
UNIFORM RECTIFIABILITY, CALDERÓN-ZYGMUND OPERATORS
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Abstract. In this paper we study some questions in connection with uniform rectifiability
and the L2 boundedness of Calderón-Zygmund operators. We show that uniform rectifiability
can be characterized in terms of some new adimensional coefficients which are related to the
Jones’ β numbers. We also use these new coefficients to prove that n-dimensional Calderón-
Zygmund operators with odd kernel of type C2 are bounded in L2(µ) if µ is an n-dimensional
uniformly rectifiable measure.

1. Introduction

In this paper we study some questions in connection with uniform rectifiability and the
L2 boundedness of Calderón-Zygmund operators.

Given 0 < n ≤ d, we say that a Borel measure µ on Rd is n-dimensional Ahlfors-David reg-
ular, or simply AD regular, if there exists some constant C0 such that C−1

0 rn ≤ µ(B(x, r)) ≤
C0r

n for all x ∈ supp(µ), 0 < r ≤ d(supp(µ)). It is not difficult to see that such a measure µ
must be of the form dµ = ρ dHn

|supp(µ), where ρ is some positive function bounded from above

and from below and Hn stands for the n-dimensional Hausdorff measure. A Borel set E ⊂ Rd

is called AD regular if the measure Hn
|E is AD regular.

Throughout all the paper µ will be an n-dimensional AD regular measure on Rd, with
n integer and 0 < n ≤ d.

The notion of uniform n-rectifiability (or simply, uniform rectifiability) was introduced by
David and Semmes in [DS2]. For n = 1, an AD regular 1-dimensional measure is uniformly
rectifiable if its support is contained in an AD regular curve. For an arbitrary integer n ≥ 1,
the notion is more complicated. One of the many equivalent definitions (see Chapter I.1
of [DS2]) is the following: µ is uniformly rectifiable if there exist θ,M > 0 so that, for
each x ∈ supp(µ) and R > 0, there is a Lipschitz mapping g from the n-dimensional ball
Bn(0, R) ⊂ Rn into Rd such that g has Lipschitz norm ≤M and

µ
(
B(x,R) ∩ g(Bn(0, R))

) ≥ θRn.

In the language of [DS2], this means that supp(µ) has big pieces of Lipschitz images of Rn.
A Borel set E ⊂ Rd is called uniformly rectifiable if Hn

|E is uniformly rectifiable.

The n-dimensional Riesz transform of a function f : Rd → R with respect to µ is

Rµf(x) =

∫
x− y

|x− y|n+1
f(y) dµ(y),

for x 6∈ supp(µ). Notice that (x − y)/|x − y|n is a vectorial kernel. In [DS1] it is proved
that if µ is uniformly rectifiable, then Rµ is bounded in L2(µ) (see (1.4) below for the precise
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definition of L2 boundedness of Rµ). On the other hand, it is an open problem if, given an n-
dimensional AD regular measure µ, with n > 1, the L2(µ) boundedness of the n-dimensional
Riesz transform implies the uniform rectifiability of µ. See [Pa, Chapter 7]. This problem
has only been solved in the case n = 1 (by Mattila, Melnikov and Verdera [MMV]), by using
the notion of curvature of measures, which is useful only for n = 1 (see [Fa]). In fact, there
is a strong connection between this question for n = 1 and the so called Painlevé problem
(i.e. the problem of characterizing removable singularities for bounded analytic function in
a geometric way). See [Da2], [Lé], [To2], and [Vo], for example. In the present paper we
develop new techniques and we obtain some results in connection with the problem of L2

boundedness of Riesz transforms and rectifiability.
A basic tool for the study of uniform rectifiability are the coefficients βp. Given 1 ≤ p <∞

and a cube Q, one sets

βp(Q) = inf
L

{
1

`(Q)n

∫

2Q

(
dist(y, L)

`(Q)

)p

dµ(y)

}1/p

,

where the infimum is taken over all n-planes in Rd and `(Q) denotes the side length of Q.
For p = ∞ one has to replace the Lp norm by a supremum:

β∞(Q) = inf
L

{
sup

y∈supp(µ)∩2Q

dist(y, L)

`(Q)

}
,

where the infimum is taken over all n-planes L in Rd again. The coefficients βp first appeared
in [Jo1] and [Jo2], in the case n = 1, p = ∞. In [Jo1] P. Jones showed, among other
results, how the β∞’s can be used to prove the L2 boundedness of the Cauchy transform
on Lipschitz graphs. In [Jo2], he characterized 1-dimensional uniformly rectifiable sets in
terms of the β∞’s. He also obtained other quantitative results on rectifiability without the
AD regularity assumption. For other p’s and n ≥ 1, the βp’s were introduced by David and
Semmes in their pioneering study of uniform rectifiability in [DS1].

In the present paper we will define other coefficients, in the spirit of the βp’s, which are
also useful for the study of uniform rectifiability. Before introducing these coefficients, we
need to define a metric on the space of finite Borel measures (supported in a ball). Given a
closed ball B ⊂ Rd and two finite Borel measures σ, ν on Rd , we set

distB(σ, ν) := sup
{∣∣∣

∫
f dσ − ∫

f dν
∣∣∣ : Lip(f) ≤ 1, supp(f) ⊂ B

}
,

where Lip(f) stands for the Lipschitz constant of f . It is easy to check that this is indeed
a distance in the space of finite Borel measures supported in the interior of B. See [Ma,
Chapter 14] for other properties of this distance.

Given an AD regular measure µ on Rd and a cube Q which intersects supp(µ), we consider
the closed ball BQ :=B(zQ, 3 d(Q)), where zQ and d(Q) stand for the center and diameter of
Q, respectively. Then we define

αn
µ(Q) :=

1

`(Q)n+1
inf

c≥0,L
distBQ

(µ, cHn
|L),

where the infimum is taken over all the constants c ≥ 0 and all the n-planes L. For conve-
nience, if Q does not intersect supp(µ), we set αn

µ(Q) = 0. To simplify notation, we will also
write α(Q) instead of αn

µ(Q).
Notice that the coefficient α(Q) measures, in a scale invariant way, how close is µ to a flat

n-dimensional measure in BQ. Recall that a measure ν is said to be flat and n-dimensional
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if it is of the form ν = cHn
|L, for some constant c > 0 and some n-plane L. It is worthwile to

compare the coefficients α with the βp’s: basically, the latter coefficients only give information
on how close supp(µ)∩2Q is to some n-plane (more precisely, how close is supp(µ)∩2Q to be
contained in some n-plane). On the other hand, the coefficients α contain more information
than βp. For instance, if supp(µ) is contained in an n-plane, then βp(Q) = 0 for any Q.
However, in this case we may still have α(Q) > 0. This will be the case if µ does not coincide
with a flat a measure in BQ. In Lemma 3.2 we will show that, for µ AD regular,

β1(Q) ≤ Cα(Q)

for all dyadic cubes Q ∈ D (see Section 2 for the precise definition of the dyadic cubes from
D in the context of AD regular measures). As the preceding example shows, the opposite
inequality is false in general.

In Section 4 we will prove the following result:

Theorem 1.1. Consider the n-dimensional Lipschitz graph Γ := {(x, y) ∈ Rn × Rd−n : y =
A(x)}, with ‖∇A‖∞ ≤ C1 < ∞, and let dµ(z) = ρ(z) dHn

|Γ(z), where ρ(·) is a function such

that 0 ≤ ρ(z) ≤ C1 uniformly on z ∈ Γ. Then, the coefficients α satisfy the following Carleson
packing condition:

(1.1)
∑

Q∈DRd (R)

α(Q)2 µ(Q) ≤ C2`(R)n,

for any cube R ⊂ Rd which intersects supp(µ), where C2 depends only on n, d and C1.

For simplicity, in this theorem we assume that R has sides parallel to the axes. We have
denoted by DRd(R) the collection of dyadic cubes generated by R, i.e. the collection of cubes
contained in R which are obtained by splitting R dyadically.

Recall that (1.1) also holds if one replaces the coefficients α(Q) by βp(Q), for 1 ≤ p ≤
2n/(n− 2), as shown in [Do].

We will also see in Section 4 that uniformly rectifiable sets can be characterized in terms
of the α’s, similarly to what happens with the βp’s and the so called bilateral βp’s:

Theorem 1.2. Let µ be an n-dimensional AD regular measure. The following are equivalent:

(a) µ is uniformly rectifiable.
(b) For any dyadic cube R ∈ D,

(1.2)
∑

Q∈D:Q⊂R

α(Q)2 µ(Q) ≤ Cµ(R),

with C independent of R.
(c) For all ε > 0, there exists some constant C(ε) such that the collection Bε of those

cubes Q ∈ D such that α(Q) > ε satisfies∑
Q∈Bε:Q⊂R

µ(Q) ≤ C(ε)µ(R),

for any cube R ∈ D.

In the theorem, D stands for the lattice of dyadic cubes associated to µ which is described
in Section 2.

Our main motivation to introduce the coefficients α(·) is to study the relationship between
uniform rectifiability and the L2(µ) boundedness of Calderón-Zygmund operators. In partic-
ular, we think that they can be a useful tool to study the aforementioned problem of proving
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that the L2(µ) boundedness of the Riesz transform Rµ implies the uniform rectifiability of
µ when µ is AD regular, as well as other related problems (see [To4] for a recent applica-
tion concerning the existence of principal values for Riesz transforms and rectifiability). The
kernels K(·) : Rd \ {0} → R that we will consider satisfy

(1.3) |∇jK(x)| ≤ C

|x|n+j
for 0 ≤ j ≤ 2 and x ∈ Rd \ {0},

and moreover K(−x) = −K(x), for all x 6= 0 (i.e. they are odd). The kernel x/|x|n+1 of
the n-dimensional Riesz transform is a basic example (to be precise, we should consider the
scalar components xi/|x|n+1.)

Given a finite positive or real Borel measure ν, we define

Tν(x) :=

∫
K(x− y) dν(y), for x ∈ Rd \ supp(ν).

We say that T is an n-dimensional Calderón-Zygmund operator (CZO) with kernel K(·). The
integral in the definition may not be absolutely convergent for x ∈ supp(ν). For this reason,
we consider the following ε-truncated operators Tε, ε > 0:

Tεν(x) :=

∫

|x−y|>ε

K(x− y) dν(y), x ∈ Rd.

Observe that now the integral on the right hand side above is absolutely convergent. We also
denote

T∗ν(x) = sup
ε>0

|Tεν(x)|,
and

p.v.Tν(x) = lim
ε→0

Tεν(x),

whenever the limit exists.
If µ is a fixed positive Borel measure and f ∈ L1

loc(µ), we set

Tµf(x) := T (f dµ)(x), for x ∈ Rd \ supp(f dµ),

and

(1.4) Tµ,εf(x) := Tε(f dµ)(x).

The last definition makes sense for all x ∈ Rd if, for example, f ∈ L1(µ). We say that Tµ is
bounded on L2(µ) if the operators Tµ,ε are bounded on L2(µ) uniformly on ε > 0.

In Sections 5 and 6 of this paper we will prove the following result:

Theorem 1.3. Let µ be an n-dimensional AD regular measure on Rd and T an n-dimen-
sional CZO associated to an odd kernel K(·) : Rd \ {0} → R satisfying (1.3). Then we
have

(1.5) ‖T∗µ‖2
L2(µ) .

∑
Q∈D

α(Q)2µ(Q) + µ(C).

If
∑

Q∈D α(Q)2µ(Q) <∞, then p.v.Tµ(x) exists for µ-a.e. x ∈ Rd and

(1.6) ‖p.v.Tµ‖2
L2(µ) .

∑
Q∈D

α(Q)2µ(Q).

If µ is uniformly rectifiable, then Tµ is bounded in L2(µ).
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See Section 2 for the notation ..
The fact that uniform rectifiability implies the L2 boundedness of CZO’s with odd kernel

was already known for C∞ kernels satisfying

(1.7) |∇jK(x)| ≤ C(j)

|x|n+j

for all j ≥ 0 (and maybe also assuming (1.7) only for a finite but big number of j’s). See [Da1]
and Section II.6.B of [Da2]. However, the result is new if one only asks (1.7) for 0 ≤ j ≤ 2,
and so it improves on previous results.

Most proofs of the L2 boundedness of CZO’s (with C∞ kernel) with respect to uniformly
rectifiable measures use the method of rotations and the L2 boundedness of the Cauchy
transform on Lipschitz graphs (in fact, all proofs known by the author). This is not the case
with the arguments that we use in this paper. Roughly speaking, our basic idea consists in
decomposing Tµ dyadically, and in obtaining estimates by comparing on each cube Q the
measure µ with the flat measure that minimizes α(Q) (notice that if ν is a flat measure then
Tεν vanishes on supp(ν)). This idea is inspired in part by the proof of the L2 boundedness
of the Cauchy transform on Lipschitz graphs by P. Jones in [Jo1]. However, we recall that
the arguments in [Jo1] only work for the Cauchy transform.

Given a non-increasing radial C2 function ψ such that χB(0,1/2) ≤ ψ ≤ χB(0,2), for each
j ∈ Z, we set ψj(z) := ψ(2jz) and ϕj := ψj − ψj+1, so that each function ϕj is non-negative
and supported in the annulus A(0, 2−j−2, 2−j+1), and moreover we have

∑
j∈Z ϕj(x) = 1 for

any x ∈ Rd \ {0}. For each j ∈ Z we denote Kj(x) = ϕj(x)K(x) and

(1.8) Tjµ(x) =

∫
Kj(x− y) dµ(y).

Notice that, at a formal level, we have Tµ =
∑

j∈Z Tjµ, and so

‖Tµ‖2
L2(µ) =

∑

j∈Z
‖Tjµ‖2

L2(µ) +
∑

j 6=k

〈Tjµ, Tkµ〉.

To prove Theorem 1.3 we will show that both sums in the right hand side above are bounded
above by

∑
Q∈D α(Q)2µ(Q). In fact, to show that

(1.9)
∑

j∈Z
‖Tjµ‖2

L2(µ) .
∑
Q∈D

α(Q)2µ(Q)

is quite easy (see Lemma 5.4 below), while the estimate of
∑

j 6=k〈Tjµ, Tkµ〉 requires much
more work.

The final part of this paper deals with Riesz transforms. Let Rj denote the doubly truncated
Riesz transform associated to the kernel ϕj(x)x/|x|n+1, like in (1.8). In Section 7 we will
prove the following:

Theorem 1.4. Let µ be an n-dimensional AD regular measure on Rd. For j ∈ Z, let Rj

denote the doubly truncated Riesz transform introduced in Definition 7.1. For any Q ∈ D,
we have

(1.10)
∑

P∈D:P⊂Q

β2(P )2µ(P ) ≤ C3

(∑

j∈Z
‖Rjµ|3Q‖2

L2(µ) + µ(Q)
)
,
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Moreover, C3 only depends on n, d, C0 and the constants involving ψ in Definition 7.1. There-
fore, if for any cube Q ∈ D,

(1.11)
∑

j∈Z
‖Rjµ|Q‖2

L2(µ) . µ(Q),

then µ is uniformly rectifiable.

Let us remark that the kernels of the doubly truncated Riesz transforms Rj introduced in
Definition 7.1 are defined as we did just above (1.8), although some additional properties are
required for the auxiliary functions ϕj. Notice also that the estimate (1.10) can be understood
as a kind of converse of inequality (1.9).

Mattila and Preiss [MPr, Theorem 5.5] have already proved that if all the CZO’s with kernel
of the form ϕ(|x|)x/|x|n+1 satisfying (1.7) are bounded in L2(µ), then µ is n-rectifiable, i.e.

there exist Lipschitz mappings gi : Rn → Rd such that µ
(
Rn \⋃∞

i=1 gi(Rn)
)

= 0. David and

Semmes [DS2, Theorem 2.59] have shown that, moreover, µ is uniformly rectifiable. It is not
difficult to show that the assumption that all CZO’s with kernel of the form ϕ(|x|)x/|x|n+1

satisfying (1.7) are bounded in L2(µ) implies that (1.11) holds (see [DS1, Chapter 3] for a
related argument).

Acknowledgement: The author wants to thank the referee for helpful comments that im-
prove on the readability of the paper.

2. Preliminaries

As usual, in the paper the letter ‘C’ stands for some constant which may change its value at
different occurrences, which quite often depends only on n, d, and the AD-regularity constant
C0. On the other hand, constants with subscripts, such as C1, retain its value at different
occurrences. The notation A . B means that there is some fixed constant C such that
A ≤ CB, with C as above. Also, A ≈ B is equivalent to A . B . A.

The closed ball centered at x with radius r is denoted by B(x, r).
Recall that throughout all the paper we are assuming that µ is a fixed AD regular n-dimen-

sional measure. We denote E = supp(µ). For simplicity of notation, we will also assume that
d(E) = ∞. However all the results stated in the paper are valid without this assumption.
The required modifications are minimal.

In this paper we will use the so called “dyadic cubes” built in [Da2, Appendix 1] (see
also [Ch] for an alternative construction). These dyadic cubes are not true cubes, but they
play this role with respect to µ, in a sense.

Let us explain which are the precise results and properties about our lattice of dyadic
cubes. For each j ∈ Z, one can construct a family Dj of Borel subsets of E (the dyadic cubes
of the j-th generation) such that:

(i) each Dj is a partition of E, i.e. E =
⋃

Q∈Dj
Q and Q ∩ Q′ = ∅ whenever Q,Q′ ∈ Dj

and Q 6= Q′;
(ii) if Q ∈ Dj and Q′ ∈ Dk with k ≤ j, then either Q ⊂ Q′ or Q ∩Q′ = ∅;
(iii) for all j ∈ Z and Q ∈ Dj, we have 2−j . d(Q) ≤ 2−j and µ(Q) ≈ 2jn;
(iv) if Q ∈ Dj, there is a point zQ ∈ Q (the center of Q) such that dist(zQ, E \Q) & 2−j.

We denote D =
⋃

j∈ZDj. Given Q ∈ Dj, the unique cube Q′ ∈ Dj−1 which contains Q is
called the parent of Q. We say that Q is a sibling of Q′. If Q is from the generation j, we
write J(Q) = j.
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For Q ∈ Dj, we define the side length of Q as `(Q) = 2−j. Notice that `(Q) . d(Q) ≤ `(Q).
Actually it may happen that a cube Q belongs to Dj ∩ Dk with j 6= k, because there may
exist cubes with only one sibling. In this case, `(Q) is not well defined. However this problem
can be solved in many ways. For example, the reader may think that a cube is not only a
subset of E, but a couple (Q, j), where Q is a subset of E and j ∈ Z is such that Q ∈ Dj.

Given λ > 1, we set

λQ := {x ∈ E : dist(x,Q) ≤ (λ− 1)`(Q)}.
For R ∈ D, we denote D(R) = {Q ∈ D : Q ⊂ R}.

Let us remark that we will not need the “small boundaries condition” for the dyadic cubes
(see [DS2]).

In this paper, the usual cubes in Rd will be called “true cubes”, to distinguish them from
the “false cubes” in D.

3. Elementary properties of the coefficients α(Q)

In the Introduction we defined the coefficients α(Q) for true cubes Q ⊂ Rd. For Q ∈ D,
the definition is the same. So given Q ⊂ Rd, which may be either a true cube or a dyadic
cube from D, we set

(3.1) α(Q) =
1

`(Q)n+1
inf

c≥0,L
distBQ

(µ, cHn
|L),

where the infimum is taken over all the constants c ≥ 0 and all the n-planes L, and BQ =
B(zQ, 3`(Q)). Observe that Q ⊂ BQ. We denote by cQ and LQ a constant and an n-plane
that minimize distBQ

(µ, cHn
L) (it is easy to check that this minimum is attained). We also

write LQ := cQHn
|LQ

, so that

α(Q) =
1

`(Q)n+1
distBQ

(µ, cQHn
|LQ

) =
1

`(Q)n+1
distBQ

(µ, LQ).

Let us remark that cQ and LQ (and so LQ) may be not unique. Moreover, we may (and will)
assume that LQ ∩BQ 6= ∅.

For simplicity, in the lemmas below we will work with dyadic cubes Q ∈ D. However, most
of the results hold also for true cubes Q such that Q ∩ supp(µ) 6= ∅ and `(Q) . d(supp(µ)).

Lemma 3.1. For all P,Q ∈ D, the coefficients α(·) satisfy the following properties:

(a) α(Q) . 1.
(b) If P ⊂ Q and `(P ) ≈ `(Q), then α(P ) . α(Q).
(c) If α(Q) ≤ C4, with C4 small enough, then LQ ∩B(zQ, d(Q)) 6= ∅ and cQ ≈ 1.

In a sense, (c) says that if α(Q) is small enough, then LQ is quite close to Q (recall that
by definition we assumed LQ ∩BQ 6= ∅ and that B(zQ, d(Q)) = 1

3
BQ).

Proof. The statement (a) is a direct consequence of the definitions. The property (b) follows
from the fact that if P ⊂ Q, then BP ⊂ BQ (recall that d(R) ≤ `(R) for all R ∈ D) and so
distBP

(µ, ν) ≤ distBQ
(µ, ν) for any given measure ν.

Let us turn our attention to (c). To show that LQ ∩ B(zQ, d(Q)) 6= ∅ if C4 is small
enough, take a smooth function function ϕ such that χB(zQ,d(Q)/10) ≤ ϕ ≤ χB(zQ,d(Q)/2) with
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‖∇ϕ‖∞ . 1/d(Q). Then we have ‖∇(ϕ dist(·, LQ))‖∞ . 1, and since ϕ dist(·, LQ) vanishes
on LQ, we have ∣∣∣∣

∫
ϕ(x)dist(x, LQ) dµ(x)

∣∣∣∣ . α(Q)`(Q)n+1.

On the other hand, ∫
ϕ(x)dist(x, LQ) dµ(x) ≥ dist(supp(ϕ), LQ)

∫
ϕdµ

& dist(supp(ϕ), LQ)µ(Q).

If α(Q) is small enough we infer that dist(supp(ϕ), LQ) ≤ d(Q)/10, and so LQ∩B(zQ, d(Q)) 6=
∅.

Let us check now that cQ ≈ 1. Let ψ be a smooth function such that χQ ≤ ψ ≤ χBQ
and

‖∇ψ‖∞ . 1/`(Q). Then ∣∣∣∣
∫
ψ dµ−

∫
ψ dLQ

∣∣∣∣ . α(Q)µ(Q).

Thus, ∫
ψ dµ− Cα(Q)µ(Q) ≤ cQ

∫
ψ dHn

|LQ
≤

∫
ψ dµ+ Cα(Q)µ(Q).

From the second inequality, we deduce easily that cQ . 1. From the first one, we see that if
α(Q) ≤ C4, where C4 is small enough, then

cQ

∫
ψ dHn

|LQ
≥ µ(Q)− Cα(Q)µ(Q) ≥ 1

2
µ(Q),

which implies that cQ & 1. ¤
Recall the definition of the bilateral β1:

bβ1(Q) =
1

`(Q)n
inf
L

[∫

2Q

dist(y, L)

`(Q)
dµ(y) +

∫

L∩B(zQ,2d(Q))

dist(x,E)

`(Q)
dHn

|L(x)

]
,

where the infimum is taken over all the n-planes L and E = supp(µ). We have the following
relationship between β1(Q), bβ1(Q) and α(Q):

Lemma 3.2. For all Q ∈ D we have

β1(Q) ≤ bβ1(Q) . α(Q).

Proof. The first inequality is trivial. For the second one we may assume α(Q) ≤ C4. Given
an arbitrary n-plane L, we take

f(x) :=
[
dist(x, L)− dist(x,E)

]
ϕ(x),

where ϕ is a smooth function such that χB(zQ,2d(Q)) ≤ ϕ ≤ χBQ
and ‖∇ϕ‖∞ . 1/`(Q). It is

straightforward to check that ‖∇f‖∞ . 1. As a consequence, for any c ≥ 0,

distBQ
(µ, cHn

|L) &
∣∣∣∣
∫
f dµ− c

∫
f dHn

|L

∣∣∣∣

=

∣∣∣∣
∫
ϕ(x)dist(x, L) dµ(x) + c

∫
ϕ(x)dist(x,E) dHn

|L(x)

∣∣∣∣
≥ min(1, c)bβ1(Q) `(Q)n+1.
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If we choose L = LQ and c = cQ, we get

distBQ
(µ, LQ) & bβ1(Q) `(Q)n+1,

since cQ ≈ 1 (because α(Q) ≤ C4), and the lemma follows. ¤

Remark 3.3. The calculations in the preceding lemma show that the following holds:

1

`(Q)n

∫

B(zQ,2d(Q))

dist(y, LQ)

`(Q)
dµ(y) . α(Q).

Lemma 3.4. Let P,Q ∈ D be dyadic cubes such that P ⊂ Q, with η`(Q) ≤ `(P ) ≤ `(Q) for
some fixed η > 0. Then we have

(3.2) distH

(
LP ∩BQ, LQ ∩BQ) ≤ C(η)α(Q)`(Q),

where distH stands for the Hausdorff distance. Also,

(3.3) |cP − cQ| ≤ C(η)α(Q).

Proof. All the constants in this proof (including the ones involved in the relationship “.”)
are allowed to depend on η.

Clearly, we may assume that α(Q), α(P ) ≤ C4. Otherwise, the statements in the lemma are
trivial. First we prove (3.2). Let ϕP be a smooth function such that χB(zP ,2d(P )) ≤ ϕP ≤ χBP

and ‖∇ϕP‖∞ . 1/`(P ). Then we have ‖∇(ϕP dist(·, LQ))‖∞ . 1, and so
∣∣∣∣
∫
ϕP (x)dist(x, LQ) dµ(x)−

∫
ϕP (x)dist(x, LQ) dLP (x)

∣∣∣∣ . α(P )`(P )n+1.

Moreover, since ϕP dist(·, LQ) vanishes on LQ, we have
∣∣∣∣
∫
ϕP (x)dist(x, LQ) dµ(x)

∣∣∣∣ . α(Q)`(Q)n+1.

Taking into account that α(P ) . α(Q), we get
∫

B(zP ,2d(P ))

dist(x, LQ) dLP (x) . α(Q)`(Q)n+1.

Using that LP ∩B(zP , d(P )) 6= ∅, it can be shown that the above estimate implies (3.2).
To prove (3.3), take ϕP as above. We have

∣∣∣∣
∫
ϕP dµ− cP

∫
ϕP dHn

|LP

∣∣∣∣ . α(P )µ(P ) . α(Q)µ(Q).

Also, ∣∣∣∣
∫
ϕP dµ− cQ

∫
ϕP dHn

|LQ

∣∣∣∣ . α(Q)µ(Q).

Thus, ∣∣∣∣cP
∫
ϕP dHn

|LP
− cQ

∫
ϕP dHn

|LQ

∣∣∣∣ . α(Q)µ(Q).

Then we have

(3.4) |cQ − cP |
∫
ϕP dHn

|LP
. α(Q)µ(Q) + cQ

∣∣∣∣
∫
ϕP dHn

|LP
−

∫
ϕP dHn

|LQ

∣∣∣∣.
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Using (3.2), it can be shown that

∣∣∣∣
∫
ϕP dHn

|LP
−

∫
ϕP dHn

|LQ

∣∣∣∣ . α(Q)µ(Q).

Since cQ . 1 and
∫
ϕP dHn

|LP
≈ µ(Q), (3.3) follows from (3.4). ¤

4. The coefficients α on Lipschitz graphs and uniformly rectifiable sets

To prove Theorem 1.1 (and only for this theorem), for convenience we prefer to work with
the family of the true dyadic cubes of Rd, which we denote by DRd . Although, for a cube Q of
this type the estimate µ(Q) ≈ `(Q)n may fail, for the cubes Q ∈ DRd which intersect supp(µ)
we have µ(2Q) ≈ `(Q)n. Recall that if Q does not intersect supp(µ), for convenience we set
α(Q) = 0.

Given a true cube Q with sides parallel to the axes, we denote by IQ the projection of Q onto
the n plane {(x1, . . . , xd) ∈ Rd : xn+1 = · · · = xd = 0}. Observe that IQ is an n-dimensional
true cube.

Proof of Theorem 1.1. For x ∈ Rn, we denote Ã(x) := (x,A(x)), and we set

g(x) := ρ(Ã(x)) |J(Ã)(x)|, for x ∈ Rn,

where J(Ã)(x) stands for the n-dimensional Jacobian of the map x 7→ Ã(x). Given a

cube Q ∈ DRd which intersects supp(µ), let Q̂ be a cube with side length 16`(Q) such

that Q ∈ DRd(Q̂) and BQ ⊂ Q̂. We will show that

(4.1) α(Q) . β1(2Q) +
∑

I∈DRn(I bQ)

`(I)1+n/2

`(Q)1+n
‖∆Ig‖2,

where DRn(I bQ) stands for the collection of dyadic cubes from DRn which are contained in I bQ,

the projection of Q̂ onto the n-plane {x ∈ Rd : xn+1 = · · · = xd = 0}. Notice that in this
inequality Q is a cube in Rd and the I’s are cubes in Rn. Also, the L2 norm is taken with
respect to the n-dimensional Lebesgue measure on Rn. Let us see that the theorem follows
from the preceding estimate. Indeed, we derive

∑

Q∈DRd (R)

α(Q)2 µ(Q) .
∑

Q∈DRd(R)

β1(2Q)2µ(Q)

+
∑

Q∈DRd(R)

( ∑

I∈DRn (I bQ)

`(I)1+n/2

`(Q)
‖∆Ig‖2

)2
1

µ(Q)
.

The first sum on the right hand side is bounded above by C`(R)n, by the results of David
and Semmes. To deal with the last sum, which we denote by S2, we apply Cauchy-Schwartz:

S2 ≤
∑

Q∈DRd (R)

( ∑

I∈DRn(I bQ)

`(I)

`(Q)
‖∆Ig‖2

2

)( ∑

I∈DRn (I bQ)

`(I)

`(Q)
`(I)n

)
1

µ(Q)
.
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Since
∑

I∈DRn (I bQ)
`(I)
`(Q)

`(I)n . µ(Q), we get

S2 .
∑

Q∈DRd(R)

∑

I∈DRn(I bQ)

`(I)

`(Q)
‖∆Ig‖2

2

≤
∑

I∈DRn (I bR)

‖∆Ig‖2
2

∑

Q∈DRd (R):I bQ⊃I

`(I)

`(Q)
.

∑

I∈DRn (I bR)

‖∆Ig‖2
2.

Since g is a bounded function, we deduce that S2 . `(R)n.
It remains to show that (4.1) holds. For any x ∈ I4Q ⊂ I bQ, we have

g(x) =
∑

I∈DRn (I bQ)

∆Ig(x) + gI bQ .

To estimate α(Q), we choose an n-plane L = {(x, y) ∈ Rn ×Rd−n : y = a(x)} (where a(x) is
an appropriate affine map) which minimizes β1(3Q) and we set cQ := gI bQ/|J(ã)| (notice that

the Jacobian of the map x 7→ ã(x) := (x, a(x)) is constant and bounded from below). Given
a Lipschitz function f supported in BQ with Lipschitz constant ≤ 1, we have

∣∣∣∣
∫
f(z) dµ(z)− cQ

∫
f(z) dHn

|L

∣∣∣∣

=

∣∣∣∣
∫
f(Ã(x)) g(x)dx− cQ

∫
f(ã(x))|J(ã)| dx

∣∣∣∣

≤
∣∣∣∣
∫
f(Ã(x)) gI bQdx−

∫
f(ã(x))gI bQ dx

∣∣∣∣ +
∑

I∈DRn (I bQ)

∣∣∣∣
∫
f(Ã(x))∆Ig(x) dx

∣∣∣∣

=: T1 + T2.

To deal with T1 we take into account that gI bQ is bounded (since g is a bounded function) and

that f is 1-Lipschitz and supp(f) ⊂ BQ ⊂ 6Q:

T1 .
∫
|f(Ã(x))− f(ã(x))| dx ≤

∫

6IQ

|A(x)− a(x)| dx . β1(2Q)`(Q)1+n.

For T2 we use the fact that ∆Ig has mean value zero and f and Ã are Lipschitz maps:

T2 =
∑

I∈DRn (I bQ)

∣∣∣∣
∫

I

(f(Ã(x))− f(Ã(xI))∆Ig(x) dx

∣∣∣∣

.
∑

I∈DRn(I bQ)

`(I)‖∆Ig‖1 ≤
∑

I∈DRn (I bQ)

`(I)1+n/2‖∆Ig‖2.

From the estimates of T1 and T2 and the definition of α(Q), we get (4.1). ¤

Remark 4.1. Let Γ be an n-dimensional Lipschitz graph with compact support in Rn+1.
That is, Γ := {(x, y) ∈ Rn × R : y = A(x)}. Set µ = Hn

|Γ. By the calculations in the
preceding theorem, we have

∑
Q∈DRn+1

α(Q)2 µ(Q) .
∑

Q∈DRn

β1(2Q)2µ(Q) +
∑

I∈DRn

‖∆Ig‖2
2,
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where

g(x) = |J(Ã)(x)| = (1 + |∇A(x)|2)1/2.

Notice that

|g(x)− 1| = |∇A(x)|2
1 + (1 + |∇A(x)|2)1/2

≤ min(|∇A(x)|, |∇A(x)|2).

So we have ∑
I∈DRn

‖∆Ig‖2
2 ≤ C

∫

Rn

|g(x)− 1|2dx ≤ ‖∇A‖2
2.

On the other hand, by [Do, Theorem 6], we also have
∑

Q∈DRn

β1(2Q)2µ(Q) ≈
∑

Q∈DRn

β1(Q)2µ(Q) ≈ ‖∇A‖2
2.

Recalling that β1(Q) . α(Q) for any cube Q, we get
∑

Q∈DRn+1

α(Q)2 µ(Q) ≈ ‖∇A‖2
2,

with constants depending on C1 in Theorem 1.1.

Proof of Theorem 1.2. It is clear that (b) ⇒ (c). On the other hand, we have shown in
Lemma 3.2 that bβ1(Q) . α(Q) for any cube Q ∈ D. Thus, if the coefficients α satisfy the
packing condition ∑

Q∈D(R)

α(Q)2 µ(Q) . µ(R) for all R ∈ D,

then an analogous inequality holds if we replace α by bβ1 or by β1. As a consequence, µ is
uniformly rectifiable in this case, by the results of David and Semmes in [DS1]. Thus, (b) ⇒
(a) in Theorem 1.2.

Analogously, if (c) hods, then for all ε > 0, there exists some constant C(ε) such that the
collection B′ε of those cubes Q ∈ D such that bβ1(Q) > ε satisfies

∑

Q∈B′ε:Q⊂R

µ(Q) ≤ C(ε)µ(R)

for any cube R ∈ D. As a consequence, E = supp(µ) satisfies the so called bilateral weak
geometric lemma and by [DS2, Theorem 2.4] µ is uniformly rectifiable. That is, (c) ⇒ (a).

The proof that (a) ⇒ (b) is more technical. We give only some hints: this follows by using
the fact that uniformly rectifiable sets admit corona decompositions (see [DS1] or [DS2] for
the precise definition). Then the arguments are similar to the ones in [DS1, Section 15], where
it is shown that the existence of a corona decomposition implies that the β1(Q)’s satisfy a
packing condition like the one in (1.2). The idea consists of constructing a partition of D into
sets (that we call trees) such that on each tree µ is well approximated in some precise sense
by n-dimensional Hausdorff measure on a Lipschitz graph. Then one uses the fact that the
α’s satisfy a Carleson packing condition on Lipschitz graphs (because of Theorem 1.1), and
one argues by approximation on each tree. ¤
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5. Estimates for Calderón-Zygmund operators in terms of the
coefficients α

5.1. The L2(µ) boundedness of Tµ. When µ is uniformly rectifiable, the fact that Tµ is
bounded in L2(µ) is a consequence of inequality (1.5) and the T (1) theorem. Indeed, suppose
first that µ is supported on a Lipschitz graph. Then for any dyadic cube R,

∑

Q∈D(R)

α(Q)2µ(Q) . µ(R).

Thus if we apply inequality (1.5) to µ|R (which is itself AD regular), then we deduce that

‖T∗(χRµ)‖L2(µ) . µ(R)1/2, and so Tµ is bounded in L2(µ) by the T (1) theorem.
If µ is uniformly rectifiable but not supported on a Lipschitz graph, then Tµ is also bounded

in L2(µ) because of the “big pieces functor” (see Proposition I.1.28 of [DS2]). An alternative
argument consists of using Theorem 1.2, which implies that the coefficients α(Q) satisfy the
packing condition above, and then the same proof given for µ supported on a Lipschitz graph
works in this case.

Section 6 and the rest of the present section are devoted to the proof of inequalities (1.5)
and (1.6) in Theorem 1.3.

5.2. Decomposition of Tµ with respect to D. As explained in the Introduction, to prove
(1.5) and (1.6) we will decompose Tµ using the dyadic lattice D associated to µ. Let ψ be
a non-increasing radial C∞ function such that χB(0,1/2) ≤ ψ ≤ χB(0,2). For each j ∈ Z, set
ψj(z) := ψ(2jz) and ϕj := ψj+3−ψj+4 (recall that in the Introduction we set ϕj := ψj−ψj+1;
for simplicity in some calculations below, we prefer the choice ϕj := ψj+3 − ψj+4), so that
each function ϕj is non negative and supported in A(0, 2−j−5, 2−j−2)), and moreover we have

∑

j∈Z
ϕj(x) = 1

for any x ∈ Rd \ {0}. For each j ∈ Z we denote Kj(x) = ϕj(x)K(x) and

(5.1) Tjµ(x) =

∫
Kj(x− y) dµ(y).

For each Q ∈ D, we set

TQµ := χQTJ(Q)µ.

Recall that J(Q) stands for the integer such that Q ∈ Dj. Formally we have

Tµ =
∑

m∈Z
Tmµ =

∑

m∈Z

∑
Q∈Dm

TQµ.

This decomposition of Tµ is inspired in part by [Se]. See also [To1], [MT] and [To3] for some
related techniques.

Let us denote

T(m)µ =
∑

j:j≤m

Tjµ.

To prove the estimates (1.5) and (1.6) in Theorem 1.3, we will show that

(5.2) ‖T(m)µ‖2
L2(µ) .

∑
Q∈D

α(Q)2µ(Q),
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uniformly on m ∈ Z. By the following “Cotlar type” inequality:

(5.3) ‖T∗µ‖L2(µ) . lim sup
m→∞

‖T(m)µ‖L2(µ) + µ(C),

this implies (1.5). The proof of (5.3) follows by arguments analogous to the ones of the
usual Cotlar inequality although, in our particular case, it is not necessary to use the L2(µ)
boundedness of Tµ (which we are not assuming) to prove it, because of the antisymmetry of
Tµ. See for instance [Vo, Lemma 5.1] for a similar estimate.

The existence of p.v.Tµ(x) for µ-a.e. x under the assumption
∑
Q∈D

α(Q)2µ(Q) <∞

is a consequence of the fact that this implies that supp(µ) must be n-rectifiable (although per-
haps not uniformly rectifiable), and so µ is supported on a countable union of n-dimensional
Lipschitz graphs. Since THn|Γ is bounded on L2(Hn

|Γ) for any n-dimensional Lipschitz graph Γ

(by Subsection 5.1), it follows that p.v.Tµ(x) exists µ-a.e. The arguments are similar to the
ones in [Ma, Chapter 20]. On the other hand, T(m)µ(x) can be written as a convex combi-
nation of Tεµ(x), with 0 < ε ≤ 2−m−3. Indeed, if we set g(|x − y|) = 1 − ψm+4(x − y), we
have

T(m)µ(x) =
∑

j:j≤m

Tjµ(x) =

∫
g(|x− y|)K(x− y) dµ(y),

and then by Fubini it is easy to check that
∫
g(|x− y|)K(x− y) dµ(y) =

∫ ∞

0

g′(ε)Tεµ(x) dε =

∫ 2−m−3

0

g′(ε)Tεµ(x) dε,

since g(ε) = 1 for ε ≥ 2−m−3. Then, it turns out that whenever p.v.Tµ(x) exists we have

lim
m→∞

T(m)µ(x) = p.v.Tµ(x).

Since T∗µ ∈ L2(µ), by dominated convergence we derive

‖p.v.Tµ‖2
L2(µ) = lim

m→∞
‖T(m)µ‖2

L2(µ) .
∑
Q∈D

α(Q)2µ(Q).

So it only remains to prove (5.2). To this end we set

‖T(m)µ‖2
L2(µ) =

∑
j:j≤m

‖Tjµ‖2
L2(µ) + 2

∑

j,k:j<k≤m

〈Tjµ, Tkµ〉.

We will see that the first sum on the right side is easy to estimate, while the last sum will
require some harder work. To estimate this last sum we will show that the oddness of K(·)
introduces some quasiorthogonality among the different functions Tjµ, j ∈ Z.

5.3. Estimates for TQµ in terms of the coefficients α. Given Q ∈ D, we denote

A2(Q) :=
1

µ(Q)

∑

P∈D(Q)

α(P )2 `(P )

`(Q)
µ(P ).

Lemma 5.1. Given Q ∈ Dm, we have

(a) For any x ∈ LQ ∩B(zQ, 2d(Q)), |Tmµ(x)| . α(Q).

(b)

∫
|TQµ| dµ . α(Q)µ(Q).
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(c)

∫
|TQµ|2 dµ . A2(Q)µ(Q).

Proof. Let us prove (a). Notice that if x ∈ B(zQ, 2d(Q)), then supp
[
Km(x − ·)] ⊂ BQ.

Moreover, ‖∇Km(x− ·)‖∞ . `(Q)−n−1. Given an arbitrary n-plane L and c ≥ 0, if x ∈ L we
have ∣∣∣∣

∫
Km(x− y) dµ(y)− c

∫
Km(x− y) dHn

|L(y)

∣∣∣∣ . 1

`(Q)n+1
distBQ

(µ, cHn
|L).

Since Km(·) is odd, the second integral vanishes, and so

|Tmµ(x)| . 1

`(Q)n+1
distBQ

(µ, cHn
|L).

If we choose L = LQ and c = cQ, the statement (a) follows.
Now we will prove (b) and (c) simultaneously. Given x ∈ Q, let x′ be the orthogonal

projection of x onto LQ. Then we have

|Tmµ(x)− Tmµ(x′)| . |x− x′|
`(Q)n+1

µ(Q) . dist(x, LQ)

`(Q)
.

We may assume that x′ ∈ B(zQ, 2d(Q)) because otherwise dist(x, LQ) ≥ `(Q)/2 and this
would mean that A(Q) ≥ α(Q) & 1 (see Remark 3.3), and then (b) and (c) would be trivial.
So, using (a), we have

|Tmµ(x)| . dist(x, LQ)

`(Q)
+ |Tmµ(x′)| . dist(x, LQ)

`(Q)
+ α(Q).

Thus, for p ≥ 1, ∫
|TQµ|p dµ .

∫

Q

(
dist(x, LQ)

`(Q)

)p

dµ(x) + α(Q)pµ(Q).

For p = 1 the first integral on the right side is bounded above by Cα(Q)µ(Q), by Remark 3.3,
and (b) follows. On the other hand, if we choose p = 2, (c) is a consequence of next lemma. ¤
Lemma 5.2. Let x ∈ supp(µ) and Q ∈ D such that x ∈ Q. We have

(5.4) dist(x, LQ) .
∑

P∈D:P⊂Q, x∈P

α(P ) `(P ),

and

(5.5)

∫

Q

(
dist(x, LQ)

`(Q)

)2

dµ(x) . A2(Q)µ(Q).

Proof. Let us see how (5.5) follows from (5.4). By Cauchy-Schwartz we have
(

dist(x, LQ)

`(Q)

)2

.
( ∑

P∈D:P⊂Q, x∈P

α(P )2 `(P )

`(Q)

)( ∑
P∈D:P⊂Q, x∈P

`(P )

`(Q)

)

.
∑

P∈D:P⊂Q, x∈P

α(P )2 `(P )

`(Q)
,

and then (5.5) follows by integration on Q.
To prove (5.4), let n0 ≥ 1 be some integer to be fixed below, and consider the sequence

of dyadic cubes Q = Q0 ⊃ Q1 ⊃ Q2 . . . such that x ∈ Qm for each m ≥ 1 and `(Qm) =
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2−mn0`(Q). Let ε0 be some (small) constant that will be fixed below too. Let N ≥ 0
be the least integer such that α(QN) ≥ ε0. If N does not exist because α(Qm) < ε0 for
all m ≥ 0, we let N be an arbitrary positive integer. Let aN be any point from QN and for
m = N − 1, N − 2, . . . , 0 let am be the orthogonal projection of am+1 onto LQm . Then we
have

(5.6) dist(aN , LQ) ≤ dist(aN , LQN
) +

N−1∑
m=0

dist(am, am+1).

Our next objective consists in showing that

(5.7) |am − am+1| . α(Qm)`(Qm) for m = 0, 1, . . . , N − 1.

Let us see first that (5.4) follows from this estimate. Indeed, from (5.6) and (5.7) we infer

dist(aN , LQ) . dist(aN , LQN
) +

N−1∑
m=0

α(Qm)`(Qm).

If α(Qm) < ε0 for all m ≥ 0 (in this case N was chosen as an arbitrary positive integer), we
let N → ∞ in the preceding inequality, and then aN → x and dist(aN , LQN

) → 0, and so
(5.4) follows. If α(QN) ≥ ε0, then

|x− aN |+ dist(aN , LQN
) . `(QN) ≤ ε−1

0 α(QN)`(QN).

Thus, by (5.6) and (5.7),

dist(x, LQ) ≤ |x− aN |+ dist(aN , LQN
) +

N−1∑
m=0

dist(am, am+1) .
N∑

m=0

α(Qm)`(Qm).

To prove (5.7) we wish to apply Lemma 3.4. Then we need to show first that am ∈ BQm for
m = N, N−1, . . . , 1. We argue by backward induction. Indeed, for m = N , this holds by the
definition of aN . Assume now that am+1 ∈ BQm+1 and let us see that am ∈ BQm . Remember
that for m = N − 1, N − 2, . . . , 1, we have α(Qm) ≤ ε0. By the AD regularity of µ, all points
y ∈ Qm+1 ⊂ Qm satisfy

dist(y, LQm) ≤ C(ε0)`(Qm) ≤ d(Qm+1)/2,

assuming that ε0 has been chosen small enough (depending also on choice of n0). So we infer
that LQm ∩ BQm+1 6= ∅. Recall that, by the induction hypothesis, am+1 ∈ BQm+1 . If n0 has
been chosen big enough we deduce that

(5.8) |am+1 − am| = dist(am+1, LQm) ≤ d(BQm+1) ≤ d(Qm)/4.

It is straightforward to check that BQm+1 ⊂ B(zQm , 2d(Qm)) for n0 big enough. Thus we have
am+1 ∈ B(zQm , 2d(Qm)). This fact and (5.8) imply that am ∈ BQm .

The estimate (5.7) follows now easily from Lemma 3.4 using the fact that am, am+1 ∈ BQm :

|am − am+1| ≤ distH(LQm ∩BQm , LQm+1 ∩BQm) . α(Qm) `(Qm).

¤
Remark 5.3. Almost the same arguments used to prove (5.4) show that if S,Q ∈ D are
cubes such that S ⊂ Q and x ∈ supp(µ) ∩ 2S, then we have

(5.9) dist(x, LQ) . dist(x, LS) +
∑

P∈D:S⊂P⊂Q

α(P ) `(P ).
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5.4. Estimate of
∑

j∈Z ‖Tjµ‖2
L2(µ). The following lemma is an easy consequence of (c) in

Lemma 5.1.

Lemma 5.4. For every R ∈ D, we have
∑

Q∈D(R)

‖TQµ‖2
L2(µ) .

∑

Q∈D(R)

α(Q)2µ(Q).

Proof. By (c) in Lemma 5.1 we have
∑

Q∈D(R)

‖TQµ‖2
L2(µ) .

∑
Q∈D:Q⊂R

A2(Q)µ(Q)

=
∑

Q∈D:Q⊂R

∑
P∈D:P⊂Q

α(P )2 `(P )

`(Q)
µ(P )

=
∑

P∈D:P⊂R

α(P )2µ(P )
∑

Q∈D:P⊂Q⊂R

`(P )

`(Q)

.
∑

P∈D:P⊂R

α(P )2µ(P ).

¤
So we have

(5.10)
∑

j∈Z
‖Tjµ‖2

L2(µ) .
∑
Q∈D

α(Q)2µ(Q).

Remark 5.5. In [DS1] it is shown that the following condition is necessary and sufficient
for µ to be uniformly rectifiable: for each C∞, compactly supported, odd function ψ : Rd → R,
there is a C > 0 such that for any cube R ∈ D,

(5.11)
∑

j≥J(R)

∫

x∈R

∣∣∣∣
∫
ψj(x− y) dµ(y)

∣∣∣∣
2

dµ(x) ≤ Cµ(R),

where ψj(x) = 2jnψ(2jx).
For any n dimensional AD regular measure µ, it is easy to check that

(5.12)
∑

j∈Z

∫ ∣∣∣∣
∫
ψj(x− y) dµ(y)

∣∣∣∣
2

dµ(x) .
∑
Q∈D

α(Q)2µ(Q).

The arguments are very similar to the ones we used to obtain (5.10). The role of Tjµ in (5.10)
is played now

∫
ψj(x − y) dµ(y). As a consequence, if µ is uniformly rectifiable, then (5.11)

can be deduced from (5.12) applied to µ|R. This way of proving that uniformly rectifiable
measures satisfy (5.11) is very different from the one in [DS1].

6. Estimate of
∑

j,k:k>j〈Tjµ, Tkµ〉 in terms of the α’s

In this section we will show that∑

j,k:k>j

∣∣〈Tjµ, Tkµ〉
∣∣ .

∑
Q∈D

α(Q)2µ(Q).

The key idea consists in using quasiorthogonality. This will finish the proof of Theorem 1.3.
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Given k > j fixed, let m = [(j + k)/2], where [·] stands for the integer part. We write

〈Tjµ, Tkµ〉 =
∑

S∈Dm

〈ϕSTjµ, Tkµ〉,

where {ϕS}S∈Dm is a family of C∞ functions such that each ϕS satisfies supp(ϕS) ⊂ U`(S)/10(S)
(where U`(S)/10(S) stands for the (`(S)/10)-neighborhood of S) and ‖∇ϕS‖∞ ≤ C/`(S), and
moreover

∑
S∈Dm

ϕS = 1 on E. Let xS be the orthogonal projection of the center of S, zS,
onto LS. We set

〈Tjµ, Tkµ〉 =
∑

S∈Dm

〈
ϕS

(
Tjµ− Tjµ(xS)

)
, Tkµ

〉
+

∑
S∈Dm

Tjµ(xS)〈ϕS, Tkµ〉

=: Aj,k +Bj,k.

(6.1)

6.1. Estimates for Aj,k in (6.1). We write Aj,k as follows:

Aj,k =
∑
R∈Dj

∑
S∈Dm:S⊂R

〈
ϕS

(
Tjµ− Tjµ(xS)

)
, Tkµ

〉
.

Thus,
∑

j,k:k>j

Aj,k =
∑
R∈D

∑

k>J(R)

∑
S∈Dm:S⊂R

〈
ϕS

(
TJ(R)µ− TJ(R)µ(xS)

)
, Tkµ

〉
=:

∑
R∈D

AR,

where J(R) stands for the generation of R.
We will need the following lemma.

Lemma 6.1. Given Q ∈ Dm and x, y ∈ B(zQ, 2d(Q)), we have

|Tmµ(x)− Tmµ(y)| . α(Q)`(Q) + dist(x, LQ) + dist(y, LQ)

`(Q)2
|x− y|

+
|ΠL⊥Q

(x− y)|
`(Q)

,

(6.2)

where ΠL⊥Q
denotes the orthogonal projection on the the subspace orthogonal to LQ.

Let us remark that in the proof of the preceding lemma we will use the assumption

(6.3) |∇2K(x)| ≤ C

|x|n+2
∀x ∈ Rd \ {0}.

This is the only place in this paper where it is used.

Proof. Let u be a unit vector parallel to LQ. First we will show that for any x ∈ B(zQ,
5
2
d(Q))

(6.4) |∇uTmµ(x)| . α(Q)

`(Q)
+

dist(x, LQ)

`(Q)2
,

where ∇u stands for the directional derivative in the direction of u. Indeed, for any x ∈
B(zQ,

5
2
d(Q)),

∇uTmµ(x) =

∫
∇uKm(x− y) dµ(y).

By the assumption (6.3), we have∣∣∣∣
∫
∇uKm(x− y) dµ(y)−

∫
∇uKm(x− y) dLQ(y)

∣∣∣∣ . α(Q)

`(Q)
.
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For x ∈ LQ ∩ B(zQ,
5
2
d(Q)), notice that the second integral on the left hand side above

vanishes because TmLQ vanishes identically on LQ, and so ∇uTmLQ(x) = 0. Therefore,

(6.5) |∇uTmµ(x)| . α(Q)

`(Q)
if x ∈ B(zQ,

5
2
d(Q)) ∩ LQ.

Consider now x ∈ B(zQ, 2d(Q)) and let x′ be the orthogonal projection of x onto LQ. We
may assume that x′ ∈ B(zQ,

5
2
d(Q)) because otherwise dist(x, LQ) & `(Q) and then (6.4) is

trivial in this case. Thus, from (6.5), if x ∈ B(zQ, 2d(Q)) and x′ ∈ B(zQ,
5
2
d(Q)) we get

|∇uTmµ(x)| . α(Q)

`(Q)
+ ‖∇2Tmµ‖∞ dist(x, LQ),

which yields (6.4).
With (6.4) at hand, the lemma follows easily: given x, y ∈ B(zQ, 2d(Q)), we have

(6.6) |Tmµ(x)− Tmµ(y)| ≤ sup
u
‖∇uTmµ‖∞,[x,y] |x− y|+ ‖∇Tmµ‖∞|ΠL⊥Q

(x− y)|,

where the supremum on the right side is taken over all unit vectors parallel to LQ. From (6.4)
we get

sup
u
‖∇uTmµ‖∞,[x,y] . α(Q)

`(Q)
+

supz∈[x,y] dist(z, LQ)

`(Q)2

≤ α(Q)

`(Q)
+

dist(x, LQ) + dist(y, LQ)

`(Q)2
.

Plugging this estimate into (6.6) we are finished with the lemma. ¤
By the preceding result and the definition of AR, we have

|AR| .
∑

k>J(R)

∑
S∈Dm: S⊂R

∫
3
2
S

|Tkµ|
[
α(R)

`(S)

`(R)

+ dist(x, LR)
`(S)

`(R)2
+ dist(xS, LR)

`(S)

`(R)2
+
|ΠL⊥R

(x− xS)|
`(R)

]
dµ(x).

(6.7)

By Remark 5.3 we have

(6.8) dist(x, LR) . dist(x, LS) +
∑

P∈D:S⊂P⊂R

α(P )`(P ).

The same estimate holds if we replace x by xS (and in this case dist(xS, LS) = 0).
Now we want to estimate the term |ΠL⊥R

(x − xS)|. Let Q ∈ Dk be such that x ∈ Q. We
have

|ΠL⊥R
(x− xS)| ≤ |ΠL⊥S

(x− xS)|+
∑

P∈D:Q⊂P⊂3R

|ΠL⊥P
(x− xS)− ΠL⊥bP

(x− xS)|,

where P̂ stands for the parent of P . Since xS ∈ LS, we have |ΠL⊥S
(x − xS)| = dist(x, LS).

Moreover, from Lemma 3.4 it follows easily that

|ΠL⊥P
(x− xS)− ΠL⊥bP

(x− xS)| . α(P̂ )|x− xS| . α(P̂ )`(S).

Therefore, recalling that m = m(J(R), k) = [(J(R) + k)/2],

(6.9) |ΠL⊥R
(x− xS)| . dist(x, LS) +

∑
P∈D:Q⊂P⊂3R

α(P )`(Q)1/2`(R)1/2.
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From (6.7), (6.8), and (6.9), we infer that

|AR| .
∑

Q⊂3R

∫
|TQµ(x)| dist(x, LS)

`(R)
dµ(x)

+
∑

Q⊂3R

`(Q)1/2

`(R)1/2

∫
|TQµ(x)|

[ ∑
P∈D:Q⊂P⊂3R

α(P )
]
dµ(x) =: A1

R + A2
R.

(6.10)

Notice that, although it is not stated explicitly, S depends on Q in AR. In fact, we should
properly write SQ instead of S.

Estimate of A1
R in (6.10). For each Q ⊂ R, by Cauchy-Schwartz we have

A1
R ≤

∑
Q⊂3R

`(S)

`(R)

(∫
|TQµ|2 dµ

)1/2(∫

Q

dist(x, LS)2

`(S)2
dµ(x)

)1/2

.
∑

Q⊂3R

`(Q)1/2

`(R)1/2

∫
|TQµ|2 dµ+

∑
S⊂3R

`(S)

`(R)

∫

S

dist(x, LS)2

`(S)2
dµ(x).

Using Lemmas 5.1 and 5.2, we get

∑
R∈D

A1
R .

∑
R∈D

∑
Q⊂3R

`(Q)1/2

`(R)1/2
A2(Q)µ(Q) +

∑
R∈D

∑
S⊂3R

`(S)

`(R)
A2(S)µ(S)

.
∑
Q∈D

A2(Q)µ(Q) .
∑
Q∈D

α(Q)2 µ(Q).

Estimate of A2
R in (6.10). By Lemma 5.1 and Cauchy-Schwartz, we have

A2
R .

∑
Q⊂3R

`(Q)1/2

`(R)1/2

[ ∑
P∈D:Q⊂P⊂3R

α(P )
]2

µ(Q)

.
∑

Q⊂3R

`(Q)1/2

`(R)1/2
log

(
2 +

`(R)

`(Q)

) ∑
P∈D:Q⊂P⊂3R

α(P )2µ(Q).

(6.11)

Thus,

∑
R∈D

A2
R .

∑
R∈D

∑
Q⊂3R

`(Q)1/3

`(R)1/3

∑
P∈D:Q⊂P⊂3R

α(P )2µ(Q)

=
∑
P∈D

α(P )2
∑

Q:Q⊂P

µ(Q)
∑

R:3R⊃P

`(Q)1/3

`(R)1/3

.
∑
P∈D

α(P )2
∑

Q:Q⊂P

µ(Q)
`(Q)1/3

`(P )1/3
.

∑
P∈D

α(P )2µ(P ).

6.2. Estimates for Bj,k in (6.1). Recall that for j, k, with k > j, we have

Bj,k =
∑

S∈Dm

Tjµ(xS)〈ϕS, Tkµ〉,

where m = [(j + k)/2]. We say that two cubes S, T ∈ Dm (of the same generation m) are
neighbors if dist(S, T ) ≤ 2−m and S 6= T , and then we write S ∈ N(T ) and T ∈ N(S). The
number of neighbors of a given S ∈ D is bounded above independently of S, i.e. there is
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some constant C such that #{T ∈ D : T ∈ N(S)} ≤ C for all S ∈ D. From the fact that
supp(Kk) ⊂ B(0, 2−k−2) and the antisymmetry of Tk we infer that, for S, T ∈ D of the same
generation, 〈ϕS, Tk(ϕTµ)〉 = 0 unless S and T are neighbors. So we have

(6.12) Bj,k =
∑

S∈Dm

∑

T∈N(S)

Tjµ(xS)〈ϕS, Tk(ϕTµ)〉.

Using the antisymmetry of Tk, reordering the sums, and interchanging the notation of S
and T we get

Bj,k = −
∑

S∈Dm

∑

T∈N(S)

Tjµ(xS)〈ϕT , Tk(ϕSµ)〉

= −
∑

T∈Dm

∑

S∈N(T )

Tjµ(xS)〈ϕT , Tk(ϕSµ)〉

= −
∑

S∈Dm

∑

T∈N(S)

Tjµ(xT )〈ϕS, Tk(ϕTµ)〉.

(6.13)

If we take the mean value of (6.12) and (6.13) we obtain

Bj,k =
1

2

∑
S∈Dm

∑

T∈N(S)

(
Tjµ(xS)− Tjµ(xT )

)〈ϕS, Tk(ϕTµ)〉

=
1

2

∑
S∈Dm

∑

T∈N(S)

(
Tjµ(xS)− Tjµ(xT )

)[〈ϕS, Tk(ϕTµ)〉 − 〈ϕS, Tk(ϕTLS)〉LS

]

+
1

2

∑
S∈Dm

∑

T∈N(S)

(
Tjµ(xS)− Tjµ(xT )

)〈ϕS, Tk(ϕTLS)〉LS

=
1

2

(
B1

j,k +B2
j,k

)
,

(6.14)

where we used the notation 〈f, g〉LS
=

∫
fg dLS.

6.2.1. Estimates for B2
j,k in (6.1). Since 〈ϕS, Tk(ϕSLS)〉LS

= 0 and Tk(LS) vanishes identi-
cally on LS, we have

∑
S∈Dm

∑

T∈N(S)

Tjµ(xS)〈ϕS, Tk(ϕTLS)〉LS

=
∑

S∈Dm

Tjµ(xS)〈ϕS, Tk(LS)〉LS
= 0.

(6.15)

Interchanging the roles of S and T , and using the antisymmetry of Tk we also get

0 =
∑

T∈Dm

∑

S∈N(T )

Tjµ(xT )〈ϕT , Tk(ϕSLT )〉LT

= −
∑

T∈Dm

∑

S∈N(T )

Tjµ(xT )〈ϕS, Tk(ϕTLT )〉LT
.

(6.16)
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Thus, if we plug (6.15) and (6.16) into the definition of B2
j,k, we get

B2
j,k = −

∑
S∈Dm

∑

T∈N(S)

Tjµ(xT )〈ϕS, Tk(ϕTLS)〉LS

=
∑

S∈Dm

∑

T∈N(S)

Tjµ(xT )
[
〈ϕS, Tk(ϕTLT )〉LT

− 〈ϕS, Tk(ϕTLS)〉LS

]
.

(6.17)

Claim 6.2. For all S, T ∈ Dm which are neighbors, we have
∣∣∣〈ϕS, Tk(ϕTLT )〉LT

− 〈ϕS, Tk(ϕTLS)〉LS

∣∣∣ . 2−|j−k|/2α(S)`(S)n.

Proof. Take S, T ∈ Dm which are neighbors. To prove the claim we may assume that α(S) is
small enough, so that the angle between LT and LS is ≤ π/4. This is due to the fact that

‖Tk(ϕTLT )‖∞,LT
+ ‖Tk(ϕTLS)‖∞,LS

. 2−|j−k|/2.

See (6.22) and (6.25) below for some details.
Let p : LS → LT be the orthogonal projection from LS into LT . Let p−1LT be the image

measure of LT by p−1. So p−1LT is a multiple of the n-dimensional Lebesgue measure on LS.
It is easy to check that p−1LT = aLS, where a is some constant such that |a − 1| . α(S).
Then we have

〈ϕS, Tk(ϕTLT )〉LT
=

∫
ϕSTk(ϕTLT ) dLT

= a

∫
(ϕS ◦ p)

(
Tk(ϕTLT ) ◦ p) dLS.

(6.18)

We split the inequality in the claim as follows:
∣∣∣〈ϕS, Tk(ϕTLT )〉LT

− 〈ϕS, Tk(ϕTLS)〉LS

∣∣∣

≤
∣∣∣〈ϕS, Tk(ϕTLT )〉LT

− a

∫
(ϕS ◦ p)Tk

(
(ϕT ◦ p)LS

)
dLS

∣∣∣

+
∣∣∣a

∫
(ϕS ◦ p)Tk

(
(ϕT ◦ p)LS

)
dLS − a

∫
(ϕS ◦ p)Tk(ϕTLS) dLS

∣∣∣

+
∣∣∣a

∫
(ϕS ◦ p)Tk(ϕTLS) dLS − a

∫
ϕSTk(ϕTLS) dLS

∣∣∣
+ |a− 1|

∣∣〈ϕS, Tk(ϕTLS)〉LS

∣∣ =: D1 +D2 +D3 +D4.

(6.19)

We will show that each of the four terms on the right hand side of the above inequality
is . 2−|j−k|/2α(S)µ(S).

For the first term, by (6.18), it is enough to show that if x ∈ LS, then

(6.20)
∣∣(Tk(ϕTLT ) ◦ p)(x)− Tk

(
(ϕT ◦ p)LS

)
(x)

∣∣ . 2−|j−k|/2α(S).

To this end we set

(
Tk(ϕTLT ) ◦ p)(x) =

∫
Kk(p(x)− y)ϕT (y) dLT (y)

= a

∫
Kk(p(x)− p(y))ϕT (p(y)) dLS(y).
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Since p is an affine map, it can be written as p = b + p̃, where b is some constant and p̃ is
linear. So we have Kk(p(x) − p(y)) =

(
Kk ◦ p̃

)
(x − y). Using the oddness of Kk ◦ p̃ (recall

also that x ∈ LS), we get

(
Tk(ϕTLT ) ◦ p)(x) = a

∫ (
Kk ◦ p̃

)
(x− y)ϕT (p(y)) dLS(y)

= a

∫ (
Kk ◦ p̃

)
(x− y)

(
ϕT (p(y))− ϕT (p(x))

)
dLS(y).

Again by the oddness of Kk,

(6.21) Tk

(
(ϕT ◦ p)LS

)
(x) =

∫
Kk(x− y)

(
ϕT (p(y))− ϕT (p(x))

)
dLS(y).

Therefore,∣∣(Tk(ϕTLT ) ◦ p)(x)− Tk

(
(ϕT ◦ p)LS

)
(x)

∣∣
≤ |a− 1|

∣∣Tk

(
(ϕT ◦ p)LS

)
(x)

∣∣

+ |a|
∫ ∣∣Kk ◦ p̃−Kk

∣∣(x− y)
∣∣ϕT (p(y))− ϕT (p(x))

∣∣ dLS(y).

(6.22)

To estimate the term
∣∣Tk

(
(ϕT ◦ p

)LS)(x)
∣∣ we use the identity (6.21). Since supp(Kk) ⊂

B(0, 2−k−2), for x ∈ LS we derive

∣∣Tk

(
(ϕT ◦ p)LS

)
(x)

∣∣ ≤ ‖∇(ϕT ◦ p)‖∞2−k

∫
|Kk(x− y)| dLS(y)

. 2−k

`(S)
≈ 2−|j−k|/2.

(6.23)

To estimate the last integral in (6.22), we take into account that

∣∣Kk ◦ p̃−Kk

∣∣(x− y) . ‖∇Kk‖∞|p̃(x− y)− (x− y)| . ‖p̃− I‖|x− y|
2−k(n+1)

.

It is easy to check that ‖p̃− I‖ . α(S). Moreover, we can assume |y − x| . 2−k. So we get∣∣Kk ◦ p̃−Kk

∣∣(x− y) . α(S)2kn. Thus
∫ ∣∣Kk ◦ p̃ − Kk

∣∣(x− y)
∣∣ϕT (p(y))− ϕT (p(x))

∣∣ dLS(y)

. α(S)‖∇(ϕT ◦ p)‖∞2−k . α(S)
2−k

`(S)
≈ 2−|j−k|/2α(S).

So (6.20) follows from (6.22), (6.23), the last estimate, and the fact that |a− 1| . α(S).
Let us turn our attention to the term D2 in (6.19). Let us denote f(y) = ϕT (p(y))−ϕT (y).

By the oddness of Kk, for x ∈ LS, we have

Tk

(
(ϕT ◦ p)LS

)
(x)− Tk(ϕTLS)(x) =

∫
Kk(x− y)

(
f(y)− f(x)

)
dLS(y).

Thus, ∣∣Tk

(
(ϕT ◦ p)LS

)
(x)− Tk(ϕTLS)(x)

∣∣ . ‖∇f‖∞2−k,

and so

(6.24) |D2| . ‖∇f‖∞2−k`(S)n.
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We will show that ‖∇f‖∞ . α(S)/`(S), and we will be done with D2. Indeed, we have

|∇f(x)| =
∣∣∇ϕT (p(x)) · p̃−∇ϕT (x)

∣∣
≤

∣∣∇ϕT (p(x))
∣∣ ‖I − p̃‖+

∣∣∇ϕT (p(x))−∇ϕT (x)
∣∣

. 1

`(S)
α(S) + ‖∇2ϕT‖∞ |x− p(x)| . α(S)

`(S)
,

as promised.
To deal with the term D3 in (6.19), we notice that for x ∈ LS we have

(6.25) |Tk(ϕTLS)(x)| . 2−|j−k|/2.

The proof is analogous to the one for (6.23). We also have

(6.26) |(ϕS ◦ p)(x)− ϕS(x)| ≤ ‖∇ϕS‖∞|p(x)− x| . 1

`(S)
α(S)`(S) = α(S).

From (6.25) and the preceding estimate it follows that D3 . 2−|j−k|/2α(S)µ(S).
Finally, the estimate for the term D4 in (6.19) follows from (6.23) and the fact that |a−1| .

α(S). ¤

We are ready to estimate
∑

k>j B
2
j,k now. By (6.17) and Claim 6.2, we have

∑

j,k:k>j

|B2
j,k| .

∑

j,k:k>j

∑
S∈Dm(j,k)

∑

T∈N(S)

|Tjµ(xT )| 2−|j−k|/2α(S)`(S)n.

Since xT ∈ T ∩ LT , we have |Tjµ(xT )| . α(T ) . α(Ŝ) for T ∈ N(S), where Ŝ denotes the
parent (or a suitable ancestor) of S. Thus,

∑

j,k:k>j

|B2
j,k| .

∑

j,k:k>j

∑
S∈Dm(j,k)

2−|j−k|/2α(Ŝ)2µ(S).

Recalling that m(j, k) = [(j + k)/2], we get

∑

j,k:k>j

|B2
j,k| .

∑

j∈Z

∑

S∈D:`(S)≤2−j

`(S)

2−j
α(Ŝ)2µ(S)

=
∑
S∈D

α(Ŝ)2µ(S)
∑

j:2−j≥`(S)

`(S)

2−j
.

∑
S∈D

α(S)2µ(S).

6.2.2. Estimates for B1
j,k in (6.14). We have

B1
j,k =

∑
S∈Dm

∑

T∈N(S)

(
Tjµ(xS)− Tjµ(xT )

)[〈ϕS, Tk(ϕTµ)〉 − 〈ϕS, Tk(ϕTLS)〉LS

]
.

Let us estimate the difference 〈ϕS, Tk(ϕTµ)〉−〈ϕS, Tk(ϕTLS)〉LS
. Let {ϕQ}Q∈Dk

be a partition
of unity with ϕQ ∈ C∞, ‖∇ϕQ‖∞ . 1/`(Q), and supp(ϕQ) ⊂ 2Q for each Q ∈ Dk, and set
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ψQ = ϕQϕS. We have

〈ϕS, Tk(ϕTµ)〉 − 〈ϕS, Tk(ϕTLS)〉LS
=

∑
Q∈Dk

(
〈ψQ, Tk(ϕTµ)〉 − 〈ψQ, Tk(ϕTLS)〉LS

)(6.27)

=
∑

Q∈Dk

(
〈ψQ, Tk(ϕTµ)〉 − 〈ψQ, Tk(ϕTLQ)〉LQ

)

+
∑

Q∈Dk

(
〈ψQ, Tk(ϕTLQ)〉LQ

− 〈ψQ, Tk(ϕTLS)〉LS

)
=: S1 + S2.

First we consider the sum S1. By the definition of α(Q), for x ∈ 2Q we have∣∣Tk(ϕTµ)(x)− Tk(ϕTLQ)(x)
∣∣

=

∣∣∣∣
∫
Kk(x− y)ϕT (y) dµ(y)−

∫
Kk(x− y)ϕT (y) dLQ(y)

∣∣∣∣ . α(Q),
(6.28)

since supp(Kk(x− ·)ϕT ) ⊂ BQ and ‖∇(
Kk(x− ·)ϕT

)‖∞ . 1/`(Q)n+1. Now we write
∣∣〈ψQ, Tk(ϕTµ)〉 − 〈ψQ, Tk(ϕTLQ)〉LQ

∣∣
≤

∣∣〈ψQ, Tk(ϕTµ)〉−〈ψQ, Tk(ϕTLQ)〉
∣∣ +

∣∣〈ψQ, Tk(ϕTLQ)〉−〈ψQ, Tk(ϕTLQ)〉LQ

∣∣.
By (6.28) the first term on the right side is . α(Q)µ(Q). By Fubini, the second term on the
right side equals ∣∣〈ϕT , Tk(ψQµ)〉LQ

−〈ϕT , Tk(ψQLQ)〉LQ

∣∣,
which by (6.28) is also . α(Q)µ(Q). Thus,

(6.29) |S1| .
∑

Q∈Dk:Q⊂3S

α(Q)µ(Q).

Now we consider the sum S2.

Claim 6.3. For all S, T ∈ Dm which are neighbors and Q ⊂ 3S, we have
∣∣∣〈ψQ, Tk(ϕTLQ)〉LQ

− 〈ψQ, Tk(ϕTLS)〉LS

∣∣∣ .
∑

P :Q⊂P⊂3S

α(P )
`(P )

`(S)
µ(Q).

Proof. The estimates are very similar to the ones in Claim 6.2, and so we only give some

hints: we assume that
∑

P :Q⊂P⊂3S α(P ) `(P )
`(S)

is small enough and we consider the orthogonal

projection p from LQ into LT . Then we split the term 〈ψQ, Tk(ϕTLQ)〉LQ
−〈ψQ, Tk(ϕTLS)〉LS

like in (6.19), so that we obtain terms analogous to D1, . . . , D4. The new estimates for
D1, D2, D4 are very similar to the ones in the proof of Claim 6.2. The main difference is that
now we have ‖p− I‖ .

∑
P :Q⊂P⊂S α(P ).

For the term D3, inequality (6.26) should be replaced by the following:

|(ψQ ◦ p)(x)− ψQ(x)| ≤ ‖∇ψQ‖∞|p(x)− x| . 1

`(Q)

∑
P :Q⊂P⊂3S

α(P ) `(P ),

and then, by (6.25),

|D3| . 1

`(S)

∑
P :Q⊂P⊂3S

α(P ) `(P )µ(Q).

¤
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So we have

(6.30) S2 .
∑

Q∈Dk:Q⊂3S

∑
P :Q⊂P⊂3S

α(P )
`(P )

`(S)
µ(Q) .

∑
P⊂3S

α(P )
`(P )

`(S)
µ(P ) . A(S)µ(S).

On the other hand, if we denote by R the cube in the generation j which contains S, by
Lemma 6.1 we have

∣∣Tjµ(xS)− Tjµ(xT )
∣∣ . α(R)`(R) + dist(xS, LR) + dist(xT , LR)

`(R)2
`(S)

+
|ΠL⊥R

(xS − xT )|
`(R)

.

Therefore, by (6.29) and (6.30),

|B1
j,k| .

∑
R∈Dj

∑
S∈Dm:S⊂R

[ ∑
Q∈Dk:Q⊂3S

α(Q)µ(Q) +A(S)µ(S)
]

×
∑

T∈N(S)

[
α(R)

`(S)

`(R)
+ dist(xS, LR)

`(S)

`(R)2
+ dist(xT , LR)

`(S)

`(R)2
+
|ΠL⊥R

(xS − xT )|
`(R)

]
.

We have

dist(xS, LR) + dist(xT , LR) .
∑

P :S⊂P⊂R

α(P )`(P ),

and also, arguing as in (6.9),

|ΠL⊥R
(xS − xT )| .

∑
P :S⊂P⊂R

α(P )`(S).

Therefore,

|B1
j,k| .

∑
R∈Dj

∑
S∈Dm:S⊂R

[ ∑
Q∈Dk:Q⊂3S

α(Q)µ(Q) +A(S)µ(S)
] ∑

P :S⊂P⊂R

α(P )
`(S)

`(R)
,

and so

∑

j,k

|B1
j,k| .

∑
R∈D

∑
Q⊂R

α(Q)µ(Q)
∑

P :Q⊂P⊂R

α(P )
`(Q)1/2

`(R)1/2
+

∑
R∈D

∑
S⊂R

A(S)µ(S)
∑

P :S⊂P⊂R

α(P )
`(S)

`(R)

.
∑
R∈D

∑
S⊂R

A(S)µ(S)
∑

P :S⊂P⊂R

α(P )
`(S)1/2

`(R)1/2

≈
∑
S∈D

A(S)µ(S)
∑

P :S⊂P

α(P )
`(S)1/2

`(P )1/2

By Cauchy-Schwartz we obtain,

∑

j,k

|B1
j,k| .

(∑
S∈D

A(S)2µ(S)
)1/2(∑

P∈D
α(P )2µ(P )

)1/2

.
∑
S∈D

α(S)2µ(S).
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7. Riesz transforms and quasiorthogonality

In this section we will prove Theorem 1.4. First we introduce the functions ϕm that are
used to define the kernels of the doubly truncated Riesz transforms.

Definition 7.1. Let ψ : [0,+∞) → [0,+∞) be a non increasing C2 function such that
χ[0,1/4] ≤ ψ ≤ χ[0,4]. Suppose moreover that |ψ′| is bounded below away from zero in [1/3, 3].
That is to say,

(7.1) χ[1/3,3] ≤ C5|ψ′|.
For m ∈ Z and x ∈ Rd denote ρm(x) = 1− ψ

(
22m|x|2), and

ϕm(x) = ψ
(
22m|x|2)− ψ

(
22m+2|x|2).

We set

(7.2) Rmµ(x) =

∫
ϕm(x− y)

x− y

|x− y|n+1
dµ(y).

Notice that supp(ρm) ⊂ Rd \B(0, 2−m−1) and supp(ϕm) ⊂ A(0, 2−m−2, 2−m+1). Moreover,∑

m∈Z
ϕm(x) = 1 for all x 6= 0,

and so, formally, ∑

m∈Z
Rmµ(x) = Rµ(x),

where Rµ stands for the n-dimensional Riesz transform.

7.1. Preliminary lemmas. Given a function ϕ : [0,+∞) → [0,+∞) and ε > 0, we denote

Rϕ,εµ(x) =

∫
ϕ

( |x− y|2
ε2

)
x− y

|x− y|n+1
dµ(y).

For the applications below one should think that ϕ is of the form

ϕ(t) = 1− ψ(t) or ϕ(t) = ψ(t)− ψ(t/4),

where ψ is the function introduced in Definition 7.1. If ε = 2−m, in the first case we have
ϕ(|x|2/ε2) = ρm(x), and in the second one, ϕ(|x|2/ε2) = ϕm(x).

Lemma 7.2. Let ϕ : [0,+∞) → [0,+∞) be a C2 function with supp(ϕ) ⊂ [1/4, +∞) and
supp(ϕ′) ⊂ [1/4, 4]. Let ε > 0 and let x ∈ Rd such that |x| ≤ ε/4. We have

(7.3) Rϕ,εµ(x)−Rϕ,εµ(0) = T (x) + E(x),

with

(7.4) T (x) =

∫
1

|y|n+1

[
ϕ

( |y|2
ε2

)(
x− (n+ 1)(x · y)y

|y|2
)

+ ϕ′
( |y|2
ε2

)
2(x · y)y

ε2

]
dµ(y),

and

|E(x)| ≤ C6
|x|2
ε2

.

Given a unitary vector v, if supp(ϕ) ⊂ [1/4, 4], then we have

(7.5) |E(x) · v| ≤ C6

( |x| |x · v|
ε2

+
|x|2
εn+3

∫

B(0,2ε)

|y · v| dµ(y)

)
.

The constant C6 only depends on ‖ϕ(k)‖∞, k = 0, 1, 2.
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Proof. The lemma follows by a direct application of Taylor’s formula. Indeed, let g(s) =
ϕ(s)/s(n+1)/2. By Taylor’s formula,

ϕ(s)

s(n+1)/2
=

ϕ(s0)

s
(n+1)/2
0

+
s0ϕ

′(s0)− n+1
2
ϕ(s0)

s
(n+3)/2
0

(s− s0) + g′′(ξ)
(s− s0)

2

2
,

for some ξ ∈ [s, s0]. If we set s = |x − y|2/ε2 and s0 = |y|2/ε2, and we multiply by (x − y),
we get

ϕ

( |x− y|2
ε2

)
x− y

|x− y|n+1
= ϕ

( |y|2
ε2

) −y
|y|n+1

+ ϕ

( |y|2
ε2

)
x

|y|n+1
(7.6)

+

|y|2
ε2 ϕ

′
(
|y|2
ε2

)
− n+1

2
ϕ
(
|y|2
ε2

)

|y|n+3

(|x|2 − 2x · y)(x− y)

+ g′′(ξx,y)

(|x|2 − 2x · y)2

2εn+5
(x− y),

where ξx,y ∈
[|y|2/ε2, |x − y|2/ε2

]
. If we integrate with respect to µ and y, we obtain (7.3),

with E(x) =
∫
E(x, y)dµ(y), where

E(x, y) =
1

|y|n+3

[ |y|2
ε2
ϕ′

( |y|2
ε2

)
− n+ 1

2
ϕ

( |y|2
ε2

)][|x|2x− |x|2y − 2(x · y)x]

+ g′′(ξx,y)

(|x|2 − 2x · y)2

2εn+5
(x− y) =: E1(x, y) + E2(x, y).

Now we have to estimate the term E(x). From the assumptions on ϕ, we have∣∣∣∣ϕ
( |y|2
ε2

) ∣∣∣∣+
|y|2
ε2

∣∣∣∣ϕ′
( |y|2
ε2

) ∣∣∣∣≤ C,

and then it easily follows that

|E1(x, y)| . |x|2
|y|n+2

.

Now we deal with E2(x, y). We have

g′′(s) =
s2ϕ′′(s)− (n+ 1)s ϕ′(s) + (n+1)(n+3)

4
ϕ(s)

s(n+5)/2
.

By the properties of ϕ, we have |g′′(s)| . 1/|s|(n+5)/2. To estimate g′′(ξx,y) we may assume
that ξx,y > 1/4 since otherwise g′′(ξx,y) = 0. Recall that ξx,y ∈

[|y|2/ε2, |x − y|2/ε2
]
, and so

it easily follows that the condition ξx,y > 1/4 implies that |y| ≥ ε/4, and then ξx,y ≈ |y|2/ε2.
Thus, |g′′(ξx,y)| . εn+5/|y|n+5 in any case, and then

|E2(x, y)| . |x|2
|y|n+2

.

Moreover, for |x| ≤ ε/4 and |y| ≤ ε/4, it is easy to check that Ei(x, y), i = 1, 2, vanishes.
Then, integrating the estimates for Ei(x, y) with respect to µ and y, one gets |E(x)| . |x|2/ε2.

Assume now that supp(ϕ) ⊂ [1/4, 4] and take v ∈ Rn+1. To estimate |E(x) · v| we may
assume that y ∈ A(0, ε/4, 3ε) because otherwise Ei(x, y) = 0, for i = 1, 2. We get

|E1(x, y) · v| . |x|
εn+3

(
ε |x · v|+ |x||y · v|).
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Concerning E2(x, y), we have

|E2(x, y) · v| . 1

εn+5
|g′′(ξx,y|(|x|2 − 2x · y)2|(x− y) · v| . |x|2

εn+3

(|x · v|+ |y · v|).

Integrating with the preceding inequalities with respect to µ and y ∈ A(0, ε/4, 3ε), we
obtain (7.5). ¤

We will also need the following result. See [DS1, Lemma 5.8] for the (easy) proof.

Lemma 7.3. Given Q ∈ D, there are n+ 1 points x0, . . . , xn in Q such that dist(xj, Lj−1) ≥
C−1

7 `(Q), where Lk denotes the k-plane passing through x0, . . . , xk, and where C7 depends
only on n and C0.

Lemma 7.4. Let ϕ : [0,+∞) → [0,+∞) be a C2 function with supp(ϕ) ⊂ [1/4, +∞) and
supp(ϕ′) ⊂ [1/4, 4]. Suppose also that ϕ is non decreasing and that χ[1/3,3] ≤ C8ϕ

′. Let
Q ∈ D and x0, . . . , xn ∈ Q be like in Lemma 7.3. Denote r = d(Q) and let ε > 4r. Suppose
that A(x0, ε/

√
2,
√

2ε) ∩ supp(µ) 6= ∅. Then any point xn+1 ∈ 3Q satisfies

dist(xn+1, L0) . ε

n+1∑
j=1

|Rϕ,εµ(xj)−Rϕ,εµ(x0)|+ r2

ε
,

where L0 is the n-plane passing through x0, . . . , xn.

Proof. Without loss of generality we assume that x0 = 0. We denote by z the orthogonal
projection of xn+1 onto L0. Then by Lemma 7.2 we have

(7.7) |T (xj)| . |Rϕ,εµ(xj)−Rϕ,εµ(x0)|+ r2

ε2
.

for j = 1, . . . , n + 1. Let e1, . . . , en be an orthonormal basis of L0, and set en+1 = (xn+1 −
z)/|xn+1− z| (we suppose that xn+1 6∈ L0), so that en+1 is a unitary vector orthogonal to L0.
Since the points xj, j = 1, . . . , n are linearly independent with “good constants” we get

|T (ei)| . 1

r

n∑
j=1

|T (xj)| . 1

r

n∑
j=1

|Rϕ,εµ(xj)−Rϕ,εµ(x0)|+ r

ε2

for i = 1, . . . , n. Also, since z ∈ L0 and |z| . r, we have |T (z)| .
∑n

j=1 |T (xj)|, and so

by (7.7) (with j = n+ 1),
(7.8)

|T (en+1)| = 1

dist(xn+1, L0)
|T (z − xn+1)| . 1

dist(xn+1, L0)

(n+1∑
j=1

|Rϕ,εµ(xj)−Rϕ,εµ(x0)|+ r2

ε2

)
.

Therefore,

(7.9)
∣∣∣
n+1∑
j=1

T (ej) · ej

∣∣∣ . 1

dist(xn+1, L0)

(n+1∑
j=1

|Rϕ,εµ(xj)−Rϕ,εµ(x0)|+ r2

ε2

)
.
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On the other hand, from the definition of T in (7.4) if we denote y(i) = y · ei, we get

n+1∑
j=1

T (ej) · ej =

∫
1

|y|n+1

[
ϕ

( |y|2
ε2

)
(n+ 1)

∑
i>n+1 y

2
(i)

|y|2 + ϕ′
( |y|2
ε2

)
2
∑n+1

i=1 y
2
(i)

ε2

]
dµ(y)

(7.10)

& 1

εn+3
inf

t∈[2/5,5/2]

(
ϕ(t), ϕ′(t)

) ∫

A(0,(2/5)1/2ε,(5/2)1/2ε)

d∑
i=1

y2
(i) dµ(y)

& 1

εn+3

∫

A(0,(2/5)1/2ε,(5/2)1/2ε)

|y|2 dµ(y) & 1

ε
,

since A(0, ε/21/2, 21/2ε) ∩ supp(µ) 6= ∅. The lemma follows from (7.9) and (7.10). ¤
Remark 7.5. For m ≥ p, set Rm,pµ =

∑m
k=pRkµ and R(m)µ =

∑
j≥mRjµ. Take ε = 2−m

and ε2 = 2−p > ε, and ϕ(t) = 1− ψ(t), where ψ is the function introduced in Definition 7.1.
Under the assumptions and notation of Lemma 7.4,

dist(xn+1, L0) . ε

n+1∑
j=1

( m∑

k=p

|Rkµ(xj)−Rkµ(x0)|+ |R(p)µ(xj)−R(p)µ(x0)|
)

+
r2

ε
.

It is easy to check that

|R(p)µ(xj)−R(p)µ(x0)| . r

ε2

.

As a consequence, we get

(7.11) dist(xn+1, L0) . ε

n+1∑
j=1

m∑

k=p

|Rkµ(xj)−Rkµ(x0)|+ r2

ε
+
rε

ε2

.

Lemma 7.6. Let ϕ : [0,+∞) → [0,+∞) be a C2 function supported in [1/4, 4] such that
χ[1/3,3] ≤ C8ϕ. Let Q ∈ D and x0, . . . , xn ∈ Q be like in Lemma 7.3. Let r = d(Q) and ε such

that 2m−1r < ε ≤ 2mr, with m > 4 big enough. Suppose that A(x0, ε/
√

2,
√

2ε)∩supp(µ) 6= ∅,
and also that dist(xi, LQ) ≤ C9β2(Q) for i = 0, . . . , n, where LQ is the n-plane that minimizes
β2(Q). There exists some constant δ0 (depending only on n, d, C0, C8, C9 and ‖ϕ(k)‖∞, k =
0, 1, 2) such that if

m∑

k=0

β2(B(x0, 2
kr)) ≤ δ0,

then any point xn+1 ∈ 3Q satisfies

dist(xn+1, L0) . ε

n+1∑
j=1

|Rϕ,εµ(xj)−Rϕ,εµ(x0)|+ r2

εn+2

∫

B(x0,2ε)

dist(y, L0)dµ(y),

where L0 is the n-plane passing through x0, . . . , xn.

Proof. The proof is similar in part to the one of Lemma 7.4. Like in Lemma 7.4 we assume
that x0 = 0 and we denote by z the orthogonal projection of xn+1 onto L0. We denote
v = (xn+1 − z)/|xn+1 − z| (we suppose that xn+1 6∈ L0), and we set T v(x) = T (x) · v,
Ev(x) = E(x) · v, where T (x) and E(x) are defined in Lemma 7.2. This lemma tells us that

(7.12) |T v(xj)| . |Rϕ,εµ(xj)−Rϕ,εµ(x0)|+ |Ev(xj)|.
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for j = 1, . . . , n+ 1. Arguing like in (7.8) we deduce
(7.13)

|T v(v)| = 1

dist(xn+1, L0)
|T v(z−xn+1)| . 1

dist(xn+1, L0)

n+1∑
j=1

(|Rϕ,εµ(xj)−Rϕ,εµ(x0)|+|Ev(xj)|
)
.

Moreover, by (7.5) we have

(7.14)
n+1∑
j=1

|Ev(xj)| . rdist(xn+1, L0)

ε2
+

r2

εn+3

∫

B(0,2ε)

dist(y, L0) dµ(y),

since |y · v| ≤ dist(y, L0).
Now we need to estimate T v(v) from below. By the definition of T in (7.4) we have

T v(v) =

∫
1

|y|n+1

[
ϕ

( |y|2
ε2

)(
1− (n+ 1)(y · v)2

|y|2
)

+ ϕ′
( |y|2
ε2

)
2(y · v)2

ε2

]
dµ(y)

≥
∫
ϕ

( |y|2
ε2

)
1

|y|n+1
dµ(y)− (n+ 1)

∫
ϕ

( |y|2
ε2

)
dist(y, L0)

2

|y|n+3
dµ(y)

− 2

∫
ϕ′

( |y|2
ε2

)
dist(y, L0)

2

ε2|y|n+1
dµ(y).

Recall that A(0, ε/
√

2,
√

2ε) ∩ supp(µ) 6= ∅, and so
∫
ϕ

( |y|2
ε2

)
1

|y|n+1
dµ(y) & 1

ε
.

Then we infer that

T v(v) ≥ C10

ε
− C11

∫

B(0,2ε)

dist(y, L0)
2

εn+3
dµ(y).

For y ∈ B(0, 2ε), we have

dist(y, L0) . dist(y, LB(0,2ε)) + distH(L0, LB(0,2ε)) . dist(y, LB(0,2ε)) + ε

m∑

k=1

β2(B(0, 2kr)),

where LB(0,2ε) stands for the n-plane which minimizes β2(B(0, 2ε)). Therefore, we get

∫

B(0,2ε)

dist(y, L0)
2

εn+3
dµ(y) . 1

ε

( m∑

k=1

β2(B(0, 2kr))
)2

. δ2
0

ε
,

and then,

T v(v) ≥ C10

ε
− C12

δ2
0

ε
.

As a consequence, if δ0 is small enough, T v(v) & 1/ε. From this estimate, (7.13), and (7.14)
we deduce that

dist(xn+1, L0) . ε

n+1∑
j=1

|Rϕ,εµ(xj)−Rϕ,εµ(x0)|+ r2

εn+2

∫

B(x0,2ε)

dist(y, L0)dµ(y)+
rdist(xn+1, L0)

ε
.

If ε/r is big enough, the lemma follows. ¤
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7.2. Proof of Theorem 1.4. The second statement of the theorem is a direct consequence
of (1.10). So we only have to deal with (1.10). To prove it, first we will estimate β2(P ) for
any P ⊂ Q, P ∈ Dk, with P small enough. To this end, take points y0, . . . , yn in P as in
Lemma 7.3 and set ε = 2−m, with εÀ d(P ) to be fixed below.

Let r = d(P ). It is easy to check that there exists some constant 0 < C13 < 1 small enough
such that any collection of points x0, . . . , xn with xj ∈ B(yj, C13r), j = 0, . . . , n, also satisfies
the conditions of Lemma 7.3 (maybe with some constant somewhat bigger that C7). Consider
the sets

Gj =
{
x ∈ B(yj, C13r) : dist(x, LP ) ≤ C14β2(P )`(P )

}
j = 0, . . . , n,

where LP is the n-plane that minimizes β2(P ). By Chebyshev, if C14 is chosen big enough,
µ(Gj) ≥ µ(B(yj, C13r))/2 for all j.

We distinguish two cases:

1) Suppose that
∑

m+1≤i≤k β2(B(z, 2−i)) ≤ δ0 for any z ∈ G0.

Take x0, . . . , xn so that xj ∈ Gj for each j. Notice that if 2m0 > C2
0 , then A(x0, 2

−i, 2−i+1)∩
supp(µ) 6= ∅ for some i with m ≤ i ≤ m+m0 (here we need to assume that ε . d(supp(µ)),
which is true if P is small enough). Then, by Lemma 7.6, any point xn+1 ∈ 3P satisfies

(7.15) dist(xn+1, L0) . ε

m+m0∑
i=m

n+1∑
j=1

|Riµ(xj)−Riµ(x0)|+ r2

εn+2

∫

B(x0,2m0+2ε)

dist(y, L0)dµ(y),

where L0 is the n-plane passing through x0, . . . , xn, and the constant in . may depend on
m0.

Let P̂ be the smallest ancestor of P such that 3P̂ contains B(x0, 2
m0+4ε) for all the points

x0 ∈ G0. Clearly, `(P̂ ) ≈ 2−m = ε. Because xj ∈ Gj for 0 ≤ j ≤ n, it is easy to check that

for all y ∈ P̂ ,

dist(y, L0) . dist(y, L bP ) + dH

(
L bP ∩B(x0, d(P̂ )), L0 ∩B(x0, d(P̂ ))

)

. dist(y, L bP ) + ε
∑

M∈D:P⊂M⊂ bP
β2(M).

Therefore, ∫

B(x0,2m0+2ε)

dist(y, L0)dµ(y) . εn+1
∑

M∈D:P⊂M⊂ bP
β2(M).

By (7.15) and the preceding estimate, we get

(7.16)
dist(xn+1, L0)

2

r2
. ε2

r2

m+m0∑
i=m

n+1∑
j=1

|Riµ(xj)−Riµ(x0)|2 +
r2

ε2

( ∑

M∈D:P⊂M⊂ bP
β2(M)

)2

.

Since ( ∑

M∈D:P⊂M⊂ bP
β2(M)

)2

. log(ε/r)
∑

M∈D:P⊂M⊂ bP
β2(M)2,

integrating (7.16) on xj ∈ Gj for 0 ≤ j ≤ n and on xn+1 ∈ 3P , we obtain

(7.17) β2(P )2µ(P ) . ε2

r2

m+m0∑
i=m

‖Riµ‖2
L2(µ|3P ) +

r2

ε2
log

(ε
r

) ∑

M∈D:P⊂M⊂ bP
β2(M)2µ(P ).
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2) Suppose now that
∑

m+1≤i≤k β2(B(z, 2−i)) > δ0 for some z ∈ G0. This implies that
∑

M∈D:P⊂M⊂ bP
β2(M) & δ0,

where P̂ is defined as in the first case.
Also as in case 1), we take x0, . . . , xn with xj ∈ Gj for all j. Recall that A(x0, 2

−i, 2−i+1)∩
supp(µ) 6= ∅ for some i with m ≤ i ≤ m+m0, assuming that 2m0 > C2

0 and that P is small
enough. Then, by Lemma 7.4 and the subsequent remark, if set ε2 = 2p0ε with p0 ≥ 1, any
point xn+1 ∈ 3P satisfies

dist(xn+1, L0) . ε

n+1∑
j=1

m+m0∑

k=m−p0

|Rkµ(xj)−Rkµ(x0)|+ r2

ε
+
rε

ε2

.

If we take ε2 such that rε/ε2 ≈ r2/ε, we get

dist(xn+1, L0) . ε

n+1∑
j=1

m+m0∑

k=m−p0

|Rkµ(xj)−Rkµ(x0)|+ r2

ε

. ε

n+1∑
j=1

m+m0∑

k=m−p0

|Rkµ(xj)−Rkµ(x0)|+ r2

εδ0

∑

M∈D:P⊂M⊂ bP
β2(M).

Operating as in (7.16) and (7.17), we obtain

(7.18) β2(P )2µ(P ) . ε2

r2

m+m0∑
i=m−p0

‖Riµ‖2
L2(µ|3P ) +

r2

ε2δ2
0

log
(ε
r

) ∑

M∈D:P⊂M⊂ bP
β2(M)2µ(P ).

Notice that in both cases 1) and 2) the estimate (7.18) holds for any cube P with `(P ) ≤
C15`(Q), where C15 is small enough and depends on ε, r, etc., since p0 < m and δ0 < 1. Recall

that in (7.18) we have r ≈ `(P ) and ε = 2m ≈ `(P̂ ). Given some constant 0 < τ ¿ 1 to be
fixed below and any dyadic cube P ⊂ Q, we take ε such that r ≈ τε. The sum of (7.18) over
P ⊂ Q such that `(P ) ≤ C15`(Q) gives

∑
P⊂Q

`(P )≤C15`(Q)

β2(P )2µ(P ) ≤ C(τ)
∑

i∈Z
‖Riµ‖2

L2(µ|3Q) +
Cτ 2| log τ |

δ2
0

∑
P⊂Q

∑

M :P⊂M⊂ bP
β2(M)2µ(P ).

Now we use |J(P ) − J(P̂ )| ≈ | log τ |, as well as the trivial estimate β2(P ) . 1 for `(P ) >
C15`(Q), and then we obtain

∑
P⊂Q

β2(P )2µ(P ) ≤ C(τ)
∑

i∈Z
‖Riµ‖2

L2(µ|3Q) +
C16τ

2| log τ |2
δ2
0

∑
P⊂Q

β2(P )2µ(P ) + µ(Q).

If we choose τ such that C16τ
2| log τ |2/δ2

0 ≤ 1/2, the theorem follows. ¤
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