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1 G-bundles on a curve

Let G be a complex reductive group. For example, G could be C∗, GL(n), SL(n), PGL(n)
or any of the simple groups listed in Table 2.3 below. (Good references for these groups
are Fulton-Harris [11], and Adams [1].) And let X be a smooth, complex, projective curve
of genus g ≥ 2.

Definition. A principal G-bundle on X is a morphism E → X with a free right action of
G on E, such that E is locally trivial in the étale topology. 2

The need to use étale topology here arises from the fact that local trivialisation can
require one to take square roots over open sets of the base, as in the Gram-Schmidt
process—although for some groups such as SL(n) and Sp(n) it is enough to use the
Zariski topology. An excellent reference for the general theory of G-bundles on curves is
Sorger [32].

Given a linear representation G → GL(V ), we can associate to every G-bundle E a
vector bundle F := E(V ) := E ×G V defined as the quotient of E × V by the equivalence
relation (e,v) ∼ (eg, g−1v). Another way of saying this is to take the class of E in
H1(X,G), then its image in H1(X,GL(V )) can be interpreted as transition data for the
vector bundle F .

1.1 Example. If G = GL(n) then this functor E 7→ E(Cn) = : F is an equivalence of
categories, between the category of G-bundles and the category of rank-n vector bundles.
For G = SL(n), E 7→ E(Cn) gives vector bundles with trivial determinant line bundle.
Conversely, to construct a G-bundle E from the vector bundle F : take E to be the ‘frame
bundle’ of fibre bases ⊂ F⊕n, that is complement of det−1(0) via:

E ⊂ F⊕n det
−→ C×X → C.

For G = SO(n) we get vector bundles F = E(Cn) equipped with a quadratic form
q : S2F → O X . Conversely, E is recovered from F, q as the frame bundle of oriented
orthonormal bases in the fibres. 2
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G-bundles on a curve X are parametrised by a projective moduli space, and we can
summarise the basic facts in the following theorem due to Ramanathan [27], [28]. Balaji
has recently given a simplification of the GIT construction (see [2]).

1.2 Theorem. (Ramanathan, Balaji.)
(i) There exists a normal projective variety MX(G) parametrising equivalence classes

of semi-stable G-bundles on X.
(ii) The connected components of MX(G) are labelled by |π1(G)|, the fundamental group

of G.
(iii) At points corresponding to generic stable G-bundles E, we have

TEMX(G) ' H1(X, adE).

(iv) dimMX(G) = (g − 1) dimG+ dimZ(G). 2

1.3 Remark. (i) The notion of semi-stability for G-bundles is a natural generalisation
of slope stability for vector bundles: let P ⊂ G be a maximal parabolic subgroup and
consider the bundle E/P → X. A section σ : X → E/P is called a reduction of structure
group of E to P ⊂ G, and E is called semistable if for all P, σ,

deg(σ∗T vert) ≥ 0.

Note that in the case G = SL(n) or GL(n), if we view E as a vector bundle then E/P
is a Grassmann bundle of subspaces of a given dimension in the fibres. Then a reduction
σ : X → E/P is equivalent to specifying a subbundle F ⊂ E. Moreover, the pull-back
along σ of the vertical tangent bundle is just Hom(F,E/F ), and one can easily verify that
the above inequality is equivalent to

degF

rkF
≤

degE

rkE
.

(ii) E is always topologically trivial on X r {pt}. So topologically, E is determined
by a loop S1 → G. This explains (ii).

(iii) At a stable bundle E ∈MX(G) the moduli space locally looks like H1(X, adE)/Γ
where Γ = Aut(E)/Z(G) is a finite group. (Here ad(E) = E(g) is the adjoint representa-
tion.) At points corresponding to bundles E such that Z(G) ( AutE, the moduli space
MX(G) has finite quotient singularities. 2

1.4 Example. If G = C∗, then MX(G) = PicX. In this case, TEM = H1(O X). 2

1.5 Example. G = SL(n): MX(SL(n)) is the irreducible moduli space of vector bundles
F with detF = O X . Every stable vector bundle is simple, so the group Γ is trivial. So
the moduli space MX(SL(n)) is smooth at all stable bundles—though this is not typical.
The tangent space is TFM = H1(X,End0 F ) where End0 F is the vector bundle of trace
free endomorphisms. 2
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2 The Verlinde formula

The Verlinde formula is just the Riemann-Roch formula for MX(G). We will assume that
G is simple. Then there is a machine:

{
linear representations

G× V → V

}
−→

{
line bundles

Θ(V ) ∈ Pic MX(G)

}

This works as follows. For each ξ ∈ Picg−1(X) define

Dξ = {E ∈MX(G) | H0(X, ξ ⊗ E(V )) 6= 0}.

It follows from results of Drézet-Narasimhan [8] that this is a Cartier divisor, and that
its definition does not depend on the choice of ξ. It therefore defines a line bundle on the
moduli which we denote by

Θ(V ) := O M(Dξ),

called the theta line bundle of the representation. 2

2.1 Remark. In particular, this gives a map f : Picg−1(X) → |Θ(V )|M such that
f∗O (1) = O Picg−1(X)(nΘ), where n = dimV , and where Θ is the Riemann theta divisor.
Thus we get a linear map

H0(M,Θ(V ))∗ → H0(JX , nΘ). 2

2.2 Theorem. (Laszlo-Sorger [18]; see also [32].) The moduli stack of G-bundles on X
has infinite cyclic Picard group Z〈L 〉. The (ample) generator L does not in general
descend to MX(G), but there is an injection

PicMX(G) ⊂ - Z〈L 〉

under which Θ(V ) ∼→ L dV , where dV is the Dynkin index of the representation V . 2

The Dynkin index dV ∈ Z is a number computed from the weights of the representation.
Denoting the set of weights in the weight lattice by X(V ) ⊂ Λ (see 5.12), this number is
computed by

dV = 1
2

∑

λ∈X(V )

mλ 〈λ |θ
∨ 〉2

where mλ is the multiplicity of the weight λ, and θ∨ denotes the maximal coroot. The
Dynkin index has a topological interpretation as the degree of the homotopy map induced
by the representation,

π3(G) = Z→ π3(SL(V )) = Z. 2

2.3 Table. Here is a list of the simple groups, the dimension of their smallest repres-
entations, and Dynkin indices. (The last column indicates whether this representation is
minuscule or quasi-minuscule, and will be used later (see Definition 5.12 below).)
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G dimG
dimension of
smallest repn

Dynkin
index

SL(n) n2 − 1 n 1 min.

Spin(2n)
2:1
−→ SO(n) n(2n− 1) 2n 2 min.

Spin(2n+ 1)
2:1
−→ SO(2n+ 1) n(2n + 1) 2n+ 1 2 q.-min.

Sp(n) n(2n + 1) 2n 1 min.

G2 = Aut(O) 14 7 2 q.-min.

F4 52 26 6 q.-min.

E6 78 27 6 min.

E7 133 56 12 min.

E8 248 248 60 q.-min.

For every i > 0 we have hi(MX(G),L⊗k) = 0, while for i = 0, the Verlinde formula
has the form:

h0(MX(G),L⊗k) =
∑( ∏

pos. roots

(
trigonometric expr.

involving weights

)g−1
)g−1

where the sum is over a finite set of weights (depending on k). There is no need here to
be more precise than this, though the interested reader can consult Beauville [3] for the
derivation of the formula using fusion rings, and Oxbury-Wilson [26] for computations
and some properties when G is a classical group.

The formula was proved by Faltings [10], and a useful expository account of the whole
story can be found in Sorger [31].

2.4 Example. For G = SL(2) the Verlinde formula was proved using more traditional
algebro-geometric methods than for the general case by Thaddeus [33]. In this case it
reads

h0(MX(G),L k) =
k+1∑

j=1

(
k + 2

2 sin2 (jπ/(k + 2))

)g−1

.

(As an exercise, the reader may care to check that when g = 2, for which M ' P3

(cf. Narasimhan-Ramanan [21] and Remark 4.2 below), this reduces to

h0(M,L k) =

(
k + 3

k

)
.

Despite appearances the formula always gives an integer (as it must!). Zagier [34] explains
this as follows. Rewrite h0(MX(SL(2)),L k) =

(
k+2
2

)
Vg(k + 2) where

Vg(m) :=
m−1∑

j=1

(
1

sin(jπ/m)

)2g−2

.
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These numbers are the coefficients of the following generating function.

1−

∞∑

g=2

Vg(m) sin2g−2(x) =
m tan(x)

tan(mx)
,

and from this one can extract an expression in terms of Bernoulli numbers:

Vg(m) =

g−1∑

s=0

{
(−1)s−122sB2s

(2s)!
Res
z=0

(
z2s−1

sin2g−2(z)

)}
m2s.

It now follows that Vg(m) is a polynomial in m, and that it is in fact an integer. 2

2.5 Table. Here is a list of Verlinde numbers for the simple, simply-connected groups at
level k = 1, and we take as the focus of these lectures the problem of understanding some
of these numbers.

G h0(M,L )

SL(n) ng

Spin(2n) 4g

Spin(2n+ 1) 2g−1(2g + 1)

Sp(n)
n+1∑
j=1

(
n+2

2 sin2(jπ/(n+2))

)g−1

G2

(
5+
√

5
2

)g−1
+

(
5−
√

5
2

)g−1

F4

(
5+
√

5
2

)g−1
+

(
5−
√

5
2

)g−1

E6 3g

E7 2g

E8 1

There are some obvious remarks. The number ng for SL(n) (the reader may care to
check that for n = 2 this agrees with Example 2.4) coincides with the number of level-n
theta functions on the Jacobian of the curve, and this will be explained in Section 4. For
the spin groups the numbers that appear are the numbers of theta characteristics and
even theta characteristics, respectively, of the curve. This was explained in Obxury [23],
though we shall return to the even spin case in the last lecture. The symplectic Verlinde
number the reader will recognise from Example 2.4: this is an example of a reciprocity
relation (as is the equality of the G2 and F4 numbers) which is a common feature of the
Verlinde formula (see Oxbury-Wilson [26]).

But the most striking fact which appears in the table is the simplicity of the Verlinde
numbers for E6, E7 and E8, and our goal should be to interpret these spaces as spaces of
theta functions on polarised abelian varieties.
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3 A digression on abelian varieties

3.1 Principal polarisation. Let A = Cg/Γ be an abelian variety, where Γ ⊂ Cg is a
lattice. Line bundles on A are described by Appel-Humbert data:

0→ Pic0A→ PicA
c1−→ NS(A)→ 0

where Pic0A = Hom(Γ, S1) and NS(A) is the Néron-Severi group whose elements are
represented by Hermitian forms H on Cg with imH integral on Γ.

Given L ∈ PicA, define

ϕL : A −→ Â := Pic0A

x 7−→ t∗xL⊗ L
−1,

and let K(L) = kerϕL. This is a finite subgroup of A and is uniquely expressible as

K(L) ' (Zd1
× · · · × Zdg

)2, d1 | d2 | · · · | dg.

Equivalently, c1(L) is represented by the skew form



d1

0
. . .

dg

−d1

. . . 0
−dg




on Γ. The sequence (d1, . . . , dg) is called the type of the polarisation c1(L) ∈ NS(A). By
Riemann-Roch,

h0(A,L) = d1 · · ·dg.

The line bundle L gives a principal polarisation if K(L) = 0, or equivalently, the polar-
isation type is (1, . . . , 1), or h0(A,L) = 1.

If L is not a principal polarisation then ϕL does not have an inverse in EndZ A.
However, it is always invertible in EndQA = (EndZ A) ⊗Z Q; indeed there exists ψL :

Â → A such that ϕLψL = ψLϕL = e id, where e = e(L) is the exponent of the group
K(L) (the least common multiple of the orders of its elements). We therefore write
ϕ−1

L = 1
e
ψL ∈ EndQA. 2

3.2 Norm map. Now let i : B ↪→ A be an abelian subvariety, and define its norm map
NmB : A→ B by the diagram

A
ϕL

- Â

B

NmB
?

�

ψi∗L

B̂.

î
?

(Here î = i∗ is restriction of line bundles.) This satisfies

(NmB)2 = e(i∗L) NmB,

where e(i∗L) is the exponent of the induced polarisation. 2
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3.3 Complementary subvarieties. We define the complementary abelian subvariety
of B ⊂ A to be

P := im
(
e(i∗L) idA−NmB

)
.

Now assume L is a principal polarisation on A. Then the induced polarisation on P has
the same exponent e = e(i∗L) and

NmB = NmP = e · id ∈ EndZ A.

Moreover (see Lange-Birkenhake [17], p. 366), P can be expressed equivalently as

P = (ker NmB)0 = ker î = (̂A/B). 2

3.4 Corollary. If (A,L) is a principally polarised abelian variety, and B,P ⊂ A are
complementary subvarieties, then

K(i∗L) = B ∩ P.

Proof. We have K(i∗L) = kerϕi∗L, where we can identify ϕi∗L with î ◦ i : B → A ∼→
Â→ B̂. So K(i∗L) = ker(̂i ◦ i) = i−1(ker î) = i−1(P ) = B ∩ P . 2

It follows immediately if A is principally polarised, that B ⊂ A and P ⊂ A have induced
polarisation types

(d1, . . . , dr) (1, . . . , 1, d1, . . . , dr).

3.5 Remark. The spaces of sections H0(B, i∗BL) and H0(P, i∗PL) not only have the same
dimension, but are canonically dual, via the multiplication map

B × P
m
−→ A

H0(B, i∗BL)⊗H0(P, i∗PL)
m∗
←− H0(A,L) = C. 2

We now restrict to the case where (A,L) = (JY ,ΘY ), the Jacobian of a curve Y , and
we consider a morphism of curves π : Y → X.

3.6 Remark. The map on Jacobians π∗ : JX → JY fails to be injective if and only if π
factorises as π : Y → Y ′ → X, where the second map is cyclic étale of degree d ≥ 2. Such
maps are in 1–1 correspondence with (primitive) d-torsion points η ∈ JX [d], and then
(if Y → Y ′ does not factorise further) ker π∗ = 〈η〉 ⊂ JX . (See Lange-Birkenhake [17],
p. 337.) 2

3.7 Prym variety and trace correspondence. We let B = π∗JX ⊂ JY . The com-
plementary subvariety P ⊂ JY is in this case called the Prym variety of the cover and
denoted P = Prym(Y/X).

This can be described in terms of the trace correspondence

T : Y ` Y

y 7−→ π−1(πy).
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If π : Y → X has degree n then T satisfies

T 2 = nT. (1)

If we view T as determining an endomorphism T ∈ EndZ JY , then clearly

imT = π∗JX .

It follows from this and the norm-endomorphism criterion (Lange-Birkenhake [17], p. 126)
that T = Nmπ∗JX

. Thus we have P = (kerT )0 = im(T − n). Its induced polarisation is
given by

K(i∗ΘY ) = P ∩ π∗JX = π∗JX [n].

If π∗ : JX → JY is injective then it follows that P has induced polarisation of type
(1, . . . , 1, n, . . . , n) and that

H0(P, i∗ΘY ) = H0(JX , nΘX)∗. (2)

4 The case G = SL(n)

Let us now return to the discussion of Section 2. Recall that h0(MX(SL(n)),L ) = ng,
equal to the dimension ofH0(JX , nΘ), the space of level-n theta functions on the Jacobian.
Here L = Θ(Cn), the theta line bundle of the standard representation, since the Dynkin
index of this representation is dV = 1.

4.1 Theorem. (Beauville-Narasimhan-Ramanan [4].) The linear map

H0(MX(SL(n)),L )∗ → H0(JX , nΘ)

introduced in Remark 2.1 is an isomorphism. 2

Recall the definition of the map. Inside MX(SL(n)) × Picg−1X, let D denote the
set of pairs (E, ξ) such that h0(X, ξ ⊗ E) > 0. (Then the divisor Dξ is the intersection
of D with the fibre over ξ ∈ Picg−1.) Now D is considered an element in H0(M ×
Picg−1,Θ(V ) � O (nΘ)) = H0(M,Θ(V )) ⊗ H0(Picg−1,O (nΘ)). This defines the linear
map H0(M,Θ(V ))∗ → H0(Picg−1,O (nΘ)).

4.2 Remark. Geometrically this theorem says that the rational map to projective space
determined by the complete linear series |L | on MX(SL(n)) can be identified with

MX(SL(n)) 99K |nΘ| ∼= P2g−1,

taking a vector bundle E to the divisor DE supported on ξ ∈ Picg−1 such that h0(X, ξ ⊗
E) > 0.

For n = 2 this map is quite well understood, and is an embedding when X is non-
hyperelliptic (or when g = 2). When g = 2, in fact it is an isomorphism to P3; when g = 3
it is an isomorphism to the Coble quartic in P7 (the unique Heisenberg invariant quartic
singular along the Kummer variety); and when g = 4 its image lies in the singular locus
of another unique Heisenberg invariant quartic in P15. (See Narasimhan-Ramanan [22]
and [21], and Oxbury-Pauly [24].) 2
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The proof of the theorem is by expressing vector bundles as direct images of line
bundles. Let π : Y → X be some degree-n cover. Then taking direct images of line
bundles defines a rational map π∗ : PicY 99K MX(GL(n)). To determine the subvariety
mapping to MX(SL(n)) ⊂ MX(GL(n)) we require that the determinant of the direct
image be trivial. If Nm : PicY −→ PicX is the norm map induced by p 7→ π(p) on
points, then

det π∗L = NmL⊗ det π∗O Y . (3)

(This is an exercise for the reader: use induction from L = O Y , adding and subtracting
points.) Now we have Nm : JY → JX and π∗ : JX → JY . If π : Y → X is sufficiently
ramified then π∗ is an injection (cf. 3.6), so we think of JX as an abelian subvariety of
JY . Then according to 3.7, Nm = Nmπ∗JX

is induced by the trace correspondence on Y ,
which we view as an endomorphism

T : JY −→ JY

p 7−→ π−1(π(p)).

Hence under π∗,

Pic Y - MX(GL(n))

∪ ∪

P - MX(SL(n))

where P is the Prym variety T−1(ξ) where ξ = det−1 π∗O Y ∈ PicX is determined by (3).
This is a translate in PicY of the identity component (ker T )0.

Let µ denote the map π∗ : JY 99K MX(GL(n)). For fixed ξ ∈ Picg−1X, and for
L ∈ P ⊂ JY , consider the SL(n)-bundle ξ ⊗ π∗L ∈MX(SL(n)). We have

0 6= H0(X, ξ ⊗ π∗L) = H0(Y, π∗ξ ⊗ L).

So under µ we have µ∗L = O P (ΘY ). Hence

H0(MX(SL(n)),L )
µ∗
−→ H0(P,ΘY ) ∼→ H0(JX , nΘX)∗,

where the last isomorphism comes from (2) on page 8. The remaining problem is to
arrange for µ∗ to be an isomorphism too.

4.3 Key point. This is the observation of Hitchin [12] (and further elaborated in [13],
[14]) that there exists a choice of a n-sheeted covering π : Y → X with the property that

dimP = dimMX(SL(n))

and that µ : P 99K MX(SL(n)) is a finite dominant rational map. This is what is meant
by abelianisation of the moduli space. 2

In the present situation, using the Hitchin curve guarantees that µ∗ is an isomorphism,
and the theorem is proved.
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4.4 Résumé. In general, the question of abelianisation is to find an abelian variety P
with a dominant rational map to MX(G). P should be an abelian subvariety of JY (a
sort of Prym variety) for a finite cover π : Y → X. The map P 99K MX(G) should
be the restriction of π∗. We want to choose Y → X in such a way that we get a finite
dominant map. The theory that results was worked out in full generality by Faltings [9]
and Donagi [6] and [7]. In these lectures I will follow the approach of Donagi.

5 Construction of covers with Galois group W (G)

5.1 Invariant polynomials. Let g be the Lie algebra of G and consider the action
on polynomials G × C[g] → C[g] induced by the adjoint representation on g. We shall
consider the (finitely generated) subring of invariant polynomials C[g]G under this action.
(See for example Kobayashi-Nomizu [16]).

5.2 Example. If G = GL(n) then g = End(Cn) and an element g ∈ G acts on a matrix
A ∈ End(Cn) by A 7→ g−1Ag. Then C[g]G = C[trA, trA2, . . . , detA], where trA. . . are
the coefficients of the characteristic polynomial χA(t) of A. It can also be described as
C[σ1, . . . , σn], where σ1, . . . , σn are the elementary symmetric functions in the eigenvalues
of A. 2

More generally, let t ⊂ g be a maximal abelian subalgebra, coming from a maximal
torus T ⊂ G. Recall that the Weyl group W = N(T )/T acts on t as a finite reflection
group.

5.3 Example. If G is SL(n) or GL(n) then T is the corresponding group of diagonal
matrices, and W is just the symmetric group Sn which acts by permuting the eigenval-
ues. 2

5.4 Theorem. (Chevalley, Shepherd-Todd. See Bourbaki [5].)
(i) The restrictioning map C[g]G → C[t]W is an isomorphism.
(ii) We have C[t]W ' C[σ1, . . . , σr], where r is the dimension of t, and σ1, . . . , σr are

algebraically independent polynomials.
(iii) The degrees d1, . . . , dr of σ1, . . . , σr are independent of choice of generating invariants

σ1, . . . , σr. 2

5.5 Example. For G = SO(2n), the Lie algebra is so(2n) consisting of skew symmetric
matrices. The characteristic polynomial is

χA(t) = t2n − (tr
∧2A)t2n−2 + · · ·+ (Pf A)2,

where Pf is the Pfaffian. So letting σi = tr
∧2n−iA for i = 2, 4, . . . , 2n− 2, we have

C[g]G = C[σ2, σ4, . . . , σ2n−2,Pf]

with degrees di = deg σi = i, and deg Pf = n. 2
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5.6 Remark. The invariant degrees carry important topological information about the
group G. Their product equals the order of the Weyl group while their sum gives the
number of reflections in W—that is, the number of positive roots R of G:

∏
di = |W | ,

∑
(di − 1) = |R| .

In particular this implies that
∑

(2di − 1) = dimG. The Betti numbers of G are also
computable from the di. 2

5.7 Example. The exceptional groupG2 is the automorphism group of the 8-dimensional
complex algebra O of octonions. It has a natural 7-dimensional irreducible representation
im O and a subgroup SL(3) ⊂ G2 which stabilises an isotropic vector in im O. A maximal
torus T ⊂ SL(3) is also maximal in G2, so the two groups share the same weight lattice
Λ ⊂ t∗. Therefore

C[t]W (G2) ⊂ C[t]W (SL(3)) = C[σ2, σ3],

where W (SL(3) = S3 and σ2, σ3 are elementary symmetric polynomials in three variables
(with tr σ1 = 0).

W (G2) is the dihedral groupD6, and has invariant degrees 2, 6 (for example by Molien’s
theorem). We can identify the invariant polynomials by considering the characteristic
polynomial χA(t) of A ∈ t in the 7-dimensional representation im O. Under SL(3) this
decomposes as C⊕ V ⊕ V ∗, where V = C3 is the standard representation of SL(3). So

χA,im O(t) = t χA,V (t)χA,V ∗(t)

= t(t3 + σ2t− σ3)(t
3 + σ2t+ σ3)

= t(t6 + 2σ2t
4 + σ2

2t
2 − σ2

3).

This shows that C[t]W (G2) = C[σ2, σ
2
3]. 2

5.8 Table. Here is a list of the simple groups, their Weyl groups, and invariant degrees.

G W (G) invariant degrees

SL(n) Sn 2, 3, . . . , n

Spin(2n) Zn−1 o Sn 2, 4, . . . , 2n− 2, n

Spin(2n+ 1) Zn o Sn 2, 4, . . . , 2n

Sp(n) Zn o Sn 2, 4, . . . , 2n

G2 D6 dihedral group 2, 6

F4 extension of S3 by W (Spin(8)) 2, 6, 8, 12

E6 symmetry group of the 27 lines 2, 5, 6, 8, 9, 12
on a cubic surface, order 72 · 6!

E7 lines on quartic double plane 2, 6, 8, 10, 12, 14, 18

E8 lines on a degree 1 del Pezzo 2, 8, 12, 14, 18, 20, 24, 30
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5.9 Cameral covers. We have C[t] ⊃ C[t]W = C[σ1, . . . , σr]. Taking Spec we get an
affine quotient map

(σ1, . . . , σr) : Ar
� t/W ' Ar.

(This is the geometric meaning of Theorem 5.4.) For any line bundle K ∈ PicX, form
the map

K ⊗ t
σ1,...,σr-

r⊕

i=1

Kdi .

Given a section s ∈ H0(
⊕
Kdi) =

⊕
H0(Kdi) we construct the fibre product

Zs
- K ⊗ t

X
?

s
-

⊕
Kdi

(σ1, . . . , σr)
?

Here the right-hand side is the quotient map by the natural action of W covering the
trivial action on X. The Weyl group W therefore acts on Zs with quotient X. Donagi
calls this Galois cover a cameral cover of X.

5.10 Remark. For a given line bundle K ∈ PicX, the cameral covers constructed above
form a family over the vector space

⊕
H0(Kdi). When K = ωX is the canonical line

bundle, Hitchin observed the beautiful coincidence of dimensions:

dim
⊕
H0(Kdi) = dimMX(G).

This follows from Riemann-Roch and the formula
∑

(2di− 1) = dimG. Now consider the
cotangent bundle T∗MX(G)→MX(G). The fibre of this bundle is H1(adE)∗, which by
Serre duality is isomorphic to H0(K ⊗ adE). (Here adE is the vector bundle with fibre
g.) Hitchin showed that the components of the map

T∗MX(G)
(σ1 ,...,σr)
−→

⊕
H0(Kdi)

are Poisson commuting functions on the (holomorphic) symplectic manifold T ∗MX(G)
(away from the singular points), and that we thus obtain an algebraically completely
integrable Hamiltonian system. By Liouville’s theorem in mechanics it then follows that
the fibres are all complex tori with dimension equal to that of MX(G). This is the origin
of the idea of abelianisation. 2

5.11 Ramification. Let us describe the ramification points of the cameral cover. Recall
that W is generated by reflections; we denote the set of these by R ⊂ W . (This is the set
of positive roots.) We have seen in Remark 5.6 that

|R| =
r∑

i=1

(di − 1).

The fixed-point set of a reflection α ∈ R in the space t⊗K is a divisor Dα ∈ |π∗K|. We
will assume that all ramification points of π : Z → X are simple. Equivalently the curve
Z ⊂ t⊗K and the divisor

∑
α∈R Dα have intersection multiplicity one at all intersection

points.

12



Let B ⊂ X be the branch locus. Over a point x ∈ B there are |W |/2 ramification
points on which W acts transitively with stabiliser 〈α〉 for some α ∈ R. Thus (|W |/2)×
degB = |Dα| × |R| = |R||W | degK, and hence

degB = 2|R| degK. (4)

By Riemann-Hurwitz this gives the genus of the cover:

g(Z) = 1 + |W |

(
g − 1 +

1

2
|R| degK

)
, (5)

where g = g(X). 2

5.12 Minuscule weights. Let us recall a little representation theory. Given a repres-
entation G × V → V we can restrict to a maximal torus T ⊂ G to get a representation
T × V → V , under which V decomposes into eigenspaces V =

⊕
λ∈X(V ) Lλ, where the

eigenvalues are e2πiλ for linear forms λ : t → R integral on the kernel of the exponential
map t → T . The set Λ ⊂ t∗ of such linear forms is called the weight lattice of the pair
G, T . Now the Weyl group W = N(T )/T acts on Λ preserving the finite set of weights
X(V ) of the representation V . The set X(V ) ⊂ Λ is therefore some union of W -orbits, and
this set determines the representation V up to isomorphism. In some cases it consists of a
single W -orbit Wλ, and then V is called a minuscule representation. The representation
is called quasi-minuscule if zero is weight as well.

Table 2.3 lists some minuscule representations for the simple groups, and in fact the
only other examples are the spinor representations of the spin groups. 2

5.13 Example. The adjoint representation End0(C3) of SL(3) is an 8-dimensional quasi-
minuscule representation. The root system is a hexagon, with a double weight at the origin
(since t is a 2-dimensional invariant subspace under T ). 2

5.14 Strategy. Abelianisation of MX(G) makes use of subcovers Y → X where Y =
Z/H for some subgroup H < W . If we take H = Stab(λ) where λ is a weight of a
minuscule (or quasi-minuscule) representation (of dimension n say) then we can hope for
a diagram of the form

P ⊂ - JY

MX(G)
?

repr
- MX(GL(n))

π∗
?

where P ⊂ JY is some abelian subvariety which has to be determined.

5.15 Example. Let G = SL(n). The weight lattice

Λ ⊂ t∗ = {(x1, . . . , xn) ∈ Rn | x1 + · · ·+ xn = 0}

is spanned over Z by the orthogonal projections of the standard basis in Rn, that is:

Λ = Zε1 + · · ·+ Zεn

13



where εj = 1
n
(−1, . . . ,−1, n − 1,−1, . . . ,−1). The vectors ε1, . . . , εn are the weights of

the standard representation V = Cn, and the Weyl group Sn acts on Λ by permutation
of coordinates. The stabiliser Stab(λ) of λ = ε1 is the subgroup Sn−1 < Sn. Letting
Y := Z/ Stab(λ) we get a configuration

Z

Y

Sn−1

-

X

W = Sn

? n : 1�

A point of Z is an ordering of the corresponding fibre Y → X; while Y is (choosing
K = ωX) the curve used in the proof of Theorem 4.1. (See Example 6.12 below.) 2

5.16 Example. Let G = E6. This group can be described as the automorphism group
of the octonionic projective plane OP2. (See Lazarsfeld-van de Ven [19].) This can be
described in its ‘quadratic Veronese’ embedding as the variety of rank-1 Hermitian 3× 3
matrices over the octonion algebra O, and is a 16-dimensional projective variety in P26

C .
It is the singular locus of its secant variety, which is a cubic hypersurface defined by the
vanishing of the 3× 3 determinant (the rank-2 matrices). After a change of coordinates
this cubic can be written as

tr abc− det a− det b− det c, (a, b, c) ∈ (gl3)
⊕3 ∼= C27.

The group E6 is then the subgroup of SL(27) which preserves this cubic form. (This is the
description used by Adams [1].) It has maximal torus of dimension 6, and weight lattice
Λ ⊂ t∗ isomorphic to the primitive cohomology K⊥

S ⊂ H2(S,Z) of a smooth cubic surface
S ⊂ P3. (See Manin [20], Theorem 23.9.) Let λ ∈ Λ be a weight of the (minuscule)
27-dimensional representation V = C27. Then we have a configuration

Z

Y = Z/ Stabλ

-

X

W (E6)

? 27 : 1�

The fibre of Y → X can be identified with the set of the 27 lines on S. The Weyl group
has order 72 · 6! and acts on the 27 lines by permuting ordered ‘Schläfli double-sixes’,
consisting of sets of lines {a1, . . . , a6, b1, . . . , b6} which contract to 6 points in P2 and 6
residual conics respectively. (See Hunt [15].) A point of the cameral curve Z is therefore
a choice of ordered double-six in the corresponding fibre of Y . 2
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6 Decomposition of JZ

We are given data consisting of a line bundle K ∈ PicX and a section s ∈
⊕

H0(Kdi).
From this we have constructed configurations

Z

Y = Z/ Stabλ

π
-

X

W

?
�

We are looking for a natural abelian subvariety P ⊂ JY
π∗
−→ JZ . Now W acts on JZ =

H1(O Z)/H1(Z,Z) and we are going to decompose it under this action and find out which
components lie in JY .

6.1 Example. For G = SL(2), the Weyl group is W = {1, σ}, where σ2 = 1. So in this
case our map Z → X is just a double cover and σ interchanges the sheets. We get

JZ = JX + P = im(1 + σ) + im(1− σ)

where JX = im(1 + σ) is the (+1)-eigenspace (invariant line bundles) and P = im(1− σ)
is the (−1)-eigenspace (anti-invariant line bundles). (We use additive notation since we
are dealing with abelian varieties, so 1 + σ on a bundle L denotes L⊗ σ∗L.) Note that

Q[W ] = Q{1 + σ} ⊕Q{1− σ},

and that this decomposition of the regular representation Q[W ] of W is responsible for
the decomposition of abelian varieties. (Note that we need rational coefficients here for
1 + σ and 1− σ to be the generators. For example, σ = 1

2
(1 + σ) + 1

2
(1− σ).) 2

More generally for any finite group W let Ŵ denote its group of characters, and let
Si be the irreducible representation of W corresponding to the character i ∈ Ŵ . Then

C[W ] =
∑

i∈Ŵ

(dim Si) Si =
⊕

i∈Ŵ

End Si.

6.2 Fact. For Weyl groups, all representations Si are defined over Z, so we can work with
a Z[W ]-module Λi ⊂ Si (i.e., a lattice). However, the decomposition Z[W ] =

⊕
i∈Ŵ (Λi ⊗

Λ∗i ) holds only after tensoring with Q (or C). 2

Hence we get a decomposition (up to isogeny)

JZ ∼
∏

i∈Ŵ

Λi ⊗Z Pi

where we define
Pi = HomW (Λi, JZ)0.

(As usual the subscript zero indicates that we are taking only the connected component
of the identity. It’s not difficult to check that this is an abelian variety. Think of Pi as
sitting inside a product of copies of JZ .)
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6.3 Example. For G = SL(2) we have Ŵ = {1, ε}, and then P1 = π∗JX while Pε =
ker(1 + σ)0 = (kerT )0 is the classical Prym variety of Section 3. 2

6.4 Remark. An element φ ∈ HomW (Λi, JZ) can be viewed as a torus bundle

L = L1 ⊕ · · · ⊕ Lr, w∗L = Lw for all w ∈ W,

where Lj = φ(ej) after choosing a Z-basis e1, . . . , er ∈ Λi. The action on the left-hand
side of the relation w∗L = Lw comes from that on Z, and on the right-hand side it is
induced by the action on Λi. 2

6.5 Dimension of the Pryms. The dimension of Pi is the multiplicity of Si as subrep-
resentation of H1(O Z). That is, as a C[W ]-module,

H1(Z,O ) =
⊕

i∈Ŵ

aiSi, ai = dimPi. (6)

The character of this representation can be computed using the Atiyah-Bott fixed point
theorem. Namely, for any nontrivial element α ∈ W the difference 1− trα|H1(Z,O ) is equal
to the sum over fixed points z of α in Z of trα|O z

/ det(1− dαz). By hypothesis 5.11, the
only group elements with fixed points are the reflections, and for a reflection α ∈ R we
obtain

1− trα|H1(Z,O ) =
1

2
|Fix(α)| =

1

2
|W | degK.

We therefore have the character of the left-hand side of (6), and combining with the
decomposition on the right-hand side we obtain simultaneous equations for the ai:

∑

i∈Ŵ

ai i(α) =





genus(Z) if α = 1,

1− 1
2
|W | degK if α is a reflection,

1 if α ∈ W is any other nontrivial element.

(7)

2

6.6 Example. The Weyl group W (G2) is the dihedral group of a hexagon and has

characters Ŵ = {ψ1, ψ2, ψ3, ψ4, χ1, χ2} (we follow the notation of Donagi [6], Serre [30]
§5.3) where ψ1 = 1, the trivial character, ψ2 = ε, the sign representation, and χ1 is the
reflection representation. A cameral cover Z → X with respect to a line bundle K ∈ PicX
has genus g(Z) = 1 + 12(g − 1 + 3 degK). There are six Pryms, and we compute their
dimensions by the method of 6.5. This means solving the system of equations (7), whose
coefficients are just the entries of the character table of W (see Donagi [6] or Serre [30]
§5.3 for notation):

1
r
r2

r3

reflections

{
s
sr




1 1 1 1 2 2 1 + 12(g − 1 + 3 degK)
1 1 −1 −1 1 −1 1
1 1 1 1 −1 −1 1
1 1 −1 −1 −2 2 1
1 −1 1 −1 0 0 1− 6 degK
1 −1 −1 1 0 0 1− 6 degK

ψ1 ψ2 ψ3 ψ4 χ1 χ2




∣∣∣∣∣∣∣∣∣∣∣∣∣
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Solving this system yields at once:

i ∈ Ŵ dimPi

ψ1 = 1 g
ψ2 = ε g − 1 + 6 degK
ψ3, ψ4 g − 1 + 3 degK
χ1, χ2 2g − 2 + 6 degK 2

The following general dimension formula (Theorem 6.7) is proved in Oxbury-Pauly [25].
The notation is the following. A reflection α ∈ R, if it acts nontrivially in Λi, acts as an
involution, and the dimension of its −1 eigenspace depends only on its conjugacy class
in W . If we write R =

∐c
j=1Rj for the partition of R into conjugacy classes, then for

j = 1, . . . , c we let

dim−
j Λi = dimension of the (−1)-eigenspace of a reflection α ∈ Rj.

Thus dim Λi − 2 dim−
j Λi = i(α) for α ∈ Rj.

6.7 Theorem. If Z is connected then for each nontrivial character i ∈ Ŵ the corres-
ponding Prym variety has dimension

dimPi = (g − 1) dimΛi + degK
c∑

j=1

dim−
j Λi |Rj|. 2

6.8 Corollary. (Scognamillo [29].) Suppose that G is semisimple, K = ωX is the canon-
ical line bundle and Λi = Λ is the weight lattice. Then

dimPi = dimMX(G).

Proof. For each j we have dim−
j Λ = 1 and so dimPΛ = rkG(g − 1) + (2g − 2)|R| =

(g − 1) dimG, which is the dimension of MX(G) by Theorem 1.2. 2

6.9 Subcovers. Now consider factorisations

Z

Y = Z/H

π
-

X

W

?
�

where H ⊂ W is a subgroup of W . Then we have an injection π∗ : JY ↪→ JZ , and the
isogeny decomposition restricts to

JY ∼
∏

i∈Ŵ

ΛH
i ⊗Z Pi,

where ΛH
i denotes the H-invariant part of Λi. In particular, if H is our favourite subgroup

H = Stab(λ) where λ is a weight, then ΛH 6= 0 (since it contains λ). So in this case the
Prym variety corresponding to the weight lattice occurs in the decomposition; it is called
the distinguished Prym variety and we denote it PΛ:

PΛ = HomW (Λ, JZ)0. 2
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6.10 Remark. The dimension of ΛH
i is the multiplicity of 1 in Λi (for H);

dim ΛH
i = mult(1,Λi)H = mult(Λi, 1

W
H )W

by Frobenius reciprocity—here 1W
H denotes the representation of W induced by the trivial

representation of H. Hence:

{
isogeny decomposition

of the Jacobian JY

}
⇐⇒

{
Z[W ]-decomposition of the

induced representation 1
W

H

}

2

Combining this isogeny decomposition of JY with the dimension formula 6.7, we obtain
the following genus formula for quotients of the cameral curve.

6.11 Corollary. For any subgroup H < W the quotient curve Z/H has genus:

g(Z/H) = 1 + (g − 1)|W/H|+ degK
c∑

j=1

|Rj| dim−
j (1W

H ),

where dim−
j is the dimension of the (−1)-eigenspace of a reflection in conjugacy class Rj. 2

6.12 Example. Let G = SL(n), and let’s return to Example 5.15. Recall that λ =
ε1 = 1

n
(n − 1,−1, . . . ,−1) ∈ Λ is a weight of the standard representation Cn, and that

H := Stab(λ) = Sn−1. Thus the induced representation 1W
H , given by the action of Sn on

cosets of H, is just the permutation representation on Zn. The diagonal vector (1, . . . , 1)
is invariant, as is the linear condition x1 + · · ·+ xn = 0. Hence

1W
H = 1⊕ Λ.

Accordingly the Jacobian of Y
n:1
−→ X has isogeny decomposition JY ∼ P1 + PΛ where

P1 is the Jacobian of X, and PΛ is the distinguished Prym. But by definition this is the
identity component of

HomW (Λ, JZ) = {L = (L1, L2, . . . , Ln) | L1 ⊗ · · · ⊗ Ln = OZ

and w∗L = Lw for all w ∈ Sn} ⊂ (JZ)n.

Evaluation of L at λ = ε1 gives a line bundle L := Ln−1
1 ⊗L−1

2 ⊗· · ·⊗L
−1
n which is invariant

under the action of H and therefore descends to a line bundle on Y . By construction this
line bundle is in the image of 1

n
(n−T ) where T is the trace correspondence on JY . Hence

PΛ = im(n− T ) = (ker T )0 = Prym(Y/X),

the Prym variety in the sense of Section 3.7. 2

6.13 Evaluations and correspondences. As illustrated in this example, the isogeny
from PΛ ⊂ HomW (Λ, JZ) to an abelian subvariety in JY , where Y = Z/ Stab(λ), is given
by the natural evaluation map evλ : φ 7→ φ(λ) ∈ PicZ. By construction this line bundle
is invariant under Stab(λ) and therefore lies in the image of JY in JZ . In Example 6.12
the evaluation map was injective and its image was the image of a correspondence n−T :
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JY → JY . In general, the image and kernel of evλ are described by the next proposition
(see Donagi [6] or Oxbury-Pauly [25]).

First, consider the group ring element

Cλ =
∑

w∈W

〈λ |wλ 〉w ∈ Q[W ],

where 〈 | 〉 is the Killing form on Λ. This element projects the regular representation
Q[W ] onto λ ⊗ S and therefore projects JZ onto the image of PΛ under the evaluation
map evλ. This projection is determined by the (Q-valued) correspondence on Z, which
descends to Y as

Cλ : y 7→
∑

w∈W/Stab(λ)

〈λ |wλ 〉 yw.

Second, consider the quotient Λ/Z[W ]λ, let e ∈ N be its exponent, and JZ [e] the group
of e-torsion points in the Jacobian of Z.

6.14 Proposition. The evaluation map evλ : PΛ → JZ has the following properties.
(i) ker evλ

∼= HomW (Λ/Z[W ]λ, JZ[e]). In particular, evλ is injective if Λ = Z[W ]λ.
(ii) im evλ is equal to the image of the correspondence C = Cλ : JY → JY ⊂ JZ.
(iii) If λ is a weight of a (quasi)minuscule representation V of G then the correspondence

C on Y satisfies
C2 = dVC

where dV is the Dynkin index of the representation. 2

6.15 Example. In the situation of Example 6.12, the weight lattice is Λ = Z[W ]λ, so
evλ : PΛ ↪→ JY . The (Q-valued) correspondence is C = (1 − 1

n
T ), and this satisfies

C2 = C, where dV = 1 is the Dynkin index of the standard representation of SL(n). 2

7 Abelianisation

We can now describe the rational map PΛ 99K MX(G). In order to simplify the discussion
we will assume Z → X is unramified. Note that this is equivalent to the condition
degK = 0. More generally one should modify the definition of HomW (Λ, Z) using the
ramification divisor of Z → X. (See Donagi [7].)

Suppose that L ∈ PΛ is a W -equivariant T -bundle on Z, and consider the composition

FL : L
T
- Z

W
- X.

The labels on the maps indicate that they are principal T and W -bundles, respectively.
(Note that this requires Z to be unramified over X.) The composition is an N -bundle,
where N is some extension of W by T ,

1→ T → N →W → 1.

In other words we have a natural map

HomW (Λ, JZ)
µ
- H2(W,T ),
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where H2(W,T ) is the group classifying extensions as above. Of course, this group has a
distinguished element [n] ∈ H2(W,T ) which represents the normaliser N(T ) ⊂ G of T .

7.1 Example. In the G = SL(2) case of Example 6.1, HomW (Λ, JZ) = {L ∈ JZ | σ∗L =
L−1} has four connected components mapping onto the group H2(W,T ) = H2(Z2,C∗) =
Z2. The trivial element represents the group

O(2) = 〈C∗, σ | σ2 = 1, σz = z−1σ for z ∈ C∗〉,

and its preimage under µ is Nm−1(OX) = kerT ⊂ JZ . The nontrivial element of H2(W,T )
represents the group

Pin(2) = 〈C∗, τ | τ 2 = −1, τz = z−1τ for z ∈ C∗〉,

which is isomorphic to the subgroup of SL(2) = Spin(3) (double covering O(2) ⊂ SO(3))
consisting of matrices (

z
z−1

)
,

(
z

−z−1

)
.

This subgroup is the normaliser of T ⊂ Spin(3) = SL(2). The preimage under µ of
the nontrivial element of H2(W,T ), from which direct image gives SL(2) bundles, is
Nm−1(η) = T−1(η) ⊂ JZ where η ∈ JX [2] corresponds to the double cover Z

2:1
−→ X

(defined by π∗OZ = OX⊕η). Note that this is consistent with relation (3) in Section 4. 2

Up to now we have, for convenience defined PΛ ⊂ HomW (Λ, JZ) to be the connected
component containing the identity. However, it is clearly more correct to define it, as in
the above example, to be the component(s) which map via µ to the element [n]. Then we
obtain a rational map (of course, one needs to show that a general element L ∈ PΛ gives
a semistable bundle)

PΛ →MX(N(T )) ⊂MX(G).

One can also describe this map in terms of vector bundles. L is a principal T -bundle on
Z, and given a weight λ ∈ Λ, or equivalently a character e2πiλ : T → C∗, we can construct
a line bundle

λ(L) := L×λ C ∈ PicZ.

This line bundle descends to the quotient Y = Z/ Stab(λ), and we shall view λ(L) as an
element of Pic Y .

7.2 Proposition. Suppose λ ∈ Λ is a weight of a minuscule representation V of G, and
let L ∈ PΛ. Then

π∗λ(L) = FL(V ),

where π : Y = Z/ Stab(λ)→ X.

Proof. We consider the pull-back π∗ZFL via πZ : Z → X. By definition of FL, this pull-
back is a principal T -bundle. Under the action of T the representation V decomposes
into 1-dimensional eigenspaces

V =
⊕

µ∈X(V )

Vµ =
⊕

µ∈Wλ

Vµ
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and hence the vector bundle π∗ZFL(V ) splits into line bundles

π∗ZFL(V ) =
⊕

µ∈Wλ

Vµ.

The line bundles Vµ are conjugate under the W -action (by W -equivariance of L→ Z) to
Vλ = λ(L), and hence

π∗ZFL(V ) =
⊕

w∈W/Stab λ

w∗(λ(L)).

Since Z is étale over X, this is equivalent to the proposition. 2

7.3 Abelianisation by Hitchin Pryms. In the ramified case degK > 0 it is still
possible to construct a rational map PΛ 99K MX(G), but this requires ‘twisting’ the
definition of PΛ (see [7]). We will just describe here two examples where, using the
Hitchin Prym coming from K = ωX , this abelianisation can be used along the same lines
as for Theorem 4.1.

7.4 Example. Let G = Spin(2n). We will interpret the Verlinde number 4g in Table 2.5.
The weight lattice Λ is contained in 1

2
Zn with the standard inner product, spanned

by Zn and the vector 1
2
(1, . . . , 1). (See Fulton-Harris [11] §19.2 or Adams [1], Chapter 4.)

The Weyl group is the semidirect product

W = Zn−1
2 o Sn

where Zn−1
2 is a normal subgroup acting by even numbers of sign changes, and Sn permutes

the coordinates. The set of weights X(C2n) of the standard orthogonal representation is
the orbit of λ = (1, 0, . . . , 0), of order 2n. We let H = Stab(λ) and Y = Z/ Stab(λ)

2n:1
−→X.

Then the isogeny decomposition of the Jacobian JY corresponds to the Z[W ]-module
decomposition of the induced representation

1W
H = 1⊕ Zn−1 ⊕ Λ.

This decomposition can be seen as follows. 1W
H has a basis α1, . . . , αn, β1, . . . , βn where

the αj are cosets corresponding to the Sn-orbit of λ and the βj correspond to the Sn-orbit
of −λ. Under the W -action 1W

H has a trivial 1 summand spanned by
∑

(αj + βj), a
summand 1⊕Zn−1 spanned by α1 + β1, . . . , αn + βn (so Zn−1 is isomorphic to the weight
lattice of SL(n)), and a summand Λ spanned by α1 − β1, . . . , αn − βn, isomorphic as a
Z[W ]-module to the weight lattice. Hence 6.10 implies that (up to isogeny) we get

JY = P1 × PZn−1 × PΛ.

On the other hand, the natural involution on the orbit X(Cn) induces a fixed-point-free
involution on the curve Y so that the map to X factorises as:

Y

Y ′

2:1 étale

-

X
? n : 1�
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One can check that while P1 is the Jacobian of X, PZn−1 is the Prym variety Prym(Y ′/X).
To see that PΛ = Prym(Y/Y ′), consider the correspondence C = Cλ on Y (Proposi-
tion 6.14). This is defined by the group-ring element

C =
∑

w∈W/Stab(λ)

〈λ |wλ 〉w = 1− σ

where σ ∈ W is the involution λ ↔ −λ. (All other orbit vectors are orthogonal to λ.)
But σ acts on Y as the sheet-interchange over Y ′, and hence by Proposition 6.14 (ii) we
have

evλPΛ = im(1− σ) = Prym(Y/Y ′) ⊂ JY .

Note, incidentally, that C2 = 2C, and that dV = 2 is the Dynkin index of the standard
representation—as it should be by Proposition 6.14 (iii).

The evaluation map evλ is in this case not an isomorphism. This is because Λ/Z[W ]λ ∼=
Z2 (with trivial W -action), so that by Proposition 6.14 (i) the kernel of evλ is isomorphic
to JX [2], the group of 2-torsion points in the Jacobian of X. We therefore arrive at a
diagram:

PΛ

JX [2]
- Prym(Y/Y ′) ⊂ JY

MX(Spin(2n))
?

By the projection formula, as in the proof of Theorem 4.1, the theta line bundle Θ(C2n) =
L 2 on the moduli space MX(Spin(2n)) pulls back to ev∗λΘY . But the fact that Y → Y ′

is étale implies that
ΘY |Prym = 2Ξ

where Ξ is a principal polarisation on Prym(Y/Y ′). (This is a consequence of Corollary 3.4
and the remark following.) Moreover, it is an exercise using the theory of Section 3.1 that
the principal polarisation Ξ pulls back under the isogeny evλ, given that the kernel is
JX [2], to a polarisation of type (1, . . . , 1, 4, . . . , 4) (where 4 appears g times) on PΛ.

In conclusion, then, pull-back of sections under the direct image map defines an in-
jective linear map

H0(MX(Spin(2n)),L ) −→ H0(PΛ, ev∗λΞ) ∼= C4g

.

By the Verlinde formula the first space also has dimension 4g, and so the map is an
isomorphism. 2

7.5 Example. Let G = E6. The Verlinde number in Table 2.5 is 3g in this case. We
return to the set-up of Example 5.16.

The weight lattice Λ is isomorphic to the primitive cohomology in H2(S,Z) of a generic
cubic surface S ⊂ P3 equipped with the intersection form, and under this isomorphism
the set of weights X(C27) of the standard representation becomes identified with the Weyl
group orbit of the class λ ∈ Λ of a line ` ⊂ S. Let H := Stab(λ). Then Donagi [6] checks
that the induced representation 1W

H decomposes as

1W
H = 1⊕ U ⊕ Λ,
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where dimU = 20 and (the weight lattice) dim Λ = 6. It follows that up to isogeny we
have

JY ∼ JX × PU × PΛ.

We have a diagram

PΛ
- P ⊂ JY

MX(E6)
?

The horizontal map is an isomorphism because Λ = Z[W ]λ. Its image P ⊂ JY is defined
by a Q-valued correspondence C on Y which can be calculated using the intersection form
on Λ, and satisfies

3C = 4 id + Skew − 2 Inc

where Inc assigns to ` ⊂ S the 10 incident lines and Skew assigns the 16 skew lines. An
exercise is to show that this correspondence satisfies

C2 = 6 C.

(The Dynkin index is in this case dV = 6.) It can be shown, using this relation, that
ΘY |P = 6Ξ where Ξ is a polarisation of type (1, . . . , 1, 3, . . . , 3) (g times). On the other
hand, the theta line bundle on MX(E6) is Θ(C27) = L 6, and hence pull-back under the
direct image map PΛ →MX(E6) induces an injective linear map

H0(MX(E6),L )→ H0(Pλ,Ξ).

By the Verlinde formula both spaces have the same dimension 3g, and so the map is an
isomorphism. 2
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