρε{2

ď C
ÿ

jPT1

ρε{2 ω˚pBjq ď Cρε{2 ď η

provided ρ is small enough.
We have got H1`ε

8 pAq ă η and it remains to estimate ωpKzAq.
By inequality (9.5)

ωpKzAq “ ω

˜

ď

jPT2

pK XQjq

¸

ď
1

Cpεq

ÿ

jPT2

ω˚pBjq.
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Now we remark that for j P T2 we are in the Case 1 of the Section 9.7, that is

ω˚pBjq

M2 logp1{ρq
ď 2rj .

Indeed, since ω˚pBjq ď ρε{2rj it is enough to see that

ρε{2 ď 2M2 logp1{ρq,

which clearly holds for ρ sufficiently small.

For z P BBj , j P T2, we know by (9.12) that

|∇gpzq| ď C
ω˚pBjq

rj
ď C ρε{2,

so that
log |∇gpzq| ď logC `

ε

2
log ρ ď

ε

4
log ρ,

for small enough ρ. Hence, for such small ρ,

|log|∇gpzq|| ě
ε

4
logp1{ρq.

We then get

ωpKzAq ď
1

Cpεq

ÿ

jPT2

ω˚pBjq ď
1

Cpεq

ÿ

jPT2

ż

BBj

|Bνg| ds

ď
C

Cpεq ε logp1{ρq

ÿ

jPT2

ż

BBj

|Bνg| |log|∇g|| ds

ď
C

Cpεq ε logp1{ρq

ż

Γ
|Bνg| |log|∇g|| ds

ď
C

εCpεq

log logp1{ρq

logp1{ρq
,

due to (9.18). Thus ωpKzAq ă η if ρ is small enough. Therefore for fixed ε ą 0 and given
η ą 0, we can choose M and ρ such that the set A satisfies the desired conclusion.

9.10 Proof of the lemmas

9.10.1 Proof of Lemma 9.11

Changing scale we may assume that ℓpQq “ 1. Let ξ0 stand for the center of Q. Further,
by applying Proposition 6.36 and Lemma 6.37 and using an approximation argument, we
can assume that Ω is Wiener regular.
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Proof of a). Denote by µ the equilibrium measure for pΩ Y Eqc By (9.19) Ω Y E an un-
bounded domain, the Green function Gpz, ξq of the domain Ω Y E with pole at ξ can be
written in the form

Gpz, ξq “
1

2π

ż

log
|z ´ a|

|z ´ ξ|
dµpaq`

1

2π

ĳ

log
|w ´ ξ|

|w ´ a|
dµpaq dωz

ΩYEpwq, z P ΩYE. (9.19)

Note that both measures µ and ωz
ΩYE are supported in BΩzRQ. From (9.19) it is clear

that the Green function can also be written in the form

Gpz, ξq “
1

2π
log

1

|z ´ ξ|
` hpz, ξq, z P Ω Y E, ξ P Ω Y E, (9.20)

with

hpz, ξq “
1

2π

ĳ

log
|w ´ ξ| |z ´ a|

|w ´ a|
dωz

ΩYEpwq dµpaq, z P Ω Y E, ξ P Ω Y E (9.21)

Clearly

|∇ξhpz, ξq| ď
1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BΩzRQ

1

w ´ ξ
dωz

ΩYEpwq

ˇ

ˇ

ˇ

ˇ

ˇ

ď O

ˆ

1

R

˙

, ξ P Q, z P Ω Y E. (9.22)

Next, for a given z0 P BQ, we wish to estimate hpξ0, z0q from below. To this end, note
that, for all a P suppµ Ă BΩzRQ, |z0 ´ a| ě 1

2pR ´ 1q ě R{4 ě 1
2 |ξ0 ´ z0| (because we

assume R ě 2), and thus, for all w P BΩzRQ,

|w ´ a| ď |w ´ ξ0| ` |ξ0 ´ z0| ` |z0 ´ a| ď |w ´ ξ0| ` 3|z0 ´ a|.

Thus, using the two estimates |z0 ´ a| ě R{4 and |w ´ ξ0| ě 1
2R, we derive

|w ´ a| ď |w ´ ξ0|
|z0 ´ a|

R{4
` 3|z0 ´ a|

|w ´ ξ0|

R{2
“

10|w ´ ξ0| |z0 ´ a|

R
.

Hence,

log
|w ´ ξ0| |z0 ´ a|

|w ´ a|
ě log

R

10
, w P BΩzRQ, a P BΩzRQ.

Plugging this into (9.21), we obtain

hpz0, ξ0q ě
1

2π
log

R

10
. (9.23)

Let now µE and µB be the equilibrium measures of E and B respectively and set

upzq :“

ż

B
Gpz, ξq dµBpξq, vpzq :“

ż

E
Gpz, ξq dµEpξq.

For every z0 P BQ one has

upηq “ γB ` hpz0, ξ0q `Op1{Rq, η P B,

vpηq “ γE ` hpz0, ξ0q `Op1{Rq, η P E,
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where the constant in Op1{Rq is independent of z0. To see this just write

hpη, ξq “ phpη, ξq ´ hpη, ξ0qq ` phpξ0, ηq ´ hpξ0, z0qq ` hpz0, ξ0q,

use (9.22), the symmetry of the Green’s function and the fact that the equilibrium potential
of a compact set is equal to the Robin constant on the set (except for an exceptional set
of zero capacity).

Now since u “ v “ 0 on BΩzRQ one gets

upzq “

ż

BrΩ
upξq dωz

rΩ
pξq “

ż

BB
upξq dωz

rΩ
pξq,

vpzq “

ż

BΩ
vpξq dωz

Ωpξq “

ż

BE
vpξq dωz

Ωpξq.

Hence, for z R K YQ,

upzq “ pγB ` hpz0, ξ0q `Op1{Rqqωz
rΩ

pBq,

vpzq “ pγE ` hpz0, ξ0q `Op1{Rqqωz
ΩpEq.

Assume for the sake of simplicity that ξ0 “ 0. Then by plugging the identity (9.20) into
the above definitions of u and v we obtain

upzq “ log
1

|z|
`

ż

B
hpz, ξq dµBpξq, z R B,

vpzq “

ż

E
log

1

|z ´ ξ|
dµEpξq `

ż

E
hpz, ξq dµEpξq, z R E.

Set

φpzq :“ upzq ´ vpzq “

ż

E

ˆ

log
1

|z|
´ log

1

|z ´ ξ|

˙

dµEpξq

`

ż

B
hpz, ξq dµBpξq ´

ż

E
hpz, ξq dµEpξq

“

ż

E

ˆ

log
1

|z|
´ log

1

|z ´ ξ|

˙

dµEpξq `

ż

B
phpz, ξq ´ hpz, 0qq dµBpξq

´

ż

E
phpz, ξq ´ hpz, 0qq dµEpξq.

Thus, for z P ΩzRQ,

|φpzq| ď

ˇ

ˇ

ˇ

ˇ

ż

E
log

|z ´ ξ|

|z|
dµEpξq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

B
phpz, ξq ´ hpz, 0qq dµBpξq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

E
phpz, ξq ´ hpz, 0qq

ˇ

ˇ

ˇ

ˇ

dµEpξq “ Op1{Rq.
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We have used that for ξ P E

log
|z ´ ξ|

|z|
ď log

|z| ` |ξ|

|z|
ď log

ˆ

1 `
2

|z|

˙

“ O

ˆ

1

|z|

˙

and

log
|z|

|z ´ ξ|
ď log

ˆ

1 ´
|z ´ ξ| ´ |z|

|z ´ ξ|

˙

ď log

ˆ

1 `
|ξ|

|z ´ ξ|

˙

“ O

ˆ

1

|z|

˙

.

Therefore
upzq “ vpzq `Op1{|z|q, z P ΩzRQ.

Recalling that CapLpBq “ 1
2 CapLpEq1`ε one gets

ωz
rΩ

pBq “
upzq

γB ` hpz0, 0q `Op1{Rq
“

vpzq `Op1{|z|q

γEp1 ` εq ` log 2 ` hpz0, 0q `Op1{Rq

“
pγE ` hpz0, 0q `Op1{RqqωpΩ, E, zq `Op1{|z|q

γEp1 ` εq ` log 2 ` hpz0, 0q `Op1{Rq
.

Clearly there exists R0pεq such that for R ą R0pεq we have

ωz
rΩ

pBq ě
1

2

γE ` hpz0, 0q

γEp1 ` εq ` log 2 ` hpz0, 0q
ωz
ΩpEq `O

ˆ

1

|z|

˙

,

since the denominator γEp1`εq ` log 2`hpz0, 0q is bounded below away from 0 by (9.23).
Appealing again to (9.23) we obtain that, for R ą R0pεq,

γE ` hpz0, 0q

γEp1 ` εq ` log 2 ` hpz0, 0q
ě

1

2

and so

ωz
rΩ

pBq ě
1

4
ωz
ΩpEq `O

ˆ

1

|z|

˙

.

Letting z Ñ 8 completes the proof of a) in the lemma.

Proof of b). Assume that ξ0 “ 0 and let U “ t|z| ă Ru. The Green function g “ gU of U
is

Gpw, ξq “ log

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ w
R

ξ
R

w
R ´

ξ
R

ˇ

ˇ

ˇ

ˇ

ˇ

.

Let GB be the Green function of UzB and GE the Green function of UzE. We claim that

GBpz, ξq “ Gpz, ξq ´

ż

BB
Gpw, ξq dωz

UzBpwq, z, ξ P UzB. (9.24)

On one hand, the right hand side ϕpz, ξq is a harmonic function of z except for z “ ξ
where it has a logarithmic pole. On the other hand, if z tends to a point in BpUzBq then
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ϕpz, ξq tends to 0, owing to the fact that
ş

BB Gpw, ξq dωpUzB,w, zq is the solution of the
Dirichlet problem in UzB with boundary values Gpz, ξq with ξ fixed.
Analogously one obtains

GEpz, ξq “ Gpz, ξq ´

ż

BE
Gpw, ξq dωz

UzBpwq, z, ξ P UzE. (9.25)

The goal is to prove the inequality

BGB

Bn
pz, ξq ě

BGE

Bn
pz, ξq, |z| “

R

2
, ξ P BU, (9.26)

which follows from

GBpz, ξq ě GEpz, ξq, |z| “
R

2
,

3

4
R ď |ξ| ă R. (9.27)

Since GBpz, ξq “ GEpz, ξq, |ξ| “ R, then, by the maximum principle, it is enough to show
(9.27) for |ξ| “ 3

4R.
We start by proving

log

ˆ

4

3

˙

´
C

R
ď Gpw, ξq ď log

ˆ

4

3

˙

`
C

R
, |w| ď 1, |ξ| “

3

4
R, (9.28)

where C is a positive constant and R is sufficiently large. We have

Gpw, ξq “ log

ˆ

4

3

˙

`Gpw, ξq ´Gp0, ξq “ log

ˆ

4

3

˙

` log

ˇ

ˇ

ˇ

ˇ

1 ´
wξ

R2

ˇ

ˇ

ˇ

ˇ

´ log

ˇ

ˇ

ˇ

ˇ

1 ´
w

ξ

ˇ

ˇ

ˇ

ˇ

.

The absolute value of each of the last two terms is less than or equal to C{R for some
constant C and (9.28) follows.

Inserting (9.28) into (9.24) and (9.25) we get

GBpz, ξq ě Gpz, ξq ´

ˆ

log

ˆ

4

3

˙

`
C

R

˙

ωz
UzBpBq, |z| “

R

2
, |ξ| “

3

4
R,

GEpz, ξq ď Gpz, ξq ´

ˆ

log

ˆ

4

3

˙

´
C

R

˙

ωz
UzEpEq, |z| “

R

2
, |ξ| “

3

4
R.

Clearly (9.27) is a consequence of the two preceding inequalities and the following claim.

Claim 9.15. For R large enough one has
ˆ

log

ˆ

4

3

˙

`
C

R

˙

ωz
UzBpBq ď

ˆ

log

ˆ

4

3

˙

´
C

R

˙

ωz
UzEpEq, |z| “

R

2
.

We postpone the proof of the Claim and we proceed to complete the argument for
Lemma 9.11.
Consider a subset A of BΩzRQ. We want to prove

ωzpAq ď rωzpAq, |z| “
R

2
, (9.29)
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where ωzpAq “ ωz
ΩpAq and rωzpAq “ ωz

rΩ
pAq. Take a point z0 with |z0| “ R

2 such that

sup
|z|“R{2

ωzpAq

rωzpAq
“
ωz0pAq

rωz0pAq
.

Assume, to get a contradiction, that ωz0 pAq

rωz0 pAq
“ λ ą 1. Then

λrωzpAq ´ ωzpAq “ λ´ 1 ą 0, z P A,

and

λrωzpAq ´ ωzpAq ě 0, |z| “
R

2
.

The maximum principle yields

λrωzpAq ´ ωzpAq ą 0, z P BU.

Since ωξpAq is a harmonic function on UzE vanishing on BE and, similarly, rωξpAq is a
harmonic function on UzB vanishing on BB, we get, by (9.26),

0 “ λrωz0pAq ´ ωz0pAq

“
1

2π

ż

BU

BGB

Bn
pz0, ξqλ rωξpAq dspξq ´

1

2π

ż

BU

BGE

Bn
pz0, ξqωξpAq dspξq

ě
1

2π

ż

BU

BGB

Bn
pz0, ξq

´

λrωξpAq ´ ωξpAq

¯

dspξq ą 0,

which is a contradiction. Then (9.29) holds.

B

A

z0

By (9.29) and the maximum principle, ωzpAq ď rωzpAq for z P Ω and |z| ě R
2 , and letting

|z| Ñ 8, item b) of Lemma 9.11 follows.
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9 Harmonic measure in the complex plane

Proof of the Claim. Recall that we are assuming ℓpQq “ 1, so that for all compact sets K,
CapLpEq “ CapLpK XQq ď 1{

?
2 and hence γE ě log

?
2 ą 0.

Moreover
γB “ γEp1 ` εq ` log 2 ą γE .

Let r “ rpBq be the radius of B. The function

log

ˆ

R

|z|

˙

1

logpR{rq
, z P UzB,

is harmonic on UzB, vanishes on |z| “ R and is 1 on |z| “ r. Thus it is precisely ωz
UzBpBq.

Since ´ log rpBq “ γB we have

ωz
UzBpBq “ log

ˆ

R

|z|

˙

1

logR ` γB
, z P UzB. (9.30)

We turn now our attention on ωz
UzEpEq. Consider the function

fpzq “

ż

E
log

R

|z ´ w|
dµEpwq

1

logR ` γE
z P UzE.

Since
ş

E log 1
|z´w|

dµEpwq “ γE for z P E, except for a set of zero logarithmic capacity,

fpzq “ 1, z P E, except for a set of zero logarithmic capacity.
If w P E, z P BU one has |z ´ w| “ R `Op1q and so

log
R

|z ´ w|
“ ´ log

ˆ

1 ´
R ´ |z ´ w|

R

˙

“ ´ logp1 `Op1{Rqq “ Op1{Rq

and

log
|z ´ w|

R
“ ´ log

ˆ

1 ´
|z ´ w| ´R

|z ´ w|

˙

“ ´ log p1 `Op1{Rqq “ Op1{Rq.

Since fpzq “ 1, z P E, we conclude that

|fpzq| ď
Op1{Rq

logR ` γE
, z P BU,

so that the function

rfpzq “ fpzq ´
C{R

logR ` γE

satisfies rfpzq ď 1, z P E, and rfpzq ď 0, z P BU, for an appropriate large constant C. It
follows that

rfpzq ď ωz
UzEpEq, z P UzE.

To estimate this harmonic measure we write

ωz
UzEpEq ě

´C

RplogR ` γEq
`

1

logR ` γE

ż

E

ˆ

log
R

|z ´ w|
´ log

R

|z|

˙

dµEpwq

`
1

logR ` γE
log

R

|z|
“ T1 ` T2 ` T3.
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9 Harmonic measure in the complex plane

By (9.30)

T3 “
1

logR ` γB
log

R

|z|
`

ˆ

1

logR ` γE
´

1

logR ` γB

˙

log
R

|z|
“ ωz

UzBpBq ` T4.

For the term T4 we have

T4 “
γB ´ γE

plogR ` γEqplogR ` γBq
log

R

|z|
ě

εγE ` log 2

plogR ` 2γE ` log 2q2
,

provided ε ă 1, because γB ď 2γE ` log 2.
For the term T2 we have

|T2| ď
1

logR ` γE

ż

E

ˇ

ˇ

ˇ

ˇ

log
|z ´ w|

|z|

ˇ

ˇ

ˇ

ˇ

dµEpωq

with

log
|z ´ w|

|z|
“ log

ˆ

1 `
|z ´ w| ´ |z|

|z|

˙

“ logp1 `Op1{Rqq “ Op1{Rq

and the same estimate also holds for log |z|

|z´w|
. Hence

|T2| ď
C

RplogR ` γEq
.

Since |T1| obviously satisfies the same estimate, we conclude that

ωz
UzEpEq ě ωz

UzBpBq `
εγE ` log 2

plogR ` 2γE ` log 2q2
´

C

RplogR ` γEq
, (9.31)

for some positive constant C.

Recall that the claim is
ˆ

log

ˆ

4

3

˙

`
C

R

˙

ωz
UzBpBq ď

ˆ

log

ˆ

4

3

˙

´
C

R

˙

ωz
UzEpEq, |z| “

R

2
.

From now to the end of the proof of the claim z denotes a point satisfying |z| “ R
2 .

By (9.31) we get, for R ě R0pεq,

ωz
UzEpEq ě ωz

UzBpBq ` C
εγE

plogR ` γEq2
.

It is sufficient to show
ˆ

log

ˆ

4

3

˙

`
C

R

˙

ωz
UzBpBq ď

ˆ

log

ˆ

4

3

˙

´
C

R

˙ˆ

ωz
UzBpBq ` C

εγE
plogR ` γEq2

˙

or
Cωz

UzBpBq

R
ď ´

C

R
ωz
UzBpBq `

ˆ

log

ˆ

4

3

˙

´
C

R

˙

C
εγE

plogR ` γEq2
,
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which amounts to, for R ě R0pεq,

ωz
UzBpBq

R
ď C

εγE
plogR ` γEq2

.

By (9.30), for |z| “ R{2, we have

ωz
UzBpBq “

2

logR ` γB
“

2

logR ` p1 ` εqγE ` log 2
ď

2

logR ` γE
.

Then, for R ě R0pεq, we get

ωz
UzBpBq

R
ď

2

RplogR ` γEq
ď C

εγE
plogR ` γEq2

,

where the last inequality is equivalent to

2plogR ` γEq ď C RεγE ,

which is clearly true for R large enough, because γE ě log
?
2.

9.10.2 Proof of Lemma 9.14

We note that in the statement of Lemma 9.14 one has to understand that no curve Γj

lies inside another curve Γk; in other words, the bounded connected components of CzΓj ,
1 ď j ď N, are disjoint. Also, replacing K by tg ď εu for small ε ą 0, we can assume Ω
is a finitely connected domain with smooth boundary.

Recall that we can write the Green function g as

gpzq “
1

2π
log |z| ` γK ` h0pzq, (9.32)

where

h0pzq “
a1
z

`
ā1
z̄

`
a2
z2

`
ā2
z̄2

` ¨ ¨ ¨

is harmonic and satisfies h0p8q “ 0.

Let tξku be the set of critical points of g that lie outside Γ. First of all we note that there
is only a finite number of these critical points. Indeed, the ξk’s are the zeros of Bg, which
is a holomorphic function on Ω “ C˚zK vanishing at infinity. Hence the critical points
can accumulate only on K and so outside Γ there are only finitely many, say ξ1, . . . , ξL.
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Γ1
Γ2

Γ3

ξ1

ξ2

ξL

n

−n

n
−n

∂Br
n

To simplify notation, we denote by n the inner normal at BΩ, and by ν the outer normal.
We want to show the equality

ż

Γ

Bg

Bn
log |∇g| ds “ 2π

L
ÿ

k“1

gpξkq `

N
ÿ

j“1

cj

ż

Γj

B

Bn
log |∇g| ds` 2πγK ´ log 2π.

Let Br be the disc centered at the origin of radius r big enough to contain the unit disc
and all the critical points of g. Green’s formula gives

´

ż

Γ

Bg

Bn
log |∇g| ds`

ż

BBr

Bg

Bn
log |∇g| ds

“ ´

ż

Γ
g

B

Bn
log |∇g| ds`

ż

BBr

g
B

Bn
log |∇g| ds´ 2π

L
ÿ

k“1

gpξkq,

where we used that ∆ log |Bg| “ 2π
řL

k“1 δξk . Equivalently

ż

Γ

Bg

Bn
log |∇g| ds “ 2π

L
ÿ

k“1

gpξkq `

N
ÿ

j“1

cj

ż

Γj

B

Bn
log |∇g| ds

`

ż

BBr

ˆ

Bg

Bn
log |∇g| ´ g

B

Bn
log |∇g|

˙

ds

and we need to prove

lim
rÑ8

ż

BBr

ˆ

Bg

Bn
log |∇g| ´ g

B

Bn
log |∇g|

˙

ds “ 2πγK ´ log 2π. (9.33)

On BBr the normal derivative B
Bn is the partial derivative B

Br . By (9.32)

Bg

Br
pzq “

1

2πr
`

B

Br
h0pzq “

1

2πr
`O

ˆ

1

r2

˙

, |z| “ r,
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and similarly

∇gpzq “
1

2π
∇ log |z| ` ∇h0pzq “

1

2πz̄
`O

ˆ

1

|z|2

˙

, |z| “ r.

Thus

log |∇gpzq| “ log
1

2πr
`O

ˆ

1

r

˙

and
B

Br
log |∇gpzq| “ ´

1

r
`O

ˆ

1

r2

˙

.

The integral in (9.33) becomes

ż

BBr

ˆ

1

2πr
log

1

2πr
`

´ 1

2π
log r ` h0 ` γK

¯ 1

r

˙

ds`O

ˆ

1

r

˙

“

´

2πh0 ` 2πγK ` log
1

2π

¯

`O

ˆ

1

r

˙

,

which tends to 2πγK ´ log 2π as r Ñ 8, because h0prq Ñ 0.

The next step is to prove the identities

ż

Γj

B

Bn
log |∇g| ds “ ´2π, j “ 1, 2, . . . , N.

Since ∇g “ 2B̄g,

ż

Γj

B

Bn
log |∇g| ds “

ż

Γj

B

Bn
log |B̄g| ds

“

ż

Γj

x2B̄ log |B̄g|, ny ds “

ż

Γj

B

B̄2g

B̄g
, n

F

ds

“ Re

˜

ż

Γj

B2g

Bg
n ds

¸

“ Re

˜

1

i

ż

Γj

B2g

Bg
dz

¸

“ Var argΓj
pBgq “ Var argΓj

p∇gq “ ´2π.

Therefore
ż

Γ

Bg

Bn
log |∇g| ds “ 2π

L
ÿ

k“1

gpξkq ´ 2π
N
ÿ

j“1

cj ` 2πγK ´ log 2π

and the proof of the lemma is reduced to

2π
N
ÿ

j“1

cj ď 2π
L
ÿ

k“1

gpξkq ` 2πγK ´ log 2π ` log 4π
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or, equivalently,
N
ÿ

j“1

cj ď

L
ÿ

k“1

gpξkq ` γK `
log 2

2π
(9.34)

Let µK be equilibrium measure of K. Then

gpzq “ γK `
1

2π

ż

K
log |z ´ w| dµKpwq,

and so, recalling that Γ Ă t|z| ă 1u,

gpzq ď γK `
log 2

2π
, |z| ă 1. (9.35)

Now we make a remark. Let γ be a Jordan curve which is contained in a level set
of g and that surrounds a number β of connected components of K. Then the number of
critical points of g inside γ is β ´ 1.

ξ2

ξ1

γ

ξ3

D

To see this, let D stand for the domain bounded by γ and K; then ∇g is orthogonal
to the boundary of D and when we travel along BD the argument of ∇g increases by 2π
over γ and decreases by 2π over the boundary of each component of K. So the total
variation of argpBgq on BD is pβ´1q 2π and, by the argument principle, Bg has β´1 zeros
in D.

Take now γ containing all critical points of g and K. Then the total number of critical
points of g is the number of components of K minus 1. Assuming that Γj contains βj
components of K, j “ 1, . . . , N , we know that the number of critical points inside γj is
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βj ´ 1 and so the number of critical points outside Γ is N ´ 1. Replacing in (9.34) the
number L of critical points outside Γ by N ´ 1, the inequality to be proven is

N
ÿ

j“1

cj ď

N´1
ÿ

k“1

gpξkq ` γK `
log 2

2π
. (9.36)

To show (9.36) let us assume that the constants cj are different and ordered so that
c1 ă c2 ă ¨ ¨ ¨ ă cN . We would like to understand how the N ´ 1 critical points outside Γ
appear.

. . .

Γ2

Γ3

ξ1

g =
c3

g = c4
g = c4

Γ1

g =
c
2

Γ3

ξ2

g = c4

Γ2

ξ1

g =
c3

Γ1

g =
c
2

The critical points of g appear when two components of a level set of g touch. The
critical point may have a multiplicity if more than two components coincide at a point;
in this case, the multiplicity is, by the argument principle, the number of components
that are joining minus one. Assume, for instance, that two components of tz : gpzq “ cu
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intersect at ξ1 and c is the least number with this property. On one hand, ∇gpξ1q “ 0,
since otherwise tz : gpzq “ cu would be a smooth curve around ξ1, which is not the case.
On the other hand, the domain bounded by tz : gpzq “ cu contains two Γj , which must be
Γ1 and Γ2. Thus gpξ1q ě c2. If there were three components of tz : gpzq “ cu which join
at ξ1, then Γ1, Γ2 and Γ3 would be inside the domain bounded by tz : gpzq “ cu. Hence
gpξ1q ě c3. Arguing inductively in this way we finally obtain that the N ´1 critical points
of g outside Γ satisfy

N´1
ÿ

k“1

gpξkq ě

N
ÿ

j“2

cj .

Since c1 “ gpτq for some τ , (9.35) gives c1 ď γK ` log 2 and (9.36) follows.
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10 Ahlfors regular domains

10.1 Dahlberg’s theorem

10.1.1 Introduction

We need to introduce the notion of Lipschitz domain. We say that Z Ă Rn`1 is a pd, ℓq-
cylinder if there is a coordinate system x “ px̄, xn`1q P Rn ˆ R such that

Z “ tpx̄, xn`1q : |x̄| ď d,´10ℓd ď |xn`1| ď 10ℓdu.

Also, for all s ą 0, we denote

sZ “ tpx̄, xn`1q : |x̄| ď sd,´10ℓd ď |xn`1| ď 10ℓdu.

We say that Ω is a Lipschitz domain with Lipschitz character pℓ,N,C0q is there is r0 ą 0
and at most N pd, ℓq-cylinders Zj , j “ 1, . . . , N , with C´1

0 r0 ď d ď C0r0 such that

• 8Zj X BΩ is the graph of a Lipschitz function Aj with }∇Aj}8 ď ℓ, Ajp0q “ 0,

• BΩ “
Ť

jpZj X BΩq,

• We have that
8Zj X Ω “ tpx̄, xn`1q P 8Zj : xn`1 ą Ajpx̄qu, (10.1)

in the coordinate system associated with Zj .

We also say that Ω is a Lipschitz domain with Lipschitz constant ℓ.
On the other hand we say that Ω Ă Rn`1 ia a special Lipschitz domain if there is a

coordinate system x “ px̄, xn`1q P Rn ˆ R and a Lipschitz function A : Rn Ñ R such that

Ω “ tpx̄, xn`1q : xn`1 ą Apx̄qu.

Our objective in this section is to prove the following fundamental theorem of Dahlberg
[Dah77]:

Theorem 10.1. Let Ω Ă Rn`1 be either a bounded Lipschitz domain or a special Lipschitz
domain and denote by σ the surface measure in Ω. Let B be a ball centered in BΩ and
x0 P Ω such that distpx0, 2B X BΩq ě C´1

1 rpBq. Then the following holds:

(a) The harmonic measure ωx0 and σ are mutually absolutely continuous.
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(b) We have

˜

´

ż

BXBΩ

ˆ

dωx0

dσ

˙2

dσ

¸1{2

ď C ´

ż

BXBΩ

dωx0

dσ
dσ “ C

ωx0pBq

σpBq
, (10.2)

where C depends only on n, the Lipschitz character of Ω, and C1.

(c) ωx0 P A8pσq, with the A8 constants depending only on on n, the Lipschitz character
of Ω, C1, and distpx0, BΩq.

10.1.2 Strategy for the proof of Dahlberg’s theorem

Notice first that a Lipschitz domain is NTA, and thus its associated harmonic measure is
doubling. Using this doubling property it is immediate to check that it suffices to prove
the theorem for a ball B small enough such that x0 R 4B and 4B is contained in 2Zj ,
where Zj is one of the cylinders defined above.
Suppose that the boundary of Ω is smooth and that the Green function belongs to C2pΩq,

so that Green’s formula can be applied to g :“ Gpx0, ¨q and to its partial derivatives (away
from x0). In this case ωx0 and σ are mutually absolutely continuous and

dωx0

dσ
“ ´Bνg,

where Bνg is the normal derivative of g in BΩ (we assume that ν is the outer unit normal
for Ω). Since g is constantly equal to 0 in BΩ, the tangential derivative of g vanishes in
BΩ, and moreover

´Bνg “ |Bνg| « Bn`1g in 8Zj X BΩ,

in the coordinate system for Zj . Therefore,

ż

BXBΩ

ˆ

dωx0

dσ

˙2

dσ « ´

ż

BXBΩ
Bνg Bn`1g dσ.

Let φ : Rn`1 Ñ R be a bump function which equals 1 in B and vanishes away from 2B.
Since both g and Bn`1g are harmonic in 2B, by Green’s formula

ż

BXBΩ

ˆ

dωx0

dσ

˙2

dσ À ´

ż

BΩ
φ Bνg Bn`1g dσ “ ´

ż

BΩ
Bνpφgq Bn`1g dσ

“

ż

Ω

`

´ ∆pφgq Bn`1g ` φg∆pBn`1gq
˘

dm “ ´

ż

Ω
∆pφgq Bn`1g dm

“ ´

ż

Ω

`

∆φg Bn`1g ´ 2Bn`1g∇φ ¨ ∇g
˘

dm.
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By the definition of φ, Theorem 8.13, and Caccioppoli’s inequality, we obtain

ż

Ω

ˇ

ˇ∆φg Bn`1g ´ 2Bn`1g∇φ ¨ ∇g
ˇ

ˇ dm (10.3)

À
1

rpBq2

ˆ
ż

ΩX2B
g2 dm

˙1{2ˆż

ΩX2B
|Bn`1g|2 dm

˙1{2

`
1

rpBq

ż

ΩX2B

ˇ

ˇ∇g|2 dm

À
1

rpBq3

ż

ΩX3B
g2 dm À

1

rpBq3

ˆ

ωx0pBq

rpBqn´1

˙2

mpBq «
ωx0pBq2

σpBq
,

which yields (10.2). The fact that ωx0 is an A8pσq weight follows then easily from the
this reverse Hölder property.

For arbitrary Lipschitz domains the argument above does not work because we cannot
assume a priori that Bνg and Bn`1g are defined in BΩ and that the Green formula applied
above holds. To prove Dahlberg’s theorem with full rigor, first we will consider the case
when the boundary BΩ is of class C1 and we will prove a discrete version of (10.2) following
an approach based on the arguments above. Later we will deduce the full result by an
approximation argument

10.1.3 Two auxiliary lemmas

Lemma 10.2. Let u be a positive harmonic function in the upper half space H “ tx P

Rn`1 : xn`1 ą 0u and continuous in H which vanishes in BH. Then there exists some
constant λ ą 0 such that

upxq “ λxn`1 for all y P H.

Proof. Let x0 “ en`1. We choose λ “ upx0q and we let vpxq “ λxn`1 for x P H. Since
both u and v are positive and harmonic in H and vanish continuously in BH, by the
boundary Harnack principle (see Theorem 8.16) we have that upxq « vpxq for all x P H.
Thus, u grows at most linearly at 8.
Since u vanishes in BH, it can be extended by reflection to lower half space. Next we

use the fact that that any harmonic function in Rn`1 satisfying |upxq| ď Cp1 ` |x|q in
Rn`1 is a polynomial of degree at most 1, by Proposition 2.13. From this fact one easily
gets that u “ λxn`1.

We need now to introduce the Jones’ β coefficients used to measure the flatness of sets.
Given a set E Ă Rn`1, a ball B :“ Brpxq Ă Rn`1, and an n-plane L Ă Rn`1, we let

β8,EpB,Lq “ β8,Epx, r, Lq “ sup
yPEXBrpxq

distpy,Eq

r
.

Lemma 10.3. Let Ω Ă Rn`1 be an NTA domain, let B a ball centered in BΩ, and let
H “ ty : yn`1 ą 0u and L “ BH. For any ε ą 0 there exists some δ ą 0 (depending on ε
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and the NTA character of Ω) such that the following holds. Suppose that Ω X δ´1B Ă H
and that β8,BΩpδ´1B,Lq ď δ. Let u : Ω X δ´1B Ñ R be a continuous function vanishing
identically in BΩ X δ´1B Ñ R and positive and harmonic in Ω X δ´1B. Then there exists
some constant λ ą 0, depending on u, such that

|upyq ´ λ yn`1| ď ε }u}8,B for all y P Ω XB, (10.4)

Further, if y P Ω XB satisfies distpy, BΩq ě 1
4 rpBq and ε is small enough, then we have

|∇upyq| « Bn`1upyq « rpBq´1 upyq (10.5)

and
rpBq |∇2upyq| ` |∇Lupyq| ď ε |∇upyq| ! |∇upyq|, (10.6)

where ∇L denotes the tangential derivative in L.

Proof. Consider an arbitrary point y0 P B X Ω such that distpy0, BΩq ě rpBq{4. Then we
will prove (10.4) with

λ “
upy0q

y0,n`1
.

Denote vpyq “ λ yn`1. For the sake of contradiction, suppose that there exists some ε ą 0
such that for any δ “ 1{k there is an NTA domain Ωk (with some bounded NTA character
independent of k), a ball Bk centered in BΩk such that β8,BΩk

pkBk, Lq ď 1{k, and a
continuous function uk : Ωk X kBk Ñ R vanishing identically in BΩk X kBk Ñ R, positive
and harmonic in Ωk X kBk, such that

}uk ´ vk}8,B ą ε }uk}8,Bδ
, (10.7)

with vkpyq “
ukpy0q

y0,n`1
yn`1. By translating and dilating Bk and Ωk if necessary, we may

assume that Bk “ B1p0q.
Since the domains Ωk are NTA (with constants uniform in k), we infer that for any ball

M ě 1,
}uk}8,MB ÀM }uk}8,B « ukpy0q.

Hence, the sequence of functions ukpy0q´1 uk is uniformly locally bounded in compact
subset of Rn`1 (we assume these functions to be extended by zero in Ωc

k). These functions
are also uniformly Hölder continuous in compact subsets of Rn`1 (by Lemma 7.25). Also,
since β8,BΩk

pkBk, Lq Ñ 0, by the Arzela-Ascoli Theorem we infer that there is a subse-
quence ukj py0q´1 ukj that convergences uniformly to some function ru which is positive and
harmonic in H and vanishes continuously in L “ BH. Clearly we have rupy0q “ 1 and so ru
does not vanish identically in H. Thus, by Lemma 10.2 we know that rupyq “ 1

y0,n`1
yn`1

in H.
On the other hand, notice also that vk

ukpy0q
“ 1

y0,n`1
yn`1 for all k, and thus by (10.7) we

get the contradiction

0 “ }ru´ ru}8,B “ lim
jÑ8

}ukj ´ vkj}8,B

ukj py0q
Á lim sup

jÑ8

}ukj ´ vkj}8,B

}ukj}8,B
ě ε,
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which proves (10.4) with λ “
upy0q

y0,n`1
.

Our next objective is to derive (10.5) and (10.6) from (10.4) with the preceding choice
of λ, and with B replaced by 2B (it is clear that this estimate also holds in this case, by
modifying suitably δ). By the usual interior Caccioppoli estimates for harmonic functions,
we deduce that for all y P Ω XB satisfying distpy, BΩq ě 1

4 rpBq, we have

|Bn`1upyq´λ|`|∇Lupyq| ď 2 |∇upyq´λen`1| À
1

rpBq
}u´v}8,ΩX2B ď

ε

rpBq
}u}8,B (10.8)

and

|∇2upyq ´ 0| À
1

rpBq2
}u´ v}8,ΩX2B ď

ε

rpBq2
}u}8,B. (10.9)

Notice now that

λ “
upy0q

y0,n`1
«
upyq

rpBq
«

1

rpBq
}u}8,B,

and so from (10.8) we deduce that, for ε small enough,

|Bn`1upyq ´ λ| ď |∇upyq ´ λen`1| ď
λ

2
,

and so Bn`1upyq « |∇upyq| « λ, which yields (10.5). On the other hand, from (10.8) and
(10.5) we derive

|∇Lupyq| À
ε

rpBq
}u}8,B « ε

upyq

rpBq
« ε |∇upyq|.

Finally, the estimate rpBq |∇2upyq| À ε |∇upyq| in (10.6) follows from (10.9) in an analo-
gous way.

10.1.4 A key lemma for the smooth case

As in Section 10.1.2, to prove Dahlberg’s theorem, we will assume that the ball B is small
enough, so that x0 R 4B and 4B is contained in 2Z, where Z is one of the cylinders Zj

defined above. We denote by DpBΩ, Zq the family of the following “dyadic cubes” of BΩ
obtained as follows. Let DpRnq the usual dyadic lattice of Rn. Let ΠZ be the orthogonal
projection from 8Z to Rn ” Rn ˆ t0u, in the coordinate system associated with Z. Then
we let

DpBΩ, Zq “ tΠ´1
Z pQq X BΩ : Q P DpRnq, Q Ă 8Z X Rnu.

Here again we are identifying Rn with Rn ˆ t0u. Observe that the cubes from this family
are contained in BΩ X 8Z. We also denote ℓpΠ´1

Z pQq X BΩq :“ ℓpQq and we call this the
side length of Π´1

Z pQq X BΩ. Its center is the point whose projection by ΠZ coincides with
the center of Q. We let DkpBΩ, Zq be subfamily of the cubes from DpBΩ, Zq with side
length 2´k, and given a cube R P DpBΩ, Zq, we let DkpBΩ, Z,Rq be the subfamily of the
cubes from DpBΩ, Zq which are contained in R and have side length 2´kℓpRq.
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Lemma 10.4. Let Ω Ă Rn`1 be a Lipschitz domain. Let Z Ă Rn`1 be one of the cylinders
in the definition of the Lipschitz character of Ω. Let R P DpBΩ, Zq such that 4R Ă 4Z
and x0 P Ω such that distpx0, 4Rq ě 4 diampRq. Suppose that BΩ is C1 in a neighborhood
of 4R. Then, for any k ě 1 big enough, we have

ÿ

QPDkpBΩ,Z,Rq

ˆ

ωx0pQq

σpQq

˙2

σpQq ď C

ˆ

ωx0pRq

σpRq

˙2

σpRq, (10.10)

with C depending only on the Lipschitz character of Ω.

Notice that (10.10) can be considered as a discrete version of (10.2).

Proof. Suppose that BΩXZ coincides with the graph of the Lipschitz function yn`1 “ Apyq

in Z. For ε ą 0, let Aεpyq “ Apyq ` ε and let Ωε “ ty P Ω : yn`1 ą Aεpyqu (the definition
of the function A away from 4Z does not matter).
For every Q P DkpBΩ, Z,Rq consider a C8 bump function φQ which equals 1 on Q and

vanishes in Rn`1zBdiampQqpxQq and in BΩzΠ´1
Z p2Qq (here xQ is the center of Q). Since the

function g :“ gpx0, ¨q belongs to W 1,2pΩzBrpxqq for any r ą 0, we infer that

ωx0pQq ď ´

ż

Ω
∇g∇φQ dm “ ´ lim

εÑ0

ż

Ωε

∇g∇φQ dm “ ´ lim
εÑ0

ż

BΩε

Bνεg φQ dσε,

where νε and σε denote the outer unit normal and the surface measure for Ωε, respectively.
Consequently, denoting 2Qε “ Π´1

Z p2Qq X BΩε,

ÿ

QPDkpBΩ,Z,Rq

ˆ

ωx0pQq

σpQq

˙2

σpQq ď lim sup
εÑ0

ÿ

QPDkpBΩ,Z,Rq

ˆ
ż

2Qε

Bνεg φQ dσε

˙2

σpQq´1

(10.11)

À lim sup
εÑ0

ÿ

QPDkpBΩ,Z,Rq

ż

2Qε

|Bνεg|2 φ2
Q dσε

ď lim sup
εÑ0

ż

2Rε

|Bνεg|2 φ2
R dσε.

From the C1 character of BΩ in a neighborhood of 4R and Lemma 10.3 (applied to some
ball B “ B2εpyq, y P 2Rε, and to a suitable n-plane L orthogonal to νεpyq), we infer that
for ε small enough and all y P 2Rε,

|∇gpyq| « |Bνεgpyq| “ ´Bνεgpyq « ε´1 gpyq (10.12)

and
ε |∇2gpyq| ` |∇Tεgpyq| ď Cpεq |∇gpyq| ! |∇gpyq|, (10.13)

where ∇Tε denotes the tangential derivative in BΩε and Cpεq Ñ 0 as ε Ñ 0. Let t̃εpyq

be the orthogonal projection of en`1 on the tangent n-plane to BΩε in y and set tεpyq “

|t̃εpyq|´1t̃εpyq. Writing

Bn`1gpyq “ en`1 ¨ ∇gpyq “ xen`1, νεpyqy Bνεgpyq ` xen`1, tεpyqy Btεgpyq
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and taking into account (10.12) and (10.13), we derive

´Bνεgpyq “ |Bνεgpyq| « Bn`1gpyq for all y P 2Rε.

Thus, for ε small enough, we have

Iε :“

ż

2Rε

|Bνεg|2 φ2
R dσε « ´

ż

2Rε

Bνεg Bn`1g φ
2
R dσε (10.14)

“ ´

ż

2Rε

Bνεpg φ2
Rq Bn`1g dσε ` 2

ż

2Rε

g φR BνεφR Bn`1g dσε.

We estimate the last integral on the right hand side above using Cauchy-Schwarz, the
Hölder continuity of g in a neigborhood of BdiampRqpxRq, (10.12), and the connection
between ωx0 and g:

ż

2Rε

|g φR BνεφR Bn`1g| dσε À
1

ℓpRq
sup
2Rε

gpyq

ˆ
ż

2Rε

|φR Bn`1g|2 dσε

˙1{2

σpRq1{2

À
1

ℓpRq

ˆ

ε

ℓpRq

˙α

sup
yPB2diampRqpxRq

gpyq I1{2
ε σpRq1{2

À

ˆ

ε

ℓpRq

˙α ωx0pRq

σpRq1{2
I1{2
ε .

To estimate the first integral on the right hand side of (10.14) we use Green’s formula
again and we take into account that Bn`1g is harmonic away from x0 in Ω:

ż

2Rε

Bνεpg φ2
Rq Bn`1g dσε “

ż

Ωε

∆pg φ2
Rq Bn`1g dm´

ż

2Rε

g φ2
R BνεBn`1g dσε (10.15)

The first integral on the right hand side is estimated exactly as in (10.3). Indeed, denoting
by BR some ball centered in BΩ that contains suppφR and such that diampBRq « ℓpRq,
we get
ż

Ωε

|∆pg φ2
Rq Bn`1g| dm ď

ż

Ω

ˇ

ˇ∆φ2
R g Bn`1g ´ 2Bn`1g∇φ2

R ¨ ∇g
ˇ

ˇ dm

À
1

rpBRq2

ˆ
ż

ΩXBR

g2 dm

˙1{2ˆż

ΩXBR

|Bn`1g|2 dm

˙1{2

`
1

rpBRq

ż

ΩXBR

ˇ

ˇ∇g|2 dm

À
1

rpBRq3

ż

ΩX2BR

g2 dm À
1

rpBRq3

ˆ

ωx0pRq

rpBRqn´1

˙2

mpBRq «
ωx0pRq2

σpRq
.

To deal with the last integral on the right hand side of (10.15) we apply (10.12) and
(10.13):

ż

2Rε

|g φ2
R BνεBn`1g| dσε ď

ż

2Rε

g φ2
R |∇2g| dσε

À

ż

2Rε

pε|Bνεg|qφ2
R pε´1Cpεq|Bνεg|q dσε

“ Cpεq

ż

2Rε

|Bνεg|2 φ2
R dσε “ CpεqIε,
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with Cpεq Ñ 0 as ε Ñ 0.
Altogether, we obtain

Iε À

ˆ

ε

ℓpRq

˙α ωx0pRq

σpRq1{2
I1{2
ε `

ωx0pRq2

σpRq
` CpεqIε.

For ε small enough, this yields

Iε À
ωx0pRq2

σpRq
.

Plugging this estimate into (10.11), the lemma follows.

10.1.5 Proof of Theorem 10.1

We assume that B is small enough so that x0 R 4B and 4B is contained in 2Z, where Z
is one of the cylinders in the definition of Lipschitz domain.
By reducing B and translating the dyadic lattice DpBΩ, Zq if necessary, taking into

account that ωx0 is doubling, we may assume that B X BΩ is contained in some cube
R P DpZ, BΩq like the one in the statement of Lemma 10.4, so that moreover ℓpRq « rpBq.
We claim that for any k ě 1 big enough, we have

ÿ

QPDkpBΩ,Z,Rq

ˆ

ωx0pQq

σpQq

˙2

σpQq ď C

ˆ

ωx0pRq

σpRq

˙2

σpRq, (10.16)

which C depending only on the Lipschitz character of Ω.
To prove the claim we approximate Ω by a domain Ωδ whose boundary is C1 in 2Z. To

this end, we consider a smooth approximation of the identity tϕδuδą0 in Rn, we take a
bump function η : Rn Ñ 0 which equals 1 in a neighborhood of 3Z X Rn and vanishes in
Rnz3.1Z, and for z P Rn we denote

Aδpzq “ A ˚ ϕηpzqδpzq,

where δ ! ℓpRq and we understand that A ˚ ϕ0pzq “ Apzq. It is easy to check that Aδ is
Lipschitz (uniformly in δ), with }∇Aδ}8 À }∇A}8, and that Aδ is C8 in a neighborhood
of 3R. We let Ωδ be the domain whose boundary is the graph of Aδ in Z and coincides
with BΩ in Rn`1zZ. We denote by ωx0

δ the harmonic measure in Ωδ with pole x0, and we
let Qδ “ Π´1

Z pQq X BΩδ for Q P DpZ, BΩq, so that Qδ P DpZ, BΩδq.
For some δ small enough (possibly depending on k) we have

ωx0p12Qq ď 2ωx0
δ pQδq for every Q P DkpBΩ, Z,Rq. (10.17)

Indeed, ω
p¨q

δ pQq is a function harmonic in Ωδ, which extends continuously to 1 in 1
2Qδ, with

a Hölder modulus of continuity uniform in δ. This can be derived by applying Lemma

7.25 to the function 1 ´ ω
p¨q

δ pQq. Then it easily follows that there is a sequence δj Ñ 0
such that

lim inf
jÑ8

ωx0
δ pQδq ě ωx0p12Qq for all Q P DkpBΩ, Z,Rq,
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which proves (10.17). By a similar argument, we infer that for δ small enough we have

ωx0pRq ě
1

2
ωx0
δ p12Rδq. (10.18)

Now the claim (10.17) follows immediately from Lemma 10.4, (10.17), (10.18), and the
doubling properties of ω and ωδ:

ÿ

QPDkpBΩ,Z,Rq

ˆ

ωx0pQq

σpQq

˙2

σpQq À
ÿ

QδPDkpBΩδ,Z,Rq

ˆ

ωx0
δ pQδq

σδpQδq

˙2

σδpQδq

À

ˆ

ωx0
δ pRδq

σδpRδq

˙2

σδpRδq À

ˆ

ωx0pRq

σpRq

˙2

σpRq.

The theorem follows easily from (10.17). First we show that ωx0 P A8pσq, with the
A8 constants depending on the Lipschitz character of Ω and distpx0, BΩq. To this end, it
suffices to prove that there are δ0, ε0 P p0, 1q such that for any compact set E Ă R,

σpEq ď δ0 σpRq ñ ωx0pEq ď ε0 ω
x0pRq. (10.19)

Indeed, from the regularity of σ, we infer that for any δ0 P p0, 1q there exists some k large
enough and some family Ik Ă DkpBΩ, Z,Rq such that the set rE “

Ť

QPIk
2Q satisfies

E Ă rE, σp rEq ď σpEq ` δ0 σp2Rq ď 2δ0 σp2Rq.

By Cauchy-Schwarz and (10.17), we get

ωx0pEq ď ωx0p rEq ď
ÿ

QPIk

ωx0p2Qq

σpQq
σpQq ď

ˆ

ÿ

QPIk

ˆ

ωx0p2Qq

σpQq

˙2

σpQq

˙1{2

σp rEq1{2

ď C

ˆˆ

ωx0pRq

σpRq

˙2

σpRq

˙1{2

δ
1{2
0 σpRq “ Cδ

1{2
0 ωx0pRq.

So (10.19) holds if we choose δ0 small enough. In particular, this implies that ωx0 and σ
are mutually absolutely continuous.
Finally we turn our attention to the estimate (10.2). Given any η ą 0, by the Lebesgue

differentiation theorem, for σ-a.e. y P R there exists some ky ě 1 such that
ˇ

ˇ

ˇ

ˇ

dωx0

dσ
pyq ´

ωx0pQq

σpQq

ˇ

ˇ

ˇ

ˇ

ď η if x P Q P DpBΩ, Zq and ℓpQq ď 2´kyℓpRq.

Denote Rpk0q “ ty P R : ky ď k0u for k0 P N. Then, using again (10.16) we obtain

ż

Rpk0q

ˆ

dωx0

dσ

˙2

dσ ď 2
ÿ

QPDk0
pBΩ,Z,Rq

ż

Rpk0qXQ

ˆ

dωx0

dσ
´
ωx0pQq

σpQq

˙2

dσ

` 2
ÿ

QPDk0
pBΩ,Z,Rq

ˆ

ωx0pQq

σpQq

˙2

σpQq

ď 2η2σpRq ` C

ˆ

ωx0pRq

σpRq

˙2

σpRq.
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10 Ahlfors regular domains

Since R coincides with
Ť

k0ě1Rpk0q up to a set of zero σ measure, by the monotone
converge theorem we derive

ż

B

ˆ

dωx0

dσ

˙2

dσ ď

ż

R

ˆ

dωx0

dσ

˙2

dσ ď 2η2σpRq ` C

ˆ

ωx0pRq

σpRq

˙2

σpRq.

Since η is arbitrarily small and ωx0pRq « ωx0pBq, clearly this yields (10.2).

10.2 Harmonic measure in chord-arc domains

A domain Ω Ă Rn`1 whose boundary is n-AD-regular is called an Ahlfors regular domain.
A chord-arc domain in Rn`1 is an NTA domain whose boundary is n-AD-regular. Here
we say that a domain Ω Ă Rn`1 satisfies the corkscrew condition if for all ξ P BΩ and
0 ă r ď diampBΩq there1 exists some ball B Ă Brpξq X Ω with radpBq « r. We say that
Ω is a two-sided corkscrew domain if both Ω and Rn`1zΩ satisfy the corkscrew condition.
It is clear that any chord-arc domain is also a two-sided corkscrew domain.
We will need the following geometric result, proved independently by David and Jerison

[DJ90] and Semmes [Sem90]:

Theorem 10.5. Let Ω Ă Rn`1 be an Ahlfors regular and two-sided corkscrew domain.
Then, for all ξ P BΩ and all r P p0, diampBΩq there exists a Lipschitz domain Uξ,r Ă

Ω XBrpξq such that
HnpBΩ X BUξ,rq Á rn.

The Lipschitz character of the domains Uξ,r and the implicit constant above only depend
on n and the parameters involved in the n-AD-regularity of BΩ and the two-sided corkscrew
condition for Ω.

Remark that, for the theorem above to hold, the two-sided corkscrew condition can be
weakened, for example, by replacing the corkscrew balls by suitable disks not intersecting
BΩ. An immediate corollary of the above result is that the boundary of an Ahlfors regular
two-sided corkscrew domain is uniformly n-rectifiable (see [DS93] for the definition of
uniform n-rectifiability). Another consequence is the following.

Theorem 10.6. Let Ω Ă Rn`1 be a chord-arc domain. The harmonic measure for Ω is
an A8 weight with respect to the surface measure σ. More precisely, there are constants
δ, ε P p0, 1q such that for any ball B centered in BΩ, any x0 P Ωz2B, and any Borel set
E Ă BΩ XB, the following holds:

σpEq ě δ σpBq ñ ωx0pEq ě ε ωx0pBq.

Proof. By Theorem 10.5, for a ball B as above there a Lipschitz domain U Ă Ω XB such
that

HnpBΩ X BUq ě ηHnpBU XBq,

1Remark that in Definition 8.3 we only asked this condition to hold for 0 ă r ď r0, for a given r0, and
here we assume that r0 “ diampΩq.
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10 Ahlfors regular domains

where η ą 0 depends on the parameters of the chord-arc domain character of Ω. We claim
that if δ is close enough to 1 and σpEq ě δ σpBq (for E Ă BΩ), then HnpEX BU XBq Áε,η

HnpBU XBq. Indeed,

HnpE X BU XBq “ HnpE X BΩ XBq ´ HnpE X pBΩzBUq XBq

ě HnpE X BΩ XBq ´ HnppBΩzBUq XBq

ě δHnpBΩ XBq ´ p1 ´ ηqHnpBΩ XBq

« pδ ` η ´ 1q radpBqn «δ,η HnpBU XBq.

Consider a point xB P U such that distpxB, BUq « radpBqn. By Dahlberg’s theorem, ωxB
U

is an A8pHn|U q weight, and taking also into account that U satisfies the CDC condition,
we deduce that

ωxB
U pE X BU XBq Áδ,η ω

xB
U pBU XBq «δ,η 1.

By the maximum principle, we obtain

ωxB
Ω pE XBq ě ωxB

Ω pE X BU XBq ě ωxB
U pE X BU XBq Áδ,η 1 « ωxB

Ω pBq.

Then, by the change of pole formula for NTA domains we deduce

ωx0
Ω pE XBq Áδ,η ω

x0
Ω pBq,

which proves the theorem.

10.3 Lp-solvability of the Dirichlet problem in terms of harmonic
measure

Let Ω Ă Rn`1 be an open set and set σ :“ Hn|BΩ to be its surface measure. For α ą 0
and x P BΩ, we define the cone with vertex x and aperture α ą 0 by

γαpxq “
␣

y P Ω : |x´ y| ă p1 ` αqdistpy, BΩq
(

(10.20)

and the non-tangential maximal function operator of a measurable function u : Ω Ñ R by

Nαpuqpxq :“ sup
yPγαpxq

|upyq|, x P BΩ. (10.21)

Theorem 10.7. Let Ω Ă Rn`1 be an open set with such that BΩ is n-AD-regular. For
α, β ą 0 and any function u : Ω Ñ R, we have

}Nαpuq}Lppσq «α,β }Nβpuq}Lppσq.

For the proof, see [HMT09], for example.

Because of the preceding result, when estimating }Nαpuq}Lppσq, quite often we will not
just write N puq in place of Nαpuq. For definiteness, we can think that α “ 1, although
the relevant value of α will not be important for us.
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10 Ahlfors regular domains

For 1 ď p ď 8, we say that the Dirichlet problem is solvable in Lp for the Laplacian
(writing pDpq is solvable) if there exists some constant Cp ą 0 such that, for any f P

CcpBΩq, the solution u : Ω Ñ R of the continuous Dirichlet problem for the Laplacian in
Ω with boundary data f satisfies

}N puq}Lppσq ď Cp }f}Lppσq.

By the maximum principle, it is clear that pD8q is solvable. Consequently, by interpola-
tion, if pDpq is solvable, then pDqq is solvable for q ą p.

The objective of this section is to characterize the solvability of pDpq for 1 ă p ă 8 in
terms of the analytic properties of harmonic measure. We need the following result.

Lemma 10.8. Let Ω Ă Rn`1 be a domain with bounded n-AD-regular boundary. Given
x P Ω, denote by ωx the harmonic measure for Ω with pole at x. Suppose that ωx is
absolutely continuous with respect to surface measure for every x. Let p P p1,8q and
Λ ą 1 and suppose that, for every ball B centered at BΩ with diampBq ď 2diampΩq and
all x P ΛB such that distpx, BΩq ě Λ´1rpBq, it holds

ˆ

´

ż

ΛB

ˆ

dωx

dσ

˙p

dσ

˙1{p

ď κσpBq´1, (10.22)

for some κ ą 0. Then, if Λ is big enough, the Dirichlet problem is solvable in Ls, for
s ą p1. Further, for all f P Lp1

pσq X CpBΩq, its harmonic extension u to Ω satisfies

}N puq}Lp1,8pσq
À κ }f}Lp1

pσq
. (10.23)

Proof. Let f P CpBΩq and let u the solution of the Dirichlet problem in Ω with boundary
data f . Suppose that f ě 0. Consider a point ξ P BΩ and a non-tangential cone γpξq Ă Ω,
with vertex ξ and with a fixed aperture. Fix a point x P γpξq such denote dx “ distpx, BΩq.
We intend to estimate upxq, first assuming dx ď 2 diampBΩq.
To this end, we pick a smooth function φ which equals 1 in B1p0q and vanishes in

Rn`1zB2p0q. For some M ą 4 to be chosen later, we denote

φM pyq “ φ
´ y

Mdx

¯

.

We set
f0pyq “ fpyqφM py ´ ξq, f1pyq “ fpyq ´ f0pyq,

and we denote by u0 and u1 the corresponding solutions of the associated Dirichlet prob-
lems so that u “ u0 ` u1.
To estimate u0pxq we use (10.22) to show that

u0pxq “

ż

f0 dω
x ď

ż

B2Mdx pξq

f
dωx

dσ
dσ

ď

˜

ż

B2Mdx pξq

|f |p
1

dσ

¸1{p1 ˜
ż

B2Mdx pξq

ˆ

dωx

dσ

˙p

dσ

¸1{p

ď κCpMqMσ,p1fpξq
σpB2Mdxpξqq1{p1

σpBdxpξqq1{p1 À κCpMqMσ,p1fpξq,
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10 Ahlfors regular domains

assuming Λ ě 2M .
To deal with u1pxq, we first estimate ´

ş

BMdx pξq
u1 dm. To do so, we consider the splitting

of Ω into the usual family of Whitney cubes and we denote by IB the family of those cubes
that intersect B :“ BMdxpξq. By the properties ofWpΩq, the cubes P P IB are contained in
CB :“ BCMdxpξq, for some C depending just on n and the parameters in the construction
of WpΩq. Then, taking into account that u1 ď u, we have

ż

BMdx pξq

u1 dm ď
ÿ

PPIB

ż

P
u dm ď

ÿ

PPIB

inf
yPbpP q

Nupyq ℓpP qn`1 (10.24)

À
ÿ

QPDσ :QĂC1B

ℓpQq

ż

Q
Nu dσ À Mdx

ż

C1B
Nu dσ,

where in the second inequality we took into account that dx ď 2diampBΩq. So we deduce

´

ż

BMdx pξq

u1 dm À ´

ż

C1B
Nu dσ À MσpNuqpξq.

Now, taking into account that f1 vanishes in BMdxpξq, from the Hölder continuity of u1
in BΩ XBMdx{2pξq, we infer that

u1pxq À
1

Mα
´

ż

BMdx pξq

u1 dm À
1

Mα
MσpNuqpξq,

for some α ą 0 depending just on the AD-regularity constant of BΩ.
Altogether, we have

upxq ď κCpMqMσ,p1fpξq `
C

Mα
MσpNuqpξq for all x P γpξq with dx ď 2diampBΩq.

(10.25)
In case that Ω is unbounded, it turns out that the closure of A :“ tx P Ω : dx ą 2diampBΩqu

is contained in the cone γpξq if the aperture of γpξq is assumed to be big enough. Thus,
by the maximum principle, since (10.25) holds for x P BA and u vanishes at 8, it follows
that the same estimate is also valid for x P γpξq X A. Hence (10.25) holds for all x P γpξq

in any case. So we obtain

Nupξq ď κCpMqMσ,p1fpξq `
C

Mα
MσpNuqpξq for all ξ P BΩ. (10.26)

Thus, for s ą p1,

}Nu}Lspσq ď κCpMq }Mσ,p1f}Lspσq `
C

Mα
}MσpNuq}Lspσq

ď κC 1pMq }f}Lspσq `
C 1

Mα
}Nu}Lspσq.

Since f is continuous BΩ is bounded, }Nu}Lspσq ă 8, and hence, choosing M (and thus
Λ) big enough, we get

}Nu}Lspσq ď κC 1pMq }f}Lspσq.
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10 Ahlfors regular domains

Regarding the last statement of the lemma, recall that Mσ,p1 is bounded from Lp1

pσq

to Lp1,8pσq and that Mσ is bounded in Lp1,8pσq. Then, from (10.26) we infer that

}Nu}Lp1,8pσq
ď κCpMq }Mσ,p1f}Lp1,8pσq

`
C

Mα
}MσpNuq}Lp1,8pσq

À κCpMq }f}Lp1
pσq

`
C

Mα
}Nu}Lp1,8pσq

.

Since }Nu}Lp1,8pσq
ă 8, the latter gives (10.23) for M and Λ big enough.

Theorem 10.9. Let Ω Ă Rn`1 be a domain with bounded n-AD-regular boundary. Given
x P Ω, denote by ωx the harmonic measure for Ω with pole at x. For p P p1,8q, the
following are equivalent:

(a) pDp1q is solvable for Ω.

(b) The harmonic measure ω is absolutely continuous with respect to σ and for every
ball B centered in BΩ and for all x P Ω X 3Bz2B with diampBq ď 2diampBΩq, it
holds

ˆ

´

ż

B

ˆ

dωx

dσ

˙p

dσ

˙1{p

À σpBq´1.

(c) The harmonic measure ω is absolutely continuous with respect to σ and there is
some Λ ą 1 big enough such that, for every ball B centered in BΩ with diampBq ď

2diampBΩq and all x P ΛB such that distpx, BΩq ě Λ´1rpBq, it holds

ˆ

´

ż

ΛB

ˆ

dωx

dσ

˙p

dσ

˙1{p

ÀΛ σpBq´1.

Proof. (a) ñ (b). By duality, it is enough to show that for every ball B centered in BΩ,
for all x P Ω X 3Bz2B, and all f P CcpBΩ XBq,

ˇ

ˇ

ˇ

ˇ

ż

B
f dωx

ˇ

ˇ

ˇ

ˇ

À }f}Lp1
pσq
σpBq´1{p1

.

Denoting by u the harmonic extension of f to Ω, the preceding inequality can be rewritten
as

|upxq| À }f}Lp1
pσq
σpBq´1{p1

.

To prove the latter inequality, by standard arguments (as in (10.24), say) and the Lp1

solvability of the Dirichlet problem, it follows that

´

ż

4B
|u| dm À ´

ż

CBXBΩ
|N puq| dσ ď

ˆ

´

ż

CBXBΩ
|N puq|p

1

dσ

˙1{p1

À }f}Lp1
pσq
σpBq´1{p1

.
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By the subharmonicity of |u| (extended by 0 in Ωc) in 4BzB, we have

|upxq| À ´

ż

4B
|u| dm for all x P Ω X 3Bz2B.

Together with the previous estimate, this implies (b).

(a) ñ (c). The arguments are almost the same as the ones in the proof of (a) ñ (b),
just replacing the condition x P Ω X 3Bz2B by x P Ω X ΛB, distpx, BΩq ě Λ´1 rpBq. We
leave the details for the reader.

(b) ñ (a). First we will show that there exists some ε ą 0 such that for any ball B
centered in BΩ with diampBq ď 2diampBΩq and for all x P Ωz6B,

˜

´

ż

B

ˆ

dωx

dσ

˙p`ε

dσ

¸1{pp`εq

À σpBq´1, (10.27)

To this end, notice first that, for all x P Ω X Bp2Bq, by the so-called Bourgain’s estimate,

ωxp8Bq Á 1.

Then, for any function f P CcpBΩq, the assumption in (b) and the preceding estimate give

|upxq| ď C }f}Lp1
pσq
σpBq´1{p1

ď C }f}Lp1
pσq

ωxp8Bq

σpBq1{p1 for all x P Ω X Bp2Bq,

where, as above, u is the harmonic extension of f to Ω. By the maximum principle we
infer that the above inequality also holds for all y P Ωz2B. By duality it follows that

ˆ

´

ż

B

ˆ

dωy

dσ

˙p

dσ

˙1{p

À
ωyp8Bq

σpBq
for all y P Ωz2B.

So for any given ball B0 centered in BΩ with diampB0q ď 2diampBΩq and y P Ωz6B0 and
any ball B1 centered at 1.1B0 X BΩ with rpB1q ď 2rpB0q, we have

ˆ

´

ż

B1

ˆ

dωy

dσ

˙p

dσ

˙1{p

À
ωyp8B1q

σpB1q
.

By Gehring’s lemma (see [GM12, Theorem 6.38], for example) adapted to n-AD-regular
sets, there exists some ε ą 0 such that

ˆ

´

ż

B0

ˆ

dωy

dσ

˙p`ε

dσ

˙1{pp`εq

À
ωyp8B0q

σpB0q
,

which yields (10.27).
Next we intend to apply Lemma 10.8 with p` ε in place of p. To this end, given Λ ą 1,

a ball B centered in BΩ with diampBq ď 2diampBΩq, and x P ΛB with distpx, BΩq ě

Λ´1rpBq, we cover B X BΩ with a family of balls Bi, i P IB, with rpBiq “ p100Λq´1rpBq,
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so that the balls Bi are centered at B X BΩ, x R 6Bi for any i P IB, and #IB ď CpΛq.
Applying (10.27) to each of the balls Bi and summing over i P IB, we infer that

˜

´

ż

ΛB

ˆ

dωx

dσ

˙p`ε

dσ

¸1{pp`εq

ď CpΛqσpBq´1.

From Lemma 10.8 we deduce that pDsq is solvable for s ą pp` εq1, and thus in particular
for s “ p1.

(c) ñ (b). We will argue in the same way as in the proof of (a) ñ (b), using the
estimate (10.23) instead of the solvability of pDp1q. Again by duality, it suffices to show
that for every ball B centered in BΩ with diampBq ď 2diampBΩq, for all x P Ω X 3Bz2B
and all f P CcpBΩ XBq, the harmonic extension u of f to Ω satisfies

|upxq| À }f}Lp1
pσq
σpBq´1{p1

. (10.28)

By standard arguments, the Kolmogorov inequality, and (10.23), we have

´

ż

4B
|u| dm À ´

ż

CB
N puq dσ À }N puq}Lp1,8pσq

σpBq´1{p1

À }f}Lp1
pσq
σpBq´1{p1

.

Since f vanishes in BΩzB, by the subharmonicity of |u| (extended by 0 to Ωc) in 4BzB
we have

|upxq| À ´

ż

4B
|u| dm for all x P Ω X 3Bz2B,

which, together with the previous estimate, implies (10.28).

Remark 10.10. The arguments in the above proof of (b) ñ (a) show that solvability of
pDp1q for some p1 P p1,8q implies solvability of pDp1´εq for some ε ą 0.

Remark 10.11. The above theorem also holds if BΩ is unbounded. Indeed, the only place
where the boundedness of BΩ is used is in Lemma 10.8, to ensure that }Nu}Lspµq ă 8 and
}Nu}Lp1,8pσq

ă 8. A way of circumventing this technical problem is the following. For

r ą 0, consider the open set Ωr :“ ΩXBrp0q. It is easy to check that BΩr is n-AD-regular
and that an estimate such as (10.22) also holds for the harmonic measure ωΩr , with bounds
uniform on r, so that pDsq is solvable for Ωr, with s ą p1, and (10.23) also holds. Given
f P CpBΩq with compact support, let r ą 0 be big enough so that suppf Ă Brp0q, and
let fr : BΩr Ñ R be such that fr “ f in BΩ X Brp0q and fr “ 0 in BΩr X Ω. The we
apply Lemma 10.8 to the solution ur of the Dirichlet problem with data fr in Ωr. Letting
r Ñ 8, then one easily deduces that }Nu}Lspσq À κ}f}Lspσq, as well as the related estimate
(10.23). We leave the details for the reader.

Theorem 10.12. Let Ω Ă Rn`1 be a bounded domain. Then we have:
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(a) If Ω is a Lipschitz domain, then there exists some ε0 ą 0 depending just on the
Lipschitz character of Ω such that pDpq is solvable for p ě 2 ´ ε0.

(b) If Ω is chord-arc domain, then there exists some p0 ą 1 depending just on the chord-
arc character of Ω such that pDpq is solvable for p ě p0.

Proof. Suppose that Ω is a Lipschitz domain. Let x0 P Ω such that distpx0, BΩq «

diampBΩq. By Dahlberg’s theorem, the density function dωx0

dσ satisfies the reverse Hölder
inequality (10.2) with exponent 2. By Gehring’s lemma we deduce that an analogous
reverse Hölder inequality holds for some exponent q0 ą 2. That is, for any ball B centered
in BΩ,

ˆ

´

ż

BXBΩ

ˆ

dωx0

dσ

˙q0

dσ

˙1{q0

ď C ´

ż

BXBΩ

dωx0

dσ
dσ “ C

ωx0pBq

σpBq
, (10.29)

Consequently, by the change of pole formula for NTA domains, the condition (b) in The-
orem 10.9 is satisfied, with exponent q0, which implies that pDq1

0
q is solvable, where q1

0 is
the conjugate exponent of q0. By interpolation, pDpq is solvable for p ě q1

0, with q
1
0 ă 2.

In case that Ω is assumed to be just a chord-arc domain, by Theorem 10.6 we know that
dωx0

dσ is an A8pσq weight, and thus there exists some q0 ą 1 such that a reverse Hölder
inequality such as (10.29) holds. As above, by the change of pole formula and by Theorem
10.9 we infer that pDq1

0
q is solvable, and by interpolation, pDpq is solvable for p ě q1

0, with
q1
0 P p1,8q.
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11 Rectifiability of harmonic measure

A set E Ă Rn`1 is called n-rectifiable if there are Lipschitz maps fi : Rn Ñ Rn`1,
i “ 1, 2, . . ., such that

Hn
´

Ez
ď

i

fipRnq

¯

“ 0. (11.1)

A set F Ă Rn`1 is called purely n-unrectifiable if HnpF X Eq “ 0 for every n-rectifiable
set E. As for sets, one can define a notion of rectifiabilty also for measures: a measure µ is
said to be n-rectifiable if it vanishes outside an n-rectifiable set E Ă Rn`1 and, moreover,
it is absolutely continuous with respect to Hn|E .
In this section we will prove the following result.

Theorem 11.1. Let Ω Ă Rn`1 be a bounded open set and let p P Ω. Suppose that there
exists a set E Ă BΩ such that 0 ă HnpEq ă 8 and that the harmonic measure ωp

Ω|E is
absolutely continuous with respect to Hn|E. Then E is n-rectifiable.

Of course, in the theorem above, saying that E is n-rectifiable is equivalent to saying
that ωp

Ω|E is n-rectifiable. Remark that the theorem also holds for unbounded open sets
with compact boundary. In fact, the theorem for this type of domains can be easily derived
from the case when Ω is bounded. We leave the details for the reader.

11.1 The Riesz transform and harmonic measure and the
reduction to Wiener regular domains

The proof of Theorem 11.1 relies on the solution of David-Semmes problem from [NTV14b]
and [NTV14c] about the connection between the L2 boundedness of the Riesz transform
and rectifiability. Given a measure µ in Rn`1, its (n-dimensional) Riesz transform equals

Rµpxq “

ż

x´ y

|x´ y|n`1
dµpyq,

whenever the integral makes sense. For ε ą 0, we also consider the ε-truncared version,
defined by

Rεµpxq “

ż

|x´y|ąε

x´ y

|x´ y|n`1
dµpyq.

The maximal Riesz transform of µ is defined by

R˚µpxq “ sup
εą0

|Rεµpxq|.
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11 Rectifiability of harmonic measure

We also consider the maximal radial operator Mn, defined by

Mnµpxq “ sup
rą0

µpBrpxqq

rn
.

For a given function f P L1
locpµq, we denote

Rµfpxq “ Rpf µqpxq, Rε,µfpxq “ Rεpf µqpxq, R˚,µfpxq “ R˚pf µqpxq.

We say that Rµ is bounded in L2pµq if the operators Rε,µ are bounded in L2pµq uniformly
on ε ą 0.
The connection between the Riesz transform and harmonic measure stems from the

fact that the Riesz kernel K equals the gradient of the fundamental solution E modulo a
constant factor. That is,

Kpxq “
x

|x|n`1
“ cn∇Epxq.

Consequently, from the identity (7.2), we deduce

cn∇yGpx, yq “ Kpy ´ xq ´

ż

BΩ
Kpy ´ zq dωxpzq “ Kpy ´ xq ´ Rωxpyq for x R suppωx.

Next we show that it suffices to prove Theorem 11.1 for Wiener regular domains.

Lemma 11.2. To prove Theorem 11.1 we can assume that Ω is Wiener regular.

Proof. Let E Ă BΩ be as in Theorem 11.1. By an exhaustion argument, it suffices to show
that there exists a subset F Ă E with HnpF q ą 0 which is n-rectifiable (see for example
the argument below near (11.2)).
For any ε ą 0, let rΩε Ă Ω be the Wiener regular open set constructed in Proposition 6.36

and Lemma 6.37. For E as above, let Eε “ E X BrΩε, so that by Lemma 6.37,

lim
εÑ0

ωp
rΩε

pEεq “ lim
εÑ0

ωp
rΩε

pEq “ ωp
ΩpEq.

Let ε ą 0 be small enough so that ωp
rΩε

pEεq ą 0. By Lemma 5.28, we have

ωp
rΩε

pAq ď ωp
ΩpAq for any Borel set A Ă BΩ X BrΩε.

So ωp
rΩε

is absolutely continuous with respect to ωp
Ω in BΩXBrΩε. Consequently, there exists

a subset F Ă Eε where ωp
rΩε

are mutually absolutely continuous and both ωp
rΩε

pF q ą 0,

ωp
ΩpF q ą 0. Since F is a subset of E, ωp

rΩε
is also mutually absolutely continuous with

Hn|F and HnpF q ą 0. By Theorem 11.1 applied to the Wiener regular domain rΩε, then
we deduce that F is n-rectifiable, and so we are done.
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11 Rectifiability of harmonic measure

11.2 Rectifiability of harmonic measure when it is absolutely
continuous with respect to surface measure

To prove Theorem 11.1 we will use the following result.

Theorem 11.3. Let µ be a Radon measure in Rn`1 and E Ă suppµ such that 0 ă

HnpEq ă 8 and µ|E is absolutely continuous with respect to Hn|E. If R˚µpxq ă 8 for
µ-a.e. x P E, then µ|E is n-rectifiable.

This theorem follows from the following deep result from [NTV14c]:

Theorem 11.4. Let E Ă suppµ such that 0 ă HnpEq ă 8. Suppose that RHn|E
is

bounded in L2pHn|Eq. Then E is n-rectifiable.

The next result can be proved using a sophisticated Tb theorem of Nazarov, Treil, and
Volberg [NTV14a], [Vol03] in combination with the methods in [Tol00]. For the detailed
proof in the case of the Cauchy transform, see [Tol14, Theorem 8.13].

Theorem 11.5. Let µ be a Radon measure with compact support in Rn`1 and consider a
µ-measurable set G with µpGq ą 0 such that

G Ă tx P Rn`1 : Mnµpxq ă 8 and R˚µpxq ă 8u.

Then there exists a Borel subset G0 Ă G with µpG0q ą 0 such that supxPG0
Mnµ|G0pxq ă 8

and Rµ|G0
is bounded in L2pµ|G0q.

We will prove neither Theorem 11.5 nor Theorem 11.4, since both results are out of
the scope of these notes. Instead, we will outline how one can deduce Theorem 11.3 from
Theorems 11.4 and 11.5.

Proof of Theorem 11.3 using Theorems 11.4 and 11.5. This follows by a standard exhaus-
tion argument. Indeed, let µ and E satisfy the assumptions in Theorem 11.3. We can
assume E to be compact, so that µpEq ă 8. Let

β “ suptµpF q : F Ă E is Borel n-rectifiableu. (11.2)

It is is immediate to check that the supremum is attained, that is, there exists a Borel
n-rectifiable set F Ă E such that µpF q “ β.

We have to check that β “ µpEq. Suppose that this is not the case, and let G “ EzF .
By assumption, we have R˚µpxq ă 8 for µ-a.e. x P G. Also, for x P G, we have

lim sup
rÑ0

µpBrpxqq

rn
ď lim sup

rÑ0

µpBrpxqq

HnpBrpxq X Eq
lim sup

rÑ0

HnpBrpxq X Eq

rn
. (11.3)

The first lim sup on the right hand side is finite µ-a.e. in G because of the absolute
continuity of µ with respect to Hn in E, while the last one is also finite by the classical
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11 Rectifiability of harmonic measure

density bounds for Hausdorff measure. Hence the left hand side is also finite µ-a.e. in G,
or equivalently,

Mnµpxq ă 8 for µ-a.e. x P G.

Then, by Theorem 11.5, there exists a Borel subset G0 Ă G with µpG0q ą 0 such that
Rµ|G0

is bounded in L2pµ|G0q. Denote by ρ the density of µ|G0 with respect to Hn|G0 , so
that µ|G0 “ ρHn|G0 , and let τ ą 0 be such that the set

G0,τ “ tx P G0 : ρpxq ą τu

has postive measure µ. It is immediate to check that RHn|G0,τ
is bounded in L2pHn|G0,τ q,

and thus G0,τ is n-rectifiable, by Theorem 11.4. As a consequence, the set F 1 “ F YG0,τ

is n-rectifiable and µpF 1q ą µpF q “ β, which contradicts the definition of F and β.

To prove Theorem 11.1, recall that Lemma 6.19 asserts the following: If E Ă Rn`1 is
compact and n´ 1 ă s ď n` 1, in the case n ą 1, we have

CappEq Ás,n Hs
8pEq

n´1
s .

In the case n “ 1,

CapLpEq Ás Hs
8pEq

1
s .

Proof of Theorem 11.1. Let Ω, E, and p be as in Theorem 11.1, with Ω Wiener regular,
and write ω instead of ωΩ. We will show that

R˚ω
ppxq ă 8 for ωp-a.e. x P E,

which implies that ωp|E is n-rectifiable, by Theorem 11.3. For simplicity, in this proof
we will assume that all the balls denoted by Bspξq are closed (this is not essential, but
it will ease some calculations because many lemmas in the preceding sections about the
relationship between harmonic measure and the Green function are stated in terms of
closed balls).
By the same argument as in (11.3), it follows that Mnω

ppxq ă 8 for ωp-a.e. x P E. For
k ě 1, let

Ek “ tx P E : Mnω
ppxq ď ku,

so that E “
Ť

kě1Ek, up to a set of ωp-measure zero. For a fixed k ě 1, let x P Ek be a
density point of Ek, and let r0 be small enough so that

ωppBrpxq X Ekq

ωppBrpxqq
ě

1

2
for 0 ă r ď r0,

with r0 ď |x ´ p|{100. Observe that, since ωppBρpzq X Ekq ď kρn for all z P Ek and all
ρ ą 0, by Frostman’s Lemma we have

Hn
8pBrpxq X BΩq ě Hn

8pBrpxq X Ekq ě CpkqωppBrpxq X Ekq ě
Cpkq

2
ωppBrpxqq, (11.4)
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11 Rectifiability of harmonic measure

for 0 ă r ď r0.
To show that R˚ω

ppxq ă 8 for x P Ek as above, clearly it suffices to show that

sup
0ărďr0

|Rrω
ppxq| ă 8. (11.5)

To estimate Rrω
ppxq for 0 ă r ď r0, first we assume that

ωppB40rpxqq ď 50nωppBrpxqq. (11.6)

We consider a radial C8 function φ : Rn`1 Ñ r0, 1s which vanishes in B1p0q and equals 1
on Rn`1zB2p0q, and for r ą 0 and z P Rn`1 we denote φrpzq “ φ

`

z
r

˘

and ψr “ 1 ´ φr.
We set

rRrω
ppxq “

ż

Kpx´ yqφrpx´ yq dωppyq.

Note that

|Rrω
ppxq| ď

ˇ

ˇ

ˇ

ˇ

ż

φrpx´ yqKpx´ yq dωppyq

ˇ

ˇ

ˇ

ˇ

`

ż

ˇ

ˇχ|x´y|ąr ´ φrpx´ yq
ˇ

ˇ

ˇ

ˇKpx´ yq
ˇ

ˇ dωppyq

(11.7)

ď | rRrω
ppxq| ` CMnω

ppxq.

For a fixed x P Ek and z P Rn`1z
“

supppφrpx´ ¨qωpq Y tpu
‰

, consider the function

urpzq “ Epz ´ pq ´

ż

Epz ´ yqφrpx´ yq dωppyq, (11.8)

so that, by Lemma 7.4,

Gpz, pq “ urpzq ´

ż

Epz ´ yqψrpx´ yq dωppyq for m-a.e. z P Rn`1. (11.9)

Differentiating (11.8) with respect to z, we obtain

∇urpzq “ ∇Epz ´ pq ´

ż

∇Epz ´ yqφrpx´ yq dωppyq.

In the particular case z “ x we get

cn∇urpxq “ Kpx´ pq ´ rRrω
ppxq,

and thus

| rRrω
ppxq| À

1

distpp, BΩqn
` |∇urpxq|. (11.10)

Since ur is harmonic in Rn`1z
“

supppφrpx´ ¨qωpq Y tpu
‰

(and so in Brpxq), we have

|∇urpxq| À
1

r
´

ż

Brpxq

|urpzq ´ α| dz, (11.11)
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for any constant α P R, possibly depending on x and r. From the identity (11.9) we deduce
that

|∇urpxq| À
1

r
´

ż

Brpxq

Gpz, pq dz `
1

r
´

ż

Brpxq

ˇ

ˇ

ˇ

ˇ

ż

`

Epz ´ yq ´ α1
˘

ψrpx´ yq dωppyq

ˇ

ˇ

ˇ

ˇ

dz

“: I ` II,

for any constant α1 P R, possibly depending on x and r. To estimate the term II we use
Fubini and the fact that suppψr Ă B2rpxq:

II À
1

rn`2

ż

yPB2rpxq

ż

zPBrpxq

|Epz ´ yq ´ α1| dz dωppyq.

In the case n ě 2 we choose α1 “ 0, and we get

II À
1

rn`2

ż

yPB2rpxq

ż

zPBrpxq

1

|z ´ y|n´1
dz dωppyq À

ωppB2rpxqq

rn
À Mnω

ppxq.

In the case n “ 1 we take α1 “ 1
2π log 1

4r , and then we obtain

II À
1

r3

ż

yPB2rpxq

ż

zPBrpxq

log
4r

|z ´ y|
dz dωppyq

ď
1

r3

ż

yPB2rpxq

ż

zPB3rpyq

log
4r

|z ´ y|
dz dωppyq À

1

r

ż

yPB2rpxq

r2 dωppyq À M1ω
ppxq.

Next we want to show that I Àk 1. Clearly it is enough to prove that

1

r
|Gpy, pq| Àk 1 for all y P Brpxq X Ω (11.12)

(still under the assumptions x P Ek, 0 ă r ď r0{2, and (11.6)). To prove this, observe
that, in the case n ě 2, by Lemma 7.18,

Gpy, pq À
ωppB8rpxqq

CappBrpxqzΩq
for all y P Brpxq X Ω.

Notice now that, by Lemma 6.19 and (11.4), we have

CappBrpxqzΩq Á Hn
8pBrpxq X BΩq

n´1
n Ák ω

ppBrpxqq
n´1
n .

Thus, by (11.6) and the fact that Mnω
ppxq Àk 1,

1

r
Gpy, pq Àk

ωppB8rpxqq

r ωppBrpxqqn´1
n

“

ˆ

ωppB8rpxqq

rn

˙
1
n
ˆ

ωppB8rpxqq

ωppBrpxqq

˙
n´1
n

Àk 1,

which proves (11.12). Almost the same arguments work in the case n “ 1. Indeed, by
Lemma 7.22,

Gpy, pq À ωppB40rpxqq

ˆ

log
r

CapLpBrpxqzΩq

˙2

À ωppB40rpxqq
r

CapLpBrpxqzΩq
for all y P Brpxq X Ω.
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By Lemma 6.19 and (11.4), we have

CapLpBrpxqzΩq Á H1
8pBrpxq X BΩq Ák ω

ppBrpxqq,

and thus, by (11.6),
1

r
Gpy, pq Àk

ωppB40rpxqq

ωppBrpxqq
Àk 1,

which proves again (11.12). So in any case we deduce that

|Rrω
ppxq| ď | rRrω

ppxq| ` CMnω
ppxq Àk

1

distpp, BΩqn
` 1 (11.13)

for x P Ek and 0 ă r ď r0{2 satisfying (11.6).

In the case when (11.6) does not hold, we consider the smallest r1 ą r of the form
r1 “ 40jr, j ą 0, such that either r1 ą r0 or (11.6) holds with r1 replacing r. Let j0 ě 1
be such that r1 “ 40j0r and write

|Rrω
ppxq| ď |Rr1ωppxq| `

ż

ră|x´y|ďr1

|Kpx´ yq| dµpyq ď |Rr1ωppxq| ` C

j0
ÿ

j“1

ωppB40jrpxqq

p40jrqn
.

To estimate the last sum, notice that, for all 1 ď j ď j0 ´ 1,

ωppB40jrpxqq ă 50´nωppB40j`1rpxqq,

and thus, by iterating this estimate,

j0
ÿ

j“1

ωppB40jrpxqq

p40jrqn
ď

j0
ÿ

j“1

50´npj0´jqωppB40j0rpxqq

40pj´j0qn p40j0rqn
À
ωppBr1pxqq

pr1qn
ď Mnω

ppxq.

On the other hand, in case that r1 ă r0, then (11.13) holds (with r replaced by r1), and in
case that r1 ě r0, then we have r1 « r0 and we write

|Rr1ωppxq| À
ωppBΩq

pr1qn
À

1

rn0
.

So in any case we deduce that

|Rrω
ppxq| Àk

1

rn0
`

1

distpp, BΩqn
` 1,

which yields (11.5).
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