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Abstract

Polynomial functors (over Set or other locally cartesian closed categories) are useful in the theory of
data types, where they are often called containers. They are also useful in algebra, combinatorics,
topology, and higher category theory, and in this broader perspective the polynomial aspect is often
prominent and justifies the terminology. For example, Tambara’s theorem states that the category
of finite polynomial functors is the Lawvere theory for commutative semirings [45], [18].
In this talk I will explain how an upgrade of the theory from sets to groupoids (or other locally
cartesian closed 2-categories) is useful to deal with data types with symmetries, and provides a
common generalisation of and a clean unifying framework for quotient containers (in the sense of
Abbott et al.), species and analytic functors (Joyal 1985), as well as the stuff types of Baez and
Dolan. The multi-variate setting also includes relations and spans, multispans, and stuff operators.
An attractive feature of this theory is that with the correct homotopical approach — homotopy
slices, homotopy pullbacks, homotopy colimits, etc. — the groupoid case looks exactly like the set
case.
After some standard examples, I will illustrate the notion of data-types-with-symmetries with
examples from perturbative quantum field theory, where the symmetries of complicated tree struc-
tures of graphs play a crucial role, and can be handled elegantly using polynomial functors over
groupoids. (These examples, although beyond species, are purely combinatorial and can be appre-
ciated without background in quantum field theory.)
Locally cartesian closed 2-categories provide semantics for a 2-truncated version of Martin-Löf
intensional type theory. For a fullfledged type theory, locally cartesian closed ∞-categories seem to
be needed. The theory of these is being developed by David Gepner and the author as a setting for
homotopical species, and several of the results exposed in this talk are just truncations of ∞-results
obtained in joint work with Gepner. Details will appear elsewhere.
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1 Polynomial functors over Set and data types

1.1 Polynomial functors in one variable. In its simplest form, a polyno-
mial functor is an endofunctor of Set of the form

X 7→
∑
b∈B

XEb. (1)

Here the sum sign is disjoint union of sets, XEb denotes the hom set
Hom(Eb, X), and (Eb | b ∈ B) is a B-indexed family of sets, encoded con-
veniently as a single map of sets

E → B.

Viewed as a data type constructor, E → B is often called a container [1, 2,
3, 4, 5, 7]; then B is regarded as a set of shapes, and the fibre Eb is the set of
positions in the shape corresponding to b. The data to be inserted into these
positions can be of any type X : the polynomial functor receives a type X (a
set) and returns the new more elaborate type

∑
XEb. Polymorphic functions

correspond to natural transformations of polynomial functors, and these can
be handled in terms of the representing sets E → B alone, cf. [1], [18], and 2.6
below. A fundamental example is the list functor, X 7→

∑
n∈N X

n, which to
a set X associates the set of lists of elements in X . Here n ∈ N is the shape,
and n denotes the n-element set {0, 1, . . . , n − 1} of positions in a length-n
list.

There is another important use of polynomial functors in type theory: one
then regards E → B as a signature generating an algebra, namely the initial
algebra for the polynomial functor. Initial algebras for polynomial functors
are inductive data types, corresponding to W-types in (extensional) Martin-
Löf type theory [42], [40]. Similarly, terminal coalgebras are coinductive data
types (sometimes called M-types), often interpreted as programs or systems
(see for example [43], [23]).

1.2 Species and analytic functors. A functor is finitary when it preserves
ω-filtered colimits. For a polynomial functor this is equivalent to E → B
having finite fibres. Let Bω denote the groupoid of finite sets and bijections.
A species [26] is a functor F : Bω → Set, written S 7→ F [S]; the set F [S] is
to be thought of as the set of F -structures that can be put on the set S. The
extension of F is the endofunctor

Set −→ Set (2)

X 7−→
∑
n∈N

F [n]×Xn

Aut(n)
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which is the left Kan extension of F along the (non-full) inclusion Bω ⊂ Set.
A functor of this form is called analytic [27]. Joyal established an equiva-
lence of categories between species and analytic functors, and characterised
analytic functors as the finitary functors preserving cofiltered limits and weak
pullbacks [27], see also [24] and [6]. Finitary polynomial functors are precisely
the analytic functors which preserve pullbacks strictly. In terms of species they
correspond to those for which the symmetric group actions are free.

Monoids in species (under the operation of substitution, which corresponds
to composition of analytic functors) are precisely operads. Many important
polynomial functors have the structure of monad. For example, the list functor
has a natural monad structure by concatenation of lists. Polynomial monads
equipped with a cartesian monad map to the list monad are the same thing
as non-symmetric operads [37]. More generally, finitary polynomial monads
correspond to projective operads [32] (i.e. such that every epi to it splits).

1.3 Polynomial functors in many variables. Following [18], a polynomial
is a diagram of sets

I
s
←− E

p
−→ B

t
−→ J, (3)

and the associated polynomial functor (or the extension of the polynomial) is
given by the composite

Set/I
∆s−→ Set/E

Πp

−→ Set/B
Σt−→ Set/J , (4)

where ∆s is pullback along s, Πp is the right adjoint to pullback (called de-
pendent product), and Σt is left adjoint to pullback (called dependent sum).
For a map f : B → A we have the three explicit formulae

∆f(Xa | a ∈ A) = (Xf(b) | b ∈ B) (5)

Σf (Yb | b ∈ B) = (
∑
b∈Ba

Yb | a ∈ A) (6)

Πf (Yb | b ∈ B) = (
∏
b∈Ba

Yb | a ∈ A) , (7)

giving altogether the following formula for (4)

(Xi | i ∈ I) 7−→ (
∑
b∈Bj

∏
e∈Eb

Xs(e) | j ∈ J),

which specialises to (1) when I = J = 1.

The multi-variate polynomial functors correspond to indexed containers [7],
and their initial algebras are sometimes called general tree types [41, Ch. 16].

From the abstract description in terms of adjoints, it follows that the notion
of polynomial functor (and most of the theory) makes sense in any locally
cartesian closed category, and polynomial functors are the most natural class
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of functors between slices of such categories. They have been characterised
intrinsically [31] as the local fibred right adjoints.

1.4 Incorporating symmetries. A container is a rigid data structure: it
does not allow for data to be permuted in any way among the positions of a
given shape. In many situations it is desirable to allow for permutation, so
that certain positions within a shape become indistinguishable. In quantum
physics, the principle of indistinguishable particles imposes such symmetry at
a fundamental level. A fundamental example is the multiset data type, whose
extension is the functor

X 7→
∑
n∈N

Xn

Aut(n)
, (8)

which is analytic but not polynomial.

In order to account for such data types with symmetries, Abbott et al. [5]
(see also Gylterud [22]) have extended the container formalism by adding the
symmetries ‘by hand’: for each shape (element b in B) there is now associated
a group of symmetries of the fibre Eb, and data inserted into the corresponding
positions is quotiented out by this group action. It is not difficult to see (cf. also
[6]) that in the finitary case, this is precisely the notion of species and analytic
functors.

In fact it has been in the air for some time (see for example [14], and more
recently [12], [47]) that species should be a good framework for data type the-
ory. It is the contention of the present contribution that polynomial functors
over groupoids provide a clean unifying framework: in the setting of groupoids,
the essential distinction between ‘analytic’ and ‘polynomial’ evaporates (3.7),
and the functors can be represented by diagrams with combinatorial content
(3) just as polynomials over sets, as we proceed to explain.

From the viewpoint of species, there are other reasons for this upgrade any-
way. In fact, it was soon realised by combinatorists that the 1985 notion of
analytic functors is not optimal for enumerative purposes: taking cardinality
simply does not yield the exponential generating functions central to enumer-
ative combinatorics! (It does so if the analytic functor is polynomial.) In fact,
the Species Book [11] does not mention analytic functors at all.

The issue was sorted out by Baez and Dolan [9]: the problem is that di-
viding out by the group action in (2) is a bad quotient from the viewpoint of
homotopy theory, and does not behave well with respect to cardinality. To
get the correct cardinalities, it is necessary to use homotopy quotients, and
the result is then no longer a set but a groupoid, and the cardinality has to
be homotopy cardinality. So it is necessary to work from the beginning with
groupoids instead of sets. Baez and Dolan introduced species in groupoids
(3.6), dubbing them stuff types, showed that homotopy cardinality gives the
correct generating functions, and illustrated the usefulness of the broader gen-
erality by showing how the types needed for a combinatorial description of the
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quantum harmonic oscillator are stuff types, not classical species [9].

Joint work with David Gepner closes the circle by observing that over
groupoids, species/analytic functors are the same thing as discrete finitary
polynomial functors (3.7); hence the neat formalism of polynomials provides
a natural unifying framework for (quotient) containers and species.

2 Polynomial functors over groupoids

A groupoid is a category in which all arrows are invertible. A useful intuition
for the present purposes is that groupoids are ‘sets fattened with symmetries’.
From the correct homotopical viewpoint groupoids behave very much like sets.
We are interested in groupoids up to equivalence, and for this reason many
familiar 1-categorical notions, such as pullback and fibre, are not appropri-
ate, as they are not invariant under equivalence. The good notions are the
corresponding homotopy notions, which we briefly recall. They can all be de-
duced from the beautiful simplicial machinery developed by Joyal [28, 29] to
generalise the theory of categories to quasi-categories (called ∞-categories by
Lurie [38]). Since the 2-categoryGrpd of groupoids has only invertible 2-cells,
it is an example of a quasi-category. From now on when we say 2-category we
shall mean ‘2-category with only invertible 2-cells’.

2.1 Slices. If I is a groupoid, the homotopy slice Grpd/I is the 2-category of
projective cones with base I (cf. [28]): its objects are maps X → I; its arrows
are triangles with a 2-cell

X //

��
✽✽

✽✽
✽✽

✽

⇒

Y

��✞✞
✞✞
✞✞
✞

I
and 2-arrows are diagrams

X ⇑ 44
**

��
✽✽

✽✽
✽✽

✽

⇒⇒

Y

��✞✞
✞✞
✞✞
✞

I
commuting with the structure triangles. More generally, if d : T → Grpd is
any diagram, there is a 2-category Grpd/d of projective cones with base d.

A homotopy terminal object in a 2-category C is an object t such that for
any other object x, the groupoid C (x, t) is contractible, i.e. equivalent to a
point. More general homotopy limits are defined in the usual way using ho-
motopy slices: the homotopy limit of a functor d : T → Grpd is by definition
a homotopy terminal object in the homotopy slice Grpd/d. Homotopy limits
are unique up to equivalence.
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2.2 Pullbacks and fibres. Given a diagram of groupoids X, Y, S indicated
by the solid arrows,

X ×S Y
❴
✤

//❴❴❴

��
✤
✤
✤ Y

g

��

X
f

//S

the homotopy pullback is the homotopy limit, i.e. given as a homotopy ter-
minal object in a a certain slice 2-category of projective cones over the solid
diagrams of the shape in question, and as such it is determined uniquely up
to equivalence. A specific model is the groupoid X ×S Y whose objects are
triples (x, y, φ) with x ∈ X , y ∈ Y and φ : fx → gy an arrow of S, and
whose arrows are pairs (α, β) : (x, y, φ) → (x′, y′, φ′) consisting of α : x → x′

an arrow in X and β : y → y′ an arrow in Y such that the following diagram
commutes in S

fx
φ

//

f(α)
��

gy

g(β)
��

fx′

φ′
// gy′.

(One should note that if f or g is a fibration then the näıve set-theoretic
pullback is equivalent to the homotopy pullback.)

The homotopy fibre Eb of a morphism p : E → B over an object b in B is

the homotopy pullback of p along the inclusion map 1 pbq //B :

Eb
❴
✤

//

��

E

p

��

1
pbq

//B.

(Note that the homotopy fibre Eb is not in general a subgroupoid of E, al-
though the map Eb → E is always faithful. But again, if p is a fibration then
the set-theoretic fibre is equivalent to the homotopy fibre.)

2.3 Homotopy quotients. Whenever a group G acts on a set or a groupoid
X , the homotopy quotient X/G is the groupoid obtained by gluing in a path
(i.e. an arrow) between x and y for each g ∈ G such that gx = y. More
formally it is the total space of the Grothendieck construction of the presheaf
G → Grpd that the action constitutes; it is a special case of a homotopy
colimit. (The notationX//G is often used [9].) If G acts on the point groupoid
1, then 1/G is the groupoid with one object and vertex group G.

If p : X → B is a morphism of groupoids, for b ∈ B the ‘inclusion’ of the
homotopy fibre Xb → X is faithful but not full in general. But Aut(b) acts on
Xb canonically, and the homotopy quotient Xb/Aut(b) provides exactly the
missing arrows, so as to make the natural map Xb/Aut(b)→ X fully faithful.
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Since every object x ∈ X must map to some connected component of B, we
find the equivalence

X ≃
∑
b∈π0B

Xb/Aut(b) =:

∫ b∈B

Xb, (9)

expressing X as the homotopy sum of the fibres, or equivalently as a family
of groupoids (indexed by π0(B) and with a group action in each). Given

morphisms of groupoids Y
p
→ B

f
→ A, we have the following ‘Fubini formula’:

∫ b∈B

Yb ≃

∫ a∈A ∫ b∈Ba

Yb

which is actually the formula for the ‘dependent-sum’ functor Σf : Grpd/B →
Grpd/A given by postcomposition. In family notation the formula reads

Σf (Yb | b ∈ B) = (
∫ b∈Ba Yb | a ∈ A) ,

just as Formula (6) in the Set case.

Pullback along f : B → A, denoted ∆f , is right adjoint to Σf . This
means of course homotopy adjoint, and amounts to a natural equivalence of
mapping groupoids Grpd/A(ΣfY,X) ≃ Grpd/B(Y,∆fX). The proof relies
on the universal property of the pullback. One may note the following formula
for pullback, in family notation:

∆f (Xa | a ∈ A) = (Xf(b) | b ∈ B),

again completely analogous to the Set case (Formula (5)).

The 2-category of groupoids is locally cartesian closed. This means that
the pullback functor in turn has a right adjoint Πf : Grpd/B → Grpd/A.
The general formula is an end formula; for Y → B, the fibre of ΠfY over
a ∈ A can be described explicitly as the mapping groupoid

(ΠfY )a = Grpd/B(Ba, Y ).

(A more explicit formula will be derived in the discrete case below.)

2.4 Polynomial functors. A polynomial is a diagram of groupoids

I
s
←− E

p
−→ B

t
−→ J.

The associated polynomial functor (or the extension of the polynomial) is given
as the composite

Grpd/I
∆s−→ Grpd/E

Πp

−→ Grpd/B
Σt−→ Grpd/J .

7
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2.5 Beck–Chevalley, distributivity, and composition. Given a homo-
topy pullback square

·
❴
✤
ψ

//

α

��

·

β

��
· ϕ

// ·

there are natural equivalences of functors

Σα ◦∆ψ
∼→ ∆ϕ ◦ Σβ and ∆β ◦ Πϕ

∼→ Πψ ◦∆α,

usually called the Beck–Chevalley conditions. A more subtle feature of the
theory is distributivity, which in this setting is an equivalence saying how
to distribute dependent products over dependent sums (and which can be
interpreted as a type-theoretic form of the axiom of choice [39]). We shall
not need the details here. See [18] for the classical case, and Weber [46] for a
deeper treatment. The Beck–Chevalley conditions and distributivity yield a
formula for composing polynomial functors [18].

2.6 Natural transformations. Just as in the classical case [18], homotopy
cartesian natural transformations P ′ ⇒ P of polynomial functors (in one
variable) correspond precisely to homotopy cartesian diagrams

E ′ //

��

❴
✤ B′

��

E //B.

This is an easy consequence of Beck–Chevalley. Showing more generally that
arbitrary natural transformations are given essentially uniquely by diagrams

E ′ //B′

·

OO

//

��

❴
✤ B′

��

E //B

is a bit more involved and depends on a homotopy version of the Yoneda
lemma. (At the time of this writing, this result is not as precise as in the
1-dimensional case of [18].)

2.7 Spans and stuff operators. Spans of groupoids are the special case of
groupoid polynomials where the middle map is the identity (or an equivalence).
These constitute a categorification of matrix algebra, and were called stuff
operators by Baez and Dolan [9]; they have been used to give groupoid models
for certain aspects of Hecke algebras and Hall algebras [10].
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3 Exactness; combinatorial polynomial functors

The following results from [21] are actually proved in the much richer setting
of ∞-groupoids, but the proofs work also for 1-groupoids. We now suppress
the clumsy ‘homotopy’ everywhere, although of course all limits and colimits
mentioned refer to the homotopy notions.

Theorem 3.1 (Gepner-Kock [21].) A functor Grpd/I → Grpd/J is poly-
nomial if and only if it is accessible and preserves conical limits.

By conical limit we mean limit over a diagram with a terminal vertex. Recall
that a functor is accessible [38, Ch. 5] when it preserves κ-filtered colimits for
some regular cardinal κ. The regular cardinal here is explicitly characterised:

Proposition 3.2 ([21]) A polynomial functor given by I ← E
p
→ E → J

preserves κ-filtered colimits if and only if p has κ-compact fibres.

An important case is κ = ω. A groupoid is ω-compact when it has finitely
many components (i.e. π0(X) is a finite set) and all vertex groups are finitely
presented.

3.3 Discreteness. For many data types occurring in practice (including
species and all the examples below), although they may have symmetries, the
positions in each shape form a discrete groupoid, i.e. a groupoid equivalent to
a set. In the polynomial formalism this amounts to the middle map p : E → B
having discrete fibres. In this case, the dependent product formula simplifies
to

(ΠpY )b =
∏

e∈π0(Eb)

Ye,

in analogy with (7), and hence all the formulae look exactly like the Set case.

The corresponding exactness condition is preservation of sifted colimits. A
κ-sifted colimit is a colimit over a diagram D whose diagonal D → DS is
cofinal for every set S of cardinality < κ [38, Ch. 5].

Proposition 3.4 ([21]) A polynomial functor given by I ← E
p
→ E → J

preserves κ-sifted colimits if and only if p has κ-compact discrete fibres.

3.5 Combinatorial polynomial functors. We call a polynomial functor
I ← E

p
→ B → J combinatorial if the fibres of p are equivalent to finite sets

(i.e. are ω-compact discrete).

3.6 Species in groupoids (stuff types). A Baez-Dolan stuff type [9] is
a map of groupoids F → Bω. We prefer the name species in groupoids. (A
classical species is when the map has discrete fibres, or equivalently is faithful.)

9



Kock

Its extension is the left homotopy Kan extension of n 7→ Fn along Bω ⊂ Grpd:

Grpd −→ Grpd

X 7−→
∑

n∈π0(Bω)=N

Fn ×Xn

Aut(n)
.

(That’s a homotopy quotient of course.)

This functor is polynomial [21]: the representing groupoid map is the top
row in the pullback

E //

��

❴
✤ F

��

B′
ω

//Bω.

This map has finite discrete fibres since B′
ω → Bω has. (Here B

′
ω is the groupoid

of finite pointed sets.) Conversely, given a groupoid polynomial E → F with
finite discrete fibres, the ‘classifying map’ F → Bω (obtained since B′

ω → Bω

classifies finite discrete fibrations) yields a species in groupoids. One can check
that the extension of the polynomial agrees with the extension of the species.
In conclusion:

Proposition 3.7 ([21]) Combinatorial polynomial functors Grpd → Grpd

are the same thing as analytic functors (in the sense of Baez-Dolan).

Combining these results we get a ‘Joyal theorem’:

Corollary 3.8 ([21]) A functor Grpd → Grpd is analytic (in the sense of
Baez-Dolan) if and only if it preserves ω-sifted colimits and conical limits.

3.9 Generalised species. The relationship between polynomial functors
and the generalised species of [15] has been sketched by Gambino and the
author (unpublished). A generalised species depends on two categories I and
J , and has as extension a generalised analytic functor PrSh(I)→ PrSh(J);
this generalises the 1985 notion but not the Baez-Dolan notion. If I and J
are groupoids, these generalised analytic functors correspond to the ‘classical’
extension of combinatorial polynomials over groupoids, i.e. involving π0 on
quotients.

3.10 Examples. Groupoid polynomials encode data types in groupoids. For
example, B′

ω → Bω encodes the multiset data type: the groupoid Bω of fi-
nite sets and bijections is the groupoid of shapes — the shape of a multiset
is really the set indexing its elements, not just its size. There are N-many
isoclasses; the isomorphisms should be interpreted as propositional equality.
The fibre over S ∈ Bω is the discrete groupoid of positions in S, i.e. a uniform
prescription of positions in multisets indexed by S. Indeed, since B′

ω → Bω is
a fibration, the fibre is canonically identified with the set S itself — note its
natural Aut(S)-action. The discreteness of the fibre means that propositional

10
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equality between positions can be regarded as definitional equality. The exten-
sion of this quotient container is naturally an endofunctor Grpd → Grpd.
But one obtains an endofunctor Set → Set (in this case precisely (8)) by
precomposing with the natural inclusion Set → Grpd and postcomposing
with π0 : Grpd → Set. The first is harmless. The second corresponds to col-
lapsing all isomorphisms to identity, i.e. interpreting propositional equality as
definitional equality. If the argument is a set, the only collapse is the passage
from homotopy quotient to näıve quotient (of actions on sets).

The data type of cyclic lists is groupoid polynomial, represented by C′
ω →

Cω, where Cω is the groupoid of finite cyclically ordered sets, and C′
ω is the

groupoid of pointed cyclically ordered finite sets. From 1.1, the list data type
is represented by N

′ → N, interpreted as the groupoids of linearly ordered
finite sets and pointed ditto. The diagram of groupoids

N′ //

��

❴
✤ N

��

C′
ω

//

��

❴
✤ Cω

��

B′
ω

//Bω

now represents the cartesian natural transformations, or polymorphic func-
tions, from lists to cyclic lists to multisets.

4 Trees

W-types in Martin-Löf type theory correspond to initial algebras of polyno-
mial functors (cf. [40] and [17] for the extensional case, and [8] for the fully
intensional case). The initial algebra for 1 + P can also be described as the
set of operations for the free monad on P , which in turn is the set of P -trees.
P -trees (for P a polynomial functor over Set or any lccc) are always rigid,
i.e. have no symmetries. Abstract trees, on the other hand, admit symmetries,
so they are not P -trees for any Set-polynomial functor P , and they are nei-
ther W-types nor containers in the classical sense. Instead, according to [32],
abstract trees are themselves polynomial functors. It is convenient to take the
following characterisation of trees as a definition:

4.1 Trees. ([32]) A (finite) tree is a diagram of finite sets

A
s
←−M

p
−→ N

t
−→ A

satisfying the following three conditions:

(1) t is injective

11
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(2) s is injective with singleton complement (called root and denoted 1).

With A = 1 + M , define the walk-to-the-root function σ : A → A by 1 7→ 1
and e 7→ t(p(e)) for e ∈M .

(3) ∀x ∈ A : ∃k ∈ N : σk(x) = 1.

The elements of A are called edges. The elements of N are called nodes.
For b ∈ N , the edge t(b) is called the output edge of the node. That t is
injective is just to say that each edge is the output edge of at most one node.
For b ∈ N , the elements of the fibre Mb are called input edges of b. Hence
the whole set M =

∑
b∈N Mb can be thought of as the set of nodes-with-a-

marked-input-edge, i.e. pairs (b, e) where b is a node and e is an input edge
of b. The map s returns the marked edge. Condition (2) says that every edge
is the input edge of a unique node, except the root edge. Condition (3) says
that if you walk towards the root, in a finite number of steps you arrive there.
The edges not in the image of t are called leaves.

4.2 Decorated trees: P -trees ([32]; see also [33, 34, 35]) An efficient way
of encoding and manipulating decorations of trees is in terms of polynomial

endofunctors. Let P be a polynomial endofunctor given by I
d
← E

q
→ B

c
→ I.

A P -tree is a diagram

A

��

Moo

❴
✤

//

��

N

��

//A

��

I Eoo //B // I ,

(10)

where the top row is a tree. The squares are commutative up to isomorphism,
and it is important that the 2-cells be specified as part of the structure. Un-
folding the definition, we see that a P -tree is a tree whose edges are decorated
in I, whose nodes are decorated in B, and with the additional structure of
an equivalence Mn ≃ Eb for each node n ∈ N with decoration b ∈ B (this is
essentially just a bijection, since the fibres are discrete), an iso in I between
the decoration of an edge m ∈Mn and the corresponding d(e), and finally an
iso in I between the decoration of the output edge of n and c(b).

4.3 Examples of P -trees. Natural numbers are P -trees for the identity
monad P (X) = X , and are also the set of operations of the list monad. Planar
finite trees are P -trees for P the list monad, and are also the set of operations
of the free-non-symmetric-operad monad [37]. These two examples are the
first entries of a canonical sequence of inductive data types underlying several
approaches to higher category theory, the opetopes: opetopes in dimension
n are P -trees for P a Set-polynomial functor whose operations are (n − 1)-
opetopes [35]; hence opetopes are higher-dimensional trees.

Abstract finite trees are P -trees for the multiset functor 1← B′
ω → Bω → 1,

but cannot be realised as P -trees for any Set-polynomial P .

12
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4.4 Trees of Feynman graphs. In the so-called BPHZ renormalisation
of perturbative quantum field theories, one is concerned with nestings of
1-particle irreducible (1PI) Feynman graphs, i.e. graphs [30] for which no
single edge removal disconnects. Kreimer [36] discovered that the BPHZ pro-
cedure is encoded in a Hopf algebra of (non-planar) rooted trees, expressing
the nesting of graphs.

3

3

3 33
3 3

3 3

2

2 :

3 :

In the picture the combinatorial tree in the middle expresses the nesting of
1PI subgraphs on the left; such trees are sufficient in Kreimer’s Hopf-algebra
approach to BPHZ, but do not capture the symmetries of the graph. To this
end, further decoration is needed in the tree, as partially indicated on the
right. First of all, each node in the tree should be decorated by the 1PI graph
it corresponds to in the nesting, and second, the tree should have leaves (input
slots) corresponding to the vertices of the graph. The decorated tree should be
regarded as a recipe for reconstructing the graph by inserting the decorating
graphs into the vertices of the graphs of parent nodes. The numbers on the
edges indicate the type constraint of each substitution: the outer interface of
a graph must match the local interface of the vertex it is substituted into. But
the type constraints on the tree decoration are not enough to reconstruct the
graph, because for example the small graph decorating the left-hand node

could be substituted into various different vertices of the graph .

The solution found in [34] is to consider P -trees, for P the polynomial

endofunctor given by I
s
← E

p
→ B

t
→ I, where I is the groupoid of interaction

labels for the theory (in this case the one-vertex graphs and ) and B is
the groupoid of connected 1PI graphs of the theory, and E is the groupoid
of such 1PI graphs with a marked vertex. The map s returns the one-vertex
subgraph at the mark, p forgets the mark, and t returns the outer interface of
the graph, i.e. the graph obtained by contracting everything to a point, but
keeping the external lines. A P -tree is hence a diagram like (10) with specified
2-cells. These 2-cells carry much of the structure: for example the 2-cell on
the right says that the 1PI graph decorating a given node must have the same
outline as the decoration of the outgoing edge of the node — or more precisely,
and more realistically: an isomorphism is specified (it’s a bijection between
external lines of one-vertex graphs). Similarly, the left-hand 2-cell specifies
for each node-with-a-marked-incoming-edge x′ ∈M , an isomorphism between
the one-vertex graph decorating that edge and the marked vertex of the graph

13
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decorating the marked node x′. Hence the structure of a P -tree is a complete
recipe not only for which graphs should be substituted into which vertices, but
also how: specific bijections prescribe which external lines should be identified
with which lines in the receiving graph. In fact, there is an equivalence of
groupoids between nested graphs and P -trees [34]. This is exploited in [16]
to establish algebraic identities concerning graphs by interpreting them as
homotopy cardinalities of equivalences of groupoids of decorated trees.

Notice that the polynomial functor P is combinatorial, since each graph
has a discrete finite set of vertices. It is not a species in the classical sense
though: the classifying map B → Bω sends a graph to its set of vertices, and
since a graph may have nontrivial automorphisms that fix every vertex, this
map does not have discrete fibres.

5 Outlook

A 2-category is called locally cartesian closed when for every arrow f : B →
A, we have the string of adjoint functors Σf ⊣ ∆f ⊣ Πf . This structure
formally implies the Beck-Chevalley equivalences and distributivity, which are
the minimal requirements for a reasonable theory of polynomial functors. The
theory of strength can be copied almost verbatim from [18], and it seems that
the representation theorem of [18] also carries over.

While locally cartesian closed categories provides semantics for an exten-
sional version of Martin-Löf type theory [44], [13], and locally cartesian closed
2-categories capture some 2-truncated version ([25], [19]), recent insight of
Homotopy Type Theory strongly suggests that in the long run, the case of∞-
groupoids and other locally cartesian closed∞-categories will be the real meat
for type theory. Large parts of the∞-theory of polynomial functors, as well as
aspects of the theory of locally cartesian closed ∞-categories geared towards
Homotopy Type Theory have already been worked out in joint work with
David Gepner, and will appear elsewhere [21], [20]. Nevertheless the groupoid
case is interesting in its own right, since it already covers important applica-
tions: in particular for many purposes of combinatorial nature, 1-groupoids
are all that is needed in order to handle symmetry issues. Time will tell
whether for purposes of program semantics the groupoid level is enough too
— otherwise it is a good stepping stone into the ∞-world.

References

[1] Abbott, M., “Categories of Containers,” Ph.D. thesis, University of Leicester, 2003. Available
from http://www.mcs.le.ac.uk/~ma139/docs/thesis.pdf.

[2] Abbott, M., T. Altenkirch and N. Ghani, Categories of containers, in: Foundations of software
science and computation structures, Lecture Notes in Comput. Sci. 2620 (2003), pp. 23–38.

14

http://www.mcs.le.ac.uk/~ma139/docs/thesis.pdf


Kock

[3] Abbott, M., T. Altenkirch and N. Ghani, Containers: constructing strictly positive types,
Theoret. Comput. Sci. 342 (2005), pp. 3–27.

[4] Abbott, M., T. Altenkirch, N. Ghani and C. McBride, Derivatives of containers, in: Typed
lambda calculi and applications (Valencia, 2003), Lecture Notes in Comput. Sci. 2701 (2003),
pp. 16–30.

[5] Abbott, M., T. Altenkirch, N. Ghani and C. McBride, Constructing polymorphic programs
with quotient types, in: Mathematics of program construction, Lecture Notes in Comput. Sci.
3125 (2004), pp. 2–15.

[6] Adámek, J. and J. Velebil, Analytic functors and weak pullbacks, Theory Appl. Categ. 21

(2008), pp. 191–209.

[7] Altenkirch, T. and P. Morris, Indexed containers, in: Proceedings of the Twenty-Fourth Annual
IEEE Symposium on Logic in Computer Science (LICS 2009) (2009), pp. 277–285.

[8] Awodey, S., N. Gambino and K. Sojakova, Inductive types in homotopy type theory, preprint,
ArXiv:1201.3898.

[9] Baez, J. C. and J. Dolan, From finite sets to Feynman diagrams, in: B. Engquist
and W. Schmid, editors, Mathematics unlimited—2001 and beyond (2001), pp. 29–50.
ArXiv:math.QA/0004133.

[10] Baez, J. C., A. E. Hoffnung and C. D. Walker, Higher dimensional algebra VII: groupoidifica-
tion, Theory Appl. Categ. 24 (2010), pp. 489–553. ArXiv:0908.4305.

[11] Bergeron, F., G. Labelle and P. Leroux, “Combinatorial species and tree-like structures,” En-
cyclopedia of Mathematics and its Applications 67, Cambridge University Press, Cambridge,
1998, xx+457 pp.

[12] Carette, J. and G. Uszkay, Species: making analytic functors practical for functional program-
ming (2008), available from http://www.cas.mcmaster.ca/~carette/species/.

[13] Clairambault, P. and P. Dybjer, The biequivalence of locally cartesian closed categories and
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