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Abstract. In this paper it is shown that if µ is an n-dimensional Ahlfors-David
regular measure in Rd which satisfies the so-called weak constant density condi-
tion, then µ is uniformly rectifiable. This had already been proved by David and
Semmes in the cases n = 1, 2 and d − 1, and it was an open problem for other
values of n. The proof of this result relies on the study of the n-uniform measures
in Rd. In particular, it is shown here that they satisfy the “big pieces of Lipschitz
graphs” property.

1. Introduction

Given n > 0, a Borel measure µ in Rd is said to be n-uniform if there exists some
constant c0 > 0 such that

(1.1) µ(B(x, r)) = c0 r
n for all x ∈ suppµ and all r > 0.

The study of n-uniform measures is a subject of great importance in geometric
measure theory because of its applications to many other problems. In particular,
this plays a fundamental role in the proof of the celebrated Preiss’ theorem [Pr]
which states that, given a Borel measure σ on Rd, the σ-a.e. existence of the density

Θn(x, σ) = lim
r→0

σ(B(x, r))

rn
,

with Θn(x, σ) > 0 σ-a.e., forces σ to vanish out of a countably n-rectifiable subset of
Rd. There are many other works in areas such as geometric measure theory, potential
analysis or PDE’s where the knowledge of the structure of n-uniform measures is an
important ingredient. See, for example, [Ba], [DKT], [KPT], [KT], or [PTT].

The classification of n-uniform measures in Rd is a difficult problem which is
solved only partially. To begin with, it is easy to check that there are no non-zero n-
uniform measures for n > d. The first remarkable result was obtained by Marstrand
[Mar], who showed that if µ is a non-zero n-uniform measure, then n ∈ Z. Later on,
Preiss proved in [Pr] that for n = 1 or n = 2, any n-uniform measure µ is flat, i.e. it
is of the form cHnbL, where c is some constant, L is an n-plane, and HnbL stands
for the n-dimensional Hausdorff measure restricted to L.

Quite surprisingly, for n ≥ 3, d ≥ 4, there are n-uniform measures which are non-
flat. This is the case, for example, of the 3-dimensional Hausdorff measure restricted
to the light cone in R4, defined by

X := {x ∈ R4 : x2
4 = x2

1 + x2
2 + x2

3},

Funded by the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013) / ERC Grant agreement 320501. Also, partially supported by grants
2009SGR-000420 (Generalitat de Catalunya) and MTM-2010-16232 (Spain).

1



2 XAVIER TOLSA

where xi is the i-th coordinate of x. In Rd with d ≥ 4, the Cartesian product of
X with any (n − 3)-dimensional linear subspace is also an n-uniform measure. In
fact, in the codimension 1 case (n = d− 1) Kowalski and Preiss [KoP] proved that
the only n-uniform measures are either flat measures or the Hausdorff measure Hn
restricted to some rotation and translation of X × Rn−3.

Much less information is known in the case when n 6= 1, 2, d− 1. In this general
situation, Kirchheim and Preiss proved in [KiP] that the support of an n-uniform
measure coincides with an analytic variety, i.e. the zero set of some real analytic
function, which moreover is given explicitly in terms of µ. However, from this result
it is difficult to derive quantitative information which can be applied to solve other
problems from geometric measure theory, such as, for example, the characterization
of uniformly rectifiable measures in terms of the so-called “weak constant density
condition”.

We turn now to the topic of uniform rectifiability. An n-dimensional Ahlfors-
David regular (AD-regular, for short) measure µ in Rd is a Borel measure such that,
for some constant c1 > 0,

(1.2) c−1
1 rn ≤ µ(B(x, r)) ≤ c1 r

n for all x ∈ suppµ, r > 0.

The notion of uniform n-rectifiability (or simply, uniform rectifiability) was in-
troduced by David and Semmes in [DS2]. This is a kind of quantitative version of
n-rectifiability. One of the many equivalent definitions is the following: µ is uni-
formly rectifiable if it is AD-regular and there exist constants θ,M > 0 so that, for
each x ∈ suppµ and R > 0, there is a Lipschitz mapping g from the n-dimensional
ball Bn(0, r) ⊂ Rn to Rd such that g has Lipschitz norm not exceeding M and

µ
(
B(x, r) ∩ g(Bn(0, r))

)
≥ θrn.

In the language of [DS2], this means that suppµ has big pieces of Lipschitz images
of Rn.

A related and more restrictive notion is the one of having “big pieces of Lipschitz
graphs”: an AD-regular measure µ in Rd has big pieces of Lipschitz graphs if there
are constants θ,M > 0 so that, for each x ∈ suppµ and R > 0, there is a Lipschitz
function g : Rn → Rd−n with Lipschitz norm not exceeding M whose graph or a
rotation of this, called Γ, satisfies

µ
(
B(x, r) ∩ Γ

)
≥ θrn.

It is immediate to check that if µ has big pieces of Lipschitz graphs, then it is
uniformly rectifiable. The converse is not true, unless n = 1 (see [DS2, Chapter
I.1]).

In the monographs [DS1] and [DS2] David and Semmes obtained many different
characterizations of uniform rectifiability. One of these characterizations is given in
terms of the weak constant density condition (WCD, for short) mentioned above.
Given µ satisfying (1.2), denote by G(c′1, ε) the subset of those (x, r) ∈ suppµ ×
(0,+∞) for which there exists a Borel measure σ = σx,r satisfying suppσ = suppµ,
the AD-regularity condition (1.2) with the constant c′1, and∣∣σ(B(y, t))− tn

∣∣ ≤ ε rn for all y ∈ suppµ ∩B(x, r) and all 0 < t < r.

One says that µ satisfies the WCD if there is c′1 > 0 such that the set G(c′1, ε)
c :=[

suppµ× (0,+∞)
]
\G(c′1, ε) is a Carleson set for every ε > 0. This means that for
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every ε > 0 there is a constant C(ε) such that∫ R

0

∫
B(x,R)

χG(c′1,ε)
c(x, r) dµ(x)

dr

r
≤ C(ε)Rn for all x ∈ suppµ and all R > 0.

It is not difficult to show that if µ is uniformly rectifiable, then it satisfies the
WCD (see [DS1, Chapter 6]). Conversely, it was proved by David and Semmes
that, in the cases n = 1, 2, and d − 1, if µ satisfies the WCD, then it is uniformly
rectifiable (see [DS2, Chapter III.5]). Roughly speaking, to prove this implication,
by means of a compactness argument they showed that if the WCD holds, then µ
can approximated at most locations and scales by n-uniform measures. For n = 1
and 2, this implies that µ is very close to some flat measure at most locations and
scales since all n-uniform measures turn out to be flat in this case. Then, by the so-
called “bilateral weak geometric lemma” (see Theorem 2.5 below for more details),
µ is uniformly rectifiable. The proof for n = d− 1 is more complicated and it relies
on the precise characterization of all the n-uniform measures by Kowalski and Preiss
in the codimension 1 case, which has already been described above.

The fact that the WCD implies uniform rectifiability was open up to now for
n 6= 1, 2, d− 1. In the present paper we solve this problem.

Theorem 1.1. Let n be an integer with 0 < n < d. If µ is an n-dimensional
AD-regular measure in Rd satisfying the weak constant density condition, then µ is
uniformly rectifiable. Thus, uniform rectifiability is equivalent to satisfying the weak
constant density condition, for AD-regular measures.

Our proof is also based on the fact that at most locations and scales µ is well
approximated by n-uniform measures, as shown in [DS2]. A fundamental ingredient
of our arguments is the fact, proved by Preiss [Pr], that if an n-uniform measure
σ is “quite flat” at infinity, then σ is actually a flat measure. See (b) of Theorem
2.4 for the precise statement. In a sense, from this result it follows that if σ is very
flat at some scale and location, then it will continue to be flat in the same location
at all the smaller scales (see Lemmas 3.6 and 3.7 for more details). Let us remark
that a similar argument was already applied in [PTT] to study the so-called Hölder
doubling measures. Another essential property of any n-uniform measure σ is that
any ball centered in suppσ contains another ball with comparable radius where σ is
very flat. This will be proved below by “touching point arguments”, which involve
the n-dimensional Riesz transforms as an auxiliary tool (see Lemma 3.1).

Besides the application to the study of the WCD in connection to uniform rectifia-
bility, the aforementioned results concerning n-uniform measures have the following
consequence:

Theorem 1.2. Let n be an integer with 0 < n < d and let µ be an n-uniform
measure in Rd. Then µ has big pieces of Lipschitz graphs. In particular, µ is
uniformly rectifiable.

Recall that Kirchheim and Preiss [KiP] proved that if µ is n-uniform, then suppµ
coincides with an analytic variety. One might think that then one can easily deduce
that µ has big pieces of Lipschitz graphs. This is not the case, as far as the author is
concerned, due to the difficulty to derive quantitative information from the results
in [KiP].
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Finally, it is also worth comparing Theorem 1.2 to a connected result of De Pauw
[DeP], which asserts that if µ is a Radon measure in Rn such that the density
µ(B(x,r))

rn is increasing as a functions of r for all x ∈ Rd and it is uniformly bounded
from below for x ∈ suppµ, then µ has big pieces of Lipschitz graphs.

2. Preliminaries

As usual in harmonic analysis and geometric measure theory, in this paper the
letter c is used is to denote a constant (often an absolute constant) which may
change at different occurrences and whose value is not relevant for the arguments.
On the other hand, constants with subscripts, such as c0 or c1, retain their values
at different occurrences.

2.1. The βµ and bβµ coefficients. Given a measure µ and a ball B = B(x, r), we
consider the following Jones’ βµ coefficient of B:

βµ(B) = inf
L

(
sup

x∈suppµ∩B

dist(x, L)

r

)
,

where the infimum is taken over all n-planes L ⊂ Rd. The bilateral βµ coefficient of
B is defined as follows:

bβµ(B) = inf
L

(
sup

x∈suppµ∩B

dist(x, L)

r
+ sup
x∈L∩B

dist(x, suppµ)

r

)
,

where the infimum is taken over all n-planes L ⊂ Rd again.

2.2. Weak convergence of measures. We say that a sequence of Radon measures
{µj}j in Rd converges to another Radon measure µ in Rd if, for all continuous

functions f with compact support in Rd,

lim
j→∞

∫
f dµj =

∫
f dµ.

We denote by AD(c1,Rd) the family of AD-regular measures in Rd with constant
c1, and by U(c0,Rd) the family of uniform measures with constant c0.

Lemma 2.1. The following holds:

(a) If {µj}j is a sequence of measures from AD(c1,Rd), then there exists a sub-

sequence which converges weakly to some Radon measure in Rd.
(b) If a sequence from AD(c1,Rd) converges weakly to a Radon measure µ, then

either µ = 0 or µ ∈ AD(c1,Rd).
(c) If {µj}j is a sequence of measures from U(c0,Rd) such that 0 ∈ suppµj for

every j, then µ ∈ U(c0,Rd).

The proof of this lemma is standard. See for example [DS2, Lemma III.5.8] for
(a) and (b). (c) follows from (b) setting c1 = 1.

Also we have:
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Lemma 2.2. Let {µj}j be a sequence from AD(c1,Rd) which converges weakly to a

Radon measure µ. Then for every ball B ⊂ Rd we have:

lim
j→∞

(
sup

x∈B∩suppµ
dist(x, suppµj)

)
= 0

and

lim
j→∞

(
sup

x∈B∩suppµj

dist(x, suppµ)

)
= 0.

See [DS2, Lemma III.5.9]. The following is an easy consequence whose proof is
left for the reader.

Lemma 2.3. Let {µj}j be a sequence from AD(c1,Rd) which converges weakly to a
Radon measure µ, and suppose that suppµj ∩B 6= ∅ for all j and suppµ ∩B 6= ∅.
Then

(2.1)
1

2
lim sup
j→∞

βµj (
1
2B) ≤ βµ(B) ≤ 2 lim inf

j→∞
βµj (2B)

and

(2.2)
1

2
lim sup
j→∞

bβµj (
1
2B) ≤ bβµ(B) ≤ 2 lim inf

j→∞
bβµj (2B).

2.3. Uniform measures. Given a Borel map T : Rd → Rd, the image measure
T#µ is defined by T#µ(E) = µ(T−1(E)), for E ⊂ Rd. For x, y ∈ Rd and r > 0, we
denote Tx,r(y) = (y − x)/r.

In [Pr, Theorem 3.11] it is shown that if µ is an n-uniform measure on Rd, then
there exists another n-uniform measure λ such that

lim
r→∞

1

rn
Tx,r#µ = λ weakly for all x ∈ Rd.

One says that λ is the tangent measure of µ at∞. For more information on tangent
measures, see [Pr] or [Mat, Chapters 14-17], for instance.

The following result is the classification theorem of uniform measures due to
Preiss.

Theorem 2.4 ([Pr]). Let µ be an n-uniform measure on Rd. The following holds:

(a) If n = 1 or 2, then µ is n-flat.
(b) If n ≥ 3, there exists a constant τ0 > 0 depending only on n and d such that

if the tangent measure λ of µ at ∞ satisfies

(2.3) βλ(B(0, 1)) ≤ τ0

then µ is n-flat.

For the reader’s convenience, let us remark that the statement (a) is in Corollary
3.17 of [Pr]. Regarding (b), it is not stated explicitly in [Pr], although it is a
straightforward consequence of [Pr, Theorem 3.14 (1)] (and the arguments in its
proof) and [Pr, Corollary 3.16]. See also [DeL, Propositions 6.18 and 6.19] for more
details.
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2.4. The µ-cubes and uniform rectifiability. Below we will use the “dyadic
cubes” associated with an AD-regular measure µ built by David in [Da, Appendix
1] (see also [Ch] for an alternative construction). These dyadic cubes are not true
cubes. To distinguish them from the usual cubes, we will call them “µ-cubes”.

Given an AD-regular measure µ in Rd, the properties satisfied by the µ-cubes are
the following. For each j ∈ Z, there exists a family Dµj of Borel subsets of suppµ

(the dyadic µ-cubes of the j-th generation) such that:

(i) each Dµj is a partition of suppµ, i.e. suppµ =
⋃
Q∈Dµj

Q and Q ∩ Q′ = ∅
whenever Q,Q′ ∈ Dµj and Q 6= Q′;

(ii) if Q ∈ Dµj and Q′ ∈ Dµk with k ≤ j, then either Q ⊂ Q′ or Q ∩Q′ = ∅;

(iii) for all j ∈ Z and Q ∈ Dµj , we have 2−j . diam(Q) ≤ 2−j and µ(Q) ≈ 2−jn;

(iv) if Q ∈ Dµj , there exists some point zQ ∈ Q (the center of Q) such that

dist(zQ, suppµ \Q) & 2−j .

We denote Dµ =
⋃
j∈ZD

µ
j . Given Q ∈ Dµj , the unique µ-cube Q′ ∈ Dµj−1 which

contains Q is called the parent of Q. We say that Q is a son of Q′. Two cubes which
are sons of the same parent are called brothers. Also, given Q ∈ Dµ, we denote by
Dµ(Q) the family of µ cubes P ∈ Dµ which are contained in Q.

For Q ∈ Dµj , we define the side length of Q as `(Q) = 2−j . Notice that `(Q) .
diam(Q) ≤ `(Q). Actually it may happen that a µ-cube Q belongs to Dµj ∩D

µ
k with

j 6= k, because there may exist µ-cubes with only one son. In this case, `(Q) is not
well defined. However this problem can be solved in many ways. For example, the
reader may think that a µ-cube is not only a subset of suppµ, but a couple (Q, j),
where Q is a subset of suppµ and j ∈ Z is such that Q ∈ Dµj .

Given a µ-cube Q, we denote

BQ = B(zQ, 3`(Q)).

Then we define βµ(Q) := βµ(BQ) and bβµ(Q) := bβµ(BQ).
One says that a family F ⊂ Dµ is a Carleson family if there exists some constant

c such that ∑
Q∈Dµ:Q⊂R

µ(Q) ≤ c µ(R) for every R ∈ Dµ.

An AD-regular measure µ is said to satisfy the “bilateral weak geometric lemma”
if for each ε > 0 the family of µ-cubes Q ∈ Dµ such that bβµ(Q) > ε is a Carleson
family. The following deep result is due to David and Semmes (see [DS2, Chapter
II.2]).

Theorem 2.5. Let µ be an AD-regular measure in Rd. Then µ is uniformly recti-
fiable if and only if it satisfies the bilateral weak geometric lemma.

3. Uniform measures

3.1. Existence of many balls with small βµ. In this section we will prove the
following.

Lemma 3.1. Let µ be an n-uniform measure in Rd. For every ε > 0 there exists
some τ > 0 such that every ball B centered in suppµ contains another ball B′ also
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centered in suppµ which satisfies βµ(B′) ≤ ε and r(B′) ≥ τ r(B). Moreover, τ only
depends on ε, n and d.

We will prove the preceding lemma by touching point arguments involving the
Riesz transforms. For 0 < s < t and a Radon measure ν in Rd, we consider the
doubly truncated n-dimensional Riesz transform of ν at x ∈ Rd, defined as follows:

Rr,sν(x) =

∫
r<|x−y|≤s

x− y
|x− y|n+1

dν(y).

Observe that the kernel x−y
|x−y|n+1 is vectorial, and thus Rr,sν(x) ∈ Rd.

Next we need to prove some following auxiliary results.

Lemma 3.2. Let µ be an n-uniform measure in Rd satisfying (1.1). Let z0 ∈ suppµ
and r > 0. For all s > r and all x ∈ B(z0, r) ∩ suppµ, we have∣∣∣∣x− z0

r
· Rr,sµ(z0)

∣∣∣∣ ≤ c c0.

The dot “·” in the preceding inequality denotes the scalar product in Rd.

Proof. Without loss of generality we assume that µ ∈ U(1,Rd) and that z0 = 0.
For fixed parameters r, s with 0 < r < s, let ϕ : R → R be a non-negative radial

C∞ function such that:

ϕ(t) =


0 if |t| ≤ r

2
or |t| ≥ 2s,

1

tn
if r ≤ |t| ≤ s.

We also ask ϕ to satisfy:

|ϕ(t)| ≤ 1

tn
and |ϕ′(t)| ≤ cmin

(
1

rn+1
,

1

tn+1

)
for all t ∈ R.

The precise values of ϕ(t) for t ∈ ( r2 , r) ∪ (s, 2s) do not matter as soon as the
preceding inequalities are fulfilled.

Consider now the function ρ : R→ R defined by

ρ(u) = −
∫ ∞
u

ϕ(t) dt,

so that ρ′(t) = ϕ(t). Finally, for y ∈ Rd set

Φ(y) = ρ
(
|y|
)
.

Notice that Φ is a radial C∞ function which is supported on B̄(0, 2s).
By Taylor’s formula, for all x, y ∈ Rd we have

Φ(x− y)− Φ(−y) = x · ∇Φ(−y) +
1

2
xT · ∇2Φ(ξx,y) · x,

for some ξx,y belonging to the segment [x − y,−y] ⊂ Rd. Thus, integrating with
respect to µ,

(3.1) Φ ∗ µ(x)− Φ ∗ µ(0) = x ·
∫
∇Φ(−y) dµ(y) +

1

2

∫
xT · ∇2Φ(ξx,y) · x dµ(y).
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For 0, x ∈ suppµ, we have Φ∗µ(x) = Φ∗µ(0) because Φ is radial and µ is a uniform
measure. Thus the left side of (3.1) vanishes. This is the crucial step where the
uniformity of µ is used in this lemma.

Observe that

(3.2) ∇Φ(z) = ρ′(|z|) z

|z|
= ϕ(|z|) z

|z|
.

Thus,

∇Φ(z) =
z

|z|n+1
for r ≤ |z| ≤ s,(3.3)

|∇Φ(z)| ≤ c

rn
for |z| ≤ r,(3.4)

|∇Φ(z)| ≤ 1

sn
for |z| ≥ s.(3.5)

From (3.3) we infer that∫
r<|y|≤s

∇Φ(−y) dµ(y) = −Rr,sµ(0),

and so∫
∇Φ(−y) dµ(y) =

∫
|y|≤r

∇Φ(−y) dµ(y)−Rr,sµ(0) +

∫
|y|>s

∇Φ(−y) dµ(y).

By (3.4) we have ∣∣∣∣∣
∫
|y|≤r

∇Φ(−y) dµ(y)

∣∣∣∣∣ ≤ c

rn
µ(B(0, r)) = c,

and by (3.5), recalling that Φ(|y|) = 0 for |y| ≥ 2s,∣∣∣∣∣
∫
|y|>s

∇Φ(−y) dµ(y)

∣∣∣∣∣ ≤ 1

sn
µ(B(0, 2s)) = 2n.

From (3.1) and the preceding estimates we deduce that

(3.6) |x · Rr,sµ(0)| ≤ c |x|+ |x|
2

2

∫ ∣∣∇2Φ(ξx,y)
∣∣ dµ(y).

We are going now to estimate the last integral above. From (3.2) and the definition
of ϕ it easily follows that

|∇2Φ(z)| ≤ c min

(
1

rn+1
,

1

|z|n+1

)
for all z ∈ Rd.

For |y| ≤ 2r, we use the estimate

|∇2Φ(ξx,y)| ≤ c
1

rn+1
,

and for |y| > 2r, taking into account that |x| ≤ r and ξx,y ∈ [x− y,−y], we deduce
that |ξx,y| ≈ |y|, and thus we have

|∇2Φ(ξx,y)| ≤ c
1

|ξx,y|n+1
≈ 1

|y|n+1
.
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Therefore,∫ ∣∣∇2Φ(ξx,y)
∣∣ dµ(y) ≤ c

∫
|y|≤2r

1

rn+1
dµ(y) + c

∫
|y|>2r

1

|y|n+1
µ(y) ≤ c

r
,

where we used the fact that µ(B(0, t)) = tn for all t > 0 to estimate the last two
integrals. So by (3.6) we get

|x · Rr,sµ(0)| ≤ c |x|+ c
|x|2

r
≤ c r,

which proves the lemma. �

We need now to introduce some variants of the βµ coefficients. Given 0 ≤ m ≤ d
and a ball B ⊂ Rd, we denote

β(m)
µ (B) = inf

L

(
sup

x∈suppµ∩B

dist(x, L)

r(B)

)
,

where the infimum is taken over all m-planes L ⊂ Rd. So βµ(B) = β
(n)
µ (B).

Lemma 3.3. Let µ be a Radon measure in Rd and let B be a ball centered in suppµ.
Suppose that there exist constants c1, κ > 0 such that
(3.7)

c−1
1 rn ≤ µ(B(x, r)) ≤ c1 r

n for x ∈ B ∩ suppµ and κ r(B) ≤ r ≤ 2r(B).

Suppose also that, for some ε > 0,

β(d−1)
µ (B(x, r)) ≥ ε for x ∈ B ∩ suppµ and κ r(B) ≤ r ≤ 2r(B).

For any M > 0, if κ = κ(M, ε, c1) is small enough, then there exist r ∈ [κ r(B), r(B)]
and points x, z0 ∈ B ∩ suppµ with |x− z0| < κr(B) such that

(3.8)

∣∣∣∣x− z0

κ r(B)
· Rκr(B),rµ(z0)

∣∣∣∣ ≥M.

Proof. Suppose that κ is small enough (depending now on c1, n, d). From the condi-
tion (3.7), it is not difficult to check that then there exists some open ball B′ centered
at some point from 1

4B with r(B′) ≥ c2 r(B) which does not intersect suppµ, with
c2 > 0 depending on c1, n, d. We assume that κ � c0. We dilate B′ till we have
∂B′ ∩ suppµ 6= ∅ while still B′ ∩ suppµ = ∅, and we keep the same notation B′ for
the dilated ball. Observe that r(B′) ≤ r(B)/4, because otherwise B′ would contain
the center of B, which belongs to suppµ. This implies that B′ ⊂ 1

2B.

Let z0 ∈ suppµ ∩ ∂B′. By the preceding discussion, z0 ∈ 1
2B̄. Let L be the

hyperplane which is tangent to B′ at z0, and let U be the closed half-space whose
boundary is L and does not contain B′. Suppose for simplicity that z0 = 0 and
U = {y ∈ Rd : yd ≥ 0}. Also, denote D = Rd \ U , i.e. D = {y ∈ Rd : yd < 0}.

For each j ≥ 0, let Bj be the closed ball centered in z0 = 0 with radius r(Bj) =(
2
ε

)j
κ r(B). It is easy to check that there exists some absolute constant c3 such

that

(3.9) dist(y, L) = |yd| ≤ c3
r(Bj)

2

r(B′)
if y ∈ D ∩Bj \B′,
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where yd stands for the d-th coordinate of y. On the other hand, since β
(d−1)
µ (Bj) ≥

ε, we infer that there exists some y ∈ Bj ∩ suppµ such that

(3.10) dist(y, L) ≥ ε r(Bj).

Thus, if r(Bj) < c−1
3 ε r(B′), then the points y ∈ Bj which satisfy (3.10) are contained

in U . By the condition (3.7), it follows that

µ(U ∩Bj+1 \ (Bj−1 ∪ Uεr(Bj)/2(L)) ≥ c−1
1 c(ε) r(Bj)

n,

for some constant c(ε) > 0 (here the notation Uδ(A) stands for the δ-neighborhood
of A). Taking also into account that yd ≥ 0 for all y ∈ U , for j ≥ 1 we deduce that∫

U∩Bj+1\Bj−1

yd
|y|n+1

dµ(y) ≥ µ
(
U ∩Bj+1 \ (Bj−1 ∪ Uεr(Bj)/2(L))

) ε r(Bj)

2 r(Bj−1)n+1

≥ c−1
1 c′(ε).(3.11)

Also, by (3.9),
(3.12)∣∣∣∣∣
∫
D∩Bj\Bj−1

yd
|y|n+1

dµ(y)

∣∣∣∣∣ ≤ µ(D ∩Bj \Bj−1

) c3 r(Bj)
2

r(B′) r(Bj−1)n+1
≤ c1 c(ε) r(Bj)

r(B′)
.

Choose now an integer N > 1 such that r := r(BN ) ≤ r(B′) and denote by
Rdκ r(B),rµ the d-th coordinate of Rκ r(B),rµ. We write

Rdκ r(B),rµ(z0) =

N∑
j=1

∫
y∈Bj\Bj−1

yd
|y|n+1

dµ(y)

≥
N∑
j=1

∫
U∩Bj\Bj−1

yd
|y|n+1

dµ(y)−
N∑
j=1

∣∣∣∣∣
∫
D∩Bj\Bj−1

yd
|y|n+1

dµ(y)

∣∣∣∣∣ .
Notice that, by (3.11),

N∑
j=1

∫
U∩Bj\Bj−1

yd
|y|n+1

dµ(y) ≥ 1

2

N−1∑
j=1

∫
U∩Bj+1\Bj−1

yd
|y|n+1

dµ(y) ≥ c−1
1 c′(ε)

2
(N − 1).

Here we took into account that all the summands have positive sign. On the other
hand, from (3.12) we derive

N∑
j=1

∣∣∣∣∣
∫
D∩Bj\Bj−1

yd
|y|n+1

dµ(y)

∣∣∣∣∣ ≤
N∑
j=1

c1 c(ε) r(Bj)

r(B′)
≤ c1 c4(ε).

Thus, setting ~n := (0, . . . , 0, 1),

~n · Rκ r(B),rµ(z0) = Rdκ r(B),rµ(z0) ≥ c−1
1 c′(ε)

2
(N − 1)− c1 c4(ε).

Since βµ
(
B(0, κ r(B))

)
≥ ε, there are points (or vectors) x(1), . . . , x(d) ∈ suppµ ∩

B(0, κ r(B)) which generate Rd. In fact, one can write

~n =

d∑
i=1

ai
x(i)

κ r(B)
,
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and one can check that |ai| ≤ c5(ε) for every i. Thus, there exists some x(i) ∈
suppµ ∩B(0, κ r(B)) such that∣∣∣∣ x(i)

κ r(B)
· Rκ r(B),rµ(z0)

∣∣∣∣ ≥ 1

d c5(ε)

[
c−1

1 c′(ε)

2
(N − 1)− c1 c4(ε)

]
.

If N is taken big enough (which forces κ to be small enough), then (3.8) follows. �

Lemma 3.4. Let µ be an n-uniform measure in Rd and let n < m ≤ d. For any
ε > 0 there exist constants δ, τ > 0 such that if B is a ball centered in suppµ such

that β
(m)
µ (B) ≤ δ, then there exists another ball B′ also centered in suppµ which

satisfies β
(m−1)
µ (B′) ≤ ε and r(B′) ≥ τ r(B). Moreover, τ and δ only depend on ε,

n and d.

Proof. Without lost of generality, we assume that µ ∈ U(1,Rd).
Let L be a best approximating m-plane for β

(m)
µ (B) and denote by ΠL the or-

thogonal projection onto L. Consider the image measure µ̃ = ΠL#(µbB). It is easy
to check that

r−n ≤ µ̃(B(x, r)) ≤ c rn for x ∈ 1

2
B ∩ supp µ̃ and δ r(B) ≤ r ≤ r(B).

We claim that for all z0 ∈ 1
2B ∩ supp µ̃ and r0, r with δ1/2 r(B) ≤ r0 ≤ r ≤ r(B), if

δ is small enough,

(3.13)

∣∣∣∣x− z0

r0
· Rr0,rµ̃(z0)

∣∣∣∣ ≤ c for x ∈ B(z0, r0) ∩ supp µ̃,

where c is some absolute constant. Assuming this for the moment, Lemmas 3.2 and
3.3 (via the identification Rm ≡ L and choosing d = m) ensure the existence of a

ball B′ ⊂ 1
2B centered in supp µ̃ with r(B′) ≥ κ r(B) such that β

(m−1)
µ̃ (B′) ≤ 1

2 ε,

assuming δ small enough (in particular δ ≤ κ). Of course, κ is the constant given
by Lemma 3.3 with the appropriate values of c1, ε and M there. Together with the
fact that suppµ ∩B ⊂ Uδr(B)(L), this implies that there exists some (m− 1)-plane
L′ ⊂ L such that

suppµ ∩B′ ⊂ Uδr(B)+ ε
2
r(B′)(L

′).

Thus,

β(m−1)
µ (B′) ≤

δr(B) + ε
2 r(B

′)

r(B′)
≤ δ τ−1 +

1

2
ε ≤ ε,

if δ is taken small enough.
It remains to prove (3.13). First we will estimate the difference betweenRr0,rµ̃(z0)

and Rr0,rµ(z1), where z1 ∈ suppµ ∩ B is such that ΠL(z1) = z0. Denote by K the

kernel of R. That is, K(z0 − y) = z0−y
|z0−y|n+1 . Also, set A(z0, r0, r) = {y ∈ Rd : r0 <

|y − z0| ≤ r}. Observe that

Rr0,rµ̃(z0) =

∫
A(z0,r0,r)

K(z0−y) dΠL#µ(y) =

∫
B∩Π−1

L (A(z0,r0,r))
K
(
z0−ΠL(y)

)
dµ(y).
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Therefore,∣∣Rr0,rµ̃(z0)−Rr0,rµ(z1)
∣∣

≤
∫
B∩Π−1

L (A(z0,r0,r))

∣∣K(z0 −ΠL(y)
)
−K(z1 − y))

∣∣ dµ(y)

+

∣∣∣∣∣
∫
B∩Π−1

L (A(z0,r0,r))
K
(
z1 − y) dµ(y)−

∫
A(z1,r0,r)

K
(
z1 − y) dµ(y)

∣∣∣∣∣
=: S1 + S2.

To estimate S1, observe that every y in its domain of integration satisfies

|z0 − y| ≥ |z0 −ΠL(y)| − |y −ΠL(y)| ≥ r0 − δ r(B) ≥ 1

2
r0,

because r0 ≥ δ1/2r(B)� δ r(B). Also, we write∣∣(z0 −ΠL(y))− (z1 − y)
∣∣ ≤ |z0 − z1|+ |ΠL(y)− y| ≤ 2δ r(B)� |z0 − y|.

Thus, ∣∣K(z0 −ΠL(y)
)
−K(z1 − y))

∣∣ ≤ c δ r(B)

|z0 − y|n+1
.

So we obtain

S1 ≤
∫
B∩Π−1

L (A(z0,r0,r))

c δ r(B)

|z0 − y|n+1
dµ(y)

≤
∫
|y−z0|≥ 1

2
r0

c δ r(B)

|z0 − y|n+1
dµ(y) ≤ c δ r(B)

r0
≤ 1,

where in the third inequality we used the fact that µ(B(z0, t)) = tn for all t > 0 and
in the last one that δ r(B)� r0.

Concerning S2, we have

S2 ≤
∫
B∩[Π−1

L (A(z0,r0,r))∆A(z1,r0,r)]

∣∣K(z1 − y)
∣∣ dµ(y).

It is easy to check that, for δ small enough,

suppµ ∩B ∩
[
Π−1
L (A(z0, r0, r))∆A(z1, r0, r)

]
⊂ A(z1,

1
2r0, 2r0) ∪A(z1,

1
2r, 2r).

Then we get

S2 ≤
∫
A(z1,

1
2 r0, 2r0)

1

|z1 − y|n
dµ(y) +

∫
A(z1,

1
2 r, 2r)

1

|z1 − y|n
dµ(y) ≤ c.

So we have shown that

(3.14)
∣∣Rr0,rµ̃(z0)−Rr0,rµ(z1)

∣∣ ≤ c.
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Let x ∈ supp µ̃ ∩ B(z0, r0), and take x1 ∈ suppµ ∩ B such that ΠL(x1) = x. We
have ∣∣∣∣x− z0

r0
· Rr0,rµ̃(z0)

∣∣∣∣ ≤ ∣∣∣∣x− z0

r0
·
[
Rr0,rµ̃(z0)−Rr0,rµ(z1)

]∣∣∣∣
+

∣∣∣∣(x− z0)− (x1 − z1)

r0
· Rr0,rµ(z1)

∣∣∣∣
+

∣∣∣∣x1 − z1

r0
· Rr0,rµ(z1)

∣∣∣∣ .(3.15)

The first term on the right side is bounded by some constant due to (3.14). For the
second one we take into account that

(3.16)
∣∣(x− z0)− (x1 − z1)

∣∣ ≤ |x− x1|+ |z0 − z1| ≤ 2δ r(B)

and we use the brutal estimate∣∣Rr0,rµ(z1)
∣∣ ≤ ∫

r0<|y−z1|≤r
|K(z1 − y)| dµ(y)

≤ c
(

1 + log
r

r0

)
≤ c log

r(B)

r0
≤ c | log δ|.

So recalling that r0 ≥ δ1/2 r(B) we obtain∣∣∣∣(x− z0)− (x1 − z1)

r0
· Rr0,rµ(z1)

∣∣∣∣ ≤ c δ r(B)

r0
| log δ| ≤ c δ1/2 | log δ| ≤ c.

To estimate the last term on the right side of (3.15) we wish to apply Lemma 3.2.
Since the assumption that x1 ∈ B(z1, r0) is not guarantied, a direct application of
the lemma is not possible. Anyway this issue does not cause any significant difficulty.
Indeed, from (3.16) it follows that

|x1 − z1| ≤ |x− z0|+ 2δ r(B) ≤ r0 + 2δ1/2 r0 ≤ 2 r0.

Then we set∣∣∣∣x1 − z1

r0
· Rr0,rµ(z1)

∣∣∣∣ ≤ 2

∣∣∣∣x1 − z1

2r0
· R2r0,rµ(z1)

∣∣∣∣+

∣∣∣∣x1 − z1

r0
· Rr0,2r0µ(z1)

∣∣∣∣ .
By Lemma 3.2 the first summand on the right side is uniformly bounded. The last
summand does not exceed |Rr0,2r0µ(z1)|, which is also uniformly bounded. So the
claim (3.13), and thus the lemma, is proved. �

Proof of Lemma 3.1. We just have to apply Lemma 3.4 repeatedly. Indeed, since

β
(d)
µ (B) = 0, we infer that there exists some ball B1 ⊂ B centered in suppµ with

r(B1) ≈ r(B) such that β
(d−1)
µ (B1) ≤ ε1. Again, assuming that m < d − 1 this

implies that that there exists some ball B2 ⊂ B1 centered in suppµ with r(B2) ≈
r(B1) such that β

(d−2)
µ (B1) ≤ ε2, and so on. At the end we will find some ball

Bd−n ⊂ Bd−n−1 centered in suppµ with r(Bd−n) ≈ r(Bd−n−1) ≈ · · · ≈ r(B) such

that β
(n)
µ (Bd−n) ≤ εn. The constant εn can be taken arbitrarily small if the constants

ε1, . . . , εn−1 are chosen suitably small too. �
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3.2. A stability lemma for the βµ coefficients and some consequences.

Lemma 3.5. Let µ be an n-uniform measure in Rd. For any ε > 0 there exists
some δ > 0 such that for x ∈ suppµ and r > 0, if βµ(B(x, δ−1r)) ≤ δ2, then
bβµ(B(x, r)) ≤ ε. Moreover, δ only depends on ε, n and d.

Proof. Suppose that the lemma does not hold. So there exists some ε > 0 and a
sequence of n-uniform measures µj ∈ U(1,Rd) and balls Bj centered in suppµj such

that βµj (j Bj) ≤
1

j2
and bβµj (Bj) ≥ ε. After renormalizing, we may assume that

Bj = B(0, 1). Consider a weak limit ν of some subsequence of {µj}j . Redefining
{µj}j if necessary, we may assume that it converges weakly to ν. Observe that ν is
non-zero (because 0 ∈ suppµj for all j) and n-uniform.

Notice that for 1 ≤ k ≤ j,

βµj (B(0, k)) ≤ j

k
βµj (B(0, j)) ≤ 1

jk
→ 0 as j →∞.

Then it follows from Lemma 2.2 that βν(B(0, 1
2k)) = 0 for all k ≥ 1. Thus, ν is

supported on some n-plane. Then by Theorem 2.4 (b) it turns out that ν is flat.
However, from the fact that bβµj (B(0, 1)) ≥ ε for all j ≥ 1, it follows that

bβν(B(0, 2)) ≥ 1
2ε too, and thus ν is not flat. So we get a contradiction. �

Next lemma can be understood as some kind of stability condition for the βµ
coefficients. This is a variant of Lemma 4.5 from [PTT], with a very similar (and
simple) proof. For the reader’s convenience we will show the detailed arguments.

Lemma 3.6 (Stability lemma). Let µ be an n-uniform measure in Rd and let ε > 0.
There exists some constant δ0 depending only on n and d and an integer N > 0
depending only on ε, n and d such that if B is a ball centered in suppµ satisfying

(3.17) βµ(2kB) ≤ δ0 for 1 ≤ k ≤ N, then bβµ(B) ≤ ε.

A key point in this lemma is that δ0 does not depend on ε. Indeed, in order to
guaranty bβ(B) small enough it suffices to take a sufficiently big N .

Proof. It is enough to show that βµ(B) ≤ ε. The full lemma follows by combining
this partial result with Lemma 3.5 and adjusting appropriately the parameters ε
and N .

Suppose that the integer N does not exist. Then there is a sequence of n-uniform
measures on Rd, {µj}j≥1, and balls Bj = B(xj , rj) centered in suppµj such that for
any j

βµj (2
kBj) ≤ δ0 for 1 ≤ k ≤ j, but βµj (Bj) > ε.

For each j ≥ 1, consider the renormalized measure µ̃j defined by

µ̃j(A) =
µj(rjA+ xj)

µ(Bj)
.

That is, µ̃j = Txj ,rj#µj , where Txj ,rj is a homothety such that Txj ,rj (Bj) = B(0, 1).

Notice that µ̃j ∈ U(1,Rd) and 0 ∈ supp µ̃j for every j. Extracting a subsequence if
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necessary, we may assume that {µ̃j} converges weakly to another measure ν, which
is n-uniform. Observe that, by (2.1),

(3.18) βν(B(0, 2)) ≥ 1

2
lim sup
j→∞

βµ̃j (B(0, 1)) =
1

2
lim sup
j→∞

βµj (Bj) ≥
1

2
ε,

and, for all k ≥ 0,

(3.19) βν(B(0, 2k)) ≤ 2 lim inf
j→∞

βµ̃j (B(0, 2k+1)) = 2 lim inf
j→∞

βµj (2
k+1Bj) ≤ 2δ0.

By (2.1), the latter estimate implies that the tangent measure λ of ν at ∞ satisfies

βλ(B(0, 1)) ≤ 2 lim inf
k→∞

βν(B(0, 2k)) ≤ 4 δ0.

Thus, if we assume that δ0 ≤ τ0/4 (where τ0 is the constant in (2.3)), then ν is flat,
by Theorem 2.4. This contradicts (3.18), and the lemma follows. �

An easy consequence of the preceding lemma is the following.

Lemma 3.7. Let µ be an n-uniform measure in Rd. For any η > 0, there exists
δ > 0 depending only on η, n and d such that if B is a ball centered in suppµ with
βµ(B) ≤ δ, then bβµ(B′) ≤ η for any ball B′ ⊂ 1

2B centered in suppµ.

The arguments to prove this lemma are very similar to the ones of Theorem 4.2
from [PTT]. Also, this is a particular case of the more general result that will be
shown below in the forthcoming Lemma 4.3. For these reasons, we will skip the
proof.

Proof of Theorem 1.2. Clearly we may assume that µ ∈ U(1,Rd). Let ε > 0.
From Lemmas 3.1 and 3.7, if follows that there exists some constant c(ε) > 0 such
that any ball B centered in suppµ contains another ball B′ with r(B′) ≥ c(ε)r(B)
centered in suppµ such that all the balls B′′ contained in 1

2B
′ and centered in suppµ

satisfy bβµ(B′′) ≤ ε.
Consider a µ-cube Q ∈ Dµ such that Q ⊂ 1

2B
′ and `(Q) ≈ r(B′). Then µ is locally

cε-Reifenberg flat on Q. That is, bβµ(P ) ≤ c ε for any µ-cube P ∈ Dµ contained in
Q. This implies that if ε is small enough, then µbQ has big pieces of Lipschitz graphs
(see Theorem 15.2 of [DT]). In particular, there exists an n-dimensional (possibly
rotated) Lipschitz graph Γ such that

µ(B ∩ Γ) ≥ µ(Q ∩ Γ) ≥ τ µ(Q) ≥ τ ′ µ(B),

with τ, τ ′ > 0, and the bound on the slope of Γ depending on ε, n, d only. �

Remark 3.8. In fact, from Theorem 1.9 of [PTT] it follows that the graph Γ above
is the graph of a C1+α function, if ε is small enough. On the other hand, since
suppµ is an analytic variety by [KiP], it seems natural to expect Γ to be the graph
of a real analytic function.
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4. The weak constant density condition implies uniform rectifiability

Throughout all this section µ will be an n-dimensional AD-regular measure in Rd.
Given a ball B and two Radon measures ν and σ such that B ∩ supp ν 6= ∅ and

B ∩ suppσ 6= ∅, we denote

dB(ν, σ) = sup
x∈B∩supp ν

dist(x, suppσ) + sup
x∈B∩suppσ

dist(x, supp ν).

Given some small ε > 0, we denote by N0(ε) the family of balls B ⊂ Rd such that
there exists an n-uniform measure σ in Rd satisfying

dB(µ, σ) ≤ ε r(B).

Further, we let N (ε) be the set of µ-cubes Q ∈ Dµ such that BQ ∈ N0(ε).
In [DS2, Chapter III.5] the following is proved:

Proposition 4.1. If µ satisfies the weak constant density condition, then Dµ \N (ε)
is a Carleson family for all ε > 0.

Next lemma is a simple consequence of Lemmas 3.1 and 3.5, and the definition of
N (ε).

Lemma 4.2. For all η > 0 there are constants ε, τ > 0 such that if Q ∈ N (ε),
then there exists some µ-cube Q′ ∈ Dµ with Q′ ⊂ Q such that bβµ(Q′) ≤ η and
`(Q′) ≥ τ `(Q).

Proof. Suppose ε� 1 and let σ be an n-uniform measure in Rd such that

dBQ(µ, σ) ≤ ε r(BQ) = 3ε`(Q).

Consider x ∈ suppσ such that |x − zQ| ≤ 3ε`(Q) (recall that zQ stands for the
center of Q). By Lemmas 3.1 and 3.5 there exists some ball B = B(x, r) such that
bβσ(B) ≤ η, with B∩suppµ ⊂ Q and r ≈ diam(Q) (with the comparability constant
depending on η). We assume ε small enough so that zQ ∈ 1

2B. Then we deduce

bβµ(B(zQ,
1
2r)) ≤ c bβσ(B(zQ, r)) + c

distB(zQ,r)(µ, σ)

r

≤ c η + c
ε `(Q)

r
≤ c η + c(η) ε.

So if ε is assumed to be small enough (for η fixed), then bβµ(B(xQ,
1
2r)) ≤ c η.

If we take a µ-cube Q′ ∈ Dµ such that BQ′ ⊂ B(zQ,
1
2r) with `(Q′) ≈ r, we have

bβµ(Q′) ≤ c bβµ(B(zQ,
1
2r)) ≤ c η.

�

Lemma 4.3. For all η > 0 there are constants ε > 0 and δ1 > 0 (both small enough
depending on η) such that if, for a given k ≥ 0, B is a ball centered in suppµ with
bβµ(B) ≤ δ1 such that

2−jB ∈ N0(ε) for all 0 ≤ j ≤ k,

then bβµ(2−kB) ≤ η.
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Proof. Let δ0 be as in Lemma 3.6 and set ε0 = 1
4 min

(
δ0
4 , η

)
. Consider the integer

N = N(ε0) > 0 given by Lemma 3.6 (with ε replaced by ε0 in the statement of that
lemma).

For j ≥ 0, we denote Bj = 2−jB. We will prove by induction on j that

bβµ(Bj) ≤ min

(
δ0

4
, η

)
for 0 ≤ j ≤ k.

For 0 ≤ j ≤ N + 2 this follows easily if δ1 is assumed to be small enough. Indeed,
we just write

bβµ(Bj) ≤
r(B0)

r(Bj)
bβµ(B0) ≤ 2N+2 δ1 ≤ min

(
δ0

4
, η

)
,

assuming that δ1 ≤ 2−N−2 min
(
δ0
4 , η

)
for the last inequality.

Suppose now that

(4.1) bβµ(Bj−N−2), . . . , bβµ(Bj) ≤ min

(
δ0

4
, η

)
,

and let us see that

bβµ(Bj+1) ≤ min

(
δ0

4
, η

)
too. Let σj−N−2 be an n-uniform measure such that

(4.2) dBj−N−2
(µ, σj−N−2) ≤ ε r(Bj−N−2).

Assuming ε small enough (depending on δ0, η,N), from (4.1) and (4.2) we infer that

bβσj−N−2(Bj−N−1), . . . , bβσj−N−2(Bj−1) ≤ δ0,

and thus by Lemma 3.6,

bβσj−N−2(Bj) ≤ ε0 =
1

4
min

(
δ0

4
, η

)
.

Assuming ε small enough again, together with the condition (4.2) this implies that

bβµ(Bj+1) ≤ min

(
δ0

4
, η

)
.

�

Next result is the analogous of the preceding one with balls replaced by µ-cubes.

Lemma 4.4. For all η > 0 there are constants ε > 0 and δ1 > 0 (both small enough
depending on η) such that if P ∈ Dµ with P ⊂ Q is such that

S ∈ N (ε) for all S ∈ Dµ with P ⊂ S ⊂ Q

and moreover bβµ(Q) ≤ δ1, then bβµ(P ) ≤ η.

The proof follows easily from Lemma 4.3 and is left for the reader.
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Proof of Theorem 1.1. By Theorem 2.5, µ is uniformly rectifiable if and only if,
for all η > 0, the family B(η) of the µ-cubes Q ∈ Dµ such that bβµ(Q) > η is a
Carleson family. We will prove that the latter condition holds by using Lemmas 4.2
and 4.4.

For a fixed η > 0, let ε1 > 0 be the constant named ε in Lemma 4.4, and consider
the constant δ1 given in that lemma. Let now ε2 > 0 be the constant named ε in
Lemma 4.2 with η replaced by δ1 there. Set

ε = min(ε1, ε2).

Consider a µ-cube R ∈ Dµ. We are going to split the family of µ-cubes from
N (ε) which are contained in R into disjoint subfamilies which we will call “trees”.
A collection of µ-cubes T ⊂ Dµ is a tree if it verifies the following properties:

• T has a maximal element (with respect to inclusion) Q(T ) which contains
all the other elements of T as subsets of Rd. The µ-cube Q(T ) is the “root”
of T .
• If Q,Q′ belong to T and Q ⊂ Q′, then any µ-cube P ∈ Dµ such that
Q ⊂ P ⊂ Q′ also belongs to T .
• If Q ∈ T , then either all the sons belong to T or none of them do.

We denote by Stop(T ) the (possibly empty) family of µ-cubes from T whose sons
do not belong to T .

We proceed now to describe the algorithm for the construction of the family of
trees Ti, i ∈ I. Let Q1 the a cube from Dµ(R) ∩ N (ε) with maximal side length.
This will be the root of the first tree T1, which is defined recursively by the next
rules:

• Q1 ∈ T1,
• If P ∈ T1 and all the sons from P belong to N (ε), then all of them belong

to T1 too.

Suppose now that T1, . . . , Ti have already been defined. Consider now a cube Qi+1

with maximal side length from Dµ(R)\
⋃

1≤j≤i Tj (if it exists). This is the root from
the next tree Ti+1, which is defined recursively by the same rules as T1, replacing
Q1 by Qi+1 and T1 by Ti+1.

The family of trees Ti, i ∈ I, constructed above satisfy the following properties:

• N (ε) ∩ Dµ(R) =
⋃
i∈I Ti, and Ti ∩ Tj = ∅ if i 6= j;

• if Qi ≡ Q(Ti) is the root of Ti, then either some parent or some brother of
Q(Ti) does not belong to N (ε)∩Dµ(R). In any case we denote by pb(Q(Ti))
this parent or brother of Q(Ti)

From the latter condition, recalling that Dµ \N (ε) is a Carleson family and using
that each µ-cube Q ∈ Dµ has a bounded number of sons, it follows that

(4.3)
∑
i∈I

µ(Q(Ti)) ≤
∑
i∈I

µ
(
pb(Q(Ti))

)
≤ c

(
µ(R) +

∑
Q∈Dµ(R)\N (ε)

µ(Q)
)
≤ c µ(R).
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We have ∑
Q∈Dµ(R)∩B(η)

µ(Q) ≤
∑

Q∈Dµ(R)\N (ε)

µ(Q) +
∑

Q∈Dµ(R)∩N (ε)∩B(η)

µ(Q)

≤ c µ(R) +
∑
i∈I

∑
Q∈Ti∩B(η)

µ(Q).

So from (4.3) we see that the theorem will be proved if we show that

(4.4)
∑

Q∈Ti∩B(η)

µ(Q) ≤ c µ(Q(Ti)) for each i ∈ I.

Given a fixed tree Ti, consider the family Fi (which may be empty) of µ-cubes
P ∈ Ti with bβµ(P ) ≤ δ1 which are maximal with respect to inclusion, where δ1 is
given by Lemma 4.4. This lemma ensures that bβ(Q) ≤ η if Q ∈ Ti is contained in
some µ-cube P ∈ Fi. In other words, if we denote by Hi the µ-cubes Q ∈ Ti which
are not contained in any µ-cube P ∈ Fi, we have Ti ∩ B(η) ⊂ Hi. Thus

(4.5)
∑

Q∈Ti∩B(η)

µ(Q) =
∑
Q∈Hi

µ(Q).

To each µ-cube Q ∈ Hi we assign a µ-cube P ∈ Fi∪Stop(Ti) contained in Q with
maximal side length (if P is not unique, the choice does not matter), and we set
P = f(Q). By Lemma 4.2, `(P ) ≥ τ `(Q). Therefore, the number of µ-cubes P such
that P = f(Q) for a fixed µ-cube Q is bounded above (by some constant depending
on τ , n, d, and the AD-regularity constant of µ). Thus∑

Q∈Hi

µ(Q) ≤ c
∑
Q∈Hi

µ(f(Q)) ≤ c
∑

P∈Fi∪Stop(Ti)

µ(P )

≤ c
∑
P∈Fi

µ(P ) + c
∑

P∈Stop(Ti)

µ(P ) ≤ c µ(Q(Ti)),

taking into account for the last inequality that both Fi and Stop(Ti) are families
whose elements are pairwise disjoint µ-cubes (within each family). Together with
(4.5), this gives (4.4) and proves the theorem. �
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Xavier Tolsa. Institució Catalana de Recerca i Estudis Avançats (ICREA) and
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