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1 Introduction

In these notes we provide a straightforward introduction to the topic of harmonic measure.
This is an area where many advances have been obtained in the last years and we think
that this book can be useful for people interested in this topic.

In the first Chapters 2-6 we have followed classical references such as [Fol95], [Car98],
[GMO5], [Lan72], [AGO1], and [Ran95], as well as some private notes of Jonas Azzam. A
large part of the content of Chapter 7 is based on Kenig’s book [Ken94], and on papers by
Aikawa, Hofmann, Martell, and many others. Chapter 8 is based on a paper by Jerison
and Kenig [JK82]. In Chapter 9, the proof of Jones-Wolff theorem about the dimension
of harmonic measure in the plane follows the presentation of [CVT18]!. In some parts of
Chapter 10 we follow the book of Caffarelli and Salsa [CS05] and some work by Mourgoglou
and the second named author of these notes. Most of the last chapter follows [AHM™16].

We apologize in advance for possible inaccuracies or lack of citation. Anyway, we remark
that this work is still under construction and we plan to add more content as well as more
accurate citations in future versions of these notes.

'"We thank J. Cuff and J. Verdera for allowing us to reproduce a large part of the content from [CVT18].



2 Harmonic functions

2.1 Definition and basic properties

Given an open set Q — R? we say that a real-valued function w is harmonic in € if
ue C%(Q) and

d
Au(x) = Z 6]2u(a:) =0
j=1

for every z € Q (later on we will see that the C? hypothesis can be replaced by just locally
integrable if we consider the distributional Laplacian).
Let 4 denote the area of the unit sphere S%~! < R?, that is,
ors
Kd = =——~

I'(d/2)

see [Fol95, Proposition 0.7] for instance, and do denote the surface measure. Recall that

the volume of the unit ball is then |B1(0)] = % (see [Fol95, Corollary 0.8]). Below, we

denote B, (x) the open ball centered at = with radius r, and S, (x) = 0B, (x).
Throughout the notes, &U fdu stands for the average integral with respect to the

measure [, i.e., ﬁ S fdu.

Lemma 2.1 (Mean value theorem). Let Q  R? be open. If u e C?(Q) is harmonic, then

u(xg) = - )u(y)dy = J[B o w(zo + ry)dy  for every By(zg) c Q c RY. (2.1)
r (0 1

Moreover
u(xy) = J[ u(y)do(y) = J[ w(zo +ry)do(y)  for every B,(xzg)  Q c RY. (2.2)
S»,n(.r()) 51(0)

Proof. Changing variables, we have that

1
Alp) == — u(z)dr = J u(pr + xo)dx.
P JIB,(x0) By
On the other hand, set
Alp) = Vu(px + xo) - xdx

By

(x — d 1
_ f VU(.T) (:U -TO)% _ d+1f Vu(x) . V|x _ $0|2 dz.
B, (x0) p Pe 20970 I, (o)



2 Harmonic functions

Since u satisfies that Au = 0 in 2, we can apply Green’s formula twice to obtain

~ 1 1
A(p) = J |z — 20> Vu(z) - vdx — f Au(z) |z — z0|* dz
2001 ) (o) 2091 | (o)
=
= _— Vu(z) - vdz =0, (2.3)
2pd_1 Sp(z0) ( )

where v stands for the normal vector to the sphere pointing outward.
Since u € C?(R), for every  we have §’ Vu(tz + z¢) -z dt = u(rz + zo) — u(pz + x0) by
the fundamental theorem of calculus. Applying Fubini’s Theorem we get

23) (7 ~ "
0 = L A(t)dt = JBl f Vu(tz + zp) - xdtde = fBl (u(rz + zo) — u(pr + x0)) dx (2.4)

= A(r) — A(p)-
So A(r) = A(p) for all p < r.

On the other hand, taking the mean and using the continuity of u we obtain

< li o(1) =0.
pli%op o(1)

d 1
- = lim ————
uleo) ME%A(ﬂ o0 | B, (x0)]

j (ulo) — u(x)) da
By (o)

To see the coincidence with the average on spheres, note that in polar coordinates we

have
f f (t0)td~Ldt de.
S1(0)

From this formula one can easily show that (2.2) implies (2.1), but we need to prove the
converse. Let us differentiate this expression. We get that

1
0= Ap) = f f (t0)t% T d dp + — f w(pf)p*~d (2.5)
d+1 $1(0 p $1(0)
—d 1
= —A(p) + f u(ph)do.

p P s, (@0
Since u(xp) = H%A(p) by (2.1), we readily get (2.2) multiplying the last expression times
L O

Kd

Remark 2.2. Arguing as above, it follows that if u € C?(12) satisfies Au > 0 in €2, then

weo) < | udy< f uldoty) (2.6
Br(wo) Sr(z0)
whenever B,.(zg) = Q c R?. Indeed, instead of (2.3), we have
~ 1 1
A =J Vua:-ydx—f Au(z) |z — zo|? da
0 =g | ) vde =g [ du@fe
) ) 2
= — Au(z)dr — —— Au(z) |z — zol* dz
201 Js, (o) (e = g By (o) @l |

1 J 2 2
=— Au(z) (p° — |z — x0|*) dx = 0.
de+1 By (z0)



2 Harmonic functions

Then, as in (2.4), we deduce that
A(r)—A(p) =0 ifp<r.

Then, letting p — 0, the first inequality in (2.6) follows.
Further, notice that the preceding discussion shows that A’(p) > 0, and then by (2.5)

it follows that d 1
0< —A(p) + dJ u(pd)do,
P 1Y Sp(zo)

which is equivalent to the last inequality in (2.6).
And the converse is true:

Theorem 2.3 (Converse of the mean value Theorem). Ifu e C(Q) satisfies (2.1) or (2.2),
then uwe C* and it is harmonic.

Proof. Note that we have seen that (2.1) and (2.2) are in fact equivalent. Thus, it suffices
to assume that u satisfies (2.2).

Let ¢ € C*(]0, 1]) be a non-negative function with SSO Y(t)t?1dt = 1. Define ¢.(z) :=
nd15d¢ (%) Then {¢. =1 for every . Next consider the subset Q. := {x € Q: B.(x)

Q}. If x € Q. then we claim that

u(w) = [[uy)oxla ) dy.
Indeed,

ulz) - f u(y)pe(z — y) dy = f(a(ra) —u(y))oe( — y)dy
R0

0 Kqe®

f (u(x) —u(z + ph)) db dp 2.
S51(0)

We can conclude that u is C* in ). and, therefore, in the whole of €.
To get the harmonicity, note that the derivative with respect to r of Ssl(o) u(z+ry)do(y)
is zero by assumption. That is

d d
0=— u(y)do(y) = c— u(x + ry)do(y) = cj oyu(z + ry)do
dr Js,(a) dr Js, o) 51(0)
= CJ[ o,udo = dc_lf Audz.
Sy (x) r By (z)
Since the Laplacian vanishes on every ball, we deduce that it is actually zero everywhere.

O]

In particular, every harmonic C? function is C®. Therefore we can restate the definition
of harmonic function:



2 Harmonic functions

Definition 2.4. We say that a function u : Q — R is harmonic if u € C'(2) and it satisfies
the mean value property (2.1).

As we have seen, every harmonic function satisfies also the mean value property in
spheres, it is C*(2) and Au = 0. This self-improvement property is also true for harmonic
distributions, we will see that later on.

Theorem 2.5 (The maximum principle). Let Q be a domain (i.e. open and connected
set). If u is harmonic and real-valued and A := supgu < o0, then either u(z) < A for
every x € Q or u(x) = A for every z € .

Proof. {x € Q : u(x) = A} is relatively closed by continuity and open by the mean value
theorem. O

Corollary 2.6. Let Q2 be a bounded open set. If u € C() is harmonic and real-valued,
then the supremum and the infimum are attained at the boundary.

Proof. Assume that the supremum is not attained at the boundary. Then, by compactness
it must be attained in the interior. This implies that u is constant in some component
of €, which in turn implies that the supremum is also attained at the boundary of that
component, a contradiction. Also the infimum is attained at the boundary since infqu =
—supgq(—u). O

Theorem 2.7 (Uniqueness theorem). Let Q be a bounded open set. If uy,us € C(Q) are
harmonic in Q, and u1|sq = uszloq, then uilq = uszlq.

Proof. Apply the corollary to ui — us. O

Theorem 2.8 (Liouville’s theorem). Let u be a bounded harmonic function in R™. Then
u s constant.

Proof. Note that for r > 2|x|
d

u(y)dy — J[ u(y)dy f
J[Br(ac) -(0) Kar JB, 0/ (0)\B,_a/(0)

< Uy 1Br ot ONB e O falluly oo
Kd r r

<

S

u(z) = u(0)| = |u(y)ldy

2.2 The Caccioppoli inequality

We have shown that every harmonic function v € C(2) is C*(Q2). Next we turn our
attention to weakly harmonic functions.



2 Harmonic functions

Definition 2.9. Given an open set Q ¢ R%, we say that u € VVli)Cz(Q) is weakly harmonic
if every test function ¢ € CF () satisfies that

(Au, @) = —(Vu,Vg) = 0. (2.7)
We say that u € D'(2) is distributionally harmonic if, instead, test functions satisfy

(Au, ) := (u, Ap) = 0. (2.8)

Arguing by density, if u is weakly harmonic then equation (2.7) is verified also for every
pE 1% 2(Q) Note that every harmonic function is weakly harmonic, and every weakly
harmonic function is distributionally harmonic, but the converse has not been established
yet (see Proposition 2.19 below).

Lemma 2.10 (Caccioppoli Inequality). Let Q = R? be an open set, and let u be weakly
harmonic in Q. Then for every ball B < Q) of radius v we have

4
f Vul? < Zf 2,
B (rt)? Ji+1)B\B

where rt < dist(B, 09)

Proof. Let n be a Lipschitz function such that xp < 7 < Xx(4+1)p and with [Vn| < %
Since u is weakly harmonic and 7 is compactly supported in €2, we have that

0= J Vu - V(un?).
(t+1)B

By the Leibniz rule, the former identity can be written as

J 7| Vul? = —f 2unVu - Vn,
(t+1)B (t+1)B

and using Holder’s inequality we get
1
2
(J n2|Vu!2> :
(t+1)B

j 2IVaf? < ( j 4u21vm2)
(t+1)B (t+1)B
4

J |Vul|? < J n*|Vul* < J 4u?|Vn|* <
B (t+1)B (t+1)B (rt)

=

Thus,
2

j 2.
(t+1)B\B

V)

d

The Caccioppoli inequality is also valid for subharmonic functions, see Section 5.1. This
inequality implies the universal control for the gradient in terms of the distance to the
boundary and the L* norm of u:
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Lemma 2.11. Let Q < R? be an open set, and let u be harmonic in Q. Then

[l 0

Va(e)| s~

(2.9)

where dg(z) := dist(z, 09).

Proof. Since the derivatives of u are harmonic, by the mean value theorem and the Cac-
cioppoli inequality

Vu(z)| = ]fBl

2

N

Vudm| < J[ |Vul|? dm
B )(x)

dgy () (P) dg e

1

< 43[ udm) € ——Jul
< (%dQ(I))Q Bdﬂ(z)(x) ~ dg(az) L*(Q)

as claimed. 0

By iterating the estimate in Lemma 2.10, we immediately obtain the following.

Lemma 2.12. Let u be a harmonic function in B1(0). Then, for all k > 1,

lullcr (B, (0)) < C ) |l L (B, 0)) -
Then we deduce the following generalization of Liouville’s theorem.

Proposition 2.13. Let v > 0 and let u be harmonic in R? such that |u(z)| < C(1 + |z|)Y
for all x € RY. Then u is a polynomial of degree at most |7|.

Proof. For r > 0, consider the function u,(z) = u(rz). Since u, is harmonic, for any
k > 1, by Lemma 2.12 we have

1 C(k
D T o PRl oL T B

C(k C'kY +r)Y
= T(k) |ull oo (B, 0)) < ()(rk)

For k = |y|+1, the term on the right hand side tends to 0 as 7 — 00, and thus D*u vanishes
identically in R%. Consequently, u is a polynomial of degree at most k — 1 = |v]. ]

Lemma 2.14. Fvery sequence of uniformly bounded harmonic functions in an open set )
is locally equicontinuous, it has a converging partial subsequence, and the limit is harmonic
as well.

Proof. Let {up}, with Auy, =0 in Q and [uy| =) < C < .

By assumption u,, is a sequence of uniformly bounded and, by Lemma 2.11, uniformly
locally equicontinuous functions. By the Ascoli-Arzeld theorem, u, has a partial converg-
ing uniformly in every compact subset of €.

To see that the limit is also harmonic just apply the converse to the mean value theorem
(see Theorem 2.3) to the limiting function. O
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2.3 Harnack’s inequality

Lemma 2.15 (Harnack’s inequality). Let B be a ball and let u = 0 be a harmonic function
in 2B. Then

supu < Cinf u.
B B

Proof. Set B = B(xg,r). To prove the lemma it suffices to show that, for all y,z € B,
u(y) < u(z), with the implicit constant depending only on d. Suppose first that |y — z| <
r/4. Then we have B(y,r/4) < B(z,7/2) cc 2B, and so we have, by the mean value

property,
u(y) = J[ udr < J[ udxr = u(z).
B(y,r/4) B(z,r/2)

In the case when |y — z| > r/4, we partition the segment [y, z] into eight segments I;
with equal length and disjoint interiors. So we write

v, 21 = U [vi vl
0<j<7

and we assume that y = yo, 2 = yg. Since the length of [y, z] is at most diam(B) = 2r, it
holds |y; —y;+1| < r/4 for each j. By the previous estimate, then we have u(y;) < u(yj+1)
for each j. Thus,

u(y) = u(yo) S uly1) <+ < u(ys) = u(z).
OJ

Note that by modifying the argument above we can get that for every ¢ > 0 there exists
an optimal constant €(t) so that every harmonic function u > 0 in (1 + ¢)B satisfies

supu < (14 &(t)) inf u.
B B

The reader can prove that € is non-increasing and &(t) 129, 5. But the interesting asymp-
totic behavior is for ¢ — oco:
Lemma 2.16 (Asymptotic Harnack inequality). There exists a nonnegative function

e(t) 2%, 0 so that every harmonic function u > 0 in (1 +t)B satisfies that

supu < (14 ¢(t)) infu.
B B

Proof. The proof follows by an argument very similar to the one in the preceding lemma.
Indeed, assume t > 8, say, and consider arbitrary points x,z € B. Furthermore, assume
without loss of generality that r(B) = 1. Then we have B(z,t/2) ¢ B(z,2+1t/2) c (1+t)B
and so

1

() dy < — 1 J d
u(r) = ——— udy < ——— udy
|B(2,t/2)| JB(a/2) |B(2,t/2)| JB(z,2+¢/2)
_|B(2,2 +1/2)] (4!
= By ) e
So we may choose €(t) = (%)d -1 O
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Lemma 2.17. Let Q c R? be a domain and let z,y € Q. Then there is a constant Cry >0
depending just on x, y, and 2 such that for any positive harmonic function u in §2, it holds

C’;; u(z) < u(y) < Cpyuly).

Remark that the important fact about the estimate above is that the constant C , does
not depend on the particular function .

Proof. Let v < ) be a compact curve contained in 2 whose end points are x and y, and
let § = dist(y, 092). By the compactness of v, there is a finite covering of v by open balls
B;,i=1,...,m, centered in v with rad(B;) = 6/2 (with m depending on €2 and 7).

We reorder the balls B; as follows. Suppose that x € By without loss of generality. If
m > 2, because of the connectivity of -, there exists another ball B;, call it Bs, such that
By n By # @. Next, if m = 3, by the connectivity of + again, there exists another ball,
call it Bs, such that (B u Bz2) n B3 # &, and so on. Denote Uy = (J, ;<) Bi, so that
Uy =Ug_1 U By, U1 n By # &, and v < Up,.

Given u harmonic and positive in €2, by Harnack’s inequality u(z) ~ u(z’) for all z, 2’ €
B; (since 2B; < Q). Then, by induction it follows easily that u(z) ~ u(z’) for all z, 2’ € Uy
(with the implicit constant depending on k), for k£ = 1,...,m. In particular, u(z) ~,,
u(y). O

2.4 The fundamental solution

To conclude this chapter, we will see that every harmonic distribution (see Definition
2.9) is in fact a C* function. This is a quite general fact for elliptic partial differential
equations with C® fundamental solutions, see [Fol95, Theorem 1.58] for the details.

Let us define

|$‘2—d )
L g > 2
d—2rg 077
E(z) = (2.10)
—loglrl ey o
2

Note that, since ko = 27, for every n > 1 its gradient is

—X

VE(x) = (2.11)

Kglz|d

Proposition 2.18. The fundamental solution of (—A) in RY is precisely £, i.e. —AE is
the Dirac delta distribution dg.

The preceding proposition must be understood in the sense that for every test function
¢ € D(RY) := C*(R?), we have

p(0) =: (00, p) = (AL, ) = —(&, Ap).
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Proof of Proposition 2.18. Consider ¢ > 0 and let v be the normal vector to S, pointing
towards the origin. For ¢ € CF we have

—(&,Ap) = JVS V. (2.12)

Indeed,

5A¢+JV€~V@

‘—<E,A90>— JVE : V@‘ = U EAp +
B Be

<

EAC,D‘ +

VE-VQO—JVE}V@

+ U EVyp- v
B. Se

< 180l €l + \ [ ve w\ 18] IV e

B

For d = 2, using (2.10) we have €] ,1 (5, ~ §o | log r|dr % 0 and I€]l L0 (s,) = clloge].
In case d > 2, then using (2.10) we have [|€] ;1 (g ) ~ §o rdr 2% 0 and 1€] oo (s.) = ce4,

All in all, letting e — 0 we get (2.12).
Moreover,

2.12
| =&, Ap) —p(0)] = VE -Veo+ | VE-Vo—¢(0)

B. B¢

fvan—ﬂm}:

+ A€y

Be¢

< IVl | ol || vEvo—0)

Now, {5 2| &~ € 9% 0, and AE =0 in B¢. Moreover, for y € S. we get

_ Yy -y 1 B 1
VEW) ) = T Tl T et o(S°

Thus,

0
€— 0’

| =&, Ap) —p(0)] <

J[Sg ¢ —¢(0)

as claimed by the continuity of ¢ at the origin.

The preceding proposition implies that for every test function ¢ € D(2), we have

—A(E xp)(x) = p(x). (2.13)

Note that £ x ¢ € C* because € € L] .
In fact we obtain the following:

10
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Proposition 2.19. Let u be a harmonic distribution in an open set Q. Then u e C*(Q).
Remark that a distribution is called harmonic if it is distributionally harmonic.

Proof. Given a distibution T" with compact support contained in a bounded open set V,
for every ¢ € CX(R™) we can define

E =T, p):= (T, Y(E*(p-))-),

where 1 is any cuttof function ¢ € CF with Xxeuppr < ¥ < xv, and f_(x) = f(—z).
This definition does not depend on the particular choice of v, because the test function
in the right-hand side will not vary in the support of T. Moreover, we claim that this
distribution is in fact C'* out of the support of T'. Indeed, for any test function ¢ with
suppp N supp? = &, one can consider € := dist(suppyp, suppT’), and given a C* function
¢ such that xp_, < ¢ < XB,,, one can infer that (€ * T, o) = (((1 — ¢)€) = T, ). The
latter can be shown to be a C* distribution arguing as in the proof of [Gra08, Theorem
2.3.20].

When u is a distribution in an open set € such that Au = 0, given a ball B < Q) we
can define a cut-off function ¢ € C* such that X1p < Yp < xp. Then A(¢pu) is a

distribution supported in B\ B and therefore & * (A(ypu)) is a well-defined distribution.
Given ¢ € D(Q) := CF (), assuming if necessary that ¥pVi = 0, we have

(Ex(~AWpu)), @) = (~AWpu)), B(Ex(p-))—) = Wpu, —AE*(p-)-) "= (pu, ),

ie. £ (—A(¢¥pu)) = ¥pu in the distributional sense. Since the former is in fact C* out
of the support of A(¢¥gu), we conclude in particular that in %B , the function u = ¢ pu is
Cc®. O

The approach above can be slightly modified in order to obtain the hypoellipticity of
the laplacian:

Theorem 2.20 ([Fol95, Theorem 1.58]). The laplacian A is hypoelliptic, i.e., if u is a
distribution on a bounded open set Q0 such that Au e C*(Q) then ue C*(Q).

d

. for every p < 4.

loc

Remark 2.21. Note that £ € P

loc

for every p < d%dzv and VE € L
The integrability at infinity is obtained for p > d%‘lQ, and p > d%'ll respectively.
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3 The Dirichlet Problem

3.1 The weak formulation

Consider the problem of finding a solution v € C?(2) n C(f) in an open set Q = R? to

the Dirichlet problem with boundary data f e C'(09):
Au=0 inQ

{ u =0 in €, (3.1)

u=f  on o).

To obtain a general theory of existence and uniqueness, we can work in Sobolev spaces
with only one derivative, and this requires a weak formulation of the Dirichlet problem.
Assume that u e C1(Q), and let ¢ € C(Q2). Then Green’s theorem implies that

Ozf(pAUz—fVu'Vgo—l—J @Vu-ydaz—jVu'Vgo. (3.2)
Q Q o0 Q

Equation (3.2) provides us with a weak formulation of Au = 0. But how can we encode
the boundary behavior? Set

HY Q) := Wh(Q) := {f e L*(Q) : 0;f € L*(Q) for 1 <i <n+1},

and we define .
HL(Q) = co(y" @

[

and the quotient space
HY2(0Q) := HY(Q)/H ()

(see [Sch02, Theorem 3.13], for instance). Given f € H(Q), its class in H/2(0Q) is often
called “the trace of f”. Now, in a bounded open set Q, if u = f in 0Q and u, f € C%(Q),
then one can show that u — f € Hg (). Moreover, the identity (3.2) can be extended by
density to p € H}(Q).

All in all, in an open set €, we say that u € H'(Q2) is a (weak) solution to the Dirichlet
problem (3.1) if

J Vu-Ve =0 forevery p € H}(2), and
Q
f—ue HHQ).

(3.3)

Note that if u e C%(Q) n H(Q) is a weak solution (3.3), then it is also a solution to (3.1)
for f regular enough.

12



3 The Dirichlet Problem
Let us write v := u — f. Solving (3.3) is equivalent to finding v € HZ(Q) solving

J Vv -V = j Vf -V forevery ¢ € H}(Q), (3.4)
Q Q

which in the strong formulation reads as

Av=Af in Q,
v=20 on 0S).

Proposition 3.1. Let Q  R? be open and let u € H&(Q) be a harmonic function. Then
it is the null function.

Proof. There exist C® functions 1); such that ; — u in H'. Note that

JVUM'V% = fV%'V(U—%’) +fwi-Vu.

But the last integral is null because u is harmonic. Thus, using the Cauchy-Schwartz
inequality we get
IVilze < IVl 120V (w = )] 12,
i.e.
Vil gz < IV (u = 4i) 2
Taking limits,
IVull o = lim [Vehi 1> < lim [V(u—1p3)] 2 = 0.
1—0 1—0

Thus, u is constant and has trace 0, so it is the null function. O

Remark 3.2. Note that the preceding result does not apply to log|z| in the complement
of Bj, since it does not have trace 0 according to the definitions, neither to x4 in Ri.
Indeed, C° functions cannot approach in L? norm a function which does not belong to
L?. The condition u € H*() is not satisfied in this case.

Theorem 3.3 (Riesz representation theorem for Hilbert spaces, see [Sch02, Theorem
2.1]). Let H be a Hilbert space with inner product (-,-), and let H* be its dual. Then for
each u* € H* there exists a unique uw € H such that

u*, vy = (u,v).

Corollary 3.4. Let Q be open and let f € H%(GQ) If the Dirichlet problem (3.1) has a
solution v € HY(Q), then this is unique and moreover u € C®(Q). If Q is bounded, then
the solution exists.

Proof. The uniqueness of the solution comes from Proposition 3.1 and the smoothness
from hypoellipticity (see Section 2.4).

13



3 The Dirichlet Problem

Suppose now that €2 is bounded. Then |Vv|12(q) is a norm for the functions v € Hj(Q2)
(because of the Poincaré inequality) and the associated scalar product equals

(v,0) = va Vo forall v,p e HY Q).
Let F denote a representative of f in H'. Consider the linear functional
f VF -V for every p e HY(Q).
Q

By the Riesz representation theorem, there exists a unique v € HE(2) solving (3.4). Note
that v does not depend on the particular choice of F. Indeed, let Fy, Fb € H(Q) with
hN—-Ke H&(Q), and let vy, vg be the solutions to (3.4) with functions F;, F5 respectively.
Then

fV(vl—vg)-V@=—JQVf-Vg0+fQVf-Vg0=0.

Thus, v; — v is weakly harmonic. Moreover, v{ — v has trace 0. By Proposition 3.1 it is
the null function.
Let u:= v + F. Then u solves (3.3). O

3.2 The Green function

Let © < R? be a bounded open set, let « € 2, and define the fundamental solution (to
—A) with pole at x as

E8(y) = &z —y),
see (2.10). Note that £2 = £. The equation

Av =0 in Q
{ v in €, (3.5)

v=—E"() on dd

has a unique weak solution v* € H'(Q)) by Corollary 3.4. Then we define the Green
function with pole at x as

G*(y) == v"(y) + €% (y)- (3.6)

The thoughtful reader may notice that £% is not an H! function, but this can be fixed by
multiplying £ times 13, which is defined to be a C* function vanishing in a neighborhood
of z such that 93, = 1 in a neighborhood of €2, i.e., v* is the weak solution to

Av =20 in Q,
v =—YInET on €.

14



3 The Dirichlet Problem

Definition 3.5. Given x € €, define dg(x) := dist(x, ) and call U, := B%dﬂ(x)(:n).
Then, since U, n 02 = @, we can find a compact set K, and open sets Vj, Vx such that

NcV,cV,c K, U, and a bump function Pia € C*(R?) satisfying

Xve < Y30 < Xy, - (3.7)

T

Note that for every ¢ € C(Q2) one has

fVG’”(y) Vo(y)dy = JW”(:L/) -Vo(y) dy + JVEz(y) -Vo(y) dy

=0+ jvs(z) -V.po(x + 2)dz o(z). (3.8)

That is AG* = —§, as a distribution in D’(Q2), with “vanishing” boundary values, i.e.,
with ¢3,G* € H}(2) (see (3.7) above and Remark 2.21), so we say that G* is the weak
solution to

(3.9)

—AG* =6, in Q,
G*=0 on 0f2.

For any given ¢ € CX(Q2), we can write

p(z) = jﬂ Vi(z) VG (2)

by (3.8). We want to apply this identity to G*(y), but it is not a test function.

Lemma 3.6. Let Q < R be a bounded open set. Then
G*(y) = f VG* - VGY dm,
Q

whenever x,y € §) are different points. In particular,
G*(y) = G¥(x).

In other words, the Green function is symmetric and, therefore, it is harmonic also with
respect to x. As a consequence, v*(y) = v¥(x) and it is harmonic with respect to = € Q
as well. Note that for the lemma to make sense, we need that VG® - VGY € L}(Q). A

1’L 17L ) .
priori one may think that £2 € W " (R?) implies G® € W' (RY), and this fact is not
enough to grant integrability of VG* - VGY. However, both terms are C* away from the
pole, and since x # y, then integrability comes from the local boundedness of the Green

function away from the pole together with the integrability of the singularity.

Proof of Lemma 3.6. In order to apply (3.8), we need to substitute the Green function by
a suitable test function approximating it. Let v := wggwgg, and consider

G* = (1 —)G" + ¥G™. (3.10)

15



3 The Dirichlet Problem

Let U := (V, U XN/y)\QC (see Definition 3.5) so that supp(y)) n Q = U. Since ¥G* € H}(U),
there exists {pg}ren € CF(U) so that

k—o0 T

oA G, (3.11)
which allows us to approximate the last term in (3.10). On the other hand, let n €
C*(R) such that x(91/2) < 17 < X(0,1) and write nx(2) := n(k|r — z[), which allows us to
approximate the Green function around the pole (1 —)G* in (3.10) by (1 —nx — ¢)G".

Next, we define
fu(2) = (1= me(2) = ¥(2))G*(2) + or(2),

which is in C(Q) for k large enough. Note that subtracting 7 skips the pole & where
the Green function is not C*, and subtracting ¢ skips the boundary, while the values of
G® are substituted by the approximation pg. Since ¥(y) = ¢r(y) = me(y) = 0, for k
large enough

G (y) = fuly) 2 f V- VG dm
Q
—f VG’“"-VGydm+J V(fi — G) - VG dm. (3.12)
Q Q

The lemma, follows if we prove that

J V(fi — G%) - VGY dm| £25 0 (3.13)
Q
Indeed,
G* — fr = (nk + ¥)G* — ¢x,
and

V(G* = fi) = ViRG* + i, VG + V(YG* — ).

Since y ¢ suppV (G* — fi), VGY stays bounded in the integral (3.13). For z € U cc R4\ {z}
also G* and VG* stay bounded. Therefore we only need to show that

- jU VWG — p)] E25 0,

and
= [Vi(2)G" (2) + m(2) VG ()] =2 0.
By i (x)
By the Cauchy-Schwartz inequality, since |U| < 00, using (3.11) we get the integrability
of the first term:
< |UIEIVG" = i), =5 0.

Finally, for d > 3 and k large enough, we can neglect the v* term and bound the last

term by

1 1 po
Sf ko — 2 o — 2 < kg + - 2250,
By i () k k

16



3 The Dirichlet Problem

proving (3.13). When d = 2 the limit is also O:

1 1 1 .o
[ ogte =i o =217t g (<ot + 5 ) + 3 =0
By (@) k 2

Consider f e CF(Q2). Then define

o(z) = f G* () f(y) dy = —f » E(x) - f o (4) () dy.
Q Q

Since v* is harmonic, Av = f in Q. Moreover, if G* is continuous up to the boundary,
then G*(y) vanishes for x € 0. So v is the natural candidate to be the solution to the
Dirichlet problem

{Av = f in Q, (3.14)

v=20 on 0f2.

Assuming regularity on 0€2, we can define the Poisson kernel
P*(¢) == —0,G*(€) for every x € Q, £ € 09).

If w e C(Q2) is harmonic in 2, then we can write formally
u(w) = [ul(2)au(c) - fﬂ(u(z)(—m%z)) + Au(2)G7(2))
- L (U067 + 2O GC)de

If G vanishes continuously in the boundary, we get that

u(z) = L QPO

Therefore, we expect that the Dirichlet problem (3.1) may be solved by integrating the
boundary values times the Poisson kernel for regular enough domains. Harmonic measure
will be a generalization of the Poisson kernel to more rough domains.

3.3 Limitations of the weak formulation

The weak solution to the Dirichlet problem exposed above is only half-satisfactory. We
get existence and uniqueness for every domain, but it is not quite clear what does it mean
to have 0 trace. In practical applications of (3.1) we would like to prescribe boundary
values f only in the boundary of the domain, and not in a neighborhood of it. Moreover,
one should expect that in case f is continuous, then the solution u is continuous up to the
boundary, with u|sn = f. However, the weak solutions above may not be continuous up
to the boundary.

17



3 The Dirichlet Problem

Example 3.7. Let Q = B;\{0} c R? with d > 3, and take f = 0 in 0B;(0) and £(0) = 1.
A natural candidate to “represent” f in H'(f2) is the function F(x) = 1 — |z|xp, is in

H'(Q). Let us see that its class in H}(f2) coincides with the class of G(z) = 0, i.e., let’s
1
show that F — G = Fe c2(Q) .
Let n € C*(R) such that X(_c1/2) < 17 < X(—e0,1)- Then let p.(x) = n(e~tz|) and let
Ye(x) = n(e " (Jz| — 1 +¢)), and consider h. := 1. (1 — ) F € C*(£2). Then we have that
F=h.in B U (By_.\B.)

1 50
IF = hely = (1T =¥ (1 = ) (1 = [z[xB,) |5 < (|Bi\(Bi— v Be[)2 — 0.
On the other hand, since
Vel + Vel < e7H 0] 5

and using that the support of F'— h. is contained in By\Bj_. U B, using the product rule
we deduce that

IV(E = he)lly = VI = 9e(1 = @) (1 = |zlxB) 2 (8,\8,_.0B.)

1
e—0

< (vawsﬂé(&\&_s) + HVSOEH%Q(BE)) ‘4 IVUzlxB ) 20\By-.oBy) — 0

1
We have seen that F' € CgO(Q)H )

solution to the Dirichlet problem

and therefore F' = 0 in H}(Q2). Thus, the weak

(3.15)

Au=0 in ,
u=F on d

isu=0.

The example above is related to the fact that a point has capacity zero in R? for every
d = 2, see Chapter 6. We will see in further chapters that, in fact, there exists no harmonic
function v in Q = B1\{0} = R? such that lim, ,ou(z) = 1 for d > 2.

Further, is there a one-to-one relation between H %(89) and some class of functions
defined in 0Q2? If the boundary of the domain is regular enough (existence of local bi-

lipschitz, C'' parameterizations should suffice, for instance), then the traces H %%(89) of

W1+&2 coincide with the Besov space B;/g +6(6Q), with an appropriate definition using

partitions of the unity and local parameterizations, see [Tri83, Section 3.3.3], for instance.

3.4 Solvability of the Dirichlet problem for continuous functions:
the case of the unit ball

Definition 3.8. We say that the Dirichlet problem (3.1) in an open set § is solvable for

continuous functions if there exists a function uy € C(Q) for every f e C(0N2) such that
Au=01in Q and u(y) = f(y) for y € 0N.

18



3 The Dirichlet Problem

Note that such a solution would be unique by the Uniqueness Theorem 2.7.

Next we will study the sovability of the Dirichlet problem for continuous functions in
the case 2 is the unit ball. First we will need to introduce the Green function in the unit
ball, which has a nice algebraic expression.

Lemma 3.9. Let z,y € R\N{0}. Then

x y
— — lzly| = |lyle — |
] [yl

Proof. Let t e R, t > 0. Then
x 2 |xf?
——ty‘ =t—2—2w-y+t2\y|2.

Evaluating for ¢ = |z| and for ¢ = |y|~! we reach the same expression. O

Define

o (y) = —S(ﬁ—\x]y) ifx #0,
YT —g(en) if e = 0.

Note that for [£| = 1, © # 0 we get that
so v¥(§) = —&(xz — &). The same happens when = = 0 because the fundamental solution
depends only on the modulus. Moreover, for fixed x € B1, v* has no singularity in Bi,
given that

% - |ZL‘|§‘ = |x — ¢ from the previous lemma,

’%—\wlyﬂ) - y=# — y ¢ DB

Therefore v* € C1(By) = H'(2) and Av® = 0 in By. So the Green function (3.6) in the
unit ball is
. Elx—y)—E(g —lzly) ifz#0,
G*(y) = & .
E(—y) —E(er) ifx=0.
Note that G*(y) = GY(x) by Lemma 3.9.
Now we can compute the Poisson kernel: for x =0, |¢| =1, it is

O(e) = ¢ A S
e G R T
and for x # 0, || = 1 we get
0,6*(©) = €9, (8o -~ (5~ lely) ) e
2.11 x—& |§%| — [a[¢ 2]
-5 _cld d
Kalz —§| K I%I_‘:UK’

:3.95.<x—5—(x—|wr2£)):W P =1 a1

kalr — €| kalr — €| kglz—€*
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3 The Dirichlet Problem

Summing up, for x € By and [£] = 1 we get

1— |z
ka |z — €|

Theorem 3.10. Let f € L'(0B;) and define

P(&) = (3.16)

uf(x) = LB P*(Q)f(¢)do(C) for x € By.

Then w is harmonic on By. If f is continuous, then uy € C(By), with uf|op, = f. If
f e LP(0By), then ug(r-) — f in LP(0By) as r — 1.

Proof. The function uy is well defined because the Poisson kernel is bounded for z fixed.
Since G' is harmonic on x, P is also harmonic on x and so is uy.
We claim that for every x € 0By, P* do is a probability measure, i.e.,

f P®do = 1. (3.17)
0B1

Indeed, for x = 0 it is trivial. By (3.16), the mean value theorem and Lemma 3.9 we get

L po <;|> 22 Jf plele <§|> do(g) 29 Jfo (&) do(€),
as claimed.

If f is continuous and £ € 0By, then

70 - w0l X[ PO - 500 a0 0)
<[ JPolif© - 1©0lde© + | |PEo|Ir© - £0)] do(0
I¢—¢|<d [¢—€>0
3.17
< swp |f(© - SO+ 21fl, sup [P
|c—€|<d |¢—¢]>0

The first term in the right-hand side of the last estimate can be made arbitrarily small
by fixing ¢ small enough, and then the second term can also be made small by choosing
r close enough to 1. Choices can be made independently of £&. This shows that wz(r-)
converges uniformly to us, and this implies global continuity.

If f € LP(0By), then we can use the density of C* on L? to find a function f. € C*(0By)
with |[f = fell o am,) < €. Now,

If - Uf(r')HLp(aBl) <|f- f€HLP(6Bl) + | fe = ufs(r‘)HLp(aBl) + Hufe(r') - uf(r')HLp(aBI)'

Choosing € small enough and r close enough to 1, the two first terms can be made arbi-
trarily small.
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3 The Dirichlet Problem

Regarding the last one, we claim that |[ug. (r) = us(r)|poop,) < Ife = flir@ep,)- In-
deed, for p = 1 we have

|mﬂr>uqﬁmsstPL&zﬂ%ouxO|mﬂoda@><|muumixL&zﬂ%0da@»
Note that the mean value theorem
| Pedote) =m0 = 1
0B1

0 g — ug is bounded in L'(0B;) with norm 1. On the other hand,

() omy < 50 [ PEO19(O] do(O) < lallo sup | PrEQ)dotc) 2 gl
66631 6B1 fEaBl aBl

By interpolation we get that f +— u¢(r-) is a bounded operator in LP(0B;) with norm 1.
This fact proves the claim and, therefore, the LP convergence follows. O

Remark 3.11. For the ball B, (0), with » > 0, we have a similar result. In this case the
Poisson kernel for B,(0) equals

T _ 7’2 — ’$|2

B(o)(§) = ——————3-
© RqT |z — ﬂd

Then the same result as in Theorem 3.10 holds for f € L'(0B,(0)), with P*(¢) replaced

by Pg (0)(§ ). That is, the function

up(x) := f Pg (0)(€) do(C) for z € B,(0),
2B, (0)

solves the Dirichlet problem with boundary data f in B,(0) when f is continuous. Also,
for f e LP(0B,(0)), we have that us(r-) — f in LP(0B,(0)) as r — 1.

3.5 Double layer potential: exploiting the jump formulas

When a domain € has bounded and smooth boundary, say 092 € C'*¢, then a usual way to
solve the Dirichlet problem (3.1) for continuous functions is via the double layer potential.
We will not prove here the results, but we will sketch the main ideas, which can be found
for instance in [Fol95, Chapter 3].

Consider the gradient of the fundamental solution

T (l‘—y)
VEW T
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3 The Dirichlet Problem

which is the kernel of the so-called Riesz transform of homogeneity 1 — d. In particular,
the normal derivative of £ in the boundary of €2,

(z —¢)-v()

Hd|95—<\d

K*(C) := 0,€%(C) = v(C) - VE¥(() =

for ¢ € 00 and z € RA\{¢} is well defined whenever 0Q has C' parameterizations. Then
for every g € C(09) and every z € R\ 09, we can consider the double layer potential

Dg(z) := |  K*(()g(¢)da(C),
o2
which is harmonic in (0€2)°.
The double layer potential is not well defined a priori in the boundary of the domain,
but it makes sense to define its principal value for £ € 0f) as

Te@)© =¥y © =iy | K (Qa(C)do(©) (31)

This pointwise definition does not coincide with the (non-tangential) limit of the double
layer potential,
D :=n.t. lim Dg(z) = lim Dg(x),
9(¢) lim Dy(ax) R S g(x)
where dg(z) = dist(x, 0S2). However, they are related by the so-called jump formula:
1
Dg(€) = 59(6) + Tk (9)(),

which is a consequence of the identities

1 if r e Q,
JKJ”(C) do(¢) =< 1/2 if z € 09, understood as a principal value,
0 if z e Q°.

When the boundary has parameterizations in C'*¢, the normal vector becomes Holder
continuous and the singularity of K? is of homogeneity below d — 1, and it is therefore
integrable with respect to the surface measure, so we can omit the principal value in (3.18).
Then the kernel K* becomes somewhat smoothing in this case, in the sense that Tk maps
L*(0Q) to C(09) for instance, and it is compact in L?(0Q), and the operator 3 I +T is
Fredholm in L?(0€2). Moreover, if (1 1+Tx)(g) € C(2) with g € L2(99), then g € C(09).

In fact, if Q is simply connected and C'*¢, then %I+TK happens to be invertible in
L?(0%2). Thus, given f € C(f2), one can find a unique solution to the Dirichlet problem
by finding the unique solution to the equation f = (%I+TK)(9). Then u := D(g), i.e.
u=D(31+Tk)"!(f) satisfies (3.1) in the sense that

{Au - 0 in €, (3.19)
n.t. lim, ¢ u(z) = f(§) on 0.

22



3 The Dirichlet Problem

If © is multiply connected, some modifications related to the connectivity of the com-
plement need to be done in order to find an inverse operator in a suitable function space.

The Dirichlet problem in the unbounded component can also be solved in this way, and
assuming a priori that the solution uy satisfies that uf(z) = Oz—oo(|2[>7¢) one can get
also uniqueness.
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4 Basic results from measure theory

4.1 Measures

Following [Mat95], we will define a measure on a set X as a function on the parts of X,
regardless of the o-algebra of measurable sets. This is often called exterior measure in
some references, but it is quite elementary to define the o-algebra of measurable sets once
the (exterior) measure is given. Conversely, every countably additive non-negative set
function on a o-algebra of subsets of X can be extended to every set, see [Mat95]. Let us
assume that X is a metric space.

Definition 4.1. We say that u: {A: A < X} — R is a measure if
L p() =0,
2. p(A) < p(B) whenever A ¢ B < X and
3. 1 (U2 4i) <232, 1(Ay), whenever A; © X for every 1 < i < 0.
We say that A c X is y-measurable if
p(E) = w(E n A) + p(E\A) for every E c X.

Definition 4.2. Given a set X, we say that a collection ¥ of subsets of X is a o-algebra
whenever Y is closed under complement, countable unions, and countable intersections.
When X is a topological space, we define the collection of Borel sets of X as the minimal
o-algebra containing all the open sets in the topology.

Lemma 4.3. The measurable sets form a o-algebra. If {A;}? is a collection of -
measurable and pairwise disjoint sets, then

M<UA> = Yut4) (4.1)

If B; /' B, i.e., if Byc By --- and B = J; B;, then p(B) = lim; u(B;).
If C; \\ C, e, if Ci 2 Cy -+ and C = (), C;, and moreover u(C1) < 4+, then
p(C) = lim; p(C;).

Definition 4.4. Let p be a measure on a metric space X.
1. p is a Borel measure if all Borel sets are u-measurable.

2. p is a Radon measure if it is Borel,
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4 Basic results from measure theory

a) u(K) < o for every compact set K < X,
b) u(V) =sup{u(K): K c V is compact} for every open set V < X,
c) p(A) =inf{u(V):V o Ais open} for every set A c X.

3. In those cases, if the metric space is separable we say that suppu := F.
F=F: u(F¢)=0
4.2 Integration

Let u be a measure in R, We say that ¢ : R? — R is a simple function whenever there
exist a finite number of py-measurable sets {A; }éV: 1 and coefficients {a; }j\f: 1 © R such that

N
d) = Z anAj'
j=1

We can define its integral by
N
faﬁdu =" aju(A;)
j=1

The set of simple functions is denoted by &,,. Note that for ¢ € S,,, the decomposition de-
scribed above is not unique, but its choice does not change the value of the integral. Given
a non-negative measurable function f : R? — R (i.e., a function such that f~!(r, +o0) is
measurable for every r € R), we define its integral

deu = sup{fgbdu: peS With0<¢><f}.
Integration in measurable subsets is defined as

LfmﬁjfmmL

Theorem 4.5 (Fubini’s theorem). Suppose that u, v are locally finite Borel measures on
R¥ and R% respectively. If f is a non-negative Borel function on R4T% | then

| [ 1@ du@) v = [ [ s dviw) duco)

Corollary 4.6. Suppose that u is a locally finite Borel measure on R%. If f is a non-
negative Borel function on R?, then

ff(m) dp(x) = LOO p({zeRY: f(z) = t})dt.
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4 Basic results from measure theory

Given a p-measurable function f : R? —» R, and 0 < p < o0, we say that f € LP(u)
whenever {|f[P < +o0. In case f € L'(u), we can define

| raws= [ redu— | 1-an.

f+ := max{f, 0}, and f— = max{—f,0}.
Note that f = fi — f—, with f,, f— > 0.

where

4.3 The Riesz representation theorem

Theorem 4.7 (Riesz representation Theorem). Let X be a locally compact metric space
and L : Co.(X) — R a positive linear functional. Then there is a unique Radon measure j
such that

Ly= ffdu for f e Cu(X).

The approach presented below is based on the proof of [Rud87, Chapter 2|, where the
reader may find all the details and the proofs of every single lemma used here.

Proof. Given an open set V < X we write f < V whenever f e C.(V), and 0 < f < xv.
We define

p(V) :=sup{Ls: f <V}

Note that for open sets U < V it follows immediately that u(U) < (V). Therefore it
makes sense to define for every £ < X

w(E) :=inf{u(V):V o> E and V is open}.
We will use often the following immediate consequence of the positivity of L:
If f,g € Ce(X) are such that 0 < f < g, then Ly < L, (4.2)

First we claim that p is a measure.

1. Since J is open, (&) = sup{L;: f < J} = Lo = 0.

2. Given sets A c B < X,
{V:VoAand Visopen} o{V:V o B and V is open}

trivially, and taking infimum in a subset always increases the result, so

p(A) < p(B). (4.3)
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4 Basic results from measure theory

3. Let A; c X for 1 < i < o0, and let ¢ > 0. Consider open sets V; o A; such that
(Vi) < p(Ai) + 57, and let f <V :=J; Vi so that u(V) < Ly +¢.
Since K := suppf is compactly contained in V' we infer that there exist n € N and
a finite subcovering, i.e., a subset {i; }?:1 c N so that K < U?:1 Vi,

There exists a partition of the unity in K for the covering V;,, i.e., there exist
functions h; < V;; with xx < Zj hj < 1. Then

M(U/h) < (V) éLf+5=LfZ‘jhj +5:Zthj +e
7 j

< Zu (Vi) +e< Z <M(Ai) + %) +e< ZM(AZ') + 2¢, (4.4)

concluding the proof that p is a mesaure.

Next we show that p is in fact a Radon measure. To show that we begin by a) — ¢) in
Definition 4.4:

a) Let K < X be a compact set. Then K is contained in a ball B. Consider a continuous
function yx < f < xp, which exists by Urysohn’s lemma. Then call V := {z : f(x) >
1/2}. Every function g < V satisfies that g < 2f. Therefore

4.2
p(K) < p(V) =sup{ly : g <V} < 2Ly <0

b) Let V be an open set. We will prove that its measure coincides with the supremum of
the measures of its compact subsets. Let ¢ > 0 and f < V such that u(V) < Ly +e.
Then write K := suppf and consider an open set U D K. It is clear that f < U and
thus p(U) > Ly. Since this holds for every such U, passing to the infimum we can infer
that u(K) > Ly. Allin all,

p(V)<Lf+e<pK)+e.
Since such a compact set can be obtained for every e, we conclude that
u(V) < sup{u(K) : K < V}.
The converse inequality follows from (4.3).
c) pw(E) :=1inf{u(V):V o E and V is open} follows by definition.

To complete the proof that p is Radon, we will check that it is Borel regular. First of
all, let K1, Ko be compact, disjoint subsets of X. We claim that

n(K1) + p(Kz) = p(Ky v Ka). (4.5)

Indeed, it is well known that there exist open sets V; o Kj, such that V4 n Vo = & (see
[Rud87, Theorem 2.7], for instance), and also there exists an open set W > K; u Ko
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4 Basic results from measure theory

such that (W) < u(K; u K3) + €. Moreover, there exist functions f; < V; n W so that
pw(Vi n W) < Ly, + €. Then, since the supports of f; are disjoint, f1 + fo < W and we get

4.3
pED) + p(Ks) < p(Vin W)+ u(Van W) < Ly + Ly, + 2¢
= Lf1+f2 + 2e < ,U,(W) + 2 < ,U,(Kl U K3) + 3¢,

proving the claim.
Since the u-measurable sets form a o-algebra, to show that p is a Borel measure we
only need to check that every open set V' is u-measurable, i.e., every ' < X satisfies that

w(E) = w(EnV)+p(EnVe).
By the subadditivity shown in (4.4), it suffices to prove that
w(E) =z p(EnV)+ pu(EnVe (4.6)

and for this we may assume that u(E) < . R
First let us assume that F is an open set with ﬁnige measure. Then write V =V n F,
so EnVe=En(VCUE)=En(VnE)=EnV¢ ie. we have to show that

W(E) = u(V) + p(E V).
Let K1 < V be a compact set such that
u(V) < (K1) +e.
Then consider an open set U > E n V¢ so that u(U) < u(E n V¢) + e. Define U :=
U n E n K{ which is again an open set. Then
pl) < pU) <p(EnV) +e,

and
EAVe=UnNEnVcUNEnNK{=UcK{nE. (4.7)
To end consider a compact set Ko < U such that u(U) < p(Ks2) +e. All in all,

V) + (B 0 7)€ (i) + 2 + (D) < p(K) + p(Ko) + 22

4.
2Ky U Ky) 126 < u(E) + 2,

w

and (4.6) follows for open sets.
Consider a set £ — X (without the openness assumption). Then there exists an open
set Vg © E such that u(Vg) < u(E) + . Then

43
P(ENV)+u(EnVe) < u(VEnV)+pu(VEn V) =pu(Ve) < u(E) + ¢,
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proving (4.6) for general sets.
To end we have to check that Ly = { f du for every f € C¢(X). For simplicity we may
assume that f is real valued. Moreover, it suffices to show

Ly < de,u, (4.8)

since we can apply the same inequality to —f to obtain the converse estimate.

Let [a,b] u{0} be the range of f. For every n consider {yi}?jol with yo < a, yp+1 = band
0<wyir1—vy < (b—a)/n =: ¢ forevery i <n. Let E; := f~'((yi_1,y:]) nsuppf, which are
Borel sets and, thus, measurable. Consider open sets V; > E; with u(V;) < u(E;) + 55
and such that f(x) < y; +¢ for every x € V;; and let h; be a partition of the unity of supp f

with respect to the covering {V;}, that is h; < V; with x(euppsy < 205 hi < 1. Then

4.2

L= s & N+, < Yo+ (Vi) < Yo — < +22) (M<EZ->+ : )

n+1

i i 4

= ;mmw —e)+ 25;/4&» + njlzy L2 f fdp + e(2u(suppf) +b + )

and (4.8) follows choosing e arbitrarily small.

As for uniqueness, assume that 1, uo are Radon measures satisfying the hypotheses of
the Theorem. Since Radon measures are determined by their values on compact sets, we
only need to check that pi(K) = pg(K) for every compact set K < X. Consider such a
compact set, and let V' 5 K be an open set such that us(V) < pua(K) + e. By Urysohn’s
lemma, there exists f < V such that xx < f. Then

i (K) = JXKd,Ul < ffdm =Ly= ffduz < Jxvduz = p2(V) < p2(K) +e.

4.3.1 Image measure

Definition 4.8. The image of a measure p under a mapping f : X — Y (also known as
push-forward measure) is defined by fyu(A) = u(f~1(A)) for AcY.

Theorem 4.9. If X, Y are separable metric spaces, f is continuous and p is a compactly
supported Radon measure, then fupu is a Radon measure, with suppfup = f(suppu).

Theorem 4.10. If X, Y are metric spaces, f is a Borel mapping, i is a Borel measure
and g is a nonnegative Borel function, then

| gdtsn= [t rrdn
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4.3.2 Weak convergence

Let {1;}72 be a collection of Radon measures in a metric space X. We say that p; converge
weakly to u, and write
i — Ho,
if
lim | odu; = Jgod,u for every ¢ € C.(X).

1—00
As a consequence of the Riesz representation theorem, one can prove that a uniformly
locally finite collection of measures has a weakly convergent subsequence:

Theorem 4.11. If {11;}°, is a collection of Radon measures in R, with

sup p1;(K) < +00,
i

for every compact set K < R®, then there is a weakly convergent subsequence {1 Y ilqs
and a Radon measure p with
iy, — fi-
Consider the Dirac delta measure d; in ¢ € N. Note that the sequence §; — 0. This

example shows that the weak convergence of measures does not imply the convergence of
the measure of a particular set. However, the following semicontinuity properties hold:

Theorem 4.12. Let {j;}7°, be a collection of Radon measures in a locally compact metric
space X . If u; — po, K < X is compact and G < X is open, then

p(K) = limsup ;i (K),
1—00
and
(@) < liminf p;(G).

4.4 Hausdorff measure and dimension

For every subset A = R% 0 < s < 4o and 0 < § < 400, define
Hi(A) := inf {Z diam(E;)* : A < | J E; with diam(F;) < 5} :

and let
S(A) =1 S(A
HO(4) 1= lim 7°(4)
be the s-dimensional Hausdorff measure of A. The quantity H5, (A) also plays an im-
portant role and is called s-dimensional Hausdorff content of A. The Hausdorff measure
happens to be a Radon measure. The 0-dimensional Hausdorff measure is the counting
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measure, the 1-dimensional measure is a generalization of the length measure in R?, and
the d-dimensional measure is a multiple of the Lebesgue measure.

If Ais a set with H®*(A) < +o0, then H*| 4 is locally finite and, in fact, it happens to be
a Radon measure (see [Mat95, chapter 4]).

Another interesting fact is that although

H(A) < H5(A) /7 H(A),
having null Hausdorff content is equivalent to having zero Hausdorff measure:
H(A) =0 < H’(A) =0.
Theorem 4.13. For 0 < s <t <o and A c RY,
1. H5(A) < +oo implies H'(A) = 0, and
2. H'(A) > 0 implies H5(A) = +o0.
This leads to the concept of Hausdorff dimension:
Definition 4.14. The Hausdorff dimension of a set A ¢ R% is
dimy A = sup{s : H*(A) > 0}.
From the previous theorem, one can infer that

dimy A = sup{s : H*(A) = +oo} = inf{s : H*(A) < +o0} = inf{s : H*(A) = 0}.

4.5 Frostman’s lemma

The following result is Frostman’s Lemma, which is a fundamental tool in geometric
measure theory and in potential theory.

Theorem 4.15. Let E be a Borel set in R?. Then H*(E) > 0 if and only if there exists
a finite Radon measure p compactly supported in E such that

w(B,(x)) <r*  for every x € RY and r > 0.
Further,
HE(E) ~ sup {u(E) : suppp < E, u(By(z)) < 1° for every x € RY and r > 0},
with the implicit constant depending only on d.

Below we provide a proof for the case when FE is a compact set. The case when FE is
o-compact is easily deduced from this. These two cases suffice for the purposes of these
notes.
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Proof. Suppose first that such a measure p exists, and let us see that H5 (E) = u(E).
Indeed, consider a covering | J; A; © E, and take for each i a point x; € A;. Since the
union of the balls Bgjam(a,)(7;) covers E, we get

Z:diam(Ai)s > ¢! ZM(Bdiam(Ai)(xi))) > u(E).

Taking the infimum over all possible coverings of E, we obtain H3 (E) = ¢! u(E).

For the converse implication of the theorem, assume that E is contained in a dyadic
cube @Qg. The measure u will be constructed as a weak limit of measures p,, n = 0. The
first measure is
‘Cd‘Qo

L4(Qo)

For n > 1, each measure j, vanishes in R\Qo, it is absolutely continuous with respect
to Lebesgue measure, and in each cube from D, (Qo) (this is the family of dyadic n-
descendants of Q)y), it has constant density. It is defined from pu,_; as follows. If P €
D, (Qo) and P is a dyadic child of Q € D,_1(Qo) (then we write P € Ch(Q)), we set

po = H(E)

B H (PN E)
2irecn@) H(R N E)

Mn(P> anl(Q)' (4'9)
Observe that
Y7 wn(P) =1 (Q)  forall Qe Dy 1(Qo),
PeCh(Q)

and thus pi,(RY) = p,—1(R%).

As said above, p is just a weak limit of the measures u,. The fact that p is supported
on F is easy to check: from the definition of p, in (4.9), u,(P) = 0 if P € D,(Qo) does
not intersect E. As a consequence, ux(P) = 0 for all £k > n too, and thus,

supp(pk) < Us-n+1diam(Qo) (F) for all k > n.

From this condition, one gets that supp(u) < Us-n+1giam(Qy)(E), for all n = 0, which
proves the claim.
Next we will show that

pn(P) < HL(PNE) for all P € D,,(Qo)-

This follows easily by induction: it is clear for n = 0, and if it holds for n — 1 and @ is the
dyadic parent of P, then

pn1(Q) S HL@QAE)< Y, HL(RAE).
ReCh(Q)

Thus, from (4.9), we infer that p,(P) < H5 (P n E), as claimed. As a consequence, for
all j > n,
pi(P) < H (P n E) for all P € D,,(Qo)-
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Moreover, by construction, all the dyadic cubes which do not intersect )y have zero
measure [i;.

Since every open ball B, of radius r with 2 ""14(Qg) < r < 27™(Qy) is contained in a
union of at most 2¢ dyadic cubes P}, with side length 27"¢(Qy), we get

2¢ 2¢
wi(Br) < 37 pi(Pr) < D) HE(Pe 0 E) < 2% diam(P)* < er*,
k=1 k=1

for all j > n. Letting j — oo, we infer that u(B,) < cr®.
So we have constructed a measure p supported on E such that u(E) = H5 (E) with
w(Br(x)) < r® for all x € R and all » > 0, which implies

H5(E) < sup {u(E) : suppp < E, p(By(z)) <1’V e R r > 0}.
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5 Harmonic measure via Perron’s method

To solve the Dirichlet problem for a very general class of open sets, it is convenient to
use harmonic measure. Before introducing this notion, we will introduce subharmonic
functions and we will show the solution of the Dirichlet problem via Perron’s method.

5.1 Subharmonic functions

Definition 5.1. For Q — R? open, we say that u : Q — [—00,0) is subharmonic if it is
upper semicontinuous in Q and u(z) < § B, (z) W Whenever B, (x) cc Q.

On the other hand, u : Q — (—o0, +00] is superharmonic if it lower semicontinuous and
u(z) = _SBT(x) u whenever B,(x) cc Q.

Recall that u is called upper semicontinuous at = €  if limsup, _,, u(y) < u(x), and it is
lower semicontinuous if liminf, ., u(y) = u(x). It is easily checked that, if K is compact
and v : K — [—00,00) is upper semicontinuous, then u attains the maximum on K.
Analogously, if u : K — (—o0, 00] is lower semicontinuous, then u attains the minimum on
K. Note that upper semicontinuity does not imply local Lebesgue integrability. However,
the function is locally bounded above and therefore, the average SBT () U in the previous
definition is in [—o0, +0).

Of course, any function that is harmonic in €2 is both subharmonic and superharmonic.
Further, u is subharmonic if and only if —u is superharmonic. Other immediate properties
are stated below.

Lemma 5.2. If u,v are subharmonic in §2, then u+v and max(u,v) are both subharmonic
in Q. On the other hand, if u,v are superharmonic in §, then u + v and min(u,v) are
both superharmonic in 2.

Proof. This is immediate. O

Subharmonic functions satisfy the maximum principle (and superharmonic functions
satisfy the minimum principle):

Lemma 5.3 (Maximum principle). If u is a subharmonic function in a bounded open set
Q such that
limsupu(x) <0 for every £ € 092,

z—E

then u < 0 in Q. If moreover Q) is connected, then either u =0 or u <0 in €.
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5 Harmonic measure via Perron’s method

Proof. By considering each component of ) separately, we can assume that {2 is con-
nected and it is enough to prove the second statement of the lemma. Suppose first that
u does not achieve a supremum in . If z; €  is such that lim; u(x;) = supg u, then
lim; dist(z;, 02) = 0, for otherwise we could extract a subsequence converging to a point
inside €2 and obtain a contradiction. Using that €2 is bounded, by passing to a subsequence
we may assume that x; — £ € 0€). By assumption, this implies that every x € () satisfies

u(z) < supu = limu(z;) < limsupu(y) < 0.
Q J yﬂf
If uw achieves the supremum at some x € €2, then there exists r such that B,(x) < .
Assume that there exists y € B,(x) such that u(y) < u(z) = supgu. Then, by upper
semicontinuity we would get

supu = u(r) < ][ u < supu,
Q BT(Q:) Q

reaching a contradiction. Therefore, the function is constant in the ball B,(z). This
implies that the set where the supremum is achieved is open. But it is also relatively
closed in €2 by semicontinuity and so w is constant in €. O

Next we give a couple of characterizations of subharmonicity under a certain priori
regularity conditions. First, we check the behavior of the Laplacian when a subharmonic
function has two derivatives, and then we use it to show that the fundamental solution to
—A, see (2.10), is an example of superharmonic function.

Lemma 5.4. Let Q < R? be open and u € C%(Q). The function u is subharmonic in Q if
and only if Au = 0 in Q.

Proof. The fact that Au > 0 in € implies the subharmonicity of u is a direct consequence
of Remark 2.2. To prove the converse implication, we have to show that Au(xz) = 0 for
every x € ). To this end, consider the function

v(y) = uly) —u(x) — Vu(z) (y — 2).

Since u is subharmonic and any affine function is harmonic, it follows that v is also
subharmonic. The Taylor expansion of v in x equals

1

v(y) = 5 (=)' D*u(@) (y — ) + olly — al*),

where D?u(z) is the Hessian matrix of u. For any ball B,(r) < Q, we have

0=uv(x) < J[Br(g;) vdy = % J: T(x)(y — :c)T D?u(zx) (y — z) dy + o(r?)

= EZ i ju(z) J( (yi — i) (y; — x;) dy + o(r?)

ij By (z)
= cAu(z)r? + o(r?),
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where we took into account that SBT () (yi —x;) (yj — ;) dy vanishes if i # j and is positive

otherwise. Dividing by cr?, we deduce
Au(z) + o(1) = 0,

with o(1) — 0 as r — 0. This implies that Au(z) > 0, and the proof of the lemma is
concluded. O

Lemma 5.5. The fundamental solution of —A is harmonic in RN{0} and superharmonic
in Re.

Proof. Harmonicity can be easily checked. To prove superharmonicity, notice first that £
is lower semicontinuous. Next, for every e > 0 let ¢, be a C®, positive, radially decreasing,
function supported on Bc(0) with {¢. = 1. Then & * . € C*(R?). Further,

A€ # ¢:) = —pe < 0.

Thus, by Lemma 5.4, € # ¢, is superharmonic in R%. Consequently, for any ball B centered
in g # 0 and any ¢ > 0,

J[ E xpe < E# e (x0).
B

Letting ¢ — 0, we deduce
B
In case ¢ = 0, we have £(z() = +00 and the last inequality is satisfied trivially. O

Next we characterize continuous subharmonic functions as those functions whose interior
values in balls lie below the solution to the Dirichlet problem with the same boundary
values.

Lemma 5.6. Let Q < R? be open and v e C(Q). Then u is subharmonic if and only if
for every ball B cc Q and every harmonic function v such that u(x) < v(z) for every
x € 0B, it holds either v > u or v=u in B.

Proof. The only if implication follows by the maximum principle to the subharmonic
function u —wv. To see the converse, let B,(x) cc 2 and let v be the harmonic function in
B, continuous up to the boundary that agrees with u on 0B, (see Theorem 3.10). Then

J[ udo = J[ vdo = v(x) = u(x).
0B, 0By

Thus,

d (7 d (" d "
][ udm = — J f udo dt = df J[ wdo t41dt > u(dx) f t 1 dt = u(x).
- KdT™ Jo JoBy ™ Jo JoB, T 0
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Let u € C(Q2) be subharmonic in a ball B. Let @ be the harmonic function in B that
agrees with v on dB and set U := xq pu + xpt. Note that U > u by Lemma 5.6. This is
called the harmonic lift of u in B.

Lemma 5.7. Let Q < R? be open. If u € C() is subharmonic in Q, x € Q and B =
B, (xz) cc Q, then the harmonic lift of w in B is also subharmonic in Q.

Proof. Let U be the harmonic lift of u in B. Consider v harmonic in a ball B’ < Q with
B'n B # @& and v = U in the boundary of B’. We want to prove that either v > U or
v="Uin B

Case 1: 0B n B’ = @, that is B’ ¢ B and U is harmonic in B’. Then the claim follows
by Lemma 5.6 applied to U.

Case 2: 0B n B’ # @ and v(y) > U(y) in 0B n B’. Using the continuity of U and the
maximum principle applied to U — v in B'\B and B’ n B separately, we get that v > U
in B’.

Case 3: 0B n B’ # & and there exists y € 0B n B’ such that v(y) < U(y) = u(y). In
this case, since v > v in 0B’, Lemma 5.6 implies that v = v in B’. If 0B’ n B # ¢, the
identity v = u in B” implies the existence of a point in 0B’ n B # ¢ where u(y) < U(y) <
v(y) = u(y) and therefore U = u by Lemma 5.6. If, instead, 0B’ n B = ¢, that is if
B < B’, then u is harmonic in B and, therefore, U = u as well and the claim follows. [

Next we provide a couple of properties of subharmonic functions, again under certain
a priori conditions. First we see that subharmonicity is preserved by an approximation
of the identity. Then we use this fact to show that subharmonic Sobolev functions are
weakly subharmonic, see Remark 5.10 below. This properties will be used to show the
Caccioppoli inequality for subharmonic functions.

Lemma 5.8. Let Q  R? be open and let u € LL (Q) be subharmonic. For p > 0, denote
Q, = {z e Q:dist(x, Q) > p}. Then following holds:

a) If u is a (non-negative) Radon measure supported in B,(0) and u * p is upper semi-
M g p iz
continuous in €),, then u * p is subharmonic in §1,.
b) If p be a continuous non-negative function supported in B,(0), then u * ¢ is subhar-
¥ g p ¥
monic in €.

Proof. Clearly, the statement (b) is a consequence of (a), since u * ¢ is continuous because
¢ is continuous and compactly supported. To prove (a), we have to check that for any
x €, and 7 > 0 such that B,(x) < Q,, we have u * pu(z) < SBT(x)u # 1 dm. Without

loss of generality, assume = 0 and that B,(0) < €,. Denoting u(y) = u(—y) and
XB,(0) = m(BT(O))_leT(o), we have

J[ u* pdm = <u*,u,)23T(o)> = <M>77*QBT(O)>'
By (0)

Notice now that for any y € suppp, B,(y) < Q (because B,.(0) < Q, and suppu < B,(0))
and so

U Xp,(0)(Yy) = J( ( )udm > U(y).
r\Y
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Consequently,

J[ wx pdm =,y = u* p(0).
B (0)
O

Lemma 5.9. Let Q = R? be open, let ue Li (Q) be subharmonic in Q, and p € CL (),
with ¢ = 0. Then, its distributional derivatives satisfy

(Vu,Vyp) <0.

Consequently, if u € VVli’f(Q) with 1 <p < o0 and p € Wcl’p/(ﬂ) with ¢ = 0, we have
fVu -V <0. (5.1)

Proof. For every € > 0, let 1. be a C®, positive, radially decreasing, function supported
on B.(0) with (¢, = 1. Let Q. = {z € Q : dist(x, Q) > €} and take ¢ small enough such
that suppp < Q.. Then we have

(Vu,Vyy = —qugoda: =— lil%f(u*l/;a)Acpda: =— liI%JA(u*sz)goda:.

Since u# 1. is C* and subharmonic in €, it follows that A(u#1.) = 0 in €., see Lemmas
5.4 and 5.8. Thus,

JA(u*we)godx =0

for any € > 0 small enough, and so (Vu, V) < 0.
The second statement in the lemma follows easily by a density argument. O

Remark 5.10. A function f € WhH2(Q) satisfying (5.1) is called weakly subharmonic.
Note that we don’t ask for semicontinuity in this definition. What we call weakly subhar-
monic is sometimes called a subsolution to Au = 0, see [Ken94, Section 1.1], for instance.

Lemma 5.11 (Caccioppoli Inequality). Let Q < R? be open and let u € VV&)?(Q) be weakly
subharmonic in Q0 and non-negative. Then for every ball B < Q) of radius r we have

e el
B (rt)? Ju+1)B\B

where t = dist(B, 02)

Proof. The arguments are very similar to the ones in Lemma 2.10. Let 1 be a Lipschitz
function such that xp <7 < X@41)p and with [Vn| < % Since u is weakly subharmonic,
n is compactly supported, and un? = 0, by Leibniz’ rule and Lemma 5.9 we have

j | Vul? = f Vu - V(un?) — J 2unVu - Vn < —J 2unVu - V.
(t+1)B (t+1)B (t+1)B (t+1)B
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By Hoélder’s inequality we get
2
( | mw) ,
(t+1)B

j IVl < ( f 4u21vm2)
(t+1)B (t+1)B
4

f |Vul? < f n?|Vul|? < J 4u?|Vn|? <
B (t+1)B (t+1)B (rt)

=

and so
2

f 2.
(t+1)B\B

[\

5.2 Perron classes and resolutive functions

Throughout this section we assume that Q < R? is a bounded open set (not necessarily
connected).

For f e C(09), the Perron method, that we will describe below, associates a harmonic
function uy : @ — R to f. Even if f is continuous, the function uy may not extend
continuously to the boundary. However, We will see that if () is regular enough in some
sense, then uy extends continuously to d€2 and its boundary values coincide with f.

Definition 5.12. Given a bounded function f : 02 — R, define the lower Perron class as

L;={ueC(Q): is subharmonic and limsupu(z) < f(£) for all £ € 00},

x—¢E
and the upper Perron class as

Ur = {ue C(Q) : u is superharmonic and lim i?fu(a:) > f(¢) for all £ € 00}
r—

Note that the constant function  — sup,q f is an element of Uy (and x — infsq f is an
element of L¢). Therefore, Uy and L; are non-empty and we can define the real-valued
functions

Hy(z) = sup u(z), Hy(z) = inf u(z)
uE[:f UEUf

for x € 2, which we call lower Perron solution and upper Perron solution respectively.

Remark 5.13. If f € C(Q) is harmonic in €2, for every u € £ we can apply the maximum
principle (see Lemma 5.3) to u — f to infer that v < f in Q. In particular, we deduce that
f=H;= ﬁf. So if the solution of the Dirichlet problem with continuous boundary data
exists, then it coincides with the lower and upper Perron solutions.

Lemma 5.14. For every bounded function f : 00 — R, the functions H; and Ff are
harmonic.

Proof. We will show only the case H;. The other follows by noting that Hy=-H_ ¥
Fix v € Q and B = By(z) <= Q. Let {u;}72; < Ly be a sequence of subharmonic

functions so that u;(z) EmiiN H ;(z). By replacing u; by max(uj, infaq f) if necessary (see
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Lemma 5.2), we may assume that the sequence of functions u; is uniformly bounded from
below.

Let U; be the harmonic lift of u; in B, which is subharmonic by Claim 5.7 and therefore
Uj < H. This sequence is uniformly bounded above by sup,q f by the maximum principle
and it is also bounded below since the u;’s are uniformly bounded from below. Thus,
passing to a subsequence if necessary, we may assume that U; converges pointwise in B to
a harmonic function U (see Lemma 2.14). As we have seen, u; < U; < Hy and, therefore,
Ule) = Hy(a).

We claim that U = H; in B. Assume not. Then there is y € B so that U(y) < H(y),
and by definition of H, there must be v € Ly so that U(y) < v(y) < H(y). Set
vj = max{Uj, v} (which is again subharmonic by Lemma 5.1) and let V; be the harmonic
lift of v; in B, so now Vj is harmonic in B. Passing to a subsequence, we may assume
V; converges pointwise to a harmonic function V' in B. Since U; < Vj;, we have that
U<V < Hyin B, and so U(z) = V(z) = Hy(r), which implies U = V in B by
the maximum principle. However, U(y) < v(y) < Vj(y) which implies U(y) < V(y), a
contradiction. O

Lemma 5.15. Every bounded function f : 0§ — R satisfies Hy < ﬁf.

Proof. Let u € Uy and v € Ly. Then v — u is subharmonic with limsup,_,¢(v — u) <
f(&) — f(&) =0 for all £ € 092, and so by the maximum principle, v < u. Taking infimum
and supremum over Uy and Ly respectively, we get H, < Ff. 0

Definition 5.16. We say that a bounded function f : 9Q — R is resolutive if H; = Hy.
Lemma 5.17. If f, g are resolutive so are —f and f + g.

Proof. Note that if u € Uy and v € Uy, then u+v € Usy 4, and so H 44 < u+v. Therefore,
Ffw < Ff —i—ﬁg. Similarly, Hiy ,>2Hy+H, = ﬁf —i—ﬁg. Therefore ﬁfﬂ, < Hy,,and
the converse inequality follows from Lemma 5.15.

Also being f resolutive implies that H_, = —Hy = —H, = H_;. O

Lemma 5.18. If f € C(Q) is subharmonic in §, then f|aq is resolutive.

Proof. Since f is subharmonic and continuous up to the boundary, we have f € L, and
so f < H;. Note that H; is harmonic (hence superharmonic) and liminf, ¢ H f(:c) >
liminf, ¢ f(x) = f(£), so H; € Uy, hence Hy > Hy. O

Lemma 5.19. Polynomials are resolutive in every bounded open set.

Proof. Let u be a polynomial. Note that the function v(x) = |z|? satisfies Av = 2d > 0. In
particular v is subharmonic in R? by Lemma 5.4. Since Aw is a polynomial, it is bounded
in any bounded open set Q2. Thus, for k£ > 0 large enough, A(u + kv) > 0 in Q. So both
v and u + kv are subharmonic in {2 and continuous in 2. Hence they are resolutive, and
therefore u = (u + kv) — kv is resolutive too. O
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5 Harmonic measure via Perron’s method

Theorem 5.20 (Wiener). C(092) functions are resolutive.

Proof. Let f e C(0f2) and € > 0. By the Stone-Weierstrass theorem [Sto48], we may find
a polynomial u such that |f —u| < e on 0€2. Thus,

Hy<Hy,.=H,+e=H,+ec<H;+2,
and letting € — 0 gives that f is resolutive. O

In this way, we can associate to a continuous function f a harmonic function Hy :=
Hy = Hy. The fact that f is resolutive is not the reason we can define an association.
For example, we could just associate to any bounded function f on the boundary the
harmonic function ﬁf. The property of being resolutive is not significant for us because
it allows us define a harmonic extension of f. Instead, this property will be useful in using
maximum principle arguments when trying to prove continuity at the boundary of the
Perron solution.

As mentioned earlier, Hy may not coincide with f at the boundary, even if f is contin-
uous. To give an example, consider Q = B1(0)\{0} = R?, and let f(¢) = 0 for £ € 0B1(0),

f(0) = 1. Define
ue(x) = T
| ]2

for d = 3 (for d = 2 use the logarithm). Since u. > 0 is harmonic and goes to +00 at the
origin, we immediately get u. € Uy, so

Hy(x) < =

Since 0 € Ly trivially, we get that H¢(x) > 0 and Lemma 5.15 implies that H¢(z) = 0.
That is, Hy is the same for 2 = B1(0) and for Q = B;(0)\{0}.

5.3 Harmonic measure via Perron’s method

Throughout this section we assume that Q < R? is a bounded open set, unless otherwise
stated. Next we provide the definition of harmonic measure via the so-called Perron’s
method.

Definition 5.21. Let Q < R? be open and bounded and let z € 2. The harmonic measure

for Q based at = (or with pole in z) is the unique Radon measure w® on 02 such that

Hy(x) = . F(O)dw®(€)  for all feC(00).

The existence and uniqueness of w” is ensured by the Riesz representation theorem, i.e.
Theorem 4.7. Abusing notation we extend w® by 0 to the whole R?, that is w®(R4\dQ) := 0.
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5 Harmonic measure via Perron’s method

Remark 5.22. Note that 1 € £1 nUj, so Hi(x) = 1 regardless of any consideration on
the geometry of Q by Lemma 5.15. Therefore

w*(09) = fldwx =Hi(z)=1.

So w” is a probability measure.

Example 5.23. Consider the case of the unit ball B;. We showed in Theorem 3.10
that the Dirichlet problem is solvable in B; and that, for any f € C'(0By), its harmonic
extension equals

ule) = [ PUOSQdo(e)  forze B,
0B
where P*(&) is the Poisson kernel:

1—|z|?
K|z — €|

P(§) =
Since uy = Hy for all f e C(0B1), by the uniqueness of w” it follows that

du* (€) = P*(€) do ().

In the case x = 0, we have
1
du’(€) = — do(€).

KRd

That is, w” is the normalized surface measure on the unit sphere.

In many geometric and qualitative analytic properties of harmonic measure, the choice
of the pole plays no role. This is due to the fact that harmonic measures with different
poles are mutually absolutely continuous in (connected) domains. To prove this fact, we
start by checking the harmonicity with respect to the pole of the harmonic measure of a
given compact set.

Lemma 5.24. Let Q < R be a bounded open set and let w® be the harmonic measure for
0. Let K < 0Q be compact. Then the function u(z) := w*(K) is harmonic in €.

Proof. For each n > 1, let U, be the (1/n)-neighborhood of K, i.e. U, = {z : dist(z, K) <
1/n}. Consider a sequence of functions f, € C(92) such that xx < fn, < xv, ~oq, so that
fn — Xxx pointwise in 0f2.

By dominated convergence theorem, it follows that, for any fixed z € 2,

u() = w(K) = lim | fodo® <w"(U1) < 1.

Since up(z) := { frdw®, with n > 1, is a uniformly bounded sequence of harmonic func-
tions, the limit is also harmonic (see Lemma 2.14). O
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Lemma 5.25. Let Q < R? be a bounded domain and let w*™ be the harmonic measure for
Q. For all x,y € 2, the measures w* and wY are mutually absolutely continuous.

Proof. By the inner regularity of Radon measures, it suffices to show that w®(K) ~ w¥(K)
for any compact set K, with the implicit constant depending only on €2, x, y, but not on
K. This is an immediate consequence of Lemma 2.17, as u(z) := w”(K) is a positive
harmonic function in €2, O

As a matter of fact, the harmonicity with respect to the pole is also satisfied when the
set is Borel regular. The proof in this case is a bit more technical, since the approximating
open sets given by Borel regularity in Definition 4.4 depend on the particular pole.

Lemma 5.26. Let Q < R? be a bounded open set, let w® be the harmonic measure for €,
and let A < 02 be a Borel set. Then the function u(x) := w®(A) is harmonic in €.

Proof. If A is compact, this has already been shown in Lemma 5.24. If A is open, then
w®(A°) is harmonic and we write u(x) = w*(A4) = 1 — w?(A°). So w is harmonic in .

Let A c Q be now an arbitrary Borel set A and fix x € . By the regularity of w?®,
there exists a sequence of open sets U, > A such that w*(U,\A) < 1/n. Moreover, we can
take U,+1 < U, by redefining the sequence suitably. Then, letting G = ﬂn>1 U,, we have
w”(G\A) = 0. By the mutual absolute continuity of all the harmonic measures wY, with
y € Q, it follows that w¥(G\A) = 0 for all y € Q. Thus, since A is Borel (and therefore, it
is measurable), we get

wY(G) =w?(G\A) + W (G nA) =wY(A) = u(y)
for all y € Q2.

Now it just remains to notice that w¥(G) is a harmonic function, since it equals a
pointwise limit of uniformly bounded harmonic functions, because Lemma 4.3 implies
wY(G) = lim wY(U,).

n—0o0

O]

Remark 5.27. In the preceding lemma we have considered Borel sets because they are
measurable for every pole. There may be sets which are not Borel, but which are mea-
surable for certain w”, however mesurability for other poles should be discussed in this
setting. However, the preceding lemma and its proof can be extended to any set A us-
ing the exterior measure of possibly non-measurable sets w¥(A4) := inf{wY(F) : A
FE with E measurable}, see [Mat95] for instance.

The next result will be useful in other chapters when studying the properties of harmonic
measure.

Lemma 5.28. Let €, QO < R be bounded open sets such that Qc Q and 0Q ~ 0  F D
Denote by wq and wg the respective harmonic measures for Q0 and Q. For any x € Q and

any Borel set A < 002 N é’Q, it holds

wE(A) < wh(A).
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Proof. To simplify notation we write w = wg and & = wg. By the regularity properties
of harmonic measure, it suffices to prove that @*(A) < w”(A) for any compact subset
A c 00 n Q. Consider an arbitrary function ¢ € C(AQ) such that ¢ = 1 on A. To
illustrate the main idea of the proof, suppose first that Dirichlet problem is solvable in
(1 for any continuous boundary data, so that the Perron solution v = H, in € of the
Dirichlet problem with boundary data ¢ extends continuously to 02 and v|sq = ¢. Then,

W (A) < Lﬁvd&x =v(z) = Lgapdwx.

Then taking the infimum over all the functions ¢ € C(092) as above, we deduce that
WP (A) < w"(A).

In the general case, we need a more careful argument. For ¢ as above and any ¢ > 0,
let u e Z/{g (the upper Perron class for ¢ in Q) be such

J pdw” = u(x) —e.
o092

By the definition of Z/{f; , we have

liminfu(y) = p(§) =1 for all £ € A.

y—&

Then, by the compactness of A, there exists §-neighborhood Us(A) such that u(y) > 1-¢
for all y € Us(A) N 2. Consider now a function ¢ € C(092) supported on Us(A) N d€2 which

equals 1 on A and is bounded above uniformly by 1. Then we claim that ulg € “8—@@

(the upper Perron class for (1 — )@ in ). Indeed, u is superharmonic in  and

liminfu(y) >0 = 3(¢) forall €e oO\Us(A),
’y—)

and

limi?fu(y) >1—e>(1-¢e)p() forall &edn Us(A).
y*)

Therefore,
(1—5)&1I(A)<J (1—€)<ﬁd@x<u(x)sj pdw® + ¢.
o0 o0

Since ¢ is arbitrarily small, we have &%(A4) < §,, ¢ dw”. Taking the infimum over all the
functions ¢ € C'(092) such that ¢ = 1 on A, we derive @*(A) < w*(A). O

5.4 Wiener regularity

In this section we continue to assume that Q < R? is a bounded open set, unless stated
otherwise. In view of Lemma 5.26 it is tempting to refer to the harmonic measure of any
set A < 002 as the harmonic function in §2 having boundary values x 4. Unfortunately, x4
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is not a continuous function, and it is not clear what does it mean to have a discontinuous
function as trace, for instance, when A is a dense subset with null harmonic measure.
If the boundary is regular enough, this limit may be understood in the LP sense, for
instance, see Theorem 3.10, but the limit would be defined almost everywhere in some
sense. We could expect, however, that lim, ¢ w”(A) = 1 if dist(£,0Q n A°) > 0, and
lim, ¢ w®(A) = 0 if dist(§, A) > 0. Unfortunately, we cannot grant yet that Hy|oq = f
for continuous functions. We need to describe when this happens, that is, we need to
study regular points.

Definition 5.29. We say that £ € 0 is a regular point if whenever f e C(0Q), Hy(x) —
f(§) asQax—¢& e

FOdw™(¢) 2225 1 (). (5.2)
o0

We say that 2 is Wiener regular if every point in the boundary is regular.

From the definition above, it follows easily that if a domain €2 is Wiener regular, then
the support of harmonic measure is the whole boundary of 2.

A method for proving regularity at a point £ € 02 consists in showing the existence of
a barrier function for &, that is, a function v : 2 — R such that

1. v is superharmonic in 2.
2. liminf, ¢ v(y) > 0 for all { € OQ\{&}.
3. lim, ¢ v(y) = 0.
Notice that, by the minimum principle applied to each component of 2, v > 0 in €.

Theorem 5.30. If & € 02 has a barrier function, then for any bounded function f on 02
which is continuous at &, we have

lim H,(x) = lim Hy(x) = f(£).

z—E z—E
In particular, £ is a regular point.

Proof. Let v be a barrier for £ and let € > 0. Since f is continuous in &, there is § > 0 so
that |¢ — ¢] < ¢ implies |f(¢) — f(&)| < e. Since v is superharmonic, the infimum of v in
Q5 := Q\Bs(€) is attained in 095, see Lemma 5.3. That is, there exists some y € 05 such
that

inf v = liminfv(2).

Qs z—y
If y € 09, then liminf, ,, v(2) > 0 by the definition of barrier, and if y € Q n 0Bs(§), then
liminf, ,, v(z) = v(y) > 0 too, by the lower semicontinuity of v and the fact that v > 0
in Q. Thus info; v > 0. So we can pick k£ > 0 such that

k limi?fv(z) > 2sup |f|
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on 00\ Bs(€) (we can do this because f is bounded).
Now, since f(¢) < f(&) + & on Bs(€) n 0 and f(¢) < 2sup|f| + f(&) on 0Q\Bs(&), we
have

f(O) < kliminfo(z) + f(§) + e for all ( € 09Q.

z—(
Thus, kv + f(§) + € € Uy and therefore H ¢(x) < kv(z) + f(£) + ¢ in Q and so
limsup H f(z) < limsupkv(z) + f(&) + e <0+ f(&) +e.

z—¢ T
Letting € — 0 we get limsup, ¢ H j(z) < f(£), and arguing analogously we can also prove

that liminf, ¢ H(z) > f(£). The theorem is an immediate consequence of this fact, by
Lemma 5.15. 0

The preceding theorem asserts that the existence of a barrier for £ € 02 implies that &
is a regular point. The converse result is also true:

Theorem 5.31. Let Q be a bounded open set and let & € 0Q be a reqular point. Then
there exists a barrier for £&. This barrier can be chosen to be harmonic in Q.

Proof. Let u(z) = |z — £|%. Obviously, f := u|on € C(62). We claim that v = Hy is a
barrier for £. Indeed, this is harmonic in € and lim, ¢ Hf(y) = f(£) by the regularity of
§. Also, u is subharmonic (because Au > 0) and so u € Ly and then u < Hy = Hy = v in
. Therefore, for all ¢ € IN\{¢},
liminfv(y) > liminf u(y) = u(¢) > 0.
y—=¢ y—=¢
O

As a consequence, the harmonic measure of any open set with pole approaching to a
boundary point interior to this set tends to 1.

Corollary 5.32. Let ) be a bounded open set and let & € 0S) be a reqular point. For every
open set A < R% containing €,

lim w*(A)=1.
Qsx—E

Also
lim w*(A%) = 0.
Qozx—E€

Proof. By Urysohn’s lemma, there exists a continuous function f : d€2 — R such that
f(€) =1 and f|acnon = 0. Then we have

Hy(x) = ffdwx < JXA dw® = w*(A)
by the monotonicity of integration. Since £ is a regular point we have

1 > limsupw®(A) > liminfw®(A) > lim Hy(x) = f(§) = 1.
Qax—E€ Qar—¢€ Qax—E

The other estimate follows by an analogous reasoning assuming f(§) = 0 and flge, ,q =
1. O
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Remark 5.33. There is a thickness property described in terms of capacity which char-
acterizes regularity as well, see Chapter 6 for more details.

Remark 5.34. One easy criterion for ¢ to have a barrier is the existence of an exterior
tangent ball, that is, the existence of B = B, (y) < Q¢ so that 0Q n 0B = {£}. In this way,
the function w(z) = [¢ — y|?>~¢ — |z — y|>~? is a barrier function at £.

Note that harmonic measure associates a function H¢(x) to each continuous function f
on the boundary, although we don’t necessarily know if it is a “true” extension in the sense
that it is continuous up to the boundary and coincides with f there; all we know is that
it is a harmonic function. If it happens that € is Wiener regular, then { fdw” = Hy(z) is
a harmonic function continuous up to the boundary with boundary values f.

5.5 The Dirichlet problem in unbounded domains with compact
boundary

In order to study the properties of harmonic measure it is convenient to extend the study
of the Dirichlet problem to unbounded open sets with compact boundary and to define
the harmonic measure for this type of domains too. This the objective of this section.

Let © < R? be un unbounded open set with compact boundary. Solving the Dirichlet
problem in Q for a function f € C(09Q) consists in finding a function u € C%(Q) n C()
satisfying the following:

Au=0 in §,

= o)
u = f on 0}, (5.3)
[ulloo, 02 < 0,

when d > 3, lim,_,o u(z) = 0.

Proposition 5.35. Let Q < R? be un unbounded open set with compact boundary and let
feC(09Q). If there exists a solution u € C?*(2) n C(Q) satisfying (5.6), then it is unique.

Proof. Let u,v € C%(Q) n C(2) be two solutions of (5.6) and let us check that they are
equal. Suppose first that d > 3. For R > 0, denote 2, = Qn B,.(0). Let r be large enough
so that 0Q < B,.(0). For 0 < ry < r, by the maximum principle, taking into account that
u = v on 05},

lu=vlw0, <lu=vloa. =lu="2lws =luv—="12lcs,©0 < [tlos.© + V]eo,s. )

By the last condition in (5.6), |u[w,s,0) + [1V]cw,s,(0) = 0 as 7 — o0, and so u = v in Qy,
with 7o arbitrarily large.

Next we consider the case d = 2. Without loss of generality, we assume that 02 c
B1/4(0). Let £ € 09, and for a given ¢ > 0, consider the function

ho(z) = u(x) — vlx) - § log|z — €.
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By the continuity of u and v at &, for any € > 0 there exists some p € (0,1/4) such that
lu(z) —v(z)] <e for all z € Q such that |z — & < r.

For 7 » p, consider the domain Q,, = Q N B.(§)\B,(£). We assume r large enough so
that 02 c B,(&). Notice that

0Qpr < 02U (2N S,(E)) U S,(E).
Notice that |u — v| < e and |log |- —¢[| < d]log p| in I U (2 " S,(&)) = Byj2(0). Thus,
|hs| <e+dllogp| in dQuU (2~ S,(E)).

On the other hand, for x € S,(€), log|x — &| = logr. So for a given § > 0, if r is large
enough taking into account also that u and v are bounded, we have

hs <0 in S.(€).
From the last estimates and the maximum principle, we deduce that
hs <e+dllogp| inQ,,,
Letting 7 — 00, we get infer that the same estimate is valid in Q\B,(¢). That is,
u(z) —v(z) — 6 log |z — & < e +d[logp(e)| forall x e Qy,

where we wrote p(g) to emphasize the dependence of p on €. Since this inequality holds
for all § > 0, we derive that u < v + ¢ in Q,). Finally, letting e — 0 and p(e) — 0, it
follows that v < v in Q. Interchanging the roles of u and v in the arguments above, we
deduce v < u in €2, and so we are done. ]

Definition 5.36. Let 2 be an unbounded open set with bounded boundary. We say that
) is Wiener regular if for » > 0 such that 0Q < B,(0), the set Q, := Q n B,(0) is Wiener
regular. Also, we say that £ € 0S) is a regular point for € if it is regular for €,..

Let us check that the definition does not depend on the precise r > 0 such that 02 c
B, (0). Notice first that 0, = 02 U dB,(0). By the exterior tangent ball criterion in
Remark 5.34 it follows all the points £ € 0B,.(0) are Wiener regular (for the open set 2,.).
To deal with the points from 0€2, let 0 < r; < 73 be such that 0Q2 < B, (0). If vy is barrier
for £ € 0Q in €, then it is also a barrier in €2,,, and so the Wiener regularity of £ in
Q,, implies the Wiener regularity in 2,,. Conversely, let v; be a barrier for £ in €2,, and
consider rg < 7 such that we still have 02 < B,,(0). Then

My 1= aBiilDf(O) vi(z) >0
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because of the superharmonicity of v, the other properties in the definition of a barrier,
and the minimum principle. Then we define

| min(vi(z),m,) in Qn B (0),
va(2) = { m, in By, (0)\ By, (0).

It is easy to check that vy is superharmonic in €2, and moreover it is a barrier for this set
at €. Thus the Wiener regularity of £ in {2, implies the Wiener regularity in €2,.,.

We will show below that if O < R? is an unbounded open set with compact boundary
which is Wiener regular, then the Dirichlet problem in (5.6) is solvable for all f € C'(092).
The main step is contained in the following theorem.

Theorem 5.37. Let Q < R? be an unbounded open set with compact boundary and let
fe (o). Forr >0 such that 0 < B,(0), denote Q. = Q2 n B,(0) and let H} be the
Perron solution of the Dirichlet problem in Q, with boundary data equal to f in 0 and
equal to 0 in S-(0). Then the following holds:

(a) The functions HJC converge uniformly in bounded subsets of ) to a function harmonic
and bounded in ) as r — 0.

(b) In the case d = 3, the limiting function Hy satisfies limy, o0 H¢(x) = 0.
(c) If £ € 02 is a regular point, then limgs, ¢ Hy(x) = f(£).

Remark that (a) asserts that the convergence of the functions H} to Hy is uniform in
QN By, (0) for any r; > 0. This a stronger statement than just asking for the local uniform
convergence in compact subsets of €2.

By the theorem above, it is clear that if Q < R? is a Wiener regular unbounded open set
with compact boundary, then H is the solution of the Dirichlet problem stated in (5.6).

Proof of Theorem 5.37. We claim that it suffices to prove the theorem for f > 0. Indeed,
for an arbitrary function f € C(0€2), we can write f = f* — f~, so that the functions f*
are non-negative and continuous. Then we have

H} = Hj, — H,

and it is enough to prove the statements (a), (b), (c) for f*.
(a) Let 7o > 0 be such that 02 < B, ;»(0). The fact that 0 < f < sup,g f, ensures that

0< Hp<supf inQ, forallr=ro. (5.4)
o0

Next we will show that, for rg < r < R,
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5 Harmonic measure via Perron’s method

This is an easy consequence of the maximum principle. Indeed, for s > ry denote by
E}"} and L{; the respective lower and upper Perron classes in €5 for the function fs; which
equals f on 0 and vanishes in S,(0). Given u € E’JZ, let % : Qr — R be defined by

max(u,0) in Q,,
U= (5.6)
0 in Br(0)\B,(0).

It is immediate to check that u is subharmonic in Qg and so that @ € L’]If: So for all x € Q2.
we have
u(z) < i(z) < Hf(z) = Hf(z).

Taking the supremum over all u € L7, we deduce H}(z) < Hf(x), so that (5.5) holds.

From the monotonicity of the family of function {H}},~o ensured by (5.5) and the
bound in (5.4), we infer that the limit lim, .o H} () exists for all z €  and that the limit
function Hy is bounded. Since the functions H, for r > 0, are harmonic and uniformly
bounded, it follows that the preceding limit is uniform on compact subsets of Q.

Next we will show that for any r; > rg, the functions H}Z converge uniformly on €2, .
Observe first that they converge uniformly in S, (0) since this is a compact subset of Q.
So given € > 0, there exists ro > 71 such that

S
|Hf — Hflop,s,, (0) <€ forall s> ro.
For R > r > ry, consider now two arbitrary functions u, € Z/{}" and up € E?. Notice that

limsupug(z) < (&) < liminfu,(z) on Q.
Qaz—¢ Qoz—¢

Since |H} — H;%Hoo,srl (0) < 2¢, we also have
up < Hff < Hj + 2 <up+2  in S, (0).
Using that ur — u, is subharmonic in {2,, and the maximum principle, it follows that
urp < Ur +2¢  in Q.

Taking the supremum over all up € E? and the infimum over all u, € Uy and using that
continuous functions are resolutive, we deduce that

Hf <Hj+2 inQ,,.
Together with (5.5), this implies |H} — Hf“oo@” < 2¢. Letting R — o0, it follows that
|H} — Hflw,,, <2 forall T >ro,

which proves (a).
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5 Harmonic measure via Perron’s method

(b) Suppose d = 3. Let M > 0 be large enough so that

u() < MEE) forall £ e o

By the maximum principle, we easily infer that « < M £ in €, for all u € E;, for r > rg.
This implies that H} < M & in Q,. Letting r — o0, it follows that Hy < M &£ in 2, and so

limsup Hy(x) < limsup £(z) = 0.

r—0 T—00
Since Hy is non-negative, this implies that H; vanishes at infinity.

(c) For all r > g, since § € I is regular point for ., then limgs, ¢ Hj(z) = f(§).
Together with the uniform convergence of H} to Hy in €, for any given r1 > rq, this
easily yields limos,—¢ He(x) = f(§). O

Under the assumptions and notation of Theorem 5.37, it is immediate to check that, for
any x € (2, the functional C'(02) 3 f — Hy(z) is linear and bounded. Indeed, the linearity
is due to the linearity of C(0€2) 5 f — H}(x) and the boundedness follows from the fact
that infyq f < H; < supgq f for all » = rg, which yields

| Hflloo.0 < [ f 0,00 (5.7)

letting r — 0.

Definition 5.38. Let Q  R¢ be an unbounded open set with compact boundary and let
x € 2. The harmonic measure for 2 with pole at = is the unique Radon measure w”® on
0§2 such that

Hy(@) = | f@der(€)  forall f € C(20),

where is Hy defined as in Theorem 5.37. The existence and uniqueness of w® is ensured

by the Riesz representation theorem, i.e. Theorem 4.7. Abusing notation we extend w®
by 0 to the whole RY, that is w®(R%\0Q) := 0.

Remark 5.39. By the definition, for any unbounded open set with compact boundary
Q c R?, for any f e C(09Q), and any = € Q, we have

o f(©dw®(§) = lim | f(§)dwg, (§).
By Theorem 5.37, the convergence is uniform in bounded subsets of 2.

Observe that, by (5.7) it follows that
0<w(0) <1 forallzeQ. (5.8)

The following proposition provides additional information.
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5 Harmonic measure via Perron’s method

Proposition 5.40. Let Q ¢ R? be a Wiener regular unbounded open set with compact
boundary and let x € Q. In the case d = 2, w*(02) = 1, that is, w* is a probability measure.
In the case d = 3, if x belongs to the unbounded component of 2, then 0 < w*(092) < 1.

In particular, the proposition implies that the statement (b) in Theorem 5.37 may fail
in the case d = 2. Without the Wiener regular assumption on €, further information will
be obtained later in Proposition 6.35.

Proof. Since () is Wiener regular, in the case d = 2 the function identically 1 in € solves
the Dirichlet problem (5.6) for f = 1 in 0€2. By the uniqueness of the solution, Hy = 1
indentically in © and thus w*(09Q) = 1.

In the case d > 3, again we have w”(0€Q?) = Hi(z) by Theorem 5.37. On the other hand,
the statement (b) in the same theorem asserts that Hi(x) — 0 as © — o0. So Hj is a
non constant non negative harmonic function in the unbounded component of €2 which is
bounded above by 1, by (5.7). By the strong maximum principle (applied to Q n B, (0)
and r large enough) it follows that 0 < w®(092) = Hy(z) < 1. O

Example 5.41. Let Q = R%\ B;(0) for d > 3. The solution of the Dirichlet problem for
f=11in 09 is the function u(z) = |2|*>~?¢. Thus,

1
Wr(aQ) = W for all z € Q.

Next we wish to show that, in the case d = 2, we can easily define the notion of harmonic
measure with pole at co. First we need the following auxiliary result, which has its own
interest.

Proposition 5.42. Let Q < R? be an open set and let xg € Q. Let u : Q\{xo} — R
be a harmonic function such that u(x) = o(E(x — x9)) as * — xo. Then u extends as a
harmonic function to the whole ).

Of course, the proposition applies to the particular case where u is bounded and har-
monic in Q\{zp}. See also Theorem 6.34 for a related result.

Proof. Let B,(xg) be a closed ball contained in €2, with » < 1, and let v be the solution
of the Dirichlet problem in B,(xg) with boundary data ulg, (z,). For any ¢ > 0, consider
the function

he(x) = u(z) —v(x) —e&(x —xg), for x € By(x)\{zo}-

This is harmonic in B, (z¢)\{zo} and lim, ., he(z) = —oo. By the maximum princi-
ple applied to any annulus A, (z¢) with s sufficiently small, we deduce that h. < 0 in
B (x0)\{xo}. Since this holds for any ¢ > 0, we get u < v in B,(xg)\{zo}. Reversing the
roles of u and v, we obtain the opposite inequality. Thus u = v in B,(z9)\{zo} and so the
proposition follows just letting u = v in the whole B, (xg). O
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5 Harmonic measure via Perron’s method

Corollary 5.43. For some r > 0, let u : C\B,(0) — R be a harmonic and bounded
function. Then lim,_,o u(z) exists and the function defined by v(z) := u(1/z) can be
extended to a harmonic function in B .(0).

Proof. The function v(2) := u(1/z) is harmonic and bounded in By /,.(0)\{0}. So it extends
to a harmonic function in Bj/.(0) by the preceding proposition. Thus,

Zh_)rgo u(z) = ;1_{% v(2)

exists. O

Now we can define harmonic measure with pole at co for unbounded open set with
compact boundary in the plane as in Definition 5.38, just putting x = oo there:

Definition 5.44. Let Q — R? be an unbounded open set with compact boundary. The
harmonic measure for Q2 with pole at oo is the unique Radon measure w™ on 052 such that

lim Hy(z) = o F(&)dw™ (&) for all f e C(09),

T—00

where H is defined as in Theorem 5.37. The existence and uniqueness of w® is ensured
by the Riesz representation theorem.

Obviously, for any function f € C(09Q) (and € as in the definition),

FE)dw™(€) = lm | F(€)dw?(€).
ly) 220 Joq

Observe that for any z belonging to the unbounded component of €2, the measures w?
and w® are mutually absolutely continuous. Indeed, for any Borel set E < 012, it follows
easily from the strong maximum principle applied to the function v(z) = w'/?(E) in a
neighborhood of the origin that v(0) = 0 if and only if v vanishes identically.

In the case d > 3, one can also the define the notion of harmonic measure with pole at
o0 for unbounded open set with compact boundary in R¢, at least under the assumption
of Wiener regularity, following a different approach. We postpone this task to Chapter 7.
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6 Potential theory

6.1 Potentials

Recall that the fundamental solution of the minus Laplacian in R¢ equals

|x‘2—d ]
L ifd >3,
(d— 2)/<;d '
E(x) =
“loglrl ey o
2

For a Radon measure x in R?, we consider the potential U . defined by

Uula) = €.+ (o) = [ (o = ) du(w). (61)
and the energy integral
I(p) = HS(SU — y)du(y)du(z). (6.2)

For d = 3, U, is called the Newtonian potential of y, and for d = 2, the logarithmic or
Wiener potential of p.

Lemma 6.1 (Semicontinuity properties). For non-negative Radon measures p,, — p with
compact support we have:

(a) liminf, ., U,(y) = U,(z) for all z € R%. So the potential U, is lower semicontinuous
in RY.

(b) liminf, o Uy, (z) = Uy(z) for all x € RY.
(c) liminf, o I(pyn) = I(p).
(d) The potential U, is superharmonic.

The proof of this lemma is an easy exercise that we leave for the reader. The superhar-
monicity of U, is a consequence of the lower semicontinuity of U,,, the superharmonicity
of £, and Lemma 5.8 (a). For more details, alternatively, the reader may have a look at
[Lan72] or [Ran95].

Theorem 6.2 (Continuity principle for potentials). Given a compactly supported Radon
measure p in R%, if U, € C(suppp), then U, € C(RY).
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Proof. In the case d = 2, by a suitable contraction we can assume that diam(suppp) < 1/2,
so that E(x —y) > 0 for all x,y € supppu.

Since U, is continuous in R%\suppp we only have to check the continuity in suppy. For
each n > 1, let

= | e

Since the family of functions {f5} is monotone in ¢ and U,,|supp,. is continuous, the conver-
gence of fs to U, is uniform in suppu, by Dini’s theorem. Equivalently, U, (x) -0
uniformly on x € suppu as § — 0.

To prove the continuity of U, at a given = € supppu, fix € > 0, and take 6 € (0,1/4)
such that UXBg<z>N(Z) < ¢ for all z € suppu and such that p(Bs(z)) < e (that the latter
condition holds for § small enough is due to the fact that u has no point masses, because
Uu(z) < oo for all z € suppp). For y € Bjy(x), we write

B(;(ac)p“

Un() — Un()] < flaz—z|<5/2 E(x — 2)du(z) + flm_w £y — =) du(2)

+

f (Ex—2)— E(y— 2)) dp(2)
|lx—z|=6/2

The first integral on the right hand side is bounded above by €. The third one tends to
0 as y — z, because for a fixed 6 > 0, the function g(y) = S|x_z|>5/2 E(y — z)du(z) is
continuous in By (x). To estimate the second integral on the right hand side, let ¢ be the
closest point to y from suppyu. Notice that |y" — y| < |z — y| < 6/4, and thus y' € Bss(z).
It is immediate to check that then

|z =9 | < |z —y| for all z € suppp.

Thus, in the case d = 3, E(y — 2) < E(y — 2), and so, using that y' € suppp,

| ew-naes| e - x| e -2die) se
|z—2]|<5/2 Bsa(x) Bs(y')

In the case d = 2, we have |y —z| > |y — 2| for z € Bj,_,(y') and so E(y—2) < E(y' —2)
for such z. On the other hand, for z € suppu\Bj,_,|(y'), we have |y — 2| ~ [y — 2| and
thus

|

/
— ) = — 1
Ely—2) =&y —2)+log T

<&@y —=z2)+C.

Therefore,

j E(y— 2)dulz) < f E( — =) du(z) + C j(Bpal))
|z —2|<6/2 Bsa(x)

< J E(y' — z)du(z) + C u(Bsja(x)) < e.
Bs(y')

55
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So for any dimension, we have

limsup |Uy(z) — Uu(y)| < € + limsup ‘ J (Ex—2)—E(y—=2)) du(z)| ~ .
x—2z|=0/2

y—z Yy—z

Since ¢ is arbitrary, we have that U,(y) — Uu(z) as y — . O

Theorem 6.3 (Maximum principle for potentials). Given a compactly supported Radon
measure p in R, if U,(z) < 1 p-a.e., then U,(z) < 1 everywhere in RZ.

Proof. Again, by contracting suitably suppu, we can assume that diam(suppp) < 1/2 in
the case d = 2.

Let E = suppu. For any 7 > 0, by Egorov’s theorem, there is a compact subset
F = F; < E such that p(E\F) < 7 and so that Uy, .(z) converges uniformly to 0 in F'
as € — 0.

We claim that U, ., is continuous in R?. Indeed, by the preceding theorem, if suffices
to show that U,,, € C(F). To prove this, for any ¢ € (0,1/2) and z,2’ € F such that
|z — 2| < &%, we write

E(x —y)du|r(y) +J E(z" —y)dulr(y)

|lz—y|<e

V(o) = U@ < |

|z—y|<e

' JLfc—z/|>5 ’5(33 —y) —E(@' - y)‘ dulF(y)

The first integral on the right hand side tends to 0 as € — 0 (uniformly on x € F'), and
the same happens with the second one, taking into account that {y : |z —y| < e} < {y:
|2’ — y| < 2e}. For the last one, in the case d > 3, for y,z,2’ € F such that |z —y| > ¢
and |z — 2’| < ¢, we have
c c |lx — /|

_ < e.
ey TR ey

E(x —y) — €@ —y)| =

In the case d = 2, observe that

<e, for y,x, 2’ such that |z —y| > € and |z — 2'| < &2,

2" — | ‘ |z —
|z — y| Tz —y

and thus, for some constant C' > 0,

/
E(x —y)— E(' — z‘lo |x—y\‘$€'
E(z—y) ( y)| gx_y|

Then, for any dimension d,

f| ‘ [E(@ —y) — €@’ —y)|dulr(y) < epn(F).
r—y|>€
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Therefore,
lim  sup  |Uypeu(@) = Uypu(a)] = 0,
e—0 z,2'€F:|z—1'|<e?

and thus the claim holds.

Notice that Uy ., (z) < Uu(z) < 1 for all z € F. Further, in the case d = 3, Uy () — 0
when z — 00, while in the case d = 2 we get Uy ,.,(z) — —o0. Since Uy, is harmonic in
RAF and continuous in R, by the maximum principle (applied to Qr = Bg(0)\F and
letting R — o0), we deduce that U, ,.,(z) <1 for all z € R\ E < R F. Now we just have
to write

Up(x) = Uypp(z) + UXE\FH(x) <1+ UXE\Fﬂ(x>7

and note that Uy, ..(z) — 0 for any 2 € R\E, as 7 — 0 (recall that u(E\F) < 7). O

E\FH

6.2 Capacity

Definition 6.4. Given a bounded set E c R?, we define its capacity Cap(E) by

1

Cap(E) B inf,u,eMl (E) I(M) ’

(6.3)

where the infimum is taken over all probability measures p supported on E. When d > 3,
Cap(FE) is also called the Newtonian capacity of E, and for d = 2, the Wiener capacity
of .

In the case d = 2, quite often we will write Capyy, (E) instead of Cap(F). Remark that
Capy, (F) may be negative, and we allow this to be infinite too. On the other hand, if
diam(E) < 1, then E(z —y) > (2m) 7! logm > 0 for all z,y € E, and it follows that

inf e pr, () I (1) > 0, and so 0 < Capyy (E) < c0.!

Definition 6.5. Given a set E — R?, we define its logarithmic capacity by

. _ 27
Cap; (E) = e 2minfuen 2y I(1) — o~ Capy (B)

It is immediate to check that if E < F, then Cap(F) < Cap(F') for d = 3 and Cap (E) <
Capy (F) for d = 2.2 Another trivial property is that the capacities Cap, Capyy, and Capy,
are invariant by translations. Further, the Newtonian capacity is homogeneous of degree
d — 2 when d > 3. That is, for a given A > 0 and E < R?, we have

Cap(AE) = X%72 Cap(E).

This follows easily from the fact that the fundamental solution £ is homogeneous of degree
2 —din R?% d > 3. In the case d = 2, £ is not homogeneous, and the behavior of Capy,

'We will see below that this also holds if E is contained in Bi(0).
?In the case d = 2, the inequality Capyy, (E) < Capyy, (F) fails if Capy, (F) < 0, and it holds if Capyy, (F) >
0, and in particular if diam(F) < 1.
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under dilations is more complicated. To study this, denote T)(x) = Az, so that if p is a
probability measure supported on E, then the image measure Th4u (see definition 4.8) is
another probability measure supported on AE. Then, by Theorem 4.10 we have

1 1
(T, = — || log — dT. dT’
(Dyper) = 5 H S p— (@) ATy p(y)
1”10 b @) duly) = T(0) — = log
S or g|/\x—/\y| a HY) = 1) = 5 108 A
Taking the infimum, we derive

1
inf I(n)= inf I(p)— —1logA,

neMy(\E) peMi (E) 2
So we get
1
Capy (AE) = i :
—— — Llog\
Capy (E) "

In particular, notice that for A big enough we have Capy, (AE) < 0 3. On the contrary, in
the case d > 3, Newtonian capacity is always non-negative. The rather strange behavior
of the Wiener capacity under dilations and other related technical issues is one of the
motivations for the introduction of logarithmic capacity. Clearly, Cap(E) = 0 for any
compact set E, and moreover for any A > 0,

27 o
Capy(AE) = e Canw (@ T8N _ A Capy (F).

So the logarithmic capacity is homogeneous of degree 1.

Remark 6.6. Note that given a bounded set F, the potential of the Lebesgue measure
restricted to E is bounded. In particular, if £ has positive Lebesgue measure then its
capacity is not zero. One can also check that if U, is a bounded potential, then ; must
vanish for sets of capacity zero.

Lemma 6.7 (Outer regularity of capacity). For any compact set E < R? and let Vj,,
n = 1, a decreasing sequence (i.e., V, © Vpi1) of open sets such that and E = (), Vy.
Then

nli_r)rgo Cap(V,,) = Cap(E) ford =3

and
lim Capy(V,,) = Capp(E) ford=2.

n—00

Proof. This is a straightforward consequence of the semicontinuity property of the energies
I(uy) in Lemma 6.1 and Theorems 4.11 and 4.12. We leave the details for the reader. [

3 Also, formally, Capyy, (AE) = oo in case that = % log .

1
Capy, (E)
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We say that a property holds g.e. (quasi everywhere) if it holds except on a set of
capacity zero.

Theorem 6.8 (Existence of equilibrium measure). Let E = R? be a compact set with
Cap(E) > 0. There ezists a Radon probability measure p supported on E such that

_ 1
- I(p)

Further, any such measure satisfies U, (z) = (Cap E) ™! g.e. x € E and U, (z) < (Cap E) !
forall z e E.

Cap(E)

Proof. Remark first that, for the case d = 2, by contracting F suitably, we can assume
that diam(F) < 1/2, so that E(x —y) > 0 for all z,y € E.
Let
v = 1inf{I(p) : suppp < E and p(F) = 1}. (6.4)

By the lower semicontinuity of I, see Lemma 6.1 ¢), there exists a measure p realizing this
infimum. Since all the measures in the infimum are supported in the compact set E, so is
the minimizer u, which is also a probability measure, see Theorems 4.11 and 4.12.
Next we claim that
Uu(xz) =~ qe. z€FE. (6.5)

We prove this claim by contradiction. Let
T.:={rveFE:Uyx) <vy—c¢}

and assume that Cap(7;) > 0. Then there exists a probability measure 7 supported on T
with I(7) < o0. By Chebyshev and reducing and rescaling 7 if necessary, we may assume
that U, (z) < K < o for a suitable K > 0. For § € (0,1), let

ps = (L= 0)p + o,

which is also a probability measure. Note that
s) = [[ €6 =) (1= )auty) + 8dr(w)) (1 = 8) du(a) + Sar(a)
(1= 8)20 () + 26(1 — ) Hg(x — y)dpdr + 621(7)
=~y — 20y + 25JUudr +0(6%) <y =20y +26(y — ) + 0(6%) <~
for § small enough. This contradicts the fact that 4 minimizes (6.4). Therefore, Cap(7;) =
0 for every € > 0, that is, the claim (6.5) holds.

We also claim that
Uu(x) <~y for every z € E. (6.6)
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Let v := p|r,. Then U,(x) < Uy(x) < v — ¢ for z € T.. By the maximum principle U,
is bounded and therefore v(7T;) = 0 (see Remark 6.6), i.e., u(7z) = 0. Since T, / Tp, by
Lemma 4.3 we get that u(7p) = 0. We have that

vzl(u):f Uud,u~|—j U#d,u+f Uy dp.
{Uu>~} {Uu=n} {Un<~}

The third integral is zero and therefore, since p is a probability measure, we infer that
the first integral must be zero as well, so u({U, > v}) = 0 and therefore (6.6) holds p-
almost everywhere. The lower semicontinuity property of U, (see Lemma 6.1 a)) implies
that (6.6) holds everywhere in the support of p and by the maximum principle it holds
everywhere. O

We will show soon that, for a compact set E with positive capacity, the probability
measure 4 supported on E such that Cap(E) = ﬁ is unique. This probability measure
i is called the equilibrium measure of E, and its potential Uy, the equilibrium potential

of F.

Corollary 6.9. Let E be compact with Cap(E) > 0 and let p be an equilibrium measure
of E. Let v be another Radon measure and let A = {x € E : U,(z) < o}. Then U, equals
(Cap E)~! v-a.e. in A.

Proof. In the case d = 2, we assume that E' c B;;(0). For k > 1, let Ay = {z € E :
Uy(z) < k and U,(z) < (Cap(E))~'}. If v(Ag) > 0, then the (non-zero) measure 7 = vy,
satisfies

Ur(zr) <Uy(x) <k forall x e Ag.

So we deduce that I(r) < +o and so Cap(Ag) > 0. This contradicts the fact that
Uu(z) = (Cap(E))~! q.e. in E. O

Before proving the uniqueness of the equilibrium measure, we need to prove the following
positivity result for the energy of signed measures. Remark that for a signed measure, its
potential and its energy are defined in the same way as in (6.1) and (6.2), as soon as the
corresponding integrals make sense.

Theorem 6.10. Let v be a compactly supported Radon signed measure in R? such that
I(|v]) < 0. Assume also that v(RY) = 0 in the case d = 2. Then

I(v) = 0.
Further, 1(v) > 0 unless v = 0.

The fact that I(v) is always non-negative (under the assumptions above) is quite re-
markable. Observe that in the case d = 2 the assumption that v(R?) = 0 cannot be
eliminated. Indeed, if F' is a compact set with Cap; (E) > 1, then its equilibrium measure
w satisfies I(p) < 0.
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Proof. Assume first that, besides satisfying the assumptions in the theorem, v is of the
form v = g £¢, where L% is the Lebesgue measure and g € C*(RY). Then &€ # g is a C®
function and we have

g=—A(Exg).

In the case d = 3, since 0 < £(x) < |z]?>~%, we have

1
|E * g(x) and |VE=x*g(x)| <4 2T (6.7)

| s_q ‘I”d_2

as x — o0. Then, by integrating by parts, it easily follows that
I(gL%) = f(g xg)gdL? = — f(g £ g) A(E + g)dct 'Y JIV(E xg)|? dL? (6.8)

(notice that all the integrals above make sense because of (6.7). In the case d = 2, since
v(R?) = 0, it is immediate to check that we have the improved decay
£5g@)| Sy and VE=g(0)] S, (69)
xg(z)| <g —— an xg(r)| <q — .
SIS g S gl
as ¢ — 00. Then we can integrate by parts again to deduce that (6.8) also holds. In any
case, in particular, the identity (6.8) shows that I(g£%) > 0.
Consider now an arbitrary signed measure satisfying the assumptions of the theorem.
Consider a radial non-increasing C* bump function ¢ such that 0 < ¢ < xp,) with
§o =1 and, for e > 0, set p.(z) = 6%@(5_1:3). Then the measure v, = @, * v is of the

form v, = g., with g. € C°(R?), and has zero mean in the case d = 2. So by (6.8) it holds
I(ve) = J|V5 * Vs|2d£d = 0. (6.10)

So to prove that I(v) = 0 it suffices to show that I(v.) — I(v) as ¢ — 0. To this end,
applying Fubini we write

I(ve) =j(@e*g*y)gpg*l/dﬁd=j(<p€*<p€*5*y)dy_

Observe now that, for any = € R, since ¢, * ¢, is C® with unitary mass, radial non-
increasing, and compactly supported, then it is a convex combination of functions of the
form m XB,(0) (see the proof of Lemma 5.8). Since £ is superharmonic, by Lemma

)

@ # e x E(x) < E(x)  for all z € RY (6.11)

(this could also be checked by a direct computation), and also . * ¢, * E(x) — E(z) as
e — 0 for all z # 0.

We claim that in the case d = 2 we can assume that suppr < By ;4(0). Indeed, for any
A > 0, consider the dilation Thxz = Az. Then, for a suitable A > 0, it turns out that the
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image measure (7)4v is supported on By (0) and it satisfies

1) 40) = o [ 108 [ AT @ AT 400
- % H - W dv(x) dv(y) = I(v) — % v(RY)?log A = I(v),

which yields the claim.

So for any d > 2 and ¢ small enough we can assume that £(z —y) > 0 for all z,y €
suppr U supple. Then, by the dominated convergence theorem, for all x € suppr such
that & * |v|(z) < oo, taking into account (6.11) and the fact that ¢, * p. % E(x) — E(x) for
all x # 0, it follows that

lim%goE . xExv(r) =E*v(x),
e—

and moreover & = v(x) < & * |v|(z). By another application of dominated convergence,
since I(|v|) < oo, we infer that

lim I(v.) = lim f(% v oo x Exv)dy = I(V), (6.12)
e— e—
which concludes the proof of the fact that I(r) = 0.

Next suppose that I(v) = 0. From the identity in (6.10) and (6.12) , we deduce that

limf|V5 xv2dL? = 0.
e—0

By an easy application of Fubini’s theorem, it follows that £ = v € L}OC(Rd). Now, we
can compute the distributional Laplacian of the induced distribution, which happens to
be precisely A(€ # v) = —v. On the other hand, it is well know that € * v, = ¢ % € *x v
tends to £ * v in L] _(R%), that is in L'(B,(0)) for any r > 0. Together with the Poincaré

loc

inequality, denoting by mp, (0)(€ * v) the mean of £ * v in B,.(0), this implies

J[ \S*y—mBT(O)(é’*l/)\dﬁd = lim € * ve —mBT(O)(g*Vs)’dﬁd
- (0) e=0 JB,.(0)

e—0

1/2
< lim ( ][ |V(E = Us)]2d£d> r(B) = 0.
B.(0)

So we deduce that &£ = v is constant a.e. with respect to Lebesgue measure. Since this
happens for any ball B,.(0) and £ = v tends to 0 at oo, it turns out that £ # v vanishes
a.e. Then, from the fact that v = —A(E * v) in the sense of distributions, we infer that
v=0. O

Theorem 6.11. Let E < RY be a compact set with Cap(E) > 0. Then the equilibrium
measure for E is unique.
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Proof. Aiming for a contradiction, suppose that there are two equilibrium measures p and
v for E. For t € (0,1), consider the measure

or=tpu+(1—1t)v.

Obviously, o, is a probability measure. Let us see that I(oy) < I(u) for ¢ small enough.
Indeed, we have

I(oy) = JE*atht =t*I(p) +t(1 —t)fc‘f*udl/—i—t(l —t)fg*ydu+ (1—1)*I(v)
= (1—2t)I(1/)+tf€*,udy+tf8*ydu+0(t2).
The sum of the two integrals on the right hand side can be rewritten as
JS*udV—i—JS*ydu—f&’*(,u—V)dl/—i-I(V)+J5*(V—ﬂ)du+l(u)
= 21(0) ~ [ £ % (= v)d(u—v) =210) ~ - v)
From the identities above, we deduce

I(o)) = (1=2t) I(v) + 2t I(v) — tI(pn — v) + O(t?) = I(v) — tI(n — v) + O(t?).

By Theorem 6.10, if u # v, then I(u —v) > 0, and so I(o) < I(v) = I(p) for ¢ small
enough, which yields the desired contradiction. O

Theorem 6.12. Let E < R? be compact, and suppose also that diam(FE) < 1 in the case
d =2. Then we have

Cap(FE) = sup {M(E) :pe My (RY), suppu < E, supU, < 1}. (6.13)
Rd

Here M, (FE) stands for the set of (non-negative) Radon measure supported on E.
Proof. The fact that diam(E) < 1 in the case d = 2 implies that £(x—y) > % log ﬁ(E)
0 for all z,y € E, which in turn implies that I(u) is positive and bounded away from 0 for
any measure p supported on E, and so Capy, (E) = Cap(F) = 0.

Denote by Sg the supremum in (6.13). In case Cap(E) = 0, then every pu € M, (E)
satisfies I(p) = +o0. In particular, we infer that the potential U, is not bounded above
in the support of p. Thus, the only measure in the left-hand side of (6.13) is the null
measure and Sg = 0 = Cap(F).

Let us assume Cap(E) > 0. The fact that Cap(E) > Sg is immediate: for € > 0, let p
be supported on E such that supgs U, < 1 and such that p(E) + e > Sg. Consider the
probability measure v = pu(E)~!u. Then

>

10) = u(B) 2 1(0) = (B ? [ Uplo) o) < ()"
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Therefore,
Cap(E) = I(v) ™' > w(E) = Sg — .

For the converse inequality, consider the equilibrium measure v of E, so that U,(z) <
Cap(E)™! for all x € R?, by Theorem 6.8 and Theorem 6.3. Then the measure p =
Cap(E) v satisfies supga U, < 1 in R? and thus Sg > u(F) = Cap(E).

O

Remark that the supremum in (6.13) is attained for E uniquely by the measure Cap(FE) v,
where v stands for the equilibrium measure of E. This can be shown arguing as in Theorem
6.12.

Corollary 6.13 (Subadditivity of capacity). For Borel sets E, = R, with diam(| J,, E,) <
1 in the case d = 2, we have

Cap (U En) < Z Cap(E,).

Proof. Let F' < |J,, E,, be compact and let p be supported on [ J,, £, be such that |U,[le <
1 in R? and pu(F) = Cap(F). Then |Uy, _ulewe < [Uulee < 1 for any n, and thus
w(Ey, n F) < Cap(E, n F) < Cap(E,). Therefore,

Cap(F) = u(F) < Y p(En 0 F) < Y Cap(Ey).

Since this holds for any compact set F' | J,, By, we are done since, by the definition of
capacity,
Cap(E) = sup Cap F.
FcFE:F is compact

O]

Lemma 6.14. For any Radon measure jn in RY with compact support and let X\ > 0. In
the case d = 3 we have

Cap ({z € RY: U, (z) = A}) < |§f|
In the case d = 2,

Cap ({z € By2(0) : Up(z) = A\}) < /;\|
Proof. Consider a compact set E < {z € R? : Uy(z) > A} (in the case d = 2, E <
{z € B1;2(0) : Uy(z) = A}) and let v be supported on E be such that supga U, < 1 and
Cap(F) = v(F). Then we have

1 1 [l
Taking the supremum on such sets £, the lemma follows. O
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Proposition 6.15. For a ball B < R?, we have
Cap(B) = (d — 2)rqr(B)™2  ifd >3,

and
Capy(B) =r(B) ifd=2.

Proof. Without loss of generality, assume that B is centered in the origin and that it is
closed. In the case d = 2, by homogeneity we can assume 7(B) < 1/2. Let x € B and
notice that £%(y) := £(x—y) is harmonic in the interior of B. Let o be the surface measure
on ¢B. Then by the mean value theorem,

U, (x) = ng@: ) do(y) = 0(0B) E(w — 0) — o(0B) E(x).

Note that U, is constant in ¢B by symmetry, and therefore it is continuous in R? by
the continuity principle. Thus, the same identity holds on 0B. Therefore, using also the
maximum principle, in the case d = 3, we get

_ kqr(B)41 r(B

B B _ B B )
slgf U, = S;%p Uy =0(0B)E(r(B)) = (d—2)kgr(B)4—2 d—2

Therefore, the measure p = (d — 2)r(B) ™o satisfies supga U, = 1 and so
Cap(B) = u(B) = (d - 2)r(B) 'o(B) = (d — 2)rar(B)" .

For the converse estimate, remark that in fact the measure yu satisfies U, = 1 in 0B.
Since p is supported on 0B and U 4 is harmonic in the interior of B and continuous in its
closure, by the maximum principle it is identically 1 in the whole B. Then, from Lemma
6.14 we deduce that Cap(B) < u(B) = (d — 2)kqr(B)92, which proves the lemma in the
case d = 3.

In the case d = 2 we argue analogously. Indeed, it is straightforward to check that,
for all x € 0B we have we have U,(x) = r(B) log T%)' Then, by the same arguments as
before, it follows that
27

log

CapW(B) = 1 >

r(B)

and so Capy,(B) = r(B). O
As a corollary of the preceding estimate for the logarithmic capacity, we obtain:

Corollary 6.16. Let y be Radon measure supported on the (open) ball B1(0) = R2. Then
I(p) > 0.

Proof. Let E = suppy. Since E' < B1(0), there exists some p € (0, 1) such that & < B,(0).
Consequently, Cap; (E) < Capy(B,(0)) = p < 1. Thus, e~2™(*) < 1, which implies that
I(u) > 0. o
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A quick inspection of the arguments above shows that Cap(B) = Cap(dB) for any ball.
This also holds for any arbitrary compact set. In fact, we show below that the capacity of
a compact set equals the capacity of its outer boundary. For E ¢ R% compact, its outer
boundary, denoted by 0,F, is the boundary of the unbounded component of R\ E.

Theorem 6.17. For any compact set E c R?, we have Cap(E) = Cap(d,E) (and so
Capr,(E) = Capr,(0oF) in the case d = 2).

Proof. First we show that Cap(E) = Cap(dF). To this end, it suffices to show that the
equilibrium measure p of E is supported on JF (in the case d = 2, if necessary, we can
assume that £ < By3(0)). To prove this, recall that by Theorem 6.8 U, (z) = (Cap E)~*
g.e. x € FE. In particular, this holds a.e. in the interior of E with respect to Lebesgue
measure, see Remark 6.6. Since —AU, = p in the sense of distributions, for any C®
function ¢ supported on the interior of E, it holds

f@du = Uy, Ap) = —(Cap E)_lf Ap =0.
suppy

Thus p vanishes identically on the interior of E, which shows that suppu < J0F.
To show that Cap(E) = Cap(d,E), let Q be the unbounded component of R\ E and

'~

let £ = RAQ (so that E coincides with the union of £ and the bounded components of
RAE). Then we have 0,E = 0E and

0bEcoFEcEcC E.
Since Cap(E) = Cap(d,E), we also have Cap(E) = Cap(0,E). O

Remark 6.18. From the uniqueness of the equilibrium measure and the fact that Cap(F) =
Cap(d,F), it follows that the equilibrium measure of F is supported on 0,F.

6.3 Relationship between Hausdorff content and capacity

Lemma 6.19. Let E ¢ R? be compact and d — 2 < s < d. In the case d = 3, we have

a—2

HE(E) S SsqCap(E) Sq HE2(E).

In the case d = 2, we have

@ =

Capr(E) 2s Ho(E)*

Proof. First we consider the case d > 3. To check that Cap(E) < H%2(E), for any £ > 0
we consider a covering of F by a family of open balls B;, ¢ > 1, such that

Dir(B)T? <a HE2(E) +e.

%
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Since F is compact, we may assume that the family of balls B; is finite. Then, using the
subadditivity of the Newtonian capacity (see Corollary 6.13) and Proposition 6.15, we get

7

Cap(E) < Y Cap(Bi) ~ ) 7(B)"> <4 HS *(E) + ¢,

which shows that Cap(E) <q HL2(E).
To see that Cap(E) Zsq Hf.O(E)%, we apply Frostman’s Lemma 4.15. This tells us
that there exists some Borel measure p supported on E such that

Hey (E) ~a () (6.14)

and
w(B,(z)) <r® forall z € R? and r > 0. (6.15)

Then, for all z € R? we have

1 @ _
cUp(z) = Jd_gdu(y) = f p({y e —yP~">t})dt
lz —yl 0
2—d
© L 6.15) (u(E) s 0 s d—2
:f p(B(z,t74)) dt < f 1(E) dt+J ot dt ~g g p(E) TS
0 0 p(E) s
Therefore,
6.13) p(E) w(E) d—2 (6.14 R d—2
Cap(E) > 20 — ()5 R )

[_d=2

1O0ule ™% ()=

In the case d = 2, we may and will assume that diam(FE) < 1 since, for any A > 0.

=
=

Capy(AE) = X Capy(E) and HL(AE)s = AXH(E)s.

@

We apply again Frostman’s Lemma to get a measure p supported on E satisfying (6.14)
and (6.15). Then, for any 7 > 0 for x € suppp we have

21U, (z) = Jlogl du(y) = Loou<{y : log \xiy\ > t}) dt

|z =y
e 6.15) T e 1
— J p(B(z,e ")) dt < J w(E)dt + J e Sdt = Tu(E) + ~e 5.
0 0

. s

6.15
We choose 7 = —1log u(E) (notice that 7 > 0 because u(E) < 1, since diam(E) < 1),

and then we obtain (®) )
7
2rU,(z) < — log—i—l).
(o) < 2 (o

Hence, for the probability measure o = p(E)~'u, we have

1 1
2nl(o) < - (log + 1) :
s
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Therefore,
1 2ms
CapW(E) > > 1 ’
or equivalently,
log u(E)— 6.14
Capy(E)=e 0 =C(s)p(E): ~ s H(E)*

O]

Remark 6.20. It can be shown that if H? 2(FE) < co, then Cap(E) = 0. See [Mat95,
Theorem 8.7], for example.

6.4 Wiener’s criterion

Given a bounded open set Q = R?, by Theorem 5.30 and Theorem 5.31, a point & € 0
is regular (for the Dirichlet problem) if and only if there is a barrier function for £ in €.
In this section we show a characterization of more metric-geometric type. This is the so
called Wiener’s criterion.

Theorem 6.21 (Wiener’s criterion). For d = 2, let Q = R? be a bounded open set and let
£ € 0. The following are equivalent:

(a) & is a regular point.

2 Cap(A(6, 2751, 29\
®) 2 GapBe2 M)

Here A(£,71,72) denotes the closed annulus centered at ¢ with inner radius r; and outer
radius 7. Recall also that in the case d > 3, Cap(B(£,27%)) ~ 27%(@=2) and in the case
d =2, Cap(B(£,27%)) = Capy, (B(£,27%)) ~ 1/k. Thus, in the latter case, the condition
(b) is equivalent to

(b") i k Capyy (A(g,27F1 27F)\Q) = 0.
k=1

Remark 6.22. In the case d > 3, the condition (b) is equivalent to

o & Cap(B(€,27H)\Q)
) 2 Gap(Ble. 2 7)

= 0.
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Indeed, it is trivial that (b) = (b”). To see that (b”) = (b) we use the subadditivity of
Newtonian capacity to write

Ca NQ) Cap( 2-I=1 27\ Q)
3 SoPEIN 5 5 Coplde 2T 2 9\

k=1 Cap(B( k=1j=k p(B(§,277))
1
=Y C 2771 27IN\Q _ —
- 2, ColALe M) 2. Gant B 777

Now observe that the last sum on the right hand side is comparable to »;, y ok(d=2) ~
21(4=2) ~ Cap(B(€,277))~ L. Thus,

ZCap ZCap 523123)\(2)
& Cap(B §2k ) N4 Cap(BE2d)

which yields the desired implication.

6.4.1 Sufficiency of the criterion for Wiener regularity

Proof of (b) = (a) in Theorem 6.21 in the case d = 3. We will construct a barrier @ :
Q) — R for the point £&. We will show that there exists a harmonic function w :  — R
satisfying:

(i) limosg—e w(z) = 1.
(ii) limsup,_ . w(z) <1 for all ¢ € 0Q\{¢}.

Then we just have to take w = 1 — w to get the desired barrier.

To shorten notation, write A, = A(£,27%"1 27%), B, = B(¢,27%), and By, = By,. For
a fixed large constant A > 10 to be chosen below and for any ng > 1, the condition (b)
ensures the existence of natural numbers N, M, with ng < N < M such that

A < Z M < A + 1
Neren Cap(By)

(notice that each summand in the sum above is at most 1). For each k > ny, if Cap(A4;\Q2) =
0, define p1x = 0 and if Cap(A;\Q) > 0 let py be the equilibrium measure for A;\2. Con-
sider the function

ur(z) = Cap(Ax\Q) Uy, (x);

and set

N<k<M

Claim 6.23. Let d > 3. For any e > 0, if A = A(e) is chosen large enough, the function
v satisfies
v(€) ~ A, (6.16)
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v(x) < (L+e)v() forallzeQ, (6.17)
lv(z) —v(§)| < CLJEB_M%' v(€)  for all z € Qn By, (6.18)

and 1
v(z) < M v(€)  for all x € O\By_g, if ko = 2 is large enough. (6.19)

Remark that the constant kg in the last estimate does not depend on . In the case
N — ko < 0, we understand that By_ ko = 2ko By

Proof of the Claim. The estimate (6.16) is easy: for each k € [N, M] we have

ur(€) = Cap(Ax\Q) Uy, (€) ~ Cap(Ax\Q) €(r(By)) ~ w
Thus, .
Coy Cap(Ane)
U(é)wN;SM Cap(By) (6.20)

Next we turn our attention to (6.17), which is the most delicate part of the claim.
Notice first that, by the maximum principle, it suffices to prove this for z € By\By; =
Un<i<nr A;. So fix z € A;, with N <i < M. For some h > 1 to be chosen soon, we write

i—h—1 M ni+h M
Z ug(z Z ug(x) + Z up(z) =: ve(x) + vp(x) + ve(z).
k=N k=Nvi—h k=i+h+1

To estimate vy(x) we just take into account that
up(y) < Cap(A\Q) Uy, (y) <1 for all y € R,

by Theorem 6.8. So we deduce
vp(x) < 2h + 1.
To deal with v, (), we will use the fact that, |z — &| < 7(B;) < 27%27" for k < i — h,
implying

up(@) = u(€) + (ur(2) — u(§)) = w(§) + Cap(Ap\Q) (U, (2) — Uy, (€)) (6.21)

< up(§) + C Cap(4;\Q) dist|(52_;1i|)dl
< ug(§) + C Cap(A4,\Q) (355)61)1

h Cap(Ak\Q)
<up(§)+C27 “Cap(By)

For v.(z), we take into account that for k > i + h we get 7(B;) > 2"r(By), so

Cap(A;\Q) ap(A \) _n(d—2) Cap(A;\Q)
dist (2, Ay)d-2 <c” (B) <O B

ug(z) <
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Consequently, gathering the estimates obtained for &k < i — h and for k£ > i + h and using
also (6.20), we get

—h Cap(!‘ik\g) —h
Vo () + ve(z) < NgéM up(€) +C2 NggMCap(Bk) <w(é) +C27Mw(e).

Ch
v(z) = va(x) + vp(x) + ve(x) < v(E) + (2h+ 1) + C 27" v(€) < v(€) (1 T 027h>.
So choosing h large enough and then A large enough as well, (6.17) follows.
To prove (6.18), we can assume z € 3B because of (6.17). Arguing as in (6.21), we

obtain

lz—¢  _ . Cap(Ap\Q) |z — ¢
dist(¢, Ap)d=1 ~ 7 Cap(Bg) r(Bu)’

lug(x) — up(€)] < C Cap(Ax\Q)

Summing over k € [N, M] and using (6.20), we deduce (6.18).
Finally we deal with (6.19). So we take x € Q\By_g,, for ko = 2. Then we have

() ~ Cap(Ax\Q) _  Cap(4x\Q)

~ 9o(2—d)k
~ dist(z, Bp)d2  2@=2ko(By)d2 20700 44 (¢).

Hence, summing on k € [N, M], we obtain

v(z) £ 207D N (g) = 207 DRy (g),
N<k<M

d

Applying the preceding claim, we construct sequences of natural numbers N;, M;,
and functions vj;, for j > 1, as follows. We choose Ny = 1, My = 2. Assuming that
Nj_1 < M;_; have already been chosen, by applying Claim 6.23 with some € € (0, 1/2)
to be fixed below and ng = M;_1 + ko, for some kg > 2 to be fixed below too, we find
M; > N; = ng so that the function

vj(z) = 2 ug ()

NjSk’gMj

satisfies (6.16), (6.17), (6.18), and (6.19) (with v; in place of v). Now we define

we) = Y27 Z; ((Z)) (6.22)

Obviously, w(¢) = 1 and it is easy to check that w is superharmonic in R¢ (since each
function v; is superharmonic by Lemma 6.1). Consequently,

limi?fw(y) >w() =1 (6.23)
y—
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Our next objective is to show that
limsupw(y) < 1 for all ¢ € 0Q\{¢} and w(y) <1 for all y € Q. (6.24)
y—=¢
Observe that the latter condition together with (6.23) implies the condition (i) above, i.e.,
limgsy—¢ w(y) = 1. To prove (6.24) it suffices to show that for any h > 1 there exists
6y, > 0 such that . )
w(r) <1—46, forall x € By, \Bum,,,- (6.25)

To prove this, for a given x € BMh\BMthl’ we split

h—1
_ —j v; () _nVn(T) ho1Vht1(T) —j v;(7) _.
w(z) ;12 Uj(€)+2 vh(£)+2 ”h+1(5)+j>zh+22 o @) : 81 + S5+ S5+ Sy

By (6.18), the first sum satisfies

h—1 h—1 h—1
L) S () — (€]
S = 277 < 277 + 27—
P L R PIERR Y %)

<@-27Mh4o ) 27 (127 0 ) 27T 2Rlh),
a 7(Bu;) a

where we took into account that r(Bay,,,) < 2_k0r(BMj) for each j, by the construction
of the sequence M;. For kg > 3, we have

h—1 2—h 2—h

—doko(i—h) _ _ o—h—ko+2
ZQJQO(J )_2k071_1<2k072_2 0+2

j=1

Thus,
Sp < (1—27hhy 4 ga7hho,

For Sy and S3 we apply (6.17):
Sy + S35 < (1+e)(27" 42701,

Finally we estimate S4. For this term we use the fact that if x ¢ BMthl and j = h + 2,
then by (6.19) we have vj(z) < 15 v;(£), assuming ko large enough. Therefore,

1 1

Sy < — 277 = —97h=1 2

Y10 2 10 (6.27)
j=h+2

Gathering the estimates for S1,...,.S, we obtain

1
w(z) < (1—-27"M) 027k 4 (1 4 )27 42771 ¢ —27h-1

10
9 3¢
=1-27"(= —c27ho - ).

<20 ¢ 2>

Then, choosing ¢ small enough and kg large, we derive w(z) < 1 — 27"72 which proves
(6.25) and completes the proof of (b) = (a). O
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Proof of (b) = (a) in Theorem 6.21 in the case d = 2. The proof is very similar to the
one above for d > 3 and so we only point out the differences in the argument. Given
1 <nyg <N < M, we define the functions u; and v as above. Then the estimates (6.16),
(6.17), and (6.18) in Claim 6.23 also hold if A is chosen large enough, while for (6.19) we
require now that ky > 10N /11 and N large enough.

The proof of this variant of Claim 6.23 for the case d = 2 is very similar to the one for d =
3. Indeed, (6.16) has the same proof. Regarding (6.17), we split v(x) = vg(z)+vp(x)+ve(x)
as in the case d > 3. We have vy(z) < 2h + 1 by the same arguments as for d > 3. To deal
with ve(z) we estimate the functions uy for k < i — h by arguments quite similar to the
ones in (6.21). Indeed, notice that

log yl

dp(y

|m%@»—m%@nsj

10g<1+ !w—y!—!w—ﬂ)‘ lz — ¢
3] lz —y|’

[z ¢
diSt(S, Ak) '

Writing
y!
€ —

‘log
we deduce
|UMk (z) — Uuk(f)‘ <
Thus,
up(z) = ug(€) + Cap(Ap\Q) (U, (2) — Uy, (€)) (6.28)
() + € Can(AND) e S
r Bz)
T Bk)
< up(§) + C27" Cap(A\Q) Uy, (6),

where we used the trivial bound U, () = 1 in the last inequality for N large enough. For
ve(x), we take into account that for k > i + h we have

ug(x) < Cap(Ax\Q) E(dist(x, Ay)) < Cap(Ax\Q) E(cr(B;))

<0am%vnf6@—ywwa>. 5f“2”y)<uu®,
yek

uk(€) + C Cap(Ax\Q)

since E(cr(B;)) < infy g, E(€ —y) for k> i+ h with h large enough.
Consequently, gathering the estimates obtained for k < ¢ — h and for kK > i + h and
using also (6.16) and (6.20), we get

va(@) +ve(x) < (1+C027") Y7 wp(§) = (1+C27")0(€).

N<k<M

v(z) = va(x) + vp(x) + ve(x) < v(E) + (2h+1) + C 27 w(€) < (g)(1 T % +C2” )
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So choosing h large enough and then A large enough, we get (6.17).

The proof of (6.18) also follows by arguments very similar to the ones for the case d = 2
and so we skip them.

Finally we deal with (6.19). So we take z € Q\Bx_j,, for ko = 10N /11 and N large
enough. For x € By /5(€), then we have

su c _k' 5 Xr —
Uy, (2) = jé’(m —y) dug(y) < JE(S — ) dpx(y) in?jejk 5((5 - j))

log(c 2% r(By)) _ ) C+ N —ko
log(¢r(By)) ™ C'"+N

< Ui (€)

From the condition that ky > 10N /11 we deduce that N — kg < N/11, and thus for N

large enough it holds Cgﬁ;\fko < %0' Hence, multiplying by Cap(4;\Q2) and summing on

k € [N, M], we obtain

v(z) < L Z ug(§) = %v(f) for all 7 € Q\By_,-

To complete the proof of (b) = (a) we choose sequences N; and M as in the case d > 3,
but with the additional requirement that N; > 20M;_; for each j, say. This condition
ensures that we will be able to apply (6.19) to estimate the term Sy in (6.26) arguing as
in (6.27). Then almost the same arguments as the ones for the case d > 3 show that the
function w defined in (6.22) is barrier for £&. We leave the details for the reader. O]

6.4.2 Necessity of the criterion for Wiener regularity

Recall that in Definition 5.36 we introduced the notion of Wiener regularity for unbounded
open sets with compact boundary. Before proving the necessity part in Theorem 6.21, i.e.,
the implication (a) = (b), we need the following auxiliary result.

Lemma 6.24. Let E < R? be compact with Cap(E) > 0 and let Qp be the unbounded
component of R\E. Suppose that Qg is Wiener regular and let p1 be the equilibrium mea-
sure for E. Then the equilibrium potential U, is continuous in R? and U, = (Cap(E))~*
identically on E.

Proof. Without loss of generality, we assume that £ < B; /2(0). For r > 2 we denote
Qp, = Qg n B,(0) and we let u, be the solution of the Dirichlet problem in Qp, with
boundary data:

L _ [ (Cap(E)7! inQp,
"l Uy in 0B,(0).

We extend u, to £ = RN\QE by setting u,(z) = (Cap(E))™" for x € E, so that u, is
continuous in B, (0), by the Wiener regularity of Q.
Observe that, for all £ € 0Q g,

0 < limsup(u, (z) — Uy () < (Cap(E)) ™.

z—E
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Therefore, since u, = U, in dB,(0), by the maximum principle we get

lur = Unlloo.2p,, < (Cap(E))~".

As this estimate is uniform in r, we deduce that there exists a sequence r; — o0 such that
ur, converges locally uniformly on compact subsets of 2 to some function u harmonic
in Q. In particular, it converges uniformly on 0Bj(0). Since u,, equals (Cap(E))~! in
0Qp for all k, by the maximum principle it follows that the convergence is also uniform in
Qg n B1(0). Then we deduce that u is continuous in Qg and so it extends continuously to
the whole R?. Further, u equals (Cap(FE))~!in E, u < (Cap(E))~! in Qp, and together
with the fact that w is continuous in R? and harmonic in Qp, this implies that u is
superharmonic in R?. Notice also that

lu = Uplop ea < (Cap(E))~".

The preceding estimate implies that « is non-constant in the case d = 2, since U, (z) —
—0 as |z| — oo. In the case d > 3, it is also easy to check that u is non-constant. Indeed,
let 4, : A1,(0) — R be defined by

Uy (x) = Cap(BE) ' (1) () + max Uy,

where, abusing notation, we wrote £(1) = £(y) for |y| = 1. It is immediate to check that
uy < U in 0A1,(0), and thus also in A1 +(0) by the maximum principle. Then, letting
r — o0, it follows that u(x) < Cap(E)~t&(1)~!1 &(z) for |z| > 1, which implies that u is
non-constant.

The superharmonicity of u in R% implies that —Awu is a non-negative measure in the
sense of distributions. This is an immediate consequence of Lemma 5.9 and the Riesz
representation theorem. The fact that u is non-constant and the maximum principle
ensures that Aw is not the zero measure.

Now we claim that there exists some constant ¢y € R such that

u=—&x*Au+cy (6.29)

in the L} (R?) sense. To prove this, observe first that the function v := u + & = Au is
harmonic in R?, and for |z| » 1 it satisfies

[v(@)] < Ju(@)] + |€ * Au(@)| < (Cap(E)) ™" + Un(x) + 1€ * Au(z)] < Co + Cr[E(|])],

where Cpy and C] depend on u. In the case d = 3, this implies that v is bounded and so it
is constant, by Liouville’s theorem. In the case d = 2, we also deduce that v is constant.
This follows easily from Lemma 2.11 applied to v in Br(0), letting R — co:

|v]o,Br0) _ Co+ Cylog R
HV’U||OO,BR/2(O) < i B < = — 0.

So in any case (6.29) holds.
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Let us see now that the pointwise identity
u(r) = =€ = Au(z) + ¢ (6.30)

holds for all z € R%. Indeed, this holds in Qg by the continuity of £ * Au and u in Qp. So
it remains to show that

(Cap(E)) ™' = =€+ Au(z) +¢¢ forallze E.

To this end, notice that for each ¢t > 0, by the identity (6.29) in the L} sense and the

loc
continuity of u,
co + J[ Ex (—Au)dm = J[ udmﬂ»u(x).
Bt(%) Bt(];)

On the other hand, by the superharmonicity of £ # (—Au) (recall that —Aw is a positive
measure), SBt(x) Ex (—Au)dm < & * (—Au)(x), and so

Cap(E)™! = u(z) = co + limsup ][ Ex (—Au)dm < co + € * (—Au)(z).
By(x)

t—0

L ae. in

For the converse inequality, we take into account that ¢y + &€ * (—Au) < Cap(F)~
R?, and thus the same estimate happens everywhere in R? by the lower semicontinuity of
& * (—Au) (see Lemma 6.1(a)). So (6.30) holds for all x € R%.

From (6.30) we deduce that
£+ (—Au)(z) = (Cap(E)) ' —cg=:¢; forallze E.

Since —Auw is a non-zero positive measure supported on Ec B 2(0), it follows that ¢; > 0.
So letting k = (¢; Cap(E)) ™!, it turns out that & * (—kAu)(x) = (Cap(E))~! forall z € E.
Next we will show that this implies that —kAwu = p. To this end, by Theorem 6.10 it
suffices to prove that —kAwu is a probability measure and that I(u + kAu) = 0.

To prove that —kAw is a probability measure we first apply Theorem 6.12, taking into
account that ||€ = (—k Cap(E) Au)|s = 1, and then we derive Cap(E) = || — k Cap(E)Aul|,
or equivalently, | — kAu| < 1. For the converse inequality we apply Lemma 6.14 and we
obtain Cap(F) < | — kCap(FE) Aul|, so that || — kAul| = 1.

Next we will show that I(p + kAu) = 0. Notice first that I(|p + kAu|) < 400 because
both € # p and £ * (—kAwu) are uniformly bounded in E. We write

I(,LL + kAu) = JU(#'HCAU) d(u + k‘Au) = f (UM - U(—kAu)) du + k‘f (U# - U(—kAu)) d(Au)
Both integrals on the right hand side vanish because U(_ja,) equals identically (CapE)~!

in E o suppy, while U, equals (Cap E)~! p-a.e. and (—kAu)-a.e. by Corollary 6.9. Hence,
I(p + kAu) = 0 and thus g = —kAwu. In turn, this implies that U, = —k € * Au, and so

U, is continuous in R? and identically equal to (Cap E)~! in E. O
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Proof of (a) = (b) in Theorem 6.21. As above, we write A, = A(£,27%127F) B, =
By (§), and By, = Bg. To get a contradiction, suppose that £ € 02 is a regular point

such that ” ~
Z Cap(Ax\Q) 0

= Cap(By)

Without loss of generality, assume also that 2 < By 5(0).

We will replace € by an auxiliary Wiener regular open subset Q < O so that e o0,
We define Q as follows. For each k > 1 such that 4;\Q # @, let pi € (0,27%73) be such
that

Cap(U,, (4,\Q)) < Cap(A4,\Q) +27% Cap(By),
where U (G) stands for the f-neighborhood of G. We cover A;\Q by a finite number of
closed balls By, ; centered in AR\Q with the same radius py, and we let Ej = U Bjk. In

case that A;\Q2 = @, then we let E;, = & be a closed ball By, 1 contained in A;, such that
Cap(By1) = 27* Cap(Bk) Finally, we let

O =\ | J EBr.

k=1

It is easy to check that Q is open. Further,

Z Cap(A;\Q) - Z Cap(Ex_1 v E U Ek+1)

Cap(By) Cap(By)

k=1 k=1

Using that Cap(Eyx—1 v Ex U Epy1) < Cap(Eg—1) + Cap(Eg) + Cap(Eg+1) and that
Cap(By—1) ~ Cap(Bg) ~ Cap(Bj+1), it follows that

Cap(4;\2) Cap(E}) Cap(4;\Q) ko
L0 < k) < 2” : (6.31)
,;1 Cap(B) ,;1 Cap(B) ,;1 Cap(By) ,;1

Also € € 9Q because the preceding estimate implies that, for k large enough, Cap(Ak\Q)
Cap(By) ~ Cap(Ak) so that A, N Q # @.

To check that € is Wiener regular, notice first that { is a Wiener regular point for Q
because if v : @ — R is a barrier for £ in €, then v|y is a barrier of £ in Q. Further, it
is immediate to check that any other point ( € o) with ¢ # & belongs to the boundary
of some ball By, ;, and so ¢ is Wiener regular because of the existence of an outer tangent
ball in ¢ (namely, By, ;). So () satisfies the required properties.

For k > 1 we denote

F={oulJE:
=k
Notice that Fj, is a compact set such that Fj, < Bj_1, and by the same arguments as
above, it follows easily that R%\ F}, is Wiener regular and that & € 0F}.
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Next we will derive a contradiction from the fact that £ is a regular point for Q and the
condition (6.31). For 0 < e < 1/4, let N > 2 be such that

3 Cap(By) _ (6.32)
k=N Cap(By)

Because of the Wiener regularity of (NZ, there exists a function f € 0(6), harmonic in SNI,
with 0 < f < 1, with f(§) =0and f = 0in 8§\BN+1. By the continuity of f, there exists

s < 27N=1 guch that f(z) > 1 —¢ in Q n B,().
Let us see that there exists M > 1 large enough such that 2= < s/4 and such that the
equilibrium potential Ur,, for Fjs satisfies
Cap(Fu) Ur,, (z) <&  for all x € R4\ By(€).
Indeed, we have
_ E(s
Cap(Far) Up,, () < Cap(Bpr—1) E(dist(Far, 0Bs(§)) < 5(2(M)+1)

which tends to 0 as M — co. We denote Vf,, = Cap(Fy) Up,,.

Let Any = UNskgM E}. Again, Rd\AN,M is Wiener regular because because A
is the union of a finite number of balls, and we can apply the criterion of the outer
tangent ball. Let Ua,,, be the equilibrium potential of Ay and denote Vay , =
Cap(An,m) Uay - By Lemma 6.24, it turns out that Vg, and Va, ,, are continuous and
VEy +Vaya = 1on Fpr U Ay pr. Then, by the definition of f and the maximum principle

it follows that Vi, + Va, ,, = f in Q. Therefore,
Vayu = f—=Vry =21-2e indBs(§) n Q.

We also have Vi, ,, =1>1—2¢ in Ay, and so by the maximum principle applied to
the set Bs(£)\An s (recall that 27MF2 < s < 27N=1) it follows that

Vaya(§) =1—2e. (6.33)
Now we intend to contradict this estimate. To this end, notice that for = € 0By, (&),
Vay (@) = Cap(An,m) Uay o, ()
< Cap(By_1) E(dist(z, Ay ar)) S Cap(By_1) ~ £E27N)7!
In Ay, we also have
VAN,M(x) =1l< Z Vg, (z) = Z Cap(Ex) Ug, (2).
N<k<M N<k<M

Then, by the maximum principle and by (6.32),

Vayu(©) < ) Cap(Ey) Ug, (&) + CERM)™!
N<k<M

E
~ ) Cap(Ey) +E@ M Pget @M,
N<k<M Cap(By)

which contradicts (6.33). O
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6.5 Kellogg’s theorem

A set E < R? s called polar if Cap(E) = 0. Of course, in the case d = 2, this is equivalent
to saying that Cap;(F) = 0. Kellogg’s theorem asserts that, for any bounded open set
Q < RY, the set of (Wiener) irregular points is polar. In order to prove this, we will need
some auxiliary results, which have their own interest.

Recall that in Section 5.4 we introduced the notion of barrier functions, whose existence
characterizes the regularity of boundary points. Next we introduce the weaker notion of
generalized barrier, which also can be used to characterize regular points, as we will see
below. Given an open set Q < R, function v : © — R is called a generalized barrier for
at £ e o) if

1. v is superharmonic in V' n €,
2. v>0in Q, and
3. lim,_,¢v(x) = 0.

It is immediate to check that a barrier for £ is also a generalized barrier. The converse
statement is not true. However, we have the following key result.

Theorem 6.25. Let Q < R? be open and bounded. A point & € 09 is reqular for Q if and
only there exists a generalized barrier for Q) at &.

To prove this theorem, we will use the following simple result:

Lemma 6.26. Forr >0, let V < S,(0) be relatively open in S,(0), and for any x € B,(0)
let

9(z) = Lm) PE,0(©) X1 (O) do(0),

where o is the surface measure on S,(0). Then,

li =1 lHegeVv.
5, (o %g(fﬂ) for all £ €
Recall that PET(O) is the Poisson kernel for the ball B,(0), which was introduced in
Remark 3.11.

Proof. For £ € V, let ¢ € C(S-(0)) be such that ¢(§) =1, 0 < ¢ <1, and suppp < V, so
that
p<xy <1

Since the Poisson kernel is a positive function, for all z € B,.(0) we have

er) Pg 0)(Q) ¢(¢) do(¢) < f

Sr(0)

P (€)@ do(0) < | o PR do(0). (631
The integral on the left hand side equals the harmonic extension of ¢ to B,(0) evaluated
at x, and this tends to ¢(§) = 1 as x — £, by Theorem 3.10 and Remark 3.11. On the
other hand, the last integral is identically 1 for all z € B,(0). Thus, letting x — & in
(6.34), the lemma follows. O
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Proof of Theorem 6.25. The statement in the theorem is equivalent to saying that there
exists a barrier at £ € 0 for € if and only if there exists a generalized barrier. Since
any barrier is also a generalized barrier, we are left wit showing that the existence of a
generalized barrier at £ € 012 for € implies the existence of a “usual” barrier. To this end,
consider the function ¢ :  — R defined by p(z) = |z — £[2. The fact that Ap > 0 away
from & ensures that ¢ is subharmonic in 2. The function f := ¢|sq is continuous in 092,
and thus it is also resolutive. Further, since ¢ € Ly (recall that this is the lower Perron
class for €2, introduced in Definition 5.12), we have v := Hy = H; > ¢ in Q. Thus, v is a
positive harmonic function in €2 such that for all { € 0Q\{¢},

liminfv(z) > /(C) > 0.

Hence to show that v is a “usual” barrier for &, it suffices to prove that

li = 0. 6.35
(im0 (6:35)
To prove (6.35), without loss of generality, assume that £ = 0. Let u be a generalized
barrier at 0 for Q and let » > 0 be such that S,(0) n Q # @. For a given € > 0, consider
a compact subset E, . < S,(0) n Q such that o((S,(0) n Q)\E,.) < €0(S;(0)), where o
is the surface measure on S,(0). Notice that v, = infg,  u > 0 (recall that u is lower
semicontinuous in €2 and so the infimum on any compact subset of {2 is attained in that
compact subset). Consider the set V,. = (5,(0) n Q)\E, ., which is relatively open in
S-(0). Let g : S:(0) — R be defined by the “harmonic extension” of xv, . to B,(0), that
is,
9@ = | Pa(Ox. (O d(0)
Sr(0)
Let h: Q n B,(0) be the function defined by
h=1?+ 7, diam(Q)? u + diam(2) g,
where Pg
in 2. We claim that for any function s € Ly (recall that this means that s € C(f2) is a
subharmonic function such that limsup,_,, s(z) < f(n) for all n € 09), it holds that

is the Poisson kernel for B, (0) with pole at . Notice that h is superharmonic

liminf A(z) = limsup s(z) for all n € (2 N B,(0)). (6.36)

=1 TN

Indeed, if n € V. = B,(0) n 09, then

liminf h(z) = r? > f(n) = limsup s(x).
=1 T—n

On the other hand, if n € £, ., since u is lower semicontinuous in €2,

liminf h(x) > ’y;;diam(Q)Q liminfu > ’y;;diam(Q)Q u(n) = diam(Q)? = f(n).

80



6 Potential theory

Finally, for n € S,(0) n Q\E, ., by Lemma 6.26,
liminf h(z) > diam()? liminf g(z) = diam(Q)? > f(n).
o T—n

So our claim holds.
From the superharmonicity of h — s and the maximum principle in Lemma 5.3 (applied
to s — h) and (6.36), we deduce that

s(z) < h(z) for all z € B,-(0) n Q.

Since this estimate holds for all s € L¢, we deduce that H¢(x) < h(z) for all x € B,(0) n 2.
Thus,

limsup Hy(z) < r? + 'yggldiaum(Q)2 lim sup u + diam(2)? limsup g
z—0 x—0 x—0
=72+ 0+ g(0) = r* + diam(Q)? oWre)

a(:5:(0))

. Since r can be taken arbi-

< 7% + diam(Q)?e.

@)

-2 2

Choosing & = r?diam(Q) ™2, we get limsup,_,o Hs(z) < 27
trarily small and Hy is positive, we deduce that

lir%v(x) = lin%) H¢(x) =0,

as wished. 0

Theorem 6.27. Let E = R? be compact with Cap(E) > 0 and let Qp be the unbounded
component of R\E. Let pi be the equilibrium measure for E. If a point & € 0Qg is irreqular
for Qg, then U,(€) < Cap(E)~L. In particular, the set of irreqular points for Qg is polar,
and moreover it is contained in an F, polar set.

Proof. Let us see that if U, (§) > Cap(E)~!, then ¢ is regular. Remark that the inequality
Uu(€) = Cap(E)~! is equivalent to Uy,(¢) = Cap(E) ™! because |U,|,re < Cap(E)~L.
We claim that the function v = Cap(E)~! — U, is a generalized barrier at & for Qp (i.e.,
for Qg n B,(0) for any r > 0 such that E < B,(0)). To check this, notice first that v is
harmonic and that v > 0 in Qg. The latter assertion follows from the fact that v is non-
constant and non-negative in 2 and  is connected. By the semicontinuity property (a)
in Lemma 6.1, we know that liminf, ¢ U,(y) = U,(§). Consequently, liminf, ¢ v(y) <
v(€) = 0. So v is a generalized barrier at £ for Qp, and by Theorem 6.25 £ is a regular
point for Qg.

To prove the second statement of the theorem observe that, by what we have just proved,
the set of irregular points for (g is contained in the set

S={reE:U,r) < Cap(E)" '},

which is a polar set, by Theorem 6.8. Therefore, the set of irregular points for Qg is also
polar. Further, writing S = (.o, S;j, with

j=1

Sj={zreE:U,z) <Cap(E)' - % ,

by the lower semicontinuity of U, it is clear that S is an F}, set, since each S; is closed. [
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Remark 6.28. In fact, the converse of the first statement in Theorem 6.27 also holds.
That is, for Qg and p as in Theorem 6.27, a point & € 0Qp is irregular if and only if
U,(€) < Cap(E)~!. However, we will not need this result and so we skip the proof.

Theorem 6.29. Let Q < R? be open and bounded. A point & € 02 is irreqular for Q if
and only if there exists some component Qg of Q0 such that £ € 0Qy and x is irregular for
Qo. In particular, if x is not in the boundary of any component of 2, then it is reqular for

Q.

Proof. Denote by {€2;},es the family of components of Q. If £ € 0€2; and ¢ is irregular for
€1;, then there is not any barrier at £ for €2, which it readily implies that there is not any
barrier at £ for 2. Thus, £ is irregular for €.

In the converse direction, suppose that there is not any €2; such that ¢ is irregular for
2;. To prove that £ is regular for {2, we intend to define a generalized barrier v at § for
1. For any €); such that { € 082, since £ is regular for €2;, there exists a barrier v; at §
for Q. For such Q;, we define v = min(vj;, 1/j). For the components €2; such that £ ¢ 0825,
we let v = 1/j on Q.

To check that v is a generalized barrier at £ for €2, notice first that v is superharmonic
and positive in Q. To see that lim, ,cv(z) = 0, let ¢ > 0 and consider the finite set
Je={jeJ:j<el}. If J. =2, then u < ¢ on Q. Otherwise, for each j € J. there
exists an open neighborhood Vj of { such that either V; nQ; = @ or v < e in V; n ;. So
letting V' = UjEJE Vj; it turns out that V' is an open neighborhood of y where v < e on V.
So lim,_,¢ v(x) = 0 as wished, and thus v is the desired generalized barrier. O

Theorem 6.30 (Kellogg’s theorem). Let Q < R be open and bounded. Then the set of
irreqular points for Q is polar. Further, this is contained in an F, polar set.

Proof. By Theorem 6.29, it suffices to show that the set of irregular points for any com-
ponent of (2 is irregular, taking into account that the number of components is at most
countable and that a finite or countable union of polar sets is polar. So to prove the
theorem we can assume that €2 is connected.

Given a bounded connected set €2, for any £ € 0€) let B¢ be an open ball centered in
¢ such that Q n 0B # @. Consider the domain Q¢ = Q U (R?\B;). Notice that Q¢ is
an unbounded connected set with bounded boundary, and then by Theorem 6.27 the set
of irregular points for Q¢ is polar (we can assume that Cap(d€¢) > 0 because otherwise
any subset of 0€)¢ is polar) and it is contained in an F, polar set. Now remark that
Be n 092 < 0€Q)¢ and that any point { € Be n 0§ which is irregular for 2 is also irregular
for Q¢. This follows immediately from Wiener’s criterion for regularity (although it could
be also easily deduced from the characterization of regularity in terms of existence of
barriers). Therefore, the subset of irregular points for 2 that belong to Bg n 0f2 is polar
and it is contained in an F, polar set.

Finally, since 02 is compact, there exists a finite covering of 0€) with balls Be,, for a
finite subset of points & € 0€2. By the preceding discussion, the set of irregular points for
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2 that belong to B, n 0§ is polar. Since a finite union of polar sets is also polar and a
finite unions of F, sets is an F, set, the theorem follows. O

Remark 6.31. In fact, the set of irregular points for an open set Q < R% with compact
boundary is itself an F, set. This follows easily from Wiener’s criterion. Indeed, it is
immediate to check that an equivalent form of the criterion is the following: a point
& € 09 is regular for the Dirichlet problem in Q if and only if

f Cap(A(§, 7, 2r) N Q°) dr
Cap(B(¢,r)) 7
so that x is regular if and only if S(z) = 0. Since F' is lower semicontinuous, for all A > 0

the set {x € R*"!: F(z) > A} is open and thus the set of Wiener regular point is a G set
(relative to 0€2). Thus the set of the irregular points from 052 is an Fj, set.

6.6 Removability of polar sets

Theorem 6.32. Let Q < R? be bounded and open, and let Z < 0Q be a Borel polar set.
Then, for any x € €,
w(Z) = 0.

Proof. In the case d = 2, we will assume that ) ¢ By /2(0). The measure w” is Radon and
thus it is inner regular. Then it is enough to prove the theorem for Z being a compact
(polar) set. Under this assumption, by the outer regularity of capacity (see Lemma 6.7),
for any € > 0 there is an open set V' > Z such that Cap(V) < e. By the compactness
of Z, we can find finitely many open balls B;, i = 1,...,m, centered on Z such that

2B; =V n By(0) and
z< |J B

1<is<m

Consider the compact set £ = | J; <i<m§i and let Qf = Rd\E. Since E consists of a
union of finitely many balls, it follows either by Wiener’s criterion or by the exterior ball
criterion in Remark 5.34 that Qg is Wiener regular. Then, by Lemma 6.24, if u stands for
the equilibrium measure for F, the potential U,, is continuous in R? and U, = (Cap(E))~!
identically on FE.

Consider now the function f(z) = Cap(E)U,(z), and notice that it is superharmonic
and continuous in R%, and it equals 1 on E. Also, it is positive in Q since Q ¢ By /2(0) in
the planar case. So we have

W (Z) < W (B) < f Fdu”. (6.37)

By definition, letting g = f|aq, the last integral above equals Hy(x). Since f belongs to
the upper Perron class for g, we have Hy(z) < f(x). Thus,

w'(Z) < f(x) = Cap(E) Uy(x) < Cap(V) Uu(x) < eUyu(x). (6.38)
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As p is a probability measure supported on F,

Uu(x) = fé'(a: —y)du(y) <sup&(z —y) »sup&(z —y) ase—0.
yel yeZ

Since supyez £(r — y) < o, letting € — 0 in (6.43), we deduce that w*(Z) = 0. O

Definition 6.33. Let ) be a bounded open set and let £ < 2 be a compact set. We say
that E is removable for bounded harmonic functions in Q if every function f : Q\E — R
which is harmonic and bounded can be extended to the whole 2 as a harmonic function.

Theorem 6.34. Let € be a bounded open set and let E < ) be a compact polar set. Then
FE is removable for bounded harmonic functions in Q if and only if E is polar.

Notice that, in particular, the removability of a compact set E for bounded harmonic
functions does not depend on the bounded open set €2 containing F.

Proof. First we show that if Cap(E) > 0 then E is not removable. To this end, let u be
the equilibrium measure of £ and U, the corresponding equilibrium potential. Then U,
is a bounded harmonic function in Q\E. Further, it is easy to check that U, cannot be
extended harmonically to a function f harmonic in the whole Q2. Otherwise, f would be
a function continuous in € and harmonic in € such that maxq f is not attained in OS2,
because supy f = Cap(E)~! > maxyq f. So we get a contradiction.

To prove the converse implication, let Q < R? be bounded and open and let E < Q be a
compact polar set. Without loss of generality we can assume that Q — B, /2(0) in the case
d = 2. We claim that there exists a Wiener regular open set Q) which contains E and such

that Q = Q. For example O can be constructing as the interior of the union of finitely
many dyadic cubes of the same size in a suitable way. We leave the details for the reader.

Given ¢ > 0, let V. be an open set such that E < V. and Cap(V.) < e. By the
compactness of E, we can find finitely many open balls B;, i = 1,..., m, centered on Z
such that 3B; = V n By,(0) and

Ec U B;.

1<i<m
Consider the compact set F. = |J;<;<,, 2B; and let Q). = (~2\F6 Notice that
Q. = dQ U OF..

For z € €., we bound wg (OF.) as in Theorem 6.32: by considering the equilibrium

£

measure y of Fy, as in (6.44) we deduce that
wég(&Fs) < Cap(Fy) Uy(z) < eUy(z) < C(o)e,

with C(x) independent of € (assuming e small enough).
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Next we will show that if f : Q\E — R is harmonic and bounded, then f extends to
the whole €2 as a harmonic function. To this end, let g be the harmonic extension of f|.g

to O and fix z € Q. Take £ > 0 small enough such that x € (Nla. Observe that both f and

¢ are harmonic in €. and continuous in ). and their boundary values coincide in €. So
we have

fla)=gla) = [ (7=g)aug, - L (f —g)dl, <[F — gl 53 (F) S [Flen Cla)e.

Since € is a positive constant which can be taken arbitrarily small, we infer that f(x ) =
g(z). So we deduce that f = g in Q. That i is, f extends harmonically to the whole Q just
defining f = g in E. O

Next we will apply some of the results obtained in this chapter to prove an enhanced
version of Proposition 5.40 about the harmonic measure for unbounded open set with
compact boundary.

Proposition 6.35. Let Q c R? be an unbounded open set with compact boundary and let
x € Q. Then the following holds:

(a) If Cap(0Q2) = 0, then w*(082) = 0.
(b) If Cap(0€2) > 0 and d = 2, then w*(02) = 1, that is, w® is a probability measure.

(c) If Cap(0f2) > 0 and d = 3, then 0 < w*(0N2) < 1 whenever x belongs to the unbounded
component of €.

Proof. (a) Suppose that Cap(0f2) = 0. Recall that

w?(0Q) = lim Hy(z) =: Hy(z),

r—00

where H} is the Perron solution of the Dirichlet problem in €2, := Qn B, (0) with boundary
data equal to 1 in 0©2 and to 0 in 5;(0). So Hj(x) = wg, (992). For r large enough so that
o2 < B,(0), we have w (92) = 0, by Theorem 6.32. Thus, H}(z) = 0 for any r large
enough and so w”(09)) =

(b) Suppose now that Cap(dQ2) > 0 and d = 2. By (5.8), w*(02) < 1, so we only have to
show the converse inequality. Consider the function

us =1+eUy,

where p is the equilibrium measure for 0Q. Since U,(x) — —o0 as * — o0, for any
r large enough we have 02 < B,.(0) and moreover u. < 0 on S,(0). Notice also that
ue <1+ ¢ Cap(0Q)~! on R% So the function

1
1+ ¢ Cap(0Q)—1! te

Ve =
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belongs to the class U}, the lower Perron class in €2, for the function f, which equals f
on 02 and vanishes on Sp(0). Thus, for any z € €,

1

Hj(z) 2 ve(z) = 1+ ¢ Cap(0Q)~!

(1+eUy(x)).
Recalling that this holds for any r large enough, we can take the limit as » — o0 to deduce
that the same estimate holds for Hy(z). That is,

> ! (
1+ Cap(0Q)~1

w®(0Q2) 1+ Uy(2)).

Letting € — 0, we infer that w®(02) = 1, which completes the proof of (b).
(c) In this case Cap(df2) > 0 and d = 3. Denote by €, the unbounded component of (.

The same arguments as in Proposition 5.40 show that w®(02) < 1 for z € ©,. So we only
have to check that w*(02) > 0. By Theorem 5.37 (c), if £ € 09 is a regular point, then

li (0Q) = lim H = 1. 6.39

Qalxnigw ( ) Qalrrgg f(x) ( )

By Theorem 6.17,
Cap(09,) = Cap(R*\Q,) = Cap(dQ) > 0.

By Kellogg’s theorem, the set of irregular points is polar, and thus there exists some
regular point £ € 0€,. Therefore, (6.39) holds for this point £, and thus w”(€2) does not
vanish identically in €2,. Since w®(02) > 0 for all x € Q, by the strong maximum principle
it follows that w”(0€2) > 0 in the whole . O

6.7 Reduction to Wiener regular open sets

In this section we show some results which will be used later in these notes to reduce the
proof of some properties for harmonic measure in general open sets to the case when these
sets are Wiener regular. More precisely, the results in this section will be used to prove
the Jones-Wolff theorem about the dimension of harmonic in the plane and to show the
rectifiability of harmonic measure when it is absolutely continuous with Hausdorff measure
of codimension 1 in R%,

Proposition 6.36. Let Q c R? be open with compact boundary and let p € Q. Let Z < 0S)
be the family of irreqular points of 2. For any € > 0, then there exists a covering of Z by
a countable or finite family of closed balls {B;}ier satisfying the following properties:

(i) The balls B; are centered in 02 and they have bounded overlap.
(it) Cap({J,e;2B;) <e.

(iii) €0 := Q\ U,es Bi is open.
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(iv) 09 c (8Q\Uid BZ) U Uses 0Bi.

(v) Q is Wiener regular-.

(vi) For any x € Q, if either d = 2 with Q = Bi5(0), or d = 3, we have

wg ( U ZBi) <esup E(x —y). (6.40)
el ye&ﬁ
In the case when d = 2 and ) is unbounded, suppose that Cap(0f?) > 0, that z
belongs to the unbounded component of 2, and that € is small enough. Then,

wé<U2Bi) < Ce. (6.41)

iel

Proof. Let Z < 0X2 be the subset of irregular points of 0Q2. By Kellogg’s theorem Cap(Z) =
0, and moreover Z is contained in an F, set Zj such that Cap(Zp) = 0. By the outer
regularity of capacity for compact sets and the fact that Zy is an F, set, we deduce that
there exists an open set U containing Zp with Cap(U) < . Now, for each z € Zy we
consider a closed ball B, contained in U, and by Besicovitch covering theorem we find a
subamily {B;}ier © {Bg}zez, with bounded overlap which covers Zy, so that the properties
(i) and (ii) in the lemma hold.

Next we will show that the set Q) = O\ J,c; Bi is open. Indeed, we claim that

el
|BAB:i = o9 (6.42)
el el

This inclusion implies that

o\ JBi =\

el

=mU&=Q

el

(UBZ-\UBZ) ol B

el el el

and thus ensures that € is open.

To show the claim (6.42) consider x € | J,.; Bi\ U,c; B:i and recall that, by construction
each ball B; is closed. Then x must be the limit of a sequence of points belonging to
infinitely many different balls B;,, ix, € I. It turns out that then we have r(B;,) — 0.
This is a straightforward consequence of the fact that any family of balls B;, j € J < I,
such that dist(Bj,z) < 1 and 0 < € < r(B;) < 1 must be finite, by the finite overlap of
the family {B;}icr. The fact that r(B;,) — 0 implies that x € 09, since the balls B, j, are
centered in 0f2.

To prove (iv), write

@z@GﬂUBJC&QUUBFJQU<UBMJ&>UUBi

iel iel el iel el
iel iel iel
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On the other hand, by construction the interior of each ball B; lies in the exterior of SNI,
and thus

00 = o0\ext(Q) Kaa\g&) U gBi}\ext(ﬁ) c <aQ\gBi) U gﬁBi,

which proves (iv). R R
Next we check that €2 is Wiener regular. That is, all the points x € 02 are Wiener
regular for 2. We have to show that

i Cap(A(g, 2771, 27")\Q)
S Cap(B(€,27F))

= O

for all z € 0Q. By (iv) we know that either z € (0Q)\ U,c; Bi) or « € 0B; for some i € I.
In the latter case we have

o Cap(A(¢, 2751, 27M)\Q) Cap(A(£, 27" 1 27M\B;iQ)
2 Gap(BE2 7)) /2 Cap(BE2T)

since the complement of any ball B; is Wiener regular. If z € O\, p, Bi, then we know
that = is Wiener regular for 2, because Z < | J,.; B;. Thus, using just that Q° o Q°, we

obtain

i€l

Z Cap(A(€, 2751, 279)\Q) | & Cap(A(€, 2741, 279)\0)
27 CapBEE ) /2 Cop(B(E27F)

So the proof that Q) is Wiener regular is concluded.

The arguments to prove (vi) are quite similar to the ones for Theorem (6.32). For
any d > 2 we consider any finite subfamily J < I of the closed balls B;, and we let
E = |J,c; Bi, so that E is compact and Cap(F) < ¢, by (ii). Since E consists of a union
of finitely many closed balls, it follows either by Wiener’s criterion or by the exterior
ball criterion in Remark 5.34 that Qg is Wiener regular. Then, by Lemma 6.24, if ug
stands for the equilibrium measure for E, the potential U,, is continuous in R? and
U, = (Cap(E))"! =& 1 in E.

Suppose first that d > 3 or d = 2 with Q < By/5(0). Consider the function f(x) =
Cap(E) U, (z), and notice that it is superharmonic and continuous in R%, and it equals
1 on E. Also, it is positive in Q since Q < B, /2(0) in the planar case. So we have

wg (E) < ffdwé. (6.43)

By definition, letting g = f|.¢, the last integral above equals Hy(z). Since f belongs to
the upper Perron class for g in ), we have Hy(xz) < f(x). Thus,

wi(E) < f(x) = Cap(E) Uy, (v) <eU,p(x) <eUpy,(x) <e sugg(:n — ), (6.44)
ye
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using that p is a probability measure supported on E for the last inequality. Since the
estimate above holds for any finite subfamily J < I, (6.40) holds.

In the case when d = 2 and Q is unbounded, we can assume that Cap(0€2) > 0. Then
consider the function

g(z) = Upg (z) — Upo (z),

where ppq is the equilibrium measure for 0€2. Notice that g is superharmonic in €2 and

1 1 1 1

> — = - — f E.
9(x) = Cap(E) Cap(0Q) > e CapdQ oree

Then for € small enough, g(x) > 2 > 0 on F, and since g vanishes at oo, by the maximum
principle g is positive in the unbounded component of 2. Thus, for x in this component,

WE(E) < 22 9(2) = 26(Uyuy (&) — Uy ()

QO
€ diamo$? + dist(z, 09 € diamo$? + dist(x, 0§2
= flog ( ) 4 e(y) — = flog ( ) dpa(y)
|z =yl |z —y|
€ diamo$? + dist(x, 09) e, diamoQ + dist(x, 09Q)
< — | log dup(y) < —log . ;
T |z — y| T dist(z, E)

diamoQ+dist(xz,00) is
lz—yl
positive in d€2. For e small enough, dist(z, E) > %dist(:r, 092), and then (6.41) follows. [

where in the before to last inequality we took into account that log

Lemma 6.37. Let Q < R? be open with compact boundary and let p € Q. For any € > 0,
denote by Q the Wiener reqular set Q constructed in Proposition 6.36. Suppose either
that Q0 is bounded with d = 3, or that d = 2 and Capy(0Q2) > 0. Then, for any Borel set
A c 09,

i D _ P

313%) WQE(A) = wq(A). (6.45)

In fact, the lemma also holds in the case d > 3 and €2 unbounded with compact boundary.

However, we will not need this result and so we will not show this.

Proof. In the case d = 2 we can assume that 02 ¢ B; /2(0) by a suitable dilation. Let
A < 09 be a Borel set. Then, by Lemma 5.28,

wg(A)z %(Am&Qm&Q) WE (A A 00 A 0S).) < Wh(A).

€

To estimate wf)(A) in terms of w~ (A) we take into account that wq(02) = w~ (é’Q ) =
and we apply the previous estlmate to O\A: write

wh(A) =1 - wh(ONA) < 1w} (020 00\A)
= Wl (092:\0Q) + Wl (092 M 0Q) — Wl (90 N 02\A)
= Wl (092:\0Q) + Wl (092 n 00 N A) = Wl (00\00) + WL (A).
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Hence, N
]w%E(A) — wg(A)| < wgs(mg\ag). (6.46)

Since Gﬁs is contained in the union 0~f the balls B;, ¢ € I, in Proposition 6.36, by the
proeprty (vi) in the proposition w% (092:\092) tends to 0 aas € — 0. O

Notice that, by (6.46), the convergence in (6.45) is uniform on the set A < 0€2.
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7 Harmonic measure and Green function in
Wiener regular open sets

In this section we will assume that €2 is an open Wiener regular set.

7.1 The Green function in terms of harmonic measure in
bounded open sets

For a bounded open Wiener regular set Q c R%, we may write the Green function in terms
of harmonic measure. Let us see how.
Given z € €2, define the harmonic extension

v¥(y) == — f«g E¥(z)dwY(z) for yeQ, (7.1)

where £* is the fundamental solution of the minus Laplacian with pole at z. Note that £*

is continuous in z € 02 and 2 is Wiener regular, then v* € C(2) and its boundary values
are opposite to those of the fundamental solution. Thus,

G (y) = {Ex(y) + v (y) for y € Q\{x},

| (7.2)
0 otherwise,

is continuous away from the pole, and harmonic in R%\09.
Thus, in a sense G is the continuous solution to the Dirichlet problem

—AG* =4, in Q,
G*=0 on 0f2.

Lemma 7.1. Let Q < R? be a Wiener regular bounded open set. The Green function for
Q is non-negative in 2, and positive in the component of £ that contains x. Further, it is
subharmonic in R4\ {z}.

Proof. To prove the first statement, notice that G* = 0 in any component V' of €2 which
does not contain x, by the maximum principle, since G* is harmonic in V and vanishes
continuously in 0V. If V, is the component of € that contains x, we consider any € > 0
small enough such that Bo.(x) < V, and we set V.. = V,\B:(z). For ¢ small enough,
G® > 0 in 0B.(x), and then by the maximum principle, it follows that G* > 0 in V, .. So
G* > 0in V,.

Regarding the second statement, using the maximum principle for harmonic functions,
one can check that the Green function satisfies the condition in Lemma 5.6, implying the
subharmonicity of the Green function (7.2) away from the pole. O
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7 Harmonic measure and Green function in Wiener regular open sets

Here there is a small trouble. We have defined the Green function in two different
ways, solving the Dirichlet problem in the Sobolev sense and in the continuous sense.
Fortunately, both definitions coincide in Wiener regular open sets:

Lemma 7.2. Let v, and G* be defined as in (7.1) and (7.2), and let p* be a bump
function satisfying Xp,,(z)e < ¥* < XB,(x) fort < %dist(x,@(l). Then v, € HY(Q), and
YTG® € HE(Q). So G* coincides with the other Green function defined in Section 3.2.

Proof. First we will check that G € H'(Q\Bgy(x)). Since € is bounded, it is enough to
check that |G®| 2y <+ for every ball B such that 2B n By(z) = . To show this
fact we will use Caccioppoli inequality, but in order to apply it, we need to know a priori
the finiteness of the L? norm of the gradient. To avoid a circular argument, we need to
define u.(y) := max{G”(y) — ¢, 0} for y € By (z).

Let us check the properties of u.. First, since G* € C*(Q\Ba(z)), we can infer that
u. € H*(2B) (see [EG15, Theorem 4.4]). On the other hand, since G* is subharmonic
away from the pole, also u. is subharmonic. Moreover, it is non-negative. Finally, we can
apply the Caccioppoli inequality and the maximum principle to get

f V. 2 $f e P <f (G™)? < [2B| max (G)?,
B 2B 2B 0Bat(x)

which is independent of €.
By the monotone convergence theorem, we get

f IVG®|? = limf |Vue|? < |2B| max (G®)? < +oo0,
BAQ =0 Jp 0Boy ()

ie.,

G* e Hlloc(Q\Ba(x))v

and thus v¥ = G* — €% € HL (Q\B:(z)) as well. Since it is C* in a neighborhood of the

loc
pole, we get v” € HL ().
It remains to check ¥*G* € H}(2). For every y € Q define u.(y) := max{y*(y)G*(y) —
g,0}. Then

limue(y) = ¢*(y)G*(y), and  lim Vue(y) = V(§*G)(y)-

E—>

Moreover, by the triangle inequality
lue = V"G 1) < luel gy + 107G g1y < 200" G| g1 (o)
Thus, by the dominated convergence theorem, we get
e = 4G g == 0.

Note that u. is compactly supported in Q\B(z), and it is Lipschitz. Thus, we have
shown the existence of Lipschitz functions (not C* in general) with compact support
converging to ¢¥*G? in the Sobolev norm. Proving that this implies that ¥*G® € H}(Q)
is an exercise left for the reader. O
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Remark 7.3. In fact, when a Sobolev function vanishes continuously in the boundary, its
gradient can be extended by zero in the complement of the open set, the proof is similar to
[EG15, Theorem 4.4]. Thus, we have shown that G® € H\_(R%\B.(x)), with VG*(y) = 0
for y € Q°.

For z € R\Q and y € 2, we will also set
G*(y) = 0. (7.3)
This choice, together with Lemmas 3.6 and 7.2 implies that
G*(y) = GY(z) for all (z,y) € R? x RAQC x QF with = # y. (7.4)

Note that the equation (7.2) is still valid for z € R\Q and y € Q. The case when x € 9
and y € Q is more delicate and the identity (7.2) may fail. However, we have the following
partial result:

Lemma 7.4. Let Q c R? be bounded and Wiener reqular and let y € . For m-almost all
x € Q° we have

E¥y) — o E¥(z)dw?(z) = 0. (7.5)

Clearly, in the particular case where m(0€2) = 0, this result is a consequence of the
aforementioned fact that (7.2) also holds for all z € R\Q, y € Q, with G*(y) = 0.

Proof. Let A < Q° be a compact set with m(A) > 0. Observe that the potential Uy :=
Uy am = € * x4 is continuous, bounded in R?, and harmonic in A€, see Remark 6.6. Then,
by Fubini we have for all y € €,

[ (g~ [ @) ) am) = vat) - [ [ 2@ ama) asrte

— Uay) - LQ A(2) dw? (2) =0,

using that Uy, is harmonic in 2 < A¢ and bounded on 02 for the last identity. Since the
compact set A < ¢ is arbitrary, the lemma follows. O

Remark 7.5. As a corollary of the preceding lemma we deduce that

G*(y) = E%(y) — LQ E%(2)dw?(z)  for m-a.e. x € R%

Lemma 7.6. For all x € Q and all ¢ € C*(RY), we have

Jso dw”(y) — ¢(x) = L Ap(y) G*(y) dy = — JQ Vly) - VG*(y) dy.
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Proof. The first identity follows from Lemma 3.6 and (7.3), the preceding remark, and
Fubini. Indeed,

[ seweman= [ aewe@an- [acw (20 - [ o) a

o0
— (Ap#E)(x) - LQ(AsO « €)(2) du(2)

—p(a) + L () (a).

The last identity in the lemma follows integrating by parts and a density argument. [J

Notice that, by the preceding lemma, in the sense of distributions, that is in the dual
space D'(RY) (here, as in the literature in functional analysis, D stands for C®° functions
with compact support, equipped with a certain topology, see [Rud91, Chapter 6]), we have

AG* =w* -6, forall zeq.

For smooth domains with smooth Green function, we have the following;:

Proposition 7.7. Let Q < R? be a bounded C' domain, € Q and suppose that G* €
CY(Q). Then
w* = —(0,G") o,

where v is the unit outer normal to 02 and o is the surface measure on 0f).

Proof. Tt suffices to show that for any p € D = C*(R%) it holds

f sodw””(y)=—j o(y) 0,.G" (y) do(y).
o0

o0

We may assume that ¢ vanishes in a neighborhood of x by modifying suitably ¢ far away
from 0€2, since the domain of integration in both integrals above is 0€). So consider r > 0
such that Bs.(z) < Q and suppy RN By, (z). Denote Q" = Q\B,(x). Using that G*
is harmonic in Q" and that ¢ vanishes in By, (x), by Lemma 7.6 and Green’s formula we
have

fcp dw*(y) = JQ Ap(y) G*(y) dy = o Ap(y) G*(y) dy

= —f e(y) 0,G"(y) do(y) = —J ¢(y) 0,.G* (y) do(y).
onr o0

Lemma 7.8. Let B be a ball centered in 02 and let x € Q\2B. Then,

W*(B) £ 7(B)2 G*(y)dy.
2B
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Proof. Let ¢ be a bump function such that xp < ¢ < xop with |D?yp| < T(]_l;)z. By

Lemma 7.6, we have

w”(B) < J@dwm = JAsD(y) G*(y) dy < T(;)2 LB G*(y) dy = r(B)*? . G*(y) dy.

O]

As we shall see in further chapters, when 2 is an NTA or CDC uniform domain, for x
and B as in the preceding lemma, we have

w*(B) ~ r(B)*? G (XB),

where ng? is an interior corkscrew point for B. One can view the result in the preceding
lemma as a weak version of the estimate w®(B) < 7(B)?72 G*(X®). In the next sections
we will obtain some estimates in the converse direction.

7.2 The Green function in unbounded open sets with compact
boundary

Let © < R? be a Wiener regular unbounded open set with compact boundary. In the case
d = 3, we defined the Green function for 2 in the same we did for bounded open sets.
That is, given z € ), we consider the harmonic extension

vi(y)i=— | E%(2)dwY(z) foryeQ, (7.6)
o0

Then we define the Green function with pole at = as follows:

ely) = {wy) +o(y)  forye D\l o
0 otherwise.

Notice that G* is continuous away from the pole, harmonic in R\0Q, and G*(y) — 0 as

y — 00.

In the case d = 2 we cannot define G* as above because otherwise this will have a pole
at oo, which is not convenient. Instead we want G* to be bounded at co. If € is not
dense in R?, we can take a point £ € R?\Q and we can define G* as above, replacing £*
in (7.6) and (7.7) by £% — £5. Notice that £ — £¢ has a logarithmic singularity (i.e., a
pole) at z, it is continuous in 0f2, and it is bounded at co. Then it easily follows that the
Green function G* defined in this way has a pole at x, it is bounded at oo, and vanishes
continuously on 0f2.

For an arbitrary a Wiener regular unbounded open set with compact boundary in the
plane, we define G* as in (7.6) and (7.7), replacing £* by £*—U,,, where p is the equilibrium
measure for 02. Again it turns out that the Green function G* defined in this way has a
pole at x, it is bounded at oo, and vanishes continuously on 0f2. Indeed, recall that the
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7 Harmonic measure and Green function in Wiener regular open sets

equilibrium potential is continuous in R? when € is Wiener regular. Further, this can be
written as follows, for y € €2,

v ly—¢l y
6") = 5 [t =S au©) - 5 [ [t i =S au@ar ). ms)

The analog of Lemma 7.1 holds for unbounded domains with compact boundary:

Lemma 7.9. Let Q < R? be a Wiener reqular unbounded open set with compact boundary.
The Green function for Q is non-negative in ), and positive in the component of Q2 that
contains x. Further, it is subharmonic in RN\{x}. In the case d = 3, G* vanishes at ©,
and in the case d = 2, it is bounded at oo

The proof is similar to the one of Lemma 7.1 and we leave this for the reader.
Next we show that the Green function G? is “locally” in the Sobolev space H}(f2). More
precisely:

Lemma 7.10. Let Q c R? be a Wiener reqular unbounded open set with compact boundary
and let x € Q. Let G* be defined as in (7.7) in the case d = 3 and as in (9.19) in the
case d = 2. For 0 <t < %dist(x,&Q), let * be a bump function satisfying XB,,(z)e <
V" < XB,(x)e- For any v > 0 such that 02 = B,(0), let 1, be a bump function such that
XBy(z) S Ur < XByy (). Then " 1, G" € H}(Q).

The arguments for this lemma are similar to the ones for Lemma 7.2 and so we omit
them again.

Lemma 7.11. Let Q < R? be a Wiener regular unbounded open set with compact boundary.
For r > 0 such that 02 < B,(0), let Q. = Q n B.(0). For x € Q and r > |z|, let G* and
G¥ the respective harmonic functions for Q0 and ), with pole at x. Then G¥ — G* as
r — o0 uniformly on bounded sets.

Proof. In the the case d = 3, for z,y € Q with = # y, we have
G™(y) =E(y) — | E"(2) dw§)(2).
o0
The same identity holds for G, replacing 02 and wq by 0€2, and wq, , respectively. Thus,

Gr(y) = G*(y) = aQSI(Z)dw%(Z)— o £ (2) dwg, (2)

- ([ Fewto - [ @ o) - [IRGCIEAC!

By Remark 5.39, the term in parentheses on the right hand side tends to 0 as r — c0. On
the other hand, the second term can be bounded as follows:

J £5(2) du?, (2)| < ! !
8B,(0) "

Gist(z, 2B, (02 0. (OB (0) < o=y
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7 Harmonic measure and Green function in Wiener regular open sets

which also tends to 0 uniformly on bounded subsets of €.
In the case d = 2, the Green function G* for €2 can be written as in (9.19). The Green
function G¥ for €2, can be written in a similar fashion, for y € €2,:

IO O N 1 ¢
Grty) = 5 | tom =S dn(©) oo || low Pt du(def (). (79)

Here p is the equilibrium measure for 02. To check the preceding identity, notice that u
is a probability measure and we have

f log ly — & du(€) f flog\z—ildu()dwg()—o

because the function g(y) := % §5010g |y — &|dp(§) is harmonic and continuous in Q,.
Then, by (9.19) and (7.9), we get
Gi) ~ ) = [ [ 1og E= S du(e) dut) - j [, o] =8 ey at ()

o0 Joo Z—$| 20, Joo Z—$| "

= ([ Joe = :c| A [ e o a0

LBT(O) LQIO \z— du(§) duwg, (2)-

By Remark 5.39 (applied with f(z) := §,, log |z=¢] du(€)), it follows that the first term in

[
parentheses tends to 0 uniformly in bounded subsets of Q2. Using the fact that f(z) — 0 as

z — 00, we also get easily that that the last term tends to 0 uniformly in bounded subsets
of Q. O

Thanks to the preceding lemma, many of the results obtained in the previous section
for the Green function in Wiener regular bounded open sets can be extended to the case
of unbounded open sets with compact boundaries. First, we easily get that the Green
function is symmetric:

Lemma 7.12. Let Q < R? be a Wiener regular unbounded open set with compact boundary.
For all x,y € Q, with x # y, the Green function for Q0 satisfies G*(y) = GY(x).

Proof. Let Q, = Q n B,(0), with r > 0 big enough so that 02 < B,(0) and z,y € §2,. Let
G, denote the Green function for €2,.. Then we have

G*(y) = lim Gi(y) = lim Gi(z) = G¥(x).

r—00

From now on, quite often we will write

Gz, y) = G*(y) = GY(x).
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Lemma 7.13. Let Q < R? be a Wiener reqular unbounded open set with compact boundary.
For all x € Q and all € C*(RY), we have

Jsﬂ dw*(y) — ¢(x) = L Ap(y) G*(y) dy = — L V(y) - VG*(y) dy.

Proof. The first identity follows from the one derived for bounded open sets in Lemma 7.6
and from the uniform convergence of G to G in bounded subsets of €2. The second one
follows from the first one by integration by parts. O

Proposition 7.14. Let Q < R be an unbounded C' domain with compact boundary,
x € Q and suppose that G* € C*(Q). Then

w' = —(0,G") o,
where v is the unit outer normal to 02 and o is the surface measure on 0f).
Proof. This follows from the preceding lemma, arguing as in Proposition 7.7. O

Lemma 7.15. Let Q < R? be a Wiener regular unbounded open set with compact boundary.
Let B be a ball centered in 02 and let x € Q\2B. Then,

W' (B) £r(B)T?  G*(y)dy.
2B

Proof. This is proven in the same way as Lemma 7.8 for the case of bounded open sets. [

7.3 Newtonian capacity, harmonic measure, and Green’s
function in the case d > 3

In this whole section we assume either that Q is a Wiener regular open set in R, with
d = 3, and that either it is bounded or it is unbounded with compact boundary.

Lemma 7.16. Let d > 3 and Q < R? be an open Wiener reqular set with compact
boundary. Let B be a closed ball centered at 0S2. Then

. Cap(3B\Q)
w (B) > C(d)W for all S iB M Q,
with ¢(d) > 0.

Proof. We can assume that €2 is bounded. Otherwise, the estimate above follows from the
analogous estimate applied to Q, = Q n B,.(0) letting r — o0.
Let 11,50 be the equilibrium measure for 2B\Q, and let y = Cap(3B\Q) [1p o) SO
4 4

that |Up|l < 1 and |u| = Cap(1B\(2). Notice that, for all z € B¢,

B __calml
Un(z) = J z — y[d—2 dp(y) < Gr(B))i—2
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Consider the function f(z) = U,(x) — %. Using that f(z) < 0in B, | fle < 1,
and that f is harmonic in 2, by Corollargf 5.32 and the maximum principle we deduce
that, for all x € 2,

w*(B) =z f(x).

In particular, for x € iB we have

x Cd CdH/.LH
8) > [ o auty) -

(4r(B))*2
calpl . cd|pl _ (2d—2 _ (4)d—2) Cap(iB\Q)
TG G I
which proves the lemma. O

Lemma 7.17. Let d > 3 and Q < R? be an open Wiener reqular set with compact
boundary. Let B be a closed ball centered at 0. Then, for all a > 2,

w*(aB) 2 ;%f sz(aB) r(B)¥2G%(y) forallze Q2B andye BnQ,  (7.10)
ze n

with the implicit constant independent of a.

Proof. We can assume that €2 is bounded. Otherwise, the estimate above follows from the
one applied to ©, = Q n B,(0) letting r — co.

Fix y € BN and note that for every = € d(2B) nQ we have inf ,cop~q w?(aB) < w*(aB)
and, therefore

1 c cw”(aB)
A < < '
|x _ y|d—2 T(B)d_z T(B)d_2 inf.eoBn0 WZ(CLB)

G*(y) < E€%(y) (7.11)

Let us observe that the two non-negative functions

u(z) = ¢ G*(y) r(B)4 2 Ze;%ang(aB) and v(z) = w(aB)

are harmonic, hence continuous, in Q\B. Note that (7.11) says that u < v in d(2B) n £
and hence limg 5., , (v —u)(2) = (v —u)(z) > 0 for every x € J(2B) N 2. On the other
hand, for a fixed y € B n Q, one has that limgs, ., G*(y) = 0 for every x € 09Q2. Gathering
all these we conclude that

liminf (v —wu)(z) =0
Q\2B3z—z

for every x € d(2\2B). The lemma follows by the maximum principle. O

Combining the two preceding lemmas, choosing a = 8, we obtain:

Lemma 7.18. Let d > 3 and Q < R? be an open Wiener reqular set with compact
boundary. Let B be a closed ball centered at 0S). Then,

w¥(8B) 2y, Cap(2B\Q) G*(y)  for allz € Q\2B and y € B n Q. (7.12)
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Observe that, in the case when 2 is an NTA domain, we have w”(8B) ~ w”(B) and
Cap(2B\Q) ~ Cap(B) = r(B)?2, so that we recover the estimate

w™(B) 2 1(B)17? G*(y),

for y € iB. Thus, Lemma 7.18 is a weak version of the converse inequality to the one
in 7.8. Lemma 7.17 can be shown without the assumption on Wiener regularity adapting
the same proof above, but at certain inequalities are to be shown modulo polar sets. The
appropriate maximum principle can be found in [Hell4, Lemma 5.2.21], and requires as
an extra step to check the boundedness above of u — v.

7.4 Logarithmic capacity, harmonic measure, and Green’s
function in the plane

Lemma 7.19. Let Q < R? be a Wiener regular open set with compact boundary and let

B be a closed ball centered at 0S2. Then

1 1
Cop,(B) |~ r(B)
Cap,(}B\) ° Cap,(3B\Q)

wr(B) = orallz€ 1B Q.
(B) f 1

log

Remark the estimate in the lemma is equivalent to saying that

1
1 1

Capy (1B\Q)  Capy/(B)

w*(B) 2 for all z € £B N Q.

Proof. We can assume that 2 is bounded by proving first the estimate above for ; =
Q2 By(0) and then letting t — c0. We denote r = r(B). Replacing Q2 by - Q) if necessary,
we can assume that diam(B) < 1. Then, denoting E = $B\(, the identity (6.13) holds.

Let u be the optimal measure for the supremum in (6.13), so that suppu ¢ E, u(E) =
Capyy, (), and the function u := & * p is harmonic out of E and it satisfies |u], < 1. For
all z€ 1B and all y € E we have |2 — y| < § 7. Therefore,

2
1 1 1 2 E 2
u(z) = o flog P du(y) = — flogr du(y) = ,uéw) log = for all z € 1B.

2 T

Also, for z € B¢, we have dist(z, suppFE) = %T’(B), and thus
1 4 E 4
u(z) < o Jlog 3 du(y) = #éw) log 3 for all z € B®.

Consider now the function
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Observe that

E 2 E 4 E
v(z))Mlogf—Mlog—zﬁlog§ forallzeiB
2m T 2w 3r 2m 2

and
v(z) <0 for all z € B°.

Combining the maximum principle with Corollary 5.32, and using the fact that x € %B

we deduce that
o) _ pB) | 3 Capy(B)

(B) supv 2T supv 2 sup v

Regarding sup v, taking into account that |ul < 1, it is clear that

1 4 1
supv < 1 — — log — u(F) =1— — log

o ° 3r o 3r 2
Therefore,
Capy, (E) 1 1
B2 e T Gy = ¢ I = T
— 55 108 apy (E)

Remark 7.20. It is easy to check that the constant 1/4 in the preceding lemma can be
replaced by any constant « € (1/4,1/3), with the implicit constant depending on a.

Lemma 7.21. Let Q  R? be an open Wiener reqular set with compact boundary and let
B be a closed ball centered at 0S2. Then, for all a > 2,

w¥(aB) 2 inf w*(aB) J[ |G*(y) — mp(G®)|dy for all x € Q\2B. (7.13)
2€2BNQ B

Proof. We can assume that €2 is bounded by proving first the estimate above for ; =
Q2 n By(0) and then letting ¢t — o0.
Let f(x) = —wleB) ___ Thep (7.13) can be written as

inf.coprow?(aB)"

]fB G () — mp(G)| dy < f(x).

Consider a continuous function ¢p such that xs5 < ¢p < x75. For x € Q\2B, we
2 4
write using (7.4)

21 G*(y) = 2m G¥(x) = log |$i$/| - flog |£_1y| dw™ (&) = g1(y) + 92(y).
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with

1 X
1) = log = = [(1= 2p(6)) log = (9

and

go(y) = —j (6) log 1= ! " (6),

for every fixed x. We will treat separately the local and the non-local parts:

Jf G (y) — mp(G™)| dy < Jf g1 — mgr| dy + Jf g2 — mugsl dy — L1 + Iy,
B B B

First we will estimate the local term I>. To this end, let r denote the radius of B and
let

o) = = | 25() lom [ du"(9)

so that ga = g2 — C'(B, ), for a suitable constant C'(B,r). Then we have

I - Jf 52 — msdl dy < 2mB|gQ|—2JffsoB log 4 () dy

4r
K yl
2 LB J[Blogwdydw LB J[ e 108; |dydw (&)

By a change of variable, we have

J[ log ar dy—J[ 1og—dy C,
BEsr) €=yl B(0,3 |y

w?(aB)

and thus

I, W (2B) < w*(aB) < =
2 W ( ) w (a ) infzeQBmQ WZ(G/B) f(aj)
for any a = 2.
To deal with the non-local term I;, we write
Jf Jf 91(0) — ()] dy d
,:U - f(l ~ o5(6) log E - : 4 (€)| dy d=.
Denote | | € |
r—2z —z
Ay . (x) = log fl—go £€)) log dw” (&),

so that

I < sup |4y (x)].
y,2€B

To estimate A, .(z) (for y,z € B) notice that both A, . and f are harmonic in Q\2B.
Further, since

z— 2 €=
lz -yl |€—yl

~ 1 for allzeQ\ZB,&eaQ\%B, and y,z € B,
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we infer that
|Ay.(z)| <1 forall ze Q\2B and y,z € B.

Further, using (5.2) it is immediate to check that

thgAy’z(:E) =0 for all ¢ € 00\2B and y, z € B.
2r—

On the other hand,
flz) =1 for all z € Q naB

and
f(z) =0 for all z € Q.

Then, by the maximum principle, it follows that

Ay.(x) <C f(x) for all z € Q\2B and all y, z € B.

Consequently,
I = Ii(z) < sup |Ay.(2)| S f().
y,2€B
Together with the estimate we obtained for s, this proves the lemma. ]

Lemma 7.22. Let Q < R? be an open Wiener reqular set with compact boundary. Let B
be a closed ball centered at 0S). Then,

>, CapL(B) ? >, 15
G*(y) < w"(8B) (log —_— for allz e Q\2B andye :Bn Q. (7.14)
Cap(;B8\0) °
Proof. We can assume that €2 is bounded by proving first the estimate above for ; =
Q2 n By(0) and then letting t — oo.
To prove the lemma we will estimate {1 ,G%(z)dm(z) in terms of {,|G%(2) —
4

mpG*| dm(z) and then we will apply Lemmas 7.21 and 7.19.
Let B = B,(§), with £ € 0Q. For %r < s < r, consider the open set Qg = B(§) n Q.
Then, for all z € 2\2B and y € 1B n €, we have

G*(y) = G*(2) dw%s(z) = f G*(2) dofés (2),
s 9Bs(8)

where wq, is the harmonic measure for Q, and we took into account that G*(z) vanishes
when z € Q2. Notice that 25 may not be connected, in this case the harmonic measure is
defined to be zero outside the boundary of the component containing the pole.

Remark that, for all y € 1B n Q there exists some function p¥ : 0B,(£) — [0, 0) such
that
M op. (e

w? = pY
QS’aBS(g) Ps s
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with |p¥]lc < 1. This follows easily from the fact that, by the maximum principle,

wd (E) < wyBs(g)(E) for all E < 0Bs(&)

s

and the explicit formula for w% ., see Example 5.23. Writin,
B, (€) &

pY(z) = p?zfﬂ (2),

by Fubini we have

dw ds 7.15
01TL9TLBS(5 ,(2) (7.15)
-2 f )P o= [ G dee)
0.9r JOB. (¢ 2ms A(£,0.97,7) 7
where p¥ is the measure
A (2) = =1 p¥(2) diml (=)
1% = orr ’z — §| Y M| A(,0.9r,r)\Z)-

Averaging (7.15) over y € iB and applying Fubini, we get

mwG“‘f [ ceweu-] e, @)

A(&,0.97,r) A(€,0.97,r)
where

() = o) dmlaeosrn () 92) = g f

understanding that p¥(z) = 0 when y ¢ Q. Notice that |p|ls, < 772, since |pY]l < 1 for
all y e %B.

Observe now that, by Lemma 7.19 and the subsequent remark, we have

1
wh, (Bo.os(€)) 2 1 < for all y € Bo.2gs(&) N Q.
0og
Cap,(Bo.20s(§)\2)

Since 1B < B(£,0.29s) for {5 < s < r, we infer that

1 1

W%S (B(£,0.95)) 2 s A S for all y € %B N Q.
% Cap,(IB\Q) " Cap,(1B\Q)
Thus,
wg, (0Bs(€)) < 1 — e,
where c
€o = 7 ,

log ——F——
Capr(;B\Q)
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for some ¢ > 0. Thus,

1 T
il = A 09mm) = o [t @ dsdy <120
15 017 Jo.o

Next we consider the measure

so that
1 1

From (7.16) and this estimate we infer that
1 1 N
my pG” = ) + gmyG

2 A(£,0.97,7) 2
J[ G*(z)dv(z 1 - — J[ G*(z)dv(z

Therefore,
J[ G*(z)dv(z J[ G*(z)dv(z miBG””
< ’ J[ G*(z)dv(z) — mpG”
B

< J[B |G*(2) — mpG*|dv(z) +

(7.17)

+ ‘mBGx — m;BGm‘
4

£ |G*(2) — mpG*|dm(z).
1B

Recall now that v(B) ~ 1 and that

1 1
= - + ) =:p ,
V=3 <pXA(§,0.9r,7') m(iB) X1ip m|p =: pm|p

it is clear that 7] y(p) < r~2. Hence,

J: |G*(2) = mpG*|dv(z) < % JB |G*(2) — mpG*| dm(z)

< J[B G*(2) — mpG*| dm(z).

By the definition of v, (7.17), and the preceding estimate, we obtain

T e <3 f @) 5 f (67 - mp6 dn(o),
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From the preceding estimate, taking into account that G* is subharmonic in R?\{z} and
using Lemmas 7.21 and 7.19, for all y € %B we get

) = f G Ean) <5 | [6°6) - maG|am)

w*(8B)

&r r

< w*(8B) log

< - lo lo
inf.e2pn0w?(8B) ° Capy(1B\Q) Cap,(2B\Q) ° Cap,(1B\Q)

2
<o (15 gy )

O

Notice that, in the case when Q is an NTA domain, we have w*(8B) ~ w”(B) and
Capr,(3B\Q) ~ Capy(B) = r(B), so that we recover the estimate

w*(B) 2 G*(y),

for y € %B, as in the case d > 3.

7.5 Capacity density condition

7.5.1 The CDC and Wiener regularity

Let © & R? be an open set in R? and let ¢ € 0Q and 79 > 0. We say that  satisfies the
(&,70)-local capacity density condition if there exists some constant ¢ > 0 such that, for
any r € (0,79),

Cap(B,(6)\Q) = crd? in the case d > 3,

and
Capy(Br(§)\Q) = cr in the case d = 2.

We say that 2 satisfies the capacity density condition (CDC) if it satisfies the (£, r¢)-local
capacity density condition for all £ € Q2 and all 7o > 0. For example, a Jordan domain
in the plane satisfies the CDC, or more generally, any planar bounded domain whose
boundary consists of finitely many curves (we do not allow degenerate curves consisting
of a single point).

The CDC can be understood as a strong form of Wiener regularity. In fact, we have:

Proposition 7.23. Let Q < RY be an open set with compact boundary and let € € 0Q and
ro > 0. If the (§,r0)-local capacity density holds for Q, then £ is a regular point for the
Dirichlet problem.

As a corollary, if  satisfies the CDC, then it is Wiener regular.
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Proof. This is an easy consequence of the Wiener criterion, more precisely of the impli-
cation (b) = (a) in Theorem 6.21. Indeed, we just have to check that the (§,r)-local
capacity density condition implies that

i Cap(A(£,27F1 27F)\Q) _
& Cap(B(&27h)

As shown in Remark 6.22, in the case d > 3 this is equivalent to the fact that

o Cap(By#(6)\Q) _
kZl Cap(By-+(§))

Now we just have to observe that (£, rg)-local capacity density condition is equivalent to
the fact that Cap(B,(£)\Q2) = ¢ Cap(B,(§)) for 0 < r < rg, which clearly implies the
above estimate.

The case d = 2 alittle trickier. Notice first that, for 7 € (0, 1) the estimate Cap, (B,(£)\2) =
cr implies that

1
Capw (B:()\Q) _ 8o ey _ logy _ logg 1
Capw (B:(€)  log o gy loger gy —C 7 2

assuming r small enough in the last inequality. Observe now that Capyy (B4 (£)) =
1 Capyy (B,4(€)). Then, by the subadditivity of Capy, we deduce

1e Capy ((Br()\)\B,4(€)) + Capyy (B (§)) _ Capw (Ar4,(9\Q) L1
2 Capy (Br(¢)) Capy (Br(¢)) 4

Hence
Capyy (4,1,(€\2) _ 1
Capw( (f)) T4

Now we can estimate the Wiener’s series from below as follows, considering jo large
enough,
3 v Capyy (A(&,27* 1,277 )\Q)
J=jo 49 <k<4itl-1 Capy (B(&,274)
Ly oy Cnn(E LI v Conu (A2 2 )
§>j0 Ai<k<ditl_1 Capyy (B(&,27%)) i>Jjo Capyy (B(¢, 2 )

By (7.18), each of the summands on the right hand side is at least 1/4 and so the sum is
infinite. O

(7.18)

Remark that, by Lemmas 7.16, 7.19, 7.17, and 7.21, if Q) satisfies the CDC, then it holds
w'(B)z1 forallzeiBnQ

and
w*(8B)

G*(y) < -(B)T2

for all z € Q\2B and y € 1B (.
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7.5.2 Holder continuity at the boundary

Lemma 7.24. Let Q < R? be an open set with compact boundary, let & € 09, and let
r > 0. Suppose that Q satisfies the (§,70)-local capacity density condition. Let u be a
nonnegative function which is continuous in B,(§) N Q and harmonic in B.(§) n §2, and
vanishes on B(§) n 0. Then there is o > 0 such that for all r € (0,79),

u(z) < <M>a sup u for all x € Q N B.(§). (7.19)
r Br(§)n

Proof. For very k > 0, let By = Bg-#,(§) and Q = Q n By. Since u vanishes identically
on 02 N By, for all x € 0Bg11 N ) we have

u() = f uly) dusty (y) = f uly) ddy (y) < wh (0Br Q) sup u.
an aBka 6Bka

By the (&, rg)-local capacity density condition and Lemmas 7.16 and 7.19,
wh, (0B n Q) =1 —wg, (02 By) <1-c
for some cp € (0,1). Thus,

sup u < (1—c¢p) sup wu.
0Bj4+1nQ 0B Q)

By the maximum principle and iterating, we deduce that

sup u= sup u < (1—co)¥ sup wu.
B 0B, QY 0By 2
This readily proves the lemma. O

As an easy corollary we get a result about Holder regularity:

Lemma 7.25. Let Q < R? be an open set with compact boundary and let B be a ball
with radius Ty centered in 0. Suppose that Q0 satisfies the (&,1¢)-local CDC' for every
£ e 00)n2B. Letu be a nonnegative function which is continuous in 2B n Q and harmonic
in 2B n Q, and vanishes continuously on 2B n 0. Then there is o > 0 such that

lu(z) —u(y)| < (]m—y[) sup v for all x,y € B Q. (7.20)
o 2BAQ

Proof. By replacing 2 by Q n 2B if necessary, we can assume that the (£, rg)-local CDC
holds for all £ € 02, so that in particular € is Wiener regular.

To prove the lemma, clearly we may assume that |x — y| < r/4. Denote as usual
da(z) := dist(z, 092), and suppose first that

max(da(z), da(y)) =: 1 da(z,y).

N |

lz -yl <
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7 Harmonic measure and Green function in Wiener regular open sets

Assume that dg(y) < do(z) = dao(z,y), say, and consider the ball B' = B(z,dq(z,y)).
Notice that B’ < Q n 2B and z,y € %B’. So by standard arguments it follows that

Tr — xr —
) ~ ul)] < [Vl g o = 91 % e 28 < oz 322

dQ(l’,y)
[z —yl \*
<luloas (4o th)

Notice also that the same estimate holds trivially in case that |z —y| > § do(z,y).
On the other hand, by Lemma 7.24,

u2) = (29) ful o,

To

(7.21)

and the same estimate holds replacing x by y. Thus,

o)~ )l < ue)+ o) = (222) fulnan + (22)
< (222 o

To

(7.22)

Taking the geometric mean of (7.21) and (7.22), the lemma follows (with «/2 instead of
Q). O

As another immediate corollary of Lemma 7.24 we get the following:

Lemma 7.26. Let Q c R? be a Wiener reqular open set with compact boundary, let
£ € 0, and let ro > 0. Suppose that Q satisfies the (&, rg)-local capacity density condition.
Then there is o > 0 such that, for all v € (0,7),
. o < (12 =€\"
w'(B(&,7r)°) < for x € Q n B,(£). (7.23)

r

7.5.3 Improving property of the CDC

As shown in Lemma 6.19, if a set E c R? satisfies Cap(E) > 0, then H%2(E) > 0.
Further, this estimate is sharp in the sense that one cannot infer that H: (E) > 0 for
any s > d — 2. In fact, it is not difficult to construct a compact set E — R% such that
Cap(E) > 0 with dimy (E) = d—2. On the other hand, if Q = R? satisfies the CDC, then
it easily follows that

HEHQT A B(€) 77 forall e o0, 7> 0.

From the previous discussion, it would appear that the exponent d — 2 in this estimate
might be sharp. Surprisingly, this can be improved, as the following theorem shows.
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7 Harmonic measure and Green function in Wiener regular open sets

Theorem 7.27. Let 79 > 0 and let @ < R? be an open set with compact boundary
satisfying the (&, ro)-local capacity density condition for every & € 2. Then there exists
some s > d — 2 and some ¢ > 0 such that

H (N Br(€) =cr®  foralledfd, 0 <r <.

The constant ¢ > 0 and the precise s > d—2 depend only on d and on the constant involved

in the local CDC.

Proof. We consider first the case d = 3. Denote E = Q°. Observe first that the fact that
) satisfies the (£, 7p)-local CDC for every £ € 0€ is equivalent to saying that

Cap(E n By(z)) 2792 forallze E, 0 <r <.

Fix now a point £ € 02 and 0 < R < rg, and let us see that H5 (E n Bg(§)) = R® for
some s > d — 2, with both s and the implicit constant depending only on the local CDC.
To this end, define Fy = Bg/,(§) and, inductively, for m > 2,

En=En | Bymg().
:EEEm,1

It is immediate to check that the closure F' of  J
satisfies

E,, is contained in Br(§) n E and

m=1

Cap(F n B.(z)) 2142 forallze F,0<r<R.

Equivalently, the open set R4\ F satisfies the CDC.
Let pr be the equilibrium measure of F; and denote 1, = R°up. We intend to show
that there exists some s > d — 2 such that

Ns(Br(z)) <r® forallze F,0<r <R. (7.24)
By Frostman’s lemma, clearly this implies that
H3(E n Br(£)) = Hi(F) 2 R,

as wished. To prove (7.24), let ) = ng—y = R%? up, and notice that the CDC satisfied by
F¢ ensures that F° is Wiener regular, so that by Lemma 6.24,

U,(z) = R42 for all z € F.

Cap(F)

So the function

_ 1
fa) = R Gy = Unle)

is continuous in R?, harmonic in F€, it vanishes in F, and it is non-negative in F¢, by the
properties of the equilibrium potential. Further |f[, < RY2 Ca;( 77 S 1. So by Lemma
7.25, f is Holder continuous and, for some o > 0 depending on the CDC it holds

¢

n(a) = Gyl = 110) ~ 1 = (M) doralape Bt (r29)
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7 Harmonic measure and Green function in Wiener regular open sets

To prove (7.24), fix z € F and 0 < r < R, and let ¢ be a bump function such that
XBr(z) S Pr < XBoy(2) With [V, | S 1/r. Since —AU, = n in the sense of distributions,
we have

0(By(x)) < j pr iy = —(AUy, 0, = — f Uy Ay dy = — f (U(y) — Uy(z)) A, dy,

where, in the last identity, we used the fact that { Ay, dy = 0. Plugging the estimate
(7.25), we deduce

1(B.(2) < jB( 00 =~ Un@lay <2 ()"

r2

or equivalently,

Nd—2+« (Br (J?)) < Td_2+a-

So (7.24) holds with s =d —2 + «.

In the case d = 2, by a suitable dilation, we may assume that R = 1/4, say. Then the
arguments above work in a similar fashion, so that at the end we deduce that 7, (B, (z)) <
re. g

7.6 Harmonic measure and Green’s function with pole at infinity

In this section we will study the connection between harmonic measure with pole at
infinity and Green’s function with pole at infinity for unbounded open sets with compact
boundary. We will study first the case of the plane, which is simpler, and later the higher
dimensional case.

7.6.1 The case of the plane

Recall that for an unbounded open set with compact boundary the notion of harmonic
measure with pole at c0 was introduced in Definition 5.44. From that definition, it follows
that for any function f e C(092),

o f(§)dw™(§) = lim [ f(&)dw™(§). (7.26)

zZ—00 o0

Analogously, for any Borel set E < 02, we have w?(E) —» w®(F) as z — .

In the context above, denote by G : Q2 x 2 — R the Green function for €. For any fixed
point y € Q, the function G(y,-) is harmonic at oo (i.e., it has a removable singularity at
o), by Corollary 5.43. Thus we can define

G*(y) = Gy, ) = lim G(y, 2). (7.27)
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7 Harmonic measure and Green function in Wiener regular open sets

Theorem 7.28. Let Q < R? be a Wiener reqular unbounded open set with compact bound-
ary. Let {pr}r < Q be a sequence of points such that py, — 0. Then the functions GP*
converge uniformly in bounded subsets of Q0 to G, the measures wPk|sq converge weakly
to w™®, and the following holds:

(a) w™ is a probability measure which is mutually absolutely continuous with wP, for
every p belonging to the unbounded component of Q.

(b) For every p € C*(R?),
f G*(2) Ap(z)dm(z) = f@dww.
Q

(c) w® coincides with the equilibrium measure of 02 and moreover, for every z € €0,

1 1
0 _ _
G7(=) = Capy, (0Q) 27 LQ log

1 0
rlads
Proof. The weak convergence of wPk to w™ is equivalent to (7.26). It is clear that this
implies that w® is a probability measure (this can also be derived directly from the def-
inition of w® and the Riesz representation theorem). Further, we already discussed the
mutual absolute continuity of w® and w? after Definition 5.44.

From the pointwise convergence given by (7.27) and an easy application of the Arzela-
Ascoli theorem, it follows that the functions GP* converge uniformly in compact subsets of
Q to G* as pp — o0. To prove the uniform convergence in bounded subsets of 2, let r > 0
be an arbitrary radius such that 02 < S,(0). Since the functions GP* vanish continuously
on 012, by the maximum principle the sequence {GP*};~1 is a uniform Cauchy sequence in
Q2 B,(0), and so the convergence in uniform in 2 " B,.(0). So the convergence in uniform
in bounded subsets of (2.

The statement (b) of the theorem is a consequence of the fact that, for p € C*(R?) and
¢ away from the support of ¢,

L GE(2) Ap(z) dm(z) — J o dus

Then we let & — o0 and use the uniform convergence of G¢ to G* in bounded sets and
the weak convergence of w¢ to oo, and (b) follows.
To prove (c), recall that

1 € — 2| 1 ly — | ¢
G2.6) = g | tomi=du(o) = 5 || 10w (o) (),

where p is the equilibrium measure of 0€2. Letting £ — o0, we obtain

2nG*(z) =0 — J J log ly =] du(x) dw™ (y)
o Joa ly — 2|

_ J J log ’y_]‘x' dp(z) dw™ (y) — f f log \yiz! dp(x) dw™(y).
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7 Harmonic measure and Green function in Wiener regular open sets

Since p is a probability measure, the double integral term on the right hand side equals

1
flog | | dw®(y). For the first summand we take into account that
y—z

1
£ = ——— forall o0
* p(w) Capy (0 or allw € 09,
since (2 is Wiener regular, and so
27 1
2 G*(2) = ——— —Jlogdwoo Y).
TG R T Rl

By continuity, this identity also holds for all z € 0€2, and so integrating with respect to
w® we get

0=JG (2) dw (Z)zcapw(am—%fflog |y—z|dw (y) dw™(2).

So the energy associated with the measure w™ coincides with the equilibrium energy
m. Since any measure ¢ supported on 02 minimizing the energy § €0 do coincides

with the equilibrium measure p, we infer that w™ = pu. O

7.6.2 The higher dimensional case

For d > 3, let < R? be an unbounded Wiener regular open set with compact boundary.
In this case we cannot define the harmonic measure with pole at infinity directly as the
weak limit of the measures wP with p — oo because this limit is always zero. Instead we can
define harmonic measure and the Green function with pole at infinity by a limiting process
involving renormalization The construction is summarized in the following theorem:

Theorem 7.29. For d > 3, let Q < R be an unbounded Wiener reqular open set with
compact boundary. Let {px}r = Q be a sequence of points such that p — . Then
the functions &(px)~* GP* converge uniformly in bounded subsets of € to some function
G® : Q — R, the measures &(py) ‘WPt converge weakly to some measure w™ supported in
092, and the following holds:

(a) The limiting function G* and the limiting measure w® do not depend on the chosen
sequence {pg}i.

(b) G* is harmonic and positive in ).
(c) w® is mutually absolutely continuous with WP, for every p € Q.

(d) For every p € CX(R™1),

L G* () Ap(x) d — f o ™.
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7 Harmonic measure and Green function in Wiener regular open sets
(e) w™ is the equilibrium measure of 02 times Cap(0R?) (and, so |w™| = Cap(dQ?)) and
moreover, for every x € €,

GF(x)=1-E*+w®(z) =1—w"(0N).

Proof. Let u be the equilibrium measure of 2. Observe first that, for all p € Q,
w?(082) = Cap(0Q2) Uy(p), (7.28)

since the right hand side is a function that is harmonic in © and continuous in Q, it equals
1 in 0f2, and vanishes at co.
Consider now an arbitrary sequence {py}r < 2 such that py — co. We write

Uu(pk) 1 WPk
E(pr) wPr(0Q) ~ -

E(py) twPt = Cap(09) (7.29)

It is immediate to check that
Uu (pk)

lim ———== =1.
=0 E(pr)
Thus there exists a subsequence {py, }; such that €(py,) 'w"i converges weakly * to some
measure W supported on 02, with total mass Cap(0€2).

Notice also that the Green function satisfies
Elpr) "G (x,pr) < E(pr) 'E(x —pr) > 1 ask — oo, forallze.

Thus there exists another subsequence {py, }» such that the functions &(py, )" GP*r con-
verge locally uniformly in compact subsets of 2 to some harmonic function g : Q2 —» R
such that [§]e < 1. Without loss of generality, we may assume that the subsequences
{px,}; and {pg, }» coincide. Using that the functions & (pk,,) " GP¥n vanish continuously in
082, and using the maximum principle, as in the proof of Theorem, it follows that they
converge uniformly on bounded subsets of €.

Given ¢ € C*(R™"1), we have
Elpr;)~" JQ 9(@,pr;) Dp(x) de = =€ (pr;) ™ o) + E(pr;) ™" dew”’“j-

By the uniform convergence of £ (pkj)*1 g(+,Pk;) to g in bounded subsets of €2, the left hand
side converges to {,JApdz as j — o0, and by the weak * convergence of € (pkj)_lwp ki
and the fact that @(pkj) = 0 for j big enough, it is clear that the right hand side converges

to { ¢ d&. So we deduce that
f JApdxr = J@d@.
Q

From this fact, it is clear that § does not vanish identically on 2. Taking into account
that ¢ is non-negative by construction and harmonic in , it follows that g is (strictly)
positive in €.
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7 Harmonic measure and Green function in Wiener regular open sets

Next we will show that @ coincides with the measure Cap(0€2) u. To this end, recall
that for any x € €,

G (x) = E(x — pr;) — fé’(x — 2) dw™i (2).

Hence,
8(pkj)_1Gp"J‘ (x) = S(pkj)_lé'(x — Pr;) — E(pkj)_l fé'(x — 2) dw""i (2).

The left side converges to g(x) as j — 00, while the first term on the right hand side tends
to 1 and the last one to {E(x — 2) d@(z). So we deduce that

g(x)=1- JS(:L‘ —2)dw(z) =1 —Uz(x). (7.30)

Since g(z) is positive in Q, we deduce that Uy(z) < 1 for all z € Q, and thus Uy(z) < 1
for all x € 09. Since |@| = Cap(df?), by the uniqueness of the equilibrium measure p of
09, it follows that @ = Cap(0Q) u, as claimed.

In particular, the identity @ = Cap(d€2) u ensures that the measure @ does not depend on
the chosen subsequence {pkj }j, which in turn implies that the initial sequence of measures
E(pr)~LwPk converges to @. From the relationship between § and @ in (7.30), we deduce
that ¢ does not depend on the subsequence {pkj }; either, and analogously this implies the
local uniform convergence in bounded subsets of € of the functions &(py)~1GP*.

The preceding arguments show that setting w® = @ and G* = g, the properties (a),
(b), (d) and (e) hold. In particular, notice that the identities stated in (e) follow from
(7.30) and (7.28). So it just remains to prove (c).

Consider a ball B « R"*! centered at the origin such that 0Q c %B. It suffices to show
that w® is absolutely continuous with respect to p € 0B. To this end, observe first that,
by a Harnack chain argument,

wP(E) ~ w? (E) for all p,p' € 0B and all E < oS,

with the implicit constant independent of p,p’ € E. Consider the function

r(B)"!
|x|n71

fe(z) = WP (E).

Observe that fp(p) = wP(E) ~ wi(E) forall g € 0B. Also, limy—, fr(q) = limg_,o wi(E) =
0. So by the maximum principle we deduce that fg(x) ~ w*(E) uniformly for all z € B¢
and E < 0f). So we get

w*(E) N fe(z) r(B)" 1 _ foal(x) N w(00)

X -

WP(E) ~ felp) el fealp) T wP(99)

Thus,
W(E) _ W (E)
wP(0Q)  w(09N)

for all x € B¢,
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7 Harmonic measure and Green function in Wiener regular open sets

and then
W(E) . wI(E)

~

wP(E ~1i
wP(09) P u(00) T e wu(09)

By the identity (7.29) and for k large enough, it follows that for p € 0B,

E(pr) WP (E) _ Uulp) wP(E) _ Un(pr) «P(E)
Cap(09Q) E(pr) wpr(09) E(pr) wP(0Q)

Letting k — o0, we derive

Cap(0Q)'w™®(E) ~

for any measurable set E < 02, which proves (c). O

Remark 7.30. Notice that the estimate in Lemma 7.17 also holds for the harmonic
measure and the Green function with pole at co. To check this, just multiply the inequality
(7.10) by £(x)~! and take the limit as z — oo.
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8 Harmonic measure in CDC uniform and
NTA domains

This chapter deals with properties of harmonic measure on CDC uniform and NTA do-
mains. Most of the material is based on [JK82]. For simplicity, in this chapter we assume
that the domain  is bounded. We will use the following notation.

Definition 8.1. Let Q  RY. For every & € 09 and r > 0 we write the boundary ball
Ave = A (&) := Br(&) n oL
We also use the classical notation for rescaled balls to the boundary balls:

tArg = Age

8.1 CDC, uniform, and NTA domains

Definition 8.2. A CDC domain is a domain satisfying the CDC condition.
Recall that CDC domains are Wiener regular.

Definition 8.3. A domain Q c R? satisfies the exterior corkscrew condition if for every
£ € 0 and r < rg there exists a point X;*(§) = X% = X € Q° such that [ X&*(&)—¢| <

r and do(XS(€)) = dist(XX(€),00) > A~lr. We call X&*(¢) an exterior corkscrew point
of £ at scale r, and BY , := B := B, (X77%) is called exterior corkscrew ball. Note that

B < 2B < O
It is immediate to check that, for any bounded domain, the exterior corkscrew condition

implies the CDC condition, and thus the Wiener regularity of 2.
Next we recall one of the Holder regularity properties already shown for CDC domains.

Theorem 8.4. Let < R? be a CDC domain, let u € CO(B,(£) N Q) be non-negative har-
monic, vanishing continuously on A, ¢ with & € 02 and r < ro. Then there are constants
Coy and a depending on d and the CDC' character so that

u(z) < Cy <|:c—§|> sup u for every x € B.(§) N Q.
r B (£)nQ

Definition 8.5. A uniform domain Q = R? is a domain satisfying
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8 Harmonic measure in CDC uniform and NTA domains

e Interior corkscrew condition: For every & € 00 and r < rg there exists a point
Xing) = Xiflg = XZ“TE € Q) such that |X"(€) — €] < r and do(X2(¢)) > A~ lr. We
call X;*(&) a (interior) corkscrew point of £ at scale r, and BKRE =B =B &)

is called interior corkscrew ball. Note that Bj}% c 2Bi}j§ - Q°.

e Harnack chain condition: for € > 0 and x1, 22 €  with do(z;) > € and |z — 22| =
7 < 1o, there exists N depending only on Z and a collection of balls {B; };V: | with
x1 € By, 9 € By such that 2B; < Q) for every 0 < j < N and B; n Bj_1 # (J for
every 1 < j < N. This collection of balls is called a Harnack chain joining x; and
x3.

From now on, for short we will say that a domain is CDC uniform it is both CDC and
uniform.

Lemma 8.6. A domain Q < R? is uniform if and only if for every xg,x1 € Q with
|zo — x1| < 1o there exists a path y : [0,1] — Q such that

1. 7(j) =z for j € {0,1},
2. the length of the curve {(y) < Alz —y| and
3. fort € (0,1) we have do(y(t)) = dist(y(t), {zo, z1})/A.
Proof. We can show first the ‘if” part. Let & € 0Q, r < min{rg,diamQ}. Consider x €

Br(§) N and zy € 0B (£) n Q2 (which exists by connectedness) and consider the path
connecting zo and 1. Then the point X*(¢) := y € v(0,1) n 0B (&) is a corkscrew point,
so () satisfies de corkscrew condition.

Let us prove that the Harnack chain condition is also satisfied. To this end just consider
e > 0 and z1,29 € Q with dist(z;,0) > ¢ and |21 — 22| = r < 79. Take the collection
of balls {B Ldo(y) () }yey([0,1])- By the 5r-covering theorem there exists a subcollection of
disjoint balls B; such that 5B; cover ¥([0,1]). The radii of the balls are bounded below
by a constant times dist(vy([0, 1]), Q) > Cglz—: by the third condition.

We claim that for every £ > 0 the number of balls with 2’“0215 < r(Bj) < 2k+1CEl€
is bounded by a constant C depending on d and perhaps on A Ttis enough to consider
the balls whose center is closer to the endpoint xg and € = dg(zo).

First consider k so that ZkCEl < 1. Writing z(B) for the center of the ball and r(B)
for its radius, in this case,

dist(z(B), zp) < do(z(B)) ~ r(B) < 2¢

and, therefore, since the balls are disjoint, the number of such balls is bounded by a
dimensional constant times ng,

So let us consider the balls such that dg(zg) < 2’“05‘15 < r(B) < 2’““0515. Since
10B < Q, we can infer that do(x¢) < 9|z(B) —zo|. By the third property and the triangle
inequality, it follows that

|2(B) = wo| $ 3 do(2(B)) < [2(B) = zo| + da(xo) ~ [2(B) — |-
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8 Harmonic measure in CDC uniform and NTA domains

The number of disjoint balls whose size is comparable to their distance from a point is
bounded by a dimensional constant, and the claim follows.

Also the maximum size of the balls is bounded by r(B) = t=do(z(B)) < {(y)+e < r+e
by the second condition. Thus, the number of balls is bounded by

|
N < C1(logy(r + &) — logy(C71e)) = Crlog, | -5 | = C1log, [ £t |
A C='e CA

To show the converse, assume that €2 is uniform and let xg, 1 € Q with e < |xg—x1| < 79.
Let & € 0Q be points minimizing dist(z;, ), and for every 0 < k < kg := [logz(M)J

€
consider the corkscrew point yi = X;%a(gj)' The number of balls in a Harnack chain
between two consecutive points y; and v, 41 is uniformly bounded. The same can be said
about the Harnack chain joining y,go and y,io. Joining the centers of the balls in these
Harnack chains between consecutive points we find a path satisfying the three conditions
above. Indeed 1 holds trivially, 2 is a consequence of the fact that the number of balls of
each scale is uniformly bounded and, therefore, the length of the curve can be controlled
by a geometric sum whose bigger term is comparable to |zg — 1|. The third condition
follows from the fact that for every ball B from the Harnack chains dg is comparable with
r(B) in v([0,1]) n B and the distance from the ball to the closest end-point is bounded
again by a geometric series whose bigger term is comparable to r(B). ]

Put in plain words, the definition we give here of uniform domains in terms of corkscrew
points and Harnack chains coincides with the definition in terms of “cigar paths” from the
Sobolev extension domains in [Jon81]. Also from the previous proof we can infer that the
definition coincides with the one in [GO79], where the distance dist(y(t), {zo,z1}) in the
third condition is replaced by the arc-length distance to the endpoints.

Roughly speaking, the domain cannot have outer cusps, thin tubes or slits. In two
dimensions inner cusps are also banned.

The Harnack chain condition gives us that, whenever u is a positive harmonic function
on €, | |

—N(A) < < oNW) r—yl
C u(y) < u(x) < C*Wu(y) whenever dowyn =N
By the previous proof, uniformity tells us that for k > 1 we have N (2¥) < C; log, (Ca2¥) <
C1(k + logy(C4)), that is whenever |z — y| < min{2*dq({z,y}), 70} with k > 2 we have

Ot uly) < ulz) < Chuly). (8.1)

Note that the value of C4 may have increased in our reasoning, but depends only on the
constant A and the dimension d.

In particular, for CDC uniform domains, by the results in Chapter 7 and the Harnack
chain property we have:

Lemma 8.7. Let Q c R? be a CDC uniform domain and let &€ € 0Q and r < ro. Then

wire (AT,E) = Cq.
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8 Harmonic measure in CDC uniform and NTA domains

Definition 8.8. A non-tangentially accessible domain (NTA domain for short) is a uni-
form domain satisfying also the exterior corkscrew condition.

It is clear that any NTA domain is CDC uniform. The notion of NTA domain was
introduced by Jerison and Kenig in [JK82]. In this work they studied the behavior of
harmonic measure in this type of domains.

Roughly speaking, NTA domains cannot have outer cusps, inner cusps, thin tubes, slits
or isolated points in the boundary. In fact, for every £ # (& contained in a simply
connected NTA domain Q < R? with |E| = 0, Q\F is not an NTA domain. In other
words, if €2 is bounded, consider Q to be the complement of the unbounded component of
the complement of §2, which is a simply connected containing 2. Then (NZ\Q consists of a
(perhaps empty) collection of connected closed sets with positive Lebesgue measure. This
is in contrast to uniform domains, since the complement of the planar 1/4-Cantor set is a
uniform domain in R2.

If the domain is bounded, we may assume without loss of generality that ro = diam(2).
Indeed, just by taking worse constants depending on the ratio ﬁO(Q) we can check that

both corkscrew conditions and the Harnack chain condition are satisfied as well for rg <
r < diam(2).

8.2 Green’s function for CDC uniform domains

Next we show that the supremum of a nonnegative harmonic function in a ball coincides
modulo constant with the value at the corkscrew point:

Lemma 8.9. Let Q be a CDC uniform domain. Let u = 0 harmonic in ), vanishing
continuously on Ao, ¢ with £ € 02 and 2r < rg, then we have

sup  u < Cau( ing).
QB (€) ’

Proof. To simplify notation, let us assume that 4r < rg, let us assume that u vanishes on
4A with A := A, ¢, and let us assume that u(X}%) = 1. We will prove that

sup u < 1.
90327"({)

Theorem 8.4 implies the existence of a constant Ay > 1 s.t. for every ¢ € 3A and every
s<r

sup = u. (8.2)
B((,5)n

N |

sup U <
B(¢,AT's)n

The second observation is about the quantitative behavior of Harnack chains described
in (8.1): if x € Br(¢) n Q with ( € 3A, ne N, and do(z) = A]"r, then

| Xone — @] < 6r < 6A7do(z) = CrMu(z) <u(Xgme) =1,
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where k = 1 + |logy(6AT)| ~ n. Thus, we can pick Ag := Cﬁ/ " > 1 above, and we deduce

that whenever z € B, (¢) n 2, we have
u(z) > Ay = do(z) < A" (8.3)

Now we argue by contradiction: consider N so that 2V > Ay and let n = N +3. Assume
that there exists yo € @ n Ba,(§) with u(yo) > A%. Then, by (8.3) we can find & € 09
satisfying that

|y0 — f()’ < Al_nT'
Note also that
€ =&l <€ —yol + |yo — ol < 2r + AT"r < 3.

and by (8.2) we have

sup uw>2N sup w> Ay ngSH.
B(&, A" ) B(&,A; ™)

We have proven the existence of y; € B(&y, A7 Vr) with u(y;) > A3 Since N —n <
0, we can apply (8.3) to find & € 09 so that

ly1 — &| < A"
Note also that
€=l <[€—ol+[o—wl+ly — &l <@+A"+ AN+ AT e <3,
and by (8.2) we have

sup u>2" sup  u> Ag-u(y) > AV
B(fl,A;n71+NT‘) B(£1,A;"71r)

Tterating the construction, we find yy, € B(&,_1, A7 TNV F 1) with u(yg) > AFTF. We
can apply (8.3) to find & € 02 so that

lyr — &k| < AT
Note also that
£ N
B N1 o
§=&kl < [€=Eh—1]+[Ek—1—yr|+|yp—Ek| < <2 + AT+ <A1 T A J)) r<3r,
j=1
form A; large enough, and by (8.2) we have

sup u> 2N sup u> Ay - u(yg) > A§+k+1,
B(&1,Ay "M ) B(&1,A;" " r)

so the induction can be carried on.
Note that gy is a Cauchy sequence converging to a point in 3A. Therefore, we reach a
contradiction with the continuity of w. O
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8 Harmonic measure in CDC uniform and NTA domains

Recall that for a bounded Wiener regular domain (and so for a CDC domain) the Green
function equals, for z € Q and y € R\ {z}:

. EY(x) — (E€Y()dw™(§) =0 ifyeq,
Galy) = .
0 otherwise.
In fact, the following holds, as shown in the preceding chapter.

Lemma 8.10. Let Q be a CDC uniform domain and let G := Ggq be its Green function.
For every z € Q and a.e. y € R% we have

Go(y) = E¥(x) - jsy@dwx(e).

Moreover, G* vanishes continuously in 0, and therefore it is continuous in R\ {z}.

Lemma 8.11. Let Q be a CDC uniform domain, let G := Gq be its Green function and
let x € QO\B(&,8r), with § € 0Q and 4r < ro. Then the boundary ball A := A, ¢ satisfies

W (A) < Car™?G*(XR)

Proof. Let ¢ € C* bump function so that xp. () < ¢ < XBs, j2(€) (so ¢(z) = 0) and
|D?¢| <772 Then

[ rmaomant) - [ (e10) - [ e (@ ) aot) dmiy
——ola) = [ | Aot & dmiy) dor(©)
=0+ [ 6(6) dw(9) > w (D)

Now, since G* is harmonic in the CDC uniform domain Q\B1 do(z) (z) (with perhaps
2

worse constants than the original one) and vanishes on the boundary, we can use Lemma
8.9 to conclude that G*(y) <a G*(XI%) on Ba.(€) N Q. Thus,

WH(A) < L G*(y)Ad(y) dm(y) < jB G ()| Ad(y) dm(y) < aqri2CT(X).
27(8)

The lemma follows by the Harnack chain condition. O

Next we want to show that the two terms in the conclusion of Lemma 8.11 are in fact
comparable.
By the results in Chapter 7 and the Harnack chain condition, the following also holds.

Lemma 8.12. Let Q be a CDC uniform domain, and let A := A, ¢ with § € 0Q and
r<rg. Ifve Q\BifA, then
2

PG (XY,) S W' (A)

2
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8 Harmonic measure in CDC uniform and NTA domains

Combining Lemmas 8.11 and 8.12 we get the following remarkable fact.

Theorem 8.13. Let 2 be a uniform CDC domain, and let A := A, ¢ with £ € 0Q and
4r < rg. For x € Q\B(&,8r)
w¥(A) N
riGR(XR)

with constants depending on A.

8.3 The doubling condition

Lemma 8.14 (Doubling condition). Let Q be a CDC uniform domain. If A := A, ¢ with
£€ 0 and x € Q, then
w?(2A) < Cw®(A),

with C' depending on do(x), d, ro, A and diam(£2).

Proof. Without loss of generality, we may assume that ro < diam{). Then take r; = A~ lrg
Let us assume that 2dq(z) > r;.

The case 167 > r; follows by Lemma 8.7 and the Harnack inequality. Indeed, we can
find a finite family of points §; so that A(&;,79/8) cover the boundary, so

z > X /s >
w (A’r‘o/S,E) = w "o ’(Aro/&f) = C4,

the constants of the first estimate depending only on d, r1 and diam(2). Now, there is a
&j, so that £ € A(&j,,70/8) and thus A(Ej,,r0/8) < A. Therefore

Wi (A) = w (A 8¢) T ca = caw”(2A).
If 167 < r1, then we can use Theorem 8.13 twice and the Harnack chain:

8.13 3

w?(24) crn_sz(XénA) ~ cr”_QGx(XiAn) ! w?(A).

For the cases not included in the previous ones, consider xg so that dg(x¢) ~ r1. Then,
since w*(A) and w®(2A) are harmonic functions, we get that

W (A) ~p w0 (A) < caw™(2A) ~y W (24A).
O

Lemma 8.15. Let Q2 be a CDC uniform domain. There exists a constant Cy such that
for every £ € 0Q and r < Caro, there exists a CDC uniform domain ;¢ such that

Qn BCAle(g) C Qe < Qn B, (£).

The constants of the CDC uniform domain are independent of & and r. Moreover, for

¢ € 0Qre\Bz(€), we have that do(¢) % car.
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8 Harmonic measure in CDC uniform and NTA domains

Proof. Consider a Whitney covering of Q. That is, denote by W := W(Q) the set of
maximal dyadic cubes @) < Q2 such that 4Q n Q¢ = &. These cubes have disjoint interiors
and can be easily shown to satisfy the following properties:

(a) dist(Q, Q2°) < 4(Q) < dist(Q, Q°), where £(Q) denotes the side length of the cube.
(b) If Q,Re W and 4Q n 4R # @, then {(Q) ~4 {(R).
(¢) 2oew X2@ Sd Xo-

Now, let A := Ay-1,¢,. For every ¢ € A and p < r, there exists Qi«nc € W so that
/(Q) ~ A~ and Qi& N Bi,f‘c # J. Denote

Fr={QeW:Q = i,,I}Cforsomeg"eAandp<r}.

We can identify Q € 7 with a pair (rg, (g) so that @ = Q™ . . Then, for Q, R € F; there

7Q:6Q
exists a Harnack chain of balls {BJSQ’R};V:QiR joining BLE’CQ with Bi«r;,gg as in Definition 8.5,
that is, Ngr < %, B]Q’R N B]QJ;? # (& and r(B]Q’R) = dist(BJQ’R,é’Q). Note
that

B]Q’R c {zreQ:dist(z,A) < 2r}
and by Lemma 8.6 we get
dist(BP™, A) < min{dist(BY", Q) + CU(Q), dist(B", R) + CU(R)} < Car(BP™).
Next we define
Fo:={QeW:Qn BJR’S # & for some R, S € Fy and j < Ngs}.

At this point the reader may note that every pair of cubes in F; can be connected by a
chain of cubes in F», whatever that means. However, we still need to show the existence
of Harnack chains joining cubes in Fo\Fj.

Given @ € F;, we claim that there exists U(Q) € F; so that

(Q) ~ (¥(Q)) ~ D(Q, ¥(Q))- (8.4)

Indeed, note that there exists a couple of cubes Rq, Sg € F1 so that Q n B]EQ’SQ # ¢ for
some j < Np, 5,- In particular,

dist(Q, A) < dist(B; 2, A) + 2r(B]9°?) < min{4r, Cal(Q)}.

J

Let (g € CaQ N A. Then ¥(Q) := Qicrcl2 Au(q) Satisfies (8.4).
Next we define

Fs3:={Q e W :dist(Q,A) < min{dr, C4l(Q)}}.

We get that F» < F3 as discussed above. Moreover, for () € F3 we can reason as above to
define (g € CaQ N A, so that ¥(Q) := 1&2 Ar(q) Satisties (8.4) as well.
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8 Harmonic measure in CDC uniform and NTA domains

Estimate (8.4) means in particular that all the balls in the chain {BJQ"II(Q)} joining @
and ¥(Q) are roughly of the same size and their number is bounded by universal constants
depending only on A and d. Therefore, we define

Fi:={ReW:B?" ¥ AR % g for some Q € F2, j < No.w(o)}

and let N
Q= U (1+ ¢ca)Q.
QEFy
The Harnack chain condition is satisfied by construction: ¥ can easily be extended to F4
so that (8.4) is satisfied. Now, for points in neighboring Whitney cubes the chain can be
constructed thanks to the dilation (1 + ¢4). For points in Whitney cubes @1, Q2 further
away, connect each cube Q; to ¥(Q;) and then connect ¥(Q;) and ¥(Q)2) by a Harnack

: ¥(Q1),¥(Q2) D(Q1,Q2)
chain of balls B, . Then the number of balls depends only on RO).0QT

To see that §) satisfies the interior corkscrew condition, just notice that if ( € o0 and
dist(¢, A) < p/2, then there are interior corkscrew balls contained in B,(¢) which are also
interior corkscrew balls (with perhaps worse constants) for the new domain. If, instead,

dist(¢,A) > p/2, then we have that p < £(Q) for any Q € W such that ¢ € Q. Since

~ ~ ~¢C
¢ € 09, then there is an interior cube Q1 < € and a cube Q2 with (1 — ¢4)Q2 < Q
(perhaps decreasing the constant cp), so that ¢ € @;. Finding corkscrew balls of size
comparable to p is possible because cubes are also uniform CDC domains. The fact that
the CDC condition holds for €2 is proved by similar arguments. O

Theorem 8.16 (Uniform boundary Harnack principle). Let Q be a CDC uniform domain,
and let A := A, ¢ with £ € 02 and r < Czlro. Let u,v = 0 harmonic in 0 vanishing
continuously on CaA and u(X®) = v(X¥). Then % ~ 1 on C'B,(£) n Q.

Proof. Consider the intermediate domain Q= 2y, ¢ from Lemma 8.15. We write Ar,g =
QN B.(§), @ for the harmonic measure in € and so on.

Denote -
Ly = {C € 00\0Q : dist (¢, 29Q) < (Ca)~'r}

and N
L2 = 69\(L1 U GQ)

Take a minimal covering of L; with surface balls Aj = Aj(gj, (10C4)~'r) « O with
j € {1, N}. Since the covering is minimal, N only depends on d and A. R
On the other hand, there is a point {y € ﬁQ\BZC;T(ﬁ). Then the surface ball in 02

defined as AO = A(CA)_lﬁﬁo C L2.
Now, by Theorem 8.13 and the Harnack chain condition, we get

d—2 d—2
~NTON Y o r T (yin r T(yin y o 5 X
5 (A;) ~ (100A> G (X ) (100A> 7 (X% ) ~ 5 (Ra),
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8 Harmonic measure in CDC uniform and NTA domains

and therefore

N
Za (A)) ~ N&"(Ag) < &% (La), (8.5)

the constants not depending on x € C;' B,.(£) n Q.
Applying Lemma 8.9 an the Harnack chain condition applied in €2, assuming C'4 large
enough, we obtain .
supu <4 u(XR). (8.6)
Q
On the other hand, by Harnack inequality again infr, v 24 v(X®) = «(X¥). All in all
we get, for x € C;*B,(€) n Q,
MaxP. . (8.6) iy (&5) Max.P.
uw(z) < w§((09) )Slflzpu < wE((0))u(XR) < w(Lo)info < v(z).

O]

Lemma 8.17 (Universal doubling constant). In Lemma 8.1, if x € B,(§) U Bs,(§)¢ then
C does not depend on x.

Proof. The case 16r > r;, = A 'ry and 2dg(x) > 7 is already settled in the proof of
Lemma 8.14.

If z € B(§,r) and 2dg(z) < ro, then we have

L 8.7
W (A) = w'(Bagg () () N A) = ca = caw®(24),

and the lemma follows.

Note also that the case x € B(§,r) and 2dq(z) = r1, 16r < r cannot happen.

If 16r < r1 and = € B(§,8r)¢, then we can use Theorem 8.13 twice and the Harnack

chain:

13 13

w(28) R errar (xR a2 (xR R W (A).

The case 16r > ry, do(z) < r1, * € B(§,87)¢ can be obtained using the boundary
Harnack principle. Indeed, let zp be such that dg(zg) = ™

LR IES L wt0A) | wm(A)
dafa)<r, = B(€ 81 wr(A) T 4@ )<r1,xeB(§ srye WI(A)  wr(A)
da(z)<A—2 do(z)=A"2

O]

Note that one cannot expect to avoid the dependence on x: if z — 2A\A, then w®(A) —
0 and w*(2A) — 1
Theorem 8.18. Let ) be a CDC uniform domain, and let A := A, ¢ with £ € 02 and
9r < rg. Assume that % > 2. Then there exits constants o and [ depending on the
dimension and A so that

dist(z, A) \* w”(2A) dist(z, A) \?
7 oay | SdA SdA | T e
dist(zx, 2A) w?(A) dist(z, 2A)
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Proof. Let \; := M, and let Q := {zr € Q: 281 < )\, < 2F}. We divide Q in two

dist(z,2A)
subregions.
= {x € Qi : do(z) = dist(x,2A)},
dist(z, 2A)
02 = {x e O : do(z) < 2 222 }
and

QF = U\ U Q3).

By Lemma 8.17, we may assume that @ € Bg,(£)\B,(€). First let us consider z € Q3.
Note that dist(z, A) —r < dist(z, 2A) < 8r implies in particular that dist(z, A) < 9r < ro.
Applying the boundary Harnack principle from Theorem 8.16, it is enough to show the
result for Q%

But in this case the result can be compared to Q}\ using a Harnack chain.

It remains to study the case x € Q,%;\Qi If 0 < k < 1, then we can compare to the case
x € B.(§) by a Harnack chain. Therefore we may assume that k > 2. For z € Qi, let
&x € 2A such that |z — &,;| = do(z). Then

w(2A) R pNiwe (2A) TR 1.

To estimate w”(A) from above we use the exterior corkscrew: by Theorem 8.4 we obtain

o . o . (07
wx(A) <C M <C . dlSt(w’é) <C M ,
dist(&, A) dist(z, A) — dist(z, A) 2dist(x, A)
implying the first estimate.

To estimate w”(A) from below, let p := dist(§, A) < 2dist(x,A). Then we use the
uniform character (8.1). To do so, note that

|z — ;H£T| |z — & | + [€x — p§T| < do(z) + 2dist(z, A) ~ 2%dg(z).

Therefore, we get

(81) in 8.7 dlst(x A) ﬁ
x [ > —
WH(B) > Cgfetre(8) > C<2dist(m,A)>

O

Lemma 8.19 (Change of pole formula). Let 2r < 1o, Age © Ay jne, and x € Q\Bg,(&o).
Then (M)
xin w'(Ase
Wit (Age) & ——2%
T w(Brg)

Proof. By Theorem 8.13, the lemma is equivalent to showing that
G* (X1

G* (X))

GXvi“?SO( ;?5) ~ p2d
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8 Harmonic measure in CDC uniform and NTA domains

Now this estimate can be obtained using Theorem 8.16 with v = G and v = GT
after normalizing with the value of an appropriate point of the boundary of the corkscrew
ball: let Y € &Bingo. Then

GXiTIvléo(Y) 8.13m 8.7 p2—d
Thus, '
G0 (K1) 1 g1 G0 (V) 20 8.7)
Gr(xn) T GqY) Gr(xm) ‘

and the lemma follows. Note that the Green function is not harmonic in the domain,
but in the domain minus a ball, which is CDC uniform with worse constants. Thus, to
establish the first estimate in (8.7) one needs to apply the Harnack inequality to localize
to a region where the conditions for Theorem 8.16 to apply hold, the details are left to
the reader. O

8.4 Estimates for the Radon-Nikodym derivative

Remark 8.20. Fix a pole zg and w := w®. Then the Radon-Nykodim derivative

w® : w? (A,
K(z,8) = %2 (¢) equals lim,_g w((AT’,:))

for w-a.e. &.

Proof. To see that w® « w™, note that given a Borel set F — 02 with w™(E) = 0, there
exists an open set U, o FE such that w™(U,) < % Moreover, there exists a compact set
K, < U, so that w*(U,) < w*(K,) + % Consider u,, to be a harmonic function with
value 1 in K,, n 0f2 and value 0 in U5 n 0Q2. Then

<w(Up) + — <

2
< —.
n

S
SRS

1
W(E) < W (Up) < 0" (K,) + - < up(x) + - Rapow  Un(zo) +

Once this is settled, by [Rud87, Theorem 6.9] we obtain that SArg déu: (Q)dw(¢) =

w* (A, ¢) and, therefore, using the Lebesgue differentiation theorem (see [Mat95, Corollary
2.14]), we get

ww(ATﬁ) 1 f dw® r—0 dw”
) - d — for w—a.e. £ € R".
W(Ang) w(AT’,ﬁ) Ang dw (C) w(C) duw (5) or w a.e (SE
]
Lemma 8.21. Let v = X%, Aj = Ayj ) and Rj = A)\Aj_1. Then
C, ,C277I
sup K(z,6) < —%———,
B A )

with v, C' > 0 depending only on ).
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Proof. Note that the Harnack chain condition implies that for T € €, we have
W (A) ~g g W (A).

In particular, open sets have comparable measures and, therefore, the measures are com-
parable. Thus, without loss of generality, we may assume that dist(z,0Q) = r; = CleQ.

For 2/r < rg and A’ < Rj, the idea is to combine Theorem 8.4, Lemma 8.9, and
Harnack’s inequality to get

YN xie o (v =&\’
w(A") < Caw J(A)( T > .

After that, use the change of pole formula (see Lemma 8.19). For 2/r > rq, just use that
the number of R; is finite and apply Lemma 8.9 and Harnack’s inequality. ]

Lemma 8.22. Let r < rg. Then

sup  K(z,§) 228, ),

£€6Q\ATY§O
Proof. Apply Lemma 8.9 and Harnack’s inequality to get
W (Ace) < Caw™(Acg)

Using that w®(Ac¢) is a harmonic function vanishing at A, 5 ¢/, one can use Theorem 8.4
to get the quantitative estimates of Holder type. O

Let £ be a boundary point, r < (so that zo ¢ B,(£)). Consider the intermediate do-
main 2 = ,.¢ as in Lemma 8.15, z = X;?E with respect to Q, y € B(z, A=32r)\B(z, A=%r),
A =A(¢,A72R). Then

Ggly,x) ~r*7"
and, by Theorem 8.13 and Harnack,
Galy,z0) ~ r*"w(A).
Compare both functions on y using Theorem 8.16 to get
Claim 8.23. For z € By—2,.(£) n Q

Gg(z,7) ~ GZ}((ZA’;:O)

By Claim 8.23 and Theorem 8.13 we get
Claim 8.24. For every surface ball A" < A, we have
wg( /) ~ W(A/)
@ w(A)
Finally, from Claim 8.24 and Lemma 8.19 (maybe it is enough to use 5r-covering) we
obtain

Claim 8.25. For every Borel set E < A, we have
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8 Harmonic measure in CDC uniform and NTA domains

8.5 Global boundary behavior of harmonic functions in CDC
uniform domains

An immediate consequence of Theorem 8.16 is the following global boundary Harnack
principle.

Theorem 8.26 (Global boundary Harnack principle). Let Q be a CDC uniform domain,
and let V' be an open set. For any compact set K < V', there exists a constant C' such that
for all positive harmonic functions u, v in  that vanish continuously on 02 "V, then for
every x,y € QA n K
o) _uy) _ o)
v(@) " oly)  v()
Lemma 8.27. Let Q) be a CDC uniform domain. Let u be harmonic and positive in €,

with § € 0Q. If u vanishes continuously on OQN\A where A := A, ¢ with r < 19, then for
all x € Q\Ba,,

u(z) ~ 4 (X)W (A).

Proof. Cover dBs,(€) n 0Q with balls B,(&;) of radius p := C;? min{rg,}, where Cy4 is
the constant from Theorem 8.16, so that every x € B,({;) satisfies that

u(e) 510 ) g u(XE)

FO) T sy oE@)

ST u(xin),

The estimates extend to x € 0Ba,(£) nQ by the Harnack inequality, and the lemma follows
by the maximum principle. O

A kernel function in Q at £ € €1 is a positive harmonic function u in € that vanishes
continuously on 0\{£} and such that u(zg) = 1. Note that limsup,_,¢ u(z) = c0. Other-
wise {¢} would have positive harmonic measure, and this cannot happen (one can check
that sets with zero capacity have always zero harmonic measure).

Lemma 8.28. Let Q) be a CDC uniform domain. There exists a kernel function u at every
boundary point.

Proof. Let £ € €2, and denote

() = w*(Ag-m ¢)
m () By me)

so that w,,(zg) = 1.

By Harnack’s inequality and Lemma 2.14 there is a partial u,; T2 uniformly on
compact subsets of {2, with u positive and harmonic in €.
Let r <rg and let A := A, ¢. For j big enough, we get

8.27 iny, @ T T
U () X4 U (XR)W (D)~ g4 U (T0)w” (A) = w*(A)
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for every x € Q\Bsy,. Therefore,
u(z) ~ w*(A) for every x € Q\Bay,
and therefore u vanishes in 02\2A. The lemma follows letting r — 0. O

Lemma 8.29. Let Q be a CDC uniform domain. Assume that uy and us are kernel
functions for Q at £&. Then

ui(x) ~4 uz(z) for every x € Q.
Proof. Let r > 0 be small enough and A := A, .. By Lemma 8.27

1= uj(x0) ~a uj(XR)w(A).

and _
uj(z) ~a uj (XA )W (A).
Therefore (A)
wl’
Ul(%) ~A W(A) ~A ’LL2($)
for all z € Q\Ba,(§) for r small enough. O

Theorem 8.30. Let 2 be a CDC uniform domain. For every boundary point the kernel
function is unique.

Proof. We follow the approach of [CFMS81, Theorem 3.1]. Assume that g, ug are kernel

functions for  at £ € Q. Then, for x € 2 we have Z;Ei; < Cozzggg by Lemma 8.29.
Therefore

uy; < Cous. (88)

holds for every pair of kernel functions w1, us.
If Cy = 1 the lemma follows, so we may assume that Cy > 1. In that case,
Co 1 1

Co—12  goo1— "t g1

(ug —u1)

is a kernel function as well. Therefore (8.8) holds for this function, namely

1
U < 00 <U2 + C() — 1(UQ —U1)>

SO
Cy 1 1 2 1
Co 1 <u2~|— Co_l(UQ—U1)> _ﬁul —uQ+CO_1(uQ—u1)+m(u2—u1)

is also a kernel function.
In general, if

W+(%ﬁ1+m)mrﬂm (8.9)
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is a kernel function, then (8.8) holds for this function as well, namely

k
u; < Cy <UQ+<CO_1+tk> (UQ_U1)>7

SO

+1 k+t(Co—1)
(=) + (Co—1)?

(ug — uy)

is also a kernel function. By induction, a kernel function as in (8.9) can be obtained for
every k € N with ¢ > 0.
Now, applying (8.8) again, we get that for every k

ug + (ug —up) < ug + ( + tk> (ug —u1) < Coua.

Co—1 Co—1

This implies that us < u;. But interchanging the roles of u; and us we obtain the converse
inequality and the lemma follows.
O

Definition 8.31. A non-tangential region at & € 0€) is denoted by
o) :={xeQ: |z —¢ < (1+a)da(x)}.
The non-tangential mazximal function is denoted

Nau(€) := sup |u
La(8)
for u defined in €.

Usually the value of « is of little importance when dealing with harmonic functions
because typically the boundedness of the operator N, does not depend on «. Therefore
we usually denote Nu for some value of «.

The centered Hardy-Littlewood maximal function with respect to w is defined as

Mo (€) = sup JfA |l dw
&

T

for every f € Llloc(w), and, more generally,

for every e M(0Q) := {Finite Radon measures supported in 02}.
We say that u converges to f non-tangentially at £ if for any «,

lim  u(z) = f(£).

Fa(§)3z—¢
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The maximal function satisfies a weak-(1,1) estimate, i.e.

c
WiMof > A} < S 1flpw) (8.10)

and for every 1 < p < o
Mooy < Clf e () (8.11)

see [Mat95, Theorem 2.19], for instance. In fact the weak estimate also holds for Radon
measures, by the same covering arguments used to prove the weak (1,1) bounds:

Lemma 8.32. For € M(09Q)) we have

w{Myp > \} < %u(amy (8.12)

Theorem 8.33. Let 2 be a CDC uniform domain. If u is a finite Borel measure on 0f)
with Radon-Nykodim decomposition (see [Mat95 Theorem 2.17]) dp = fdw + dv, where
v is mutually singular with w, and u,(z) := § K(z,¢) du(C), then Nou, < CoMyv, and u
converges to f non-tangentially at w-a.e. boundary point.

Proof. Consider the operator N defined on M(09) by
Ny = Nouy,
where « is fixed (and the constants may depend on its value). First we claim that
Np < CM,,p. (8.13)

Indeed, let us assume that y € I'o(§), with dist(y,§) < r « ro, and let A := A, ¢. By
the Harnack inequality we have that

() U (D) = f K(X2,¢) du().

Decomposing as in Lemma 8.21 we get

8.21 9—vAJ

20N EC RO

Since Nu(€) = SUDyer, (¢) |uu(y)], estimate (8.13) follows.
Note that combining (8.12) with (8.13) we obtain the weak type estimate

f W) < Mapa(€) 327749 <4 Mup(€).

J

~ C
w{Np> A} < X\,u(&Q)\ (8.14)
It remains to compute the nontangential limit of w,, proving that it coincides with f at

w-a.e. boundary point. Let us write n.t.limsup,_,. := Imsupp,_ (¢)sy—¢- Given ¢, A > 0,
we want to prove that

Opy|:i=w {n.t.limsup luu(y) — (&) > )\} <e. (8.15)
y—¢
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8 Harmonic measure in CDC uniform and NTA domains

First we will compute the case v = 0. Whenever f € C(012), we have that

w@ﬂ=fﬂOK@£ﬁw@%=Jﬂomf@)=Hﬂ@,
up(x) = f(§) as x — £ € 00 (8.16)

by Wiener regularity.

For f € L'(09), consider simple functions {f,}, converging in L'(w) to f. Since w is a
Radon measure, we can find continuous functions {f, ;}; converging to f in L'(w). By a
diagonal argument, we find a sequence of continuous functions {g,}, converging in L'(w)

to f.
Using the triangle inequality, we can decompose the left-hand side of (8.15) as

) A
<w {n.t.hmsup lur(y) — ug, (y)| > 3}

y—¢€

A
+ w < n.t. imsup |ug, (y) — gn(&)] > =
y—¢ 3

+w“MO—ﬂM>§}_!+!+H'

By (8.10),
C
< S = oml).

The continuity of g, implies that ug, = Hg,. By (8.16) Since 2 is Wiener regular, we get
that

2] = 0.

Finally,

N ) 814) C
D<ol R =@ >3] = SIf = amluseo

Combining the three estimates, we obtain

A
for n big enough (depending on A and f), so (8.15) is settled whenever v = 0.
If v # 0, we write

C
n.t. limsupuys(y) — f(ﬁ)' > A} < XHf _gn”Ll(w) <€

y—§

Opp] < w {n.t.limsup luu(y) — (&) > )\/2} +w {n.t.limsup |uy (y) — 0] > )\/2}
y—¢

y—¢

= +w {n.t.limsup luy (y) — 0] > )\} .
y—¢
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8 Harmonic measure in CDC uniform and NTA domains

Let £ < 00 be a measurable given by the Radon-Nykodim decomposition, i.e. so that
w(E) =0 =v(0Q\E). Since v,w are Radon measures, we can find a compact set K < E
and an open set U o FE so that v(E\K) < § and w(U) < J.

Now,

e

Uy (y)’ > )\/4} +w {n.t.lims?p | ()| > )\/4}
y—

< [Ofp a2+ w {n.t. lirélj?p

We have already shown that < ¢/3 for every € > 0. The weak estimate (8.14)
implies that

C
—9.
A

<w {n.t.limsup ’]\NfVE\K(y)’ > )\/4} < %V(E\K) <
y—E

Note also that

y*)

<w(lU) +w {{ € U®: n.t. limsup |u,, (y)| > )\/4}.
3

We claim that r := dist(K,U¢) > 0. Indeed, for every x € K there exists a ball B,
so that 2B, < U and by compactness, there is a finite collection of balls {B;} so that
K < |JB; with 2B; < U. Since the collection is finite, it has a minimal radius, which is
a lower bound for the distance, implying the claim.

Now, for every £ € U¢, y € I'4(§) we have that

8.22
W) = | K@ QavlQ) <u() swp K(5.0) =20,
K CEONA, ¢ y—¢
SO
w {§ € U : limsup ’ul,‘K(y)| > )\/4} = 0.
y—¢
Combining all the estimates, we get
C
0] <€/3+X5+5<€
as long as we take § small enough. O

Remark 8.34. Note that we can say that uy = uy, is the harmonic extension of f.
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9 Harmonic measure in the complex plane

9.1 Harmonic measure and conformal mappings

One of the basic facts that makes the study of harmonic measure in the plane different
from higher dimensions is the availability of many formal mappings in the plane and the
good behavior of harmonic measure under conformal mappings.

Proposition 9.1. Let Q,Q < C be bounded Wiener regular domains, and let ¢ : Q@ —
be a continuous surjective map such that o(0Q) = Q. Suppose also that ¢ is holomorphic
inQ, and let z € Q and 2’ = p(x). Denote by wq and wqy the respective harmonic measures

for Q and Q. Then,
Wy = Ppwg.

In particular, for any Borel set A < €, we have w&,(A) = wi(p~1(A)).

Recall that give a continuous map ¢ : G — G’ and a Borel measure p on G, then the
image measure @4 is a measure on G’ defined by

pup(A) = p(e " (A))

for any Borel set A < G’. Then, for any Borel function f : G’ — R, it holds

ffowdu = ffdw#u-

See Chapter 1 from [Mat95], for more details.

Proof. Let f: 0Q" — R be an arbitrary continuous function and let uq/ s be its harmonic
extension to €. Then ugq/ f o ¢ is continuous in €, harmonic in €, and it it coincides with
the harmonic extension of fop:Q — R, ie., ug o = uq fo,. Therefore,

| 7t = v @) = e (o@D = wtgegle) = [ o0ty = [ £ gyt

Since this holds for any continuous function f on 02, the proposition follows. O

Corollary 9.2. Let Q < R? be simply connected. Let ¢ : B1(0) — Q be a conformal
mapping which extends to a continuous map B1(0) — Q. Then

0 1
w;‘é( ) = o euM o8, (0)-

136



9 Harmonic measure in the complex plane

Proof. By topological arguments, ¢(0B1(0)) = 092. By Proposition 9.1, we deduce that

(0)

1
0 1
Wé = P#Wp (0) = g@#f"’f |0B1(0)-

d

Remark that, by Cathédory’s theorem, if € is a Jordan domain, then the conformal
mapping ¢ : B1(0) — Q extends continuously to 0B1(0), and thus the preceding corollary
applies. Notice also that whenever we know how to find the conformal map ¢ : B1(0) — Q,
we know how to find the harmonic measure wq.

9.2 The Riesz brothers theorem

In this section and the following one in this chapter we state some important theorems
about harmonic measure for domains in the complex plane. For the moment, we skip the
proofs.

Theorem 9.3 (F. and M. Riesz Theorem). Let Q < C be a simply connected domain
such that 02 has finite length, and let ¢ : D — Q be conformal. Then, for any Borel set
A c 09,

w(A) =0 < H(A)=0.

Notice that the preceding result. does not depend on the precise pole for harmonic
measure, since harmonic measures for different poles (and the same domain) are mutually
absolutely continuous. We also have the following version result in terms of the Hardy
space H'(DD).

Theorem 9.4 (F. and M. Riesz Theorem). Let Q < C be a Jordan domain and let
¢ : D — Q be conformal. Then 0Q has finite length if and only if ¢ € HY (D). If
© € HY(D), then

I/l () = H(09)

and for any Borel set A < JD,
1
1 A)) = J / d 1.
H () = 5 | 1 an

In these notes we do not include the proofs of these important theorems (for the mo-
ment). See Chapter VI from [GMO05], for example.

9.3 The dimension of harmonic measure in the plane
The dimension of a Borel measure x in R is defined as follows.

dim(p) = inf{dim(G) : G = R¢ Borel , u(G¢) = 0}.
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9 Harmonic measure in the complex plane

This does not have to be confused with the dimension of suppu. For example, let Q =
{qr}r=1 be the set of all rational numbers, ordered in some way. Then consider the
following measure in R:

= Z 27k 5qka

k=1

where dq4, is the Dirac delta on g. It is immediate to check that dimpu = 0, while
suppp = R and so dim(suppu) = 1.
For simply connected domains Makarov [Mak85] proved in 1985 the following:

Theorem 9.5. Let ) < C be a simply connected domain. Then dimw = 1. Further,
w(E) =0 for any set E < 092 with Hausdorff dimension dim(F) < 1.

Remark that the dimension of harmonic measure is independent of the chosen pole in
the domain. For arbitrary planar domains, Jones and Wolff proved the following result in
1988 [JWSS]:

Theorem 9.6. For any open set 2 = C, the associated harmonic measure satisfies
dim(w) < 1.

Observe that the boundary of a planar domain may have Hausdorff dimension larger
than 1. This is the case, for example, of the Jordan domain enclosed by the von Koch
snowflake. It is well known that this curve has dimension log4/log 3. Further, it is easy to
check that, because of connectedness, the (closed) support of harmonic measure coincides
with the full boundary for any domain €2. In spite of this fact, the dimension of harmonic
measure is always at most 1. So there is a set G < 02 with dim G < 1 with full harmonic
measure. Clearly, such set G must be dense in 0f2.

The Jones-Woff theorem was sharpened by Wolff [Wol93] a few years later:

Theorem 9.7. For any open set < C, there exists a set E < 02 with o-finite length
and full harmonic measure.

The rest of this chapter is devoted to the proof of the Jones-Wolff Theorem 9.6. We
will not prove the other theorems by Makarov and Wolff mentioned above.

9.4 Preliminary reductions for the proof of the Jones—Wolff
Theorem

We will prove Theorem 9.6 assuming 02 to be bounded, since we have defined harmonic
measure in this case. The case where 02 is unbounded easily follows from the bounded
case (once harmonic measure is properly defined). We will show first below that we may
assume that €2 is Wiener regular.

Lemma 9.8. To prove Theorem 9.6, it suffices to prove it when € is Wiener regular.
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9 Harmonic measure in the complex plane

Proof. For each e = 1/k, let Qk be the Wiener regular open set constructed in Proposition
6.36 (denoted by Q there). Also, denote by Fj the union of the balls B;, ¢ € I, in the
construction of ﬁk Suppose k > ko small enough so that p € Qk Denote by w and wy, the
respective harmonic measures for 2 and Qk By Theorem 9.6 applied to Qk, there exists
a subset G < 6Qk with full harmonic measure wk and with Hausdorff dimension at most

1. Since ﬁk c , by the maximum principle (see Lemma 5.28),
WP (09 M OU\Gr) < WP(0Q N 0 \Gy) = 0.

Since 02 = (Fj, n 0Q2) U (6(~2k N 0N), the set (F n 0Q) U G has full harmonic measure w?
for each k = ko. So (=, (Fx 0 0Q2) U G%) has also full measure w?. Now notice that

N ((Feno)uGy e [ Eno)u ] G

k=ko k=ko k=ko

The set G := ;> Gx has Hausdorff dimension at most 1, and F' := Mz ( ko (Fle 0 0S2) L
G) has zero capacity, because the Cap(Fy) < 1/k for all k. In particular, H*(F) = 0.
So G u F has full harmonic measure wP and has Hausdorff dimension at most 1. Thus,
dimw? < 1. O

The next reduction is the following.

Lemma 9.9. To prove Theorem 9.6, we may assume that 2 is an unbounded domain with
compact boundary and that the pole for harmonic measure is o0.

Proof. We may assume that €2 is connected because the harmonic measure for 2 with pole
at p € Q coincides with the harmonic measure for the component of € containing p, with
pole at p.

Suppose now that p # o0. Consider the map ¢(z) = 1/(z — p). This is a conformal
mapping of the Riemann sphere, and by Proposition 9.1 (which also holds for unbounded
domains with compact boundary), denoting Q' = ¢(Q), we have

o __ p
wWor = QO#WQ

Hence, assuming that Theorem 9.6 holds for w?lo,, we infer that there exists some subset
G < 09 with dimy G < 1 and full measure wg. Then ¢~1(G) has full measure wf) and,
since ¢|aq : 02 — 0 is bilipschitz, we also have dimy o 1(G) < 1. O

Recall that in Theorem 7.28 we showed the following properties for the harmonic mea-

sure and for the Green function with pole at oo, for any unbounded Wiener regular domain
Q) with compact boundary:

(i) For every ¢ € C(R?),

| &= At amt) - [ oo
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9 Harmonic measure in the complex plane

(ii) w® coincides with the equilibrium measure of 02 and moreover, for every z € €,

()= g @) ™ 35 | 7 7O ©-1)

Recall also that, for any compact set £ < C,

1
— —  —infI(p) = inf
Capry(B) B (1) in JS*udu,

where the infimum is taken over all probability measure supported on E. The number

1

TE = Capy (E)

is called the Robin constant of E. So we have Cap, (E) = e 27 5

Lemma 9.10. To prove Theorem 9.6, it is enough to prove that for any e > 0 the following
holds:

For each 1 > 0 there is a set A = K with H.(A) <7 and w(K\A) < 7. (9.2)

Proof. The statement (9.2) implies that for n > 0 there is a set A < 092 with H1¢(A) <
n and w(0Q\A) = 0, which in turn implies that there is A = 0Q with HL¢(A) = 0
and w(0N\A) = 0. Now taking ¢, — 0, one gets sets A, < 02 with HL*"(A,) = 0 and
w(0MNA,) = 0. Letting G = ),, A, we have HL " (G) = 0, for each n, which gives that
the Hausdorff dimension of G is less than or equal to one, and w(0Q\G) = 0. O

Sketch of the proof of Theorem 9.6

One makes a reduction to the case in which K := 0( is a finite union of pieces of small
diameter and rather well separated. Then one constructs an auxiliary compact K*, which
is a finite union of closed discs, using two special modification methods, which one calls “the
disc construction” and the “annulus construction”. It is crucial to compare the harmonic
measure associated with ) and that associated with the new domain Q* = C*\K*. This
is simple for the annulus construction, but much more delicate for the disc construction;
Lemma 9.11 below takes care of this issue. The gradient of the Green function g of Q*
with pole at o0 can be estimated on some special curves surrounding K* and contained
in level sets of ¢g. All these ingredients allow to estimate the harmonic measure of {2 in
terms of the integral of the gradient of g on these curves. Lemma 9.14 is the main tool to
end the proof estimating this integral in the appropriate way. An ingredient in the proof
of Lemma 9.14 yields in the limiting case, assuming 02 smooth, the formula

f Avg] 1og|dvg| ds > —co,
o0

where ¢ is now the Green function of €2 with pole at co, v is the outer unit normal to 0f2
and c¢p > 0. By Proposition 7.14, the harmonic measure is (in the smooth case)

dw®(z) = —dyg(z) ds.
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9 Harmonic measure in the complex plane

Assume that at the point z the “dimension” of w™ at z is d(z), which means that
w(B(z,7)) ~ %), Since

. wr(B(z1))

2ug(2)] = tim <L),

we have

lim | (d(z) —1)log(2r) dw®(2) = —cp.

r—0 Jon
From this fact, we deduce that the integrand in the left hand side of the preceding identity
does not tend ot —oo in a set of positive measure as r — 0, that is d(z) < 1 for w®-a.e.
z € 09, and so, w® lives in a set of dimension not greater than 1.

From now on, in the rest of this chapter, unless otherwise stated, we assume that 2
is a Wiener regular unbounded domain with compact boundary, and we denote by w its
harmonic measure with pole at co. We will also write K = 0.

9.5 The disc and the annulus construction

Let us start with the disc construction.

Disc construction

Fix € > 0. Let @ be a square with sides parallel to the axes and side length ¢ = ¢(Q) and
set E = @ n K. Replace E by a closed disc B with the same center as @) and radius r(B)
defined by

1C E)l+e 1 —ve(1+e€)
_ 1Cap, (B) 7 _ e . (9.3)

2 (e 2l
So we get a new compact set K = (K\E) U B, a new domain ! = C¥\K = (Q U E)\B
and a new harmonic measure @ = G)g

Note that B < (). In fact, since the logarithmic capacity of a disc is the radius

V2

~Z,
2

r(B)

Cap(E) <

so that .
(\/5/2) +e plte
Iz

r(B) < % = g (\/5/2)1+E < /2.

Annulus construction

Let Q be a square with sides parallel to the axis and take the square R(Q, where R is a
number larger than 1 that will be chosen later. One has to think that R is very large.
Delete K n (RQ\Q)? from K to obtain a new domain 2 = Q u (RQ\Q)° and a new

harmonic measure W = wey-

It is important to have some control on the harmonic measure of the new domain
obtained after performing the disc or the annulus construction. For the annulus this is
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9 Harmonic measure in the complex plane

easy: any part of K which has not been removed has larger or equal harmonic measure.
In other words, if A satisfies A n (RQ\Q) = &, then @(A) > w(A). This is a consequence
of the fact that A < 9Q n dQ and Q © Q (the domain increases and the set lies in the
common boundary).

Estimating the harmonic measure after the disc construction is a difficult task. The
result is the following.

Lemma 9.11. Let Q be a square with sides parallel to the axis. Fix e > 0 and perform the
disc construction for this €. Assume that RQ\Q < Q. Then there exists a number Ry(e)
such that for R = Ry(e) one has

(a) W(B) = C(e)w(Q n K), where C(¢) is a positive constant depending only on €.
(b) @(A) = w(A), if Ac IO\RQ.

Above @ and w are harmonic measures with pole at co.
The proof of Lemma 9.11 will be presented in Section 9.10 and we will use it as a black
box in the arguments below.

9.6 The Main Lemma and the domain modification

Let Q = C*\K, Cap; K > 0 and assume that K < {|z| < 1/2} (this assumption will be
convenient later on, but it is not essential). Fix ¢ > 0 and let R > 2 + Ry(¢), R integer,
where Ry(e) is the constant given by Lemma 9.11. We let M stand for a large constant
that will be chosen later and we let p be a small constant so that M < log1/p, and p = 2%\7,
N a positive integer. Consider the grid G of dyadic squares of side length p and lower left
corner at the points of the form {(m + ni)p; m,n € Z}. For each 1 < p,q < R, let G4 be

R
the family of (closed) squares @ € G with (m,n) = (p,q) (mod Rx R). Then G = [ J Gpq.
pg=1
Write Kpg = |J K nQ, Qpg = C\Kpg, wpq(A) = wg . We will show the following:
QEGpq

Main Lemma 9.12. For any € > 0 and for any n > 0, one can choose R(g) > 0 large
enough and p(n,e) small enough so that for all 1 < p,q < R there is a Borel set A,y < Kpq
satisfying

He =(Apg) <n and  wpg(Kpg\Apg) <1 (9.4)

An important fact about the previous statement is that the constant R = R(e) does not
depend on 7, so that n can be chosen later depending on R(¢).

Let us see how Lemma 9.10, and so the Jones-Wolff theorem, is derived from Main
Lemma 9.12. Write A = UK%KR Apg. Then, we have

H%CJFE(qu) < Z Hc1>o+€(qu) <R’ ,

1<p,g<R
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and, by Lemma 5.28,

w(K\A) < Z w(Kpg\A) < Z w(Kpg\Apg) < Z qu(qu\qu)gRQﬁ-
1<p,g<R 1spg<R Ispg<R

Recalling that 7 can be taken arbitrarily small, for any given R, (9.2) follows.

Our next objective is to prove the Main Lemma 9.12. To this end, we need to perform
a domain modification which we proceed to describe.

Domain modification.
From now on we fix p, ¢ and let Q = Qp, K = K,q, w = wpe. We let {Q;}; be the
family of squares in G,,. We remark that, by the construction, for each square (); one has
RQ;\Q < Q, so that we will be able to apply Lemma 9.11.

Fix € > 0 and perform the disc construction for € in every square (), so that we get a
finite family of closed discs {B;}, whose union is a compact set K, a new domain ; =
C*\K; and a new harmonic measure wj = wgzol.

Next choose a dyadic square Q' of largest side £(Q!), not necessarily from Gpq, such
that

QY =p and wi(QY) = MUQY.

If such Q' does not exist we stop the domain modification. If Q' exists we perform
the annulus construction on Q! (with constant R) and after this we perform the disc
construction on the square Q', replacing K; n Q' by a disc B!. So we obtain a new
compact Ks, a new domain Qy = C*\ K3 and a new harmonic measure wy = w&cz.

Now we continue and take Q? dyadic with largest side such that Q% ¢ Q', £(Q?) = p
and wy(Q?) = M{(Q?). If such Q? does not exist we stop. Otherwise we perform the
annulus construction on Q? but with a special rule: If B! n (3(RQ*\Q?)) # &, then we
do not remove the set B! n (RQ*\Q?) from K. The reason for this rule is to get full balls
in all cases.

After that we perform the disc construction on @2, replacing Ko n Q? by the corre-
sponding disc B?, getting a new compact K3, a new domain 3 and a new harmonic
measure ws.

We continue this process so that if K1 n Q', Ko n Q?,..., Kn_1 n Q" ! have been
substituted by B!, ..., B"~! we choose now (if there exists) a dyadic cube Q™ with largest
side so that

Then (if we do not stop) we perform the annulus construction with respect to Q™ but
without removing B7 n (RQ™\Q"), j = 1,...,n — 1 in case that B/ n (A(RQ™\Q")) # &
(this is the special rule). Finally we perform the disc construction on Q", getting B",
Kni1, Qni1 and wypy1.

At each step there are only finitely many candidate dyadic squares, because p < £(Q) <
1/M. Since no Q7 can be repeated (because @7 ¢ Qf, ¢ = 1,...,j — 1) the modification
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9 Harmonic measure in the complex plane

process stops after finitely many steps. Let K* Q* = C\K*, w* = wg be the final
outcome so that K™ is the disjoint union of the non removed discs; more precisely,

K* = U B* U U Bj (some finite sets of indices S and T'),
keS jeT

where the B; are the original discs and the B k are the new discs produced after performing
the annulus and the disc constructions.
Now we want to prove by means of Lemma 9.11 the following estimates:

"(Bj) = Ce)w(Q)), jeT,
"(Q) = Cle) MUQ’), jeS.
For (9.5) note first that we always have RQ;\Q; < Q. Since Q); has survived all steps we

cannot have RQ* o Q; at some step k. Since RQF is a union of dyadic squares, the other
possibility is RQ* n Qj = & for all k and we can apply both inequalities in Lemma 9.11.

w
w

For (9.6), when we select 7 we have w;(Q’) > M/{(Q’) and after performing the
annulus and the disc constructions, we get wj1(B?) = C(e)w;(Q7) = C(e) M(Q?). If
k > j there are three possibilities: i) B/ < RQ*\QF, in which case B’ has disappeared
and j would not be in S; ii) B/ n (RQF\Q¥) = & in which case wy1(B?) > wj41(B7) and
iii) B n d(RQM\Q¥) # &.

RQF

Qj

In this last case we have £(Q¥) > £(Q7) since otherwise Q¥ would had disappeared. But
now since R = 2+ Ry () we get that BI n (Ro(e)QM\Q¥) = & and so wy11(B7) = wji1(BY)
by Lemma 9.11 part b). At the end we obtain

w*(Q7) = w*(BY) = wpy1(BY) = w1 (B) = Cle) wi(Q7) = Cle) MU(Q).

We will also need the following estimate.
If 20€Qj, jeT (or 20 € QF, k€ S) and r = £(Q;) (r = £(QF)), then

w*{|z — 20| <r} < CMr. (9.7)
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Let us discuss the case of Q)j, zo € Q;. We remark that if @ is a dyadic square with
Q D Qj, then one has w*(Q) < M/(Q) because otherwise the process would not have
been stopped.

Take now a dyadic square Q > (; with side
length 2™¢(Q;) such that r < 2"4(Q;) < 2r.
We just said that w*(Q) < Mr. Now the
disc {|z— 2| < r} is contained in 4 dyadic squares
of the same side length as (). Take one of these
squares Q' different from Q. If Q" does not con-
o tain any Qj or @ then w*(Q’) = 0. Otherwise
wH(Q') < Mr.
o The case zg € QF is dealt with similarly.

The next lemma shows that the union of the family of squares {Q;};er and a dilation
of the family {Qp}kres contains K.

Lemma 9.13. K < |J 2RQ* U | Q;.

keS VS
Proof. Recall that now K = Kp, = QLg Kn@. Solet Qe Gy and = Kn@Q. If
€Ypq
Q = Q; for some j € T then F < Q; and so F U2RQ* v Qj.
k jeT

If @ # Q; for every j € T then there is a first index j; such that Q) < RQM\Q';ifj1 € S
then Q — RQ7, j; € S, and we are done. If j; ¢ S there is a first index j5 such that
Q7' < RQ™\Q?2. In this case £(Q72) > 2((Q7) because if we had £(Q7!) > £(Q’?) then
Q72 = RQ7 and Q72 = RQM\Q’', so that @72 would have disappeared. If j, € S we have
Q < RQ’? and we are done. If j, ¢ S there is a first j3 such that

sz - RQj3\Qj3
and so on.
We get a sequence j; < jo < -+ < jn With ji,...,5n-1 ¢ S, jn € S so that Q% c
RQI+1\Q7*+1 and £(Q7i+1) > 20(Q%), which implies Q = 2RQ7". The double radius

appears because we need to argue on two steps: in the first we use that Q/»—1 < RQJ»
and in the second that Q — RQ/»-!. ]

9.7 Surrounding K* by level curves of the Green function

To continue the proof of the Theorem, let ) be a square Q = Q;, je T or ) = QF ke S
and let B be the corresponding disc. Let g(z) = gg*(z,00) be the Green function of the
domain * with pole at co. The goal of this section is to find a closed curve o surrounding
B, contained in a level set of g, and such that

Vg(2)] < CM?*1og1/4(Q), ze€ o, (9.8)
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9 Harmonic measure in the complex plane

for a positive constant C.
The Green function g is the logarithmic potential of the equilibrium measure plus the
Robin constant, that is,

1
9(2) = 5= | toglz = wl dw*(w) + cs
2w K*

1 1
= f log |z — w| dw* (w) + J log |z — w| dw* (w) + v+ =: u(z) + v(2) + Vrc*.
27 B 27 K*\B

We have the estimate
dw* (w)

K*\B |z — w|

IVu(z)| < C < CMlog1/4(Q), =€ Q\B. (9.9)

To show this inequality, fix z € Q\B and set w*(t) = w*(B(z,t)). We have
t

J; dw@”<fl(m“ﬂ<wWB%D%ﬁE wz)ﬁ

g lz—wl " Jyg t @

<1+ CMJ <1+ CMlog1/6(Q) < CMlog1/6(Q),

where we have used (9.7).

We would like to estimate the derivative a“( ) from below. Assume for simplicity that
the center of the square @, and so of the disc B, is the origin, and write z = re®.
Since

. 1 .
om u(re) = J log |re? — w|? dw* (w),
2B
we have

27 a—u(z) = % JB # < ((rew —w)(re ¥ — 71))) dw™ (w)

or |ret? —w|? or

- J e ()

which in particular tells us that 2%(z) > 0.

Re (z—w)z 1
[z —wPlz[) el \Z—wl Zl

and we look for the minimum value of <ﬁ, |Z7‘> when |w| = 7, 7 being the radius r(B)

of B.
Assuming that é—‘ =1, set <Z_w

lz—w|”

1 2 2
cos@z(\z—wH-MT)

2|z| |2 — wl

Now we write

1> = cosf (see the figure). The cosine Theorem
yields
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9 Harmonic measure in the complex plane

0 z/|z|

so that the minimum is attained for

o= | = VIP =

that is, when z — w is orthogonal to w.
We then have

e E VE=TVEET  JE=T
o = wP pmwllsl T e

and also
|z| — T 1 < T >
—_— > — 1= ].
lz| /] + 7 |2 2]
Returning to the case of a square @) centered at the point zyp with 7 = r(B) we get the
estimate of f;—”j(z) we are looking for, namely,

ou, . NlE—xl=rB) W*(B) _ w*(B) r(B)WB)
o= |z — 20| + 7(B) |z — 20 z |z — 20| |z —20]2 |2 = 20| > r(B). (9.10)

We are now ready to estimate the gradient of the Green function g. Define

W (B)

a = a(B) = max (leogw@), 243))

and distinguish two cases:
w*(B)
M?1og1/0(Q)

We let o to be the circle 0B so that we need to prove the estimate

Case 1: a = 2r(B), that is, < 2r(B).

|Vg(2)] < CM?1log1/0(Q), =ze€ 0B.

This is a consequence of the inequality

sup |[Vg| < Cinf |Vy| (9.11)
0B 0B
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9 Harmonic measure in the complex plane

for some constant C'.
In fact, using (9.11) one gets

w*(B) = —f dvgds = iar}gf]Vg\ r(B)
oB

and for z € 0B

*
B
|Vg(2)] <sup|Vyg(z)| < Cinf |Vg(z)| < c” (B) < CM?log1/¢(Q). (9.12)
0B 0B T‘(B)
In order to prove (9.11) assume that zp = 0 and take two points z and 2’ with |z| = |2/| =

2r(B). Then we have
m~g(2') < g(2) < my(2)

for some constant m; this follows by applying Harnack’s inequality to discs of radius § <
r(B) centered at points on the circle {|z| = 2r(B)}, chosen so that the discs of radius §/2
cover this circle.

Take now z and 2’ with 7(B) < |z| = |2/| < 2r(B). We also have

Indeed, for 6 € [0, 27], write gg(2) = g(e?2), then

mge(2) < g(z) < mge(2)

holds for |z| = 2r(B), and trivially also holds for |z| = r(B), 6 € [0, 27]. By the maximum
principle we get

mge(2) < g(2) < mge(z), 7(B) <|z| <2r(B), 6¢€]l0,2x].

As a consequence, for |z| = |2'| = r(B) and n, n’ the unit exterior normal vectors to 0B
at z and 2/, we have

m~lg(2 + tn') _ g(z +tn) _ mg(t' + tn')

t = t t

and so
m~0,9|(2') < |dvgl(z) < mlovgl(2), |z| = || =r(B)

and finally sup |[Vg|<C inf |Vg|, as required.
|z|=r(B) |z[=r(B)
: w*(B)
Case 2: o > 2T(B), that 15, & = m

We note that

w'(@Q) _2MUQ) _ 4
“s M?log 2 < M?log 2 < ME(Q) (9.13)
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9 Harmonic measure in the complex plane

The inequality w*(Q) < M{(Q), for Q@ = Q;, comes from the fact that Q; has survived
the process to get to w*. If Q = QF, take the dyadic square @ with side length 2 £(QF)
and containing Q. Since the process has stopped, w*(Q*) < w*(Q) < ML(Q) = 2M(Q).
Taking in (9.13) M > 8, we obtain o < ¢(Q)/2 and so {|z — 20| = a} < Q.
Now we want to prove that

|Vg(2)| < 4M?log1/0(Q), « < |z— 2| < pay, (9.14)

where 4 is such that > €297, a condition that will be used later. Choosing M > 81 we
obtain ap < £(Q)/2, by (9.13). Hence the annulus o < |z — zp| < pa is contained in Q\B,

a fact that will be used in the sequel without further mention.

Let us show
ou

E(z) > |Vu(z)], a<|z— 2| < po. (9.15)
By (9.10) we get
- (9u( ) > |z — 20| — 7(B) w*(B) a —r(B) w*(B) o< |z — z0| < o
\ |z — 20| + r(B) |Z_ZO‘ a+r(B) pa’ ’
where we have used that the function z — zr(B) is increasing.
z+r(B)

Since a > 2r(B), taking the quotient M /u big enough, we have

f M?1og 1/£(Q) > C Mlog 1/6(Q) = [Vo()]. o < |z — 2] < o
3u

by (9.9).
Therefore
dw™* (w)
[Vg(2)| < |Vu(z)| + |Vu(z)|] <2|Vu(z)| < C W, a < |z — 2| < pa,
0B |7 —

and |z —w| > |z — 20| — |w — 20| = a —r(B) = §, which gives

w*(B) 2
Vo) < B _ 0 MP10g1/6Q), < |z - 20| < pa
o'
as required.
Assume zy = 0, let ¢ = sup{g(z) : |z| = o} and take as o the connected component

of {g = ¢} that contains a point on |z| = a. The curve o encloses a domain that contains
the disc {|z| < a}.
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9 Harmonic measure in the complex plane

N\

&%)

We claim that o remains inside {|z| < pa}, which, in view of (9.14), yields the required
estimate (9.8).
We have

dw™ *(B
27 [Vu(2)| <J wiw) oW B) s,
B |z —wl 2]
because
|z —w| = |z| — |w| > |;|+—T’(B) > |§
By (9.10)
ou w*(B) r(B)w*(B)
o () > , B).
w o> S BB s i)
Note that
r(B)w*(B) _1w*(B)
< —
|22 2 |z
because |z| = a = 2r(B). Then, for |z| > «,
ou 1w*(B) ou
2r —(2) = = <4—(2).
T (2) > T and |Vu(z)| o (2)
Therefore, by (9.15),
%
IVg(2)| < [Vu(z)] + |Vo(z)] < 584;(@, a < |2| < pa. (9.16)
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9 Harmonic measure in the complex plane

Note that since the quotient M /i can be taken as large
as we want, we can improve (9.15) to

10u
S (2) = . o< |z— 2| < po
55, (2) 2 Vo)l <z — 2| < pa
Then
og ou ov
g(z) = E(z) + 5(2’)
2 (9.17)
0 > a—z(z)—|Vg(z)\ >0, a<|z<peo
The curve o contains at least a point a on the circle {|z| = a}. Consider the maximal

subarc 7 of ¢ containing a and contained in the disc {|z] < pa}. By (9.17), each ray
emanating from the origin intersects 7 only once, and so 7 can be parametrized by the
polar angle 6 in the form r(f)e? with 6; < 6 < 6. Without loss of generality assume
01 <0 <6y and r(0) = a.

If 7 = o0 we are done. If not, 7(62) = pa and we will reach a contradiction. If r is the
radial direction and s is the orthogonal direction to r, then (9.16) yields

%

ou g
25 %)

< |Vg(2)] < 55(2’) < 105(2).

Since g(r(0)e?) = ¢, taking the derivative with respect to # one gets

0= <Vg(r(0)ei9),r’(0)ei9 + iT(9)€i9> = r’(@)(gg + 7’(9)(29
r s
that gives
ron 99 _ ooy |99
|7" (0) 67" - T(e) as
and so (6)|
r
(0) < 10.
Therefore o ol
7(02) f 27'(0) J 2 |r'(9)]
log = df < df < 207
r(0)  Jo r(0) o r(0)

and, recalling the way p has been chosen,
r(0y) < e2™r(0) = 2" < pa,

which is a contradiction. By (9.14) we obtain the desired inequality (9.8).
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9 Harmonic measure in the complex plane

9.8 The estimate of the gradient of Green’s function on the
level curves

In the previous section we have exhibited for each disc B = Bj, j € T or B = B*,

k € S, a simple curve o contained in a level curve of g and surrounding B, on which the

estimate (9.8) holds. Let now I' be the curve formed by the set of o’s corresponding to

each disc B; or BF. Then T separates K* from infinity.
In this section we prove the estimate

f llog| Vgl 89| ds < C loglog(1/p). (9.18)

Since we are assuming that M <log(1/p), we have, by (9.8),
log™ |Vg(2)] < log(CM?*1log1/4(Q)) < C loglog(1/p), zeT.

j 09 ds =ZJ 0ygds =Zw*(B
r o Jo B

which is clear for those terms for which ¢ = ¢B and follows from the divergence theorem
for the others, because o surrounds 0B.
Hence

Note that

J |0ugllog™ Vgl ds < C loglog(1/p) f |0vg| ds
I I

= (' loglog(1/p) Zw*(B) < C'loglog(1/p).
B

In order to estimate the integral on I" of d,glog™ |Vg| we need the following lemma.
Lemma 9.14. Let g(z) = ga(z,0) be the Green function of the domain Q with pole at
infinity and let I' = U I'; be the union of finitely many closed Jordan curves I'; so that

Fc{lz| <1}, T sepamtes K= (C*\Q from infinity and there are constantscj, j = 1,..., N
such that T'; < {g(2) = ¢;}, j=1,...,N. Then

f |0,g] log |Vg|ds > —log 4,
r

where n is the outward unit normal to T.
The proof of this lemma will be discussed in Section 9.10.

By Lemma 9.14 we have

J |0vg| log™ |[Vg|ds < f |0,g] log™ |Vg|ds + log 4,
r r

which completes the proof of (9.18).
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9 Harmonic measure in the complex plane

9.9 End of the proof of the Main Lemma 9.12 and of the
Jones-Wolff Theorem

Recall from (9.2) that for a fixed € > 0 and for each n > 0 we have to find a set A ¢ K
with H1+¢(A) < n and w(K\A) < n.

Decompose the set of indices T as T = 17 u Ty with
/2 Ty }7

P /er}v

Jre(ye)]

K\A= | J(KnQy).

J€T?

Ty ={jeT: :w"(B)) = p°
TQZ{jETiw*(Bj) < pf
where r; = r(Bj).
Set

A=

KN (U 2RQ’“>

keS
We know, by Lemma 9.13, that

The inequality (9.6) yields, using that >, ¢ w*(QF) < 1,

Héo+a (K A (U 2RQk>> < (2R)1+5 Z Z(Qk)1+e

keS keS

R1+6 . e R 1+e
< Grewr= 5@ < (wew) <

keS

for M big enough. By Lemma 6.19 with s = 1 + ¢ and the definition of the radius of B;
in the disc construction (9.3) we obtain

( (KA Q») < D VHI(K 0 Q) <C ) Capp(K n @)

JjeT JeTt JeT

=C Yt =C Y P
jeT1 JjeTy

<C ) pPw(B)) < Cpt <
j€h

provided p is small enough.
We have got H1+¢(A) < n and it remains to estimate w(K\A).
By inequality (9.5)

]‘ *
W(K\A) = w (U (K Q») <o 2B

J€T?
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Now we remark that for j € T, we are in the Case 1 of the Section 9.7, that is

*(B.
]\;k)(gB(Jl)/p) < 2rj.
Indeed, since w*(B;) < p¥/?r; it is enough to see that

/% < 2M2log(1/p),
which clearly holds for p sufficiently small.
For z € 0Bj, j € Ty, we know by (9.12) that
w'(Bj)

J

V()| < C <Cph?,
so that

log |Vg(2)| < logC + glog,o < %logp,

for small enough p. Hence, for such small p,

£
[log|Vg(2)[| = 7 log(1/p).
We then get
1
w(K\A) < > w*(B |5yg| ds
C(E) JET ]GTQ
C
< C(@) e loa(1/p) Z J 0ug] [log|Vgl| ds

J€T>
C
< -
C(e)elog(1/p)
C loglog(1/p)
~eC(e) log(1/p)

due to (9.18). Thus w(K\A) < n if p is small enough. Therefore for fixed £ > 0 and given
n > 0, we can choose M and p such that the set A satisfies the desired conclusion.

f 29| log|Vg| ds

9.10 Proof of the lemmas

9.10.1 Proof of Lemma 9.11

Changing scale we may assume that £(Q) = 1. Let & stand for the center of Q. Further,
by applying Proposition 6.36 and Lemma 6.37 and using an approximation argument, we
can assume that 2 is Wiener regular.
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9 Harmonic measure in the complex plane

Proof of a). Denote by p the equilibrium measure for (2 U E)¢ By (9.19) Q U E an un-
bounded domain, the Green function G(z,&) of the domain Q U E with pole at £ can be
written in the form

G(z,§) = % flog ‘Z:Z; du(a)+21ﬂfflog v = §‘| du(a) dwd, p(w), zeQUE. (9.19)

|z lw—a

Note that both measures p and w5 are supported in IQ\RQ. From (9.19) it is clear
that the Green function can also be written in the form

+h(z,8), 2zeQUE, (€QUE, (9.20)
with
1 _ _
h(z,§) = Py fflongwéuE(w) du(a), zeQUE, £€QuUE (9.21)
T _

Clearly

1
h < o=

1
j — dwsz‘zuE(w)
PQ\RQ W — &

<O(Il:i>’ e, zeQUE. (9.22)

Next, for a given zg € 0Q, we wish to estimate h(&p, zg) from below. To this end, note
that, for all a € supppu < IQ\RQ, |20 — a| = 3(R — 1) > R/4 > 1|& — 2| (because we
assume R > 2), and thus, for all w € 0Q\RQ,

lw—al < |w—2E&| + |60 — 20| + |20 — a] < |w—&o| + 3|20 — al.
Thus, using the two estimates |29 — a| > R/4 and |w — &| > SR, we derive

|20 — al lw — &l 10]w — &ol |20 — al

|lw—a| < |w— & R/ + 3|20 — a B2 R
Hence,
log [w _‘5)0!22‘ —q > log 1—1?), we IMNRQ, aec dQ\RQ.
Plugging this into (9.21), we obtain
h(z0, &) = %log 1—]?) (9.23)

Let now pug and pp be the equilibrium measures of F and B respectively and set

ue) = [ G Odun(@). o) = [ Gl duste)
B E
For every zp € 0Q) one has

u(n) =vp + h(z0,%) + O(1/R), ne B,
v(n) = Ve + h(20,é) + O(1/R), neE,
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9 Harmonic measure in the complex plane

where the constant in O(1/R) is independent of zp. To see this just write

h(n,§) = (h(n,€) — h(n,&)) + (h(€,n) — h(6o, 20)) + h(20,&0),

use (9.22), the symmetry of the Green’s function and the fact that the equilibrium potential
of a compact set is equal to the Robin constant on the set (except for an exceptional set
of zero capacity).

Now since u = v = 0 on 02\ RQ) one gets

Hence, for z ¢ K U Q,

u(z) = (v + h(z0, %) + O(1/R)) wg (B),
v(z) = (vE + h(20,&0) + O(1/R)) wiy (E).

Assume for the sake of simplicity that £y = 0. Then by plugging the identity (9.20) into
the above definitions of v and v we obtain

u(z) = log - + fB Wz, €) dus(€), - ¢ B,

B
o) = | o8 g du(©) + [ he ) dup). ¢ B
Set

o2)i= u(z) — o(e) = [ (1o~ 1o ﬁa) A (€)

[ e dun©) - | n o dus(o

-[ <10g 1 1og1> p€) + [ (h(2,6) = h(z,0)) (@)

|2| |z —¢] B
- JE(h(z,ﬁ) — h(2,0)) dup(8).

Thus, for z € Q\RQ,

f log 2 =& duE(f)‘ i
E |Z|

[RECGE h<z,o>>\ dup(€) = O(1/R).

()] < fB<h<z,5> — h(2,0)) dup(€)

+
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9 Harmonic measure in the complex plane
We have used that for £ € E

tog =l o L+ 18

2 1
\log<1+> =O<>
k4 || || £
and
o L <o (1 L2
|z —¢|

7’2_8 ><log(1+

u(z) = v(2) + O(1/]z]),

z e N\RQ.
Recalling that Capy(B) = 3 Capy,(E)'** one gets

€]
Therefore

)

|z

Il
.
—
=
—

wi(B) = ulz) -

) ) o(2) + 0(1/]2))
vB + h(20,0) + O(1/R)  ~vp(1 +¢) +1log2 + h(z9,0) + O(1/R)

_ (e + M2,0) + O(1/R)) w(, E, z) + O(1/]z])
ve(l+¢€) +log2 + h(20,0) + O(1/R)
Clearly there exists Ry(e) such that for R > Ry(c) we have

1 vE + h(20,0) 1
2(B) = = &(E — 1,
wg(B) 29g(1 +¢€) + log 2 + h(z0,0) waB)+ 0 H

since the denominator yg(1+¢) +log 2 + h(2o,0) is bounded below away from 0 by (9.23)
Appealing again to (9.23) we obtain that, for R > Ry(¢),

YE + h(20,0> 1

> =
ve(1+¢€) 4+ log2 + h(z0,0) ~ 2
and so

1 1

z z

wi(B) = ZwQ(E) +0 <\z|> .
Letting z — oo completes the proof of a) in the lemma.

is

O
Proof of b). Assume that {y = 0 and let U = {|z| < R}. The Green function g = gy of U

L _wE
G(w,§) = log iR

Let Gp be the Green function of U\B and Gg the Green function of U\E. We claim that

Gp(26) = G(z,6) — L G e p(w). = ESU\B.

(9.24)
On one hand, the right hand side ¢(z,&) is a harmonic function of z except for z = &

where it has a logarithmic pole. On the other hand, if z tends to a point in d(U\B) then
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9 Harmonic measure in the complex plane

#(z,€) tends to 0, owing to the fact that SaB G(w,&) dw(U\B,w, z) is the solution of the
Dirichlet problem in U\B with boundary values G(z,&) with £ fixed.

Analogously one obtains

Gg(z,8) = G(z,§) — . G(w, &) dwin p(w), 2, U\E. (9.25)

The goal is to prove the inequality

0GR 0GEg R
p—— > —— .
an (275) = an (ng)’ |Z| 27 geaUa (9 26)
which follows from
R 3

Since Gp(z,§) = Gg(z,€), || = R, then, by the maximum principle, it is enough to show
(9.27) for |¢] = 2R.
We start by proving

4

C 4 C 3
-5 sSGw )< 2 T <1 = I :

where C' is a positive constant and R is sufficiently large. We have
1 ws
R2

G(w,&) =log <§> + G(w, &) — G(0,¢) = log (3) + log — log ‘1 — lg’

The absolute value of each of the last two terms is less than or equal to C/R for some
constant C' and (9.28) follows.
Inserting (9.28) into (9.24) and (9.25) we get

C
Gols6) > G, - (105 (3) + 3 ) wha®) = 5. le1=
4 C R 3
Gr(28) < G(2,¢) - (log (3) - R) wing(E), lel=. l€=1R

Clearly (9.27) is a consequence of the two preceding inequalities and the following claim.

Claim 9.15. For R large enough one has

<log (§> + Z) winp(B) < (log <§) - g) Wi p(E), 2] = §~

We postpone the proof of the Claim and we proceed to complete the argument for
Lemma 9.11.
Consider a subset A of 0Q\RQ. We want to prove

W (A) <&F(4), |2 = g, (9.29)
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Il
S

where w?(A) = w§(A) and &*(A)

Assume, to get a contradiction, that gzgigﬁg = A> 1. Then

AGH(A) —w*(A) =A—1>0, zeA,

and

A (A) —w (A) =0, |2 = g.

The maximum principle yields
A% (A) —w?(A) >0, zedl.

Since w&(A) is a harmonic function on U\E vanishing on dE and, similarly, &¢(A4) is a
harmonic function on U\B vanishing on 0B, we get, by (9.26),
0= 0*(A) —w*(A)
1 [ G
C 21 Jou On

1 0Gp
> —
2 oU on

(20, AT (A) ds(€) — o | OOE (0, €) wE(A) ds(€)

%(‘)U 8n

(20,€) (A (4) —wf(4)) ds(&) > 0,

which is a contradiction. Then (9.29) holds.

By (9.29) and the maximum principle, w?*(A4) < @*(A) for z € Q and |z| > %, and letting
|z] — o0, item b) of Lemma 9.11 follows.
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Proof of the Claim. Recall that we are assuming ¢(Q) = 1, so that for all compact sets K,
Cap(E) = Capy (K n Q) < 1/v/2 and hence yg = log+/2 > 0.

Moreover
v =761 +¢) +log2 > vg.
Let r = r(B) be the radius of B. The function

R 1

log (|Z|) m, z € U\B,

is harmonic on U\ B, vanishes on |z| = R and is 1 on |z| = r. Thus it is precisely Win g (B).
Since —log r(B) = yp we have

R 1
2 n(B) =1 — | — B. .
irolB) = tog (1) g 2e U (9.30)

We turn now our attention on wg, p(E). Consider the function

f(z) = JE log ze U\E.

Tl dpip(w)

|z — log R+ g

Since SE loglzflw| dpug(w) = g for z € E| except for a set of zero logarithmic capacity,

f(z) =1, z € E, except for a set of zero logarithmic capacity.
If we E, z€ U one has |z —w| = R+ O(1) and so

R R— |z — w|
1 =—1 1—-——— | = —log(l 1 =0(1
og 2= —tog (1= FEEZE) g1 4 0(y/m) - o/
e | | | |- R
zZ—w z—w| —
1 =1 1— = —1 1 1 = 1 .
og 25 = —og (1= E2MZE) g1+ 01/m) - 0ty
Since f(z) =1, z € E, we conclude that
O(1/R)
< e, au,
FG < oy 2
so that the function /R
Fe) = 16) -

~ ~

satisfies f(z) < 1, z € E, and f(2) < 0, z € 0U, for an appropriate large constant C. It
follows that N
f(z) Swip(E), zeU\E.

To estimate this harmonic measure we write

-C 1 R R
< FE) > 1 —log— | d
wU\E( ) R(log R+ vg) + log R+ g JE <og |z — w| 8 \z|> pe(w)

1

R
e g T AT+ T
log R+ vE Og|z[ ! S
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9 Harmonic measure in the complex plane

By (9.30)

1 R 1 1 R
* " log R+ 78 Og|z|+<logR+7E 10gR+’YB> &1 winp(B) + T

For the term T we have

YB —VE 1 R evg + log 2
og — = s
(logR+E)(logR+vB) 2| ~ (log R+ 2vg + log2)?

T, =
provided € < 1, because vp < 2vg + log 2.
For the term 15 we have

zZ— W
10%‘ ] “ dup(w)

Hhl< ——
72| longEfE

with
log 2 |Z|“’| — log <1 + W) — log(1 + O(1/R)) = O(1/R)
and the same estimate also holds for log |Z|_Z‘w‘. Hence
C
< =—F7F7——.
T2l Rlog R + vg)

Since |T7| obviously satisfies the same estimate, we conclude that

evg + log2 C
ng(E) = wih (B — ) 9.31
wU\E( ) wU\B( )+ (log R+ 2vg +10g2)?2  R(log R+ vg) (9:31)
for some positive constant C.
Recall that the claim is
4 c\ . 4 cy\ . R
R

From now to the end of the proof of the claim z denotes a point satisfying |z| = 5.
By (9.31) we get, for R > Ro(e),

EVE

It is sufficient to show

(v (a) + 2)<irn®) < (15 (5) =) (-0 + gt )

Cuwin g(B) C 4 C 5
U\B P YE
- - X —wa B B + 1()g by - Y

or
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9 Harmonic measure in the complex plane

which amounts to, for R = Ry(e),

W[Z]\B(B) - EVE
R = (logR+vg)?*
By (9.30), for |z| = R/2, we have

2 2 2
= = < .
logR+vp logR+ (14+¢)yg +1log2 " logR+ g

win p(B)
Then, for R > Ry(e), we get

wlZJ\B(B) _ 2 <C EVE
R = R(log R + vE) = (log R + vg)?’

where the last inequality is equivalent to
2(log R + vg) < C Revyg,

which is clearly true for R large enough, because vg > log /2. O

9.10.2 Proof of Lemma 9.14

We note that in the statement of Lemma 9.14 one has to understand that no curve I';
lies inside another curve I'y; in other words, the bounded connected components of C\I';,
1 < j < N, are disjoint. Also, replacing K by {g < ¢} for small € > 0, we can assume {2
is a finitely connected domain with smooth boundary.

Recall that we can write the Green function g as

1
g(z) = o log |z| + vx + ho(2), (9.32)

where

is harmonic and satisfies hg(c0) = 0.

Let {1} be the set of critical points of g that lie outside I'. First of all we note that there
is only a finite number of these critical points. Indeed, the &;’s are the zeros of dg, which
is a holomorphic function on Q = C*\K vanishing at infinity. Hence the critical points
can accumulate only on K and so outside I' there are only finitely many, say &1, ..., &L.
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9 Harmonic measure in the complex plane

To simplify notation, we denote by n the inner normal at d€2, and by v the outer normal.
We want to show the equality

g L N 0
— 1 =2 ; — I 2 — log 2.
L&n og|Vg|ds ﬂlglg(ék)—i—j;c] Lj an og|Vygl|ds + 2myk — log 2w

Let B, be the disc centered at the origin of radius r big enough to contain the unit disc
and all the critical points of g. Green’s formula gives

—f % log |Vyg|ds —i—f % log |[Vyg|ds
T on 0B, on

0 2 3
= — — 1 — 1 -2
Lgﬁn og|Vg|ds + LBTg o og|Vg|ds —2m 2 9(&k),

k=1
where we used that Alog|dg| = 27 Z£:1 ¢, - Equivalently
dg L al 0
L@n log |Vg|ds = 27 Z g(&k) + Z ¢ L‘ a0 log |Vg|ds
k=1 j=1 J
0 0
+ (9 log [Vg| — g~ 1og\v9|> ds
0B, on on
and we need to prove
I %9 \og [Vg| — g2 1og |Vg| ) ds — 2 log 2 (9.33)
im —lo —g=—1lo s = 2myk — log 2. .
], \an 108 1V9l =95, 10g Vg Vi — log
On 0B, the normal derivative 6% is the partial derivative a%' By (9.32)

0g 1 0 1 1
57’(2)*27['7’—’—07”}”0(2’)*271'?”—’—0(7’2)7 ’Z’*T,
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9 Harmonic measure in the complex plane

and similarly

1 1 1
Vyg(z) = %Vlogw + Vho(z) = —+ O <|> .zl =

21z z|?
Thus
log [Vg(2)| = log — + O ( ~
eIVIR)l = g27rr r
and
1 1
a—logWg(z)\ = +0 3

The integral in (9.33) becomes

1 1
LBT<27W g27rr+( ogr + 0+7K> >d3_|_0( >

1 1
= (27rh0 + 27y + log %) +0 (r) ,

which tends to 2myx — log 2w as r — 00, because ho(r) — 0.

The next step is to prove the identities
0 .
—log |Vyglds = =27, j=1,2,...,N.
Fj an
Since Vg = 20g,

J —log |Vg|ds = f log |0g| ds
32
=J <2(_310g|(_99],n>d8=f <ag,n> ds
I I, a9
2
= Re jnds = Re E ' 9 dz
T 59

= Varargr (dg) = Varargr, (Vg) = —2r.

Therefore

dg L N
L a0 log|Vyg|ds = 27r’§19(§k) — QWj; ¢j + 2y —log 2w

and the proof of the lemma is reduced to

L
27 Z cj < Z (&k) + 2myx — log 27 + log 4
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9 Harmonic measure in the complex plane

or, equivalently,

N L log 2
D16 < 2 9(E) K +
j=1 k=1 m

Let px be equilibrium measure of K. Then

1
9(2) =+ 5 | togl = ulduuclw),
T JK

and so, recalling that I' < {|z] < 1},

log 2
21’

9(2) Sk + |2l < 1.

(9.34)

(9.35)

Now we make a remark. Let 7 be a Jordan curve which is contained in a level set
of g and that surrounds a number 8 of connected components of K. Then the number of

critical points of ¢ inside v is g — 1.

To see this, let D stand for the domain bounded by v and K; then Vg is orthogonal
to the boundary of D and when we travel along ¢D the argument of Vg increases by 27
over v and decreases by 27 over the boundary of each component of K. So the total
variation of arg(dg) on 0D is (f —1) 27 and, by the argument principle, dg has § —1 zeros

in D.

Take now ~ containing all critical points of ¢ and K. Then the total number of critical
points of g is the number of components of K minus 1. Assuming that I'; contains f3;
components of K, j = 1,..., N, we know that the number of critical points inside ; is
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9 Harmonic measure in the complex plane

B — 1 and so the number of critical points outside I' is N — 1. Replacing in (9.34) the
number L of critical points outside I' by N — 1, the inequality to be proven is

N N-1 log 2
Do < Y] 9(&) + vk + o (9.36)
j=1 k=1 T

To show (9.36) let us assume that the constants c; are different and ordered so that
c] < cg < --- < cy. We would like to understand how the N — 1 critical points outside I'
appear.

The critical points of g appear when two components of a level set of g touch. The
critical point may have a multiplicity if more than two components coincide at a point;
in this case, the multiplicity is, by the argument principle, the number of components
that are joining minus one. Assume, for instance, that two components of {z : g(z) = ¢}
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9 Harmonic measure in the complex plane

intersect at & and c is the least number with this property. On one hand, Vg(&) = 0,
since otherwise {z : g(z) = ¢} would be a smooth curve around &, which is not the case.
On the other hand, the domain bounded by {z : g(z) = ¢} contains two I';, which must be
I’y and T'e. Thus g(&1) = co. If there were three components of {z : g(z) = ¢} which join
at &1, then I'1, T's and I's would be inside the domain bounded by {z : g(z) = ¢}. Hence
9(&1) = c3. Arguing inductively in this way we finally obtain that the N — 1 critical points

of g outside I' satisfy
N-1
> 9(é) =
k=1

Since ¢; = g(7) for some 7, (9.35) gives ¢1 < vk + log2 and (9.36) follows. O

T

Cj.
2

J
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10 Ahilfors regular domains

10.1 Dahlberg’s theorem

10.1.1 Introduction

We need to introduce the notion of Lipschitz domain. We say that Z < R"*! is a (d, £)-
cylinder if there is a coordinate system = = (Z,z,+1) € R” x R such that

Z ={(Z,xn41) : 7] < d,—100d < |wp41| < 104d}.
Also, for all s > 0, we denote
sZ = {(Z,xp41) : |ZT| < sd, —100d < |zp11| < 104d}.

We say that  is a Lipschitz domain with Lipschitz character (¢, N, Cp) is there is ro > 0
and at most N (d, £)-cylinders Z;, j = 1,..., N, with C’O_lro < d < Cyrg such that

e 8Z; n 01 is the graph of a Lipschitz function A; with |[VA;|» < ¥, 4;(0) =0,
o 00 ={]J;(Z; n0Q),

e We have that
8Z]’ N Q= {([Z‘,.’L‘n+1) € 8Z] P Tpyl > Aj(i')}, (101)

in the coordinate system associated with Z;.

We also say that €2 is a Lipschitz domain with Lipschitz constant £.
On the other hand we say that Q — R™! ia a special Lipschitz domain if there is a
coordinate system = = (Z,z,+1) € R” x R and a Lipschitz function A : R” — R such that

Q= {(.’Z’,.%'n+1) P T4l > A(.f)}

Our objective in this section is to prove the following fundamental theorem of Dahlberg
[Dah77]:

Theorem 10.1. Let Q < R™! be either a bounded Lipschitz domain or a special Lipschitz
domain and denote by o the surface measure in ). Let B be a ball centered in 02 and
zo € Q such that dist(xg, 2B n 0Q) = C; 'r(B). Then the following holds:

(a) The harmonic measure w™ and o are mutually absolutely continuous.
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10 Ahlfors regular domains

(b) We have

1/2
dw \ 2 dw® w0 (B)
do <C do=C , 10.2
(J[Bman< do ) ) Broq do o(B) 102

where C' depends only on n, the Lipschitz character of £, and Cf.

(c) w™ € Ay (o), with the Ay constants depending only on on n, the Lipschitz character
of Q, Cy, and dist(xg, 092).

10.1.2 Strategy for the proof of Dahlberg’s theorem

Notice first that a Lipschitz domain is NTA, and thus its associated harmonic measure is
doubling. Using this doubling property it is immediate to check that it suffices to prove
the theorem for a ball B small enough such that z¢ ¢ 4B and 4B is contained in 27;,
where Z; is one of the cylinders defined above.

Suppose that the boundary of 2 is smooth and that the Green function belongs to C?(€),
so that Green’s formula can be applied to g := G(xg,-) and to its partial derivatives (away
from xp). In this case w® and o are mutually absolutely continuous and

dw™°
do

= _auga

where 0, g is the normal derivative of g in 02 (we assume that v is the outer unit normal
for Q). Since g is constantly equal to 0 in 012, the tangential derivative of g vanishes in
02, and moreover

—0,9 = 09| ~ Ont19  in 8Z; N 09,

in the coordinate system for Z;. Therefore,

dw® \ 2
J ( > do ~ J 0y On+19 do.
Broo \ do BréQ

Let ¢ : R™! — R be a bump function which equals 1 in B and vanishes away from 2B.
Since both g and 0,,41g are harmonic in 2B, by Green’s formula

dw®o 2
f ( y ) do < —J ©0yg Ony19do = —f 0v(¢ g) Ong19do
BnoQ g o0 o0

= JQ ( - A(Sog) anJrlg + g A(&,ng)) dm = — jQ A(gog) anJrlg dm

= JQ (A9095n+1g — 20119V - VQ) dm.
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10 Ahlfors regular domains

By the definition of ¢, Theorem 8.13, and Caccioppoli’s inequality, we obtain

f ‘Acpg On+19 — 20419V - Vg‘ dm (10.3)
Q

1 , 1/2 \ 1/2 1 ,
— g dm> <f Oni1g dm) + J Vgl|*dm
r(B)? (JQmQB Qm2B| +19] r(B) Qm23| |

0

1 ) 1 [ w™(B)\? _w™(B)?
< B s T B <r<B>n—1> mB)~ =gy

which yields (10.2). The fact that w®™ is an Ay (o) weight follows then easily from the
this reverse Holder property.

A

For arbitrary Lipschitz domains the argument above does not work because we cannot
assume a priori that d,¢g and 0,,1¢ are defined in €2 and that the Green formula applied
above holds. To prove Dahlberg’s theorem with full rigor, first we will consider the case
when the boundary 052 is of class C'! and we will prove a discrete version of (10.2) following
an approach based on the arguments above. Later we will deduce the full result by an
approximation argument

10.1.3 Two auxiliary lemmas

Lemma 10.2. Let u be a positive harmonic function in the upper half space H = {x €
R 2, > 0} and continuous in H which vanishes in 0H. Then there exists some
constant A > 0 such that

u(x) =Axps1  forallye H.

Proof. Let xg = en41. We choose A = u(zg) and we let v(z) = Azy,4; for x € H. Since
both u and v are positive and harmonic in H and vanish continuously in 0H, by the
boundary Harnack principle (see Theorem 8.16) we have that u(z) ~ v(z) for all x € H.
Thus, u grows at most linearly at oo.

Since u vanishes in 0H, it can be extended by reflection to lower half space. Next we
use the fact that that any harmonic function in R"*! satisfying |u(z)| < C(1 + |z|) in
R"*! is a polynomial of degree at most 1, by Proposition 2.13. From this fact one easily
gets that uw = Axp1.

O

We need now to introduce the Jones’ § coeflicients used to measure the flatness of sets.
Given a set £ < R""! a ball B := B,(z) « R""! and an n-plane L < R"*!, we let

dist(y, £
500,E(Ba L) = BOO,E(xa T, L) = sup M
yeENBy(x) r

Lemma 10.3. Let Q < R™! be an NTA domain, let B a ball centered in 092, and let
H={y:yp+1 >0} and L = 0H. For any € > 0 there exists some § > 0 (depending on €
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10 Ahlfors regular domains

and the NTA character of Q) such that the following holds. Suppose that Q n6~'B < H
and that ,800739(5713, L)<§é. Letu: Qn 6B — R be a continuous function vanishing
identically in 0 N 6~'B — R and positive and harmonic in Q n 6~ B. Then there exists
some constant A > 0, depending on u, such that

[w(y) = Ayns1| < e€lufeo,p forallye Qn B, (10.4)
Further, if y € Q n B satisfies dist(y, 0Q2) > ir(B) and ¢ 1is small enough, then we have
IVu(y)| ~ dnyauly) ~ r(B) "' uly) (10.5)

and
r(B) [VZu(y)| + [Vou(y)| < e [Vu(y)| < [Vu(y)], (10.6)

where Vi, denotes the tangential derivative in L.
Proof. Consider an arbitrary point yg € B n € such that dist(yo, 0Q2) = r(B)/4. Then we
will prove (10.4) with
\ = u(yo) '
Yon+1

Denote v(y) = Ayn+1. For the sake of contradiction, suppose that there exists some € > 0
such that for any § = 1/k there is an NTA domain €, (with some bounded NTA character
independent of k), a ball By centered in 0Qj such that By 00, (kBk, L) < 1/k, and a
continuous function uy : Q N kB — R vanishing identically in 09 n kB — R, positive
and harmonic in € N kBy, such that

lur, = vklloo, B > € urloo, s (10.7)

with vg(y) = Z:Elyfz Yni1. By translating and dilating By and €y if necessary, we may

assume that By = B1(0).
Since the domains € are NTA (with constants uniform in k), we infer that for any ball
M1,

|uk oo, B Sm llukloo,B = ur(yo)-

Hence, the sequence of functions wuy(yo) ! wuy is uniformly locally bounded in compact
subset of R"! (we assume these functions to be extended by zero in ). These functions
are also uniformly Holder continuous in compact subsets of R**1 (by Lemma 7.25). Also,
since So 00, (kBk, L) — 0, by the Arzela-Ascoli Theorem we infer that there is a subse-
quence uj; (yo)~? ug; that convergences uniformly to some function @ which is positive and
harmonic in H and vanishes continuously in L = 0H. Clearly we have u(yo) = 1 and so u

does not vanish identically in H. Thus, by Lemma 10.2 we know that @(y) = yoiylm Yn+1
in H.
On the other hand, notice also that u;:@o) = ﬁ Yn+1 for all k, and thus by (10.7) we
get the contradiction
0= 7 — Wy p = lim luk; — vr; oo, B > lims lug; — vi;lloo, B .
' Jj—0 Ukj(yo) j—0 Huijoo,B
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10 Ahlfors regular domains

which proves (10.4) with A = yuo(%

Our next objective is to derive (10.5) and (10.6) from (10.4) with the preceding choice
of A, and with B replaced by 2B (it is clear that this estimate also holds in this case, by
modifying suitably ¢). By the usual interior Caccioppoli estimates for harmonic functions,

we deduce that for all y € Q N B satisfying dist(y, 0Q) > 1 7(B), we have

|On1u(y) = A+ Viu(y)] < 2|Vu(y)=Aenii|

L Ju—v] < Jules (10.8)
~(B) uU—v oo,Qm2B\r(B) Ufjoo,B :

and

1 €
[Vuly) =01 5 Jya lu = vlnnon < g lule 5. (10.9)

Notice now that
A\ = u(y()) ~ u(y) ~ 1 ’
Yo,n+1 r(B) r(B)

and so from (10.8) we deduce that, for £ small enough,

\U’oo,&

A

27

and so Op11u(y) ~ |Vu(y)| & A, which yields (10.5). On the other hand, from (10.8) and
(10.5) we derive

|(9n+1u(y) - )" < |Vu(y) - )‘en-&-l‘ <

€ u(y)
< x % .
Vsulw)] < g5 e ~ £ 715 ~ €[ Vu)
Finally, the estimate 7(B) |V2u(y)| < € |Vu(y)| in (10.6) follows from (10.9) in an analo-
gous way. O

10.1.4 A key lemma for the smooth case

As in Section 10.1.2, to prove Dahlberg’s theorem, we will assume that the ball B is small
enough, so that xo ¢ 4B and 4B is contained in 27, where Z is one of the cylinders Z;
defined above. We denote by D(012, Z) the family of the following “dyadic cubes” of 02
obtained as follows. Let D(R™) the usual dyadic lattice of R™. Let Iz be the orthogonal
projection from 87 to R™ = R" x {0}, in the coordinate system associated with Z. Then
we let

D(0Q,2) = {I1;}(Q) n N : Q € D(R™),Q < 8Z nR"}.

Here again we are identifying R™ with R™ x {0}. Observe that the cubes from this family
are contained in 00 N 8Z. We also denote ¢(I1,'(Q) n Q) := £(Q) and we call this the
side length of HEI(Q) n 0€). Tts center is the point whose projection by IIz coincides with
the center of Q). We let Dy (02, Z) be subfamily of the cubes from D(0S2, Z) with side
length 27, and given a cube R € D(09, Z), we let Dy (09, Z, R) be the subfamily of the
cubes from D(05), Z) which are contained in R and have side length 27%¢(R).
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10 Ahlfors regular domains

Lemma 10.4. Let Q < R"*! be a Lipschitz domain. Let Z < R™"1 be one of the cylinders
in the definition of the Lipschitz character of Q. Let R € D(0Q,Z) such that 4R c 4Z
and xq € Q0 such that dist(zg,4R) > 4diam(R). Suppose that 0 is C' in a neighborhood
of 4R. Then, for any k =1 big enough, we have

W@\ W (R)\?
QGD%;),Z,R)< a(@)) (QKC(a(R)) B) (10-10)

with C' depending only on the Lipschitz character of ).

Notice that (10.10) can be considered as a discrete version of (10.2).

Proof. Suppose that 02 Z coincides with the graph of the Lipschitz function y,+1 = A(y)
in Z. For e > 0, let A-(y) = A(y) + € and let Q. = {y € Q : yp+1 > A:(y)} (the definition
of the function A away from 4Z does not matter).

For every @ € Dy (02, Z, R) consider a C® bump function ¢g which equals 1 on @ and
vanishes in R"!\ Bjiam (@) (2¢) and in OO\, (2Q) (here z is the center of Q). Since the

function g := g(xo,-) belongs to W12(Q\B,(z)) for any 7 > 0, we infer that

w(Q) < —f VgVepgdm = — limf VgVegdm = — lim Ov.9 pq doe,
Q e—0 Qa e—0 695

where v, and 0. denote the outer unit normal and the surface measure for ()., respectively.
Consequently, denoting 2Q. = H§1(2Q) N 08,

2 (wa(Q)y o(@) <lmsup ) | < . 0.9%Q dag)Q (@)

QeDy (09,Z,R) 7(Q) 20 Qepy(09,2,R

(10.11)

< limsup 2 f ‘auag‘Z 9022 do
20 Qepy(09.2,R) V29

< limsupf |ausg|2 802Rd‘7€'
Re

e—0

From the C! character of 02 in a neighborhood of 4R and Lemma 10.3 (applied to some
ball B = By.(y), y € 2R., and to a suitable n-plane L orthogonal to v.(y)), we infer that
for € small enough and all y € 2R,

IVgW)| ~ 10v.9(W)| = —dv.g(y) ~ e g(y) (10.12)

and

e[V2g(y)| + |Vr.g(y)l < C(e) [Vy(y)| « [Vg(y)l, (10.13)

where V7. denotes the tangential derivative in 692, and C(e) — 0 as e — 0. Let t.(y)
be the orthogonal projection of e,,.1 on the tangent n-plane to 0€). in y and set t.(y) =

|t (y)| "= (y). Writing

On+19(Y) = ent1-Vg(y) = {ens1, v (Y)) 0v.g(y) + {ens1,t(y)) 0r.9(y)
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and taking into account (10.12) and (10.13), we derive
—0u.9(y) = |0.9(y)| ~ Ont19(y) for all y € 2R..

Thus, for € small enough, we have

I :=f 10091 ¥R do. ~ —J 0v.9 Ony19 PF doe (10.14)
2R,

€

= - 0v.(99%) Ony1g9doe + QJ 9PR Oy PR Ont+19 doe.
2R. 2R,

We estimate the last integral on the right hand side above using Cauchy-Schwarz, the
Holder continuity of g in a neigborhood of Bgjam(r)(7r), (10.12), and the connection
between w® and g:

UR) 2

1 € @
< L sup oly) T2 o (R) 2
U(R) (Z(R)> Y€Badiam(Rr) (TR) W) L )

< e \" w(R) T2,
{(R)) o(R)Y/2 ¢
To estimate the first integral on the right hand side of (10.14) we use Green’s formula
again and we take into account that d,,1¢ is harmonic away from zg in €:

R

1 1/2
J 19 0R 0. 9R Ont19ldoe S — s%pg(y) (J lor 6n+1g|2dae> o(R)"?
2R. e

Ov.(9 %) Ons19do. = . Algh) 0n+1gdm—J 99k 0y Onr1gdo.  (10.15)
2R, e 2R,

The first integral on the right hand side is estimated exactly as in (10.3). Indeed, denoting
by Bpr some ball centered in 0f2 that contains suppyr and such that diam(Bgr) ~ ¢(R),
we get

f (g %) dnsrg] dm < L|Aw%gan+lg—2an+1gw’§-v9|dm

Qe
] , 1/2 , 1/2 1 ,
< — g dm> (f On+1g dm) + f Vg|*dm
r(Br)? <meBR QnBg [On+19] 7(BRr) JonBs V9l

1 2 1 w®(R) 2m w0 (R)?
s r(Bg)3 fﬂm?BRg dm < r(Bgr)3 (T(BR)"_1> (Br) ~ o(R)

To deal with the last integral on the right hand side of (10.15) we apply (10.12) and
(10.13):

f 19 0% . Onsag|do. < f 903 |Vg| do
2R. 2R,
< f (€0 ok (7 CE) 0t do

_ () f B gl2 % do. = C()LL,
2R,
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with C'(e) - 0 as e — 0.
Altogether, we obtain

«@ WO wro 2
I < (Z(i%)) (B) 1o @B C(e)I.

For e small enough, this yields

Plugging this estimate into (10.11), the lemma follows. O

10.1.5 Proof of Theorem 10.1

We assume that B is small enough so that xg ¢ 4B and 4B is contained in 27, where Z
is one of the cylinders in the definition of Lipschitz domain.

By reducing B and translating the dyadic lattice D(0€2, Z) if necessary, taking into
account that w® is doubling, we may assume that B n 00 is contained in some cube
R e D(Z,00Q) like the one in the statement of Lemma 10.4, so that moreover ¢(R) ~ r(B).
We claim that for any k£ > 1 big enough, we have

2 <w;zc(§)>2 (@ <C (fig?)g o(R), (10.16)

QeDk (6Q7Z7R)

which C' depending only on the Lipschitz character of (2.

To prove the claim we approximate by a domain €25 whose boundary is C! in 2Z. To
this end, we consider a smooth approximation of the identity {¢s}s~0 in R™, we take a
bump function 7 : R®™ — 0 which equals 1 in a neighborhood of 3Z n R™ and vanishes in
R™3.1Z, and for z € R™ we denote

A(;(Z) = Ax ¢77(Z)5(z)7

where § « {(R) and we understand that A = ¢g(z) = A(z). It is easy to check that As is
Lipschitz (uniformly in ¢), with [VAs|w < [[VAw, and that As is C* in a neighborhood
of 3R. We let )5 be the domain whose boundary is the graph of As in Z and coincides
with 0Q in R**1\Z. We denote by ws" the harmonic measure in Q5 with pole zg, and we
let Qs = T1,1(Q) n Qs for Q € D(Z,00N), so that Qs € D(Z, ).

For some ¢ small enough (possibly depending on k) we have

w™(3Q) < 2wi*(Qs) for every Q € Dy(09Q, Z, R). (10.17)

Indeed, w(')(Q) is a function harmonic in g, which extends continuously to 1 in %Q(;, with
a Holder modulus of continuity uniform in §. This can be derived by applying Lemma
7.25 to the function 1 — wg')(Q). Then it easily follows that there is a sequence 6; — 0
such that

liminfwi®(Qs) = w™(3Q) for all Q € Dy(09Q, Z, R),

J—©
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10 Ahlfors regular domains

which proves (10.17). By a similar argument, we infer that for § small enough we have

1
xo > -
w™(R) 5

Now the claim (10.17) follows immediately from Lemma 10.4, (10.17), (10.18), and the
doubling properties of w and ws:

x 2 0 2
w0 ws?(Q
s (5905 (29w
QeDy (00,7, R) Q5D (0925, 2,R)  TONFD
w™ (Rs)\ > w™(R) 2
< (=2 Rs) < R).
< (iwy) == () oo
The theorem follows easily from (10.17). First we show that w™ € Ay (o), with the

Ag constants depending on the Lipschitz character of Q2 and dist(zg, 02). To this end, it
suffices to prove that there are dg,g¢ € (0,1) such that for any compact set F c R,

o(E)<do(R) = w"(F)<ew™(R). (10.19)

wi® (3 Rs). (10.18)

Indeed, from the regularity of o, we infer that for any d¢ € (0, L) there exists some k large
enough and some family I},  Dg(0f2, Z, R) such that the set £ = UQG 1, 2Q satisfies

EcE, o(E)<0o(E)+d0c(2R) <25, 0(2R).
By Cauchy-Schwarz and (10.17), we get

E) < WZO(%?J(Q) < ( > (ujj(gj@)f a(Q))l/zg(E)lﬂ

Qely Qel},
w0 (R) 2 1/2 12 B 1/2w960
<C ( < @ > a(R)> 51%0(R) = 8652w (R),

So (10.19) holds if we choose 0y small enough. In particular, this implies that w™ and o
are mutually absolutely continuous.

Finally we turn our attention to the estimate (10.2). Given any n > 0, by the Lebesgue
differentiation theorem, for o-a.e. y € R there exists some k, > 1 such that

‘d;ujo y) - “fiéﬁ)\ <7 ifreQeD(2 7Z) and (Q) < 27MU(R).

Denote R(ko) = {y € R : ky < ko} for kg € N. Then, using again (10.16) we obtain

dw™ 2 dw®™ w”CO(Q)>2
JR(ko) ( do > do <2 Z f R(ko)nQ ( o(Q) do

QeDy, (02,2,R)

*2 ) ((é% 7@)

QeDy, (92,2,R)

coromsc (18 s
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10 Ahlfors regular domains

Since R coincides with Uk0>1 R(kp) up to a set of zero o measure, by the monotone
converge theorem we derive

JB (d;‘};m)z do < fR (dZJ;O)Z do < 2020(R) + C (w;](g};))Q o(R).

Since 7 is arbitrarily small and w™(R) ~ w™(B), clearly this yields (10.2). O

10.2 Harmonic measure in chord-arc domains

A domain Q < R"*! whose boundary is n-AD-regular is called an Ahlfors regular domain.
A chord-arc domain in R"*! is an NTA domain whose boundary is n-AD-regular. Here
we say that a domain  — R™! satisfies the corkscrew condition if for all £ € 09 and
0 < r < diam(0€) there! exists some ball B < B,.(£) n Q with rad(B) ~ r. We say that
Q) is a two-sided corkscrew domain if both  and R**1\Q satisfy the corkscrew condition.
It is clear that any chord-arc domain is also a two-sided corkscrew domain.

We will need the following geometric result, proved independently by David and Jerison
[DJ90] and Semmes [Sem90]:

Theorem 10.5. Let Q < R"! be an Ahlfors reqular and two-sided corkscrew domain.
Then, for all § € 0Q and all v € (0,diam(0Q) there exists a Lipschitz domain Ug, <
QN By(€) such that

HM(0Q n 0Ug,) 2 1"

The Lipschitz character of the domains Ug, and the implicit constant above only depend
on n and the parameters involved in the n-AD-reqularity of 02 and the two-sided corkscrew
condition for §Q.

Remark that, for the theorem above to hold, the two-sided corkscrew condition can be
weakened, for example, by replacing the corkscrew balls by suitable disks not intersecting
0€). An immediate corollary of the above result is that the boundary of an Ahlfors regular
two-sided corkscrew domain is uniformly n-rectifiable (see [DS93] for the definition of
uniform n-rectifiability). Another consequence is the following.

Theorem 10.6. Let Q < R™*! be a chord-arc domain. The harmonic measure for Q is
an Ay weight with respect to the surface measure o. More precisely, there are constants
d,e € (0,1) such that for any ball B centered in 02, any xo € Q\2B, and any Borel set
E < Q) n B, the following holds:

o(E)>00(B) = w"(E)=>=cw™(B).

Proof. By Theorem 10.5, for a ball B as above there a Lipschitz domain U < 2 n B such
that
H" (0N oU) = nH"(0U n B),

'Remark that in Definition 8.3 we only asked this condition to hold for 0 < r < ro, for a given 7o, and
here we assume that ro = diam(Q).
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10 Ahlfors regular domains

where 1 > 0 depends on the parameters of the chord-arc domain character of 2. We claim
that if ¢ is close enough to 1 and o(E) = 0 o(B) (for E < 0f2), then H"(E ndU N B) Zc 4y
H"(0U n B). Indeed,

HY (EndUNB)=H'"(EndnB)—H'(En (0Q\U) n B)
> H"(EndQn B)—H"((02\0U) n B)
= dH" (02" B) — (1 —n)H" (02 n B)
~ (0 +n—1)rad(B)" ~5, H"(0U n B).

Consider a point zp € U such that dist(zp, 0U) ~ rad(B)". By Dahlberg’s theorem, w;/”
is an A (H"|r) weight, and taking also into account that U satisfies the CDC condition,
we deduce that

wiP (EnoU N B) 25y wi? (0U N B) &, 1.

By the maximum principle, we obtain
woP(ENB) 2 wiP(EndUnB) = wi?(EndUnB)Zs5,1~wi?(B).
Then, by the change of pole formula for NTA domains we deduce
we (B0 B) 24y we) (B),

which proves the theorem. O

10.3 [LP-solvability of the Dirichlet problem in terms of harmonic
measure

Let Q < R™™! be an open set and set o := H"|sq to be its surface measure. For a > 0
and x € 012, we define the cone with vertex x and aperture o > 0 by

Yal(@) ={yeQ: |z —y| < (1+ a)dist(y,00)} (10.20)
and the non-tangential maximal function operator of a measurable function u : 2 — R by

No(u)(z) := sup |u(y)|, = € Q. (10.21)

YEYa ()

Theorem 10.7. Let Q < R"*! be an open set with such that 09 is n-AD-reqular. For
a, B >0 and any function u : Q — R, we have

INa(w)] 2o (o) ~a,p [Np(w) | Lp(0)-
For the proof, see [HMT09], for example.

Because of the preceding result, when estimating [N ()] zr(5), quite often we will not
just write M (u) in place of N,(u). For definiteness, we can think that o = 1, although
the relevant value of o will not be important for us.
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10 Ahlfors regular domains

For 1 < p < o0, we say that the Dirichlet problem is solvable in LP for the Laplacian
(writing (Dp) is solvable) if there exists some constant C, > 0 such that, for any f €
C.(09), the solution u : 2 — R of the continuous Dirichlet problem for the Laplacian in
Q with boundary data f satisfies

IN ()| Lr (o) < Cp 1 fll e (o)

By the maximum principle, it is clear that (D) is solvable. Consequently, by interpola-
tion, if (D)) is solvable, then (D) is solvable for ¢ > p.

The objective of this section is to characterize the solvability of (D,) for 1 < p < oo in
terms of the analytic properties of harmonic measure. We need the following result.

Lemma 10.8. Let Q c R*! be a domain with bounded n-AD-reqular boundary. Given
x € §2, denote by w* the harmonic measure for  with pole at . Suppose that w®
absolutely continuous with respect to surface measure for every x. Let p € (1,00) and
A > 1 and suppose that, for every ball B centered at 00 with diam(B) < 2diam(Q2) and
all z € AB such that dist(z,0Q) = A~1r(B), it holds

< J(AB (dg)? d") N <ro(B), (10.22)

for some k > 0. Then, if A is big enough, the Dirichlet problem is solvable in L*®, for
s> p'. Further, for all f € L” (¢) n C(0%), its harmonic extension u to Q) satisfies

”N(U)Hm’,w(g) Sk HfHLp/(g)- (10.23)

Proof. Let f e C(02) and let u the solution of the Dirichlet problem in §2 with boundary
data f. Suppose that f > 0. Consider a point £ € 092 and a non-tangential cone v(§) < Q,
with vertex £ and with a fixed aperture. Fix a point = € y(§) such denote d, = dist(x, 092).
We intend to estimate u(x), first assuming d, < 2 diam(0€2).

To this end, we pick a smooth function ¢ which equals 1 in Bj(0) and vanishes in
R™ 1\ By(0). For some M > 4 to be chosen later, we denote

om(y) =90(Mydx)-

fo(y) = fy) em(y = §), fily) = f(y) — folw),

and we denote by ug and u; the corresponding solutions of the associated Dirichlet prob-
lems so that v = uo + uq.
To estimate ug(x) we use (10.22) to show that

dw®
0= [fdr<| g
Bondg (§) g

1y Z\ P 1/p
< ( f I da) ( f (dw ) d0>
Banrdg (€) Banrd, (€) do

o 1/p’
Sc?;]\;d(mf()g))l)/p’ S RO(M) Moy f(E),

We set

< kK O(M) Moy £(8)
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10 Ahlfors regular domains

assuming A = 2M.

To deal with u (), we first estimate Bara, (6) U1 dm. To do so, we consider the splitting
of Q into the usual family of Whitney cubes and we denote by Ip the family of those cubes
that intersect B := Bjyq, (). By the properties of W({2), the cubes P € Ip are contained in
CB := Bea, (€), for some C depending just on n and the parameters in the construction
of W(2). Then, taking into account that u; < u, we have

up dm < fudm inf Nu(y) ((P)" ! (10.24)
fBMdl(f) p; Pelp yeb(P)

< Z E(Q)J Nudo < Md, Nudo,
QeD,:QcC'B ¢'B

where in the second inequality we took into account that d, < 2diam(092). So we deduce
J( updm < Nudo < My(Nu)(€).
Baray (€) C'B

Now, taking into account that f; vanishes in Bjpsq_ (£), from the Holder continuity of u;
in 0Q N Byq, 2(§), we infer that

1 1
ul(ZL‘) < — :F up dm < 7MJ(NU)(£)7
M Bhrag (§) M

for some o > 0 depending just on the AD-regularity constant of 0S2.
Altogether, we have

u(x) < KC(M)Mqgpyf(E) + % My(Nwu)(&) for all z € y(€) with d, < 2diam(09).

(10.25)
In case that €2 is unbounded, it turns out that the closure of A := {x € Q : d, > 2diam(02)}
is contained in the cone () if the aperture of v(§) is assumed to be big enough. Thus,
by the maximum principle, since (10.25) holds for € dA and u vanishes at oo, it follows
that the same estimate is also valid for x € y(§) n A. Hence (10.25) holds for all = € (&)
in any case. So we obtain

Nu(§) < KC(M) Mgy f(E) + Ms(Nu)(€) for all £ € 09Q. (10.26)

Me
Thus, for s > p/,
C
[NulLs o) < & CM) Moy fliso) + 375 IMeWNW)Ls(0)
C’
<cCM) | f @) + 37a HNUHLS(U)
Since f is continuous 02 is bounded, ||Nul sy < o0, and hence, choosing M (and thus

A) big enough, we get
INu|| s (o) < £ C' (M) | £l L5 o)
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10 Ahlfors regular domains

Regarding the last statement of the lemma, recall that M, , is bounded from Lp/(a)
to LP"*(o) and that M, is bounded in L”*(c). Then, from (10.26) we infer that

C
HNUHLP’,OO(U) <k C(M) HMa,p’fHLp’,oo(g) + M ’|M0'(NU)HLPI7W(O’)
C
S RO | ) + 77 IVl 1o

Since H./\/'uHLplm(g) < o0, the latter gives (10.23) for M and A big enough. O

Theorem 10.9. Let Q < R™*! be a domain with bounded n-AD-reqular boundary. Given
x € Q, denote by w® the harmonic measure for Q0 with pole at x. For p € (1,00), the
following are equivalent:

(a) (D) is solvable for €.

(b) The harmonic measure w is absolutely continuous with respect to o and for every
ball B centered in 02 and for all x € Q N 3B\2B with diam(B) < 2diam(02), it

holds y
x\ P p
( J[B (dg; > da) < U(B)fl.

(¢) The harmonic measure w is absolutely continuous with respect to o and there is
some A > 1 big enough such that, for every ball B centered in 02 with diam(B) <
2diam(09) and all x € AB such that dist(z,0Q) = A~1r(B), it holds

(&) ) caro

Proof. (a) = (b). By duality, it is enough to show that for every ball B centered in 092,
for all z € @ n3B\2B, and all f € C.(02 n B),

[

Denoting by u the harmonic extension of f to €2, the preceding inequality can be rewritten
as

< S oyo (B

u(@)] < 1l oy o (B)

To prove the latter inequality, by standard arguments (as in (10.24), say) and the L¥
solvability of the Dirichlet problem, it follows that

1/p’
f wans f  wwidrs ({  w@Pds) " S lgem
4B CBnoN CBnoN
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10 Ahlfors regular domains

By the subharmonicity of |u| (extended by 0 in Q¢) in 4B\ B, we have

lu(z)] < J[ |u|dm for all x € Q N 3B\2B.
4B

Together with the previous estimate, this implies (b).

(a) = (c). The arguments are almost the same as the ones in the proof of (a) = (b),
just replacing the condition z € N 3B\2B by z € Q n AB, dist(z,00) = A~ r(B). We
leave the details for the reader.

(b) = (a). First we will show that there exists some ¢ > 0 such that for any ball B
centered in 02 with diam(B) < 2diam(092) and for all x € Q\6B,

pre A\ Vo)
( J[B <d6;‘; ) da) <a(B), (10.27)

To this end, notice first that, for all x € Q n d(2B), by the so-called Bourgain’s estimate,

w?(8B) 2 1.
Then, for any function f € C.(0f2), the assumption in (b) and the preceding estimate give

_ / w$ 8B
[4@)] < C 1l oy (B) V' < Cerp/<U)U(;)1/; for all z € Q1 9(2B),

where, as above, u is the harmonic extension of f to 2. By the maximum principle we
infer that the above inequality also holds for all y € Q2\2B. By duality it follows that

y\ P 1/p Yy
( J[B (CS‘;) da) < wgg?) for all y € Q\2B.

So for any given ball By centered in 092 with diam(Bp) < 2diam(0f2) and y € Q\6By and
any ball B’ centered at 1.1By n 092 with r(B’) < 2r(By), we have

(. (&) )" <=5

By Gehring’s lemma (see [GM12, Theorem 6.38], for example) adapted to n-AD-regular
sets, there exists some € > 0 such that

pt+e 1/(p+e)
(f, (8" o)™ w2
By \ do a(Bo)
which yields (10.27).

Next we intend to apply Lemma 10.8 with p+ ¢ in place of p. To this end, given A > 1,
a ball B centered in 09 with diam(B) < 2diam(0f2), and z € AB with dist(z,0Q) >
A~1r(B), we cover B n 02 with a family of balls B;, i € Ig, with r(B;) = (100A)~'r(B),
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10 Ahlfors regular domains

so that the balls B; are centered at B n 02, x ¢ 6B; for any i € Ig, and #Ip < C(A).
Applying (10.27) to each of the balls B; and summing over ¢ € I, we infer that

<J[AB (d;;z>p+6 da) 1/(p+e) _ C(A)U(B)_l‘

From Lemma 10.8 we deduce that (Dy) is solvable for s > (p + ¢)’, and thus in particular

for s = p'.

(¢) = (b). We will argue in the same way as in the proof of (a) = (b), using the
estimate (10.23) instead of the solvability of (D). Again by duality, it suffices to show
that for every ball B centered in 02 with diam(B) < 2diam(0f?), for all z € Q n 3B\2B
and all f € C.(02 n B), the harmonic extension u of f to  satisfies

[u(@)] S | f] 1 oy (B) 7. (10.28)

By standard arguments, the Kolmogorov inequality, and (10.23), we have
JEB Jul dm CB Nu)do < ”N(U)HL”"”(G) U(B)_l/p, S ”f“LP/(U) J(B)_I/p’.

Since f vanishes in 0Q\B, by the subharmonicity of |u| (extended by 0 to Q€) in 4B\B
we have

lu(z)| < ][ |u|dm for all z € Q n 3B\2B,
4B

which, together with the previous estimate, implies (10.28). O

Remark 10.10. The arguments in the above proof of (b) = (a) show that solvability of
(Dyy) for some p’ € (1,0) implies solvability of (D,s_.) for some € > 0.

Remark 10.11. The above theorem also holds if 0€2 is unbounded. Indeed, the only place
where the boundedness of 0§ is used is in Lemma 10.8, to ensure that [N ul|fs(,) < o and
[Nl Lo (g) < . A way of circumventing this technical problem is the following. For
r > 0, consider the open set 2, := Qn B,.(0). It is easy to check that 0, is n-AD-regular
and that an estimate such as (10.22) also holds for the harmonic measure wgq,., with bounds
uniform on r, so that (Ds) is solvable for €., with s > p/, and (10.23) also holds. Given
f e C(09Q) with compact support, let 7 > 0 be big enough so that suppf < B,(0), and
let f, : 022, — R be such that f, = f in 0Q n B,(0) and f, = 0 in 09, N Q. The we
apply Lemma 10.8 to the solution u, of the Dirichlet problem with data f, in €2,. Letting
r — 0, then one easily deduces that [Nu|ps(s) S &l fllzs (o), as well as the related estimate
(10.23). We leave the details for the reader.

Theorem 10.12. Let Q < R™ be a bounded domain. Then we have:
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(a) If Q is a Lipschitz domain, then there exists some g9 > 0 depending just on the
Lipschitz character of Q such that (Dp) is solvable for p = 2 — €.

(b) If Q is chord-arc domain, then there exists some py > 1 depending just on the chord-
arc character of Q such that (D,) is solvable for p = py.

Proof. Suppose that Q is a Lipschitz domain. Let zp € € such that dist(zg,0) ~
diam(02). By Dahlberg’s theorem, the density function % satisfies the reverse Holder
inequality (10.2) with exponent 2. By Gehring’s lemma we deduce that an analogous

reverse Holder inequality holds for some exponent gy > 2. That is, for any ball B centered

in 012,
( f (dwzo ) q0 J ) 1/‘]0 C dw®o J C w®o (B) ( )
o < o = , 10.29
Bréo \ do Broq do o(B)

Consequently, by the change of pole formula for NTA domains, the condition (b) in The-
orem 10.9 is satisfied, with exponent ¢y, which implies that (Dqé) is solvable, where ¢ is
the conjugate exponent of gg. By interpolation, (D,) is solvable for p > ¢f, with ¢ < 2.

In case that  is assumed to be just a chord-arc domain, by Theorem 10.6 we know that

d‘(‘go is an Ay (o) weight, and thus there exists some gy > 1 such that a reverse Holder

inequality such as (10.29) holds. As above, by the change of pole formula and by Theorem
10.9 we infer that (D, ) is solvable, and by interpolation, (D)) is solvable for p > 46, with

q0 € (1,00). O
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11 Rectifiability of harmonic measure

A set E < R™! is called n-rectifiable if there are Lipschitz maps f; : R® — R?*1
1=1,2,..., such that

Hn(E\Ufi(Rn)) —0. (11.1)

A set F < R™"*! is called purely n-unrectifiable if H"(F n E) = 0 for every n-rectifiable
set F. As for sets, one can define a notion of rectifiabilty also for measures: a measure p is
said to be n-rectifiable if it vanishes outside an n-rectifiable set £ < R®*! and, moreover,
it is absolutely continuous with respect to H"|g.

In this section we will prove the following result.

Theorem 11.1. Let Q < R™! be a bounded open set and let p € ). Suppose that there
exists a set E < 0 such that 0 < H"(E) < o and that the harmonic measure wi|g is
absolutely continuous with respect to H"|g. Then E is n-rectifiable.

Of course, in the theorem above, saying that F is n-rectifiable is equivalent to saying
that wh|p is n-rectifiable. Remark that the theorem also holds for unbounded open sets
with compact boundary. In fact, the theorem for this type of domains can be easily derived
from the case when () is bounded. We leave the details for the reader.

11.1 The Riesz transform and harmonic measure and the
reduction to Wiener regular domains
The proof of Theorem 11.1 relies on the solution of David-Semmes problem from [NTV14b]

and [NTV14c] about the connection between the L? boundedness of the Riesz transform
and rectifiability. Given a measure p in R"*! its (n-dimensional) Riesz transform equals

Ru(x) = J ﬁ du(y),

whenever the integral makes sense. For € > 0, we also consider the e-truncared version,
defined by

T —y
e :J TV gy,
h() JE re 1(y)

The maximal Riesz transform of p is defined by

Repi(z) = sup [Rep()].

e>0
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11 Rectifiability of harmonic measure

We also consider the maximal radial operator M,,, defined by
B,
M) = sup 02
r>0 r

1
loc

Ruf(x) = R(f1)(@), Repf(x) =Re(fp)(x), Rupf(®) =Ral(f p)(z).

For a given function f € L; (u), we denote

We say that R, is bounded in L?(y) if the operators R. ,, are bounded in L?(x) uniformly
on € > 0.

The connection between the Riesz transform and harmonic measure stems from the
fact that the Riesz kernel K equals the gradient of the fundamental solution £ modulo a

constant factor. That is,

X

Consequently, from the identity (7.2), we deduce

cn VyG(z,y) = K(y —x) — o K(y—2)dw®(z) = K(y —x) — Rw*(y) for x ¢ suppw®.

Next we show that it suffices to prove Theorem 11.1 for Wiener regular domains.
Lemma 11.2. To prove Theorem 11.1 we can assume that Q is Wiener reqular.

Proof. Let E < 02 be as in Theorem 11.1. By an exhaustion argument, it suffices to show
that there exists a subset F' < E with H"(F') > 0 which is n-rectifiable (see for example
the argument below near (11.2)).

For any € > 0, let (NZE < 2 be the Wiener regular open set constructed in Proposition 6.36
and Lemma 6.37. For E as above, let E. = E N 6525, so that by Lemma 6.37,

lim w% (E:) = lim w% (E) = wh(E).

e—0 e e—0 €

Let € > 0 be small enough so that w% (E:) > 0. By Lemma 5.28, we have

wl (A) < wh(A) for any Borel set A < 0 o9,

€

So wg is absolutely continuous with respect to wf) in 02N 8(28. Consequently, there exists

a subset F' < E. where wg are mutually absolutely continuous and both wg (F) > 0,

€

wh(F) > 0. Since F is a subset of E, w% is also mutually absolutely continuous with

H"|p and H™(F) > 0. By Theorem 11.1 applied to the Wiener regular domain QE, then
we deduce that F' is n-rectifiable, and so we are done.
O
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11 Rectifiability of harmonic measure

11.2 Rectifiability of harmonic measure when it is absolutely
continuous with respect to surface measure

To prove Theorem 11.1 we will use the following result.

Theorem 11.3. Let 1 be a Radon measure in R"' and E < suppu such that 0 <
H"(E) < o and p|g is absolutely continuous with respect to H"|g. If Ryu(x) < o0 for
p-a.e. x € E, then p|p is n-rectifiable.

This theorem follows from the following deep result from [NTV14c]:

Theorem 11.4. Let E < suppu such that 0 < H"(E) < . Suppose that Rypn|, is
bounded in L>(H"|g). Then E is n-rectifiable.

The next result can be proved using a sophisticated T'b theorem of Nazarov, Treil, and
Volberg [NTV14al, [Vol03] in combination with the methods in [Tol00]. For the detailed
proof in the case of the Cauchy transform, see [Toll4, Theorem 8.13].

Theorem 11.5. Let i be a Radon measure with compact support in R* and consider a
pu-measurable set G- with u(G) > 0 such that

Gc{reR"™ : Muu(z) <0 and Ryu(x) < o}

Then there exists a Borel subset Go = G with u(Go) > 0 such that sup,eq, Mnptlg, () < ©
and R is bounded in L*(p|c,)-

IU“GO

We will prove neither Theorem 11.5 nor Theorem 11.4, since both results are out of
the scope of these notes. Instead, we will outline how one can deduce Theorem 11.3 from
Theorems 11.4 and 11.5.

Proof of Theorem 11.3 using Theorems 11.4 and 11.5. This follows by a standard exhaus-
tion argument. Indeed, let p and F satisfy the assumptions in Theorem 11.3. We can
assume E to be compact, so that u(FE) < oo. Let

B =sup{u(F): F c E is Borel n-rectifiable}. (11.2)

It is is immediate to check that the supremum is attained, that is, there exists a Borel
n-rectifiable set F' < E such that u(F) = S.
We have to check that § = u(E). Suppose that this is not the case, and let G = E\F.
By assumption, we have R,pu(z) < oo for p-a.e. z € G. Also, for x € G, we have
H"(By(x) n E)

. w(Br(x)) _ . p(Br(z)) :
1 — 22 K1 1 . 11.3
11:1_?(1)1p rn H:lj(l)lp H"(By(z) n E) H:l_?(l)lp P ( )

The first limsup on the right hand side is finite p-a.e. in G because of the absolute
continuity of p with respect to H" in E, while the last one is also finite by the classical
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11 Rectifiability of harmonic measure

density bounds for Hausdorff measure. Hence the left hand side is also finite p-a.e. in G,
or equivalently,
Mpp(x) <o for p-ae. zeG.

Then, by Theorem 11.5, there exists a Borel subset Go € G with u(Gp) > 0 such that
Ry, is bounded in LQ(M|GO) Denote by p the density of u|g, with respect to H"|q,, so
that M|G0 = pH"|G,, and let 7 > 0 be such that the set

r={zxeGy:p(r)>rT}

has postive measure . It is immediate to check that Ryn |, is bounded in L2(H" ., ),

and thus Gy, is n-rectifiable, by Theorem 11.4. As a consequence, the set F' = F U Gy,
is n-rectifiable and pu(F’) > pu(F') = B, which contradicts the definition of F' and S. O

To prove Theorem 11.1, recall that Lemma 6.19 asserts the following: If E < R**! is
compact and n —1 < s <n+ 1, in the case n > 1, we have

n—1

Cap(E) 2sn Hop(E) 5

In the case n =1,

0 =

Capr(E) 2s H(E): .

Proof of Theorem 11.1. Let Q, E, and p be as in Theorem 11.1, with {2 Wiener regular,
and write w instead of wg. We will show that

RiwP(x) <oo  for wP-ae. x € E,

which implies that wP|g is n-rectifiable, by Theorem 11.3. For simplicity, in this proof
we will assume that all the balls denoted by Bs(&) are closed (this is not essential, but
it will ease some calculations because many lemmas in the preceding sections about the
relationship between harmonic measure and the Green function are stated in terms of
closed balls).

By the same argument as in (11.3), it follows that M,wP(x) < o for wP-a.e. z € E. For
k=1, let

Ey ={x e E: M,wP(z) <k},

so that £ = | ;5 Ek, up to a set of wP-measure zero. For a fixed k > 1, let z € Ej, be a
density point of Ej, and let ry be small enough so that
wP(Br(z) nEg) _ 1

> - < 7o,
o (Bo (@) 5 or0<r<mrg

with 79 < |z — p[/100. Observe that, since wP(B,(z) N Ei) < kp" for all z € Ej and all
p > 0, by Frostman’s Lemma we have

Ck)

Hoo(Br(w) 0 0Q) > H (Br(2) 0 Ei) > C(k) wP(Br(2) 0 EBy) > —;

WP(Br(z)), (11.4)
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11 Rectifiability of harmonic measure

for 0 <r < 7.
To show that RywP(x) < o for x € E}, as above, clearly it suffices to show that

sup |RywP(z)| < o0. (11.5)

0<r<ro

To estimate R,wP(x) for 0 < r < ry, first we assume that
wP(Baor(x)) < 50"wP(B,(x)). (11.6)

We consider a radial C® function ¢ : R"*! — [0, 1] which vanishes in Bj(0) and equals 1
on R"1\B5(0), and for r > 0 and z € R™™! we denote ¢,(z) = ¢ (2) and ¢, = 1 — ¢,.
We set

~

Rywh(z) = j K(z — ) ooz — ) du(y).

Note that

Re?(z)] < 1 f oo — y) K (1 — ) dwp<y>\ n f Xjomyfor — e — )| [K (& — )| d(y)
(11.7)
< [RpwP(z)] + C MpwP (z).

For a fixed € B}, and z € R"™\[supp(¢,( — ) wP) U {p}], consider the function
wr(z) = 8 =) = [ €6~ ) orla ) dor(y), (11.)
so that, by Lemma 7.4,
G(z,p) = ur(2) — JE(Z —y)Yp(z —y)dwP(y) for m-a.e. z € RPFL (11.9)
Differentiating (11.8) with respect to z, we obtain

Vur(2) = VE(z —p) ~ [ V= ) ol — 1) de ()
In the particular case z = x we get
en Vup(z) = K(z — p) — RpwP(z),

and thus

IRy ()] + [V, (z)]. (11.10)

<1
~ dist(p, 0Q)"
Since u, is harmonic in R™*!\[supp(¢r(z — ) wP) U {p}] (and so in B,(z)), we have

Vur(z)] < % J[B ) —aldz (11.11)
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11 Rectifiability of harmonic measure

for any constant « € R, possibly depending on z and r. From the identity (11.9) we deduce
that

1 1
Vur(2)] < - ]f G(zp)dz + - ]f
r () " JB,(2)

— [+ 11,

A

J(E(z— )—a)d}r(x— y) dwP(y)| dz

for any constant o’ € R, possibly depending on x and r. To estimate the term II we use
Fubini and the fact that suppy, < B, (z):

1
IT< —— J J |E(z — y) — | dz dwP(y).
r yeBar(z) JzeBy ()

In the case n > 2 we choose o = 0, and we get
1

P(B
. f f %dz du®(y) < w”(Bar(2)) < MowP(z).
rr yEBoy(z) J2eB,(z ’Z - y’n

rn

17 <

In the case n = 1 we take o/ = log 1> and then we obtain

1 4r
s — f J log dz dwP (y)
r yEBay () J2zeBy(z) ‘Z - y’

1 1
<3 J log dz dwP(y) < f 2 dwP (y) S MywP(z).
r yeBa(z) Jz€B3,(y ‘Z - y’ T JyeBa,(x)

Next we want to show that I < 1. Clearly it is enough to prove that

1
—|G(y,p)| <k 1 for all y € By(z) n Q (11.12)
,

(still under the assumptions z € Ej, 0 < r < 19/2, and (11.6)). To prove this, observe
that, in the case n = 2, by Lemma 7.18,

wP (Bsy (z))
Cap(B,(z)\Q2)
Notice now that, by Lemma 6.19 and (11.4), we have

G(y,p) < for all y € B.(x) n Q.

n—1

Cap(B,()\Q) 2 Hip(Be(x) 0 090)"% 2k wP (B (2))" .
Thus, by (11.6) and the fact that M,wP(x) <g 1,

el = (M(%(z)))i <ﬁ(§r<f>)>)>T b

n

1
;G(y,p) <k

which proves (11.12). Almost the same arguments work in the case n = 1. Indeed, by
Lemma 7.22,

r

2
Capy (B, (x )\Q>>

r
for all y € B.(x) n Q.
Capy (B () 0) ve b

< wP(Baor())
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11 Rectifiability of harmonic measure

By Lemma 6.19 and (11.4), we have
Capy, (B;(2)\Q2) 2 Hip(Br(x) 0 092) 24 P (By(2)),

and thus, by (11.6), (Baor())
wP(Baor (T
(B

which proves again (11.12). So in any case we deduce that

1

~ 1
p p Ply) <
IRywP(x)] < |[RywP(z)| + C MpwP(x) <g dist(p, 09)" +1 (11.13)

for z € Ej, and 0 < r < rp/2 satisfying (11.6).

In the case when (11.6) does not hold, we consider the smallest ' > r of the form
7’ = 40’r, j > 0, such that either ' > ry or (11.6) holds with r’ replacing r. Let jo > 1
be such that r' = 40707 and write

B
Row? (@) < [Ry? ()] + f K (z — y)l duly) < Ry \+02 W (Bioir ()

r<lz—y|<r! 40]T

To estimate the last sum, notice that, for all 1 < j < jo — 1,
w?(Bygir () < 507"wP (Bypi+1,(2)),
and thus, by iterating this estimate,
Jo

2 WP (Bygir (7)) < O 5000wl (B, () < wP(By(x)) < MuwP()
(409 7)n \jzl 40U—=do)n (40dopyn T (pyn T ‘

On the other hand, in case that ' < 7o, then (11.13) holds (with 7 replaced by 7’), and in
case that ' > rg, then we have ' ~ rg and we write

P
Row?(a)] < 20D 1
(ry g
So in any case we deduce that
|RywP(x)] <k L + __ +1
TEorp o dist(p, om0

which yields (11.5). O
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