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1 Introduction

In these notes we provide a straightforward introduction to the topic of harmonic measure.
This is an area where many advances have been obtained in the last years and we think
that this book can be useful for people interested in this topic.

In the first Chapters 2-6 we have followed classical references such as [Fol95], [Car98],
[GMO5], [Lan72], [AGO1], and [Ran95], as well as some private notes of Jonas Azzam. A
large part of the content of Chapter 7 is based on Kenig’s book [Ken94], and on papers by
Aikawa, Hofmann, Martell, and many others. Chapter 8 is based on a paper by Jerison
and Kenig [JK82]. In Chapter 9, the proof of Jones-Wolff theorem about the dimension
of harmonic measure in the plane follows the presentation of [CTV18]!. In some parts of
Chapter 10 we follow the book of Caffarelli and Salsa [CS05] and some work by Mourgoglou
and the second named author of these notes. A large part of Chapter 11 follows [AHM*16].

We apologize in advance for possible inaccuracies or lack of citation. Anyway, we remark
that this work is still under construction and we plan to add more content as well as more
accurate citations in future versions of these notes.

'"We thank J. Cuff and J. Verdera for allowing us to reproduce a large part of the content from [CTV18].
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2 Harmonic functions

2.1 Definition and basic properties

Given an open set Q@ < R? we say that a real-valued function w is harmonic in € if
u e C?(Q) and

for every x € Q2 (later on we will see that the C? hypothesis can be replaced by just locally
integrable if we consider the distributional Laplacian).
Let g denote the area of the unit sphere S%~! < R?, that is,

B Le]
T
see [Fol95, Proposition 0.7] for instance, and do denote the surface measure. Recall that
the volume of the unit ball is then |B1(0)] = “¢ (see [Fol95, Corollary 0.8]). Below, we
denote B, (x) the open ball centered at x with radius r, and S,(x) = 0B, (x).

Throughout the notes |U| = m(U) stands for the Lebesgue measure of a set U, and
&U f du for the average integral of f with respect to the measure p in U, i.e., ﬁ SU fdu.

We will use also dx = dm(z) for the integration with respect to Lebesgue measure and
my (f) for the mean of f with respect to the Lebesgue measure in U.

Lemma 2.1 (Mean value theorem). Let Q  R? be open. If u e C?(Q) is harmonic, then
u(xg) = J[ u(y)dy = J[ w(zo + ry)dy  for every B,y(zg) c Q c RY.  (2.1)
By (x0) B1(0)
Moreover
u(zy) = J[ u(y)do(y) = J( w(zo + ry)do(y)  for every B,(zg)  Q < RY. (2.2)
Sr(wo) 51(0)
Proof. Changing variables, we have that
1
A(p) := J u(x)dr = J u(px + xo)dz.
Bﬂ(xo)
On the other hand, set

A(p) := Vu(px + xo) - xdx
By

_ f Vu(z) - (x — z0) d% _ ;lHlf Vu(z) - V]|z — aj0|2 dx.
Bp(wo) P P 2 Belo)




2 Harmonic functions

Since u satisfies that Au = 0 in 2, we can apply Green’s formula twice to obtain

~ 1 1
A(p) = J |z — 20> Vu(z) - vdx — f Au(z) |z — z0|* dz
2001 ) (o) 2091 | (o)
=
= _— Vu(z) - vdz =0, (2.3)
2pd_1 Sp(z0) ( )

where v stands for the normal vector to the sphere pointing outward.
Since u € C?(R), for every  we have §’ Vu(tz + z¢) -z dt = u(rz + zo) — u(pz + x0) by
the fundamental theorem of calculus. Applying Fubini’s Theorem we get

23) (7 ~ "
0 = L A(t)dt = JBl f Vu(tz + zp) - xdtde = fBl (u(rz + zo) — u(pr + x0)) dx (2.4)

= A(r) — A(p)-
So A(r) = A(p) for all p < r.

On the other hand, taking the mean and using the continuity of u we obtain

< li o(1) =0.
pli%op o(1)

d 1
- = lim ————
uleo) ME%A(ﬂ o0 | B, (x0)]

j (ulo) — u(x)) da
By (o)

To see the coincidence with the average on spheres, note that in polar coordinates we

have
f f (t0)td~Ldt de.
S1(0)

From this formula one can easily show that (2.2) implies (2.1), but we need to prove the
converse. Let us differentiate this expression. We get that

1
0= Ap) = f f (t0)t% T d dp + — f w(pf)p*~d (2.5)
d+1 $1(0 p $1(0)
—d 1
= —A(p) + f u(ph)do.

p P s, (@0
Since u(xp) = H%A(p) by (2.1), we readily get (2.2) multiplying the last expression times
L O

Kd

Remark 2.2. Arguing as above, it follows that if u € C?(12) satisfies Au > 0 in €2, then

weo) < | udy< f uldoty) (2.6
Br(wo) Sr(z0)
whenever B,.(zg) = Q c R?. Indeed, instead of (2.3), we have
~ 1 1
A =J Vua:-ydx—f Au(z) |z — zo|? da
0 =g | ) vde =g [ du@fe
) ) 2
= — Au(z)dr — —— Au(z) |z — zol* dz
201 Js, (o) (e = g By (o) @l |

1 J 2 2
=— Au(z) (p° — |z — x0|*) dx = 0.
de+1 By (z0)
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Then, as in (2.4), we deduce that
Ar)—A(p) =0 ifp<r.

Then, letting p — 0, the first inequality in (2.6) follows.
Further, notice that the preceding discussion shows that A’(p) > 0, and then by (2.5)

it follows that p .
0< =% a(p) + f w(pf)do),
p p? s, (z0)

which is equivalent to the last inequality in (2.6).

Theorem 2.3 (Converse of the mean value Theorem). If u € C(Q) satisfies (2.1) or (2.2),
then u e C* and it is harmonic.

Proof. Note that we have seen that (2.1) and (2.2) are in fact equivalent. Thus, it suffices
to assume that u satisfies (2.2).
Let ¢ € C*([0,1]) be a non-negative function with ;1 (t)t¢~1dt = 1. Define ¢.(z) :=

Lo (@) Then {¢. =1 for every e. Next consider the subset Q. := {z € Q: B.(z) <

Kqed

Q}. If x € Q. then we claim that
u(w) = [[u(y)oxlz ) dy.
Indeed,

ul) - f u(y)pe(z — y) dy = f(a(ra) —u(y))oe(e — y) dy
R0

0 Kqe®

f (u(z) —u(z + ph)) db dp 2.
S51(0)

We can conclude that u is C® in Q. and, therefore, in the whole of €.
To get the harmonicity, note that the derivative with respect to r of Ssl(o) u(x+ry)do(y)
is zero by assumption. That is

d d
0=— u(y)do(y) = c— u(z + ry)do(y) = CJ opu(z +ry)do
dr Js, (z) dr Js, (o) S1(0)
= CJ[ oy,udo = dc_lj Audz.
Sr(x) r B, (z)
Since the Laplacian vanishes on every ball, we deduce that it is actually zero everywhere.

d

In particular, every harmonic C? function is C*. Therefore we can restate the definition
of harmonic function:

Definition 2.4. We say that a function u : 2 — R is harmonic if u € C(Q2) and it satisfies
the mean value property (2.1).
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As we have seen, every harmonic function satisfies also the mean value property in
spheres, it is C*(2) and Au = 0. This self-improvement property is also true for harmonic
distributions, we will see that later on.

Theorem 2.5 (The maximum principle). Let Q be a domain (i.e. open and connected
set). If u is harmonic and real-valued and A := supgu < o0, then either u(x) < A for
every x € Q2 or u(x) = A for every x € .

Proof. {x € Q : u(x) = A} is relatively closed by continuity and open by the mean value
theorem. O

Corollary 2.6. Let Q be a bounded open set. If u € C(Q) is harmonic and real-valued,
then the supremum and the infimum are attained at the boundary.

Proof. Assume that the supremum is not attained at the boundary. Then, by compactness
it must be attained in the interior. This implies that u is constant in some component
of Q, which in turn implies that the supremum is also attained at the boundary of that
component, a contradiction. Also the infimum is attained at the boundary since infq u =
—supq(—u). O

Theorem 2.7 (Uniqueness theorem). Let Q be a bounded open set. If ui,us € C(Q) are
harmonic in Q, and u1|sq = uszloq, then uiq = uszlq.

Proof. Apply the corollary to ui — uo. O

Theorem 2.8 (Liouville’s theorem). Let u be a bounded harmonic function in RY. Then
u 18 constant.

Proof. Note that for r > 2|z|
d

u(y)dy — J[ u(y)dy f
J[Br(ac) +(0) Kar JB, .0/ (0)\B,_ 2/ (0)

< Uy 1Br ot ONB e O falluly oo,
Rd r r

u(z) —u(0)] = <

|u(y)ldy

2.2 The Caccioppoli inequality

We have shown that every harmonic function u € C(Q) is C*(2). Next we turn our
attention to weakly harmonic functions.

Definition 2.9. Given an open set Q = RY, we say that u € VVlicz(Q) is weakly harmonic
if every test function ¢ € CP () satisfies that

(Au, @) = —(Vu,Vy) = 0. (2.7)
We say that uw € D'(Q) is distributionally harmonic if, instead, test functions satisfy

(Au, ) := {u, Ap) = 0. (2.8)
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Arguing by density, if u is weakly harmonic then equation (2.7) is verified also for every
pE W 2(Q) Note that every harmonic function is weakly harmonic, and every weakly
harmonic function is distributionally harmonic, but the converse has not been established
yet (see Proposition 2.19 below).

Lemma 2.10 (Caccioppoli Inequality). Let Q < RY be an open set, and let u be weakly
harmonic in Q. Then for every t > 0 and every ball B of radius r such that (t+1)B < ,
we have

J IVul? < 1 5 f u?.
B (rt)? Ju+1)B\B

Proof. Let 1 be a Lipschitz function such that xp < 7 < x(+1)p and with |[Vn| < %
Since u is weakly harmonic and 7 is compactly supported in €2, we have that

0= J Vu - V(un?).
(t+1)B

By the Leibniz rule, the former identity can be written as
f | Vul? = —f 2unVu - Vn,
(t+1)B

(t+1)B
and using Holder’s inequality we get
3
(J n2|Vu!2> :
(t+1)B

f 2IVaf? < ( j 4u21vm2)
(t+1)B (t+1)B
4

f |Vu|? < J | Vul? < f 4u?|Vn|* < 5 J u?.
B (t+1)B (t+1)B (r1)?* Jus1)B\B

=

Thus,

O]

The Caccioppoli inequality is also valid for subharmonic functions, see Section 5.1. This
inequality implies the universal control for the gradient in terms of the distance to the
boundary and the L* norm of u:

Lemma 2.11. Let Q < R? be an open set, and let u be harmonic in Q. Then

lull oo )
Vulz)| < ———, 2.9
Vu(e) 5 528 (2.9)
where dg(z) := dist(z, 09).
Proof. Since the derivatives of u are harmonic, by the mean value theorem and the Cac-
cioppoli inequality

N

Vu(z)| - Jf Vudm| < J[ IVl dm
Bld ( )(:1:) B1
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as claimed. 0
By iterating the estimate in Lemma 2.10, we immediately obtain the following.

Lemma 2.12. Let u be a harmonic function in B1(0). Then, for all k > 1,

lullen (s, 0y < CF) ] Lo, (0))-
Then we deduce the following generalization of Liouville’s theorem.

Proposition 2.13. Let v > 0 and let u be harmonic in R? such that |u(x)| < C(1 + |z|)Y
for all v € RY. Then u is a polynomial of degree at most |v|.

Proof. For r > 0, consider the function u,(x) = wu(rx). Since w, is harmonic, for any
k > 1, by Lemma 2.12 we have

| C(k)
| D u o5, (0)) = F | D ur | Lo (B, 1 (0)) < — 5 o)

C(k C'(k)(1+7r)
7"(k) lull oo (B, 0)) < L

rk

For k = |y|+1, the term on the right hand side tends to 0 as 7 — o0, and thus D¥u vanishes
identically in R?. Consequently, u is a polynomial of degree at most k — 1 = |v]|. O

Lemma 2.14. FEvery sequence of uniformly bounded harmonic functions in an open set
Q is locally equicontinuous, it has a converging subsequence, and the limit is harmonic as
well.

Proof. Let {up}n with Au, =0 in Q and [un | o) < C < 0.

By assumption u,, is a sequence of uniformly bounded and, by Lemma 2.11, uniformly
locally equicontinuous functions. By the Ascoli-Arzeld theorem, u, has a partial converg-
ing uniformly in every compact subset of €.

To see that the limit is also harmonic just apply the converse to the mean value theorem
(see Theorem 2.3) to the limiting function. O

2.3 Harnack’s inequality

Lemma 2.15 (Harnack’s inequality). Let B be a ball and let u = 0 be a harmonic function
i 2B. Then

supu < Cinf u.
B B

Remark that the estimate above is equivalent to saying that

Clu(z) <u(y) < Cu(x) forall 2,y € B.
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Proof. Set B = B(xg,r). To prove the lemma it suffices to show that, for all y,z € B,
u(y) < u(z), with the implicit constant depending only on d. Suppose first that |y — z| <
r/4. Then we have B(y,r/4) ¢ B(z,7r/2) cc 2B, and so we have, by the mean value

property,
u(y) = J[ udr < ][ udr = u(z).
B(y,r/4) B(zr/2)

In the case when |y — z| > r/4, we partition the segment [y, z] into eight segments I;
with equal length and disjoint interiors. So we write

v, 2z] = | [wi yjel,

0<y<7

and we assume that y = yo, 2 = yg. Since the length of [y, z] is at most diam(B) = 2r, it
holds |y; —y;+1| < r/4 for each j. By the previous estimate, then we have u(y;) < u(yj+1)
for each j. Thus,
u(y) = u(yo) < u(yr) < -+ < ulys) = u(2).
O

Note that by modifying the argument above we can get that for every ¢ > 0 there exists
an optimal constant £(¢) so that every harmonic function v > 0 in (1 + ¢)B satisfies

supu < (1 4 ¢(t)) inf u.
B B

The reader can prove that € is non-increasing and () 120, o, But the interesting asymp-
totic behavior is for ¢ — oo:

Lemma 2.16 (Asymptotic Harnack inequality). There exists a monnegative function

e(t) 2%, 0 so that every harmonic function u > 0 in (1 + t)B satisfies that

supu < (14 ¢(t)) inf u.
B B

Proof. The proof follows by an argument very similar to the one in the preceding lemma.
Indeed, assume t > 8, say, and consider arbitrary points x,z € B. Furthermore, assume
without loss of generality that »(B) = 1. Then we have B(x,t/2) c B(z,2+t/2) < (1+t)B
and so

u(x)—* udy<¥ udy
|B(z,t/2)| Jp@./2) B2, 1/2)] )z 0412
_|B(z,2+t/2)] 2SN
T Bl ) e
So we may choose £(t) = (%)d -1 O

Lemma 2.17. Let Q ¢ R? be a domain and let z,y € Q. Then there is a constant Cry>0
depending just on x, y, and £ such that for any positive harmonic function u in §2, it holds

Cryu(z) < u(y) < Coyuly).
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Remark that the important fact about the estimate above is that the constant C, , does
not depend on the particular function .

Proof. Let v < ) be a compact curve contained in 2 whose end points are x and y, and
let 0 = dist(y, 092). By the compactness of ~, there is a finite covering of v by open balls
Bi,i=1,...,m, centered in v with r(B;) = /2 (with m depending on 2 and 7).

We reorder the balls B; as follows. Suppose that x € By without loss of generality. If
m = 2, because of the connectivity of «, there exists another ball B;, call it Bs, such that
By n By # @. Next, if m > 3, by the connectivity of v again, there exists another ball,
call it Bs, such that (B; u Bz2) n B3 # @, and so on. Denote Uy, = <<, Bi, so that
Up =Ug_1 0By, U,_1n By # &, and v < Up,.

Given u harmonic and positive in €2, by Harnack’s inequality u(z) ~ u(z’) for all 2,2’ €
B; (since 2B; < Q). Then, by induction it follows easily that u(z) ~ u(z") for all z, 2’ € Uy
(with the implicit constant depending on k), for &k = 1,...,m. In particular, u(z) ~,,
u(y). O

2.4 The fundamental solution

To conclude this chapter, we will see that every harmonic distribution (see Definition
2.9) is in fact a C* function. This is a quite general fact for elliptic partial differential
equations with C® fundamental solutions, see [Fol95, Theorem 1.58] for the details.

Let us define

2—d
T g,
(d—2)kKq
E(x) = (2.10)
—1
“loslrl o
2w

Note that, since ko = 2w, for every n > 1 its gradient is

—T

VE(z) = (2.11)

Kalx|t

Proposition 2.18. The fundamental solution of (—A) in R is precisely £, i.e. —AE is
the Dirac delta distribution d&g.

The preceding proposition must be understood in the sense that for every test function
¢ € D(RY) := C*(RY), we have

p(0) =: {00, ) = (A&, ) = —(€, Ap).

Proof of Proposition 2.18. Consider € > 0 and let v be the normal vector to S pointing
towards the origin. For ¢ € C° we have

—(&,Ap) = JVE V. (2.12)

10
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Indeed,

‘—<€,Ag0>— fvs - w‘ _

EAp + EAp + JVE Vo
B. B¢

J EAgo‘—i- J EVyp- v
Be Se

< 180l 1€l s + \ [ ve w\ 18] s IV e

< +

VS-VQO—JVE'-VLP
B¢

e—0

For d = 2, using (2.10) we have |E]| 1 p ) =~ §o rlog r|dr —= 0 and I€]l L0 (s,) = clloge].

In case d > 2, then using (2.10) we have [|€] ;15 ~ §o rdr <% 0 and 1€] oo s,y = ce4,

All in all, letting € — 0 we get (2.12).
Moreover,

2.12
| =€, Ap) — p(0)] "= VE-Vo+ | VE-Ve—(0)

B. B¢

fvs'w—so(m‘:

+ A€y

1—d
< vel, j 2]~ ¢
Be Be

f VE - v — (0)
S¢

Now, SBE |x|1_d ~ e 0 0, and A& =0 in B¢. Moreover, for y € Se we get
—y —y 1 1
VEW) viy) = —— - — = = )
W= Tl ke oS0
Thus,
—0
|~ €= 00 | o0 =0,

as claimed by the continuity of ¢ at the origin.

The preceding proposition implies that for every test function ¢ € D(2), we have

—A(E xp)(x) = p(x). (2.13)

Note that & = ¢ € C® because € € Li. .
In fact we obtain the following:

Proposition 2.19. Let u be a harmonic distribution in an open set Q. Then u e C*(Q),
and u is a harmonic function.

Remark that a distribution is called harmonic if it is distributionally harmonic.

11



2 Harmonic functions

Proof. Given a distibution 7" with compact support contained in a bounded open set V,
for every ¢ € CF(R™) we can define

E T p):= (T, 9(E * (p-)) ),

where 9 is any cuttof function ¢ € C with xguppr < ¥ < xv, and f_(x) = f(—z).
This definition does not depend on the particular choice of v, because the test function
in the right-hand side will not vary in the support of 7. Moreover, we claim that this
distribution is in fact C® out of the support of T. Indeed, for any test function ¢ with
suppy N supp? = &, one can consider ¢ := dist(suppy, suppT’), and given a C* function
¢ such that xp_, < ¢ < xB,),, one can infer that (€ = T,p) = (((1 — $)&) = T, ). The
latter can be shown to be a C* distribution arguing as in the proof of [Gra08, Theorem
2.3.20].

When u is a distribution in an open set € such that Au = 0, given a ball B < Q we
can define a cut-off function g € C® such that Xlp < ¢Yp < xp. Then A(¢Ypu) is a

distribution supported in E\%B and therefore £ x (A(ypu)) is a well-defined distribution.
Given ¢ € D(Q2) := CF(2), assuming if necessary that ¥)pVi = 0, we have

(Ex(~A@Wpu)), ) = (~AWEW)), B(E*(p-))-) = (Wpu, A€+ (p-))-) = (Wpu,¢),

ie. &# (—A(ypu)) = Ypu in the distributional sense. Since the former is in fact C* out
of the support of A(¢¥gu), we conclude in particular that in %B, the function v = Y pu is
C®. Harmonicity comes by integration by parts. O

The approach above can be slightly modified in order to obtain the hypoellipticity of
the laplacian:

Theorem 2.20 ([Fol95, Theorem 1.58)). The laplacian A is hypoelliptic, i.e., if u is a

distribution on a bounded open set ) such that Au e C*(Q) then u e C* ().
Remark 2.21. Note that £ € L} _for every p < 7%, and V& € L} _for every p < 7%-.

The integrability at infinity is obtained for p > d%‘lQ, and p > % respectively.

12



3 The Dirichlet Problem

3.1 The weak formulation

Consider the problem of finding a solution v € C?(2) n C(f) in an open set Q = R? to

the Dirichlet problem with boundary data f e C'(09):
Au=0 inQ

{ u =0 in €, (3.1)

u=f  on o).

To obtain a general theory of existence and uniqueness, we can work in Sobolev spaces
with only one derivative, and this requires a weak formulation of the Dirichlet problem.
Assume that u e C1(Q), and let ¢ € C(Q2). Then Green’s theorem implies that

Ozf(pAUz—fVu'Vgo—l—J @Vu-ydaz—jVu'Vgo. (3.2)
Q Q o0 Q

Equation (3.2) provides us with a weak formulation of Au = 0. But how can we encode
the boundary behavior? Set

HY Q) := Wh(Q) := {f e L*(Q) : 0;f € L*(Q) for 1 <i <n+1},

and we define .
HL(Q) = co(y" @

[

and the quotient space
HY2(0Q) := HY(Q)/H ()

(see [Sch02, Theorem 3.13], for instance). Given f € H(Q), its class in H/2(0Q) is often
called “the trace of f”. Now, in a bounded open set Q, if u = f in 0Q and u, f € C%(Q),
then one can show that u — f € Hg (). Moreover, the identity (3.2) can be extended by
density to p € H}(Q).

All in all, in an open set €, we say that u € H'(Q2) is a (weak) solution to the Dirichlet
problem (3.1) if

J Vu-Ve =0 forevery p € H}(2), and
Q
f—ue HHQ).

(3.3)

Note that if u e C%(Q) n H(Q) is a weak solution (3.3), then it is also a solution to (3.1)
for f regular enough.

13



3 The Dirichlet Problem
Let us write v := u — f. Solving (3.3) is equivalent to finding v € HZ(Q) solving

J Vv -V = j Vf -V forevery ¢ € H}(Q), (3.4)
Q Q

which in the strong formulation reads as

Av=Af in Q,
v=20 on 0S).

Proposition 3.1. Let Q  R? be open and let u € H&(Q) be a harmonic function. Then
it is the null function.

Proof. There exist C® functions 1); such that ; — u in H'. Note that

JVUM'V% = fV%'V(U—%’) +fwi-Vu.

But the last integral is null because u is harmonic. Thus, using the Cauchy-Schwartz
inequality we get
IVilze < IVl 120V (w = )] 12,
i.e.
Vil gz < IV (u = 4i) 2
Taking limits,
IVull o = lim [Vehi 1> < lim [V(u—1p3)] 2 = 0.
1—0 1—0

Thus, u is constant and has trace 0, so it is the null function. O

Remark 3.2. Note that the preceding result does not apply to log|z| in the complement
of Bj, since it does not have trace 0 according to the definitions, neither to x4 in Ri.
Indeed, C° functions cannot approach in L? norm a function which does not belong to
L?. The condition u € H*() is not satisfied in this case.

Theorem 3.3 (Riesz representation theorem for Hilbert spaces, see [Sch02, Theorem
2.1]). Let H be a Hilbert space with inner product (-,-), and let H* be its dual. Then for
each u* € H* there exists a unique uw € H such that

u*, vy = (u,v).

Corollary 3.4. Let Q be open and let f € H%(GQ) If the Dirichlet problem (3.1) has a
solution v € HY(Q), then this is unique and moreover u € C®(Q). If Q is bounded, then
the solution exists.

Proof. The uniqueness of the solution comes from Proposition 3.1 and the smoothness
from hypoellipticity (see Section 2.4).

14



3 The Dirichlet Problem

Suppose now that €2 is bounded. Then |Vv|12(q) is a norm for the functions v € Hj(Q2)
(because of the Poincaré inequality) and the associated scalar product equals

(v,0) = JVU Vo forall v,p e HY Q).

Let F denote a representative of f in H(£2). Consider the linear functional Tr : H}(Q2) —
R defined by

Tr(p) = —fﬂ VF -V forevery p e H} ().

By the Riesz representation theorem, there exists a unique v € H}(Q) such that (v,¢) =
Tr(p) for every p € HE(Q). Then u := v + F is weakly harmonic in , since

JVU-V@zJV(U—i—F)V@:—J VF-V<p+J~ VF -Vp=0
Q Q

for every ¢ € H}(Q). Moreover, u = f on 0Q in the sense that ' —u = v e H}(Q). Sou
solves (3.3). O

3.2 The Green function

Let © < R? be a bounded open set, let 2 € Q, and define the fundamental solution (to
—A) with pole at = as

E(y) == E(x —y),
see (2.10). Note that £° = £. The equation

Av=0  inQ
{ ! R (3.5)

v=—E"() on 2

has a unique weak solution v* € H'(Q) by Corollary 3.4. Then we define the Green
function with pole at x as

G*(y) == v"(y) + E%(y). (3.6)
Using Remark 2.21, we immediately obtain the following result:

Lemma 3.5. Let ) be a bounded open set, and let G* be its Green function with pole
r e Q. Then G* e W'P(Q) for every p < dil'

The thoughtful reader may notice that £% is not an H' function, so (3.5) is not well
defined, but this can be fixed by multiplying &£ times 1%, which is defined to be a C*
function vanishing in a neighborhood of x such that ¥%;, = 1 in a neighborhood of 02,
i.e., v* is the weak solution to

Av =0 in
{ v in €, (3.7)

v =—15,E" on 0.

15



3 The Dirichlet Problem

Definition 3.6. Given x € €, define dg(x) := dist(x, ) and call U, := B%dﬂ(x)(:n).

Then, since U, n 02 = @, we can find a compact set K, and open sets Vj, Vx such that
N cV,cV,cK,cU, and a bump function Pia € C*(R?) satisfying

Xve < Yoo < Xy, - (3.8)

Note that for every ¢ € CL(2) one has
f VG (y) - Viply) dy = f Vot (y) - Veply) dy + f VEH(y) - Voly) dy

=0+ fVE(z) Vop(x + 2) dz o(x). (3.9)

That is AG* = —§, as a distribution in D'(Q2), with “vanishing” boundary values, i.e.,
with ¢%,G* € H}(2) (see (3.8) above and Remark 2.21), so we say that G” is the weak
solution to

(3.10)

—AG* =6, in Q,
G*=0 on 0f2.

For any given ¢ € C(Q2), we can write

o) = | Velo)-vEre)
by (3.9). We want to apply this identity to ¢ = G?, but it is not a test function, so we

need to be more careful.

Lemma 3.7. Let Q < R be a bounded open set. Then
G*(y) = f VG* - VGY dm,
Q

whenever x,y € ) are different points. In particular,
G*(y) = G¥(x).

In other words, the Green function is symmetric and, therefore, it is harmonic also with
respect to x. As a consequence, v*(y) = v¥(x) and it is harmonic with respect to = € Q as
well. Note that for the lemma to make sense, we need that VG® - VGY € L}(Q2). A priori
one may think that for p < %, estimate G* € VVé’f(Q) from Lemma 3.5 is not enough to
grant integrability of VG* - VGY. However, both terms are C* away from the pole, and
since © # y, then integrability comes from the local boundedness of the Green function
away from the pole together with the integrability of the singularities.

Proof of Lemma 3.7. In order to apply (3.9), we need to substitute the Green function by
a suitable test function approximating it. Let 1 := ¢31¥Y,, and consider

G* = (1 —)G" + G (3.11)
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3 The Dirichlet Problem

Let U := (V, U XN/y)\QC (see Definition 3.6) so that supp(y)) n Q < U. Since ¥G* € H}(U),
there exists {pg}ren € CF(U) so that

k—o0 T

oA G, (312)
which allows us to approximate the last term in (3.11). On the other hand, let n €
C*(R) such that x(91/2) < 17 < X(0,1) and write nx(2) := n(k|r — z[), which allows us to
approximate the Green function around the pole (1 —)G* in (3.11) by (1 —nx — ¢)G".

Next, we define
fu(2) = (1= me(2) = ¥(2))G*(2) + or(2),

which is in C(Q) for k large enough. Note that subtracting 7 skips the pole & where
the Green function is not C*, and subtracting ¢ skips the boundary, while the values of
G® are substituted by the approximation pg. Since ¥(y) = ¢r(y) = me(y) = 0, for k
large enough

G (y) = fuly) 2 f V- VG dm
Q
- J VG" - VG dm + f V(fi — G¥)- VGV dm. (3.13)
Q Q

The lemma, follows if we prove that

J V(fe — GT) - VGY dm| 225 0 (3.14)
Q
Indeed,
G* — fr = (k. +V)G* — i,
and

V(G* = fi) = ViRG* + i, VG + V(YG* — ).

Since y ¢ suppV (G* — fi), VGY stays bounded in the integral (3.14). For z € U cc R4\ {z}
also G* and VG* stay bounded. Therefore we only need to show that

- jU VWG — p)] E25 0,

and
= [Vi(2)G" (2) + m(2) VG ()] =2 0.
By i (x)
By the Cauchy-Schwartz inequality, since |U| < o0, using (3.12) we get the integrability
of the first term:
< |UIEIVG" = i), =5 0.

Finally, for d > 3 and k large enough, we can neglect the v* term and bound the last

term by

1 1 po
Sf ko — 2 o — 2 < kg + - 2250,
By i () k k

17



3 The Dirichlet Problem

proving (3.14). When d = 2 the limit is also O:

1 1 1 o
[ Hioglle—al 4o —s7 s ko (—toay + 1) + =20
By k() k 2 k

Consider f e CF(Q2). Then define

o(z) = f G* () f(y) dy = —f » E(x) - f o (y) () dy.
Q Q

Since v”* is harmonic, Av = f in Q. Moreover, if G* is continuous up to the boundary,
then G*(y) vanishes for x € 02. So v is the natural candidate to be the solution to the
Dirichlet problem

(3.15)

Av=f inQ,
v=20 on 0S).

Assuming regularity on 0€2, we can define the Poisson kernel
P*(§) == —0,G*(&) for every x € Q, £ € 09).

If u e C(Q) is harmonic in Q, then we can write formally
@) = [u(28:(2) = | (W) (~AG"() + Auz)G(2)
= (0067 + 206 ).

If G* vanishes continuously in the boundary, we get that

u(x) = L QPO

Therefore, we expect that the Dirichlet problem (3.1) may be solved by integrating the
boundary values times the Poisson kernel for regular enough domains. Harmonic measure
will be a generalization of the Poisson kernel to more rough domains.

Exercise 3.2.1. Let Q < R? be a bounded open set, and let G be its Green function.

Then vy
d2~(T Y

#7265 7)

is the Green function for the set RQ) = {Rx : x € Q}.
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3 The Dirichlet Problem

3.3 Limitations of the weak formulation

The weak solution to the Dirichlet problem exposed above is only half-satisfactory. We get
existence and uniqueness for every bounded open set, but it is not quite clear what does it
mean to have 0 trace. In practical applications of (3.1) we would like to prescribe boundary
values f only in the boundary of the domain, and not in a neighborhood of it. Moreover,
one should expect that in case f is continuous, then the solution u is continuous up to the
boundary, with u|sn = f. However, the weak solutions above may not be continuous up
to the boundary.

Example 3.8. Let Q = B;\{0} c R? with d > 3, and take f = 0 in dB;(0) and f(0) = 1.
A natural candidate to “represent” f in H'(f2) is the function F(x) = 1 — |z|xp, is in

H(). Let us see that its class in HJ () coincides with the class of G(z) = 0, i.e., let’s

[— = g §
show that F — G = F e c2(Q) .

Let n € C*(R) such that x(_ 1/2) < 7 < X(—c0,1)- Then let p.(z) = n(e~!z|) and let
Ye(z) = (e (Jx] — 1 +¢)), and consider he := (1 — @) F € CX(Q). Then we have that
F = he in Bf U (B1-:\B:)

1 &m0
|E = helly = (1= 9e(1 = 02)) (1 = [2lxB,) ]y < (IBi\(Bi—e v B:])Z = 0.
On the other hand, since
IV@elloo + IVYellsy < 7o |5

and using that the support of F'— h. is contained in By\Bj_¢ U B, using the product rule
we deduce that

IV(E = ho)lly = VI = 9e(1 = @) (1 = |2lxB)] L2 8,\B)—.0B.)

e—0

< (1eVe 208,y + I99el 28, ) * + IV (elx ) i2mm, om0

1
We have seen that F' € CgO(Q)H )

solution to the Dirichlet problem

and therefore F' = 0 in H}(2). Thus, the weak

{Au =0 in €, (3.16)

u=F on of)
isu=0.

The example above is related to the fact that a point has capacity zero in R? for every
d = 2, see Chapter 6. We will see in further chapters that, in fact, there exists no harmonic
function v in Q = B;\{0} = R? vanishing in 0B; such that lim, ,ou(z) = 1 for d > 2.

Further, is there a one-to-one relation between H %((99) and some class of functions
defined in 09?7 If the boundary of the domain is regular enough (existence of local bi-

lipschitz, C' parameterizations should suffice, for instance), then the traces H %%(89) of

W1+&2 coincide with the Besov space 35/22 +E(8Q), with an appropriate definition using

partitions of the unity and local parameterizations, see [Tri83, Section 3.3.3|, for instance.
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3 The Dirichlet Problem

3.4 Solvability of the Dirichlet problem for continuous functions:
the case of the unit ball

Definition 3.9. We say that the Dirichlet problem (39 in an open set (Q is solvable for

continuous functions if there exists a function uy € C(Q2) for every f e C(012) such that
Au=01in Q and u(y) = f(y) for y € 0.

Note that such a solution would be unique by the Uniqueness Theorem 2.7.

Next we will study the sovability of the Dirichlet problem for continuous functions in
the case (2 is the unit ball. First we will need to introduce the Green function in the unit
ball, which has a nice algebraic expression.

Lemma 3.10. Let z,y € RA\{0}. Then

€z Y
T~ lely) = lyle =
] [yl
Proof. Let t e R, t > 0. Then
z 2 |of? 20, (2
Evaluating for ¢t = |z| and for ¢ = |y|~! we reach the same expression. O

Define
v [EE = lely) itz o,
v (y) 1= .
—E&(e1) ifx=0.

Note that for || = 1, z # 0 we get that
so v¥(§) = —&(xz — ). The same happens when x = 0 because the fundamental solution
depends only on the modulus. Moreover, for fixed x € B1, v® has no singularity in By,
given that

ﬁ - |x|§‘ = |z — ¢ from the previous lemma,

x

T lely=0 = y=
]

Therefore v® € C1(By) = H'(2) and Av® = 0 in By. So the Green function (3.6) in the

unit ball is

T = Yy¢ B
|z

E(—y) —E(er) if z = 0.

Note that G*(y) = G¥(x) by Lemma 3.10.
Now we can compute the Poisson kernel: for x = 0, [{| = 1, it is

G*(y) == {g(x —y) = E( —laly) ifax#£0,

0,60 = ¢ ve(e) e S 1

k€l T ka

9
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3 The Dirichlet Problem

and for z # 0, [£] = 1 we get
06 ©) =&V, (8- - (L - le) ) b

2.11 x—& ﬁ—mﬁ
= : - d|.’L‘|

& - lale]
ilo€.<l‘_§_($_|$‘2£)>:|€|2 |9L‘|2—1 _ \$|2_1

Kd

a |z — €| rale —€" rale — ¢
Summing up, for z € By and |[£| = 1 we get

1—|af?

, 3.17
T (3.17)

Pr(e) =
Theorem 3.11. Let f € L'(0B1) and define
up() = f PUOF(Q)do(()  forze By,
0B1

Then w is harmonic on By. If f is continuous, then ug € C(By), with uf|op, = f. If
f € LP(0By), then us(r-) — f in LP(0By) asr — 1.

Proof. The function uy is well defined because the Poisson kernel is bounded for z fixed.
Since G is harmonic on z, P is also harmonic on x and so is uy.
We claim that for every x € 0By, P* do is a probability measure, i.e.,

J P*do = 1. (3.18)
0B,

Indeed, for z = 0 it is trivial. By (3.17), the mean value theorem and Lemma 3.10 we get

Lo po () 22 [ ppee (56) 310 [ po
SO (2 fpke () dote) 2 P oo
as claimed.

If f is continuous and & € 0By, then

3.18

£(&) = us(ré)]

[ Peou©-r0) dU(C)‘
0B1

<[ |Peofiro-sidsr+ [ |PE| 1) - fo) dot)
|(=¢l<o |

3.18

< swp |f(©) = FOI+ 2, suwp [P,
[¢—¢l<é I¢—¢]>5

(=¢[>06
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3 The Dirichlet Problem

The first term in the right-hand side of the last estimate can be made arbitrarily small
by fixing ¢ small enough, and then the second term can also be made small by choosing
r close enough to 1. Choices can be made independently of . This shows that wz(r-)
converges uniformly to uy, and this implies global continuity.

If f € LP(0B1), then we can use the density of C* on LP to find a function f. € C*(0By)
with [f = fellzo(om,) < & Now,

If — uf(r')HLp(aBl) <|f - feuLp(aBl) + [ fe — ufE(T.)HLP(aBl) + Hufs(r') - uf(r')HLp(aBl)-

Choosing ¢ small enough and r close enough to 1, the two first terms can be made arbi-
trarily small.

Regarding the last one, we claim that [ug, (r) — ug(r)|poop,) < Ife = flirop,)- n-
deed, for p = 1 we have

b ixemy < [ | P10 do€)dot€) < lglusony [ P doro)
6B1 6B1 aBl
Note that the mean value theorem

P(() do(€) = kaPY(C) = 1,
0B1

0 g — ug is bounded in L'(0Bj) with norm 1. On the other hand,

g e oy < 500 | P I9(O] do(O) < gl sup [ PEQYdo(€) "2 gl
£edB1 J0B; £e0B1 J0B;

By interpolation we get that f — wuy(r-) is a bounded operator in LP(0B;) with norm 1.
This fact proves the claim and, therefore, the LP convergence follows. ]

Remark 3.12. For the ball B,(0), with » > 0, we have a similar result. In this case the
Poisson kernel for B,(0) equals

T T2 — |$|2
PBT(O)(f) = NdTi‘x _€|d'

Then the same result as in Theorem 3.11 holds for f € L'(0B,(0)), with P*(¢) replaced
by Pg (0)(C ). That is, the function

wp () = f PE (O do(C)  for € B(0),
2B, (0)

solves the Dirichlet problem with boundary data f in B,(0) when f is continuous. Also,
for f e LP(0B,(0)), we have that us(r-) — f in LP(0B,(0)) as r — 1.
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3 The Dirichlet Problem

3.5 Double layer potential: exploiting the jump formulas

When a domain € has bounded and smooth boundary, say 092 € C1*¢, then a usual way to
solve the Dirichlet problem (3.1) for continuous functions is via the double layer potential.
We will not prove here the results, but we will sketch the main ideas, which can be found
for instance in [Fol95, Chapter 3.

Consider the gradient of the fundamental solution

(z —y)

VW T

which is the kernel of the so-called Riesz transform of homogeneity 1 — d. In particular,
the normal derivative of £ in the boundary of €2,

(z = ¢)-v(Q)

Hd|95—<\d

K*(C) := 0,€%(C) = v(Q) - VE¥(() =

for ¢ € 0Q and 2 € RN\{(} is well defined whenever 02 has C'! parameterizations. Then
for every g € C(092) and every z € R4\ 09, we can consider the double layer potential

Dg(x) := | K*(()g(¢)do(C),
o0
which is harmonic in (0€2)°.
The double layer potential is not well defined a priori in the boundary of the domain,
but it makes sense to define its principal value for £ € 0f) as

Tk =¥y © =iy | K (Qa(C)do(©) (319)

This pointwise definition does not coincide with the (non-tangential) limit of the double

layer potential,
D :=n.t. lim Dg(x) = lim Dg(x),
g(f) z—E& g( ) rz—E&:2dq(x)=|z—£| g< )

where dg(x) = dist(x, 02). However, they are related by the so-called jump formula:

Dy(€) = 59(6) + Tic(g) €).

which is a consequence of the identities

1 if x € Q,
JKI(C) do(¢) =< 1/2 if x € 09, understood as a principal value,
0 if z e Q.

When the boundary has parameterizations in C''*¢, the normal vector becomes Holder
continuous and the singularity of K? is of homogeneity below d — 1, and it is therefore
integrable with respect to the surface measure, so we can omit the principal value in (3.19).
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3 The Dirichlet Problem

Then the kernel K* becomes somewhat smoothing in this case, in the sense that Tk maps
L*®(09) to C(09) for instance, and it is compact in L%(0€2), and the operator §1+Tk is
Fredholm in L?(09). Moreover, if (1 1+Tx)(g) € C(€2) with g € L2(09), then g € C(09Q).
In fact, if Q is simply connected and C'*¢, then %I—i—TK happens to be invertible in
L2(09). Thus, given f € C(f2), one can find a unique solution to the Dirichlet problem
by finding the unique solution to the equation f = (31+7Tk)(g). Then u := D(g), i.e.

u=D(31+Tk)~!(f) satisfies (3.1) in the sense that
{Au - 0 in Q, (3.20)

n.t. lim, ¢ u(z) = f(§) on Q.

If © is multiply connected, some modifications related to the connectivity of the com-
plement need to be done in order to find an inverse operator in a suitable function space.

The Dirichlet problem in the unbounded component can also be solved in this way, and
assuming a priori that the solution uy satisfies that uf(z) = Oz—oo(|2[>7¢) one can get
also uniqueness.
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4 Basic results from measure theory and
weights

4.1 Measures

Following [Mat95] or [EG15], we will define a measure on a set X as a function on the parts
of X, regardless of the o-algebra of measurable sets. This is often called exterior measure
in some references, but it is quite elementary to define the o-algebra of measurable sets
once the (exterior) measure is given. Conversely, every countably additive non-negative
set function on a o-algebra of subsets of X can be extended to every set, see [Mat95]. Let
us assume that X is a metric space.

Definition 4.1. We say that p: {A: A c X} — R is a measure if
L pu() =0,
2. p(A) < p(B) whenever A < B < X and
3. w(U2y Ai) < X572 u(A;), whenever 4; < X for every 1 < i < 0.
We say that A ¢ X is p-measurable if
w(E) = p(E n A) + p(E\A) for every E c X.

Definition 4.2. Given a set X, we say that a collection X of subsets of X is a o-algebra
whenever ¥ is closed under complement, countable unions, and countable intersections.
When X is a topological space, we define the collection of Borel sets of X as the minimal
o-algebra containing all the open sets in the topology.

Lemma 4.3. The measurable sets form a o-algebra. If {A;}72 is a collection of p-
measurable and pairwise disjoint sets, then

M<UA> = Yu4) (4.1)

If {B;}2 is a collection of p-measurable sets with B; /' B, i.e., if By € By < --- and
B =, Bi, then p(B) = lim; u(B;).

If {Ci}2, is a collection of p-measurable sets with C; \, C, i.e., if C1 © Cy D --- and
C =, Ci, and moreover u(Ch) < +00, then pu(C) = lim; u(C;).

Definition 4.4. Let u be a measure on a metric space X.
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4 Basic results from measure theory and weights

1. p is a Borel measure if all Borel sets are u-measurable.

2. u is a Borel regular measure if it is a Borel measure and for every A ¢ X there is a
Borel set B © A such that u(B) = p(A).

3. p is a Radon measure if it is Borel,
a) u(K) < o for every compact set K < X,
b) (V) =sup{u(K): K c V is compact} for every open set V < X,
c) p(A) =inf{u(V):V > A is open} for every set A < X.

4. In those cases, if the metric space is separable we say that suppu := ﬂ F.
F=F:u(F¢)=0

Proposition 4.5 ([EG15, Theorem 1.8]). Let u be a Radon measure in R?. Then, for
each p-measurable set A

w(A) =sup{u(K) : K < A is compact}.

Proposition 4.6 ([Mat95, Corollary 1.11]). Ewvery locally finite Borel measure is a Radon
measure.

4.2 Integration

Let u be a measure in R, We say that ¢ : R? — R is a simple function whenever there
exist a finite number of p-measurable sets {A; }éV: , and coefficients {a; };V: 1 € R such that

N
¢ = Z X A;-
j=1
We can define its integral by
N
f¢du = ) aju(A;).
j=1
The set of simple functions is denoted by S§,,. Note that for ¢ € S,,, the decomposition de-
scribed above is not unique, but its choice does not change the value of the integral. Given

a non-negative measurable function f : R? — R (i.e., a function such that f='(r, +o0) is
measurable for every r € R), we define its integral

deu:zsup{jqbdu: pes, with0<¢<f}.

Integration in measurable subsets is defined as

L fdp = JfXA dp.
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4 Basic results from measure theory and weights

Theorem 4.7 (Fubini’s theorem). Suppose that u, v are locally finite Borel measures on
R% and R% respectively. If f is a non-negative Borel function on R4T% | then

| [ 1@ du@ v = [ [ ) dvw) duco).

Corollary 4.8. Suppose that u is a locally finite Borel measure on R%. If f is a non-
negative Borel function on R?, then

Jf(:v) du(z) = fooo p({zeRY: f(z) > t})dt.

Given a p-measurable function f : R — R, and 0 < p < o0, we say that f € LP(u)

1
whenever | f| s, = (§1/Pdp)» < +00. In case f € L'(u), we can define

ffdu 1= ff+du—ff— dp,

f+ = max{f,0}, and f— = max{—f,0}.
Note that f = fy — f-, with fy, f- = 0. We say that [ e L. (p)if [ e L' (u) for

every compact set K. In this case we can define the centered Hardy-Littlewood maximal

where

operator

r>0

M, f(x) := sup J[ | f|du,
3r(x)
and the uncentered maximal operator

M, . f(x) :=sup fldp.
Bsx JB
We say a measurable function f is in the weak space LP**°(u), writting f € L™ (u),
whenever

1
I fl ooy == sup t(pfz:[f(z)] > t})r < 0.
O<t<oo

Jensen’s inequality §,f < ( §,|fI? du)%, extends to the weak space as follows (see
[Mat95, Lemma 20.24], for instance)

Lemma 4.9. Both maximal operators M, and M, , are bounded operators from L' to
LY and from LP to LP, see [Mat95, Chapter 2] or [Gra08, Ezercise 2.1.1].

Lemma 4.10 (Kolmogorov’s inequality). Let p be a Radon measure in RY, and let g : R?
be a Borel function such that |g|pe < 00, with 1 < p < . Then for every p-measurable
set A < R with u(A) < oo we have

p lglpee
J[ lgldp < — 2
A p(A)r
Exercise 4.2.1. Let u be a Radon measure and let E = supp(u). Show that continuous

functions are dense in L!(x). Hint: Use the density of simple functions and via regularity
and Urysohn’s lemma, find continuous functions approximating f in the L' norm.
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4 Basic results from measure theory and weights

4.3 Differentiation of measures

Definition 4.11. Let 4 and v be Radon measures on R?. We say that v is differentiable
with respect to p at = € supp(p) if the limit

W Y Br(@)
du( )= (B (x))

exists and is finite. We call this limit the density (or the derivative) of v with respect to
.

Theorem 4.12 (see [Rud87, Theorem 1.29]). Whenever p and v are Radon measures,

the density g—; s a p-measurable function well defined p-almost everywhere.

Definition 4.13. Let x and v be Borel measures on R?. The measure v is absolutely
continuous with respect to p, written v « p if

w(A) =0 = v(A) =0, for all Ac R%

The measures are mutually singular, written v L p, if there exists a Borel set B < R so
that
w(RAB) =0 = v(B).

Theorem 4.14 (Radon-Nikodym derivative, see [Rud87, Theorem 1.30]). Let u and v be
Radon measures on RY, with v « . Then g—z e L' (u) and

v(A) = JA le: du (4.2)

for all p-measurable sets A — R,

Theorem 4.15 (Lebesgue decomposition theorem). Let p and v be Radon measures on
Re. Then
V = Vye + U,

where Vi and vs are Radon measures such that

Vae K b and  vg L p.

Moreover,
dv dl/ac st _ d
@(az) T () and @(x) =0 u—ae.xeRY
50 J
v
v(A) = J —dp + (A
() = | Sdns i)

for all Borel sets A c RY.
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4 Basic results from measure theory and weights

Theorem 4.16 (Lebesgue differentiation theorem). Let p be a Radon measure on R,
and f € LL (n). Then

loc

lim fdu= f(x), forp-ae xe€ R,
r—0 By ()

and the same can be said replacing balls by cubes centered at x.

We say that a point x satisfying the previous equality is a density point of f with respect
to p.

Exercise 4.3.1. Let p and v be Radon measures on R?, with v « p and v(R%) > 0. Show
that there exists a p-measurable set G with v(G) > 0 and plg < v|g < plg-

Exercise 4.3.2. Let y and v be Radon measures on R?, with v « p, and let f € L'(v)
be a Borel function. Show that fg—; e LY(p), with

| rar= | 15 an.

4.4 Muckenhoupt weights in general measures

In this section we define quantitative versions of mutual absolute continuity such as Ao
for measures supported in closed subsets of R%.

In this section we will consider a Radon measure p, X will denote its support and we
will consider balls in X:

Definition 4.17. Let X < R% For every € X and 7 > 0 we write the restricted ball
Az = Ap(z) := Br(z) n X.

Note that, in particular, we always assume that restricted balls are centered in X. We
also use the classical notation for rescaled balls in the setting of restricted balls:

tAr,:r = Atr,m

Definition 4.18. Let 1 be a Radon measure in R?. Given a Radon measure v supported
in X := supp p, we say that v € ABj, .,(1t, U) in an open set U < X if for every restricted
ball A c U,

u(E) < dou(A) = v(F) <eow(A) VYzxeU, Ec A Borel. (4.3)

We say that v € Ay (u,U) if for every dp € (0,1), there exists g € (0,1) such that (4.3)
is satisfied. We say that v € B;(u,U) if for every g € (0, 1), there exists dp € (0,1) such
that (4.3) is satisfied. If this is satisfied for U = E we simply omit U.
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4 Basic results from measure theory and weights

Remark 4.19. Note that the existence of 0y and g¢ satisfying (4.3) implies that v|y « |y
by the dyadic Lebesgue differentiation theorem. Indeed, if ¥(E) > 0, there exists a point

x € F nsupppu with
. v(EnAry)
lim ———=

=1.
r—0 Z/(A,«’x)

Thus, for 7 small enough we need to have v(E n A, ;) > eov(4A, ;) and A, , < U, and we
get p(E) = dop(Arz) > 0, so we have shown absolute continuity.
Moreover, note that (4.3) is equivalent to

p(E) > (1—=38)pu(A) = v(E) = (1—eo)v(A) VexeU,Ec AcUBorel, (4.4)
by substituting F by A\E. Thus, it is also equivalent to
v(B) < (1—e)v(A) = u(B) < (1—do)u(A).
Note that this implies supp 1 = supp v. By symmetry, we have shown that
v € ABjy e (11, U) <= pe AB1¢,1-5,(v,U),

so in any case we get u|y < v|y. Put in other words, the ABs. condition is a quantitative
version of mutual absolute continuity.

Note that Theorem 4.14 implies that dv = wdy, so we will write also w = S—Z €
ABs, &0 (1, U). Given w € Ll _(u1), one can construct such a measure v using (4.2).

Next we define the reverse Holder classes of weights B, and the Muckenhoupt classes
Ap.

Definition 4.20. Let ;1 be a Radon measure in R? and let X := supp p. Given w € Llloc(u)
and a relatively open set U < X,

e we say that w € By, (i, U) whenever the following reverse Holder inequality is satisfied
1
P
( J[ w? d,u> <C J[ w dp for every restricted ball A with A < U.
A A
e we say that w e A,(u,U) whenever Wi € Ll (p) and
1 p—1
J[ wdp < J[ wi-p du) < C for every restricted ball A with A < U.
A A

The minimal constants satisfying these properties are called [w]p (.0 and [w]a, o)
respectively. If this is satisfied for U = R? we omit U in the notation. If we call v := wdy,
then we may write also v € By,(u, U) and v € A,(u, U) respectively.
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4 Basic results from measure theory and weights

Remark 4.21. Let 1 be a Radon measure in R?, let X := supp p and let F < X be a set
with positive measure. Assume that w € L] _(u) satisfies

(Jwapdu)?’ <arf v @5)

If F is a p-measurable subset of F', then by the Holder inequality,

wa<(waoam#ﬁ=(£pw@;mm%wﬁi

If we define v using (4.2), by (4.5) we obtain

W(E) o (BE))'
wmgc%mm> '

Thus, for every 0 < ¢ < 1, writing dg := (Cl_leo)é we have that
wE) <oou(F) = v(E)<egu(F).

In particular, v|p < p|r.
Let us write v € B{(u, U) if suppr < suppp and there exists C; > 1 such that

v(E) @ : or every Bore cAac
i) <0 (ay) Ty Bl peAcy )

When we consider all restricted balls A — U in the estimates above, we get
1—1
By(u,U) € B, *(1,U) € Bi(w,U) = | ABse(p, V).
0<d,e<1

Remark 4.22. If p is a Radon measure and v € ABs (1, U), then v « p « v by Remark
4.19. In particular, 0 < w™! < 400 p-a.e.
In general, given a Borel set F' ¢ X, if we assume

1 p—1
fwdu({wlpd,u> < C,
F F

then 0 < w < 400 p-a.e. in F as well. Writing wdp = dv in the integral, see Exercise
4.3.2, the preceding estimate is equivalent to

o (f o) e

where % +y =1 That is, w™! satisfies (4.5) with dv in place of du, and p’ instead of p.
When we consider these condicions for all A < U in place of F, we get

w e By(v,U) < we Ay(p,U),
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4 Basic results from measure theory and weights

with [w]AP(NvU) = [wil]%p/(u,U)'
Back to Remark 4.21 we get

1
Ap(:u’ U) - A&(/“Lv U) . AOO(H) U) < U AB(S,&(H? U)’

0<de<l1

where we say that v € A% (u,U) if p € BY(v,U). This is a consequence of the duality
relation
<~ peByU)
— € BY(v,U

H 1 ) (4.7)
< peBi(yU)

— peABi_¢1-5,W,U).

4.5 Dyadic grids in metric spaces with a doubling measure

To establish the weight theory for doubling measures whose support is not dense in R,
we will use a dyadic decomposition of supp p.

Definition 4.23. Given a closed set X ¢ R%, a dyadic grid associated to X with constants
0<4 <1,0<a <oois a collection D of Borel subsets of X such that D = | J,.; Dk
with Dy = {Q"}e1,, with the following properties:

(a) Completeness: for every k € Z we have X = Jgep, @-

b) Nesting: For every kg < k1 and Q; € Dy, for j € {0, 1}, then either Q1 < Qg or
J Jj
Ql (@) Qo = .

(c¢) Tree structure: For each Q)1 € Dy, and each ky < k; there exists a unique cube
Qo = Q1 (Q1) € Dy, such that Q1 < Qo. If ki = k1 — 1, then we say that () is the
parent of Q1 write Qo = P(Q1).

(d) Scaling: For Q € Dy there are 2o € Q and balls Bg = B(zg,a1tk) and éQ =

B(zq, %6’3) such that Bo n X < Q EQ.

Definition 4.24. We say that @ € Dy, is a dyadic cube of generation k, and write rg :=
305, and £(Q) := (5. We call rg the exterior radius of @ and ¢(Q)) its side-length. Note
that we abuse notation because two dyadic cubes ) and R can have the same set of points
but rg # rgr because they belong to different generations. According to the previous
definition, for every z € X, there exists a unique dyadic cube Qg () containing x for every
kel.

We say that two dyadic cubes of the same generation ), R € Dy, are neighbors if )\EQ N
)\ER # &, writing R € N(Q), with A > 1. Then we define the triple cube 3Q :=
Ure N(Q) R, by analogy with the usual dyadic grid. Note that 3Q) < 3)\J§Q. We say that
3Q € 3D.
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4 Basic results from measure theory and weights

Remark 4.25. Assume that ¢/ < % (this can be guaranteed by skipping generations).

Let A\ = 2min{(1 — 34p)~*,¢;'}. Then

F(Q) € 3Q c 3F(Q).

Moreover, N N
)\BQ (e )\B]:(Q)

Proof. Let us show first that A > ﬁ implies 3Q < 3F(Q). Let x € 3Q n R with

R, F(Q) € Dy. To show that )\E;(Q) A ABg # @, it is enough to show that z € )‘Ef(Q)'
But

dist(z, cr(qy) < dist(z, cq) + dist(cq, cr(q)) < 3ArQ + 7xrQ) = (BMo + 1)7x(Q)-

Now, assume consider A > £ ! and let us show that F (Q) < 3Q. We want to prove
that whenever F(R) = F(Q), then ABg n ABr # @. Let zg and zr be the centers of
both cubes. Then we have

dist(2q, zr) < diam(Br(g)) = 2 'r(Bg) = 20y '(Br),

which implies that )\EQ A AB R # J.
The last assertion comes from assuming = € ABg, then

dist(z, Z]:(Q)) < dist(z, ZQ) + diSt(ZQ, Z]:(Q)) < Arg + 27“]:(Q) = (Mo + Z)T]:(Q) < )\T]:(Q).
U

Theorem 4.26 (see [HK12, Theorem 2.2]). Let X < R¢ be a closed set. There exists a
dyadic grid D associated to X with constants 0 < £y < 1, 0 < a1 < o0 depending only on
the dimension.

Remark 4.27. Consider a Radon measure in R%, and let X = supp(u). There exist
a dyadic grid D associated to X with constants 0 < ¢y < 1, 0 < a1 < o0, with all the
constants depending on the dimension satisfying also the following hypothesis: there exists
a dimensional constant 0 < 1, C; < +00 such that

(e) Thin boundary: For @ € Dy we have

p({z e Q : dist(z, X\Q) < t€5}) < C1t" u(Q)

and
p({z e Q° : dist(z, Q) < t65}) < C1t" u(Q)

for every t > 0.

See [?, Theorem 3.2], for instance. There is also a construction with open cubes in [Chr90,
Theorem 11] which cover the support of © modulo null sets.
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4 Basic results from measure theory and weights

Definition 4.28. Given a dyadic grid D associated to X := supp u, we define the dyadic
maximal operator by

Mupf@)i=sup £ |fldn for every f € L.
keZ JQk(x)

Lemma 4.29. The dyadic maximal operator M, p is a bounded operator from L' to LY,
and from LP to LP.

The proof is left as an exercise for the reader, see for instance [Mat95, Theorem 2.19].

Lemma 4.30 (Dyadic Lebesgue differentiation theorem). Let p be a Radon measure in
R? and let D be defined as above. For every f € L (1), we have

loc

lim fdu= f(x) for p-a.e.x € X.
k—o0 Qr(z)
Proof. Let
E, = weX:limsupJ[ fdu— f(x)|>1/n;.
k=0 JQx(x)

We want to show that u(E,) — 0 as n — o. To do so, pick fs continuous such that
If = fsll g <9, see Exercise 4.2.1. Then write E, = A, U By U Cy, with

k—0

A, = {meX : lim sup J[Q ( )]f—f(;\d,u> 1/(3n)}

an{xeX:

lim sup J[ fsdp — fs5(z)
k—0 Qr(z)

> 1/(3n)}

Cn ={ze X :[fs(z) = f(z)| > 1/(3n)}.
Note that pu(By,) = 0 by continuity. Also

Jf Fldu < Myo(f),
Qr ()

SO
4.29
,U,(An) < 3nHM,LL,D(f - f5)HL1,oo(M) < C’I’L(S,
while
1(Cn) < 3"[ |fs — fldu < 3nd,
Cn
and the lemma follows from this estimates, by picking § = # O

Definition 4.31. We say that yu is a doubling measure in R? with constant Cy if

p(Bar(z)) < Cup(Br(x)) for every = € supp(p) and every r > 0.
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Given Qg € D u 3D, we write

D(Qo) :={QeD: Q = Qo} and 3D(Qo) := {3Q N Qo : Q € D(Qo)}-

Definition 4.32. Let 1 be a Radon measure in R%, and let D be a dyadic grid associated
to suppu. Given Qo € D U 3D, we say that u is D-doubling in Qo with constant C, if

sup M < CN'M for every Q € D(Qo).

ReN(Q)nD(Qo) p(R)
Note that if p is doubling with constant ), then it is also D-doubling with constant
Cu Sa; Cu, and so from now on we will write C, for the greatest constant.

Next we will adapt an iterated Calderén-Zygmund decomposition (see, for instance
[Gra09, Corollary 9.2.4]) to doubling Radon measures in R?.

Lemma 4.33 (Calderén-Zygmund decomposition). Let u be a Radon measure in R? and
let D be a dyadic grid associated to supp p. Let Q) € Dy, U 3Dy, let f € LY(Q) be non-
negative. If p is D-doubling in Q with constant C\,, and t > C’;l SQ fdu, then there exist
a decomposition @ = Uy u Gy U Zy in disjoint p-measurable sets and a family of disjoint

dyadic cubes Fy = gy, Dk © {Q} such that

CZ1. Uy := Jper, R, and these cubes satisfy t < —ngdu < Cpt.
CZ2. For x € Gy we have f(x) < t.

CZ3. u(Z) = 0.

We call this a Calderén-Zygmund decomposition at level t.

Proof. Consider Fj, to be the maximal family of cubes R € (Jy>, Dr U {1} such that

J[Rfdu>t.

The case t < SQ fdp is trivial, so we assume Q) ¢ Fy.

To prove the first claim, note that either P(R) is an eligible cube where the stopping
condition fails, or R is one of the building blocks of () whenever @) € 3D. In any case,
using for a moment the convention that P(R) = @ in the latter case, we get

J[fd,uéC#J[ fdu < Cut.
R P(R)

The second and third conditions follows from the dyadic Lebesgue differentiation theorem
above (Z; is the exceptional set). O

Lemma 4.34 (Calderén-Zygmund iteration). Let p be a Radon measure in R and let D
be a dyadic grid associated to suppp. Let Q € D U 3D, let f € L'(Q) be non-negative.
Assume that p is D-doubling in Q with constant C,,, 0 <6 < 1 and ap = C;l &2 fdu.

For every j = 1, define o := [0#5*1]1 ag. Then the sequence of Calderdn-Zygmund
decompositions Q = U? U G U Z7 with U7 := Upgeri R at levels a; satisfies:
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4 Basic results from measure theory and weights

CZ4. If R e F7 then there exists a cube R e Fi=1 such that R < R.
CZ5. (Uit < Su(U9) < -+ < 9 p(U0) 2225 0.
CZ6. If Re F7 then u(R n Ut < Su(R).

Proof. For the first condition, note that for R € Fj 1

][ fdp > aj > oy,
R
so R must be contained in some maximal cube satisfying this property (perhaps itself!).

The first claim is proven.
On the other hand, for every R € F7 we have

Cpay >1J[Rfdu>1f J‘du>L > M(R)J[Rfdu

K R) RAUI*! - M( ) RcR:ReFjq1
1 4 Q41 1
RAU™
n(E)" )
Since aj41 = C’Hd*laj, CZ6 follows.
CZ5 follows by summing on cubes CZ6, and using condition CZ4. O

Finally we introduce a Whitney covering for generalized dyadic grids.

Lemma 4.35 (Whitney decomposition). Let p be a Radon measure supported in X < RY,
let D be a dyadic grid associated to X with constants 0 < g < 1, 0 < a1 < o0, and
let Q ¢ X be a relative open set, with non-empty relative complement F := X\Q and \
defined in Definition 4.24. Then, there exist « = «(fy) > 7 and a collection W < D of
dyadic cubes, which we call a Whitney decomposition (or covering) of ), satisfying the
following properties:

Whi. The Whitney cubes cover ), i.e., ) = UQew Q.

Wh2. Whitney cubes are disjoint, i.e.,

Z XQ = Xa-

QeW

Wh8. Their exterior radius is comparable to their distance to the boundary, namely,

(aX — 1)rg < dist(Q, F) < £y (aX + 1)rg.

Why. If Q, R € W satisfy that 3Q n 3R # &, then
6Q)

by < =22 <ot
"SRy 0

)
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Wh&. The triple cubes have bounded overlapping, namely,

Z X3Q < CW7
QeW

1
with Cy}, depending only on ly, a1 and .
Proof. Take the maximal dyadic cubes such that
alrg < dist(cq, F). (4.8)

Property Whl follows from Definition 4.23, since every x € X satisfies that rg, () =
208 — 0, while dist(cq, (z), F') — dist(z, F') > 0 as k — o0. Property Wh2 follows from
the construction.

The bound below in Wh3 follows from construction and the triangle inequality, while
the bound above follows from the stopping time condition and the triangle inequality as
well. Indeed,

4.8
dist(cq, F) < dist(cp(), F) + mp@) < (@A + 1)rpg) = (@A + Dty trg, (4.9)

and Wh3 follows since dist(Q, F') < dist(cq, F).
Let us show Wh4. Assume that 3R n 3Q # @, with rg < rg. Then, there exists
x € B(cg,3Arg) n B(cgr,3Arg). Thus,

3
dist(cg, F') = dist(cg, F) — B3Arg + 3Arr) = (aA—1—06\)rg = (a—T7)Arq.

Combining with (4.9) we get

7"732(04—7))\ O>a—7
rqg (aA+1) !

o > 1

if « is big enough.
To end with the last property, assume x € €2, and let Q € YW be a cube of maximal rq
such that z € 3Q). Then for any other R € W with x € 3R , we have

Br < B(cg,3Arqg + 3Arr + r(Br)) < B(cg, (6A + 2a1)rQ).

For every such R we have
4
T‘(BR) = 2a1TR = 2a1€07“Q.

By the disjointness of inner balls Br with R € Dy, (that is ZQeDk XBo < 1), we infer that

|B(cq, (6A +2a1)rq)|

#{PeW:3Pn3Q # 3, r(R) =lr(Q)} <
|Br|

d
Arguing anagously for r(R) = r(Q), Wh5 follows with C' < (M> (1+ Eal)d. O

2a1
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Muckenhoupt weights and doubling measures

In this section we define A, weights in subsets of R? equipped with doubling measures
introduced in the previous section. Recall that given Qg € D u 3D, we write

D(Qo) :={QeD: Q = Qo} and 3D(Qo) := {3Q N Qo : Q € D(Qo)}-

4.6.1 Equivalent conditions in dyadic grids

Definition 4.36. Let i be a Radon measure in R?, let D be a dyadic grid associated
to X := suppu, let Qo € D U 3D (see Definition 4.24), and let v be a Radon measure
supported in X.

We say that v € ABs, o, (1, D, Qo) if
w(E) < dou(Q) = v(E) < eov(Q) for every Borel set E < Q € D(Qo) v 3D(Qo),

(or equivalently, u(E) > (1 — do)u(Q) = v(E) = (1 —e9)v(Q) for every E c Q <
Qo Borel, where Q € D U 3D.)

We say that v € Ay (pu, D, Qo) if for every g € (0,1), there exists 9 € (0,1) such
that v € ABj, -, (1, D, Qo).

We say that v € By (u, D, Qo) if for every g € (0, 1), there exists dy € (0, 1) such that
ve AB50760 (1, D, Qo)-

We say that v € Bf*(u, D, Qo) if there exists C' > 1 such that

ZES§ <C (ZES;)Q for every Borel set F c Q < Qo with @ € D u3D. (4.10)

We say that v € A% (1, D, Qo) if pn € BY (v, D, Qo).

We say that v € By(u, D, Qo) whenever v « p and the density w = g—z satisfies the

following reverse Hélder inequality

1
(J[ wpd,u)p <CJ( wdp for every @ € D u 3D with Q < Q.
Q Q

We say that v € A,(p, D, Qo) whenever v « p, the density w = g—z satisfies that

wT € L, (1) and

p—1
J[ wd,u<J[ wllpd,u,> < C for every @ € D u 3D with Q < Q.
Q Q

The minimal constants satisfying the last two properties are called [w] B,(uD,Qo) and
[w] 4, (1,D,qQ0) TESPECtivEly.

If any one of this conditions is satisfied for every Qg € D u 3D, we simply omit (g in
the notation.
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Remark 4.37. If 1 is a Radon measure and v € ABj. (1, D, Qo), then g, < v|g, < |,

using the dyadic Lebesgue differentiation theorem as in Remark 4.19, and suppr = suppu

so D is associated to suppv. If, instead, we assume v € Ay(u, D, Qop), then 0 < w < +0

u-a.e. as well, and v « u < v so D is associated to supp v again. As in Remarks 4.19 and
4.22, we get

veAy(n,D,Qo) <= pe By, D,Qo)

VGA(;)(:U'7D7Q0> A MEB?(V7,D7QO) (4 11)

VGAOO(#7D7 QO) > ME BI(V7D> QO) .

ve AB&),E() (M? D7 QO) Aamnd ne ABl—Eo,1—5o (Vv D7 Q0)7

and [w]Ap(M7D7QO) = [w_l]%p/(u,D,Qo)'

Lemma 4.38. Let p is a Radon measure in R?, let D be a dyadic grid associated to
supp i, and let Qo € D u 3D. Then

1

BP(IU’7D7 QO) o Biig(llhpa QO) o BI(M7D7 QO) - U AB5,€(M7D7 Q0)7

0<de<l1

and
Ap(uapv QO) o AO;E(/*%Da QO) c AOO(N7D7 QO) c U AB&,E(M7D7 QO)

0<de<l1

All conditions above are again quantitative versions of mutual absolute continuity.

Proof. Consider all subcubes of Qg in Remark 4.21 to get the first chain of inclusions. The
second comes immediately as a consequence of (4.11). O

Theorem 4.39. Let i, v be Radon measures in R* with suppr < supppu, let D be a dyadic
grid associated to supp p and let w := g—”. If 1 is a D-doubling measure in Qo € D u 3D,
then if v € ABs, ¢, (1, D, Qo) with 0 < ép,e0 < 1, then v € By(p, D, Qo) for some 1 <
p < po < 0, with pg depending on oy, €9 and the doubling constant, and the B, constant
depending also on p.

Proof. Consider a given dyadic cube Q < Qg (or @ = Qo € 3D). Apply Lemma 4.34, with

f=w, ag = Sdeu = ZE??; and § = &y. Given R e F7, by CZ6, we get

v(Rn U < eov(R),

and therefore v(U7H1) < equ(U7) < --- < &™'u(UY). In particular, Q = (Q\Up) u
(U Uk\Ug+1) v Z, with u(Z) = v(Z) = 0.
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4 Basic results from measure theory and weights

Now,

f wpd,uzj wd,quZf wPw dp
Q Q\Uo Uin\uI+
2

J=0
Q\UO + Z O[]+1 )
j=0
Q\UO +Z C 5 ]+1 ]p 1 ] (UO)
j=0
<af! (1 + Z(C#(SO_I)UH)(”_U&%) v(Q)
j=0

)

C 6—1 p—1
(e Gy
1—(Cudy )Pteo ) m(@Q)P~
whenever (Cufsal)pl_léTo <1, because ag = §, wd,ugz ZEQ% )
Ifp—1= Qﬁ we get (C,051)P71 = ¢,%. For 0 < 0 < 1 we get g,%0 < 1,
implying summablﬂty above, and the last estimate reads as

0 P
wp E_:0 V(Q)p _ < w )
J[Q e < (1 - 1— 5(1]9> wQ)P ¢ J[Q )

as claimed. O

Corollary 4.40. Let i be a Radon measure in RY, let D be a dyadic grid associated to
supp p- If p is a D-doubling measure in Qo € D u 3D, then

U BP(M7D7Q0) = U Bfé(/J/va QO) = Bl(:u'7D7 QO) = U AB(S,E(:UﬂDa QO)

l<p<o O<a<l 0<d,e<l1
Proof. Combine Remark 4.37 with Theorem 4.39. O

Corollary 4.41. Let i be a Radon measure in RY, let D be a dyadic grid associated to
supp . If we define

XU, D, Qo) := {re X(u,D,Qq) : v is D-doubling in Qu}

with X € {Ap, AS, A, ABs .}, and Qo € D U 3D, then

U Ag(MDvQO): U Ago{’d(:uﬂtpvQO):Ago(:U’a,D7Q0): U ABg;g(M,D,QO)~

l<p<aoo O<a<l 0<d,e<1
Proof. Combine Corollary 4.41 with (4.11). O

Lemma 4.42. Let pi be a Radon measure in R? and let D be a dyadic grid associated to
supp p. If p is a D-doubling measure in Qo € D u 3D and v € Ay(p, D, Qo) then v is
D-doubling in Qg.
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If, instead, p is doubling in restricted balls A with 2A < U and v € Ay (p,U), then v is
doubling in balls A such that 2A c U.

By duality, if v is D-doubling in Qo and v € By(u, D, Qq), then p is doubling as well,
and the same holds for balls instead of cubes.

Proof. We proof the first statement, the others being proved analogously. Note that p
being D-doubling in Qg (see Definition 4.32) is equivalent to

1

1(3Q N Qo\R) < <1 — C) u(3Q N Qp) for every Q € D(Qp) and every R e N(Q).
I

Thus, if v € Ay (u, D, Qp), picking dy = 1 — %

o there exists g9 such that

v(3Q N Qo\R) < eor(3Q n Qo) for every R e N (Q).
we find out that v is D-doubling in Q¢ as well with constant C,, = ﬁ, that is,

1
1—60

v(3Q N Qo) < v(R) for every Re N(Q) nD(Qy).

O]

Remark 4.43. In view of Lemma 4.42 and Lemma 4.38, when pu is D-doubling in Qg,
Corollary 4.41 reads

U AP(IUHD) QO) = U Agéo(/.L,D’ QO) = Aoo(MaD, QO) = U AB(C;{E(,LL,D’ QO)

1<p<oo O<a<l1 0<de<l

4.6.2 From dyadic grids to balls

Lemma 4.44. Let i be a Radon measure in R, let D be a dyadic grid associated to
supp p. Then, if p is a doubling measure, there exists a relative open set U D Qg with
diameter comparable to £(Qo) (with constants depending only on d) such that

AP(N? U) < Ap(,uv D7 QO) = Ap(ua QO)
In particular Ap(p) = Ap(p, D).

Proof. Let w := Z—Z. First, let us show that A,(u, D, Qo) < Ap(p, Qo). f A < Qo is a
restricted ball, there exists a cube QA € D with A < 3Q n Qp and 7(A) ~ r(Qa). If
we Ay(p, D, Qo), we get

1 p—1 i p—1
f wdu(f wlpdu> <Cup J: wdu(f wlpd,u> < C.
A A 3QNnQo 3QnQo

To show the other inclusion, A,(p,U) < A,(1, D, Qo), let U := Ug, be an open set
containing Bg for every @ € Du3D(Qo) (here, in case ) € 3D we need to define Bogn X <
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Qc ]EN?Q with comparable radius, task that we leave for the reader to complete). Then, if
we Ap(p,U), we get

1 p—l 1 pl
J: 'lUd/j,(J[ wi-» d,u) SCup J[~ 11)c1lu<J[~ wi-» d,u) < C.
Q Q Bg Bqg

Lemma 4.45. Using the notation in Lemma 4.44, if p is a doubling Radon measure
satisfying p(Bg) < Cuu(Bg) for Q € D u 3D, we have

O

ABl_C;1571_5(,U7 U)c ABl—(S,l—a(Ma D, Qo),
and
ABy_¢-151-:(1, D, Qo) © ABy_s1-(1, Qo)

with C > 1 depending on C,,, and the dimensional parameters involved in the definition
of D. In particular,

A (1, U) & Ao (11, D, Qo) & Aot (1, Qo).
Proof. Assume v € ABl_Cglél_a(M, U). Every set E < Q € D(Qo) u 3D(Qq) satisfies the
implication

WE) = 0u(Q) = u(E) = 0C; ' w(Bg) — v(E) > ev(Bg) > ev(Q).

The other inclusion follows analogously by granting the existence of A < Qa € 3D(Qo)
with £(Qa) ~ £(A) for every boundary ball A c Qg as in the preceding proof. O

Define
X% (p) := {v e X(p) : v is doubling}

and
X%, D) := {ve X(u,D) : vis D-doubling for every Qq € D}

with X € {A,, A%, Ay, B,, B, By, ABs.}.

Corollary 4.46. Let i be a Radon measure in RY, let D be a dyadic grid associated to
supp . Following the hypothesis in the previous two lemmas (except that we allow p to be
non-doubling), we obtain

Bf(u,U) < Bi(1, D, Qo) = Bl (11, Qo),

and
B{(1,U) = B(, D, Qo) = Bf (i, Qo).
In particular Bg(,u) = Bg(u,D) and B¢(u) = B{(u, D).

Proof. This is an immediate consequence of lemmas 4.44 and 4.45 combined with the
duality relations (4.7) and (4.11). O
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Lemma 4.47. If j1 is a doubling Radon measure in R and D is a dyadic grid associated
to supp u, then

U 4wD)= |J A%wD) = Ac(n,D) = Au(w) = | A5 = (J 4w

1<p<oo O<ax<1 O<ax<1 l1<p<o

Proof. By Remark 4.22 and Lemma 4.45 we get

1
AP(M7 UQU) c ACZ;O(:u’u UQQ) = AOO(Iu’u UQ()) < AOO(/’L7D7 QO)

By Remark 4.43 and Lemma 4.44 we also have

AOO(M')DvQO) é43 U AP<M7D7Q0)C U AP(M7Q0)'

l1<p< l1<p<o
Since
= J 4m.Qo) = | Ap(p.Ugy),
QoeD QoeD
we conclude the proof. O

Corollary 4.48. If i is a Radon measure in R and D is a dyadic grid associated to
supp i, then

U Biw.D)= |J BM(uD)=B{(wD)=Blu= | Bw= ] Biw.

l1<p<o0 O<ax<1 O<ax<l1 l<p<oo

Proof. This is an immediate consequence of Lemma 4.47 combined with the duality rela-
tions (4.7) and (4.11). O

Corollary 4.49. Let p be a doubling Radon measure in R% and D be a dyadic grid asso-
ciated to supp u, then

Ao () = Bi (n)-
Proof. By Lemma 4.47, Remark 4.43 we get

Ap(p) =¥ ) ABL(n.D).

0<de<1

By Corollary 4.40, if we restrict to doubling measures, we have

U BiwD) = |J BM(wD)=Bi(wD)= |J ABf.(1n.D).

l<p<oo O<ax<l 0<de<1
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4 Basic results from measure theory and weights

To end we check that, in case g and v are both assumed to be doubling a priori, then
all the conditions studied here are equivalent. Given a cube @Q € D u 3D there exists
a restricted ball Ag < @ with comparable diameter (see Definition 4.23) and given a
restricted ball A we can define QA to be the largest dyadic cube such that x € QA < A.
It is easy to see that QA and A also have comparable diameter. If i is a doubling measure,
there exists a constant 5# > 1 such that

wQ) < Cup(Ag)  and  p(A) < Cup(Qa) (4.12)

for every restricted ball A and every cube Q € D u 3D.

Lemma 4.50. If u is a doubling Radon measure, D is a dyadic grid associated to suppu
and Qo € D v 3D, then

U 4BL(1,Qo.D)= | ABL(1.Qu).

0<e,0<1 O<e,0<1

In particular,
d d
ve AB§, (1, Qo,D) = ve ABC‘j&,l—C‘;la(M’ Qo),

and
veAB§, .(n,Qo) = ve ABgu,lmié;lE(u, Qo).

with C,, and C,, defined as in (4.12).

Proof. Assume that v € ABg{l_e(u, Qo) and consider a set E < Q € D(Qo) v 3D(Qo).
First note that

v(EnBg) <(1—¢e)v(Bg) = v(Bg\E) =ev(Bg) = v(Q\E) = Clev(Q),

so we get N
v(E n Bg) < (1 —¢)v(Bg) = v(E) < (1-C,te)v(Q),

or, equivalently,
v(E)> (1-C'e)r(Q) — v(En Bg) > (1—¢)v(Bog).
Since v € ABg1_5(Ma Qo), we deduce that
v(B) > (1 - Ol ew(Q) — u(E n Bg) = du(By).
Now using the doubling condition for u we get
v(E) > (1 - Clew(Q) — u(E) > Crlou(Q),

that is,
d
Ve ABéglé,l—é;ls(M’ Qo).

the other statement is proven analogously.
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Remark 4.51. Whenever p and v are doubling Radon measures with common support,
all the conditions we have studied are equivalent. That is v € Ay (p) if and only if

ve |J A4 = ve | Buw) <= ve |J ABsc(w)v |J ABsc(uD).

l<p<wo l<p<oo O<e,0<1 O<e, o<1

Thus, to prove that v € Ay (p) we can check a reverse Holder inequality, bound an A,
constant or find constants 0 < §,¢ < 1 such that v € ABs.(p) or v € ABs. (i, D).

Remark 4.52. Last, but nor least, assume that p is doubling, with ,u(EQ) < Cuu(Bg)
for Q@ € 3D. Then if v e Ay_5, ¢, (1) with o < C. I we can immediately infer from Lemma
4.45 that v e Ay 0,50, (14, D) © A(p). In particular v is also doubling.

4.6.3 Self-improvement properties

We are interested in the self-improvement properties of weights. In general, we have the
inclusions Ay,(1) € Apie(p) and By(p) € Bp—e ().
In the doubling setting of Remark 4.51 above (where p and v are both doubling), we

also have a self-improvement property for w € A,(x). Namely, for ¢ small enough we have
p—1

[w]Aﬁ’ig ) < [Wla ol ™ 15 o lwla,o-

Indeed, since w € Ap(u) is equivalent to w' P e Ay () © Ap(p), we get the existence
of a reverse Holder class for both w and its dual weight w'™?, say w,w'™? € By, () if
€ < €9. An analogous self-improvement property is satisfied for reverse Holder classes:

Lemma 4.53 (Gehring Lemma for doubling weights). Let u and v be mutually absolutely
continuous doubling measures in R with w = %, If w e By (1), then there exists eg such

dp
that for every e < g9 we have w € Bpic(p).

Proof. By Remark 4.22, w € B,(u) is equivalent to w™' € A, (v). By Remark 4.43 we
infer the existence of dp such that w™! € Ay _s(v) for § < dp. But this is equivalent to

w e B(p’—é)’(:“)? Wlth
/
v (P _p=dp-1)
v 5)_<p—1 5>_1—5(p—1)>p'

That is, take g9 = %_ .
The self-improvement property above still holds when v is not doubling:

Lemma 4.54 (Gehring Lemma). Let p be a doubling Radon measure in R?, let D be a
dyadic grid associated to supp p and let v be an absolutely continuous measure with respect
to p, with w = c%' f[w]B,(1D,Q0) < CrE, where Qo € D L 3D, then there erists g9 such
that for every e < g9 we have w € Bpie(1, D, Qo), with €9 depending only on Cry, C,

and p; and [w]p . (.. D,qQ,) depending also on e. Namely,

€
J wPTedp < <J[ wdu) J wP dp
R R R

for every R € D(Qo) v 3D(Qo)-
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Proof. Since we won’t use restricted triple cubes, we assume without loss of generality
that R = Qo. Perform an iterated Calderén-Zygmund decomposition (see Lemma 4.34)
with f = w, with § to be fixed depending on C),, Cry and p and with ag := SQo wdp.
We write o := g, with p = CM(S_l. We will show that for ¢ = ¢ — p small enough we
can find a constant C(Cy, Cry,p,q) > 0 such that

| wrin <, Crmpaag | o

0 0

Combining CZ1 and Holder’s inequality, for Q € F7 we get

1
aj < <J[ wp>p <CRHJ[ w d.
Q Q

Now we define the level set A7 := {x € Qo : w(z) > a;} < U for j > —1 (with the
convention U~ = Qg, F~! = {Qo}). Then

a;ji(Q) < Cry <JQ wdp + Oéj—lM(Q)) :

NAI—1

i = O 185q4 : Cu
Since aj_1 = C,; "day, if we pick § < oy then

Oéju(Q) < 2CRHf _ wdu.
QNnAI—1

Note that for j = 0 we have
P oz
| wrdn= ¥ w@ wrdn< Chy Y@ ( | wdu) < (CrnCuoy) Y Q).
s QeFi Q Q Q Q
All in all, for j = 0 we get

+1 -1
J ‘wpd,u<20%HC'ﬁa§ j - wdp.
A Ai—1

J

Trivially we also have

f wP dp < Pt J wdj,
AT=1\Aj T Jaina

S0
f wP dp < C’poz?_l J wdp,
Ai—1 Ai-1

with Cp, := 1 + 205 CP.
By Lemma 4.55 below, fixing p?~! > 2C,, (that is, 6 < C,,/[2(1 + QCﬁgCﬁ)]ﬁl), we get

q q—p P (2C)*P((2C,)P ! = 1)
Jo, e [ s (14 o=y e -t

as claimed. O
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Lemma 4.55. Let ju be a Radon measures supported in U < R?, let f € LP(p), let o > 0,
let aj = playg with pP~1 = 2Cy > 2, and consider A7 .= {x e U : f(z) > oj}. If

JAJ__I fPdu < Coa§_1 JAj_l fdu, for everyj =0, (4.13)

then

_ PP - )
L fldu <o L Frn <1 T T 1)~ 2C (v~ 1)[)”*”) ’

for every q > p such that the denominator in the right-hand side is positive.

Proof. To ensure finiteness of certain integrals below, we will need to find the same esti-
mates for A7\AY for N large and j < N. Note that

P P
fdu < j f dp < j f : dpu.
AN AN a?v_l Ad—1 p(p_l)(N_])(y?_l

Thus,

p 413 1 1 pg
> — .
JAj—l\AN Jdn C()Oé?il p(pfl)(N*j)oz?*l JA]-_1 7 dy

If p is big enough, say p®~DN=3) > 2Cy for every N > j + 1, we deduce

1
dp> — f dp,
fA.f—l\ANf : 20004?*1 Aj—lf :

f C fPdu <20 el J  fdn (4.14)
AI—I\AN Ai—1\AN

SO

In case N = j, estimate (4.14) holds trivially:

| st pau=pitet| o pan
AT—I\AJ AI—1\AJ

Ai=1\AI

Now, for ¢ = 1 let us write

N-1
In(q) :=J fldp =) f - fldp.
AO\AN j=0 JANATH

For t > 0 consider the summation by parts identity

N-1

N-—1
ZO&;+1J‘V , fqduzaﬁj fhdp + Z(ag\/ml—a?\/ﬁj fhdp,
=0 AI\ATH AO\AN k=1 ANTENAN
N—-1
—alIy@+ 3, (o'~ Daby . | f4dp, (4.15)
= AN=R\ AN
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Then for ¢ > p we get

- 4.15 B B
In(q) < Z O‘?erf Pdp =" af PIn(p) + ), (pT77 = 1)aj _pkf rm
=0 AI\AT+1 el AN=k\AN
4.14 _ QCo(pq_p _ 1)Pp_1 N—-1 . .
< 04(11 PIn(p) + (1) 2 (p? 1>O‘?V pkag)v_k AN_k\ANfd“
4.15) q_p 2Co(p?7P — 1)pp—1 N-1 1 -
= of "In(p) + - | fdp—ofTIN()
(p? 1) 20 AT\ Ad+1
In A; we have aj11 = pay < p|f], so
4.14 200(pq—p o 1)pp_1

In(q) < o PIn(p)+ )

which implies

200 (p?P — 1)pPta—2 B q—r _ 1)p—1

If ¢ — p is small enough, the factors above are positive and we obtain

A L)
(o7 = 1) = 2Cp(pi 7 — D)pr#a—2

In(q) < o "In(p)

Since

f fqdu<a8_pf f”du+f fadp,
U U\AO A©

the lemma follows letting N — oo, since u(Ay) — 0. O

4.7 Weak conditions

Lemma 4.56 (Gehring Lemma for enlarged balls). Let A > 1. Let p be a doubling Radon
measure in RY, and let v be an absolutely continuous measure with respect to p, with

w = g—;. Let U < X be a relative open set with p(U) < co. If

1
( :f wP dﬂ) ’ < Cru J[ wdp  for every boundary ball with A\B < U,
A AA

given a compact set K < U with positive measure then there exists g such that for every
e <e€o,

1 1
(fwwd)”%o (J[ pd>’°
1% S URHE N w* aty )

K U

with g9 depending only on Cry, p, the doubling constant C,, A and the Whitney constants;

and Cru e depending also on ¢, Z((I[j)) and disfj(éiﬁ;{\U).
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This lemma will be deduced from the following version for dyadic cubes.

Lemma 4.57 (Gehring Lemma for enlarged cubes). Let p be a doubling Radon measure in
R?, let D be a dyadic grid associated to X = supp p and let v be an absolutely continuous

measure with respect to p, with w = g—;. Let U < X be a relative open set with p(U) < o0.
If

1
(J[ wpdu>p < CRHJ[ wdp for every Q € D with 3Q) < U,
Q 3Q

given a compact set K < U with positive measure then there exists £y such that for every
e <Ep

1 1
<J[ WPt d )p+s<c <J[ - )p
M ~= RH,E w :U’ )

K U

with g9 depending only on Cry, p, the doubling constant C), and the Whitney constants;

and Cru e depending also on e, Z((IU()) and diszl(iﬁl);\U)

Proof. Let W be a Whitney decomposition of U, see Lemma 4.35. If U = X, then just
consider W = {U}.
Consider the auxiliary function ¢(z) = >oey X (2)u(Q), and let

- ( f Wy du>; |

J[ (we)? dp = M(Q)p_lf wP dp < ,u(U)p_1J wP dp = of).
Q@ Q U

Note that for @ € W we get

Write o := plag, with p = C2677, so af = pPlab, with § to be fixed depending on Crpy.
Thus, we can perform an iterated Calderén-Zygmund decomposition with f = (¢w)? and
ground levels oz? at every whitney cube @ = Ug? U Gég V) Zé) with Ug2 = URefé R, and

write U7 = (Ugeyy Ué) and so on and so forth. Note that p? = C,(C’~'67P), and in
particular

P’z Cy

assuming d < 1, so the notation is different than in Lemma 4.34 (in the statement of the
iterated decomposition we should now replace § by C,*P6? and a; by o).

We will show that for ¢ = g—p small enough we can find a constant C'(C,,, Cru, Cw, p, q) >
0 such that

JU(be)q dp < C(Cy, Cru, Cw, py@)g " fU(ﬁf)w)p dp. (4.16)

Note that picking

o Cacp + 108 oty
0" —log 4y ’
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we can grant that for z € K and = € Q, € W we have 3F%(Q,) o K, which in particular
implies
p(K) < G u(Qa) = G ().

= o) <5 (27

Therefore, we get
1 q—p
4.16 q _ +
_ wlU)\e 1 P P Pa
i K)4 lf w? du> < Cko+1 <> C‘llu U) < Tq ( J[ wpdu> ,
< (%) K g 1K) ) U

and the lemma follows by fixing appropriately the constant Crp ..
It remains to establish (4.16). By CZ1, for @ € W and P € fé we get

This yields

=
Q=

Q=
Q=

of < J[P(qﬁw)p < Cpad, (4.17)

and thus

%<<£@MW@;—M@<£ﬁW@;<QwM®£;MM

Next we claim that u(Q) < Cg¢> in 3P and thus we get
aj < CRHCEL ¢w d,u.
3P

Indeed, note that SQ(gbw)p < oz? implies P # . By Remark 4.25 we have 3P < 3Q), but

3P may intersect a Whitney cube @ # (). Assume that = € @ N 3P, and there must exist
a cube R with 2 € R € N (P)\{P}. Since 3P c 3Q, we get 3Q n3Q # @ and Wh4 implies
if say @ € Dy, then N

Q € Dyy—1 U Dy U Dyt

Since P < @, we deduce R < @ and Remark 4.25 also implies )\EQ N )\EQ # @. In
particular, either they are neighbors or one of them is neighbor to the father of the other.
In any case,

$(x) = n(Q) = Cru(Q),

and the claim follows.
Now we define the level set A7 := {z € U : ¢(x)w(x) > a;} = U’ for j > —1 (with the
convention U1 = U). Then

a;u(3P) < C’RHCﬁ <L pwdp + aj_lu(SP)> .

PnAj-1
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Since ajj—1 = C; 50@, if we pick ¢ < , then
a;p(3P) < 2CruC,, f dw dp.
3PnAI—1
Note that

4.17
| wran= % wp § @ordn < cul 3 uip).

PeFi PeFi

All in all, for j = 0 we get

J(¢w)pdu<20 Cruak” 2 J ow dp < 2C5Crpall” 'Cw | owdp
AJ PeFi 3PNAI-1 A1

Trivially we also have

[ wora<at|  sudn
AJ—l\AJ AJ—l\AJ

| word<cort | owdp,
Ai—1 A

j—1

SO

with Cy: =1+ 20}/\;0}{1{03
By Lemma 4.55, if pP~1 > 20y, i.e.

02 1
0 = min
(Qco)p i 2CRru

f (pw)?dp <cyqp O‘g_pf (pw)? dp,
U U

as claimed, with ¢ —p < Cg, p- O

we infer that

Proof of Lemma 4.57. Let Q € D with 3Q) < U. By covering () with finitely many bound-
ary balls A; with radii comparable to £(Q) such that AA; < 3Q, we deduce that

(J[prdﬂ>;§;<f w”du>;<ZJ[ wdu<J[ wdy.

So Lemma 4.57 implies that

1

1
(J[ whte d >p+s<c’ (J[ Pd )p
H S VRHe we ap
K U

for some € > 0. O
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4.8 The Riesz representation theorem

Recall that a topologic space X is said to be locally compact if every point z € X has a
neighborhood whose closure is compact.

Theorem 4.58 (Riesz representation Theorem). Let X be a locally compact metric space
and L : C.(X) — R a positive linear functional. Then there is a unique Radon measure p
such that

Ly= de,u for f e Cu(X).

The approach presented below is based on the proof of [Rud87, Chapter 2|, where the
reader may find all the details and the proofs of every single lemma used here.

Proof. Given an open set V < X we write f < V whenever f e C.(V), and 0 < f < xv.
We define

pu(V) :=sup{Ls: f <V}
Note that for open sets U < V it follows immediately that u(U) < (V). Therefore it
makes sense to define for every F < X

w(E) :=inf{u(V):V > E and V is open}.
We will use often the following immediate consequence of the positivity of L:
If f,g € Ce(X) are such that 0 < f < g, then Ly < L, (4.18)
First we claim that p is a measure.
1. Since J is open, (&) = sup{L;: f < J} = Lo = 0.
2. Given sets Ac Bc X,
{V:VoAand Visopen} o{V:V o B and V is open}
trivially, and taking infimum in a subset always increases the result, so
u(A) < u(B). (4.19)
3. Let A; € X for 1 < i < o0, and let ¢ > 0. Consider open sets V; © A; such that

(Vi) < pu(Ai) + 57, and let f <V :={]J; Vi so that u(V) < Ly +e.

Since K := suppf is compactly contained in V' we infer that there exist n € N and
a finite subcovering, i.e., a subset {i; };L:l c N so that K U?:l Vi

There exists a partition of the unity in K for the covering V;,, i.e., there exist
functions h; < Vi, with xx < Zj hj < 1. Then

n (UAZ> <u(V)<Lf+e= Lijhj +e :Zthj +e
i J
<Yu() +e< ) (b + 5) +e < Yu(A) +25,  (4.20)
J 2 i

)

concluding the proof that p is a mesaure.
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Next we show that p is in fact a Radon measure. To show that we begin by a) — ¢) in
Definition 4.4:

a) Let K < X be a compact set. Then K is contained in a ball B. Consider a continuous
function yx < f < xp, which exists by Urysohn’s lemma. Then call V := {z : f(x) >
1/2}. Every function g < V satisfies that g < 2f. Therefore

4.18
p(K) < (V) =sup{Ly:g <V} < 2Ly <o0.

b) Let V be an open set. We will prove that its measure coincides with the supremum of
the measures of its compact subsets. Let € > 0 and f < V such that u(V) < Ly +e.
Then write K := suppf and consider an open set U > K. It is clear that f < U and
thus u(U) > L. Since this holds for every such U, passing to the infimum we can infer
that pu(K) > Ly. All in all,

p(V)< Ly +e<pu(K)+e.
Since such a compact set can be obtained for every &, we conclude that
u(V) < sup{p(K) : K < V}.
The converse inequality follows from (4.19).
c) pw(E) :=1inf{u(V):V o E and V is open} follows by definition.

To complete the proof that p is Radon, we will check that it is Borel regular. First of
all, let K1, Ko be compact, disjoint subsets of X. We claim that

u(K1) + p(K2) = p(Ky v Ka). (4.21)

Indeed, it is well known that there exist open sets V; o Kj, such that V4 n Vo = & (see
[Rud87, Theorem 2.7], for instance), and also there exists an open set W > K; u Ko
such that (W) < u(K; u K3) + €. Moreover, there exist functions f; < V; n W so that
pu(Vi n W) < Ly, + e. Then, since the supports of f; are disjoint, f1 + fo < W and we get

4.19
p(K1) + p(Ka) < p(VinW)+pu(Van W) < Ly + Ly, + 22

=Lfyp+2e <p(W)+2e < pu(Ky v Ks) + 3¢,

proving the claim.
Since the u-measurable sets form a o-algebra, to show that p is a Borel measure we
only need to check that every open set V' is p-measurable, i.e., every ' c X satisfies that

W(E) = W(E A V) + p(E A V).
By the subadditivity shown in (4.20), it suffices to prove that

w(E) =z up(EnV)+ pu(EnVe (4.22)
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and for this we may assume that u(E) < . R
First let us assume that F is an open set with ﬁnige measure. Then write V =V n E|
so EnVe=En(VEUE®)=En(VnE)=EnV¢ie. we have to show that

W(E) = u() + u(E ~ 7).
Let K; V be a compact set such that
u(V) < p(Ky) +e.
Then consider an open set U > E n V¢ so that u(U) < u(E n V¢) + e. Define U :=

U n E n K{ which is again an open set. Then

~ (4.19 ~
pU) < pU) < (EnV) +e,

and
EAVe=UnNEnVcUNEnNK{=UcK{nE. (4.23)

To end consider a compact set Ko < U such that u(U) < u(Ks2) +e. All in all,

~ ~ 4.23 ~
p(V)+pu(EnVe) < p(ka) +e+pU) < p(Kr) + p(Ks) + 26

4‘21 4.19
= p(K1uKz)+2 < p(E)+ 2,

and (4.22) follows for open sets.
Consider a set £ ¢ X (without the openness assumption). Then there exists an open
set Vg D E such that u(Vg) < u(E) + e. Then

4.19
PEnV)Y+pu(EnVe < u(VEnV)+u(VEn V) =pu(Ve) < u(E) +¢,

proving (4.22) for general sets.
To end we have to check that Ly = { f du for every f € C.(X). For simplicity we may
assume that f is real valued. Moreover, it suffices to show

Ly < J fap, (4.24)

since we can apply the same inequality to —f to obtain the converse estimate.

Let [a,b] u{0} be the range of f. For every n consider {y; ?jol with yo < a, yp+1 = band
0<wyir1—vy < (b—a)/n =: ¢ for every i <n. Let E; := f~'((yi_1,v:]) nsuppf, which are
Borel sets and, thus, measurable. Consider open sets V; > E; with u(V;) < p(E;) + 55
and such that f(x) < y; +¢ for every x € V;; and let h; be a partition of the unity of supp f

with respect to the covering {V;}, that is h; < V; with x(euppsy < 255 hi < 1. Then

4.18

Ly=3 Ly < X(wi+e)ln < Y+ )n(Vi) < Y(ui =< +22) (uusz-) )

n+1

7 7

= S i =) + 22 Rt + MZy re ' f fdp+ (pu(suppf) + b + )
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and (4.24) follows choosing ¢ arbitrarily small.

As for uniqueness, assume that 1, o are Radon measures satisfying the hypotheses of
the Theorem. Since Radon measures are determined by their values on compact sets, we
only need to check that p;(K) = pa(K) for every compact set K < X. Consider such a
compact set, and let V' o K be an open set such that (V) < p2(K) + €. By Urysohn’s
lemma, there exists f < V such that xx < f. Then

m(K) = JXKdﬂl < ffdﬂl =L;= ffduz < JXVd/JQ = p2(V) < p2(K) +e.

4.8.1 Image measure

Definition 4.59. The image of a measure p under a mapping f : X — Y (also known as
push-forward measure) is defined by fupu(A) = u(f~1(A)) for AcY.

Theorem 4.60. If X, Y are separable metric spaces, f is continuous and p is a compactly
supported Radon measure, then fup is a Radon measure, with suppfup = f(suppu).

Theorem 4.61. If X, Y are metric spaces, f is a Borel mapping, i is a Borel measure
and g is a nonnegative Borel function, then

fgdf#u = J(g o f)dp.

4.8.2 Weak convergence

Let {ui}2, be a collection of Radon measures in a metric space X. We say that p; converge
weakly to o, and write

Hi — Mo,
if
lim | pdu; = fgod,uo for every ¢ € C.(X).

1—00
As a consequence of the Riesz representation theorem, one can prove that a uniformly

locally finite collection of measures has a weakly convergent subsequence:

Theorem 4.62. If {1;}°, is a collection of Radon measures in R?, with

sup pi (K) < 40,

for every compact set K < R%, then there is a weakly convergent subsequence {1 iy,
and a Radon measure pu with
iy, — K-
Consider the Dirac delta measure ¢; in ¢ € N. Note that the sequence ; — 0. This

example shows that the weak convergence of measures does not imply the convergence of
the measure of a particular set. However, the following semicontinuity properties hold:
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Theorem 4.63. Let {1}, be a collection of Radon measures in a locally compact metric
space X. If u; — po, K < X is compact and G < X is open, then

po(K) = limsup p; (K),

1—00

and
po(G) < liminf 11;(G).

1—00

4.9 Hausdorff measure and dimension
For every subset A c R4, 0 < s < 400 and 0 < § < +00, define
H3(A) := inf {Z diam(F;)* : A < |_J B; with diam(E;) < 5} ,
and let Z ’
H(A) = lim 7(A)

be the s-dimensional Hausdorff measure of A. The quantity H5,(A) also plays an im-
portant role and is called s-dimensional Hausdorff content of A. The Hausdorff measure
happens to be a Radon measure. The 0-dimensional Hausdorff measure is the counting
measure, the 1-dimensional measure is a generalization of the length measure in R?, and
the d-dimensional measure is a multiple of the Lebesgue measure.

If Ais a set with H®(A) < +o0, then H*| 4 is locally finite and, in fact, it happens to be
a Radon measure (see [Mat95, chapter 4]).

Another interesting fact is that although

Hio(A) < H3(A) /7 H(A),
having null Hausdorff content is equivalent to having zero Hausdorff measure:
H(A) =0 < H*(A) =0.
Theorem 4.64. For 0 < s <t < o and A c RY,
1. H5(A) < +o0 implies H'(A) = 0, and
2. HY(A) > 0 implies H*(A) = +o0.
This leads to the concept of Hausdorff dimension:
Definition 4.65. The Hausdorff dimension of a set A ¢ R% is
dimy A = sup{s : H*(A) > 0}.

Equivalently,
dimy A = sup{s : H3,(A) > 0}.

From the previous theorem, one can infer that

dimy A = sup{s : H*(A) = +oo} = inf{s : H*(A) < 400} = inf{s : H*(A) = 0}.
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4.10 Frostman’s lemma

The following result is Frostman’s Lemma, which is a fundamental tool in geometric
measure theory and in potential theory.

Theorem 4.66. Let E be a Borel set in R?. Then H*(E) > 0 if and only if there exists
a non-zero finite Radon measure  compactly supported in E such that

w(B,(x)) <r*  for every x € RY and r > 0.
Further,
HE,(E) ~ sup {u(E) : suppp < E, u(B,(z)) < r* for every x € R? and r > 0},
with the implicit constant depending only on d.

Below we provide a proof for the case when FE is a compact set. The case when E is
o-compact is easily deduced from this. These two cases suffice for the purposes of these
notes.

Proof. Suppose first that such a measure p exists, and let us see that H5 (E) = u(E).
Indeed, consider a covering | J; A; © E, and take for each i a point x; € A;. Since the
union of the balls Bgjam(a,)(7:) covers E, we get

Zdiam(Ai)s > ZM(Bdiam(Ai)<xi))) > p(E).

Taking the infimum over all possible coverings of E, we obtain H3 (F) = u(E).

For the converse implication of the theorem, assume that F is contained in a dyadic
cube QQg. The measure p will be constructed as a weak limit of measures p,, n = 0. The
first measure is
£d‘Qo

L4(Qo)’

For n > 1, each measure j, vanishes in R\Qy, it is absolutely continuous with respect
to Lebesgue measure, and in each cube from D, (Qp) (this is the family of dyadic n-
descendants of ()p), it has constant density with respect to Lebesgue measure. It is defined
from p,—1 as follows. If P € D,(Qo) and P is a dyadic child of @ € D,,_1(Qo) (then we
write P € Ch(Q)), we set

po = Hi(E)

B H (PN E)
2rech(@) M (R N E)

Mn(P) Nn—l(Q)' (4'25)

Observe that
D tn(P) = pn-1(Q)  for all Q € Dy_1(Qo),

PeCh(Q)

and thus g, (RY) = p,,_1(R%).
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As said above, u is just a weak limit of the measures u,. The fact that u is supported
on E is easy to check: from the definition of p, in (4.25), p,(P) = 0 if P € D,,(Qo) does
not intersect E. As a consequence, ug(P) = 0 for all £ > n too, and thus,

supp(pk) < Us-n+1diam(Qo) (F) for all k = n, (4.26)
where U;(FE) stands for the t-neighborhood of E, that is,
U (E) = {x e R : dist(x, F) < t}.

From (4.26) one gets that supp(u) © Us-n+1diam(qe)(F), for all n = 0, which proves the
claim.
Next we will show that

pn(P) < HL(PNE) for all P € D,,(Qo).

This follows easily by induction: it is clear for n = 0, and if it holds for n — 1 and @ is the
dyadic parent of P, then

pn1(Q) SHL(QNE)< ). HL(RnE).
ReCh(Q)

Thus, from (4.25), we infer that u,(P) < H:, (P n E), as claimed. As a consequence, for
all j = n,
pi(P) < Hy (P n E) for all P € D, (Qo).

Moreover, by construction, all the dyadic cubes which do not intersect Qo have zero
measure /i;.

Since every open ball B, of radius r with 27"714(Qg) < r < 274(Qo) (where £(Qo)
stands for the side length of Q) is contained in a union of at most 2¢ dyadic cubes P}
with side length 27™¢(Qo), we get

24 24
pi(Br) < Z pi(Py) < Z HE (P N E) < 2% diam(Py)° < c7?,
k=1 k=1

for all j = n. Letting j — o0, we infer that u(B,) < cr®.
So we have constructed a measure p supported on E such that p(E) = H5 (E) with
w(Br(x)) < cr® for all z € R? and all r > 0, which implies

H5(E) < sup {u(E) : suppp < E, p(By(z)) < r°Va e R, > 0}.
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5 Harmonic measure via Perron’s method

To solve the Dirichlet problem for a very general class of open sets, it is convenient to
use harmonic measure. Before introducing this notion, we will introduce subharmonic
functions and we will show the solution of the Dirichlet problem via Perron’s method.

5.1 Subharmonic functions

Definition 5.1. For Q — R? open, we say that u : Q — [—00,0) is subharmonic if it is
upper semicontinuous in 2 and

u(z) < J:BT(I) u (5.1)

whenever B,(z) cc Q.
On the other hand, u :  — (=0, +00] is superharmonic if it is lower semicontinuous
and u(x) = §Br(m) u whenever B,.(z) cc Q.

Recall that u is called upper semicontinuous at z € Q if limsup,,_,, u(y) < u(z), and it is
lower semicontinuous if liminf, ., u(y) = u(z). It is easily checked that, if K is compact
and u : K — [—00,00) is upper semicontinuous, then u attains the maximum on K.
Analogously, if u : K — (—00, 0] is lower semicontinuous, then u attains the minimum on
K. Note that upper semicontinuity does not imply local Lebesgue integrability. However,
the function is locally bounded above and therefore, the average —XBT () U in the previous
definition is in [—o0, +0).

Of course, any function that is harmonic in €2 is both subharmonic and superharmonic.
Further, u is subharmonic if and only if —u is superharmonic. Other immediate properties
are stated below.

Lemma 5.2. Ifu,v are subharmonic in Q, then u+v and max(u,v) are both subharmonic
in Q. On the other hand, if u,v are superharmonic in §, then u + v and min(u,v) are
both superharmonic in 2.

Proof. This is immediate. O
Subharmonicity condition can be checked in spheres instead of balls:

Lemma 5.3. If u is upper semicontinuous in Q2 and u(z) < SaB,,.(x) u whenever B,(x) cc
Q, then u is subsharmonic.
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5 Harmonic measure via Perron’s method

Proof. We can assume that —oo < SBT udm (otherwise there is nothing to prove). By
upper semicontinuity, we have a bound above and therefore u is in L'(B) and we can
apply Fubini’s theorem to recover the solid means as

d (7 d (" d "
J[ udm = y f J udo dt = dJ J[ wdo t31dt > u(da:) f = dt = u(x).
B, ka™ Jo JoB, ™ Jo JoB, r 0

O]

Subharmonic functions satisfy the maximum principle (and superharmonic functions
satisfy the minimum principle):

Lemma 5.4 (Maximum principle). If u is a subharmonic function in a bounded open set
Q such that
limsupu(x) <0  for every £ € 012,

z—E

then u < 0 in Q. If moreover Q) is connected, then either u =0 or u < 0 in €.

Proof. By considering each component of ) separately, we can assume that €2 is con-
nected and it is enough to prove the second statement of the lemma. Suppose first that
u does not achieve a supremum in Q. If z; €  is such that lim; u(z;) = supg u, then
lim; dist(z;, 02) = 0, for otherwise we could extract a subsequence converging to a point
inside €2 and obtain a contradiction. Using that €2 is bounded, by passing to a subsequence
we may assume that x; — £ € 0€). By assumption, this implies that every x € ) satisfies

u(z) <supu = limu(z;) < limsupu(y) < 0.
Q J y—E

If w achieves the supremum at some x € €2, then there exists r such that B,(x) < .
Assume that there exists y € B,.(x) such that u(y) < u(r) = supgu. Then, by upper
semicontinuity we would get

supu = u(r) < ][ u < sup u,
Q B,,(J;) Q

reaching a contradiction. Therefore, the function is constant in the ball B,(z). This
implies that the set where the supremum is achieved is open. But it is also relatively
closed in ) by semicontinuity and so u is constant in 2. O

Next we give a couple of characterizations of subharmonicity under certain a priori
regularity conditions. First, we check the behavior of the Laplacian when a subharmonic
function has two derivatives, and then we use it to show that the fundamental solution to
—A, see (2.10), is an example of superharmonic function.

Lemma 5.5. Let Q < R? be open and u e C%(Q). The function u is subharmonic in Q if
and only if Au =0 in Q.
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Proof. The fact that Au > 0 in € implies the subharmonicity of u is a direct consequence
of Remark 2.2. To prove the converse implication, we have to show that Au(xz) = 0 for
every x € ). To this end, consider the function

v(y) = uly) —u(x) — Vu(z) (y — 2).

Since u is subharmonic and any affine function is harmonic, it follows that v is also
subharmonic. The Taylor expansion of v in x equals

Ly =) D?u(z) (y - 2) + oy — ),

v(y) = 5

where D?u(z) is the Hessian matrix of u. For any ball B,(z) < Q, we have

= V\T v :1 —:1:T QUZE — X 07'2
o=v@) s fedr=g ] 0 D) )y o)

1
=5 ZZJ] Ji ju(x) J[Br(z) (yi — i) (y; — ) dy + o(r?)
= cAu(x)r® + o(r?),

where we took into account that SBT () (yi —x4) (yj; — x;) dy vanishes if ¢ # j and is positive

otherwise. Dividing by ¢r?, we deduce
Au(z) 4+ o(1) = 0,

with o(1) — 0 as r — 0. This implies that Au(z) > 0, and the proof of the lemma is
concluded. O

Lemma 5.6. The fundamental solution of —A is harmonic in RN\{0} and superharmonic
in R%.

Proof. Harmonicity can be easily checked. To prove superharmonicity, notice first that &£
is lower semicontinuous. Next, for every € > 0 let . be a C®, positive, radially decreasing,
function supported on B.(0) with {¢. = 1. Then &€ * ¢ € C*(R?). Further,

A(E = pe) = —pe < 0.

Thus, by Lemma 5.5, £ # ¢, is superharmonic in R?. Consequently, for any ball B centered
in g # 0 and any € > 0,

J: E # pe < E % (o).
B

Letting € — 0, we deduce
| &< étm).
B

In case xp = 0, we have £(xg) = +00 and the last inequality is satisfied trivially. O
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Now we turn our attention to continuous subharmonic functions. Although the maxi-
mum of two subharmonic is subharmonic in their common domain of definition, in some
occasions we want to extend the domain. Here we check a particularly easy case which
consists in extending a subharmonic function out of its domain of definition as a constant
function.

Lemma 5.7. Let Q) be an open set, let u be a subharmonic, continuous function in €, let
V be a connected component of Q° and let t € R such that t > SUPgeay noq limsup, ¢ u(z).
Then

- | max(u,t) inQQ,
YTt inV.

is subharmonic and continuous in QU V.

Proof. Without loss of generality, we may assume ¢t = 0. Continuity is left as an exercise for
the reader. To establish subharmonicity in U = Q UV, we will check that @i(z) < {,,U
whenever B = B,(x) cc U. This is rather trivial when u(x) = 0 because u is non-
negative. Thus, we may assume that u(x) = u(x) > 0 and, in particular, z € . Let v be
the solution to the Dirichlet problem in B with boundary values f(y) := u(y) for y € 0B,
given in Theorem 3.11.

Since v is harmonic in B, continuous in B and it has non-negative boundary values, by
the maximum principle we get that v is non-negative in A = B n (), and moreover it is
continuous up to the boundary in A. In particular, u — v is subharmonic in A.

Note that 04 = (0B n Q) U (0Q n B). Consider now y € 0A. If y € 0B n ), then
i(y) —v(y) = U(y) — f(y) = 0 by definition. Otherwise, y € dQ n B and by assumption
limsup,_,, (W(z) —v(z)) < 0—wv(y) < 0. All in all, by the maximum principle we obtain
u < v in B, implying in particular that

(@) < o(z) = Jfan: J[aBﬁ’

and subharmonicity follows by Lemma 5.3. U

Next we characterize continuous subharmonic functions as those functions whose interior
values in balls lie below the solution to the Dirichlet problem with the same boundary
values.

Lemma 5.8. Let Q < R be open and v e C(Q). Then u is subharmonic if and only if
for every ball B cc Q and every harmonic function v such that u(z) < v(x) for every
x € 0B, it holds either v > u or v=u in B.

Proof. The only if implication follows by the maximum principle to the subharmonic
function u —v. To see the converse, let B,.(x) cc 2 and let v be the harmonic function in
B, continuous up to the boundary that agrees with v on 0B, (see Theorem 3.11). Then

J[ udo = J[ vdo = v(x) = u(x).
0B, 0By

The proof is completed by Lemma 5.3. 0

62



5 Harmonic measure via Perron’s method

Let u € C(Q2) be subharmonic in a ball B. Let @ be the harmonic function in B that
agrees with v on 0B and set U := xq pu + xpt. Note that U > u by Lemma 5.8. This is
called the harmonic lift of u in B.

Lemma 5.9. Let Q < R? be open. If u € C() is subharmonic in Q, x € Q and B =
B, (x) cc Q, then the harmonic lift of u in B is also subharmonic in .

Proof. Let U be the harmonic lift of v in B. Consider v harmonic in a ball B’ < § with
B'n B # @& and v > U in the boundary of B’. We want to prove that either v > U or
v="Uin B’

Case 1: 0B n B' = @, that is B’ ¢ B and U is harmonic in B’. Then the claim follows
by Lemma 5.8 applied to U.

Case 2: 0B n B’ # @ and v(y) > U(y) in 0B n B’. Using the continuity of U and the
maximum principle applied to U — v in B'\B and B’ n B separately, we get that v > U
in B’.

Case 3: 0B n B’ # @ and there exists y € dB n B’ such that v(y) < U(y) = u(y). In
this case, since v > u in 0B’, Lemma 5.8 implies that v = v in B’. If 0B’ n B # (J, the
identity v = u in B’ implies the existence of a point in 0B’ n B # ¢ where u(y) < U(y) <
v(y) = u(y) and therefore U = u by Lemma 5.8. If, instead, 0B’ n B = ¢J, that is if
B < B’, then u is harmonic in B and, therefore, U = u as well and the claim follows. [J

Next we provide a couple of properties of subharmonic functions, again under certain
a priori conditions. First we see that subharmonicity is preserved by an approximation
of the identity. Then we use this fact to show that subharmonic Sobolev functions are
weakly subharmonic, see Remark 5.14 below. This properties will be used to show the
Caccioppoli inequality for subharmonic functions.

Lemma 5.10. Let Q < R? be open and let u € L () be subharmonic. For p > 0, denote
Q, = {x e Q:dist(x,Q°) > p}. Then following holds:

(a) If i is a (non-negative) Radon measure supported in B,(0) and w * p is upper semi-
continuous in €),, then u * p is subharmonic in §1,.

(b) If ¢ is a continuous non-negative function supported in B,(0), then u+ ¢ is subhar-
monic in 2.

Proof. Clearly, the statement (b) is a consequence of (a), since u * ¢ is continuous because
¢ is continuous and compactly supported. To prove (a), we have to check that for any
x € , and 7 > 0 such that B,(x) < €Q,, we have u * pu(z) < SBT(:;:)“ # 1t dm. Without
loss of generality, assume that x = 0 and B,(0) < §,. Denoting u(y) = u(—y) and

SC\BT(O) = m(Br(O))_IXBT(o), we have
J[B ot Cus X0 = (1 T * X3,(0))-

Notice now that for any y € suppu, Br(y) < Br+,(0) < Q (because suppp < B,(0) and
B,(0) c Q,) and so

U Xp,(0)(Yy) = J( ( )udm > U(y).
r\Y
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5 Harmonic measure via Perron’s method

Consequently,
J[ wx pdm =,y = u* p(0).
B (0)
O

Lemma 5.11 (Locality of subharmonicity). Let u € L () be an upper semicontinuous

function in Q satisfying (5.1) whenever B.(x) < Q, with r < p, then u is subharmonic
in €.

From here, it is possible to show as well that if u € L (U U V) is subharmonic on two
open sets U and V, then it is also subharmonic in the union U u V.

Proof of Lemma 5.11. First we will show that, if ¢ € C'! is a non-negative, non-increasing
radial function supported in B;(0) with {¢ = 1, then

e—0

u * pe(r) — u(x) for every x € Q. (5.2)

Let x € Q and € < p. Abusing notation we write ¢(|z|) := ¢(x). Using that ¢(|z|) =
- S| | ¢'(t) dt, we get

1 I _
e:(o) = el =~ | xoa(e e O .

Then, by Fubini’s Theorem,

weo) = [ wee -t =~ [ ¢ OnBa@) { ) amar

d
€” Jo Bei(x)

Since ¢’ < 0, by (5.1), we obtain

w pu(z) > —ulz) LOO & ()m(Bi(0)) dt.
Note that -
[ dommoya= [ [ gwaimo) - el
so that we get
ux e (x) = u(x). (5.3)

Next we show (5.2) arguing by contradiction. Assume that u * ¢.(x) does not converge
to u(x), i.e., there exists a 6 > 0 and a sequence &,, — 0 such that

lu* @, (x) — u(z)| = 4.
By (5.3) we have u * ¢, () — u(z) = 0, so we necessarily have

u#* e, () —u(x) = 6.
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5 Harmonic measure via Perron’s method

Since ¢, has integral one, is non-negative, and is supported on the ball B, (0), there
exists a set with positive measure in B, (z) where u(y) = u(x) + §. In particular, we can
fix y, € Be, (x)\{z} with

u(yn) = u(x) + 6.

Since y, — x, we get

limsup u(y) = limsup u(y,) = u(z) + 6,
y—T n—00

contradicting upper semicontinuity, so (5.2) has been established.

To prove the lemma, note that it is enough to show that w satisfies (5.1) in every ball
B compactly contained in Q. Consider a function ¢ € C%(B1(0)) as above. By Lemma
5.10, the function u * . is subharmonic in balls of radius r < p — e contained in ()., which

using Lemma 5.5 implies that A(u* pe) = 0 in .. Using Lemma 5.5 again, we derive the
subharmonicity of u * . in a neighborhood of B for € small enough. In particular

ux pe(x) < ][ U * e dm. (5.4)
B

Now, since u € L'(B), by standard properties about approximations of the identity (see
[Gra08, Theorem 1.2.19], for instance), we infer that

J u*wedmﬁf wdm
B B

as € — 0. Recalling also that u = ¢.(x) — u(x), passing to the limit in both sides of (5.4)
we recover (5.1) for the ball B, as wanted. O

Remark 5.12. Note that we have shown than given a subharmonic function u € L] (),

if o € C'! is a non-negative, non-increasing radial function supported in By (0) with fo=1,
then

e—0

u * oo (r) — u(x) for every x € Q.

Lemma 5.13. Let @ < R? be open, let u € Li (Q) be subharmonic in Q, and p € CL (1),
with ¢ = 0. Then, its distributional gradient satisfies

(Vu, V) <0.

Consequently, if u € VVlif(Q) with 1 <p <o and p € Wcl’p’(Q) with ¢ = 0, we have

fVu Ve <0. (5.5)
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5 Harmonic measure via Perron’s method

Proof. For every € > 0, let 1. be a C®, positive, radially decreasing, function supported
on B.(0) with {4, = 1. Let Q. = {z € Q : dist(x, Q) > &} and take ¢ small enough such
that suppp < Q.. Then we have

(Vu,Vyy=— qugodw = — lirr(l)f(u %) Apdr = — lir%JA(u * . ) pdx.
E—> E—>

Since u * 1. is C* and subharmonic in €., it follows that A(u=1.) = 0 in €., see Lemmas
5.5 and 5.10. Thus,

JA(U*#}J@d;ﬂ)O

for any € > 0 small enough, and so (Vu, V) < 0.
The second statement in the lemma follows easily by a density argument. O

Remark 5.14. A function f € T/VI(IDCQ(Q) satisfying (5.5) is called weakly subharmonic.
Note that we don’t ask for semicontinuity in this definition. What we call weakly subhar-
monic is sometimes called a subsolution to Au = 0, see [Ken94, Section 1.1], for instance.

Lemma 5.15 (Caccioppoli Inequality). Let Q < R be open and let u € W;-*(Q) be weakly

loc
subharmonic in  and non-negative. Then for every ball B < 2 of radius r we have

4
[ -
B (rt)* Jus1yp\B
where t = dist(B, 0Q2)

Proof. The arguments are very similar to the ones in Lemma 2.10. Let n be a Lipschitz
function such that xp < 7 < x(441)p and with |Vn| < % Since u is weakly subharmonic,
n is compactly supported, and un? > 0, by Leibniz’ rule we have

f | Vul? = f Vu - V(un?) — J 2unVu - Vn < —f 2unVu - V.
(t+1)B (t+1)B (t+1)B (t+1)B

[NIES
[SIE

By Holder’s inequality we get
< | n2|w|2> ,
(t+1)B

f 2|Vl < (J 4u2|V17|2)
(t+1)B (t+1)B
4

f V2 <f | Vu? <J 22|V < QJ u
B (t+1)B (t+1)B (rt)? Jus1)B\B

and so
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5.2 Perron classes and resolutive functions

Throughout this section we assume that Q < R? is a bounded open set (not necessarily
connected).

For f e C(09), the Perron method, that we will describe below, associates a harmonic
function uy : @ — R to f. Even if f is continuous, the function u;y may not extend
continuously to the boundary to coincide with f, see Example 3.8. However, We will see
that if Q is regular enough in some sense, then u; extends continuously to d€ and its
boundary values coincide with f.

Definition 5.16. Given a bounded function f : 02 — R, define the lower Perron class as

Ly ={ueC(Q): is subharmonic and limsupu(z) < f(£) for all { € 00},

z—E€
and the upper Perron class as

Us = {ue C(Q) : u is superharmonic and lim i?fu(a:) > f(&) for all £ € 09},
Tr—>
Note that the constant function x — sup,q f is an element of Uy (and x — infsq f is an
element of L¢). Therefore, Uy and L; are non-empty and we can define the real-valued
functions o
H(z) = sup u(x), H¢(x) = inf u(x)
uely ueUy

for x € 2, which we call lower Perron solution and upper Perron solution respectively.

Remark 5.17. If f € C(Q) is harmonic in €2, for every u € £ we can apply the maximum
principle (see Lemma 5.4) to u — f to infer that u < f in Q. In particular, we deduce that
f=H;= ﬁf. So if the solution of the Dirichlet problem with continuous boundary data
exists, then it coincides with the lower and upper Perron solutions.

Lemma 5.18. For every bounded function f : 00 — R, the functions H; and Ff are
harmonic.

Proof. We will show only the case H;. The other follows by noting that Hy=-H_ Iz
Fix z € Q and B = B,(z) with B < Q. Let {u; }521 < Ly be a sequence of subharmonic

functions so that u;(x) EARECN H ;(z). By replacing u; by max(uj, infaq f) if necessary (see
Lemma 5.2), we may assume that the sequence of functions w; is uniformly bounded from
below.

Let U; be the harmonic lift of u; in B, which is subharmonic by Lemma 5.9 and therefore
Uj < Hy. This sequence is uniformly bounded above by sup;q f by the maximum principle
and it is also bounded below since the w;’s are uniformly bounded from below. Thus,
passing to a subsequence if necessary, we may assume that U; converges pointwise in B to
a harmonic function U (see Lemma 2.14). As we have seen, u; < U; < H ¢ and, therefore,
Ulx) = H ().

We claim that U = H; in B. Assume not. Then there is y € B so that U(y) < H ((y),
and by definition of H, there must be v € Ly so that U(y) < v(y) < Hy(y). Set
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vj = max{Uj, v} (which is again subharmonic by Lemma 5.2) and let V; be the harmonic
lift of v; in B, so now Vj is harmonic in B. Passing to a subsequence, we may assume
V; converges pointwise to a harmonic function V' in B. Since U; < Vj;, we have that
U<V < Hyin B, and so U(z) = V(z) = Hy(r), which implies U = V in B by
the maximum principle. However, U(y) < v(y) < Vj(y) which implies U(y) < V(y), a
contradiction.

O
Lemma 5.19. Every bounded function f : 0§ — R satisfies Hy < Hy.

Proof. Let u € Uy and v € Ly. Then v — u is subharmonic with limsup,_,¢(v — u) <
f(€) — f(§) = 0 for all £ € 9, and so by the maximum principle, v < u. Taking infimum
and supremum over Uy and Ly respectively, we get H < Hy. O

Definition 5.20. We say that a bounded function f: €2 — R is resolutive if H; = ﬁf.

Lemma 5.21. If f g are resolutive so are —f, f + g, and X\ f for any X\ € R. Further,
Hf+g:Hf+Hg and H,\f:)\Hf.

Proof. Note that if u € Uy and v € Uy, then u+v € Uy, 4, and so ﬁf+g < u+wv. Therefore,
Ff_;,_g < Ff —I—Fg. Similarly, ﬂfﬂ] > ﬁf +ﬂg = Ff +ﬁg. Therefore Ferg < ﬂerg and
the converse inequality follows from Lemma 5.19.

Also being f resolutive implies that H_; = —Ff =-—H; = ﬁ_f. For A >0, Hy; =
AH ; and H)\f = )\Ff and thus Hyf = AHy. For A < 0, we write Hyxf = H_y)—p) =
—AH_y) = \Hy. O

Lemma 5.22. If f € C(Q) is subharmonic in Q, then flaq is resolutive.

Proof. Since f is subharmonic and continuous up to the boundary, we have f € Ly, and
so f < Hy. Note that H is harmonic (hence superharmonic) and liminf, ,¢ H(z) >
liminf, ¢ f(x) = f(£), so Hy € Uy, hence Hy > Hy. O

Lemma 5.23. Polynomials are resolutive in every bounded open set.

Proof. Let u be a polynomial. Note that the function v(x) = |z|? satisfies Av = 2d > 0. In
particular v is subharmonic in R? by Lemma 5.5. Since A is a polynomial, it is bounded
in any bounded open set Q. Thus, for k > 0 large enough, A(u + kv) > 0 in Q. So both
v and u + kv are subharmonic in { and continuous in . Hence they are resolutive, and
therefore v = (u + kv) — kv is resolutive too. O

Theorem 5.24 (Wiener). C(09) functions are resolutive.
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Proof. Let fe C(09Q) and € > 0. By the Stone-Weierstrass theorem [Sto48], we may find
a polynomial u such that |f —u| < e on 0€2. Thus,

and letting € — 0 gives that f is resolutive. O

In this way, we can associate to a continuous function f a harmonic function Hy :=
Hy = Ff. The fact that f is resolutive is not the reason we can pick an association. For
example, we could just associate to any bounded function f on the boundary the harmonic
function Hs. The property of being resolutive is significant for us not because it helps
us to define a harmonic function for f, but because the fact that H; and ﬁf agree (for
resolutive functions) will be useful in maximum principle arguments when trying to prove
continuity at the boundary. Further, as shown above, the set of resolutive functions is a
vector space and the map f + Hy is linear in this vector space, as shown in Lemma 5.21.

As mentioned earlier, Hy may not coincide with f at the boundary, even if f is contin-
uous. To give an example, consider Q = B1(0)\{0} = R?, and let f(&) = 0 for & € 0B1(0),

f(0) = 1. Define
€

Ug(.'lf) = W

for d = 3 (for d = 2 use the logarithm). Since u. > 0 is harmonic and goes to +oo at the
origin, we immediately get u. € Uy, so

€
5;0)0_

Hf(x) < |(l:’d_2

Since 0 € Ly trivially, we get that H¢(x) > 0 and Lemma 5.19 implies that H¢(x) = 0.
That is, Hy is the same for Q = B;(0) and for Q = B;(0)\{0}.
5.3 Harmonic measure via Perron’s method

Throughout this section we assume that Q < R% is a bounded open set, unless otherwise
stated. Next we provide the definition of harmonic measure via the so-called Perron’s
method.

Definition 5.25. Let Q < R? be open and bounded and let z € . The harmonic measure
for ) based at x (or with pole in x) is the unique Radon measure w® on 052 such that

Hp(x) = . F()dw™ (&) for all fe C(090).

The existence and uniqueness of w” is ensured by the Riesz representation theorem, i.e.
Theorem 4.58, and the linearity of the map f + Hy, implied by Theorem 5.24 and Lemma
5.21. Abusing notation we extend w” by 0 to the whole R?, that is w®(R¥\0Q) := 0.
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Remark 5.26. Note that 1 € £1 nUj, so Hi(x) = 1 regardless of any consideration on
the geometry of Q by Lemma 5.19. Therefore

w*(09) = fldwx =Hi(z)=1.

So w” is a probability measure.

Example 5.27. Consider the case of the unit ball B;. We showed in Theorem 3.11
that the Dirichlet problem is solvable in B; and that, for any f € C'(0By), its harmonic
extension equals

ule) = [ PUOSQdo(e)  forze B,
0B
where P*(&) is the Poisson kernel:

1—|z|?
K|z — €|

P(§) =
Since uy = Hy for all f e C(0B1), by the uniqueness of w” it follows that

du* (€) = P*(€) do ().

In the case x = 0, we have
1
du’(€) = — do(€).

KRd

That is, w” is the normalized surface measure on the unit sphere.

In many geometric and qualitative analytic properties of harmonic measure, the choice
of the pole plays no role. This is due to the fact that harmonic measures with different
poles are mutually absolutely continuous in (connected) domains. To prove this fact, we
start by checking the harmonicity with respect to the pole of the harmonic measure of a
given compact set.

Lemma 5.28. Let Q < R be a bounded open set and let w® be the harmonic measure for
0. Let K < 0Q be compact. Then the function u(z) := w*(K) is harmonic in €.

Proof. For each n > 1, let U, be the (1/n)-neighborhood of K, i.e. U, = {z : dist(z, K) <
1/n}. Consider a sequence of functions f, € C(92) such that xx < fn, < xv, ~oq, so that
fn — Xxx pointwise in 0f2.

By dominated convergence theorem, it follows that, for any fixed z € 2,

u() = w(K) = lim | fodo® <w"(U1) < 1.

Since up(z) := { frdw®, with n > 1, is a uniformly bounded sequence of harmonic func-
tions, the limit is also harmonic (see Lemma 2.14). O

70



5 Harmonic measure via Perron’s method

Lemma 5.29. Let Q c R? be a bounded domain and let w*™ be the harmonic measure for
Q. For all x,y € 2, the measures w* and wY are mutually absolutely continuous.

Proof. By the inner regularity of Radon measures, it suffices to show that w”*(K) ~ wY(K)
for any compact set K, with the implicit constant depending only on €2, z, y, but not on
K. This is an immediate consequence of Lemma 2.17, as u(z) := w®(K) is a positive
harmonic function in {2, ]

As a matter of fact, the harmonicity with respect to the pole is also satisfied when the
set is Borel regular. The proof in this case is a bit more technical, since the approximating
open sets given by Borel regularity in Definition 4.4 depend on the particular pole.

Remark 5.30. There may be sets which are not Borel, but which are measurable for
certain w”®, however mesurability for other poles should may not be obvious. Fortunately,
measurability for w” is immediate from absolute continuity and Borel regularity. Indeed,
if A is measurable for w®°, then there exists a Borel set B © A such that w™(A) = w™(B),
that is w0 (B\A) = 0. Given another pole z € Q we get w”(B\A) = 0, which implies that
B\A is measurable also for w”. The w”-measurability of A = B n (B\A)¢ follows from
this fact. Thus we can define w-measurable set without specifying the particular pole.

Lemma 5.31. Let Q < R? be a bounded open set, let w* be the harmonic measure for
Q, and let A < 0 be a w-measurable set. Then the function u(x) := w*(A) is harmonic
in €.

Proof. If A is compact, this has already been shown in Lemma 5.28. If A is open, then
w®(A°) is harmonic and we write u(x) = w*(A4) = 1 —w*(A°). So w is harmonic in .

Let A < Q2 be now an arbitrary w-measurable set A and fix z € ). By the regularity of
w®, there exists a sequence of open sets U,, © A such that w®(U,\A) < 1/n. Moreover, we
can take U,11 < U, by redefining the sequence suitably. Then, letting G = ﬂn>1 U,, we
have w”(G\A) = 0. By the mutual absolute continuity of all the harmonic measures wY,
with y € Q, it follows that w¥(G\A) = 0 for all y € Q. Thus, since A is w-measurable (and
therefore, it is wY-measurable), we get

wWY(G) =w?(G\A) + W (G nA) =wY(A) = u(y)

for all y € Q.
Now it just remains to notice that w¥(G) is a harmonic function, since it equals a
pointwise limit of uniformly bounded harmonic functions, because Lemma 4.3 implies

w’(G) = lim w?(U,).

O]

The next result will be useful in other chapters when studying the properties of harmonic
measure.
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Lemma 5.32. Let €, QO < R be bounded open sets such that Q< Q and 0Q ~ 0  # D

Denote by wq and wg the respective harmonic measures for € and Q. For any T € Q and

any Borel set A < 002 N 8(2, it holds
wé(A) < wh(A).

Proof. To simplify notation we write w = wg and & = wg. By the regularity properties
of harmonic measure, it suffices to prove that @*(A) < w”(A) for any compact subset
A c 09 n Q. Consider an arbitrary function ¢ € C(0€) such that ¢ = 1 on A. To
illustrate the main idea of the proof, suppose first that Dirichlet problem is solvable in
(1 for any continuous boundary data, so that the Perron solution v = H, in € of the
Dirichlet problem with boundary data ¢ extends continuously to 02 and v|sq = ¢. Then,

W (A) < f vdw® =v(x) = f @ dw®.
o0 o0

Then taking the infimum over all the functions ¢ € C(092) as above, we deduce that
WP (A) < w"(A).

In the general case, we need a more careful argument. For ¢ as above and any ¢ > 0,
let u e Z/{;2 (the upper Perron class for ¢ in Q) be such that

j pdw” = u(x) —e.
o0

By the definition of Z/IC;2 , we have

hmlélfu( y) = @) =1 forall e A
y—)

Then, by the compactness of A, there exists J-neighborhood Us(A) such that u(y) > 1—¢
for all y € Us(A) n Q. Consider now a function ¢ € C(0€2) supported on Us(A) N d€2 which
equals 1 on A and is bounded above uniformly by 1. Then we claim that ulg € Ug_ )3
(the upper Perron class for (1 — )@ in ). Indeed, u is superharmonic in  and

Mn%ﬂu() > 0= forall £ e 00\Us(A
y—)

and
1mgmw>pf>uﬁw@ for all ¢ € 0Q n Us(A).
y—)
Therefore,
(1-¢e)@"(A) < JN(l — )P dw” < u(x) < J pdw® + €.
o0 o)

Since ¢ is arbitrarily small, we have &*(A) < {,, ¢ dw”. Taking the infimum over all the
functions ¢ € C'(09) such that ¢ = 1 on A, we derive @*(A4) < w*(A). O
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5.4 Wiener regularity

In this section we continue to assume that < R? is a bounded open set, unless stated
otherwise. In view of Lemma 5.31 it is tempting to refer to the harmonic measure of any
set A < 0f2 as the harmonic function in {2 having boundary values x 4. Unfortunately, x 4
is not a continuous function, and it is not clear what does it mean to have a discontinuous
function as trace, for instance, when A is a dense subset with null harmonic measure.
If the boundary is regular enough, this limit may be understood in the LP sense, for
instance, see Theorem 3.11, but the limit would be defined almost everywhere in some
sense. We could expect, however, that lim, ¢ w®(A) = 1 if dist(&,0Q n A°) > 0, and
lim, e w*(A) = 0 if dist(§, A) > 0. Unfortunately, we cannot grant yet that Hy|oq = f
for continuous functions. We need to describe when this happens, that is, we need to
study regular points.

Definition 5.33. We say that £ € 0Q is a regular point if whenever f e C(0Q), H¢(x) —
f(§)asQax—¢& e

Qaz—E
—

f(Q)dw®(C) f&). (5.6)
o0

We say that 2 is Wiener regular if every point in the boundary is regular.

From the definition above, it follows easily that if a domain €2 is Wiener regular, then
the support of harmonic measure is the whole boundary of €.

A method for proving regularity at a point £ € 0€2 consists in showing the existence of
a barrier function for £, that is, a function v : 2 — R such that

1. v is superharmonic in €.
2. liminf, ¢ v(y) > 0 for all ¢ € 0Q\{&}.
3. lim,¢v(y) = 0.
Notice that, by the minimum principle applied to each component of 2, v > 0 in €.

Theorem 5.34. If £ € Q) has a barrier function, then for any bounded function f on OS2
which is continuous at &, we have

lim H ¢(x) = lim Hy(z) = f(£).

r—E z—E
In particular, € is a regular point.

Proof. Let v be a barrier for £ and let € > 0. Since f is continuous in &, there is § > 0 so
that |¢ — | < d implies [f(¢) — f(§)| < e. Since v is superharmonic, the infimum of v in
Qs := Q\Bs(&) is attained in 0, see Lemma 5.4. That is, there exists some y € 0§25 such
that

infv = liminf v(z).
Qs z—Y
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If y € 09, then liminf, ,, v(2) > 0 by the definition of barrier, and if y € Q n 0B5(£), then
liminf, ,, v(z) = v(y) > 0 too, by the lower semicontinuity of v and the fact that v > 0
in Q. Thus info; v > 0. So we can pick k£ > 0 such that

k lim i?fv(z) > 2sup | f] for every ¢ € 02\ B; (&)

(we can do this because f is bounded).
Now, since f(¢) < f(¢) + & on Bs(€) n 0Q and f(¢) < 2sup |f| + f(&) on 0Q\Bs(€), we
have

f(Q) < kliminfu(z) + f(§) +e for all ¢ € 09.

z—(

Thus, kv + f(§) + € € Uy and therefore H ¢(x) < kv(z) + f(£) + ¢ in Q and so

limsup H (z) < limsupkv(z) + f(&) +e <0+ f(&) +e.

r—E€ r—E€

Letting &€ — 0 we get limsup,_,¢ H ¢(z) < f(£), and arguing analogously we can also prove
that liminf, ¢ H(z) > f(£). The theorem is an immediate consequence of this fact, by
Lemma 5.19. O

The preceding theorem asserts that the existence of a barrier for £ € 0€2 implies that &
is a regular point. The converse result is also true:

Theorem 5.35. Let Q be a bounded open set and let & € 0 be a regular point. Then
there exists a barrier for £. This barrier can be chosen to be harmonic in €.

Proof. Let u(z) = |z — &[*. Obviously, f := ulasq € C(09). We claim that v = Hy is a
barrier for £&. Indeed, this is harmonic in © and lim,_.¢ H¢(y) = f(£) by the regularity of
§. Also, u is subharmonic (because Au > 0) and so u € Ly and then u < Hy = Hy = v in
Q. Therefore, for all { € 0Q\{¢},

liminfv(y) = liminf u(y) = u(¢) > 0.
y—¢ y—¢

O]

As a consequence, the harmonic measure of any open set with pole approaching to a
boundary point interior to this set tends to 1.

Corollary 5.36. Let € be a bounded open set and let & € 0S) be a reqular point. For every
open set U < R? containing &,
lim w*(U) = 1.
Qazx—E€
Also

lim w®(U°) = 0.
Qax—¢€
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Proof. By Urysohn’s lemma, there exists a continuous function f : 02 — R such that
f(&) =1and f|yeron = 0. Then we have

Hy(x) = dewx < JXUdWm =w*(U)
by the monotonicity of integration. Since £ is a regular point we have

1 = limsupw®(U) = liminf w®(U) > lim Hy(x) = f(&) = 1.
Qax—E€ Qar—¢€ Qax—E

The other estimate follows by an analogous reasoning assuming f(§) = 0 and f|ge, , =
1.

Remark 5.37. There is a thickness property described in terms of capacity which char-
acterizes regularity as well, see Chapter 6 for more details.

Remark 5.38. One easy criterion for £ to have a barrier is the existence of an exterior
tangent ball, that is, the existence of B = B,.(y) < Q¢ so that 0Q n 0B = {{}. In this way,
the function w(z) = £Y(§) — £Y(x) is a barrier function at &.

Note that harmonic measure associates a function H¢(x) to each continuous function f
on the boundary, although we don’t necessarily know if it is a “true” extension in the sense
that it is continuous up to the boundary and coincides with f there; all we know is that
it is a harmonic function. If it happens that € is Wiener regular, then { fdw” = Hy(z) is
a harmonic function continuous up to the boundary with boundary values f.

5.5 The Dirichlet problem in unbounded domains with compact
boundary

In order to study the properties of harmonic measure it is convenient to extend the study
of the Dirichlet problem to unbounded open sets with compact boundary and to define
the harmonic measure for this type of domains too. This the objective of this section.

Let Q < R? be an unbounded open set with compact boundary. Solving the Dirichlet
problem in © for a function f € C(09) consists in finding a function u € C?(Q2) n C(Q)
satisfying the following:

Au =0 in ,

= o0
u = f on 02, (5.7)
lulleo,0 < o0,

when d > 3, lim,_,o u(z) = 0.

Proposition 5.39. Let Q < R? be un unbounded open set with compact boundary and let
feC(09). If there exists a solution u € C?(2) N C(Y) satisfying (5.7), then it is unique.
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Proof. Let u,v € C%(Q) n C(Q) be two solutions of (5.7) and let us check that they are
equal. Suppose first that d = 3. For r > 0, denote 2, = Q n B,(0). Let r be large enough
so that 0Q < B,(0). For 0 < ry < r, by the maximum principle, taking into account that
u = v on 0f),

lu = v]oo,0,, < u—v]w0, = u—1vlwo, =v—"20]ws.©0 < [wlws.©0 + [V]o,s,©-

By the last condition in (5.7), |u[w,s, ) + [|V]c,s,(0) = 0 as 7 — o0, and so u = v in Qy,
with 7o arbitrarily large.

Next we consider the case d = 2. Without loss of generality, we assume that 02 c
B1/4(0). Let § € 09, and for a given § > 0, consider the function

ha(a) = u(z) — v(z) — & log|a — €.
By the continuity of u and v at &, for any £ > 0 there exists some p € (0,1/4) such that
lu(xz) —v(z)] <e for all x € Q such that |z — &| < p.

For r » p, consider the domain Q,, = Q n B,(£)\B,(£). We assume r large enough so
that 0Q2 < B,(&). Notice that

0Qpr < 0U (2N S,(E)) U S,(E).

Notice that |u —v| < ¢ and |log |- —¢][| < [log p| in (OQ\B,(£)) U (2 1 S,(€)) = By2(0).
Thus,
|hs| < e+ dllogp| in (FNB,(E)) v (€ Sp(€))-

On the other hand, for x € S,(¢), log|x — &| = logr. So for a given § > 0, if r is large
enough taking into account also that u and v are bounded, we have

hs <0 in S,(&).
From the last estimates and the maximum principle, we deduce that
hs <e+dllogp| inQ,,,
Letting 7 — 00, we get infer that the same estimate is valid in Q\B,(¢). That is,
u(z) —v(z) — 6 log|r — & < e+ d|logp(e)| for all € Q,,

where we wrote p(¢) to emphasize the dependence of p on €. Since this inequality holds
for all 6 > 0, we derive that u < v + ¢ in Q,). Finally, letting ¢ — 0 and p(¢) — 0, it
follows that v < v in . Interchanging the roles of u and v in the arguments above, we
deduce v < u in 2, and so we are done. ]

Definition 5.40. Let ) be an unbounded open set with bounded boundary. We say that
Q is Wiener regular if for > 0 such that 02 c B,(0), the set Q, := Q n B,.(0) is Wiener
regular. Also, we say that & € €2 is a regular point for € if it is regular for €2,.
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Let us check that the definition does not depend on the precise » > 0 such that 02 ¢
B, (0). Notice first that 09, = 092 U dB,;(0). By the exterior tangent ball criterion in
Remark 5.38 it follows all the points £ € 0B,(0) are Wiener regular (for the open set €,.).
To deal with the points from 02, let 0 < r; < 7 be such that 0Q2 < By, (0). If vy is barrier
for € € 002 in Q,,, then it is also a barrier in 2, , and so the Wiener regularity of £ in .,
implies the Wiener regularity in €2,,. Conversely, let v; be a harmonic barrier for £ in 2,
(see Theorem 5.35) and consider rg < 71 such that we still have 02 < B, (0). Then

My 1= aBg(lﬁO) vi(z) >0
because of the superharmonicity of v1, the other properties in the definition of a barrier,
and the minimum principle. Then we define

min(vi(z),my,) in QN By (0),
U2(1‘) = { Mg ! in Rd\Bm(O),

which is superharmonic in ,, by Lemma 5.7 and moreover it is a barrier for this set at
€. Thus the Wiener regularity of £ in €2, implies the Wiener regularity in €2,,.

Remark 5.41. Note that, arguing as above, we also see that £ is regular for an unbounded
set R? with compact boundary if and only if there exists a barrier at &.

We will show below that if Q < R? is an unbounded open set with compact boundary
which is Wiener regular, then the Dirichlet problem in (5.7) is solvable for all f € C(0f2).
The main step is contained in the following theorem.

Theorem 5.42. Let Q < R? be an unbounded open set with compact boundary and let
feC(0Q). Forr >0 such that 0 < B,(0), denote Qr = Q1 B,(0) and let H} be the
Perron solution of the Dirichlet problem in Q.. with boundary data equal to f in 02 and
equal to 0 in S-(0). Then the following holds:

(a) The functions H converge uniformly in bounded subsets of ) to a function harmonic
and bounded in Q as r — . Further, Hy(z) < Hf(x) if0<r <R andx €.

(b) In the case d = 3, the limiting function Hy satisfies limg, o0 H¢(z) = 0.
(c¢) If £ € 02 is a reqular point, then limgsy ¢ Hy(x) = f(£).

Remark that (a) asserts that the convergence of the functions H} to Hy is uniform in
Qn B, (0) for any m > 0. This a stronger statement than just asking for the local uniform
convergence in compact subsets of 2.

By the theorem above, it is clear that if O < R? is a Wiener regular unbounded open set
with compact boundary, then H; is the solution of the Dirichlet problem stated in (5.7).

Proof of Theorem 5.42. We claim that it suffices to prove the theorem for f > 0. Indeed,
for an arbitrary function f € C(0Q), we can write f = f* — f~, so that the functions f*
are non-negative and continuous. Then we have

H} = Hj, — H},
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and it is enough to prove the statements (a), (b), (c) for f*.
(a) Let ro > 0 be such that 0Q2 = B, 5(0). The fact that 0 < f < supyq, f, ensures that

0< Hj<supf inQy, forall r=>ro. (5.8)
o

Next we will show that, for rg < r < R,
Hf <Hf inQ,. (5.9)

This is an easy consequence of the maximum principle. Indeed, for s > ry denote by
E;} and L{; the respective lower and upper Perron classes in ), for the function fs which
equals f on JQ and vanishes in S5(0). Given u € L%, let @ : Q2g — R be defined by

max(u,0) in Q,,

=
l

0 in Br(0)\B,(0).
By Lemma 5.7, @ is subharmonic in Qz and so that @ € E}%. So for all x € ). we have

Taking the supremum over all u € L, we deduce H}(x) < Hf(x), so that (5.9) holds.

From the monotonicity of the family of functions {H}},~o ensured by (5.9) and the
bound in (5.8), we infer that the limit lim, ., H} () exists for all z €  and that the
limit function H; is bounded. Since the functions H}, for r > 0, are harmonic in €2, and
uniformly bounded, it follows that the preceding limit is uniform on compact subsets of
Q.

Next we will show that for any 71 > ro, the functions H} converge uniformly on €.
Observe first that they converge uniformly in S, (0) since this is a compact subset of €.
So given € > 0, there exists ro > r1 such that

|Hf — Hfllow,s,, (0) <€ forall s> ro.
For R > r > ro, consider now two arbitrary functions u, € L{]’Z and ur € LJ@, Notice that

limsupug(z) < f(§) < liminfu,(x) on 0.
Qaz—E Qaz—¢

Since |H} — 1‘]}?||0075T1 (0) < €, we also have
uR<Hf<H}+5<ur+6 in S, (0).
Using that urp — u, is subharmonic in €2,, and the maximum principle, it follows that

UR < U +¢€  in .

78



5 Harmonic measure via Perron’s method

Taking the supremum over all up € E? and the infimum over all u, € U} and using that
continuous functions are resolutive, we deduce that

Hf <Hj+e inQ,,.
Together with (5.9), this implies |H} — Hf“oo@” < e. Letting R — o0, it follows that
|H} — Hyfllo,,, <& forallr>ry,

which proves (a).

(b) Suppose d = 3. Let M > 0 be large enough so that
f&) < MEE) forall £ €09

By the maximum principle, using that &€ is superharmonic in R%, we easily infer that
u< MEin Q, for all u € E;, for r > rg. This implies that HJC < M€ in Q.. Letting
r — 00, it follows that Hy < M £ in (2, and so

limsup Hy(x) < limsup &(z) = 0.

Tr—00 Tr—0
Since Hy is non-negative, this implies that Hy vanishes at infinity.

(¢) For all r > ro, since § € 0 is regular point for €, then limos,—¢ Hy(z) = f(£).
Together with the uniform convergence of H} to Hy in Q,, for any given r; > rg, this
easily yields limgs, ¢ Hy(x) = f(&). O

Under the assumptions and notation of Theorem 5.42, it is immediate to check that, for
any z € 2, the functional C'(0€2) 3 f — Hy(z) is linear and bounded. Indeed, the linearity
is due to the linearity of C(d€2) 5 f — Hj(z) and the boundedness follows from the fact
that infaq f < H} < supgq f for all » = rg, which yields

| Hflloo,0 < | f]loo,00 (5.10)

letting r — oo.

Definition 5.43. Let Q < R be an unbounded open set with compact boundary and let
x € ). The harmonic measure for €2 with pole at = is the unique Radon measure w® on
0§2 such that

Hy(x) = JQ FO)dw®(€)  for all feC(09),

where is Hy defined as in Theorem 5.42. The existence and uniqueness of w® is ensured
by the Riesz representation theorem, i.e. Theorem 4.58. Abusing notation we extend w®
by 0 to the whole R?, that is w®(R%\09) := 0.
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Remark 5.44. By the definition, for any unbounded open set with compact boundary
Q c R4, for any f e C(05), and any x € Q, we have

Qf(&)dwx(é) = lim | f(&)dwg, (§)-

7—00 o0

By Theorem 5.42, the convergence is uniform in bounded subsets of (2.

Lemma 5.45. Let Q < R? be an unbounded open set with compact boundary, let z € Q
be the pole of w := wg. Let Q. = Q0 B, and for r > |z| let w, := wg . For any Borel set
A < Q) we have

wr(A) / w(A) as r — oo.

Proof. Let us assume that A = U is a bounded open set in d€2 and let us consider only
values of r such that U cc B,. The preceding remark states that w, — w, and by
Theorem 4.63 we only need to check that w(U) = limsupw,(U). By the inner regularity
of Radon measures we have

= sup ffdw = sup Hy(z),

f<xu I<xu

where the supremum is taken over all functions f € C(092) supported in U. By Theorem
5.42, for every r large enough we have

w(U) = sup Hj(z) = sup ffdwr =w,(U).
I<xv f<xv

For general bounded Borel sets, note that w,(A) is an increasing sequence by Lemma
5.32, so let s := lim, o, w,(A). We need to check that s = w(A).

We claim that s < w(A). Indeed, by the definition of s, for every ¢ > 0 there exists
7 = re so that s —e < w,(A). By outer regularity, there exists a bounded open set U, > A
so that w(U;) < w(A) +¢. Thus,

5.32
s<wr(A)+e<w(Us) +e < w(lU:)+e<w(A)+2e.

Since ¢ is arbitrarily small, the claim follows.

To prove that s > w(A), we apply the preceding estimate to d2\A and we take into
account that lim, . w,(0Q) = w(N), because 0L is relatively in open in 0Q . Then we
get

s = lim w,(A) = lim w,(09Q) — hm wr(aﬂ\A) w(09) — w(INA) = w(A4),

r—00 r—00

and thus s = w(A), as wished. O

'In general, for unbounded open sets 2, the harmonic measure w for € is not a probability measure, that
is, w(02) # 1. See Proposition 5.48 below.
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Remark 5.46. By lemmas 5.45, 5.31 and 2.14 we obtain that u(z) = w*(A) is harmonic
in © in the setting of the previous results, and Lemma 2.17 implies the mutual absolute
continuity of w® and wY for z and y in the unbounded component of €.

We can also recover the monotonicity of harmonic measure when the domain increases
in Lemma 5.32 for unbounded open sets.

Lemmg 5.47. Let Q, O c RY be open sets with compact boundary such that O CNQ and
Q2 N 02 # @. Denote by wq and wg the respective harmonic measures for @ and . For

any x € Q and any Borel set A < 02 n 0(), it holds

wE(A) < wh(A).

Proof. The only relevant case here is when both domains are unbounded and z belongs
to the unbounded component of €2. Then, following the notation of the previous results,

we get
5.32
wy(A) "E limwg (4) < limwg, (4) Z wo(A).

Observe that, by (5.10) it follows that
0<w(0Q) <1 forallze. (5.11)
The following proposition provides additional information.

Proposition 5.48. Let Q < R? be a Wiener regular unbounded open set with compact
boundary and let x € Q. In the case d = 2, w*(0N2) = 1, that is, w* is a probability measure.
In the case d = 3, if x belongs to the unbounded component of S0, then 0 < w*(092) < 1.

In particular, the proposition implies that the statement (b) in Theorem 5.42 may fail
in the case d = 2. Without the Wiener regular assumption on €, further information will
be obtained later in Proposition 6.36.

Proof. Since () is Wiener regular, in the case d = 2 the function identically 1 in € solves
the Dirichlet problem (5.7) for f = 1 in 0€2. By the uniqueness of the solution, Hy = 1
identically in © and thus w®(0€2) = 1.

In the case d > 3, again we have w”(0€2) = H;(z) by Theorem 5.42. On the other hand,
the statement (b) in the same theorem asserts that Hi(x) — 0 as © — o0. So Hj is a
non constant non negative harmonic function in the unbounded component of €2 which is
bounded above by 1, by (5.10). By the strong maximum principle (applied to 2 n B,(0)
and 7 large enough) it follows that 0 < w®(02) = Hy(z) < 1. O

Example 5.49. Let Q = R%\B;(0) for d > 3. The solution of the Dirichlet problem for
f=11in 09 is the function u(z) = |z|*>~%. Thus,

1

w(0) = iz for all x € Q.
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Corollary 5.36 also has a counterpart in unbounded open sets with compact boundary.

Corollary 5.50. Let Q) be an open set with compact boundary and let £ € 092 be a regular
point. For every open set U < R? containing &,
lim w*(U) =1.
Qazx—E
Also
lim w®(U°) = 0.
Qax—E

Proof. We have already seen that w®(U) < 1 so we need to show

lim w*(U) > 1.

z—E
To prove this, we can assume that U is bounded by intersecting with a bounded ball
containing 0€2. Choose any radius r big enough. Using Corollary 5.36, we can pick ¢ so
that
wi(U)=1—¢ for every x € Bs(§) n Q.

T

Then
WU)zwi(U)=1—¢ for every x € Bs(§) n Q,

r

showing the first statement.
On the other hand, note that the first statement implies that

lim w®(0Q2) = 1.
Qax—E

Thus,

0 < w®(T°) = w*(3Q) — W™ (U) < w™(0Q) — w”(U) 222251 -1 =0,
establishing the second claim. O
Next we wish to show that, in the case d = 2, we can easily define the notion of harmonic

measure with pole at co. First we need the following auxiliary result, which has its own
interest.

Proposition 5.51. Let Q < R? be an open set and let xg € Q. Let u : Q\{zo} — R
be a harmonic function such that u(x) = o(E(x — xzp)) as * — xo. Then u extends as a
harmonic function to the whole §2.

Of course, the proposition applies to the particular case where u is bounded and har-
monic in Q\{zo}. See also Theorem 6.35 for a related result.

Proof. Let B,(xg) be a closed ball contained in €, with » < 1, and let v be the solution
of the Dirichlet problem in B,(zo) with boundary data ulg, (). For any ¢ > 0, consider
the function

he(z) = u(z) —v(z) —e&(x —xp), for x € By(xo)\{zo}.
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This is harmonic in By (z9)\{zo} and lim,_,,;, he(z) = —oo. By the maximum princi-
ple applied to any annulus A ,(xo) with s sufficiently small, we deduce that h. < 0 in
By (z0)\{zo}. Since this holds for any ¢ > 0, we get u < v in B,(z9)\{zo}. Reversing the
roles of u and v, we obtain the opposite inequality. Thus u = v in B,(z9)\{zo} and so the
proposition follows just letting u = v in the whole B, (xg). O

Corollary 5.52. For some r > 0, let u : C\B,(0) — R be a harmonic and bounded
function. Then lim,_,o u(z) exists and the function defined by v(z) := u(1/z) can be
extended to a harmonic function in By ,.(0).

Proof. The function v(z) := u(1/z) is harmonic and bounded in By ,.(0)\{0}. So it extends
to a harmonic function in By /T(O) by the preceding proposition. Thus,

zlggo u(z) = ll_r)% v(2)

exists. O

Now we can define harmonic measure with pole at oo for an unbounded open set with
compact boundary in the plane as in Definition 5.43, just putting x = oo there:

Definition 5.53. Let QO — R? be an unbounded open set with compact boundary. The
harmonic measure for 2 with pole at oo is the unique Radon measure w® on 052 such that

lim Hy(x) =

f(§)dw™ (&)  forall fe C(09),
T o0

where Hy is defined as in Theorem 5.42. The existence and uniqueness of w* is ensured
by the Riesz representation theorem.

Obviously, for any function f € C(09) (and € as in the definition),

F©dw™(€) = Tim | F(©)dw(S).
l9) 220 Joo

Observe that for any z belonging to the unbounded component of {2, the measures w?
and w® are mutually absolutely continuous. Indeed, for any Borel set E < 012, it follows
easily from the strong maximum principle applied to the function v(z) = w'/?(E) in a
neighborhood of the origin that v(0) = 0 if and only if v vanishes identically, see Exercise
5.5.1.

In the case d > 3, one can also the define the notion of harmonic measure with pole at
o0 for unbounded open set with compact boundary in R¢, at least under the assumption
of Wiener regularity, following a different approach. We postpone this task to Chapter 7.

Exercise 5.5.1. Given an unbounded domain 2 < C with compact boundary, show that
for every Borel set £ < 0f2, we have

lim w?(F) = w®(E).

zZ—00
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Exercise 5.5.2. Let Q < R be open with compact boundary and suppose that € is not
connected. Let U be a connected component of €2 and let € U. Show that

suppwg < 0U.

5.6 A Markov type property of harmonic measure

In this section we will show the following result.

Theorem 5.54. Let Q,KNZ c R? be open sets with compact boundary such that Qc Q.
Suppose also that Q0 is Wiener reqular and that the points from 02 n 02 are regular for
Q2. Denote by wq and wg the respective harmonic measures for ) and §). Then, for every

z€Q and every Borel set A c 082, it holds

wH(A4) = w§(A) + j wé (A) dwg () (5.12)

oN\0Q

This result can be deduced from the connection between harmonic measure and Brow-
nian motion, using the strong Markov property of Brownian motion. However, below we
provide an analytic proof.

Proof. To shorten notation, we write w = wq and & = wg. Suppose first that A is compact.
For any € > 0, let f. : 02 — R be a continuous function which equals 1 on A and vanishes
away from an e-neighborhood of A. Denote

ue(z) = . fedw?®, ve(x) = Lﬁ Ue dw”.

In the above definition of ve we identify ue|,o. - = fels5.00- n this way, from the

regularity of the points from 02 n o€ for Q, it follows that Ue| 5 is a continuous function.
We claim now that N
ue(x) = ve(x) for all z € Q. (5.13)

Indeed, by the Wiener regularity of Q and the regularity of the points from 02 n oS) for
Q, we have N

limf ue(z) = limg ve(z) for all £ € 00
and, when ) is unbounded and n > 2, by the definition of u. and v,,

Jig (o) =l 0(2) 0.

Then, by the maximum principle, our claim follows.
From the identity (5.13), for = € 2, we deduce

ue(x) = ve(x) = J Ue dw® + J Ue dW” = f Ue dw” + J fedw®. (5.14)
o0\0Q 00N 0Q oN\0Q 202n0Q
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By dominated convergence, for every y € Q, u.(y) — wY(A) as ¢ — 0. So the left
hand side of (5.14) converges to w”(A) and the first integral on the right hand side to
Saﬁ\aQ wY(A) dw*(y). Again by dominated convergence, the last integral on the right hand
side tends to @*(A). Thus the identity (5.12) holds when A is compact.

Suppose now that A is an arbitrary Borel set. By the inner regularity of Radon measures,
there is a sequence of compact sets Ey c A, with Ey € Ej.1, such that w®(Fg) — w®(A)
and W"(Ey) — &%(A) as k — o0. Let U and U be the respective connected components

of € and ) that contain z, so that U c U and supp w® < oU U (see Exercise 5.5.2).
Then, for every k we have

W (Ey) = 5 (Ey) + f

 WI(B) A (y) = 3 (By) + j (B A (y).  (5.15)
o0NU\

oQnU

Since wy(y) := w¥(A\E%) is a positive harmonic function in U, by connectedness we have
(see Lemma 2.17):

wi(y) Xay wp(r) -0 ask — oo, forallyeU.

Equivalently, w¥(Ey) — wY(A) for all y € U. Therefore, passing to the limit in (5.15) and
using dominated convergence, we obtain

W (A) = B7(A) + J WA AT (y) = B7(A) + J WY (A) diF (y).
oAU a\0
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6 Potential theory

6.1 Potentials

Recall that the fundamental solution of the minus Laplacian in R¢ equals

|x‘2—d ]
L ifd >3,
(d— 2)/<;d '
E(x) =
“loglrl ey o
2

For a Radon measure x in R?, we consider the potential U . defined by

Uula) = €.+ (o) = [ (o = ) du(w). (61)
and the energy integral
I(p) = HS(SU — y)du(y)du(z). (6.2)

For d = 3, U, is called the Newtonian potential of y, and for d = 2, the logarithmic or
Wiener potential of p.

Lemma 6.1 (Semicontinuity properties). For non-negative Radon measures p,, — p with
compact support we have:

(a) liminf, ., U,(y) = U,(z) for all z € R%. So the potential U, is lower semicontinuous
in RY.

(b) liminf, o Uy, (z) = Uy(z) for all x € RY.
(c) liminf, o I(pyn) = I(p).
(d) The potential U, is superharmonic.

The proof of this lemma is an easy exercise that we leave for the reader. The superhar-
monicity of U, is a consequence of the lower semicontinuity of U,,, the superharmonicity
of £, and Lemma 5.10 (a). For more details, alternatively, the reader may have a look at
[Lan72] or [Ran95].

Theorem 6.2 (Continuity principle for potentials). Given a compactly supported Radon
measure yi in RY, if U, € C(suppp), then U, € C(RY).
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Proof. In the case d = 2, by a suitable contraction we can assume that diam(suppp) < 1/2,
so that E(x —y) > 0 for all x,y € supppu.

Since U, is continuous in R%\suppp we only have to check the continuity in suppp. Let
¢ : R? — R be a radial continuous function such that XRA\B,(0) S P S XRAB, 55(0) and, for
each § > 0, let

fa(fv)=f|z L) 0 = &= e("5Y) dut).

Since {fs} is a monotone family of continuous functions and Uplsuppp is continuous, the
convergence of ﬁ; to U, is uniform in suppy, by Dini’s theorem. In turn, since ]?5 < fs <
Uy, this implies the uniform convergence of f5 to U, in supppu. Equivalently, U, B5() ulz) —
0 uniformly on x € suppu as § — 0.

To prove the continuity of U, at a given x € supp(u), fix € > 0, and take 6 € (0,1/4)
such that Uy, . u(z) < € for all z € suppu and such that p(Bs(x)) < € (that the latter
condition holds for § small enough is due to the fact that x4 has no point masses, because
Uu(2) < oo for all z € suppu). For y € Bs/y(x), we write

U, () — Uw)] < j G LIOR j £y — =) du(2)

z—z|<d/2

+

f (E@—2)— E(y - 2)) du(2).
|x—2z|=0/2

The first integral on the right hand side is bounded above by €. The third one tends to
0 as y — x, because for a fixed 6 > 0, the function g(y) = S|$_Z|>5/2 E(y — z)du(z) is
continuous in Bj4(x). To estimate the second integral on the right hand side, let y’ be the
closest point to y from suppyu. Notice that [y —y| < |z —y| < d/4, and thus y' € By/o(x).
It is immediate to check that then

|z —y| < |z —y| forall 2 € supppu.

Thus, in the case d = 3, E(y — 2) < E(y — 2), and so, using that y' € suppy,
| ewenae s | e -ndue) s | e - 2dul) <
|z—2]|<d/2 Bsa(x) Bs(y')

In the case d = 2, we have |y —z| > |y — 2| for z € Bj,_,(y') and so E(y—2) < E(y' —2)
for such z. On the other hand, for z € suppu\B‘y_y/‘(y’), we have |y — z| ~ |y — 2| and
thus

ly' — 2|
— ) =EW - L <EW - .
Ely—2) =& —2)+ 5 log T <EW -2)+C

Therefore,

[ o< [ = dnte) ¢ CnBate)
|x—2z|<d/2 Bsja(z

f E( — 2) du(z) + C u(By(a) < e.
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So for any dimension, we have

limsup |U,(z) — U,(y)| < € + limsup ‘ J (E(x—2)—E@y—2)) du(z)| ~ e.
|x—2z|=0/2

Yy—x Yy—x

Since ¢ is arbitrary, we have that U,(y) — Uu(x) as y — . O

Theorem 6.3 (Maximum principle for potentials). Given a compactly supported Radon
measure p in R, if U,(z) < 1 p-a.e., then Uy(z) < 1 everywhere in R,

Proof. Again, by contracting suitably suppu, we can assume that diam(suppp) < 1/2 in
the case d = 2, see Exercise 6.1.2.

Let E = suppu. By the semicontinuity property in Theorem 6.1(a), it holds that
U.(z) < 1for all z € E. Thus, it suffices to show U, (z) < 1 for all z € RN\E.

For any 7 > 0, by Egorov’s theorem, there is a compact subset ' = F; < E such that
p(E\F) < 7 and so that Uy, (%) converges uniformly to 0 in I as e — 0. We claim
that U, is continuous in R?. Indeed, by the preceding theorem, if suffices to show that
Uypu € C(F). To prove this, for any ¢ € (0,1/2) and z,2’ € F such that |z — 2/| < &9, we
write

Sw—yﬂMﬂw+J E(z" —y)dulr(y)

|z—y|<e

V(o) = U@ < |

lz—y|<e

'5Lﬂbjax—w—euﬂ—wMMNw

The first integral on the right hand side tends to 0 as € — 0 (uniformly on x € F'), and
the same happens with the second one, taking into account that {y : |z —y| < e} < {y:
|2’ — y| < 2e}. For the last one, in the case d > 3, for y,z,2’ € F such that |z —y| > ¢
and |z — 2’| < ¢ (in particular |z — 2| < £/2), we have
c c |z — 2|

— < e.
ey T2 =y ey

E(x—y) —E@" —y)| =

In the case d = 2, observe that

<e, fory,x, 2’ such that |z —y| > ¢ and |z — 2'| < &2,

CE N
|z =yl |z -yl
and thus, for some constant C' > 0,

' —y
]
%8z —y]

|E(x—y) —E(@" —y)| ~ <e.

Then, for any dimension d,

j' e E(@ —y) — E(@" —y)|du|p(y) < eu(F).
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Therefore,
lim  sup [Uypu(®) = Uypu(a)] = 0,
e—0 z,2'€F:|z—1'|<e?

and thus the claim holds.

Notice that Uy, ,(z) < Uy,(z) < 1for all x € F'. Further, in the case d > 3, Uy ,(z) — 0
when « — o0, while in the case d = 2 we get Uy, ,(x) — —o0. Since U, is harmonic in
R F and continuous in R?, by the maximum principle (applied to Qr = Br(0)\F and
letting R — o0), we deduce that Uy,.,(7) < 1 for all z € R\E < R\ F. Now we just have
to write

Un(@) = Uypu(@) + Uy (@) < 1+ Uy (@),

and note that Uy, ,.(z) — 0 for any x € RAE, as 7 — 0 (recall that u(E\F) < 7). O

E\FH

Exercise 6.1.1. Given a compactly supported Radon measure p, show that U, is pu-
measurable.

Exercise 6.1.2. Given a compactly supported Radon measure p in C such that U, (z) <1
for p-a.e. x € C, find ¢ and A such that supp cT) xp < %]D) and Uery 4 < 1.

6.2 Capacity

Definition 6.4. Given a bounded set E c R%, we define its capacity Cap(F) by

Cap(F) = !

v 6.3
inf e ns, gy (1) (6:3)

where the infimum is taken over the collection M;(FE) of all probability Radon measures p
supported on E. When d > 3, Cap(FE) is also called the Newtonian capacity of E, and for
d = 2, the Wiener capacity of E.

In the case d = 2, quite often we will write Capy, (F) instead of Cap(E). Remark
that Capy,(E) may be negative, and we allow this to be infinite too. However, since
E is assumed to be bounded, we have inf,cys, () I(1) > —00, so having zero capacity is
equivalent to having I(u) = +o0 for every p € M1(E). On the other hand, if diam(FE) < 1,
then £(x—y) = (27) "' log m > 0 for all z,y € F, and it follows that inf,c s, (g) [ (1) >

0, and so 0 < Capy, (E) < o0.!
Definition 6.5. Given a set E — R?, we define its logarithmic capacity by

. 27
Cap; (E) = e 2minfuenr (2) (1) — o~ Capy (B)

'We will see below that this also holds if E is contained in Bi(0).
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It is immediate to check that if E < F, then Cap(F) < Cap(F') for d > 3 and Cap; (E) <
Capy (F) for d = 2.2 Another trivial property is that the capacities Cap, Capyy, and Capj,
are invariant by translations. Further, the Newtonian capacity is homogeneous of degree
d — 2 when d > 3. That is, for a given A > 0 and E < R?, we have

Cap(AE) = X%72 Cap(E).

This follows easily from the fact that the fundamental solution £ is homogeneous of degree
2 —din R? d > 3. In the case d = 2, £ is not homogeneous, and the behavior of Capy,
under dilations is more complicated. To study this, denote T)(z) = Az, so that if p is a
probability measure supported on F, then the image measure Th4u (see Definition 4.59)
is another probability measure supported on AE. Then, by Theorem 4.61 we have

1 1
I(Thyp) = o Jf log T—g dTy () dDagp(y)
1 1 1
=— |llog —— =1(u)— —1 .
5 H %8 T — ] du(w) dp(y) = 1(n) — 5 log A

Taking the infimum, we derive

1
inf I(p)= inf I(u)— —1logA,

neM1(\E) peMi (E) 27
So we get
1
Capy (A\E) = T )
—— — Llog\
Capy (E) *7

In particular, notice that for A big enough we have Capy, (AE) < 0 2. On the contrary, in
the case d > 3, Newtonian capacity is always non-negative. The rather strange behavior
of the Wiener capacity under dilations and other related technical issues is one of the
motivations for the introduction of logarithmic capacity. Clearly, Cap; (E) = 0 for any
compact set E, and moreover for any A > 0,

27
Cap,(\E) = ¢ Conw® 78X _ )\ Cap, (E). (6.4)

So the logarithmic capacity is homogeneous of degree 1.

Remark 6.6. Note that given a bounded set E, the potential of the Lebesgue measure
restricted to F is bounded. In particular, if F has positive Lebesgue measure then its
capacity is not zero.

Given a compactly supported Radon measure u, one can also check that if U, is a
bounded potential, then p(Z) = 0 for every set Z of capacity zero.

?In the case d = 2, the inequality Capyy, (E) < Capy, (F) fails if Capy, (F) < 0, and it holds if Capyy, (F) >
0, and in particular if diam(F) < 1.

3 Also, formally, Capyy, (AE) = oo in case that = % log A.

1
Capy, (E)
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Lemma 6.7 (Outer regularity of capacity). Let E = R? be a compact set and let {V;,}n>1
be a decreasing sequence (i.e., Vi, D Vpi1) of bounded open sets such that and E = (), Vy.
Then

lim Cap(V,,) = Cap(F) ford =3

n—o0

and
linolo Capy (V,,) = Cap(E) ford=2.

Proof. This is a straightforward consequence of the semicontinuity property of the energies
I(uy) in Lemma 6.1 and Theorems 4.62 and 4.63. We leave the details for the reader. [

Exercise 6.2.1. Show Remark 6.6 and Lemma 6.7.

Exercise 6.2.2. Let U < R? be an open bounded set {V,,},>1 be an increasing sequence
(i.e., Vi, © V1) of bounded open sets such that and U = | J,, Vi,. Then

lim Cap(V;,) = Cap(U) ford=>3

n—ao0

and
lim Capy(V,) = Capy(U) ford = 2.

n—o0

6.3 The equilibrium measure

We say that a property holds g.e. (quasi everywhere) if it holds except on a set of capacity
Zero.

Theorem 6.8 (Existence of equilibrium measure). Let E < R? be a compact set with
Cap(E) > 0. There exists a Radon probability measure p supported on E such that

1
Cap(F) = —.
)= T
Further, any such measure satisfies U,(x) = (Cap E)™! gq.e. x € E and U, (z) < (Cap E)™!
forallxe E.

Proof. Remark first that, for the case d = 2, by contracting E suitably, we can assume
that diam(F) < 1/2, so that £(x —y) > 0 for all z,y € E.
Let
v :=inf{I(u) : suppp < E and pu(E) = 1}. (6.5)

By the lower semicontinuity of I, see Lemma 6.1 ¢), there exists a measure p realizing this
infimum. Since all the measures in the infimum are supported in the compact set E, so is
the minimizer u, which is also a probability measure, see Theorems 4.62 and 4.63.
Next we claim that
Uu(xz) = v qe. z€FE. (6.6)

We prove this claim by contradiction. Let

T.:={reE:Uix) <vy—c¢}
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and assume that Cap(7;) > 0. Then there exists a probability measure 7 supported on
T. with I(r) < o0. By Chebyshev and restricting 7 if necessary, we may assume that
U-(x) < K < o for a suitable K > 0. For 6 € (0,1), let

K = (1 - 5>M + 4,

which is also a probability measure. Note that
Is) = [[ €62 =) (1= )auty) + 8dr(w)) (1 = §) du(e) + Sar(a)
— (1— 6)2() + 25(1 - 5) Hg(x — ) dudr + 81(7)
=y — 207 + 25](],@7 +0(6%) <y =207 +26(y — ) + 0(6%) <~

for § small enough. This contradicts the fact that ;4 minimizes (6.5). Therefore, Cap(T;) =
0 for every € > 0, that is, the claim (6.6) holds, see Exercise 6.2.2.
We also claim that
Uu(x) <~y for every z € E. (6.7)

Let v := p|r,. Then U,(x) < Uy(x) < v — € for x € T. By the maximum principle U,
is bounded and therefore v(7;) = 0 (see Remark 6.6), i.e., u(7:) = 0. Since T, / Tp, by
Lemma 4.3 we get that pu(7p) = 0. We have that

7=I(u)=f Uudﬂ‘*‘j
{Uu>~} {Uu=n}
The third integral is zero and therefore, since p is a probability measure, we infer that
the first integral must be zero as well, so u({U, > v}) = 0 and therefore (6.7) holds p-
almost everywhere. The lower semicontinuity property of U, (see Lemma 6.1 a)) implies
that (6.7) holds everywhere in the support of p and by the maximum principle it holds
everywhere. O

U, dp + J U, dys.
{Un<v}

We will show soon that, for a compact set E with positive capacity, the probability
measure p supported on E such that Cap(E) = ﬁ is unique. This probability measure
i is called the equilibrium measure of E, and its potential Uy, the equilibrium potential

of F.

Corollary 6.9. Let E be compact with Cap(E) > 0 and let pn be an equilibrium measure
of E. Let v be another Radon measure and let A = {x e E :U,(x) < oo}. Then U, equals
(Cap E)~! v-a.e. in A.

Proof. In the case d = 2, we assume that E' c By;(0). For k > 1, let Ay = {r € E :
U,(x) < k and Uy (x) < (Cap(E))™1}. If v(Ay) > 0, then the (non-zero) measure 7 = |4,
satisfies

Ur(x) <Uy(x) <k forall z e Ag.

So we deduce that I(7) < +oo and so Cap(Ax) > 0. This contradicts the fact that
Uu(z) = (Cap(E))~! q.e. in E. O
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Before proving the uniqueness of the equilibrium measure, we need to prove the following
positivity result for the energy of signed measures. Remark that for a signed measure, its
potential and its energy are defined in the same way as in (6.1) and (6.2), as soon as the
corresponding integrals make sense.

Theorem 6.10. Let v be a compactly supported Radon signed measure in R® such that
I(|v]) < o0. Assume also that v(R?) = 0 in the case d = 2. Then

I(v) = 0.
Further, I1(v) > 0 unless v = 0.

The fact that I(v) is always non-negative (under the assumptions above) is quite re-
markable. Observe that in the case d = 2 the assumption that v(R?) = 0 cannot be
eliminated. Indeed, if £ is a compact set with Capy (E) > 1, then its equilibrium measure
w satisfies I(p) < 0.

Proof. Assume first that, besides satisfying the assumptions in the theorem, v is of the
form v = gm, where m is the Lebesgue measure in R? and g € C°(R?). Then € # g is a
C?® function and we have

g=—A(Exg).

In the case d = 3, since 0 < £(x) < |z]?>~%, we have

1
1€ g(x)] <4 W and |VE=#g(x)| < (6.8)

? a7

as x — o. Then, by integrating by parts, it easily follows that

I(gm) = J(S xg)gdm = —J(S % g) A(E = g) dm o8 JIV(E % g)|? dm (6.9)

(notice that all the integrals above make sense because of (6.8). In the case d = 2, since
v(R%) = 0, it is immediate to check that we have the improved decay

€00 g T ond [VE+9(e)] 5 o (6.10)
as ¢ — 00. Then we can integrate by parts again to deduce that (6.9) also holds. In any
case, in particular, the identity (6.9) shows that I(gm) = 0.

Consider now an arbitrary signed measure satisfying the assumptions of the theorem.
Consider a radial non-increasing C* bump function ¢ such that 0 < ¢ < xp,() with
§o =1 and, for e > 0, set p.(z) = E%«p(s_l
form v. = g.m, with g. € C°(R?), and has zero mean in the case d = 2. So by (6.9) it
holds

x). Then the measure v, = @, * v is of the

I(v.) = Jyve s v|2dm = 0. (6.11)
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So to prove that I(v) > 0 it suffices to show that I(v.) — I(v) as e — 0. To this end,
applying Fubini we write

I(Vs)=J(%*g*v)gﬁg*udmzJ(gpe*gpe*g*y)dy,

Observe now that, for any = € R, since ¢, * ¢, is C® with unitary mass, radial non-
increasing, and compactly supported, then it is a convex combination of functions of the
form m XB,(0) (see the proof of Lemma 5.10). Since £ is superharmonic, by Lemma

)

@ # e x E(x) < E(x)  for all z € RY (6.12)

(this could also be checked by a direct computation), and also . * ¢, * E(x) — E(z) as
e — 0 for all x # 0.

We claim that in the case d = 2 we can assume that suppr < By ;4(0). Indeed, for any
A > 0, consider the dilation Thxz = Az. Then, for a suitable A > 0, it turns out that the
image measure (7)) is supported on By 4(0) and it satisfies

(@) = o || log [ d(T3) 4(x) d(T3) ()

_ % f f log M dv(z) du(y) = T(v) — % V(RY)2log A = I(v),
which yields the claim.

So for any d > 2 and ¢ small enough we can assume that £(z —y) > 0 for all z,y €
suppr U suppte. Then, by the dominated convergence theorem, for all x € suppr such
that € = |v|(z) < o0, taking into account (6.12) and the fact that ¢, * oo * E(x) — E(x) for
all z # 0, it follows that

lir%gpg x . xExv(r) =Exv(x),
E—>

and moreover £ * v(z) < & * |v|(z). By another application of dominated convergence,
since I(|v|) < oo, we infer that

lim I(v,) = lirr[l)f(cpa xpexExv)dy = I(v), (6.13)

e—0
which concludes the proof of the fact that I(v) = 0.
Next suppose that I(v) = 0. From (6.11) and (6.13), we deduce that
lim f |VE # v dm = 0.
e—0

L (R%). Now, we
can compute the distributional Laplacian of the induced distribution, which happens to
be precisely A(€ # v) = —v. On the other hand, it is well known that € * v, = @, * € v

By an easy application of Fubini’s theorem, it follows that £ * v € L},
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tends to € v in L}, (R?), that is in L'(B,(0)) for any r > 0. Together with the Poincaré
inequality, denoting by mp, (0)(€ * v) the mean of £ v in B,.(0), this implies

J: |E*V—mBT(0)(5*V)|dm=lin%) |E * ve —mp () (€ * ve)| dm
-(0) 70 B (0)

e—0

1/2
< lim ( J[ V(€ = 1/5)]2dm) r=0.
Br(0)

So we deduce that &£ = v is constant a.e. with respect to Lebesgue measure. Since this
happens for any ball B,.(0) and £ = v tends to 0 at oo, it turns out that £ * v vanishes
a.e. Then, from the fact that v = —A(E * v) in the sense of distributions, we infer that
v=20. O

Theorem 6.11. Let E < RY be a compact set with Cap(E) > 0. Then the equilibrium
measure for E is unique.

From now on we will usually refer to the equilibrium measure for £ as pg.

Proof. Aiming for a contradiction, suppose that there are two equilibrium measures p and
v for E. For t € (0,1), consider the measure

O't:t/,é'i‘(l—t)l/

Obviously, oy is a probability measure. Let us see that I(o) < I(u) for ¢ small enough.
Indeed, we have

I(oy) = Jé'*atdat — 2 I(p) +t(1 —t)fg*udu—l—t(l —t)Jg*ydqu (1—1)21I(v)
= (1—2t)I(V)—i—tfé’*,udu—i—tfé’*yduvLO(tQ).
The sum of the two integrals on the right hand side can be rewritten as
fé'*udv—i—fg*ydu:JE*(,u—u)dy—i-l(y)+J8*(1/—,u)du+l(u)
—21(0) ~ [ £ % (= v)d(u—v) =210) ~ T~ v)
From the identities above, we deduce

I(oy) = (1 =2t) I(v) + 2t I(v) — tI(u — v) + O(t?) = I(v) — tI(p — v) + O(t?).

By Theorem 6.10, if pu # v, then I(u — v) > 0, and so I(o;) < I(v) = I(p) for ¢ small
enough, which yields the desired contradiction. O

From now on, M, (FE) stands for the set of (non-negative) Radon measure supported
on E.
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Theorem 6.12. Let E < R? be compact, and suppose also that diam(E) < 1 in the case
d = 2. Then we have

Cap(F) = sup {,u(E) cpue Mi(E), sﬂ;}r}) U, < 1}. (6.14)

Proof. The fact that diam(E) < 1in the case d = 2 implies that £(z—y) > &= log m >
0 for all z,y € E, which in turn implies that I(x) is positive and bounded away from 0 for
any measure 4 supported on E, and so Capy, (E) = Cap(F) = 0.

Denote by Sg the supremum in (6.14). In case Cap(E) = 0, then every pu € M, (E)
satisfies I(u) = 4+00. In particular, we infer that the potential U, is not bounded above
in the support of p. Thus, the only measure in the left-hand side of (6.14) is the null
measure and Sg = 0 = Cap(F).

Let us assume Cap(E) > 0. The fact that Cap(E) > Sk is immediate: for € > 0, let p
be supported on E such that supgs U, < 1 and such that p(E) + e > Sg. Consider the
probability measure v = pu(E)~!yu. Then

I0) = u(B) ) = n(B) | V(o) duta) < (B) ™

Therefore,
Cap(E) = I(v)™' = u(E) = Sg —¢.

For the converse inequality, consider the equilibrium measure pg of E, so that U, (x)
Cap(E)~! for all x € R? by Theorem 6.8 and Theorem 6.3. Then the measure
Cap(E) up satisfies supga U, < 1 in R? and thus Sg > p(E) = Cap(E).

(I 1 /N

Remark 6.13. Note that the supremum in (6.14) is attained for F uniquely by the
measure Cap(F) ug, where pp stands for the equilibrium measure of E. This can be
shown arguing as in Theorem 6.12.

Corollary 6.14 (Subadditivity of capacity). For Borel sets E, = RY, with diam(| J,, E,) <
1 in the case d = 2, we have

Cap (U En) < Z Cap(Ey).

Proof. Let F c | J,, En, be compact and let ;1 be supported on | J,, E,, be such that |U, | <
1 in R? and pu(F) = Cap(F). Then |Uy, _ulewe < [Uulee < 1 for any n, and thus
w(Ey, n F) < Cap(E, n F) < Cap(E,). Therefore,

Cap(F) = u(F) < > u(Bn 0 F) <) Cap(Ep).

Since this holds for any compact set F' | J,, E,, we are done since, by the definition of
capacity,

Cap(E) = sup Cap F.
FcFE:F is compact
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Lemma 6.15. For any Radon measure v in R® with compact support and let X\ > 0. In
the case d = 3 we have

Cap ({z € R?:U,(z) = A} < |,u)\|

In the case d = 2,

Cap ({2 € By2(0) : Up(z) = A\}) < 'l;’
Proof. Consider a compact set E < {z € R? : Uy(z) > A} (in the case d = 2, E <
{z € B1)2(0) : Uy(z) = A}) and let v be supported on E be such that supgs U, < 1 and
Cap(E) = v(E). Then we have

1 1 [l
Cap(E) =v(F) < )\JUHdI/ = AJUydu <

Taking the supremum on such sets F, the lemma follows. O

Proposition 6.16. For a ball B = R%, we have
Cap(B) = (d — 2)kqr(B)¥™2  ifd >3,

and

Cap;(B) =r(B) ifd=2.

Proof. Without loss of generality, assume that B is centered in the origin and that it is
closed. In the case d = 2, by homogeneity we can assume r(B) < 1/2. Let x € B¢ and
notice that £%(y) := £(z—y) is harmonic in the interior of B. Let o be the surface measure
on 0B. Then by the mean value theorem,

Uy(z) = aBE(w —y)do(y) = 0(0B) E(x — 0) = 0(0B) E(x).

Note that U, is constant in 0B by symmetry, and therefore it is continuous in R? by
the continuity principle. Thus, the same identity holds on 0B. Therefore, using also the
maximum principle, in the case d > 3, we get

kqr(B)* 1 r(B

= su =0(0B)E(r(B)) = = )
SI}K}CPUJ— aEE)UU (aB)E( (B)) (d_Q)KdT(B)de d—2°

Therefore, the measure y = (d — 2)r(B) 1o satisfies supga U, = 1 and so
Cap(B) = u(B) = (d —2)r(B) 'o(B) = (d — 2)kar(B)*.

For the converse estimate, remark that in fact the measure yu satisfies U, = 1 in 0B.
Since p is supported on 0B and U, is harmonic in the interior of B and continuous in its
closure, by the maximum principle it is identically 1 in the whole B. Then, from Lemma
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6.15 we deduce that Cap(B) < u(B) = (d — 2)kqr(B)?2, which proves the lemma in the
case d > 3.

In the case d = 2 we argue analogously. Indeed, it is straightforward to check that,
for all x € 0B we have we have U,(x) = r(B)log . Then, by the same arguments as

before, it follows that

_1
r(B)
2T

Capy (B) = Iog

L
r(B)

and so Cap (B) = r(B). O

As a corollary of the preceding estimate for the logarithmic capacity, we obtain:

Corollary 6.17. Let u be Radon measure supported on the (open) ball B1(0) = R2. Then
I(p) > 0.

Proof. Let E' = suppu. Since E < By(0), there exists some p € (0, 1) such that £ < B,(0).
Consequently, Cap,(E) < Capr,(B,(0)) = p < 1. Thus, e~2m1(n) < 1, which implies that
I(p) > 0. O

A quick inspection of the arguments above shows that Cap(B) = Cap(dB) for any ball.
This also holds for any arbitrary compact set. In fact, we show below that the capacity of
a compact set equals the capacity of its outer boundary. For E — R? compact, its outer
boundary, denoted by 0,F, is the boundary of the unbounded component of R\ E.

Theorem 6.18. For any compact set E = RY, we have Cap(E) = Cap(0,E) (and so
Capy (E) = Capy(0,F) in the case d = 2).

Proof. First we show that Cap(E) = Cap(dFE). To this end, it suffices to show that the
equilibrium measure p of E is supported on 0F (in the case d = 2, if necessary, we can
assume that £ < By3(0)). To prove this, recall that by Theorem 6.8 U, (z) = (Cap E)~*
q.e. x € E. In particular, this holds a.e. in the interior of £ with respect to Lebesgue
measure, see Remark 6.6. Since —AU, = p in the sense of distributions, for any C®
function ¢ supported on the interior of E, it holds

f@du = —(Uy, Ap) = —(Cap E)lf Ap =0.
suppy

Thus p vanishes identically on the interior of E, which shows that suppu < J0F.
To show that Cap(E) = Cap(0,E), let Q be the unbounded component of R\ E and

'~

let F = RAQ (so that E coincides with the union of £ and the bounded components of
RAE). Then we have 0,FE = dE and

0,bEF co0FEcEcC E.
Since Cap(E) = Cap(d,E), we also have Cap(E) = Cap(d,E). O

Remark 6.19. From the uniqueness of the equilibrium measure and the fact that Cap(F) =
Cap(d,F), it follows that the equilibrium measure of F is supported on 0, F.
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6.4 Relationship between Hausdorff content and capacity

Lemma 6.20. Let E < R? be compact and d — 2 < s < d. In the case d = 3, we have

d—2

HE(E) =

<s.d Cap(E) Sq HE2(E).

In the case d = 2, we have
1

Capr(E) 2s Mo (E)>

Proof. First we consider the case d > 3. To check that Cap(E) < H%2(E), for any £ > 0
we consider a covering of F by a family of open balls B;, ¢ > 1, such that
D r(B)? sa HEP(E) + e
i

Since F is compact, we may assume that the family of balls B; is finite. Then, using the
subadditivity of the Newtonian capacity (see Corollary 6.14) and Proposition 6.16, we get

Cap(E Z Cap(B Z (Bi>d_2 <d Hgo_2(E) t+¢,

A

which shows that Cap(E) <q HL2(E).
To see that Cap(F) Zsq H&(E)%, we apply Frostman’s Lemma 4.66. This tells us
that there exists some Borel measure p supported on F such that

H(E) ~a n(E) (6.15)

and
w(B,(z)) <r® forall z € R? and r > 0. (6.16)

Then, for all z € R? we have

f]w— a2 4 J p({y: |z =y~ > t}) at

6.16 M(E)QTd © s d—2
—f M(B(x t2- d))dt < f /_,[,(E)dt—‘,—J . t2=d dt ~4 4 ,u,(E)l— s .
0 0 mw(E) s
Therefore,
6.14 FE FE d—2 (6.15 d—2
Cap(p) 5 HEL o B ey O )

[Ulloo p(E) =5

In the case d = 2, we may and will assume that diam(E) < 1 since, for any A > 0.

1

Capy(AE) = XA Capy(E) and HL(AE)s = AXH(E)s.

m\»—‘
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We apply again Frostman’s Lemma to get a measure u supported on E satisfying (6.15)
and (6.16). Then, for any 7 > 0 for € suppy we have

21U, () = JIOguim du(y) = Loo,u<{y : log |$iy| > t}) dt
1

0 6.16 T Q0
= J p(B(z,e ")) dt < f w(E)dt + f e Bdt =7 u(E)+ —e .
0 0

- S

6.16
We choose 7 = —Llog u(E) (notice that 7 > 0 because u(E) < 1, since diam(E) < 1),

and then we obtain . )
2r Uy(x) < HE) <log + 1) .

s n(E)

Hence, for the probability measure o = p(E)~!u, we have

21 I(0) < é <log M(lE) + 1) :

Therefore,
1 2ms
Capy (E) = > T ,
I(o) = log a1
or equivalently,
log pu(E)— 6.15
Capp(E) > e s =Cls)u(E)s ~ o H3o(E)*

O

Comparing the previous lemma with definition 4.65, we get the criticallity of dimension
d—2.

Corollary 6.21. Let E < R¢ be a compact set. If CapE > 0, then dimy E > d — 2.
Instead, if Cap E = 0, then dimy F < d — 2.

Remark 6.22. It can be shown that if H¥2(E) < o for a bounded set E < R?, then
Cap(F) = 0. See [Mat95, Theorem 8.7], for example.

6.5 Wiener’s criterion

Given a bounded open set Q — R? by Theorem 5.34 and Theorem 5.35, a point & € 0
is regular (for the Dirichlet problem) if and only if there is a barrier function for £ in €.
In this section we show a characterization of more metric-geometric type. This is the so
called Wiener’s criterion.

Theorem 6.23 (Wiener’s criterion). Ford > 2, let 2 R? be a bounded open set and let
&€ 0. The following are equivalent:
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(a) & is a regular point.

= 0.

Cap(4 {,2 k=1 9= )\Q)
(*) Z Cap(B(€,2-))

Here fl(ﬁ ,71,72) denotes the closed annulus centered at £ with inner radius r; and outer
radius 7. Recall also that in the case d = 3, Cap(B(€,27%)) ~ 27%(@-2) and in the case
d =2, Cap(B(&,27%)) = Capy, (B(£,27%)) ~ 1/k. Thus, in the latter case, the condition
(b) is equivalent to

b ) i k CapW(A(éaz_k_lv2_k)\Q) =

k=1

Remark 6.24. In the case d > 3, the condition (b) is equivalent to

. & Cap(B(E,27M)\Q)
) 2 Gap(Ble.27)

Indeed, it is trivial that (b) = (b”). To see that (b”) = (b) we use the subadditivity of
Newtonian capacity to write

= Q0.

Ca Q) Cap(A(&,27771 279)\Q
) SoBEIIND < 5 5 CoplE 22 )

k=1 CaP( k=1j=k p 52 ))
1
=Y C 27171 27N\ Q _ )
= 2, Cepld(, ") 2 G Bie )

Now observe that the last sum on the right hand side is comparable to >}, 2k(d=2)
21(d=2) ~ Cap(B(£,277))~1. Thus,

Cap(B ( Cap(A §2” =1 27I)\Q)
,; Cap(B( €2k ”;1 Cap gza)) ’

which yields the desired implication.

6.5.1 Sufficiency of the criterion for Wiener regularity

Proof of (b) = (a) in Theorem 6.23 in the case d = 3. We will construct a barrier @ :
2 — R for the point £&. We will show that there exists a harmonic function w : 2 — R
satisfying:

(i) limgsg—e w(z) = 1.
(ii) limsup,_ . w(z) <1 for all ¢ € 0Q\{¢}.
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Then we just have to take W = 1 — w to get the desired barrier.

To shorten notation, write Ay = A(£,27%1,27%) B, = B(¢,27%), and By, = By. For
a fixed large constant A > 10 to be chosen below and for any ny > 1, the condition (b)
ensures the existence of natural numbers N, M, with ng < N < M such that

A< Z Cap(/_lk\Q)

— <A+1
Cap(By)

N<k<sM

(notice that each summand in the sum above is at most 1). For each k > nyg, if Cap(A4;\2) =
0, define y1 = 0 and if Cap(A;\Q) > 0 let py, be the equilibrium measure for A;\Q2. Con-
sider the function

ug(z) = Cap(Ax\Q) Uy, (x);

and set

N<k<M

Claim 6.25. Let d = 3. For any e > 0, if A = A(e) is chosen large enough, the function
v satisfies

() ~ A, (6.17)
v(x) < (1+e)v(§) forallxzeq, (6.18)
lv(z) —v(€)| < C ¢ v(€)  for all x € Q ~ By, (6.19)
r(Bum)
and !
v(x) < 1 v(&)  for all x € Q\By_g, if ko = 2 is large enough. (6.20)

Remark that the constant ky in the last estimate does not depend on £. In the case
N — ko <0, we understand that By_g, = 2ko By

Proof of the Claim. The estimate (6.17) is easy: for each k € [N, M] we have

up(€) = Cap(Ap\Q) Uy, (€) ~ Cap(A,\Q) E(r(By)) ~ (w_

Thus, -
v~ Y Cap(Ae\) (6.21)

N<k<M Cap(By)

Next we turn our attention to (6.18), which is the most delicate part of the claim.
Notice first that, by the maximum principle, it suffices to prove this for z € By\By =
UNsisM A;. So fix x € A;, with N < ¢ < M. For some h > 1 to be chosen soon, we write

i—h—1 M Ai+h M
v(z) = Z ug(z) + Z ug(x) + Z ug(z) =: ve(x) + vp(x) + ve(T).
k=N k=Nvi—h k=i+h+1
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To estimate vy(x) we just take into account that
uk(y) < Cap(Ap\Q) Uy, (y) <1 for all y € RY,
by Theorem 6.8. So we deduce
vp(x) < 2h + 1.

To deal with v,(x), we will use the fact that, |z — &| < r(B;) < 27%27" for k < i — h,
implying
up(z) = ug(§) + (ur(r) — wr(§)) = ur(§) + Cap(Ap\Q) (Up, () = U, (§))  (6.22)
. ~¢
< ug(§) + € Cap(A,\Q) M
_ B,
< uul€) + C Cap(A\)

9—h CaP(Ak\Q)

Su() +C Cap(By)

For v.(x), we take into account that for k > i + h we get r(B;) > 2"r(B}), so
Cap(Ax\Q) _ ., Cap(4x\Q) < Co-h(d-2) Cap(A\Q)

Consequently, gathering the estimates obtained for k < i — h and for £ > ¢ + h and using
also (6.21), we get

Va(T) + ve(T U —h M v “hy
a(®) + ve(2) < N%M k&) +C2 N;w Cap(By) < VO +C2(E).
Thus,
0(x) = va(2) + vp(x) + ve(z) < V(E) + (2h + 1) + C 27" v(€) < v(€) (1 + % + CQih).

So choosing h large enough and then A large enough as well, (6.18) follows.
To prove (6.19), we can assume z € 5By because of (6.18). Arguing as in (6.22), we
obtain

[z —¢  _ . Cap(Ap\Q) |z — ¢
dist(¢, Ap)4=1 ~ 7 Cap(Bg) r(Bu)’

Summing over k € [N, M] and using (6.21), we deduce (6.19).
Finally we deal with (6.20). So we take x € Q\By_g,, for kg = 2. Then we have

w(z) ~ Cap(4;\Q) _  Cap(4\Q)
g dist(z, Bp) 2 20@-2)ko (B, )2

Hence, summing on k € [N, M], we obtain

v() s 207Dk HT (€)= 2B Do),

N<k<M

lug(x) — up(€)] < C Cap(Ap\Q)

~ 2 Dko y (€).
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Applying the preceding claim, we construct sequences of natural numbers N;, M;,
and functions vj;, for j > 1, as follows. We choose Ny = 1, My = 2. Assuming that
Nj_1 < Mj_; have already been chosen, by applying Claim 6.25 with some ¢ € (0,1/2)
to be fixed below and ng = M;_1 + ko, for some kg > 2 to be fixed below too, we find
M; > N; = ng so that the function

vile) = D wle)

NjgkéMj

satisfies (6.17), (6.18), (6.19), and (6.20) (with v; in place of v). Now we define

N o Uil@)
w(z) = ;2 J o @) (6.23)

Obviously, w(¢) = 1 and it is easy to check that w is superharmonic in R (since each
function v; is superharmonic by Lemma 6.1). Consequently,

limi?fw(y) >w(€) =1. (6.24)
y%
Our next objective is to show that
limsupw(y) < 1 for all ¢ € 0Q\{¢} and w(y) <1 for all y € Q. (6.25)
y—¢

Observe that the latter condition together with (6.24) implies the condition (i) above, i.e.,
limgsy—¢w(y) = 1. To prove (6.25) it suffices to show that for any h > 1 there exists
6p, > 0 such that

w(z) <1—10, forall z € By, \Bu,,,- (6.26)
To prove this, for a given = € B Mh\B Mp.1» We split
w(z) = hz_]l 277 v3() + 2_hvh(m) + 2_h_1LH($) + Z 277 v (@) =: 51+ 52+ 53+ 9,
27 5 7w @) A 5
(6.27)
By (6.19), the first sum satisfies
h—1 h—1 h—1
—j vi(x) . j lvi(x) = v(§)]
Sy = 9—J 2 < 277 4 I At A A
DI IP IR 0(©
<127+ 0 Y 2T oML < (1 - o7y 0 D 97T gkelh)
a 7(Bu;) a

where we took into account that 7(Bay,,,) < 27%r(Byy,) for each j, by the construction
of the sequence M. For ky > 3, we have

h—1 2—h 2—h

Z 9—doko(i—h) _ < — 9—h—ko+2
~ 2ko=1 1 = 2ko—2 ‘
1=
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Thus,
Sp < (1—27Mhy 4 ook,
For Sy and S3 we apply (6.18):
Sy + 83 < (1+¢e)(27" 42701y,

Finally we estimate Sy. For this term we use the fact that if « ¢ BMh+1 and j = h + 2,
then by (6.20) we have v;(z) < {5 v;(£), assuming ko large enough. Therefore,

1 ~ 1
Si<— > 277 =2 (6.28)
. 10
j=h+2
Gathering the estimates for S1,...,.S4, we obtain

1
w(z) < (127" 4 027" R 4 (14 6)(27h + 2701 + —27h !

10

9 3¢

=1-2"(= —c27ho - ).
<20 ¢ 2>

Then, choosing ¢ small enough and kg large, we derive w(z) < 1 — 27"2, which proves
(6.26) and completes the proof of (b) = (a). O

Proof of (b) = (a) in Theorem 6.23 in the case d = 2. The proof is very similar to the
one above for d > 3 and so we only point out the differences in the argument. Given
1 <ng < N < M, we define the functions u; and v as above. Then the estimates (6.17),
(6.18), and (6.19) in Claim 6.25 also hold if A is chosen large enough, while for (6.20) we
require now that ky = 10N /11 and N large enough.

The proof of this variant of Claim 6.25 for the case d = 2 is very similar to the one for d =
3. Indeed, (6.17) has the same proof. Regarding (6.18), we split v(x) = vg(z)+vp(x)+ve(x)
as in the case d = 3. We have vy(x) < 2h + 1 by the same arguments as for d > 3. To deal
with v, (z) we estimate the functions uy for k < i — h by arguments quite similar to the
ones in (6.22). Indeed, notice that

T —y
U (0) = U (€)1 < [ 108 ']duk@)
1€ —y
Writing
‘log [z —yl| _ log<1+ !ﬂc—y!—lx—ﬂ)‘< Ix—f\’
€ -y & —yl |z —y|
we deduce
Uy (2) — Uy ()] 5 2781
" " dist (¢, A)
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Thus,

up(z) = u(€) + Cap(Ap\Q) (Uy,, (z) — U, (€)) (6.29)
<un(©) + 0 CaplAn) 725
r(Bi)
T(Bk)
< up(€) + C 27" Cap(A,\Q) U, (),

< up(€) + C Cap(A;\Q)

where we used the trivial bound U, () = 1 in the last inequality for N large enough. For
ve(z), we take into account that for k > i + h we have

ug(x) < Cap(Ax\Q) E(dist(x, Ar)) < Cap(Ax\Q) E(cr(B;))

< Cap(A\) [ (€~ ) ity < u(9),

E(er(By))
inf,e s, £(6—y)
since E(cr(B;)) < inf .z, £(§ —y) for k > i+ h with h large enough.

Consequently, gathering the estimates obtained for k < ¢ — h and for kK > i + h and
using also (6.17) and (6.21), we get

va(@) +ve(z) < 1+ 027" D0 wp(§) = L+ C27M)w(8).
N<k<M

v(z) = va(z) + vy(x) + ve(x) < v(E) + (2h 4+ 1) + C 27" v(€) < v(€) (1 + % + C2_h).
So choosing h large enough and then A large enough, we get (6.18).
The proof of (6.19) also follows by arguments very similar to the ones for the case d = 2
and so we skip them.
Finally we deal with (6.20). So we take z € Q\Bx_g,, for ko = 10N /11 and N large
enough. For x € By /5(€), then we have

su 1, E(x —
Uy, () = fs(x —y) dpk(y) < J€(£ — ) dpk(y) mlf);"’ej g((§ - 5))
C+N—ko

C'"+ N

log(c 2% r(By))
log(c’ r(By))

From the condition that ky > 10N /11 we deduce that N — kg < N/11, and thus for N

large enough it holds C(J/S,]YJV’“O < %0. Hence, multiplying by Cap(A4;\Q2) and summing on

k € [N, M], we obtain

< U (€)

< U (€)

@) <= S u(€) = () forall ze O\ By,
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To complete the proof of (b) = (a) we choose sequences N; and M as in the case d > 3,
but with the additional requirement that N; > 20M;_; for each j, say. This condition
ensures that we will be able to apply (6.20) to estimate the term Sy in (6.27) arguing as
in (6.28). Then almost the same arguments as the ones for the case d > 3 show that the
function w defined in (6.23) is barrier for £&. We leave the details for the reader. O

6.5.2 Necessity of the criterion for Wiener regularity

Recall that in Definition 5.40 we introduced the notion of Wiener regularity for unbounded
open sets with compact boundary. Before proving the necessity part in Theorem 6.23, i.e.,
the implication (a) = (b), we need the following auxiliary result.

Lemma 6.26. Let E < R? be compact with Cap(E) > 0 and let Qg be the unbounded
component of R\E. Suppose that Qg is Wiener reqular and let i be the equilibrium mea-
sure for E. Then the equilibrium potential U, is continuous in R? and U, = (Cap(E)) ™
identically on E.

Proof. Without loss of generality, we assume that £ < B; /2(0). For r > 2 we denote
Qp, = Qr n B,(0) and we let u, be the solution of the Dirichlet problem in Qp, with
boundary data:
" — { (Cap(E))™'  in 0Qpg,
"l Uy in 0B,(0).

We extend u, to B = RN\Qg by setting u,(x) = (Cap(E))~! for x € E, so that u, is
continuous in B, (0), by the Wiener regularity of Qg .
Observe that, for all £ € 0Qg,

0 < limsup(u,(z) — Uy () < (Cap(E)) ™.

r—E€

Therefore, since u, = U, in dB,(0), by the maximum principle we get

lur = Unlloo.2p.,, < (Cap(E))~".

As this estimate is uniform in r, we deduce that there exists a sequence 1, — o0 such that
ur, converges locally uniformly on compact subsets of {2 to some function u harmonic
in Q. In particular, it converges uniformly on 0B (0). Since u,, equals (Cap(E))~! in
0Qp for all k, by the maximum principle it follows that the convergence is also uniform in
Qg N B1(0). Then we deduce that u is continuous in Qg and so it extends continuously to
the whole R?. Further, u equals (Cap(E))~! in E u< (Cap(E))~! in Qp, and together
with the fact that u is continuous in R? and harmonic in Qp, this implies that u is
superharmonic in R%. Notice also that

[t = Uplloora < (Cap(E))~".

The preceding estimate implies that « is non-constant in the case d = 2, since U, (z) —
—0 as |z| — oo. In the case d > 3, it is also easy to check that u is non-constant. Indeed,
let u, : A1,(0) — R be defined by

Uy (r) = Cap(BE) ' E(1) " E(x) + max U,
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where, abusing notation, we wrote £(1) = £(y) for |y| = 1. It is immediate to check that
u, < U in dA1,(0), and thus also in A1 +(0) by the maximum principle. Then, letting
r — o0, it follows that u(x) < Cap(E)~t&(1)~!1&(z) for |z| > 1, which implies that u is
non-constant.

The superharmonicity of u in R% implies that —Awu is a non-negative measure in the
sense of distributions. This is an immediate consequence of Lemma 5.13 and the Riesz
representation theorem. The fact that u is non-constant and the maximum principle
ensures that Aw is not the zero measure.

Now we claim that there exists some constant ¢y € R such that

u=—Ex*Au+cy (6.30)

in the L}, (R?) sense. To prove this, observe first that the function v := u + & = Au is
harmonic in R?, and for |z| » 1 it satisfies

[0(2)] < |u()] + |€ * Au(@)] < (Cap(E) ™! + Up(2) + [€ * Au(z)] < Co + Crl€(|z))],

where Cpy and C] depend on u. In the case d > 3, this implies that v is bounded and so it
is constant, by Liouville’s theorem. In the case d = 2, we also deduce that v is constant.
This follows easily from Lemma 2.11 applied to v in Br(0), letting R — co:

|v]lo,Br0) _ Co+ Cylog R
HV'U”oc,BR/Q(O) < R I < R — 0.

So in any case (6.30) holds.
Let us see now that the pointwise identity

u(z) = =& = Au(x) + ¢ (6.31)

holds for all 2 € R%. Indeed, this holds in Qp by the continuity of £ * Au and u in Qp. So
it remains to show that

(Cap(E)) ™' = =€+ Au(z) + ¢y forallze E.

To this end, notice that for each ¢ > 0, by the identity (6.30) in the L . sense and the
continuity of wu,

co + J[ Ex (—Au)dm = J[ udmt—_)qu(x).
Bt(ac) Bt( )

On the other hand, by the superharmonicity of £ * (—Awu) (recall that —Aw is a positive
measure) SB @) € * (—Au)dm < € x (—Au)(z), and so
Cap(E)™! = u(z) = co + lim sup f Ex (—Au)dm < ¢o + € * (—Au)(z).
t—0 By (z)

For the converse inequality, we take into account that co + & * (—Au) < Cap(E)~! a.e. in
R?, and thus the same estimate happens everywhere in R? by the lower semicontinuity of
& * (—Au) (see Lemma 6.1(a)). So (6.31) holds for all z € R%.
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From (6.31) we deduce that
£+ (—Au)(z) = (Cap(E)) ™' —cg=:¢; forallze E.

Since —Auw is a non-zero positive measure supported on Ec B 2(0), it follows that c¢; > 0.
So letting k = (c; Cap(F))~!, it turns out that £+ (—kAu)(z) = (Cap(E)) ! forall z € E.
Next we will show that this implies that —kAu = p. To this end, by Theorem 6.10 it
suffices to prove that —kAw is a probability measure and that I(u + kAu) = 0.

To prove that —kAwu is a probability measure we first apply Theorem 6.12, taking into
account that ||€ = (—k Cap(E) Au)|s = 1, and then we derive Cap(E) = || — k Cap(E)Aul|,
or equivalently, | — kAu| < 1. For the converse inequality we apply Lemma 6.15 and we
obtain Cap(FE) < || — k Cap(E) Au|, so that | — kAu| = 1.

Next we will show that I(x + kAu) = 0. Notice first that I(|u + kAu|) < 400 because
both £ # p and £ * (—kAwu) are uniformly bounded in E. We write

I(p+kAu) = JU(u+kAu) d(p+ kAu) = f (U = U—kaw) dp+ kf (U = U—raw) d(Au).

Both integrals on the right hand side vanish because U(_ja,) equals identically (CapE)~!
in E S suppy, while U, equals (Cap E)~! p-a.e. and (—kAu)-a.e. by Corollary 6.9. Hence,
I(p + kEAu) = 0 and thus g = —kAwu. In turn, this implies that U, = —k € * Au, and so

U, is continuous in R? and identically equal to (Cap E)~! in E. O

Proof of (a) = (b) in Theorem 6.23. As above, we write Ay = A, 271 277 B, =
By« (§), and By = Bg. To get a contradiction, suppose that £ € 9 is a regular point
such that

i Cap(A4;\Q) -

= Cap(By)

Without loss of generality, assume also that Q < By 5(0).

We will replace €2 by an auxiliary Wiener regular open subset Q < Q so that e o0 NN
We define 2 as follows. For each k > 1 such that A4,\Q # @, let pg € (0,27%73) be such
that

Cap(U,, (Ax\Q)) < Cap(A4;\Q) + 27% Cap(By),

where Uy (G) stands for the f-neighborhood of G. We cover A;\Q by a finite number of
closed balls By, ; centered in Ap\Q with the same radius py, and we let By, = U f Bjk. In
case that Ak\Q = ¢, then we let Ej, = @ be a closed ball By, ; contained in A;. such that
Cap(By,1) = 27% Cap(By). Finally, we let

ﬁzQ\UEk.

k=1

It is easy to check that Q is open. Further,

Z Cap(/_lk\ﬁ) < Z Cap(Ek,1 ) Ek U Ek+1)

Cap(By,) Cap(B)

k=1 k>1
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Using that Cap(Fx—1 U Ex U Egt1) < Cap(Eg_1) + Cap(Ey) + Cap(Ei+1) and that
Cap(By_1) ~ Cap(By) ~ Cap(By,1), it follows that

Cap(Ax\Q) Cap(Ej) Cap(4;\Q) _
A Pk) 2k <o, (6.32)
k§1 Cap(By) ,;1 Cap(By) ,;1 Cap(By) k;

Also & € €2 because the preceding estimate implies that, for k large enough, Cap(Ak\Q)
Cap(By) ~ Cap(Ak) so that A, N Q # @.

To check that € is Wiener regular, notice first that ¢ is a Wiener regular point for Q
because if v : @ — R is a barrier for £ in €, then v| is a barrier of £ in Q. Further, it
is immediate to check that any other point ( € o) with ¢ # & belongs to the boundary
of some ball By, ;, and so ¢ is Wiener regular because of the existence of an outer tangent
ball in ¢ (namely, By ;). So Q) satisfies the required properties.

For k > 1 we denote
F={ ol B
i=k
Notice that Fj is a compact set such that F, < Bj_;, and by the same arguments as
above, it follows easily that R%\ F}, is Wiener regular and that & € 0F}.

Next we will derive a contradiction from the fact that £ is a regular point for Q) and the
condition (6.32). For 0 < e < 1/4, let N > 2 be such that

Cap(Ey)
gkhﬂm<a (6.33)

Because of the Wiener regularity of (NZ, there exists a function f € C(ﬁ), harmonic in SN),
with 0 < f <1, with f(§) =0and f =0in 0§\BN+1. By the continuity of f, there exists
s < 27N1 guch that f(z) > 1 —¢ in Q A By(€).

Let us see that there exists M > 1 large enough such that 2= < s/4 and such that the
equilibrium potential Ur,, for Fjs satisfies

Cap(Fy) Ur,, (z) < e for all x € RN\By(€).

Indeed, we have

£(s)

Cap(Fyr) Up,, (z) < Cap(Bar—1) E(dist(Far, 0Bs(€)) < CeREE

which tends to 0 as M — o. We denote Vg,, = Cap(Fir) Up,,.

Let Ay = UNsksM Ey. Again, Rd\AMM is Wiener regular because because Ay yr
is the union of a finite number of balls, and we can apply the criterion of the outer
tangent ball. Let Ua, ,, be the equilibrium potential of Ay and denote Va,, =
Cap(An,nm) Uay - By Lemma 6.26, it turns out that Vp,, and Va, ,, are continuous and
VEy +Vaya = 1on Fayyu Ay y. Then, by the definition of f and the maximum principle

it follows that Vg, + Vay,, = f in Q. Therefore,

VANJW >f_VF]u =>1—2¢ in aBs(f)mﬁ
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We also have Vs, ,, =1>1—2¢ in Ay, and so by the maximum principle applied to
the set Bs(£)\An s (recall that 27MF2 < s < 27N=1) it follows that

V. € =1-2e (6.34)
Now we intend to contradict this estimate. To this end, notice that for x € 0B, /2 &),
VAN,M (SL‘) = Cap(AN,M) UAN,M (I)
< Cap(By_1) E(dist(x, Anar)) S Cap(By_1) ~ £(27V)7L.

In Ay, we also have

Vianu () =1< Z Vi, (z) = Z Cap(Ey) Ug, (z).
N<k<M N<k<M

Then, by the maximum principle and by (6.33),

VAN,M (5) < Z CaP(Ek) UEk (5) + CE(Q_N)_I
N<ks<M

~ D) Cap(Br) EE M)t setre™
Neren Cap(Br)

which contradicts (6.34). O

6.6 Kellogg’s theorem

A set E < R? s called polar if Cap(E) = 0. Of course, in the case d = 2, this is equivalent
to saying that Cap;(F) = 0. Kellogg’s theorem asserts that, for any bounded open set
Q < R?, the set of (Wiener) irregular points is polar. In order to prove this, we will need
some auxiliary results, which have their own interest.

Recall that in Section 5.4 we introduced the notion of barrier functions, whose existence
characterizes the regularity of boundary points. Next we introduce the weaker notion of
generalized barrier, which also can be used to characterize regular points, as we will see

below. Given an open set Q c R?, a function v : Q — R is called a generalized barrier for
Q at £ € 09 if

1. v is superharmonic in €2,
2. v>0in Q, and
3. lim,_,¢v(x) = 0.

It is immediate to check that a barrier for £ is also a generalized barrier. The converse
statement is not true. However, we have the following key result.

Theorem 6.27. Let Q < R? be open and bounded. A point & € 052 is reqular for Q if and
only if there exists a generalized barrier for Q) at €.
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To prove this theorem, we will use the following simple result:

Lemma 6.28. Forr >0, let V < S,(0) be relatively open in S,(0), and for any x € B,(0)
let

o) = | PhwOxw( ()
where o is the surface measure on S,(0). Then,

li =1 lHeeVv.
5 (Ol)giﬁgg(w) for all
Recall that PET(O) is the Poisson kernel for the ball B,(0), which was introduced in
Remark 3.12.

Proof. This is an immediate consequence of Example 5.27 and Corollary 5.36. O

Proof of Theorem 6.27. The statement in the theorem is equivalent to saying that there
exists a barrier at £ € 0N for € if and only if there exists a generalized barrier. Since
any barrier is also a generalized barrier, we are left with showing that the existence of a
generalized barrier at £ € 0€) for 2 implies the existence of a “usual” barrier. To this end,
consider the function ¢ : @ — R defined by p(x) = |z — ¢|2. The fact that Ap > 0 away
from ¢ ensures that ¢ is subharmonic in Q. The function f := @|sq is continuous in 052,
and thus it is also resolutive. Further, since ¢ € Ly (recall that this is the lower Perron
class for €2, introduced in Definition 5.16), we have v := Hy = Hy > in Q. Thus, vis a
positive harmonic function in € such that for all ( € 0Q\{¢},

liminf v(a) > £(¢) > 0.

Hence to show that v is a “usual” barrier for &, it suffices to prove that

ng;nigv(x) =0. (6.35)
To prove (6.35), without loss of generality, assume that £ = 0. Let u be a generalized
barrier at 0 for Q2 and let r > 0 be such that S, (0) N Q # @. For a given € > 0, consider
a compact subset E,. < S.(0) n Q such that o((S,(0) n Q\E,.) < €0(S5,(0)), where o
is the surface measure on S,(0). Notice that v.. = infg, _ v > 0 (recall that u is lower
semicontinuous in €2 and so the infimum on any compact subset of €2 is attained in that
compact subset). Consider the set V. = (S,(0) n Q)\E, ., which is relatively open in
S-(0). Let g : S.(0) — R be defined by the “harmonic extension” of xv, . to B,(0), that
is,

o) = | o PR . do(0),

where Pf . is the Poisson kernel for B,.(0) with pole at x. Let h: 2 n B.(0) — R be the
function deﬁned by
h=r4 Yre 'diam(Q)? u + diam(Q)? g,
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Notice that h is superharmonic in QN B,.(0). We claim that for any function s € L (recall
that this means that s € C(2) is a subharmonic function such that limsup,_,, s(z) < f(n)
for all n € 092), it holds that

liminf A(z) = limsup s(z) for all n € d(2 N B, (0)). (6.36)

=1 TN
Indeed, if n € B,(0) N 012, then

liminf h(z) = r? > f(n) = limsup s(z).
TN T

On the other hand, if n € E, ., since u is lower semicontinuous in €2,

13 13

liminf h(z) = 4, tdiam(Q)? lim inf u > ~; tdiam(Q)? u(n) > diam(Q)? > sup f.
xT—n ’ T—n ’ o0

Finally, for n € V.. = S,(0) n Q\E, -, by Lemma 6.28,

liminf h(z) > diam(Q)? liminf g(z) = diam(Q)? > sup f.
r—n T o0
Our claim holds since, in the last two cases, we can use that s € L7 implies |s|, < supaq f.

From the superharmonicity of h — s and the maximum principle in Lemma 5.4 (applied
to s — h) and (6.36), we deduce that

s(z) < h(x) for all z € B.(0) n Q.

Since this estimate holds for all s € L¢, we deduce that Hy(z) < h(z) for all z € B,.(0) n Q.
Thus,

limsup Hy(z) < r? + 77;1dizaurr1((2)2 lim sup u + diam(2)? limsup g
z—0 z—0 z—0
=72+ 0+ g(0) = r* + diam(0)? o)

a(:5-(0))

. Since r can be taken arbi-

< 7% + diam(Q)?e.

@)

—2 2

Choosing ¢ = r?diam(£2) 72, we get limsup,_,o H¢(z) < 27
trarily small and Hy is positive, we deduce that

lim v(z) = lim Hy(x) = 0,

x—0 x—0

as wished. 0

Theorem 6.29. Let E < R? be compact with Cap(E) > 0 and let Qg be the unbounded
component of R\E. Let pi be the equilibrium measure for E. If a point £ € 0Qg is irreqular
for Qp, then U,(§) < Cap(E)~L. In particular, the set of irregular points for Qg is polar,
and moreover it is contained in a polar F, set.

Recall that a set F c R is called F, if it can be written as a countable union of closed
sets.
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Proof. Let us see that if U,(§) > Cap(E) ™!, then £ is regular. Remark that the inequality
Uu(€) = Cap(E)~! is equivalent to U,(§) = Cap(E) ! because |U,|y, e < Cap(E)!.
We claim that the function v = Cap(FE)~! — U, is a generalized barrier at £ for Qg (i.e.,
for Qg n B,(0) for any r > 0 such that £ < B,(0)). To check this, notice first that v is
harmonic and that v > 0 in Qg. The latter assertion follows from the fact that v is non-
constant and non-negative in Qg and Qg is connected. By the semicontinuity property (a)
in Lemma 6.1, we know that liminf, ¢ U, (y) = Uy(§). Consequently, limsup,_,¢ v(y) <
v(€) = 0. So v is a generalized barrier at £ for Qp, and by Theorem 6.27 £ is a regular
point for Q.

To prove the second statement of the theorem observe that, by what we have just proved,
the set of irregular points for g is contained in the set

S={zeE:U,(x) < Cap(E)fl},

which is a polar set, by Theorem 6.8. Therefore, the set of irregular points for Qg is also
polar. Further, writing S = ;5 5, with

Sj={zeE:U,z) <Cap(E)"" - % ,

by the lower semicontinuity of U,, it is clear that S is an F}, set, since each S; is closed. [

Remark 6.30. In fact, the converse of the first statement in Theorem 6.29 also holds.
That is, for Qg and p as in Theorem 6.29, a point & € 0Qp is irregular if and only if
U, (¢€) < Cap(E)~!. However, we will not need this result and so we skip the proof.

Theorem 6.31. Let Q < R? be open and bounded. A point & € 0 is irreqular for Q0 if
and only if there exists some component gy of Q0 such that & € 0Qy and x is irreqular for

Q. In particular, if x is not in the boundary of any component of ), then it is regular for
Q.

Proof. Denote by {£;}es the family of components of Q. If £ € 0€2; and & is irregular for
€1;, then there is not any barrier at £ for 2;, which it readily implies that there is not any
barrier at £ for €2. Thus, £ is irregular for €.

In the converse direction, suppose that there is not any €2; such that ¢ is irregular for
2;. To prove that £ is regular for {2, we intend to define a generalized barrier v at § for
Q2. For any ; such that { € 0€);, since £ is regular for ;, there exists a barrier v; at £
for Q. For such ;, we define v = min(v;, 1/j). For the components €2; such that £ ¢ 0§25,
we let v = 1/j on ;.

To check that v is a generalized barrier at £ for €2, notice first that v is superharmonic
and positive in Q. To see that lim, ,cv(z) = 0, let ¢ > 0 and consider the finite set
Je={jeJ:j<el}. If J. = 2, then u < ¢ on Q. Otherwise, for each j € J. there
exists an open neighborhood Vj of { such that either V; nQ; = @ orv <ein V; n ;. So
letting V' = UjEJE Vj it turns out that V' is an open neighborhood of y where v < e on V.
So lim,_,¢ v(x) = 0 as wished, and thus v is the desired generalized barrier. O
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Theorem 6.32 (Kellogg’s theorem). Let Q@ < R? be open and bounded. Then the set of
irreqular points for Q) is polar. Further, this is contained in an F, polar set.

Proof. By Theorem 6.31, it suffices to show that the set of irregular points for any com-
ponent of € is irregular, taking into account that the number of components is at most
countable and that a finite or countable union of polar sets is polar. So to prove the
theorem we can assume that €2 is connected.

Given a bounded connected set €1, for any £ € 02 let B¢ be an open ball centered in
¢ such that Q@ n 0B¢ # @. Consider the domain Q¢ = Q U (RY\B¢). Notice that € is
an unbounded connected set with bounded boundary, and then by Theorem 6.29 the set
of irregular points for §)¢ is polar (we can assume that Cap(d€)¢) > 0 because otherwise
any subset of d€)¢ is polar) and it is contained in an F, polar set. Now remark that
Be n 0Q < 0§)¢ and that any point from B¢ n 0€2 which is irregular for 2 is also irregular
for Q¢. This follows immediately from Wiener’s criterion for regularity (although it could
be also easily deduced from the characterization of regularity in terms of existence of
barriers). Therefore, the subset of irregular points for € that belong to Bg n 0f2 is polar
and it is contained in an F, polar set.

Finally, since 0€) is compact, there exists a finite covering of d€2 with balls B, for a
finite subset of points &; € 0. By the preceding discussion, the set of irregular points for
2 that belong to B¢, n 0§ is polar. Since a finite union of polar sets is also polar and a
finite unions of F, sets is an F, set, the theorem follows. O

Exercise 6.6.1. Prove that the set of irregular points for an open set Q < R with
compact boundary is itself an F, set.

Hint: This follows from Wiener’s criterion. Indeed, using subadditivity and Proposition
6.16, one can check that an equivalent form of the criterion is the following. A point £ € 0X2
is regular for the Dirichlet problem in 2 if and only if

& Cap(A(z,27%2 27k)\Q)
=N T G

k=1

that is, we may pick open enlarged annuli instead of closed. Now, Cap(A(z, 272 27F+1)\Q)
is lower semicontinuous, so S(z) can be shown to be lower semicontinuous as well. Thus,
the set {x € R""! : §(z) > A} is open and thus the set of Wiener regular point is a G set
(relative to 0€2), and the set of the irregular points from oS is an F,, set.

6.7 Removability of polar sets

Theorem 6.33. Let Q c R? be bounded and open, and let Z < 0Q be a Borel polar set.
Then, for any x € €,
w?(Z) = 0.
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Proof. In the case d = 2, we will assume that 2 © By /5(0). The measure w” is Radon and
thus it is inner regular. Then it is enough to prove the theorem for Z being a compact
(polar) set. Under this assumption, by the outer regularity of capacity (see Lemma 6.7),
for any € > 0 there is an open set V' > Z such that Cap(V) < . By the compactness
of Z, we can find finitely many open balls B;, ¢ = 1,...,m, centered on Z such that

2B; =V n Byp(0) and
Z< |J B

1<is<m

Consider the compact set F = Ulging and let Qf = Rd\E. Since E consists of a
union of finitely many balls, it follows either by Wiener’s criterion or by the exterior ball
criterion in Remark 5.38 that Qg is Wiener regular. Then, by Lemma 6.26, if u stands for
the equilibrium measure for E, the potential U, is continuous in R? and U, = (Cap(FE))~*
identically on FE.

Consider now the function f(z) = Cap(E)U,(z), and notice that it is superharmonic
and continuous in R%, and it equals 1 on E. Also, it is positive in Q since Q ¢ By /2(0) in
the planar case. So we have

W(Z) < W (E) < J fdo®. (6.37)

By definition, letting g = f|aq, the last integral above equals Hy(x). Since f belongs to
the upper Perron class for g, we have Hy(z) < f(x). Thus,

W (Z) < f(x) = Cap(E) Uu(x) < Cap(V) Up(x) < e Uy (). (6.38)

As i is a probability measure supported on F,

Uu(z) = fé'(x —y)du(y) <sup&(zx —y) > sup&(r —y) ase—0.
yeE yez

Since supyez £(z — y) < 0, letting € — 0 in (6.38), we deduce that w”(Z) = 0. O

Definition 6.34. Let 2 be a bounded open set and let F < ) be a compact set. We say
that E is removable for bounded harmonic functions in € if every function f : Q\E — R
which is harmonic and bounded can be extended to the whole € as a harmonic function.

Theorem 6.35. Let € be a bounded open set and let EE < Q) be a compact set. Then E is
removable for bounded harmonic functions in Q if and only if E is polar.

Notice that, in particular, the removability of a compact set E for bounded harmonic
functions does not depend on the bounded open set {2 containing F.

Proof. First we show that if Cap(E) > 0 then E is not removable. To this end, let u be
the equilibrium measure of £ and U, the corresponding equilibrium potential. Then U,
is a bounded harmonic function in Q\FE. Further, it is easy to check that U, cannot be
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extended harmonically to a function f harmonic in the whole 2. Otherwise, f would be
a function continuous in € and harmonic in Q such that maxg f is not attained in 09,
because supy f = Cap(E)~! > maxyq f. So we get a contradiction.

To prove the converse implication, let Q < R? be bounded and open and let E < Q be
a compact polar set. Without loss of generality we can assume that Q c B /2(0) in the

case d = 2. We claim that there exists a Wiener regular open set ) which contains E and

such that Q < Q. For example Q) can be constructed as the interior of the union of finitely
many dyadic cubes of the same size in a suitable way. We leave the details for the reader.
Given ¢ > 0, let V. be an open set such that E < V. and Cap(Vz) < e. By the
compactness of E, we can find finitely many open balls B;, i = 1,..., m, centered on Z
such that 3B; < V; n Q) and
Ec |J B

1<is<m

Consider the compact set . = |J;<i<,, 2B; and let Q. = SNI\F6 Notice that
Q. = 0Q U OF..

For z € €., we bound wg (OF.) as in Theorem 6.33: by considering the equilibrium

£

measure 4 of F;, as in (6.38) we deduce that
wg (0F:) < Cap(Fe) Uy(z) < eUp(z) < C(x)e,

with C(x) independent of € (assuming e small enough).

Next we will show that if f : Q\E — R is harmonic and bounded, then f extends to
the whole {2 as a harmonic function. To this end, let g be the harmonic extension of f|,&
to (2 and fix z € ). Take € > 0 small enough such that x € Q.. Observe that both f and
g are harmonic in Q. and continuous in €. and their boundary values coincide in 9. So
we have

@) —gle) = [ G-y = [ 7-0)deg <1l 505 () S 1 lnaCWe

Since ¢ is a positive constant which can be taken arbitrarily small, we infer that f(z) =
g(z). So we deduce that f = g in . That is, f extends harmonically to the whole Q, just
defining f = g in F. O

Next we will apply some of the results obtained in this chapter to prove an enhanced
version of Proposition 5.48 about the harmonic measure for unbounded open set with
compact boundary.

Proposition 6.36. Let Q c R? be an unbounded open set with compact boundary and let
x € Q). Then the following holds:

(a) If Cap(0Q2) = 0, then w*(02) = 0.
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(b) If Cap(092) > 0 and d = 2, then w*(0Q) = 1, that is, w* is a probability measure.

(c) If Cap(0f2) > 0 and d = 3, then 0 < w*(0N2) < 1 whenever x belongs to the unbounded
component of €.

Proof. (a) Suppose that Cap(d€2) = 0. Recall that
w*(0N2) = ’I’ILII(}O Hi(z) =: Hy(x),

where H7 is the Perron solution of the Dirichlet problem in €, := Qn B,(0) with boundary
data equal to 1 in 02 and to 0 in 5,(0). So Hj(z) = wg, (992). For r large enough so that
o2 < B,(0), we have w (92) = 0, by Theorem 6.33. Thus, H}(z) = 0 for any r large
enough and so w”(092) = 0.

(b) Suppose now that Cap(d©2) > 0 and d = 2. By (5.11), w*(0€2) < 1, so we only have
to show the converse inequality. Consider the function

us =1+eUy,

where ¢ is the equilibrium measure for 0§2. Since U,(x) — —o0 as © — oo, for any
r large enough we have 02 < B,.(0) and moreover u. < 0 on S,(0). Notice also that
u: < 14 Cap(dQ)~! on R2. So the function
1
Vg = u
° 1+eCap(dQ)-1 °
belongs to the class E’}, the lower Perron class in €2, for the function f, which equals f
on 02 and vanishes on S,(0). Thus, for any = € €,
B 1
~ 1+ Cap(0Q)—1
Recalling that this holds for any r large enough, we can take the limit as r — oo to deduce
that the same estimate holds for Hy(z). That is,
1
> (
1+e Cap(0Q)~1
Letting ¢ — 0, we infer that w®(02) = 1, which completes the proof of (b).

Hi(r) = ve(z) (1+eUy(x)).

w®(002)

1+ Uy(2)).

(c) In this case Cap(df?) > 0 and d > 3. Denote by 2, the unbounded component of €.
The same arguments as in Proposition 5.48 show that w®(02) < 1 for z € ©,. So we only
have to check that w*(0€2) > 0. By Theorem 5.42 (c), if £ € 09 is a regular point, then
li “(0Q)= lim H = 1. 6.39
im w?(02) = lim Hy(x) (6.39)
By Theorem 6.18,
Cap(09,) = Cap(R?\Q,) = Cap(dQ) > 0.
By Kellogg’s theorem, the set of irregular points is polar, and thus there exists some
regular point £ € 9€2,. Therefore, (6.39) holds for this point £, and thus w®(0€2) does not
vanish identically in €2,. Since w®(0€Q2) = 0 for all x € 2, by the strong maximum principle
it follows that w”(0€2) > 0 in the whole . O
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6.8 Reduction to Wiener regular open sets

In this section we show some results which will be used later in these notes to reduce the
proof of some properties for harmonic measure in general open sets to the case when these
sets are Wiener regular. More precisely, the results in this section will be used to prove
the Jones-Wolff theorem about the dimension of harmonic measure in the plane and to
show the rectifiability of harmonic measure when it is absolutely continuous with respect
to Hausdorff measure of codimension 1 in R,

Proposition 6.37. Let Q c R? be open with compact boundary and let p € Q. Let Z < 0N
be the family of irreqular points of Q). For any € >0, then there exists a covering of Z by
a countable or finite family of closed balls {B;}ier satisfying the following properties:

(i) The balls B; are centered in 02 and they have bounded overlap.

(11) Cap(UJ;e;2B:) <e.

(iii) € := O\ Uies Bi is open.
(iv) o9 <aQ\Ui€I Bi> U Uies 0Bi.

(v) Q is Wiener regular-.

(vi) For any x € Q, if either d = 2 with Q B1/5(0), or d = 3, we have

wg ( U 2BZ-> <esup E(x —y). (6.40)
iel yed)

In the case when d = 2 and Q is unbounded, suppose that Cap;(02) > 0, that x
belongs to the unbounded component of 2, and that € is small enough. Then,

wg<U2BZ-) < Ct, (6.41)

iel
with C' depending on dist(x, 0$2).

Proof. Let Z < 092 be the subset of irregular points of 092. By Kellogg’s theorem Cap(Z) =
0, and moreover Z is contained in an F, set Zj such that Cap(Zy) = 0. By the outer
regularity of capacity for compact sets and the fact that Z, is an F, set, we deduce that
there exists an open set U containing Zy with Cap(U) < . Now, for each = € Zy we
consider a closed ball B, contained in U, and by Besicovitch covering theorem we find a
subamily {B;}ic; © { By }zez, With bounded overlap which covers Zy, so that the properties
(i) and (ii) in the lemma hold.
Next we will show that the set Q = O\ U;cs Bi is open. Indeed, we claim that

BB <o (6.42)

el iel
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6 Potential theory

This inclusion implies that

Q\(JB: =9\

iel

= Q\UB’L =0

el

(U&\UBZ) ol JB:

iel el iel

and thus ensures that € is open.

To show the claim (6.42) consider z € | J;.; Bi\ ;e Bi and recall that, by construction
each ball B; is closed. Then x must be the limit of a sequence of points belonging to
infinitely many different balls B;,, i € I. It turns out that then we have r(B;,) — 0.
This is a straightforward consequence of the fact that any family of balls B;, j € J < I,
such that dist(Bj,z) < 1 and 0 < e < r(B;) < 1 must be finite, by the finite overlap of
the family {B;}ier. The fact that r(B;,) — 0 implies that x € €2, since the balls B; j are
centered in 0f2.

To prove (iv), write

o0 = 6<Q\UBi> coul JB;=aqu (UBZ-\UBZ) ol B

iel iel i€l iel el
iel el iel

On the other hand, by construction the interior of each ball B; lies in the exterior of SNI,
and thus

o0 = o0\ext(Q) [(aQ\ZLeJIBZ) U ng}\ext(ﬁ) c <ag\gBi> U gaBi,

which proves (iv). R R
Next we check that € is Wiener regular. That is, all the points = € o) are Wiener
regular for 2. We have to show that

i Cap(A(g, 2751, 27" )\Q)
2T Cap(BE 2 1)

= o0

for all z € 0Q. By (iv) we know that either z € (0N Uses Bi) or « € 0B; for some i € 1.
In the latter case we have

Z, Cap(A(€,275 1,27 0\Q) _ & Cap(A(€,2751,27%) n By)
LT Bz ) CA Ce(BE2 D)

:w’

since the complement of any ball B; is Wiener regular. If z € 0Q\ |, B B;, then we know
that = is Wiener regular for Q, because Z < B;. Thus, using just that Q° o Q°, we

obtain

el

Z Cap(A(€, 2751, 279)\Q) _ & Cap(A(€. 2741 279)\0)
27 CapBEE ) /2 Cap(BE2F)
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6 Potential theory

So the proof that Q) is Wiener regular is concluded.

The arguments to prove (vi) are quite similar to the ones for Theorem 6.33. For any
d > 2 we consider any finite subfamily J < I of the closed balls B;, and we let E =
Uics Bi» so that E is compact and Cap(E) < &, by (ii). Since E consists of a union
of finitely many closed balls, it follows either by Wiener’s criterion or by the exterior
ball criterion in Remark 5.38 that Qg is Wiener regular. Then, by Lemma 6.26, if ug
stands for the equilibrium measure for E, the potential U,, is continuous in R? and
U, = (Cap(E))"! >e71in E.

Suppose first that d > 3 or d = 2 with Q = B;5(0). Consider the function f(z) =
Cap(E) U, (z), and notice that it is superharmonic and continuous in R?, and it equals
1 on E. Also, it is positive in £ since Q < B; /2(0) in the planar case. So we have

wg (E) < ffdwé. (6.43)

By definition, letting g = f|.¢, the last integral above equals H,(z). Since f belongs to
the upper Perron class for g in €, we have Hy(xz) < f(x). Thus,

wi(E) < f(z) = Cap(E) Uy, (x) <eU,y(z) <€ zlelgg(x — 1), (6.44)

using that p is a probability measure supported on E for the last inequality. Since the
estimate above holds for any finite subfamily J < I, (6.40) holds.

In the case when d = 2 and Q is unbounded, we can assume that Cap(02) > 0. Then
consider the function

g(x) = UHE (Z‘) - UHaQ (.73),

where 50 is the equilibrium measure for 0€2. Notice that g is superharmonic in  and

1 1

= - = .
g(x) Cap(B) ~ Cap(29) forze E

™ | =

~ Cap(09)

Then for e small enough, g(x) > 2% > 0 on E, and since g vanishes at o0, by the maximum
principle g is positive in the unbounded component of €. Thus, for z in this component,

WL(E) < 22 g(z) = 26(Upp () — Upog ()

Q
€ diamof? + dist(x, 02 € diamo€? + dist(z, 02
== Jlog (=, ) dpp(y) — — flog (=, ) dpe(y)
|z =yl Q |z =yl
< £ Jlo diamoQ + dist(z, 0$2) dus(y) < € log diam@Q + dist(z, 59)’
T |z — y| T dist(z, E)

diamoQ+dist(x,00)
lz—y|
positive in Q. For e small enough, dist(z, E) > 1dist(z, 9Q), and then (6.41) follows. [

is

where in the before to last inequality we took into account that log
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Lemma 6.38. Let Q) R? be open with compact boundary and let p € Q. For any € > 0,
denote by Q the Wiener reqular set Q constructed in Proposition 6.37. In the case d = 2
suppose that Capy,(02) > 0. Then, for any Borel set A < 090,

limw? (4) = wh(A). (6.45)

Proof. In the case d = 2 we can assume that 020 ¢ B, /2(0) by a suitable dilation. Let
A < 09 be a Borel set. Then, by Lemma 5.32,

w (4) =wg (Ando2n 09.) < Wh(A N 0~ 00.) < Wh(A). (6.46)

To estimate wg,(A) in terms of wg (A), observe first that

wh(0Q) < Wl (20). (6.47)

Indeed, either if d = 2 or €2 is bounded, then both terms above equal 1, and in the case
when d = 3 and (2 is unbounded observe that the function

Wt (0Q.)  ifze,,
u(z) = {2 ~
1 if z e RNQ,,

is continuous in R? (because KNZE is Wiener regular), it is superharmonic in R?, and it tends

to 0 at o0. Then, from the definition of harmonic measure in unbounded domains with

compact boundary, it follows easily that w§(0€) < u(z) for all x € 2, which gives (6.47).
Applying (6.46) to 0\ A, using (6.47) and Lemma (5.47), we get

WP (A) = Wh(0Q) — wh(ONA) < Wb (09) — Wb (02 A 00\A)
<l (00) — W (09 N 0Q\A)
= Wl (00\00) + W (09 N Q) —wl (00 N 0O\A)
= Wl (00\00) + W (09 1 00 N A)
= wge(aﬁe\ag) +w (A).
Hence, N
w2 (A) = wh(A)] < B (090:\09). (6.48)

Since (9Q€ is contained in the union o~f the balls B;, i € I, in Proposition 6.37, by the
property (vi) in the proposition w% (092:\092) tends to 0 as € — 0. O

Notice that, by (6.48), the convergence in (6.45) is uniform with respect to the set
A c 00.
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7 Harmonic measure and Green function in
Wiener regular open sets

In this section we will assume that €2 is an open Wiener regular set.

7.1 The Green function in terms of harmonic measure in
bounded open sets

For a bounded open Wiener regular set Q c R%, we may write the Green function in terms
of harmonic measure. Let us see how.
Given z € €2, define the harmonic extension

v¥(y) == — f«g E¥(z)dwY(z) for yeQ, (7.1)

where £% is the fundamental solution of the minus Laplacian with pole at x. Note that

E* is continuous in z € 0 and 2 is Wiener regular, so v* € C(2) and its boundary values
are opposite to those of the fundamental solution. Thus,

G (y) = {Ex(y) + v (y) for y € Q\{x},

| (7.2)
0 otherwise,

is continuous away from the pole, and harmonic in R4\ (0Q U {z}).
Thus, in a sense G is the continuous solution to the Dirichlet problem

—AG* =4, in Q,
G*=0 on 0f).

Lemma 7.1. Let Q < R? be a Wiener regular bounded open set. The Green function for
Q is non-negative in 2, and positive in the component of 2 that contains x. Further, it is
subharmonic in R4\ {z}.

Proof. To prove the first statement, notice that G* = 0 in any component V' of €2 which
does not contain x, by the maximum principle, since G* is harmonic in V and vanishes
continuously in 0V. If V, is the component of € that contains x, we consider any € > 0
small enough such that By.(z) < V,, and we set V. = V;\B:(z). For ¢ small enough,
G® > 0 in 0B.(x), and then by the maximum principle, it follows that G* > 0 in V, .. So
G* > 0in V,.

Regarding the second statement, using the maximum principle for harmonic functions,
one can check that the Green function satisfies the condition in Lemma 5.8, implying the
subharmonicity of the Green function (7.2) away from the pole. O
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7 Harmonic measure and Green function in Wiener regular open sets

Here there is a small trouble. We have defined the Green function in two different
ways, solving the Dirichlet problem in the Sobolev sense and in the continuous sense.
Fortunately, both definitions coincide in Wiener regular open sets:

Lemma 7.2. Let Q < R? be a Wiener reqular bounded open set. Let v® and G* be defined
asin (7.1) and (7.2), and let * be a bump function satisfying X B,,(z)c < ¥* < XB,(x)e for
t < 3dist(z,0Q). Then v* € HY(Q), and »*G* € H} (). So G* coincides with the other
Green function defined in Section 3.2. In particular the Green function is symmetric and
G® e WLP(Q) for every p < 7%

Proof. First we will check that G € H'(Q\Bs(x)). Since € is bounded, it is enough to
check that |G®| ;1 (p~q) < +o0 for every ball B such that 2B n By(x) = . To show this
fact we will use Caccioppoli inequality, but in order to apply it, we need to know a priori
the finiteness of the L? norm of the gradient. To avoid a circular argument, we need to
define

ue(y) := max{G”(y) — ¢, 0} for y € Byy(x)°. (7.3)

Let us check the properties of u.. First, since G* € C*(Q\Ba(z)), we can infer that

u. € H'(2B) (see [EG15, Theorem 4.4]). On the other hand, since G* is subharmonic
away from the pole (see Lemma 5.7), also u,. is subharmonic. Moreover, it is non-negative.
Finally, we can apply the Caccioppoli inequality and the maximum principle to get

f Vuel? < r(B) j fuel? < r(B)2 j (G")? < r(B)* max (G,
B 2B 2B 0Bat(x)

which is independent of €.

By the monotone convergence theorem, we get

J IVG*|* = limf |Vu:|> < r(B)? max (G¥)? < +oo0,
BnQ 0B 0By (x)

ie.,

G® e H'(Q\Bsi(x)),

and thus v* = G¥ — €% € H'(Q\Bsi(x)) as well. Since it is C® in a neighborhood of the
pole, we get v € H(().
It remains to check ¥*G* € H}(2). For every y € Q define u.(y) := max{y*(y)G*(y) —
e,0}. Then
lim e (y) = " (y)G*(y), and  lim Vue(y) = V(" G7)(y).

£

Moreover, by the triangle inequality

lue = V"G i1 gy < luel gy + WG o) < 200° G| 1 ()

Thus, by the dominated convergence theorem, we get

lue — " G| == 0.
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7 Harmonic measure and Green function in Wiener regular open sets

Note that u. is compactly supported in Q\B(z), and it is Lipschitz. Thus, we have
shown the existence of Lipschitz functions (not C™ in general) with compact support
converging to ¥*G?® in the Sobolev norm. Proving that this implies that Y*G”* € H&(Q)
is an exercise left for the reader.

Now, v* is the harmonic extension of a continuous function, and hence weakly harmonic
by Theorem 2.3 and integration by parts. Moreover,

VP PTET = v (1 — %) + PG e HY(Q).

Thus it is the unique weak solution to (3.7) in the sense of (3.3), see Corollary 3.4. That
is, both definitions (3.7) and (7.1) of v* coincide. Therefore, both definitions of Green
function coincide as well, and Lemmas 3.5 and 3.7 apply. O

Remark 7.3. In fact, when a Sobolev function vanishes continuously in the boundary, its
gradient can be extended by zero in the complement of the open set, the proof is similar to
[EG15, Theorem 4.4]. Thus, we have shown that G* € H'(R?%\ B.(x)), with VG*(y) = 0
for y € Q°.

For 2 € R\Q and y € Q, we will also set
G*(y) = 0. (7.4)
This choice, together with Lemmas 3.7 and 7.2 implies that
G*(y) = GY(z) for all (z,7) € RY x R4\ (Q° x Q°) with z # y. (7.5)

Note that the equation (7.2) is still valid for z € R\Q and y € Q. The case when z € 92
and y € Q is more delicate and the identity (7.2) may fail. However, we have the following
partial result:

Lemma 7.4. Let Q < R? be bounded and Wiener reqular and let y € Q. For m-almost all
x € Q° we have

E¥(y) — o E¥(z)dwY(z) = 0. (7.6)

Clearly, in the particular case where m(0€2) = 0, this result is a consequence of the
aforementioned fact that (7.2) also holds for all x € R1\Q, y € Q, with G*(y) = 0.

Proof. Let A — Q° be a compact set with m(A) > 0. Observe that the potential Uy :=
Uyam = € * x4 is continuous, bounded in R?, and harmonic in A€, see Remark 6.6. Then,
by Fubini we have for all y € 2,

LGWF%fMWWOmw=W@—&Lﬁ@mmmw)
=Ualy) - f Ua(z) dw?(z) = 0,

o0

using that Uy is harmonic in Q < A¢ and bounded on 052 for the last identity. Since the
compact set A < ¢ is arbitrary, the lemma follows. 0

127



7 Harmonic measure and Green function in Wiener regular open sets

Remark 7.5. As a corollary of the preceding lemma we deduce that

G*(y) = E%y) — E*(2)dw¥(z) for m-a.e. x € R%
o0

Lemma 7.6. For all x € Q and all p € C*(RY), we have
fgodw —p(x J ApG¥dm = — f Ve -VG*dm.

Proof. The first identity follows from Lemma 3.7 and (7.4), the preceding remark, and
Fubini. Indeed,

L Ap(y) G*(y) dy = fRd Ap(y) GY(x)dy = fAsO(y) (5‘”(93) -
— (Ap#£)(x) - L (B8 ()
— —p(a) + L () (2)

EY(z) dwx(z)> dy

o2

The last identity in the lemma follows integrating by parts and a density argument if
v € CP(Q2). Thus we can reduce to the case = ¢ supp ¢. Replacing G* by u. as in (7.3),
we get

JV (usVep) =0

by the divergence theorem. Thus, the last identity follows by letting € — 0, since

UV —u:) V] dm' IVG® - V| dm + €f |Ap|dm =99,
Q

{ye:G (y)<e}

d

Notice that, by the preceding lemma, in the sense of distributions, that is in the dual
space D'(R?) (here, as in the literature in functional analysis, D stands for C® functions
with compact support, equipped with a certain topology, see [Rud91, Chapter 6]), we have

AG* = w* —§, forall z €.

For smooth domains with smooth Green function, we have the following;:

Proposition 7.7. Let Q < R? be a bounded C' domain, x € Q and suppose that G* €
CL(Q\By(x)) for somet > 0. Then

= —(0,G") o

where v is the unit outer normal to 02 and o is the surface measure on 0f).
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7 Harmonic measure and Green function in Wiener regular open sets
Proof. Tt suffices to show that for any p € D = C*(R%) it holds

f o du®(y) = — f (1) ,G7 () do(y).
o0 o0

We may assume that ¢ vanishes in a neighborhood of x by modifying suitably ¢ far away
from €2, since the domain of integration in both integrals above is 0€). So consider r > 0
such that Bs.(z) < Q and suppy RN By, (z). Denote Q" = Q\B,(x). Using that G®
is harmonic in Q" and that ¢ vanishes in Bs,(x), by Lemma 7.6 and Green’s formula we
have

Jeder = | Acwewan - | acw 6w

—f ¢(y) 0G*(y) do(y) = —f o(y) .G (y) do(y).
oar o0

Lemma 7.8. Let B be a ball centered in 00 and let x € Q\2B. Then,

w'(B) £r(B)"* 1+ G*(y)dy.
2B

Proof. Let ¢ be a bump function such that xp < ¢ < Y2 with |[D?y| < T(]lg)Q. By

Lemma 7.6, we have

w*(B) < Js@dwx = IAsO(y) G*(y)dy < r(;)2 LB G*(y)dy = r(B)*? ) G*(y) dy.

O]

As we shall see in further chapters, when 2 is an NTA or CDC uniform domain, for x
and B as in the preceding lemma, we have

w(B) ~ 7‘(B)d*2 G*(XB),

where Xp is an interior corkscrew point for B. One can view the result in the preceding
lemma as a weak version of the estimate w®”(B) < r(B)42G%(Xp). In the next sections
we will obtain some estimates in the converse direction.

7.2 The Green function in unbounded open sets with compact
boundary

Let © < R? be a Wiener regular unbounded open set with compact! boundary. In the
case d = 3, we defined the Green function for 2 in the same we did for bounded open sets.

1'We assume compact sets to be non-empty.
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7 Harmonic measure and Green function in Wiener regular open sets

That is, given x € (), we consider the harmonic extension

vi(y) = — | E%(z)dwY(z) foryeQ, (7.7)
o0

Then we define the Green function with pole at = as follows:

Cly) = {6%) +o(y)  fory e \fal, %)
0 otherwise.

Notice that G* is continuous away from the pole, harmonic in RN\dQ, and G*(y) — 0 as

y — 0.

In the case d = 2 we cannot define G* as above because otherwise this will have a pole
at 00, which is not convenient. Instead we want G* to be bounded at co. If € is not
dense in R?, we can take a point & € R2\Q and we can define G* as above, replacing £*
in (7.7) and (7.8) by £ — £5. Notice that £* — £ has a logarithmic singularity (i.e., a
pole) at z, it is continuous in 0€2, and it is bounded at co. Then it easily follows that the
Green function G* defined in this way has a pole at x, it is bounded at oo, and vanishes
continuously on 0f2.

For an arbitrary Wiener regular unbounded open set with compact boundary in the
plane, we define G* as in (7.7) and (7.8), replacing £* by £*—U,, where 1 is the equilibrium
measure for 02. Again it turns out that the Green function G* defined in this way has
a pole at x, it is bounded at oo, and vanishes continuously on 0€). Indeed, recall that
the equilibrium potential is continuous in R? when € is Wiener regular by Lemma 6.26.
Further, this can be written as follows, for y € €2,

G*(y) = E°(y) — Uply) L KGR

1 ly — ¢ 1 |z — ¢
N du(€) — — 1 du(€) dw? ().
or ) %8 T () 5 LQLQ P p(§) dw?(z)

The analog of Lemma 7.1 holds for unbounded domains with compact boundary:

(7.9)

Lemma 7.9. Let Q < R? be a Wiener reqular unbounded open set with compact boundary.
The Green function for € is non-negative in €2, and positive in the component of 1 that
contains x. Further, it is subharmonic in R¥\{x}. In the case d = 3, G* vanishes at o,
and in the case d = 2, it is bounded at o0

The proof is similar to the one of Lemma 7.1 and we leave this for the reader.
Next we show that the Green function G? is “locally” in the Sobolev space H}(f2). More
precisely:

Lemma 7.10. Let Q < R? be a Wiener reqular unbounded open set with compact boundary
and let x € Q. Let G* be defined as in (7.8) in the case d = 3 and as in (7.9) in the case
d=2. For0<t< %dist(:c,é’Q), let * be a bump function satisfying X p,,(z)e < P <
XBy(z)e- For any r > 0 such that 0 < B,(0), let 1, be a bump function such that
XBy(z) S Ur < XByy (). Then " 1, G* € Hy(Q).
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7 Harmonic measure and Green function in Wiener regular open sets

The arguments for this lemma are similar to the ones for Lemma 7.2 and so we omit
them again.

Lemma 7.11. Let Q < R? be a Wiener regular unbounded open set with compact boundary.
For r > 0 such that 0Q < B.(0), let Q. = Q n B.(0). For x € Q and r > |z|, let G*

and GT be the respective Green functions for Q and €, with pole at x. Then GF — G as
r — o0 uniformly on bounded sets.

Proof. In the the case d = 3, for z,y € Q with x # y, we have

G*(y) = &(y) — o E€7(2) dwgy(2).

The same identity holds for G, replacing 02 and wq by 0€2, and wq,, respectively. Thus,

Gry) = G*(y) = msx(z)dwg(z)— o £%(2) dwg, (2)

:( £7(2) dus () — 5x(z)dw%T(z)>—f £7(2) dw) (2).
o0 o0 2B,(0)

By Remark 5.44, the term in parentheses on the right hand side tends to 0 as r — c0. On
the other hand, the second term can be bounded as follows:

f E¥ () dwd ()| <
8B,(0) "

which also tends to 0 uniformly on bounded subsets of (2.
In the case d = 2, the Green function G* for Q can be written as in (7.9). The Green
function G¥ for 2, can be written in a similar fashion, for y € Q,:

x _i ly — ¢ s y
G = 5 L91°g|y—x| ©) LQ Lﬂlg|z_w| W€ dwf, (). (7.10)

Here p is the equilibrium measure for 0€2. To check the preceding identity, notice that
is a probability measure and we have

1 , 1
dist(x, 0B,(0))4—2 wa, (0B:(0)) < dist(z, 0B, (0))4-2’

1 1
27rJ:mlog ly — & du(€) — o LQT LQ log|z — &| du() dW%T(Z) =0,

because the Uy, (y) = —% §5010g |y — €| dpu(€) is harmonic and continuous in Q,. Then, by
(7.9) and (7.10), we get

2m(Gr )~ 60) = || 1og |Z_ ) at) = [ [ tom TS du(e) ()

= _ Y _ |Z B 5‘ Y :|
Um Lglog 2| Lauce) dwq () LQ Lﬂlog 7o) WO dwg, ()
|Z B 5‘ y
- d d .
LBT(O) LQ log 2 — 7] () WQT(Z)
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7 Harmonic measure and Green function in Wiener regular open sets

By Remark 5.44 (applied with f(z) := £%(2) — Uyu(2) = &= §, log t:il du(§)), it follows
that the first term in brackets tends to 0 uniformly in bounded subsets 0% Q. Using the fact
that f(z) — 0 as z — o0, we also get easily that that the last term tends to 0 uniformly
in bounded subsets of (2. O

Thanks to the preceding lemma, many of the results obtained in the previous section
for the Green function in Wiener regular bounded open sets can be extended to the case
of unbounded open sets with compact boundaries. First, we easily get that the Green
function is symmetric:

Lemma 7.12. Let Q < R? be a Wiener regular unbounded open set with compact boundary.
For all x,y € Q, with x # y, the Green function for Q0 satisfies G*(y) = GY(x).

Proof. Let Q, = Q n B,.(0), with » > 0 big enough so that Q2 c B, (0) and z,y € Q,. Let
G, denote the Green function for €2,.. Then we have

G*(y) = lim Gy (y) = lim GY(z) = GY(x).

r—00 r—00

From now on, quite often we will write

G(x,y) = G"(y) = GY ().

Lemma 7.13. Let Q < R? be a Wiener reqular unbounded open set with compact boundary.
For all x € Q and all p € C*(RY), we have

fso dw®(y) — p(z) = L Ap(y) G*(y) dy = — L Vo(y) - VG*(y) dy.

Proof. The first identity follows from the one derived for bounded open sets in Lemma 7.6
and from the uniform convergence of G to G* in bounded subsets of © (by Lemma 7.11)
and the weak convergence of wg to w® (by Remark 5.44). The second one follows from
the first one by integration by parts. O

Proposition 7.14. Let Q < R? be a domain with compact boundary 0Q = E U v where

E is either compact or empty, v is a C' curve and E n~vy = &, and let x € Q. If
G* e CYQ u7), then
W’y = —(0,G") o,

where v is the unit outer normal to v < 0N and o is the surface measure on .

Proof. This follows from the preceding lemma, arguing as in Proposition 7.7. O
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7 Harmonic measure and Green function in Wiener regular open sets

Lemma 7.15. Let Q < R? be a Wiener reqular unbounded open set with compact boundary.
Let B be a ball centered in 02 and let x € Q\2B. Then,

W'(B) sr(B)7P 4 GT(y)dy.
2B

Proof. This is proven in the same way as Lemma 7.8 for the case of bounded open sets. [

7.3 Newtonian capacity, harmonic measure, and Green’s
function in the case d > 3

In this whole section we assume that €2 is a Wiener regular open set with compact boundary
in R, with d > 3 (Q either bounded or unbounded).

Lemma 7.16._Let d > 3 and Q < R? be an open Wiener regular set with compact
boundary. Let B be a closed ball interesecting centered at 02. Then

w*(B) = c(d) CE;I()(B)féQ) forallze 1B nQ,

with ¢(d) > 0.

Proof. We can assume that €2 is bounded. Otherwise, the estimate above follows from the
analogous estimate applied to €2, = Q2 1 B;(0) letting r — oo. )
Let u 150 be the equilibrium measure for 1 B\Q, and let p = Cap(3B\Q) 1 B\ SO
4

that |Uy[e < 1 and ||| = Cap(1B\Q). Notice that, for all z € B,

el
0= | ) < Cr(B)TE

Consider the function f(z) = U,(z) — %. Using that f(z) < 0in B¢, f(z) <1
4

in B, and that f is harmonic and bounded in ©, by Corollary 5.36 and the maximum
principle we deduce that, for all = € €,

In particular, for = € iB N 2 we have
(D Cd cdH:U’H
(B) = f_ dp(y) — 35— =nas
|z —y|i=2 (§r(B))d-2

cal| calil ot
> WmyT Gy

)d 2) Cap( B\Q)

4
3 T(B>d72 ’

which proves the lemma. O
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7 Harmonic measure and Green function in Wiener regular open sets

Remark 7.17. In fact, a quick inspection of above proof shows that Lemma 7.16 also
holds assuming that %B N ) # @ instead of assuming that B is centered at 0€2. Notice
also that the lemma is trivially true if iB\Q =g.

Lemma 7.18. Let d > 3 and Q < R? be an open Wiener reqular set with compact
boundary. Let B be a closed ball centered at 0Q2. Then, for all a > 2,

w®(aB) 2 inf w¥(aB)r(B)¥2G%(y) forallze Q2B andye BnQ,  (7.11)
z€2BNQ

with the implicit constant independent of a.

Proof. We can assume that €2 is bounded. Otherwise, the estimate above follows from the
one applied to ©, = Q n B,(0) letting r — co.

Fix y € BN and note that for every x € 9(2B)nQ we have inf,_, 5. w?(aB) < w*(aB)
and, therefore

1 c cw®(aB)

G* < E&* ~ < —— < - -, 7.12
W <EW ™ a2 < (BT < 1B T g ger@l) Y

Let us observe that the two non-negative functions

u(z) = ¢ G%(y) r(B)42 Ze;%fﬁng(aB) and v(z) = w”(aB)

are harmonic, hence continuous, in Q\B. Note that (7.12) says that u < v in 9(2B) N Q
and hence limg, o535, (v —u)(2) = (v —u)(x) = 0 for every x € d(2B) N Q. On the other
hand, for a fixed y € B n Q, one has that limgs, ., G*(y) = 0 for every x € 0. Gathering
all these we conclude that
liminf (v—wu)(z) =0
Q\2B3z—z

for every x € d(2\2B). The lemma follows by the maximum principle. O

Combining the two preceding lemmas, choosing a = 8, we obtain:

Lemma 7.19. Let d > 3 and 2 < R? be an open Wiener reqular set with compact
boundary. Let B be a closed ball centered at 0S). Then,

w*(8B) 24 Cap(2B\Q) G*(y)  for all z € Q\2B and y € B n . (7.13)

We will show in Chapter_S that, in the case when Q is an NTA domain, we have
w?(8B) ~ w*(B) and Cap(2B\Q) ~ Cap(B) = r(B)?2, so that we recover the estimate

w*(B) 2 r(B)*? G*(y),

for y € %B. Thus, Lemma 7.19 can be considered as a weak version of the converse
inequality to the one in Lemma 7.8.
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7 Harmonic measure and Green function in Wiener regular open sets
7.4 Logarithmic capacity, harmonic measure, and Green’s
function in the plane

Lemma 7.20. Let Q < R? be a Wiener reqular open set with compact boundary and let
B be a closed ball centered at 0. Then

_ 1 1 _
*(B) 2 __ = _ llaze ;BN
w*(B) 2 o Gap (B) " (B) forallz e B n
Capy,(;5\Q) Capy,(;B\Q)

Remark the estimate in the lemma is equivalent to saying that

_ |
x
wi(B) = T T

Capy (1B\Q)  Capy/(B)

for all z € %BmQ.

Proof. We can assume that € is bounded by proving first the estimate above for ; =
Q2 n B;(0) and then letting ¢ — 00. We denote r = 7(B). Replacing 2 by 4—1T Q if necessary,
we can assume that diam(B) < 1. Then, denoting E = 1B\, identity (6.14) holds.

Let u be the optimal measure for the supremum in (6.14), so that suppuy ¢ E, u(E) =
Capy, (F), and the potential U, = & * u is harmonic out of E and it satisfies |Uy[ < 1.

For all z € 1B and all y € E we have |z — y| < 1 r. Therefore,

:% 2 T r

1 1 1 2 E 2 _
Uu(2) Jlog [P du(y) = — Jlog - du(y) = M;) log — for all z € 1B.

Also, for z € B¢, we have dist(z, F) = 37(B), and thus

3
1

1 4 w(E) 4
Uu(z) < — . =" log — c,
u(2) 5 flog 3 du(y) 5 log 3 for all z € B

Consider now the function

pE) , 4
—u, - B e 2
f=Up 2m o8 3r
Observe that
pE) 2 pE) 4 pE) . 3 15
f(Z) > ? log; — 7 log ? = o 10g5 fOI‘ all S ZB

and
f(z) <0 for all z € B€.

Combining the maximum principle with Corollary 5.36, and using the fact that x € %B N

we deduce that 5 5 a 5
(B s J@) L _pE) |8 Copy(E)

= og —
supf =~ 2w sup f 2 sup f
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Regarding sup f, taking into account that |U,|«x < 1, it is clear that

1 4 1 4 1 1
<l——log—u(E)=1— — log— C F)<l——log-C E).
sup f 5 108 3 w(E) 5. 108 5 apy (F) 5. 108 apy (F)
Therefore,
_ C E 1 1
w®(B) apyy ( ) _ _ .

O]

Remark 7.21. It is easy to check that the constant 1/4 in the preceding lemma can be
replaced by any constant « € (1/4,1/3), with the implicit constant depending on a.

Lemma 7.22. Let Q < R? be an open Wiener reqular set with compact boundary and let
B be a closed ball centered at 0S2. Then, for all a > 2,

w'(aB) 2z inf w*(aB) J[ |G*(y) — mp(G®)|dy for all x € Q\2B. (7.14)
z€2BNQ B

Proof. We can assume that €2 is bounded by proving first the estimate above for €; =
QN B(0) and then letting ¢ — oo.

Let f(z) = _w'@B) ___ Thep (7.14) can be written as

inszZBmQ w? (O’B)
}B G (y) — m5(G™)| dy < f(z).

Consider a continuous function ¢p such that xs5 < ¢ < xz5. For x € Q\2B, we
2 4
write using (7.5)

2 G7(y) = 2w GY(z) = log —— — f log —— dw(€) = 1 (4) + ga(y),

|z —y|

1
1€ -y
with

- f(l ~ o5(6)) log —— du(€)

1
1€ =yl
and

1 X
2:0) = - [ 0(©) log = ™€),

for every fixed x. We will treat separately the local and the non-local parts:

o Jf G (y) — mp(G™)| dy < Jf 1 — mpgi| dy + Jf g2 — mpgaldy = I + L.
B B B
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First we will estimate the local term I». To this end, let  denote the radius of B and
let

%(y)——f <>1og|§4 4 (6),

so that go = go — C(B, ), for a suitable constant C(B,r). Then we have

I = J[ 52— mpialdy < 2mBrggrzﬂwB &) log " du(€) dy

4r
K yl
2 LB J[B log |§—y| dy du™( LB J[ B(e,3r) 10g — | dy & (0),

By a change of variable, we have

J[ log ar J[ log—dy—C
Beary 1€— y| 30,3 1Yl

_ _ 2B
L <w(@B) <w(aB) < — B4
1nfzeZBmQ w* (GB)

and thus

for any a = 2.
To deal with the non-local term I;, we write

s f | o -a@ldde
<:&:ﬂ [z = 2| fﬂ—wB@Dk%

[z —y|
Ay . (x) = log

=P

1 (&) dy dz.
og K_y‘W(O ydz

Denote
€ — 2|
€ —yl

|z — 2|
|z —y|

- f(l () log £ e,

so that

Iy < sup [Ay . (2)].
y,2€B

To estimate A, .(x) (for y,z € B) notice that both A, , and f are harmonic in Q\2B.
Further, since

= -2

=yl [§—yl

~ 1 for aller\QB,fe&Q\%B, and y, z € B,

we infer that ) B
|Ay -(z)| <1 forall z e Q\2B and y,z € B.

Further, using (5.6) it is immediate to check that

thCA () =0 for all ¢ € 9Q\2B and y, z € B.
2r—
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On the other hand,
flz) =1 for all z € Q N aB

and
f(z) =0 for all z € Q.

Then, by the maximum principle, it follows that

Ay.(x) <C f(x) for all z € Q\2B and all y, 2 € B.

Consequently,
I = Ii(z) < sup |Ay:(2)] < f(2).
y,2€B
Together with the estimate we obtained for I, this proves the lemma. ]

Lemma 7.23. Let Q < R? be an open Wiener regular set with compact boundary. Let B
be a closed ball centered at 0S2. Then,

>, CapL(B) ? D 15
G*(y) < w"(8B) <log —_— for allz e Q\2B andye B n Q. (7.15)
CapL(iB\Q) °
Proof. We can assume that €2 is bounded by proving first the estimate above for ; =
Q2 n By(0) and then letting ¢t — oo.
To prove the lemma we will estimate {1 5G"(z)dm(z) in terms of §|G"(2) —
4

mBGx’_dm(z_) and then we will apply Lemmas 7.22 and 7.20.
Let B = B,(§), with & € 0Q. For l%r < s < r, consider the open set Qg5 = B(§) n Q.
Then, for all z € Q\2B and y € iB N Q, we have

G(y) = L () e () - LB G )

where wq, is the harmonic measure for €25 and we took into account that G*(z) vanishes
when z € 0Q2. Notice that €2; may not be connected, in this case the harmonic measure is
defined to be zero outside the boundary of the component containing the pole.

Remark that, for all y € 1B n Q there exists some function p¥ : 0B,(£) — [0, ) such
that

H'lon.(©
Yy — Y SAS)
wa, |635 (€) = Ps s

)

with [[p?] s < 1. This follows easily from the fact that, by the maximum principle,
wh () < w%s(g)(E) for all E < 0Bs(§)

and the explicit formula for w%s (¢)» €@ Example 5.27. Writing

() = g (o),
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by Fubini we have

where p¥ is the measure

10

() = 2|z — ¢

pY(2) dm|A0.9r,r(§) (2).

Averaging (7.16) over y € iB and applying Fubini, we get
mi g Jf | pE@dy = [ G, (@)
4 AO 9r, r AO.QT‘,T‘(&)

10
du(z) = p(2) dm|AO497‘,r(§) (2), plz) = m J[l B

where

understandlng that p¥(z) = 0 when y ¢ Q. Notice that |p|ls, < 772, since |pY]ls < 1 for
all y € B
Observe now that, by Lemma 7.20 and the subsequent remark, we have

1
wo, (Bo.gs(§)) 2 5 for all y € Bo.2gs(§) N Q.

tog Capp,(Bo.29s(£)\)

Since %B C Bo.ags(€) for 1%7’ < s < r, we infer that

1 1

W%S(Bo.gs(f)) Z 5 ~ 7 for all y € iB N Q.

B (0B % Cap(1B\Q)

Thus,
w, (0Bs(£)) < 1 — eo,

where
c

€0 = T )
og—F———
CapL(iB\Q)

for some ¢ > 0. Thus,

— 4 (0B; <1-e
L5 017 )y o, £0s(OBs(8)) ds ly €0

il = o) = f o1 |

Next we consider the measure
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so that ) )
_ _ €0

5 < V(B> = 5(,&(3) +1) < 1—5.

From (7.17) and this estimate we infer that
@ =5 [ @@ om0
AO 9rr
x <0 T
J[ G*(z)dv(z ( 2) J[BG (2) dv(z).
Therefore,
J[ G*(z)dv(z J[ G*(z)dv(z mip 5G° (7.18)

< ’ J[ G*(z)dv(z) — mBG“J’ + ‘mgGm - miBG‘”‘
B
< J[ |G*(2) — mpG*| dv(z) + J[ |G (2) — mpG*| dm(z).
B B
Recall now that v(B) ~ 1 and that

1
== + = ) 5 =:pmla,
v 2<pXAO<9T,T(§) m(%B) X1p mlg =: pml|z

it is clear that 5] o5y < r~2. Hence,
{ l67@) —mplavt) < 5 [ 167) = mp|dma)
< J[B |G*(2) — mgG*| dm(z).
By the definition of v, (7.18), and the preceding estimate, we obtain

%0 %BG”(Z) dm(z) < 520 J[B G(2)dv(z) < J[B‘Gx(z)—mBGx’dm(z)7

From the preceding estimate, taking into account that G* is subharmonic in R?\{x} and
using Lemmas 7.22 and 7.20, for all y € %B we get

][ G*(z)dm(z) < J[|G$ — mpG*|dm(z)

W' (85) log w*(8B) log St log r
~inf,eop.qw?(8B) CapL( B\Q) CapL(QB\Q) Capy(3B\Q)

2
S W (85) (logcmm> |
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Notice that, in the case when € is an NTA domain, we have w® (8B) ~ w®(B) and
Capr,(3B\Q) ~ Capy(B) = r(B), so that we recover the estimate

w*(B) = G*(y),

for y € %B, as in the case d > 3.

7.5 Capacity density condition

7.5.1 The CDC and Wiener regularity

Let © < R be an open set in R? and let ¢ € 0Q and ry > 0. We say that 2 satisfies the
(&,70)-local capacity density condition if there exists some constant ¢ > 0 such that, for
any 7 € (0,79),

Cap(B,(£)\Q) = c¢r®? in the case d > 3,

and

Cap; (B ()\Q) = cr in the case d = 2.

We say that Q satisfies the capacity density condition (CDC) if it satisfies the (£, ro)-local
capacity density condition for all £ € 09 and all ro € (0,diam(0f2)) and moreover Q¢
contains more than one point. For example, a Jordan domain in the plane satisfies the
CDC, or more generally, any planar bounded domain whose boundary consists of finitely
many curves (we do not allow degenerate curves consisting of a single point).

The CDC can be understood as a strong form of Wiener regularity. In fact, we have:

Proposition 7.24. Let Q ¢ R? be an open set with compact boundary and let £ € 0 and
ro > 0. If the (§,ro)-local capacity density holds for Q, then & is a regular point for the
Dirichlet problem.

As a corollary, if Q satisfies the CDC, then it is Wiener regular.

Proof. This is an easy consequence of the Wiener criterion, more precisely of the impli-
cation (b) = (a) in Theorem 6.23. Indeed, we just have to check that the (&, rp)-local
capacity density condition implies that

§h Capld(e. 212\
27 Cap(B(§,2°F))

As shown in Remark 6.24, in the case d > 3 this is equivalent to the fact that

£, Cap(By-1(9)\Q)
24 Cap(B +(©)

= 0.

Now we just have to observe that (&, rog—local capacity density condition is equivalent to
the fact that Cap(B,(£)\Q2) = ¢ Cap(B,(£)) for 0 < r < rg, which clearly implies the
above estimate.
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The case d = 2 is a little trickier. Notice first that, for r € (0,1) the estimate
Cap,(Br(§)\Q) = cr implies that

Capyy (B >\Q> logm _logt  logy 1

assuming r small enough in the last inequality. Observe now that Capy, (B,4(§)) =
1 Capyy (B, (€)). Then, by the subadditivity of Capy, we deduce

< Capy ((Br(§)\)\B,4(€)) + Capy (B,4(§)) _ Capw (Ar4,(9)\Q) L1

Capyy (B:(€)) Capy (Br(¢)) 4

N | =

Hence _
Capyy (A,1,(€\) _ 1

Capy (B:(€))  ~ 4
Now we can estimate the Wiener’s series from below as follows, considering jo large
enough,

(7.19)

Capy (A6, 27571, 277)\)
j;() 4J<k<24j+1—1 Capy, (B(€,27F))
Capy (A(€, 27471, 27\0) v Capyy (A€, 24, 2-)\0)
> & vl T D IR R TR

By (7.19), each of the summands on the right hand side is at least 1/4 and so the sum is
infinite. O

Jj=Zjo 49<k<4itl—1 Jj=jo

Remark 7.25. By Lemmas 7.16, 7.20, 7.19, and 7.23, if €) satisfies the CDC, then it holds
w*(B)z 1 forallze 1B nQ,if r(B) < diam(o9Q) (7.20)
and

G (y) < W(B(;?i)z for all z € Q\2B and y € %B N Q, if 7(B) < diam(09), (7.21)
r

with constants depending on the CDC.

Remark 7.26. It is immediate to check that if Q and Q' are open sets in R? satisfying
the CDC, then Q n Q' also satisfies the CDC.

Exercise 7.5.1. Let @ — R? be an open set with compact boundary and let & € 0.
Prove that if there exist ¢ > 0 and a sequence of radii rz — 0 such that

Cap(B,, (6)\Q) > crg 2 in the case d > 3

and
Capy (By, (£)\Q) = cry, in the case d = 2,

then £ is a regular point for the Dirichlet problem.
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7.5.2 Holder continuity at the boundary

Lemma 7.27. Let Q < R? be an open set, let £ € dQ, and let r > 0. Suppose that
Q N B,(&) is Wiener regular, and Q0 satisfies the (§,7)-local capacity density condition
with constant c¢. Let u be a nonnegative function which is continuous in B, (&) N Q and
harmonic in B.(§) n 2, and vanishes on B, (§) n 0Q2. Then there is a > 0 depending on ¢
(but not on r) such that

u(z) < <M>a sup u  for all x € QN B.(§). (7.22)
r Br(§)nQ2

Proof. For very k = 0, let By = Bg—x,(§) and Qi = Q n By. Since u vanishes identically
on 02 N By, for all x € 0B, 1 N 2 we have

u() = f uly) dudy (4) = f u(y) duf, (4) < wh (2By 0 Q) sup u.
an 5BkﬁQ aBka

By the (&, 79)-local capacity density condition (which also holds for ) and Lemmas 7.16
and 7.20, B
wg’%k(é’Bk N Q) =1 —wék(aﬂ N Bk) <1-—c

for some ¢g € (0,1). Thus,

sup u < (1—cg) sup wu.
6Bk+1m§2 aBka

By the maximum principle and iterating, we deduce that

sup u= sup u < (1—co)® sup wu.
B2 0B 0BonQ
This readily proves the lemma. O

As an easy corollary we get a result about Holder regularity:

Lemma 7.28. Let Q < R% be an open set and let B be a ball with radius ro centered
in 02. Suppose that Q0 satisfies the (&, 1¢)-local CDC for every & € 0 n 2B. Let u be a
nonnegative function which is continuous in 2B n Q) and harmonic in 2B NS}, and vanishes
continuously on 2B n 0. Then there is a > 0 such that

lu(z) —u(y)| < <|:c — y|> sup u  for all z,y € B n . (7.23)
To 2BNQ

Proof. Remark that every £ € 0(2B) n § satisfies the local CDC with respect to 2B n ,
so that in particular, by replacing €2 by 2 n 2B if necessary, we can assume that €2 is a
bounded CDC open set, that is, the (£, rg)-local CDC holds for all £ € 0S2.

To prove the lemma, clearly we may assume that |z — y| < r/4. Denote as usual
do(z) := dist(z, 092), and suppose first that

v —y| < % max(do(z), do(y)) — %dg(x, ).
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Assume that dg(y) < do(z) = dao(z,y), say, and consider the ball B' = B(z,dq(z,y)).
Notice that B’ € Q@ n 2B and z,y € %B’. So by standard arguments it follows that, for
any « € (0, 1],

[z —y|

< J|ulloo,2B m

|z =y
r(B’)

(@) = uy)| < [Vuly 15 [ =yl < [u]o,5

|z — | )a
< ||U]|o0,2B < .
Notice also that the same estimate holds trivially in case that |z —y| > § do(z,y).
On the other hand, by Lemma 7.27, there exists some « € (0, 1) such that

o) = () o

7o

(7.24)

whenever dg(z) < r9/2. The same inequality holds trivially if dg(z) = r9/2. Replacing x
by y, we obtain the analogous estimate for y. Thus,

lu(z) — u(y)| < u(x) +u(y) < <di§)x)>a |u)o,2B + <d§;§)y)>a |ulloo,2B

< (22 puf o

7o
Taking the geometric mean of (7.24) and (7.25), the lemma follows (with «/2 instead of
Q). O

As another immediate consequence of Lemma 7.27 we get the following:

Lemma 7.29. Let Q < R? be a Wiener regular open set with compact boundary, let
£ € 09, and let 1o > 0. Suppose that Q satisfies the (&, 10)-local capacity density condition.
Then there is o > 0 such that, for all r € (0,79),
x c |x — §| “
wi(BE,r)) < | — for x € Qn B.(§). (7.26)

T

7.5.3 Improving property of the CDC

As shown in Lemma 6.20, if a set £ c R? satisfies Cap(E) > 0, then H%2(E) > 0.
Further, this estimate is sharp in the sense that one cannot infer that H3 (E) > 0 for
any s > d — 2. In fact, it is not difficult to construct a compact set £ — R such that
Cap(E) > 0 with dimy (E) = d — 2, see Exercise 7.5.2 below. Similarly, if Q = R? satisfies
the CDC, then it easily follows from Lemma 6.20 that

HEHQ A By () 277 forall e 00, 7> 0.

From the previous discussion, it would appear that the exponent d — 2 in this estimate
might be sharp. Surprisingly, this can be improved, as the following theorem shows.
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Theorem 7.30. Let rg > 0 and let Q < R? be an open set satisfying the (£,rq)-local
capacity density condition for every & € 0§). Then there exists some s > d — 2 and some
c > 0 such that

HE (A Br(€)) =cr®  forall€df, 0<r <.

The constant ¢ > 0 and the precise s > d—2 depend only on d and on the constant involved
in the local CDC.

Proof. Suppose first that d > 3. Denote £ = Q°¢. Observe first that the fact that
satisfies the (£, rg)-local CDC for every & € 052 is equivalent to saying that

Cap(E n B,(7)) = r2 forallze E,0<r <.

Fix now a point £ € 9Q and 0 < R < rg, and let us see that H3 (E n Bgr(£)) = R® for
some s > d — 2, with both s and the implicit constant depending only on the local CDC.
To this end, define E; = En Bgj4(€). Note that R E; may not satisfy the CDC. To deal
with this issue, we consider the sets E,, defined inductively, for m > 2, by

Em =FEn U Bgme(l').
erm_l

It is immediate to check that the closure F' of ( J,,~ Em is contained in Bg(§) n £ and

satisfies )
Cap(F n By(z)) 2r%2 forallze F,0<r<R.

Equivalently, the open set Rd\F satisfies the CDC.
Let pur be the equilibrium measure of F', and denote 1, = R°up. We intend to show
that there exists some s > d — 2 such that

Ns(Br(z)) <7’ forallze F,0<r <R. (7.27)
By Frostman’s lemma, clearly this implies that
Mo (E 0 Br(§)) = Ho,(F) % |ns| = R,

as wished. To prove (7.27), let ) = ng_s = R%2 up, and notice that the CDC satisfied by
F° ensures that F° is Wiener regular, so that by Lemma 6.26,

_ 1
U,(z) = R*2 Can(E) for all z € F.
So the function .
— Rd*Z U
f(x) Cap(F) ’V](x)

is continuous in R%, harmonic in F°, it vanishes in F, and it is non-negative in F¢, by the

properties of the equilibrium potential. Further |f[, < RY2 Ca;( 77 S 1. So by Lemma

7.28, f is Holder continuous and, for some o > 0 depending on the CDC it holds

¢

Un(e) = Gyl = 1)~ 1 = (M) dorallape oo, (r2s)
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Fixz € Fand 0 < r < R, and let ¢, be a bump function such that x g, (2) < ¥r < XBy,(2)s
with |V, < 1/r. Since —AU, = n in the sense of distributions, we have

n(Br(r)) < fwr dn = —JUn Appdy = — j(Un(y) — Uy()) Apr(y) dy,

where, in the last identity, we used the fact that {Ap,dy = 0. Plugging the estimate
(7.28), we deduce

MBS 5 [ ) @y < (5

or equivalently,
nd—2+a(Br(x)) < Td_2+a-

So (7.27) holds with s =d — 2 + «.

In the case d = 2, by a suitable dilation, we may assume that R = 1/4, say. Then the
arguments above work in a similar fashion, so that at the end we deduce that 1, (B, (x)) <
ro. 0

Corollary 7.31. Let g > 0 and let Q < R? be an open set with compact boundary. Then,
Q satisfies the (§,rg)-local capacity density condition for every & € 0S) if and only if there
exrists some s > d — 2 and some ¢ > 0 such that

H(Q N Br(€)) =cr®  forallé€ 0, 0<r <.

Proof. The fact that local CDC condition implies the s-lower content regularity above is
shown in Theorem 7_.30. The converse statement is an immediate consequence of the lower
bound of Cap(Q2°n B,(€)) in terms of HE, (2°n B, (§)), for s > d—2, deduced from Lemma
6.20. 0

Exercise 7.5.2. Construct a compact set E — R such that Cap(FE) > 0 with dimy (E) =
d — 2, see [Toll4, Section 4.7], for a possible construction scheme.

7.6 Harmonic measure and Green’s function with pole at infinity

In this section we will study the connection between harmonic measure with pole at
infinity and Green’s function with pole at infinity for unbounded open sets with compact
boundary. We will study first the case of the plane, which is simpler, and later the higher
dimensional case.
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7 Harmonic measure and Green function in Wiener regular open sets

7.6.1 The case of the plane

Recall that for an unbounded open set with compact boundary the notion of harmonic
measure with pole at o0 was introduced in Definition 5.53. From that definition, it follows
that for any function f e C(052),

o f(§)dw™(§) = lim | f(&)dw?(S). (7.29)

Analogously, for any Borel set E < 02, we have w?(E) — w*(E) as z — o0, see Exercise
5.9.1.

In the context above, denote by G : 2 x 2 — R the Green function for €. For any fixed
point y € Q, the function G(y,-) is harmonic at oo (i.e., it has a removable singularity at
o), by Corollary 5.52. Thus we can define

G*(y) = Gy, ) = lim G(y, 2). (7.30)

Theorem 7.32. Let Q2  R? be a Wiener reqular unbounded open set with compact bound-
ary. Let {pi}r < Q be a sequence of points such that p, — 0. Then the functions GP*
converge uniformly in bounded subsets of Q to G, the measures wP*|sq converge weakly
to w™®, and the following holds:

(a) G* is harmonic and positive in S).

(b) w™ is mutually absolutely continuous with wP, for every p belonging to the unbounded
component of €.

(c) For every p € C*(R?),
f G* Apdm = Jgpdww.
Q

(d) w™ coincides with the equilibrium measure of 02 (and so it is a probability measure)
and moreover, for every z € €,

1

) = Capn (e

— & xw®(2).

Proof. Statement (a) is immediate due to (7.30).

The weak convergence of wPk to w® is equivalent to (7.29). It is clear that this implies
that w® is a probability measure (this can also be derived directly from the definition
of w® and the Riesz representation theorem). Further, we already discussed the mutual
absolute continuity of w® and wP after Definition 5.53.

From the pointwise convergence given by (7.30) and an easy application of the Arzela-
Ascoli theorem, it follows that the functions GP* converge uniformly in compact subsets of
Q to G* as py — . To prove the uniform convergence in bounded subsets of Q, let » > 0
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7 Harmonic measure and Green function in Wiener regular open sets

be an arbitrary radius such that 02 < S,.(0). Since the functions GP* vanish continuously
on 02, by the maximum principle the sequence {GP*};>1 is a uniform Cauchy sequence
in 2 N B,(0), and so the convergence is uniform in Q n B,(0) and, therefore, in bounded
subsets of Q. In particular, G* extends continuously to Q¢ as G®|qe = 0.

The statement (c) of the theorem is a consequence of the fact that, for o € C*(R?) and
¢ away from the support of ¢,

LG%@Aﬂ@mm@=J¢mﬁ

Then we let ¢ — o0 and use the uniform convergence of G¢ to G in bounded sets and
the weak convergence of w to w®, and (c) follows.
To prove (d), recall that

- €~ 2] _ 1 ly — x| ¢
G(z,§) = o7 oo log € — 2| () 27 LQ LQ o ly — 2| dp(w) de*(y)
1 _
_WWJ%QQW@—&W@—WMW%)

where p is the equilibrium measure of 0€2. Letting & — o0, since the potential is continuous
and the harmonic measures w® converge weakly to w®, we obtain

G™(2) =O—J

o9

(E0) = V) d™(0) = | Uulw) d™(0) — | £() d™ ).

For the first summand we take into account that

1
U = ——— forallyed
ﬂ(y> CapW<6Q> or a. y € )
since (2 is Wiener regular, and so
1
G*(2) = =————— — Uy=(z) for every z € Q.
Capyy (0€2)

Thus, U,» is continuous up to 0f), with

1

W = Uwoo (Z) for every z € of.

By the uniqueness of the equilibrium measure p (see Theorem 6.11), we infer that w® =
b O

7.6.2 The higher dimensional case

For d > 3, let © < R? be an unbounded Wiener regular open set with compact boundary.
In this case we cannot define the harmonic measure with pole at infinity directly as the
weak limit of the measures wP with p — o0 because this limit is always zero. Instead we can
define harmonic measure and the Green function with pole at infinity by a limiting process
involving renormalization. The construction is summarized in the following theorem:
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7 Harmonic measure and Green function in Wiener regular open sets

Theorem 7.33. For d > 3, let Q < R be an unbounded Wiener reqular open set with
compact boundary. Let {px}r < Q be a sequence of points such that p — 0. Then
the functions &(px)~t GP* converge uniformly in bounded subsets of Q) to some function
G® : Q) — R, the measures &(pi)~'wPk converge weakly to some measure w™ supported in
09, and the following holds:

(a) G* is harmonic and positive in €.

(b) w™ is mutually absolutely continuous with WP, for every p in the unbounded compo-
nent of €.

(c) For every ¢ € C*(R?),
f G* Apdm = Jgpdww.
Q

(d) w® is the equilibrium measure of 02 times Cap(02) (and, so |w™| = Cap(0f?)) and
moreover, for every x € €2,

G*(z)=1-E*+w®(x) =1—w"(0N).

In particular, the limiting function G* and the limiting measure w® do not depend
on the chosen sequence {py}.

Proof. Let u be the equilibrium measure of 0f). Observe first that, for all p € €Q,
WP(2Q) = Cap(0Q) Un(p), (7.31)

since the right hand side is a function that is harmonic in { and continuous in Q, it equals
1 in 092, and vanishes at oo, see Proposition 5.39.
Consider now an arbitrary sequence {py}r < €2 such that py, — co. We write

Elpw) e = Can(00) 2 ¥ a0y

(7.32)

It is immediate to check that
Uu (pk)

=1.
pr—o E(p)

Thus there exists a subsequence {p, }; such that &(py,) 'w"i converges weakly * to some
measure W supported on 02, with total mass Cap(0€2).

Notice also that the Green function satisfies
Elpr) Gz, pr) < Epr) '€ —pr) > 1 ask — oo, forall ze .

Thus there exists another subsequence {pg, }, such that the functions &(py, ) "'GP*r con-
verge locally uniformly in compact subsets of €2 to some harmonic function g : 2 — R
such that [g]s, < 1. Without loss of generality, we may assume that the subsequences
{pk,}; and {py, }» coincide. Using that the functions &(py, )~ 'GP*n vanish continuously in
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7 Harmonic measure and Green function in Wiener regular open sets

09, and using the maximum principle, as in the proof of Theorem 7.32, it follows that
they converge uniformly on bounded subsets of 2.
Given ¢ € C*(RY), we have

E,) " | Glom,) Apla) do = (i) ol + ) [ o

By the uniform convergence of £ (pkj)*lG (*; px;) to g in bounded subsets of {2, the left hand
side converges to {,JApdz as j — o0, and by the weak * convergence of € (pkj)_lwp ki
and the fact that @(pkj) = 0 for j big enough, it is clear that the right hand side converges

to ¢ d&. So we deduce that
f JApdxr = J@d&).
Q

From this fact, it is clear that § does not vanish identically on 2. Taking into account
that g is non-negative by construction and harmonic in €, it follows that g is (strictly)
positive in €.

Next we will show that @ coincides with the measure Cap(0€2) u. To this end, recall
that for any x € €,

G™i(x) = E(x — pr;) — fé’(a: — 2) dw"i (2).

Hence,
Elpr,) G () = E(pry) ' E(x — pr;) — Epay) ™" JE(:E — 2) dw"™i (2).

The left side converges to g(z) as j — oo, while the first term on the right hand side tends
to 1 and the last one to {&(x — z) d&(z). So we deduce that

) =1 fg(x ) d(z) = 1 — Us(a). (7.33)

Since g(z) is positive in €, we deduce that Ugy(z) < 1 for all z € Q, and thus Ug(z) < 1
for all z € 09. Since |@| = Cap(0f2), by the uniqueness of the equilibrium measure p of
092, it follows that & = Cap(0Q2) u, as claimed.

In particular, the identity @ = Cap(0€2) u ensures that the measure @ does not depend on
the chosen subsequence {py; };, which in turn implies that the initial sequence of measures
E(pr) " 'wPk converges to @. From the relationship between § and & in (7.33), we deduce
that g does not depend on the subsequence {py; }; either, and analogously this implies the
local uniform convergence in bounded subsets of 2 of the functions &(py) " 1GP*.

The preceding arguments show that setting w® = @ and G* = g, the properties (a),
(c) and (d) hold. In particular, notice that the identities stated in (d) follow from (7.33)
and (7.31). So it just remains to prove (b).

Consider a ball B ¢ R? centered at the origin such that 6Q < %B . It suffices to show
that w® is absolutely continuous with respect to wP with p € ¢B. To this end, observe
first that, by a Harnack chain argument,

wP(E) ~ w” (E) for all p,p’ € 0B and all Borel set E < 0,
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7 Harmonic measure and Green function in Wiener regular open sets

with the implicit constant independent of p,p’ € E. Consider the function

r(B)"!

o (),

fe(z) =

Observe that fp(p) = wP(F) ~ wi(F) for all ¢ € dB. Also,

lim fp(q) =0 = lim w(E).

q—0 q—0

So by the maximum principle we deduce that fg(z) ~ w®(E) uniformly for all z € B¢ and
E < 0Q. So we get

w'(EB) fe(@) _rB)"' _ felr) w(3Q)

o ==

WP(E) ~ felp) el fealp) T wP(99)

Thus,
wP(E)  w'(E)

oP(%) R~ (0 for all z € B¢,

and then
wY(E) limi f<,uy(E)

~

B ~ lims
wr(09) el r(00) T e wi(09)

By the identity (7.32) and for k large enough, it follows that for p € 0B,

Elpp) "W (E)  Uulpr) w™(E)  Uu(pr) wP(E)

Cap(0Q) E(pr) wPk(0Q) ~ E(pr) wP(3Q)

Letting &k — o0, by Theorem 4.63 for every open set E we derive

P(E)
Cap(0Q) " 'w”(E) < —
p(00) 1w (E) £ e
and for every compact set F we get
P(E)
Cap(20) ™ (B) X 7
By the regularity of Radon measures we infer
P(E)
Q) wP(E) ~ d
Cap(2) ™ (E) ~ rson
for every Borel set E c 02, which proves (c). O

Remark 7.34. Notice that the estimate in Lemma 7.18 also holds for the harmonic
measure and the Green function with pole at co. To check this, just multiply the inequality
(7.11) by E(x)~! and take the limit as x — oo and apply Theorem 4.63.
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7 Harmonic measure and Green function in Wiener regular open sets

7.6.3 Immediate consequences

Using the same proofs as in Section 7.1, Theorems 7.32 and 7.33 immediately imply the
following facts.

Proposition 7.35. Let Q < R? be an unbounded domain with compact boundary 00 = Eu
v where E is either compact or empty, v is a C' curve and Eny = &. If G* € C1(Qu~),
then

WOO‘W = _(aVGOO) g,

where v is the unit outer normal to v < 0N and o is the surface measure on -y.

Lemma 7.36. Let Q — R? be an unbounded Wiener regqular open set with compact bound-
ary. Let B be a ball centered in 0S). Then,

w?(B) £r(B)"? 1 G™(y)dy.
2B
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8 Harmonic measure in uniform domains
satisfying the CDC and in NTA domains

This chapter deals with properties of harmonic measure on uniform domains satisfying
the CDC and in NTA domains. Most of the material is based on [JK82]. In this chapter
we assume that the domain €2 has compact boundary. We will use the following notation,
in the spirit of Definition 4.17.

Definition 8.1. Let Q c R%. For every & € 09 and r > 0 we write the boundary ball
Ave = Ap(§) := Br(&) n oL
We also use the classical notation for rescaled balls in the setting of boundary balls:

Ay = Dppe.

8.1 CDC, uniform, and NTA domains

Definition 8.2. A CDC domain is a domain satisfying the CDC condition.
Recall that CDC domains are Wiener regular.

Definition 8.3. A domain = R satisfies the exterior corkscrew condition if there exist
ro > 0 and A > 0 such that for every § € dQ and r < ro there exists a point X7*(§) =
Xe=XX € Q° satisfying | X(€) — €| < r and do(X&(€)) := dist(X&*(€),0Q) > A~ lr.

We call X2*(€) an exterior corkscrew point of £ at scale r, aild BX‘TY& 1= B = B (X[%)
is called exterior corkscrew ball. Note that B, < 2B < Q.
It is immediate to check that, for any bounded domain, the exterior corkscrew condition

implies the CDC condition, and thus the Wiener regularity of 2.
Next we recall one of the Holder regularity properties already shown for CDC domains.

Theorem 8.4. Let Q = R? be a CDC domain with compact boundary, let u € C(B,(€) Q)
be non-negative harmonic, vanishing continuously on A, ¢ with £ € 0Q and r < diam(052).
Then there are constants Cy and o depending on d and the CDC' character so that

u(z) < Cy (M> sup u for every x € Br(§) n Q.
r Br(6)nQ

Definition 8.5. A uniform domain Q c R? is a domain satisfying
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8 Harmonic measure in UCDC and NTA domains

e Interior corkscrew condition: There exist rg > 0 and A > 0 such that for every & € 0Q2
and r < rq there exists a point X, () = X, ¢ = Xa, , € Q satisfying [X,(§) — | <r
and do(X,(€)) > A~lr. We call X,.(€) a (interior) corkscrew point of & at scale
r, and BiAnhg 1= B;‘}g = B (X,(§)) is called interior corkscrew ball. Note that

Bi,né c QB;’“é c Q.

e Harnack chain condition: for € > 0 and x1, 22 €  with do(z;) > € and |z — 22| =
7 < 1o, there exists N depending only on Z and a collection of balls {B; };V: o With
x1 € By, w2 € By such that 2B; < Q for every 0 < j < N and Bj n B;_1 # @ for
every 1 < j < N. This collection of balls is called a Harnack chain joining x; and
xZ9.

Lemma 8.6. A domain Q < R? is uniform if and only if for every xg,x1 € Q with
|zg — x1| < 1o there exists a non-tangential path, i.e. a continuous map 7 : [0,1] —
such that

1. 4(j) = xj for j € {0,1},
2. the length of the curve (v) < A |zo — 1| and
3. forte (0,1) we have do(y(t)) = dist(y(¢), {zo, z1})/A.

Proof. We can show first the ‘if’ part. Let & € 0, r < min{rg,diam(§2)}. Consider
zo € Br(§) N Q and 1 € 0B, (§) N Q (which exists by connectedness) and consider the
path v connecting o and z1. Then the point X, (¢) :=y € v(0,1) n 0Bz (&) is a corkscrew
point, so ) satisfies de corkscrew condition.

Let us prove that the Harnack chain condition is also satisfied. To this end just consider
e > 0 and z1,29 € Q with do(z;) > € and |2y — 22| = r < r9. We may assume that
r > da(z;)/4, for j = 1,2, because otherwise it suffices to consider a the ball By, (y,)/2(7;)-
Take the collection of balls { B Ldg(y) (¥)}yey([0,1])- By the 5r-covering theorem there exists
a subcollection of disjoint balls Bj, j € J, such that 5B; cover v([0,1]). The radii of
the balls are bounded below by a constant times dist(~([0, 1]), 0€2) > C;Tle by the third
condition.

We claim that, for every k > 0, the number of balls with 2’“C’El<€ <r(Bj) < 2’““6}15

is bounded by a constant C'; depending on d and A Tt is enough to consider the balls
whose center is closer to the endpoint x;.
Note that the centers z(B;) of the balls B; satisfy

dist(z(B;), z1) < Adq(z(B;)) = 10Ar(B;).

For any t > 0, the collection of balls B; such that t < r(B;) < 2t is disjoint by assumption,
each one has measure bounded below by a dimensional constant times ¢¢, and all of them
are contained in the ball centered at 21 with radius 10/~17“(Bj) +r(Bj) < (204 + 2)t, whose
measure is bounded above by a dimensional constant times C’%td. Thus the number of

balls is bounded above by C’% as claimed.
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8 Harmonic measure in UCDC and NTA domains

Also we can bound above the radii of the balls Bj, j € J as follows: by the assumption
that » > dg(z1)/4 and the second condition,

% 110 (daz1) + |or — 2(By)| < io (4r + £(7)) < (1 + A)r.

Thus, the number of balls is bounded by

r(Bj) = =da(z(B;))) <

~ 1+ A)r
N < Ci(logy((1+ A)r) — log2(C e)) = C1 log, !
C7le
A
To show the converse, assume that  is uniform and let xg, z1 € Q with dg({zg,z1}) <
|xog—x1| < 1o (otherwise the straight segment joining zp and 1 would be a non-tangential
path trivially). Let &; € 0Q be points minimizing dist(x;,&), and for every 0 < k < k; :=

[10g2(|x°(x_1)|)J consider the corkscrew point yi = Xokdg(e,;)(&5), and let also y{l = ;.

The number of balls in a Harnack chain between two consecutive points yi and yi 41 s
uniformly bounded. The same can be said about the Harnack chain joining y,go and y,il.
Joining the centers of the balls in these Harnack chains between consecutive points we find
a path satisfying the three conditions above. Indeed 1 holds trivially, 2 is a consequence
of the fact that the number of balls of each scale is uniformly bounded and, therefore, the
length of the curve can be controlled by a geometric sum whose bigger term is comparable
to |xg — x1|. The third condition follows from the fact that for every ball B from the
Harnack chains dg is comparable with r(B) and the distance from the ball to the closest
end-point is bounded again by a geometric series whose bigger term is comparable to
r(B). O

Put in plain words, the definition we give here of uniform domains in terms of corkscrew
points and Harnack chains coincides with the definition in terms of “cigar” (i.e. non-
tangential) paths from the Sobolev extension domains in [Jon81]. Also from the previous
proof we can infer that the definition coincides with the one in [GO79], where the distance
dist(y(t), {zo,z1}) in the third condition is replaced by the arc-length distance to the
endpoints.

Roughly speaking, the domain cannot have outer cusps, thin tubes or slits. In two
dimensions inner cusps are also banned.

The Harnack chain condition, using Lemma 2.15, gives us that, whenever u is a positive
harmonic function on 2,

C—NWA)y, <u(z) < ONWy whenever M < A.
(4) < u(z) ) (e

By the previous proof, uniformity tells us that for £ > 1, by picking non-tangential paths
we can assume

N(2°) < C1logy (Ca2") < Cu(k + logy(Ca)),

that is whenever |z — y| < min{2*do({x,y}), 70} with k = 2 we have

CFuly) < ulz) < Chuly). (8.1)
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Note that the value of C'4 may have increased in our reasoning, but it depends only on
the constant A and the dimension d.

Definition 8.7. We say that a domain is UCDC (uniform domains satisfying the capacity-
density condition) if it is both CDC with constant A and uniform with constants r¢ and
A. More precisely, we assume that there exists a radius 0 < 19 < diam(02) and a constant
A such that

1. The interior corkscrew and the Harnack chain conditions in Definition 8.5 are satis-
fied with constants rg and A.

2. Every pair of points xg, 1 € Q with |zg—x1| < 7 can be joined with a non-tangential
path as in Lemma 8.6, with constant A = A.

3. The domain satisfies the CDC with constant A~!, that is, for any r € (0, diam(092)),
Cap(B,(6)\Q) = A1 pd=2 in the case d > 3,

and
Capy (B, (6)\Q) = A" r in the case d = 2.

4. Further we assume that there exists a constant C'4 such that (8.1) is satisfied, and
we also assume that
N (t) < Ca(1 +logy (At +1)).

5. If the boundary of the domain is bounded, we assume without loss of generality
that ro = diam(0Q). Indeed, just by taking worse constants depending on the
ratio ﬁ%m) we can check that both corkscrew conditions and the Harnack chain
condition are satisfied as well for rop < r < diam(092).

Note that, if 2 were unbounded with compact boundary, we could pick rg = oo regarding
the uniformity constants, but the CDC would not hold for big balls, and estimate (7.20)
would cease to be true in higher dimensions, so we will keep 79 = diam(0f2) in this case
to clarify ideas.

From this point onwards, we will write C'4 and c4 for constants which depend only on
the uniformity constants and the CDC as well. Note that in the preceding definition, we
write A for the maximum constant between A and A. In particular, for UCDC domains,
by (7.20) and the Harnack chain property (8.1) we have:

Lemma 8.8. Let Q < RY be a UCDC domain with compact boundary and let £ € 0Q and
r < diam(0S2). Then for x € By (§) N Q with dist(x, 00\A,¢) = %, we get

W (Are) = ca.
Proof. Let’s write A = A, ¢. First assume that + = Xa. Then using a Harnack chain,

and (7.20) we get

7.20
XA (A) Ry wBA(A) B4 1L
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If do(z) > 54, then using a Harnack chain again we obtain

W(A) Ng WA (A) 24 L

If, instead, do(z) = p < 54, then let ¢ € 0€2 such that do(z) = |z —(]|. By our assumption,
¢eA,and A, < A. Thus,

8.1
W (A) = W (Aye) Ma WP (A, ) 2a L

d

Definition 8.9. A non-tangentially accessible domain (NTA domain for short) is a uni-
form domain satisfying also the exterior corkscrew condition.

It is clear that any NTA domain is UCDC. The notion of NTA domain was introduced by
Jerison and Kenig in [JK82]. In this work they studied the behavior of harmonic measure
in this type of domains. Roughly speaking, NTA domains cannot have outer cusps, inner
cusps, thin tubes, slits or isolated points in the boundary.

8.2 Green’s function for UCDC domains

Next we show that the supremum of a nonnegative harmonic function in a ball coincides
modulo constant with the value at the corkscrew point:

Lemma 8.10. Let Q be a UCDC domain. Let u = 0 harmonic in ), vanishing continu-
ously on Ag,¢ with £ € 0Q and r < rq, then we have

sup u < Cau(Xyg).
QnBr ()

Proof. Via Harnack inequality (8.1), we can control

sup u<Cy sup u(x),
QnBr (&) QnBr(£):da(z)<r/8

and for ( € A, ¢ we have
w(Xp8.¢0) ®a u(Xre).

Thus, to simplify notation, we can assume that 8r < rg, u vanishes on 8A with A := A, ¢,
and let us assume that u(Xsa) = 1. We will prove that

sup u < 1.
QN Bar(§)

Theorem 8.4 implies the existence of a constant A; > 1 s.t. for every ¢ € 3A and every
s<r

sup U <
B(¢,AT's)n

sup  u. (8.2)
B(¢,s)nQ

N | —
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The second observation is about the quantitative behavior of Harnack chains described
in (8.1): if x € Br(¢) n Q with ( € 3A, ne N, and do(z) = A]"r, then

| Xore — x| < 6r < 6A7dg(z) — C’Zku(x) <u(Xorg) =1,
where k = 1 + |logy(6AT)| ~ n. Thus, we can pick Ag := Cz/n > 1 above, and we deduce
that whenever x € Ba,.(¢) n 2, we have
u(z) > Ay = do(z) < A" (8.3)

Now we argue by contradiction: consider N so that 2V > Ay and let n = N +3. Assume
that there exists yp € Q N By, (§) with u(yg) > A%5. Then, by (8.3) we can find & € 99
satisfying that

|y0 — fo| < A;nT‘
Note also that
1€ =&l < 1€ —yol + |yo — ol < 2r + A7"r < 3.

for A; large enough, and by (8.2) we have

sup uw>2" sup u> As- Ay = ASH.
B(&,A7" V) B(&0,A7"r)

We have proven the existence of y; € B(&y, A7 Vr) with u(y;) > A3 Since N —n <
0, we can apply (8.3) to find &; € 09 so that

ly1 — &| < A7
Note also that
E—al<lé—l+ -+l —&l <@+ A"+ AN + AT D < 3,
for A; large enough, and by (8.2) we have

sup u>2N sup  u> Ag-u(y) > AFT
B(&1, A7) B(&1,A7" )

Tterating the construction, we find yy, € B(&,_1, A7V F 1) with u(yg) > AFTF. We
can apply (8.3) to find & € 02 so that

|yk — §k| < Al_n_kT‘.
Note also that
k
€60l < |E=Enmt|+|Ek-1—yrl +lyp—&xl < (2 + AT+ Y (AT A;”‘J)) r <3,
j=1
for A; large enough, and by (8.2) we have

sup u> 2N sup u> A - u(yg) > A3+k+1»
B(er, AT FHN B(&r, A7)

so the induction can be carried on.
Note that gy is a Cauchy sequence converging to a point in 3A. Therefore, we reach a
contradiction with the continuity of w. O
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8 Harmonic measure in UCDC and NTA domains

Lemma 8.11. Let © be a UCDC domain with compact boundary, let G := Ggq be its
Green function and let x € Q\B(&, 2r), with § € 0 and r < diam(0R?). Then the boundary
ball A := A, ¢ satisfies

W (A) < Car?2G%(X )
Proof. Let ¢ € C* bump function so that xp. () < ¢ < XBs,/4(€) (so ¢(x) = 0) and
|D%¢| < r=2. Then

L G (y)Ad(y) dm(y) "2 f 6(6) du™(€) > W (A).

Consider the domain € := Q\B Ldg(a) (x), which is a UCDC domain with perhaps worse
constant than the original one (but depending on it). Note that for y € 0B Lo (x) (x) we
have 3 3

6=yl > |o— €]~ da(@)/4 > Jlo— €] > o
Thus, G” is a function vanishing on the boundary ball A Sy with respect to the domain

Q. We can cover {y € Bgrv(g) : do(y) < r/16} with balls B¢ := B (() so that G is a
harmonic nonnegative function vanishing on 2A, = QA% (¢), and then apply Lemma 8.10
to conclude that G*(y) <4 G*(Xa,) on B,/16(¢) N 2. Using (8.1) we obtain G*(Xa,) ~a
G*(XAa), and also G*(y) ~4 G*(Xa) for y € B%T@) such that dg(y) = r/16. All in all, we
get

W (A) < fQ G (y) Adly) dm(y) < fB G ()| Ad(y)] dm(y) "< aqr2GH(Xa).
2r(€)

O]

Note that by the results in Chapter 7 and the Harnack chain condition, we get the
converse inequality:

Lemma 8.12. Let Q be a UCDC domain with compact boundary, and let A := A, ¢ with
€€ 0Q and r < diam(09). If x € Q\BP | then

o
d—2 ~x T
r¢G (X%A) <a wO(A).

Proof. From Lemmas 7.19 and 7.23, together with the CDC (see 3. in Definition 8.7), we
have _ _

172G (y) <4 wB(A) for all z € Q\1B and y € (40)"'B n Q. (8.4)
Ifxé¢ B%ZOA)*A’ set Y := Xyp4)-1a. Otherwise set Y := X (494)-24, so that in both cases
we get x ¢ B%dg(y) (Y) and so Y, X%A ¢ B%dg(x) (x), see Exercise 8.2.1 below. Note that
independently of our choice for Y, Green’s function G* is non-negative and harmonic in
the domain €\B1y, (), which is a UCDC domain with perhaps worse constants than

4

Q. Thus, (8.1) applies in this setting, and we get
x ~ T
G"(X ) ~a G7(Y),

159



8 Harmonic measure in UCDC and NTA domains

If z € Q\1B, by (8.4) with y = Y the lemma follows. If, instead, z € Qn 1B, then consider
two situations. First, if do(z) > (404) 37, then using (8.1) in DBy, v)(Y) we get
2

8.4 8.1
ri2Ge (7)) R 2N (V) S4 wXA(ATTA) < 4 W07 (A).

Finally, whenever z € Q n ;B with do(z) < (404) 37, then

5.11 7.20

8.4
75 8.1 ) rd_2GXA(.fU) SA wXA(A—]-A) < 1 SA WCE(A)

ri2GE(y) £t 2eY (2) &
Combining Lemmas 8.11 and 8.12 we get the following remarkable fact.

Theorem 8.13. Let Q be a UCDC domain with compact boundary, and let A := A, ¢
with £ € 0Q and r < diam(0Q2). For x € Q\B(¢, 2r)

w”(A) a1
ri2GE(Xa) 4

Exercise 8.2.1. Let 2 be an open set. Given x,y € €2, show that

¢ Blagw V) = ¥ ¢ Blagw(®)

8.3 Fundamental properties of the harmonic measure in UCDC
domains

8.3.1 The doubling condition

Lemma 8.14 (Doubling condition). Let Q be a UCDC domain with compact boundary.
If A= Ay ¢ with £ € 0 and x € Q, then

W*(2A) < Cw®(A),

with C' depending on di:;zq((?ﬂ)’ d, A, but neither on x nor on A.

Proof. Let ry := (4A)~'diam(d€2) and assume first that 2r; < do(z) < 2diam(09).

The case 2r = r; follows by Lemma 8.8 and the Harnack inequality. Indeed, we can
find a finite family of points §; so that A, /4(£j) cover the boundary, so there is a &, so
that £ € A, /450 and thus A, /agi, © A. Therefore

81) x 8.8
wr(A) = wI(Ar1/4,5j0) ZA W /4850 (AT1/47£JO) > ¢y = caw”(24),

the constants of the second estimate depending only on A and perhaps on the dimension.
If 2r < r1, then we can use Theorem 8.13 twice and the Harnack chain:

8.1 :
W2A) RA7 r2GT (Xon) Na rt2GT(XA) ma” WT(A).
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8 Harmonic measure in UCDC and NTA domains

For the cases dq(z) < 2r; and 2dg(z) > diam(0f?), consider a corkscrew point z( €
Bgiam(e0)/2 (&) so that do(z¢) = 2r1, whose existence is granted by the interior corkscrew
condition. Since w”(A) and w®(2A) are harmonic functions, we get that

w® (A) ~ d4dﬂ(<g;g2>

w?(A) A W (2A) & age , W (24).

diam(092)°

A
O

Note that one cannot expect to avoid the dependence on x: if # — 2A\A, then w*(A) —
0 and w”(2A) — 1. However, the doubling constant for a fixed A = A, ¢ is universal if we

pick the pole in Q\(By(§)\B1—a-1),(£)):

Lemma 8.15. In Lemma 8.14, if x € Q\By,(£), then C' does not depend on dij;’l((gg)m. The
same can be said whenever dist(z, 0Q\A) > %, and r < diam(092).

Proof. The case 2r1 < do(z) < $diam(0€2), where ry := (44)~'diam((2) is already settled
in the proof of Lemma 8.14.

The case 2dqo(x) > diam(02) can be settled by standard maximum principle arguments
combined with Harnack. Indeed, the constant is universal for z € Sygiam(an) () for a fixed
¢ € 09, by the Harnack inequality, since both functions w”(A) and w”(2A) are harmonic
and non-negative:

W (A) deiam(a"'Q),C(A)

- 7 ~

X 1
w” (2A) d,A wXdiam(@2).¢ (2A) A5

since we have reduced to the previous case. In fact, both functions satisfy the Dirichlet
problem on unbounded domains (5.7) (see Theorem 5.42, Lemma 5.45, Remark 5.46 and
Example 5.49), so the maximum principle allows us to extend

W (A)a4w” (24)

to the whole Bagiam(o0)(¢)¢. The general case 2dq(z) > diam(0€2) follows by Harnack
again.

Thus, we can assume dq(z) < 2r1. If 2 € By, (§)€ n Q, that is, if dist(x,§) > 4r, since
do(z) < (24)'diam(0Q2), we infer that r < $diam(d€2). Thus, we can use Theorem 8.13
twice and the Harnack chain:

W (20) AP 20 (Xoa) KU 126 (X)) AT WP (A).

Finally, if d(z) < 271, z € By (€) N Q with dist(z, 00\A) = A~ lr, we get

L 8.8
WH(A) 2 413 w721,

and the lemma follows.

Exercise 8.3.1. In Lemma 8.15, it suffices to require dist(z,2A\A) > 7.
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8 Harmonic measure in UCDC and NTA domains

8.3.2 The boundary Harnack principle

Next we find localized UCDC domains, that is, given a UCDC domain {2, we provide
intermediate domains contained in 2 which have diameter comparable to a ball, and at
the same time coincide with ) in a comparable, smaller ball. This is obtained using a
Whitney covering, i.e., a covering of ) with disjoint dyadic cubes, which are half-open
cubes with sides parallel to the axis, vertices in the grid 27%Z% for k € Z and with side—
length

Q) :=27*.

Then, we denote by W := W(Q) the set of maximal dyadic cubes @ < € such that
4Q n Q¢ = @. These cubes have disjoint interiors and can be easily shown to satisfy the
following properties:

(a) dist(Q, Q2°) < 4(Q) < dist(Q, Q2°), where £(Q) denotes the side length of the cube.

(b) If @, R € W and 4Q n 4R # @, then ¢(Q) ~4 ¢(R). In particular we may assume
that £(Q) < 4/(R) whenever Q n R # &.

(¢) 2gew X2q Sd Xa-

When dealing with these cubes, we will usually refer to the the long distance
D(Q, R) := diam(Q) + diam(R) + dist(Q, R).

Lemma 8.16. Let Q) be a UCDC domain. There exists a dimensionaﬁ constant C such
that for every £ € 02 and r < diam(0R2), there exists a UCDC domain Q,¢ such that

Qn Ba-1,(€) € Qe € QB (6).

The constants of the UCDC domain are independent of & and r. Moreover, for ¢ €
08 e\Br(€), we have that do(¢) = car.

Proof. Consider a Whitney covering W := W(Q). Now, let A := A 41, . For every ( € A
and p < A~ lr, there exists ipl?C € W so that Qiprjc N B;‘?C # &, and condition (a) ensures
that

A s UQ) s p (8.5)

Denote .
Fr:={QeW:Q = Q) for some ( € A and p < A}

We can identify () € F; with a pair (rg, (@) so that Q = Q;Z»CQ' Then, for @, R € F; there
in

. TQ:CQ
Witdh B ¢, asin Definition 8.7, that is, BJQ’R(WBJSQJ;? # @ with r(BJQ’R) = dist(BjQ’R, 09),
an

exists a Harnack chain of balls {B;’?’R}jyff following a non-tangential path joining B

Ng,r
> r(BPT) < CAD(Q,R) < CA(BA™'r) = Cr.
j=1
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8 Harmonic measure in UCDC and NTA domains

Note that in particular
BJQ’R c {x e Q:dist(xz,A) <Cr},

with C independent of A. By the third condition of non-tangential paths (see Lemma 8.6)
we can obtain also

8.5 8.6
dist(BP", A) < min{dist(BY", Q)+CAl(Q),dist(BP™, R)+CAUR)} < Car(BP™),

which improves the previous estimate when B]Q’R is small.
Next we define

Fr={QeW:Qn B + & for some R, S € Fy and j < Ngs}.

At this point the reader may note that every pair of cubes in F; can be connected by a
chain of cubes in F», whatever that means. However, we still need to show the existence
of Harnack chains joining cubes in F5\F; (but this fact cannot be granted), and to prove
the inclusions of the domains. We will enlarge the family again.

To do so, note that given Q) € F», there exists a couple of cubes Rg, Sg € F1 so that

Qn BfQ’SQ # & for some j < Np, 5,- In particular,

dist(Q, A) < dist(B;' 2", A) + 2r(B;9°?) < min{Cr, Cal(Q)}.
Next we define
Fs:={Q e W :dist(Q,A) < min{Cr,Cal(Q)}}.

We get that F» < F3 as discussed above, so the cubes in F; can still be connected through
F3. Now, note that if dist(Q, &) < r, then

dist(Q, A) < dist(Q, &) <r < Cr,

and
dist(Q,A) = da(Q) = Q).

That is, enlarging the constants defining F3 if necessary, we get the inclusions
QA By (6) ( U @) QA Bor(©).
QEF3

However, we cannot grant the existence of non-tangential paths yet.
Now, for @ € F3 we claim that there exists V(@) € F; so that

UQ) ~4 L(¥(Q)) ~4 D(Q, ¥(Q))- (8.6)
Indeed, since dist(Q,A) < min{Cr,Cal(Q)}}, we can take (g € CaQ n A. Then pick
p = min{Cx¢(Q), A~1r} and define ¥(Q) := iPI}CQ’ which satisfies (8.6).
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8 Harmonic measure in UCDC and NTA domains

Estimate (8.6) means in particular that all the balls in the chain {B]Q’\II(Q)} joining @

and ¥(Q) are roughly of the same size and their number is bounded by universal constants
depending only on A and d. Therefore, we define

Fr:={ReW: BJQ"IJ(Q) N R # @ for some Q € F3, j < No w@)};

and let
Q= | 11e
QEFy

The non-tangential paths condition is satisfied by construction: ¥ can easily be extended
to Fy so that (8.6) is satisfied. Now, for points in neighboring Whitney cubes the path
can be constructed thanks to the dilation of Whitney cubes. For points in Whitney cubes
Q1, Q2 further away, connect each cube @; to ¥(Q;) and then connect ¥(Q) and ¥ (Q2)
by a Harnack chain of balls B;-I](Ql)’\p(QZ). Then the number of balls depends only on

D(Q1,Q2) . i . . L .
NI Creating a non-tangential path out of this construction is an exercise left

to the reader.

The fact that the CDC condition holds for € can be checked easily: for £ € o0 A 09},
use the fact that 2 satisfies the CDC. Otherwise, £ € 9 N 0(1.1Q) for Q € Fy4. For scales
smaller than ¢(Q), the CDC holds trivially (using condition (b) of the Whitney covering),
while for greater scales one can use the CDC of €. O

Theorem 8.17 (Uniform boundary Harnack principle). Let Q be a UCDC domain with
compact boundary, and let A := A, ¢ with & € 0 and 3CAr < diam(0R2), where C is

the constant from Lemma 8.16. Let u,v = 0 be harmonic in € vanishing continuously on
2CA, and w(Xa) = v(Xa). Then ® ~4 1 on A7'B.(€) N Q.

Proof. Consider the intermediate domain Q= 5227«’5 from Lemma 8.16. We write Ar,ﬁ =
Q n B.(§), @ for the harmonic measure in € and so on.
Denote

~ 1
Ly := {C € 00\0N : dist (¢, 09) < 5A*?’r}
and R
L2 = 89\(L1 ) 69)
Take a minimal covering of L; with surface balls ﬁj = Aj(¢,(2A)73r) < o0 with

are contained in a ball of

A,
j€{l,...,N}. Since the covering is minimal and the balls Aj
radius Cr, the number of balls N only depends on d and A.

On the other hand, the corkscrew condition grants the existence of
Y1 € Byoar(€) 0 Q\Bscy (€) « Q\Q, such that do(y1) > 3Cr and

and also of N
Y2 € BAflr(f) M Q\UA—2T(aQ) c Q.

By the non-tangential path condition, there exists a point

Go€ 002 N Q= D\Bya-1,(6),
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8 Harmonic measure in UCDC and NTA domains

such that d(¢y) > A~3r. Then the surface ball in 0Q) defined as Ag = A%A*P’T,CO c Lo.

Now, by Theorem 8.13 and the Harnack chain condition, given z € A~'B,.(£) n Q we
get
~T (N r -2 T ro\42 T ~T
w (A]) XA ((2A>3> G (Xﬁ]) XA (@> G (Xﬁo) AW (Ao),
and therefore

N
G7(L1) < D 0"(A;) ma N&"(Ag) < N (Ly), (8.7)
Jj=1

the constants not depending on .
Applying Lemma 8.10 and the Harnack chain condition in §2, assuming C4 large enough,
we obtain
supu < sup U SA u(Xacre) Sau(Xa). (8.8)
QO Ber(6)nQ2
On the other hand, by Harnack inequality again infz, v 24 v(Xa) = u(Xa). All in all we
get, for z € A7'B,.(&) n Q,

P 8.8 8.7 Max.P.
u(z) < @((0N)°)supu <o D°((ON))u(XA) Sa &I(Lg)iilfv < o(z).
ﬁ 2

The following corollary is immediate.

Corollary 8.18. Let Q be a UCDC domain, and let V be an open set. For any compact set
K c V, there exists a constant C' = Cy g a such that for all positive harmonic functions
u, v in Q that vanish continuously on 02 NV, then for every x,y e Q2 n K

—1 U(«T) u(y) U(JI)
o@) < o) S o)

We also have:

Corollary 8.19. Let Q2 be a UCDC domain, and let A := A, ¢ with £ € 0Q and 0 <17 <
diam(092). Let u,v = 0 be harmonic in 2 vanishing continuously on 2A. Then there exist
a=«a(A) >0 and Cy > 0 such that

u(e) )|, w(Xa) (lz—y
v(a:)‘v(y)‘“wxm( ;

Proof. We fix € A, ¢ and we take 0 < s < /4. Then we set

> for every x,y € B, (&) N Q.

M(s)=  sup M, m(s) =  inf M
yEBas (1) NN v y) yeBas(n)nQ2 U(y)
Note that I
M(s) = Y = (s)v—u’ E_m(s):u—m(s)v
v v v v
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8 Harmonic measure in UCDC and NTA domains

are quotients of non-negative harmonic functions in Bag(n) n © which vanish in Ay, .
Then, by Corollary 8.18, we deduce that for all z,y € By(n) n £,

Taking the infimum for x € Bg(n) n Q and the supremum for y € By(n) N Q, we get

M(s) —m(s/2) < Ca (M(s) — M(s/2)),

or equivalently,

M(s)2) < CAC/: Lais) + c}A m(s/2). (8.9)
Analogously, @ W
u\xr . ) < u y — m(s
s~ < (G - mio)

for all x,y € Bs(n) n Q. Thus,
M(s/2) —m(s) < Ca(m(s/2) —m(s)),

or equivalently,

1
Ca
Subtracting (8.10) from (8.9), we get

Ca—

1
Ca m(s). (8.10)

m(s/2) = M(s/2) +

M(s/2) —m(s/2) <

Cy—1 1
o (M) =m(9)) + - (m(s/2) = M(s/2)).

That is,
M(s/2) —m(s/2) < 0 (M(s) —m(s)),

with 6 := gﬁ: < 1. It is a routine task to check that this implies that

M@_m@<cmmﬂwwmmnCYSZg§(Da

for suitable C' > 0 and a > 0. The corollary follows immediately from this estimate. [

8.3.3 The change of pole formula

Lemma 8.20. Let Q be a UCDC domain. Let u be harmonic and positive in €, with
¢ € 0Q. If u vanishes continuously on 0Q\A where A := A, ¢ with r < diam(0S2), then for
all x € Q\ B2, (§),

u(z) =4 u(Xa)w(A).
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Proof. Consider the annulus U, := By, ,2(§)\Bar—p/2(§), with
p = min{(6C A) " diam(0Q), (4C) " 'r},

where C' is the constant from Theorem 8.17. Cover U, n 0S2 with balls B,(&;) of radius p,
so that every = € B,(&;) n Q satisfies that
u(@) Ts1r u(Xpg) 81 u(Xa) 18

8
=) A S () N4 SXa(a) A u(Xa).

The estimates extend to x € 0Ba,(§) Q) by the Harnack inequality, and the lemma follows
by the maximum principle. O

Lemma 8.21 (Change of pole formula). Let 2r < diam(d€), A" ¢ A = A,¢ and
T € Q\BQT(fO) Then

wXA(A’) g

dw®
dwXa

In particular, ~ wP(A) w-almost everywhere.

Proof. Apply Lemma 8.20 to u(z) = w*(A’). The density estimate follows from Theorem
4.12 and the definition of density. O

Next we revisit the change of pole formula under the localization procedure. Let { be a
boundary point, r < %dg(xo). Consider the intermediate domain = €, ¢ as in Lemma
8.16, * = X, ¢ with respect to Q, y € B(x, A=32r)\B(z, A72r), A = A 2,(€). Then by
Theorem 8.13 and Lemma 8.8 we get

Gﬁ(y,lE) ~ T2_d7
and, by Theorem 8.13 again and Harnack,
Gal(y, mo) ~ r*~w(A).
Compare both functions on y using Theorem 8.17 to get

Claim 8.22. For z € By—2,.(£) n Q

Gﬁ(z, x) % (;SZ)((ZA")T())

By Claim 8.22 and Theorem 8.13 we get
Claim 8.23. For every surface ball A" ¢ A, we have
wg( /) ~ W(A/)
Q w(A)
Finally, from Claim 8.23 and Lemma 8.21 we obtain

Theorem 8.24. Let 2 be a UCDC domain and zo € ! a fized point. Let § be a boundary
point, r < %dQ(iL’o), and 2 = Q,¢ as in Lemma 8.16. For every Borel set E < A :=
A p-2,¢, we have

W™ (E)

~ wire (B).
wo(a) T @ E)

X, N
We (E) ~
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8 Harmonic measure in UCDC and NTA domains

8.4 Estimates for the Radon-Nikodym derivative

Fix a UCDC domain 2 and a pole zg € €2 and denote w := w”. Then the Radon-Nikodym

derivative K(z,&) = d;f (€) equals lim,_,q Uf(gff’;)) for w-a.e. £ (see Section 4.3).
To simplify the section, we define also K (z,{) = 0 whenever df—j({) is not well defined

B . w® (A,
or L2 (&) # lim, g w((AT;))'

Lemma 8.25. Let x = Xy.¢), Aj = Ay, ¢ with T < 277 < 2diam(0Q) and Rj = A\A;_;.
Then

C,, C27
sup K (z,§) < —————,
eR; ( w(AJ)

a(zo)

with v,C > 0 depending only on A; and Cy, depending only on didam(m) and A.

Proof. First we claim that whenever A’ ¢ R;, we get
W' (A') < Caw™2i (A2,

Indeed, if j = 2, then combining Theorem 8.4, Lemma 8.10, and Harnack’s inequality we
get

8.4 — « 8.10. (8.1 _ a
wm(A/) <A <‘£L' '_2‘50‘> sup wy(A/) <A <‘J} . gO’) wXAj (A/)
202y y€2I—2B,.(£0) N 20r

If, instead, j € {0, 1}, then
WA R WA (AT my w0 (A2,

and the claim is established.
To complete the proof, suppose first that do(zg) = r1 := A~ 'diam(0Q). In this case,
whenever 277 < 271, we have xg ¢ By.9i,(£0) and so the change of pole formula implies

w(A) ma w2 (A)w(A).

If, instead, 271r; < 29r < 2diam(02), then zg and Xa,; can be joined by a Harnack chain
with a number of balls controled only by the dimension and A, so

w(A') Ry X2 (A7) ' W (AN w(A).

In any case, for £ € R; we get

. wm(Arg) 2-Jja
K(x,&) <limsup = <A .
r—0 w(Ar’g) w(Aj)

If instead, dg(zp) < ri, then pick Z € Q such that do(Z) = ri, whose existence is

granted by the interior corkscrew condition. The Harnack chain condition (8.1) implies

the existence of C,, depending only on di;;g?&))) and A such that

W (M)~ Cpyw™(A)
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for every A, so applying the previous case we get
W (Arg) 2-Je
w(Aj)

: w'(Arg) : (
K(z,§) < limsup ——=-~C,, limsup — <
( é-) r—0 P (.U(Ang) 0 r—0 P w’”(Ang) A

Lemma 8.26. Let r < diam(0S2). Then

sup  K(z,§) Ema Ny}
EG(}Q\Aréo

Proof. Note that if £, € 02 is the point where dg(x) = &, and picking r, = dg(z), then

§ € R; with j, ¢ ~ log, % z log, dQT(x) L LR Thus, the previous lemma reads as

C.’EO CQi'YjI‘E z—Eo

because w(4A;, .) behaves like a constant by the doubling property. O

K(z,¢) < 0.

8.5 Global boundary behavior of harmonic functions in CDC
uniform domains
A kernel function in € at £ € 0€) is a positive harmonic function u in € that vanishes con-

tinuously on 0Q\{¢} and such that u(xg) = 1. Note that limsup,_,¢ u(z) = . Otherwise
{¢} would have positive harmonic measure, and this cannot happen by Theorem 6.33.

Lemma 8.27. Let Q) be a UCDC domain. There exists a kernel function u at every
boundary point.

Proof. Let £ € 012, and denote

_ WI(AQ—mvg)
w(Dg-mg)

so that w,,(zg) = 1.

By Harnack’s inequality and Lemma 2.14 there is a partial u,; IO, uniformly on
compact subsets of {2, with u positive and harmonic in Q.
Fix r < diam(0€2) and let A := A, . For j big enough, we get

0 x 8.1 x x
A U (X)W (A) ~p 9,4 U, (To)w” (A) = w"(A)

8.2
U, (T) =~

for every x € Q\By,. Therefore,
w(x) Ay go,a W(A)  for every x € Q\By,

and therefore u vanishes in 02\2A. The lemma follows letting r — 0. O
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Lemma 8.28. Let Q2 be a UCDC domain. Assume that u is a kernel function for Q0 at &.
Then

for every x € Q.

Proof. Let r > 0 be small enough and A := A, (. By Lemma 8.20

1 =u(zp) ~a u(Xa)w(A).

and
u(x) 4 u(Xa)w?(A).
Therefore (A)
w"E
Ry
for all z € Q\Ba,(§) for r small enough. O

Theorem 8.29. Let 2 be a UCDC domain. For every boundary point the kernel function
1S uUnique.

Proof. We follow the approach of [CFMS81, Theorem 3.1]. Assume that u, ug are kernel

functions for Q2 at £ € 0€2. Then, for x € Q2 we have Z;gg < C’o% by Lemma 8.28.
Therefore

uy; < Cous. (811)
holds for every pair of kernel functions uy, us.
If Cyp = 1 the lemma follows, so we may assume that Cy > 1. In that case,

Co 1 . 1
ug — Uy =u
Co—12% Co—1 "' 2T Ci—1

(ug — uy)

is a kernel function as well by the maximum principle. Therefore (8.11) holds for this
function, namely

1
u; < Oy <UQ + (UQ — u1)>

Co—1

SO

Cy 1 1 2 1
Co 1 <u2 + Co o 1(U2 —u1)> o Tu = Ug + Co 1(uQ—u1)+m(u2—u1)
is also a kernel function.

In general, if

k
U + (Co 1 + tk) (UQ — ul) (8.12)

is a kernel function, then (8.11) holds for this function as well, namely

k
u; < Oy <u2+<00—1+tk> (UQ—U1)>,
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8 Harmonic measure in UCDC and NTA domains

SO
Ly ) (s — ) ) =
Co—1\ 2T\ g, =1 )27 Co—11
k41 k+t.(Co— 1
ZUQ+00—1(U2_U1)+(C’];(_01)2)(U2_U1)

is also a kernel function. By induction, a kernel function as in (8.12) can be obtained for
every k € N with ¢ > 0.
Now, applying (8.11) again, we get that for every k

k
Co—1

ug + + tk> (ug — up) < Cyus.

() <y

Uy —U) < U

2 1 2 Co—1
This implies that us < u;. But interchanging the roles of u; and us we obtain the converse
inequality and the lemma follows.

O

Definition 8.30. A non-tangential region at & € 0€2 is denoted by
To(§):={xeQ: |z —¢ < (1+a)da(x)}.
The non-tangential maximal function is denoted

Nau(§) := sup [ul
Ta(€)

for u defined in . Finally, we say that u converges to f non-tangentially at £ if for any
@,
lim  u(z) = f(§).
am (z) = f(§)
Usually the value of « is of little importance when dealing with harmonic functions
because typically the boundedness of the operator N, does not depend on «. Therefore
we usually denote Nu for some value of .

Definition 8.31. The centered Hardy-Littlewood maximal function with respect to w is
defined as

M, f(&) := sup J[A |f| dw
€

r

1

loc(w), and, more generally,

for every f e L

A,
My,p(§) == sup ZEA 3

for every u e M(09Q) := {Finite Radon measures supported in 092}.
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8 Harmonic measure in UCDC and NTA domains
The maximal function satisfies a weak-(1,1) estimate, i.e.

C
WAMf > A} € S I, (8.13)

and for every 1 < p <
1Mo flry < Ol o (8.14)

see [Mat95, Theorem 2.19], for instance. In fact the weak estimate also holds for Radon
measures, by the same covering arguments used to prove the weak (1,1) bounds:

Lemma 8.32. For p€ M(09) we have

w{Myp > A} < §|M(GQ)| (8.15)

Theorem 8.33. Let Q2 be a UCDC domain. If p is a finite Borel measure on 082 with
Lebesgue decomposition (see Theorem 4.15) du = fdw + dv, where v is mutually singular

with w, and u,(z) = § K(z,¢) du(C), then
Nuu < CoM,v,
and u converges to f non-tangentially at w-a.e. boundary point.
Proof. Consider the operator N defined on M (39) by
Nu = Nuy,
where « is fixed (and the constants may depend on its value). First we claim that

Nu < CMyp. (8.16)

Indeed, let us assume that y € I'o(§), with dist(y,§) < r < ro, and let A := A, ¢. By
the Harnack inequality we have that

(X a) = f K(Xa,¢) du(c).

Decomposing as in Lemma 8.25 we get

win) =3, J,, K- Oauo) < ;j&; J, ) < Man© 33274 < Mo

J

Since Npu(€) = SUPyer, (¢) |uu(y)], estimate (8.16) follows.
Note that combining (8.15) with (8.16) we obtain the weak type estimate

W{Np > A} < %M&Q)\. (8.17)
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8 Harmonic measure in UCDC and NTA domains

It remains to compute the nontangential limit of u,, proving that it coincides with f at
w-a.e. boundary point. Let us write n.t.limsup,_,¢ := lim SUPT, (¢)sy—é- Given €, A > 0,
we want to prove that

Opy|:i=w {n.t.lirnsup luu(y) — (&) > )\} <e. (8.18)
y—¢
First we will compute the case v = 0. Whenever f € C(0f2), we have that

up(z) = f FOK (x,€) duw(¢) 422 f F(0) dw™(¢) = H f(x),
up(x) — f(§) as v — & € 052 (8.19)

by Wiener regularity.

For f € L'(09), consider simple functions {f,}, converging in L'(w) to f. Since w is a
Radon measure, we can find continuous functions {f, ;}; converging to f, in L'(w). By a
diagonal argument, we find a sequence of continuous functions {g,}, converging in L'(w)

to f.
Using the triangle inequality, we can decompose the left-hand side of (8.18) as

A

Ofup| < w {n.t.limsup lur(y) — ug, (y)| > 3}
y—¢

A
+ w < n.t. limsup |ugn(y) —gn(&)] > 5
y—¢ 3

+w{|gn<£> NGEE ;} _0-3-@

By (8.13),
C
< X”f — 9nll 1 (w)-

The continuity of g,, implies that u,, = Hgy,. By (8.19) Since €2 is Wiener regular, we get
that

2] = 0.

Finally,
8.17

~ C
D<ol F0-0m© >3] = SIf - amluse

Combining the three estimates, we obtain

A

for n big enough (depending on A\ and f), so (8.18) is settled whenever v = 0. In particular,

_ C
n.t.hmsgpuf(y) — f(f)' > )\} < XHf _gn”Ll(w) <¢€
y—)

Ofw,)\ = 0.
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8 Harmonic measure in UCDC and NTA domains

If v # 0, we write

y—¢€

O <w {n.t.limsup lure(y) — (&) > )\/2} +w {n.t.limsup luy (y) — 0] > )\/2}
y—¢

= w< n.t. limsup |u,(y) — 0] > \/2 ;.
y—¢

Let E < 09 be an w-measurable set given by the Radon-Nikodym decomposition, i.e. so

that w(E) = 0 = v(0Q\E). Since v,w are Radon measures, we can find a compact set

K c E and an open set U o E so that v(E\K) < 6 and w(U) < 4.

Now,

Opn|<Sw {n.t.limsup Uy 10 (y)’ > )\/4} +w {n.t.limsup | ()| > )\/4}
y—¢ y—¢

=4 +[E

The weak estimate (8.17) implies that

C C
- < =94.
SV(E\K) < 6

m<wﬂﬁ%w@ﬂ>MQ<
Note also that

<wlU)+w {5 e U°: nt.limsup [u,, (y)] > )\/4} .
y—¢

Let r := dist(K,U¢) > 0. Now, for every £ € U, y € [',(£) we have that

8.26
wi) = [ K Qd(Q) < vli) swp K(y.0) 2o,
K CEON\A,. ¢ y—¢
SO
w {f e U : limsup |ul,‘K(y)| > )\/4} = 0.
y—E
Combining all the estimates, we get
C
Ou,’)\ < X(S +i<e
as long as we take ¢ small enough. O

Remark 8.34. Note that f € L'(w?®) if and only if f € L'(w) by Exercise 4.3.2 and
Lemma 8.25. Moreover, by the previous theorem we can say that
dw® 4.3.2 x
uplae) i= uga(e) = [ 1O S € dut®) " [ 1O dm(c),

is the harmonic extension of f € L'(w) in the w-a.e. non-tangential sense, i.e.,

n.t. — lin?é ur(x) = f(§) for w-a.e. x € 0.

Note that uy coincides with its Perron extension Hy when f is continuous.
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9 Harmonic measure in the complex plane

9.1 Introduction

In this chapter we will study some fundamental results regarding harmonic measure in
the complex plane. We refer the interested reader to the book [GMO05]. We will use the
symbol D to refer to the unit disc (or ball) B;(0) in the complex plane.

Let us begin by citing some key results which we are going to use during this chapter.
First, we say that a homeomorphism ¢ : Q — Q' with Q, < C is conformal whenever
dp = 0. Planar simply connected domains, i.e., domains Q < C := C U o such that
Q¢ is connected, are conformally equivalent to the disc, as a consequence of the Riemann
mapping theorem, see [Con78, Chapter VII| for a proof.

Theorem 9.1 (Riemann mapping Theorem). Let Q < C be a simply connected domain,
and let x € Q, 0 < a < 2w. Then there is a unique conformal map ¢ : D — Q such that

©(0) = x and arg(¢'(0)) = a.

The mappings ¢ defined by the previous theorem are usually referred to as Riemann
mappings. Note that changing the point x and the angle « in the theorem corresponds
to precomposing ¢ with a Mobius transform. In this sense, once we obtain a Riemann
mapping of a given domain, we can easily compute every single Riemann mapping of the
domain.

The regularity properties of the boundary of a domain are related to the boundary
behavior of their conformal mappings, see [Pom92, Theorem 2.6] for a detailed account.

Definition 9.2. We say that a set I' is a curve whenever there exists a continuous pa-
rameterization 7 : 0D — I' (possibly with infinitely many self-intersections).

We say that a set F is locally connected if for every € > 0 there exists § > 0 such that
for every two points x,y € E with |z — y| < § there exists a connected subset F' ¢ E
containing both points and such that diam F' < e.

The following result is a combination of the continuity theorem and the prime ends
theorem (see [Pom92, Theorem 2.1, Corollary 2.19])

Theorem 9.3 (Continuity theorem). Let ) be a simply connected domain and let p : D —
Q be a Riemann mapping. Then the following are equivalent:

e The boundary 052 is a curve.
e The boundary 052 is locally connected.

e The function ¢ has a continuous extension to D).
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9 Harmonic measure in the complex plane

In particular, ¢ : 0D — 08 is a continuous parameterization of the curve and only a
countable number of points in 0S) have more than two preimages.

Carathéodory Theorem (see [Pom92, Theorem 2.6] ) is a natural counterpart to the
continuity theorem above regarding homeomorphic mappings. We say that a set I' < C is
a Jordan curve if there exists a continuous, injective parameterization v : D — I', and we
say that a domain Q is a Jordan domain whenever 0f2 is a Jordan curve (and therefore,
0% is bounded). Note that given a Jordan curve I', there are two Jordan domains which
have I" as boundary, one of them is bounded, and the other one unbounded.

Theorem 9.4 (Carathéodory Theorem). Let ¢ : D — Q be a Riemann mapping of a
simply connected domain Q@ < C. Then ¢ has a continuous and injective extension to D
if and only if Q is a Jordan domain.

As a matter of fact, the previous result can be easily extended to the case of unbounded
Jordan domains, but we will omit these technicalities.

Another way to measure the regularity of the Riemann mapping is to find out to which
function spaces it belongs. The smoother the domain is, the more regular the Riemann
mapping will be. Next we define the Hardy spaces of analytic functions H?, although in
this chapter we will only consider H'.

Definition 9.5. If 0 < p < 00, we say that an analytic function f : D — C is in the Hardy
space HP whenever

<r<

1
e = sow ([ 1700 1acl) < o)
0 oD
If p = oo, then f € H* whenever

[l := sup |f] < 0.

One can show that the term in the supremum in (9.1) is increasing in r and, therefore,
it can be replaced by lim, ;.

In virtue of Theorem 3.11, if 1 < p < o, we get that whenever f extends non-
tangentially to the boundary as an LP function, then

lim [ |f(r¢) = f(OI” |d¢] = 0. (9-2)

r—1 oD

In fact, for every finite p and every f € HP one can define the non-tangential limit f(()
almost everywhere, and identity (9.2) happens to be true, see [GMO05, Appendix A]. Since
we are only interested in H' we will refer only to this case:

Theorem 9.6. Let f € H'. Then f has non-tangential limit f(¢) H'-almost everywhere
in 0D and (9.2) is satisfied with p = 1. In particular,

1 e = 1f 2 p)-
If, moreover, f # 0, then f(¢) # 0 H!'-almost everywhere in D.

For the notion of non-tangential limit, see Definition 8.30.
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9 Harmonic measure in the complex plane

9.2 Harmonic measure and conformal mappings

One of the basic facts that makes the study of harmonic measure in the plane different
from higher dimensions is the availability of many conformal mappings in the plane and
the good behavior of harmonic measure under those mappings. We will take advantage
of this fact expressing the harmonic measure of a simply connected domain as the image
measure of the arc-length by a Riemann mapping.

Recall that given a continuous map ¢ : G — G’ and a Borel measure p on G, then the
image measure @4 is a measure on G’ defined by

pup(A) = p(e " (A))

for any Borel set A < G’. Then, for any Borel function f : G’ — R, it holds

jf opdu = ffdw#u-
See Chapter 4.

Proposition 9.7. Let Q,Q < C be bounded Wiener reqular domains, and let ¢ : Q@ — Q/
be a continuous surjective map such that p(0Q) = 0. Suppose also that ¢ is holomorphic
inQ, and let z € Q and 2’ = p(x). Denote by wq and wg the respective harmonic measures
for Q and Q. Then,

z’ x
Woy = QO#WQ .

In particular, for any Borel set A < S, we have w&,(A) = wi(p~1(A)).

Proof. Let f: 0Q — R be an arbitrary continuous function and let ug/ s be its harmonic
extension to €'. Then ug o ¢ is continuous in €2, harmonic in €, and it coincides with
the harmonic extension of fop:Q — R, ie., ug o = uq fo,. Therefore,

| 7t = o (&) = e 0(@)) = pogle) = [ o = [ £t

Since this holds for any continuous function f on 02, the proposition follows. O

Corollary 9.8. Let Q < C be bounded and simply connected. Let ¢ : D — Q be a
conformal mapping which extends to a continuous map D — Q. Then

0 1
w}’i( ) = gw#”ﬂ”a@-

That is, for any Borel set F < 02, and E = o~ '(F), we have

H\(B)
27

wiV(F)
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9 Harmonic measure in the complex plane

Proof. By topological arguments, ¢(0D) = 0. By Proposition 9.7, we deduce that

1

W ' = (P#w]%) = - @#Hl\am)-

O]

Remark that, by the continuity theorem, if €2 is a simply connected domain with locally
connected boundary (and in particular if it is a bounded Jordan domain), then the con-
formal mapping ¢ : D — Q extends continuously to dD, and thus the preceding corollary
applies. Notice also that whenever we know how to find a conformal map ¢ : D — €, we
know how to find the harmonic measure wq.

9.3 The Riesz brothers theorem

In this section we will prove the following result:

Theorem 9.9 (F. and M. Riesz Theorem). Let Q < C be a bounded simply connected
domain whose boundary has finite length, and let p : D — Q be a Riemann mapping for
Q. Then, ¢' € H'(D) and

w(A) =0 < H(A) =0.

The reader can find an elegant proof of this result in [GMO05, Chapter VI], which covers
the case of Jordan domains. In these notes we use the same approach, adding some
technicalities to include every simply connected domain whose boundary has finite length.
Notice that the result does not depend on the precise pole for harmonic measure, since
harmonic measures for different poles (and the same domain) are mutually absolutely
continuous, see Lemma 5.29.

We begin by proving the Riesz brothers theorem for simply connected domains with
locally connected boundary. Later on, in Theorem 9.14 we will prove that having finite
length implies being locally connected for the boundary of a simply connected domain.

Theorem 9.10. Let Q < C be a bounded simply connected domain with locally connected
boundary and let ¢ : D — Q be conformal. Then 0N has finite length if and only if
¢ e H'(D). If ¢’ € HY(D), then

HY(09) < ¢ 1y < 2H'(09). (9.3)
More precisely, for every Borel set EE < 0§} we get
HY(E) < ppv(E) < 2HY(E), (9.4)

where v is the Radon measure defined by

for any Borel set A < JD.
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9 Harmonic measure in the complex plane

Proof. By the continuity theorem ¢ : dDD — 02 is a continuous parameterization of the
curve and only a countable number of points in €2 have more that two preimages.

Assume that ¢’ € H'. Then given a partition 0 = 6y < 0; < --- < 6,, = 2, writing
¢j := € by the fundamental theorem of calculus we get

n

2,196 — @l = lm 3 lelrG) — plrGi-n)l = i < el

1
j=1 =

r(;
f o' (2)dz
rCi—1

Thus, the length of the parameterization (i.e., counting multiplicities) defined by

() == sup Z\so ¢) — @G- (9:6)
{43}3 1j5=1

where the supremum is taken with respect to all the possible partitions, is bounded by

) < [¢[ - Thus, 1 /
H(0Q) < p) < ¢ 15 (9.7)

and the boundary has finite length, see Exercise 9.3.1 for the details.
Conversely, let us assume that 02 has finite length. First we claim that

0(p) < 2H (092).

Indeed, consider a partition 0 = 0y < 61 < --- < 0, = 27, and take (; := e and Fj =
@ oe”([0;,0;-1)), which is a Borel set. Writing F' := {¢ € 9Q : #p1(¢) < 2}, since IQ\F
is countable (see Theorem 9.3 above), all these sets are Borel, so H!(F}) = H(F n F}).
Since 2?21 XF;nF < 2, we get

(&) = e(G-1) Z =Y H(FjnF)=) f XEynrdH! < 2H'(F),
Jj=1 j=1 j=1 j=1YF

and the claim follows taking supremum on all the possible partitions, because H!(F) =
H(092).

Given r € (0,1), let us choose a partition 0 = 6y < 6y < --- < 6, = 27, and let (; := et
satisfying that

Z (rGj) = ¢(r¢i-1)l = Uer) — ¢,

with £(p,) defined as in (9.6), where ¢, (() := p(r() is a (rectifiable Jordan) curve. The
function

= Z ZCJ zCJ 1)

is subharmonic on D and by the continuity theorem ¥ is continuous on D, so the maximum
principle applies:
sup¥ 2t sup U < 0(p) < 2H(092).
D oD
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Now,
J |g0'(rz)| |dz| = (r) < U(r) +e < 27—[1(8(2) +e€
oD

Thus, ¢’ € H', and we get the estimate
|| 1 < 2HY(2).

Applying estimate (9.7), we obtain (9.3).

Next we turn our attention to the proof of (9.4). Let us assume that ¢’ € H'(D). We
can extend it non-tangentially to the boundary as an L' function via Theorem 9.6, so v
is a well defined Radon measure. First we show that

Hi(p(U)) < v(U) < 2H'(o(U)) (9-8)

for every relative open set U < 0D. It suffices to show this identity assuming that U = J
is an open arc J = ¢*(I), where I is an open interval I = (a,b). Let a =0y <0 <--- <
0, = b be a partition of I, and let (; := % . Then, arguing as before we get

() < tlgly) < lim f 19 (rO)ldc] 2 ().

On the other hand, assuming the partition satisfies
n
Z (r&) — e(r¢i—1)| = prls) —

and defining ¥ as before, we obtain
sup W = sup ¥ < £(¢ls) < 2H' (p(J)),
D oD

SO

L GO = rly) < T + & < 2H () + e,

But, again by Theorem 9.6, we get

o) = s [ I Ollac] < 2 (o) +=
O<r<1
and (9.8) follows.
Now, given a Borel set E < 0f2, by the Borel regularity of v we have
9.

E)= inf vU) = inf HYp))=HYE),
pyv(E) U3£31<E)”( ) poinf ) 7 (p(U)) = 1 (E)

o

establishing the left-hand side of (9.4). Regarding the right-hand side, we have

21 (E) = inf 2H}(V) = int 2} (p(¢7}(V))).
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9 Harmonic measure in the complex plane

Since ¢ is continuous by Theorem 9.3, we infer that (V) is an open set whenever V is

open, so we get
9.8
2HN(E) > inf v(e™ (V) = v(p ' (B)).

Corollary 9.11. Let Q < C be a bounded simply connected domain with locally connected
boundary. Then the harmonic measure and the arc-length measure in 02 are mutually
absolutely continuous.

Proof. By Corollary 9.8, the harmonic measure is the pushforward of the arc-length mea-

sure, SO
Lo, 1
S H (o (B)) = w(B)
for every Borel set E < 0f2.
The preceding theorem implies the comparability of the length in 0Q2 with respect to

the pushforward of v for Borel sets E < 0€2:
H'(E) <v(p '(B)) < 2H'(E),

where v stands for the measure defined in (9.5). In particular, the length in 02 and the
pushforward of v are mutually absolutely continuous, i.e.,

HI(E) =0 < v(p”'(E)) =0.

On the other hand, the arc-length in D and v are mutually absolutely continuous as
well, i.e.,

v(A) =0 < HY(A) =0.

Indeed, by the inner regularity of Radon measures (see Proposition 4.5), we may assume
that A = K < 0D is compact. If H!(K) = 0, then v(K) = 0 by definition. On the other
hand, if v(K) = 0, then since ¢’ # 0 a.e. (see Theorem 9.6), we get H!(K) = 0 as well.
Their image measures are also mutually absolutely continuous, i.e. for every Borel set
E < 0f) we get
v(p H(E) =0 <= w(E)=H' (¢ (E)) =0.

All in all, the harmonic measure and the arc-length measure in 02 are mutually absolutely
continuous as claimed. O

We need the following auxiliary result:

Theorem 9.12. Let E < R? be a compact connected set such that H'(E) < oo. Then E
18 arc-connected.

Proof. See Lemma 3.12 from [Fal85]. O
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Theorem 9.13. Let E < R? be a compact connected set such that H'(E) < wo. Then E
1s locally connected.

Proof. We assume that E is not a single point. It suffices to check that for every £ € E and
0 < r < diam(FE)/3, there exists a connected set F = E n B,.(£¢) which is a neighborhood of
¢ in the topology of E. To this end, denote by {I';};cs the family of connected components
of E n B.(£). We claim that each component I';, i € I, intersects 0B,(£). Indeed, by
Theorem 9.12 E is arc-connected and, since E ¢ B,(£), there is an arc contained in E
that joins T'; to some point ¢’ € E\B,(¢). From this fact and the maximality of I';, our
claim follows easily.

Let {T';}ier,, with Iy = I, be the subfamily of connected components of E n B,.(£) which
intersect BT/Q(E). Since each T'y, i € Iy, intersects both 0B, () and Br/Q(ﬁ), it holds that

HYT,) =r/2  for each i € I,

see [Fal85, Lemma 3.4]. Then, from the fact that H!(F) < oo and the disjointness of
the components I';, it turns out that Iy is a finite set. That is, there are finitely many
components I';, i € I.
Let F' = TI'y, be the component I';, ¢ € Iy, that contains . To see that F' is a neighbor-
hood of € in FE, let
0= min dist(§, ).

iefo\{ko}
Notice that § > 0 because Iy is finite. Next, let &' = I min(6,r/4). Then we have
E n B(§,0") © F and thus F is a neighborhood of £ in E. O

Corollary 9.14. Let Q2 < C be a bounded simply connected domain whose boundary has
finite length. Then its boundary is locally connected.

Proof. Since () is simply connected its boundary is connected, and then we can apply
Theorem 9.13. O

Exercise 9.3.1. Show the first estimate in (9.7), that is, H(0Q) < £(¢).

9.4 The dimension of harmonic measure in the plane

The dimension of a Borel measure p in R is defined as follows:
dimy (1) = inf{dimy (E) : E ¢ R? Borel , u(E®) = 0}.

This does not have to be confused with the dimension of suppu. For example, let Q =
{qr}r>1 be the set of all rational numbers, ordered in some way. Then consider the
following measure in R:

n= Z 27" 5qka

k=1
where dg, is the Dirac delta on g;. It is immediate to check that dimy p = 0, while
suppp = R and so dimy (suppu) = 1.
For simply connected domains Makarov [Mak85] proved in 1985 the following:
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Theorem 9.15. Let Q < C be a simply connected domain. Then dimy w = 1. Further,
w(E) =0 for any set E < 02 with Hausdorff dimension dimy(F) < 1.

Remark that the dimension of harmonic measure is independent of the chosen pole in
the domain. For arbitrary planar domains, Jones and Wolff proved the following result in
1988 [JWSS]:

Theorem 9.16. For any open set Q < C, the associated harmonic measure satisfies
dimy (w) < 1.

Observe that the boundary of a planar domain may have Hausdorff dimension larger
than 1. This is the case, for example, of the Jordan domain enclosed by the von Koch
snowflake. It is well known that this curve has dimension log4/log 3. Further, it is easy to
check that, because of connectedness, the (closed) support of harmonic measure coincides
with the full boundary for any domain €2. In spite of this fact, the dimension of harmonic
measure is always at most 1. So there is a set F < 02 with dimy £ < 1 with full harmonic
measure. By Corollary 5.36, such set E must be dense in 0€) whenever () is Wiener regular.

The Jones-Woff theorem was sharpened by Wolff [Wol93] a few years later:

Theorem 9.17. For any open set Q) < C, there exists a set E < 0S) with o-finite length
and full harmonic measure.

The rest of this chapter is devoted to the proof of the Jones-Wolff Theorem 9.16. We
will not prove the other theorems by Makarov and Wolff mentioned above.

9.5 Preliminary reductions for the proof of the Jones—Wolff
Theorem

We will prove Theorem 9.16 assuming 02 to be bounded, since we have defined harmonic
measure in this case. The case where 02 is unbounded easily follows from the bounded
case (once harmonic measure is properly defined). We will show first below that we may
assume that €2 is Wiener regular.

Lemma 9.18. To prove Theorem 9.16, it suffices to prove it when ) is Wiener regular.

Proof. We may assume that Cap; (0€2) > 0 because otherwise dimy (w) < dimy (0€2) = 0.
For each ¢ = 1/k, let SN)k be the Wiener regular open set constructed in Proposition 6.37
(denoted by Q there). Also, denote by Fj the union of the closed balls B;, i € I, in the
construction of Qk For a given p € €, let £ > kg be small enough so that p € (NZk and
do(p) ~ dﬁk (p). Denote by w and wy, the respective harmonic measures for {2 and Q. By

Theorem 9.16 applied to ﬁk, there exists a subset Ej, < 6f~2k with full harmonic measure
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9 Harmonic measure in the complex plane

wi and with Hausdorff dimension at most 1. Taking into account that é’ﬁk c F u 09, by
Proposition 6.37(vi) we have!

wh(Er) < wh(Fy) + Wi (B n Q) < % + wh (B N 0%Y), (9.9)

with the constant C' above possibly depending on dg(p).
Let

E =B no9).
k

Notice that dimy (E) = supy, dimy (E)) < 1. By (9.9), we have

(E) = Wb By 0Q) > Wl (Ey) — % o (000) — % > (69 A 203 — % (9.10)

Now by Lemma 6.38, we know that

WP(E) = lim WP(E) and wP(0Q) = lim w?(0Q n o).
k—oo k—o0

So letting & — oo in (9.10), we deduce that F has full harmonic measure wP. Since E has

Hausdorff dimension at most 1, we infer that dimy w? < 1. O

The next reduction is the following.

Lemma 9.19. To prove Theorem 9.16 under the hypothesis of compact boundary, we
may assume that £ is an unbounded domain with compact boundary and that the pole for
harmonic measure is o0.

Proof. We may assume that € is connected because the harmonic measure for {2 with pole
at p € Q coincides with the harmonic measure for the component of ) containing p, with
pole at p.

Suppose now that p # oo. Consider the map ¢(z) = 1/(z — p). This is a conformal
mapping of the Riemann sphere, and by Proposition 9.7 (which also holds for unbounded
domains with compact boundary), denoting Q' = ¢(Q2), we have

o __ p
Wor = QO#(/JQ

Hence, assuming that Theorem 9.16 holds for wg,, we infer that there exists some subset
E < 0 with dimy E < 1 and full measure wg,. Then ¢! (E) has full measure w?, and,
since @|aq : 02 — 0SY is bilipschitz, we also have dimyg; ¢~ }(E) < 1. O

Recall that in Theorem 7.32 we showed the following properties for the harmonic mea-
sure and for the Green function with pole at oo, for any unbounded Wiener regular domain
Q) with compact boundary:

! Although w?(Ey) = ws (6§~Zk) = 1, we prefer not to use this fact, so that the proof of this lemma extends
easily to unbounded domains in R?, d > 3. Recall that we cannot ensure that in these domains the
harmonic measure of the boundary equals 1.
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9 Harmonic measure in the complex plane
(i) For every ¢ € C(R?),
f G (2) Ap(z)dm(z) = fwdww.
Q

(ii) w® coincides with the equilibrium measure of 02 and moreover, for every z € €,

w0 . # _ i "
GH) = Capy (09)  2r Lﬂlog €7 dw™ (). (9.11)

Recall also that, for any compact set £ < C,

1
—— = iof I(p)= inf |E&=pdpy,
Capy (E)  peMy(B) (k) ueMl(E)J pren

where the infimum is taken over all probability measure supported on E. The number

B 2T
TE = Capy (E)

is called the Robin constant of E. So we have Cap (E) = e 7E.

Lemma 9.20. To prove Theorem 9.16, it is enough to prove that for any € > 0 the
following holds:

For each 79 > 0 there is a set A < 0Q with HL(A) < 79 and w(OQ\A) < n9.  (9.12)

Proof. The statement (9.12) implies that for 79 > 0 there is a set A = 0Q with H11¢(A) <
no and w(0Q\A) = 0, which in turn implies that there is A < 09 with HL¢(A) = 0
and w(0N\A) = 0. Now taking ¢, — 0, one gets sets A, = 02 with HL*"(A4,) = 0 and
w(0NA,,) = 0. Letting E = [, A, we have HL " (E) = 0, for each n, which gives that
the Hausdorff dimension of E is less than or equal to one, and w(0Q\E) = 0. O

Sketch of the proof of Theorem 9.16

We will make a reduction to the case in which K := 0f) is a finite union of pieces of
small diameter and rather well separated. Then we will construct an auxiliary compact K*,
which is a finite union of closed discs, using two special modification methods, called “the
disc construction” and the “annulus construction”. It is crucial to compare the harmonic
measure associated with {2 and that associated with the new domain Q* = C*\K*. This
is simple for the annulus construction, but much more delicate for the disc construction;
Lemma 9.21 below takes care of this issue. The gradient of the Green function G = G* of
Q* with pole at o0 can be estimated on some special curves surrounding K* and contained
in level sets of G. All these ingredients allow to estimate the harmonic measure of ) in
terms of the integral of the gradient of G on these curves. Lemma 9.24 is the main tool to
end the proof estimating this integral in the appropriate way. An ingredient in the proof
of Lemma 9.24 yields in the limiting case, assuming 02 smooth, the formula

f |0,G| log |0,G| dH* > —cq,
o2
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9 Harmonic measure in the complex plane

where GG is now the Green function of 2 with pole at oo, v is the outer unit normal to
0 and ¢y > 0. If 0Q is analytic, by the reflection principle for harmonic functions (see
Exercise 9.5.1 below) VG is harmonic in a neighborhood of dQ and thus it is C*(Q). By
Proposition 7.35, the harmonic measure is (in the smooth case)

dw® = |81,G| dH1|aQ = —adeH1|gQ.

Let us do some heuristics here. Assume that at the point z the “dimension” of w® at z
is d(z), which means that w(B(z,7)) ~ r%*), or equivalently M ~ rd2)=1 By the
previous identity and the Radon-Nikodym theorem, we have

w*(B(z,1))

v =li )
0,G()| = lim ==

so we get

lim | (d(z) —1)log(2r) dw®(z) = —co.

=0 Joq
From this fact, we deduce that the integrand in the left hand side of the preceding identity
does not tend to —oo in a set of positive measure as r — 0, that is d(z) < 1 for w®-a.e.
z € 090, and so, w® lives in a set of dimension not greater than 1.

From now on, in the rest of this chapter, unless otherwise stated, we assume that 2

is a Wiener regular unbounded domain with compact boundary, and we denote by w its
harmonic measure with pole at co. We will also write K = 0.

Exercise 9.5.1 (Reflection principle for planar harmonic functions). Let U < C be a
finitely connected domain bounded by disjoint analytic Jordan curves, and let u : U — R
be a harmonic function in U with 4 € C(U) and such that u|sy = 0. Show that v e C1(U),
that is, show that Vu extends continuously to oU. (hint: solve first [Eva98, Problem 2.5.9]
and then use that every analytic curve is locally the image of a segment by a conformal

mapping.)
9.6 The disc and the annulus construction
Let us start with the disc construction.

Disc construction

Fixe > 0. Let @ be a closed square with sides parallel to the axes and side length £ = ¢ (Q)
and set £ = Q n K. Replace E by a closed disc B (B will stand for the corresponding
open disc) with the same center as @) and radius r(B) defined by

B }CapL(E)H_E B EB—VE(1+5)

r(B) =3 I 2

(9.13)

By (6.4) this construction is scale invariant, i.e., if we dilate @) and E by a constant A,
then the ball defined by this method is dilated by the same factor A as well. We get a new
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9 Harmonic measure in the complex plane

compact set K = (K\E) U B, a new domain = C¥*\K = (Qu E)\B and a new harmonic
measure W = wg.
Note that B = Q°. In fact, since the logarithmic capacity of a disc is the radius (see
proposition 6.16), we have the estimate
V2

-5 b

A

Capp(E) <

so that
(\/5/2)“5 e
Iz

r(B) < % - g (ﬁ/z)m <0/

Annulus construction

Let @ be a closed square with sides parallel to the axis and take the square RQ, where
R is a number larger than 1 that will be chosen later. The reader has to think that R is
very large. Delete K n (RQ\Q)° from K to obtain a new domain €2 = Q U (RQ\Q)° and
a new harmonic measure & = wg.

It is important to have some control on the harmonic measure of the new domain
obtained after performing the disc or the annulus construction. For the annulus this is
easy: any part of K which has not been removed has larger or equal harmonic measure.
In other words, if A < 02 satisfies A n (RQ\Q) = &, then @(A) > w(A). This is a
consequence of Lemma 5.32 because A < Q2 n oQ and Q < Q.

Estimating the harmonic measure after the disc construction is a difficult task. The
result is the following.

Lemma 9.21. Let Q be a square with sides parallel to the axis. Fix e > 0 and perform the
disc construction for this e. Assume that RQ\Q < Q. Then there exists a number Ro(e)
such that for R = Ry(g) one has

(a) 3(B) = cow(Q n K).
(b) @(A) = w(A), if A < IQ\RQ is both relatively open and relatively closed.
Above @ and w are harmonic measures with pole at co.

The proof of Lemma 9.21 will be presented in Section 9.11 and we will use it as a black
box in the arguments below.

9.7 The Main Lemma and the domain modification

Let Q = C*\K, Cap; K > 0 and assume that K < {|z| < 1/2} (this assumption will be
convenient later on, but it is not essential). Fix ¢ > 0 and let R > 2 + Ry(¢), R integer,
where Ry(e) is the constant given by Lemma 9.21. We let M = M (e, n) stand for a large
constant that will be chosen later (see Section 9.10) and we let p be a small constant so
that M <log1/p, and p = 2%\,, N a positive integer. Consider the grid G of dyadic squares
of side length p and lower left corner at the points of the form {(m + ni)p; m,n € Z}. For
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each 1 < p,q < R, let G, be the family of (closed) squares € G with (m,n) = (p, q)
R
(mod R x R). Then G = |J Gpq-
1

.=
Write Kp, = Q% K nQ, Qpg = C\Kpg, wpg(A) = wg . We will show the following:
€Ypq

Main Lemma 9.22. For any € > 0 and for any n > 0, one can choose R(g) > 0 large
enough and p(n, e) small enough so that for all 1 < p,q < R there is a Borel set Apq < Ky,
satisfying

HUE(Apy) < and  wp(Kpg\Apy) < 1. (9.14)

An important fact about the previous statement is that the constant R = R(e) does not
depend on 7, so that n can be chosen later depending on R(¢).

Let us see how Lemma 9.20, and so the Jones-Wolff theorem, is derived from Main
Lemma 9.22. Write A = UK%KR Apg. Then, we have

/H%cﬁ(qu) < 2 Hc1>o+€(AptI) < R’ m,

1<pg<R
and, by Lemma 5.32,
5.32 9.14)
w(K\A) < Z w(Kpg\A) < 2 w(Kpg\Apg) < wpq(Kpg\Apg) < R7n.
1<pg<R 1<pg<R 1<p,g<R

Recalling that 7 can be taken arbitrarily small, for any given R, (9.12) follows.

Our next objective is to prove the Main Lemma 9.22. To this end, we need to perform
a domain modification which we proceed to describe.

Domain modification.

From now on we fix p, ¢ and let Q = Qpq, K = K,q, w = wpg. We let {Q;}; be the
family of squares in G,,. We remark that, by the construction, for each square ; one has
RQ;\Q; < €, so that we will be able to apply Lemma 9.21.

Fix ¢ > 0 and perform the disc construction for € in every square @);, so that we get a
finite family of closed discs {Bj}, whose union is a compact set K7, a new domain 2, =
C\K1 and a new harmonic measure w; = wj .

Next choose a dyadic square Q' of largest side £(Q!), not necessarily from Gpq, such
that

QY =p and wi(QY) = MUQY).

If such Q' does not exist we stop the domain modification. If Q' exists we perform
the annulus construction on Q! (with constant R) and after this we perform the disc
construction on the square Q', replacing K; n Q' by a disc B!. So we obtain a new
compact K3, a new domain Qy = C*\ Ky and a new harmonic measure wy = wg;.

Now we continue and take Q? dyadic with largest side such that Q% ¢ Q', £(Q?) = p
and wo(Q?) = M{(Q?). If such Q? does not exist we stop. Otherwise we perform the
annulus construction on Q2 but with a special rule: If B! n (3(RQ?\Q?)) # &, then we
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do not remove the set B! n (RQ*\Q?) from K5. The reason for this rule is to get full balls
in all cases.

After that we perform the disc construction on @2, replacing Ko n Q2 by the corre-
sponding disc B?, getting a new compact K3, a new domain 3 and a new harmonic
measure ws.

We continue this process so that if K1 n Q, Ko n Q?,..., Kn_1 n Q" ! have been
substituted by B*, ..., B"~! we choose now (if there exists) a dyadic cube Q™ with largest
side so that

Then (if we do not stop) we perform the annulus construction with respect to Q™ but
without removing B/ n (RQ™\Q"), 7 = 1,...,n — 1 in case that B/ n ((RQ™\Q")) # &
(this is the special rule). Finally we perform the disc construction on Q", getting B",
Kni1, Qpy1 and wpy-

At each step there are only finitely many candidate dyadic squares, because p < ¢(Q) <
1/M. Since no Q7 can be repeated (because @ ¢ Qf, ¢ = 1,...,j — 1) the modification
process stops after finitely many steps. Let K* Q% = C\K*, w* = wd; be the final
outcome so that K™ is the disjoint union of the non removed discs; more precisely,

K* = U Bk U U Bj (some finite sets of indices S and T,
keS jeTr

where the Bj are the original discs and the B* are the new discs produced after performing
the annulus and the disc constructions.
Now we want to prove by means of Lemma 9.21 the following estimates:

*(Bj) z ow(Qy), JjeT, (9.15)
Q) = aMUQ), jeS. (9.16)

w
w
For (9.15) note first that we always have RQ;\@Q; < €. Since @); has survived all steps we
cannot have RQ* o Q; at some step k. Since RQ¥ is a union of dyadic squares, the other
possibility is RQ* n Qj = & for all k and we can apply both inequalities in Lemma 9.21.
For (9.16), when we select 7 we have w;(Q’) > M{(Q7) and after performing the
annulus and the disc constructions, we get wji1(B7) = cow;j(Q7) = co MU(QP). If k > j
there are three possibilities: i) B/ < RQ’“\Q’“, in which case B’ has disappeared and
§ would not be in S; i) BY n (RQM\Q*) = & in which case wyy1(B7) = wi(B’) and
iii) B7 n (RQM\QY) # &.
In this last case we have £(Q*) > £(Q7) since otherwise Q* would have disappeared. But
now since R > 2 + Rg(g) we get that B n (Ro(e)QF\Q*) = & and so w4 1(B7) = wy,(BY)
by Lemma 9.21 part b). At the end we obtain

wH Q") = w*(BY) = = wp(B) = - = wip1(BY) = co MU(QY).

We will also need the following estimate: If zg € Q;, j € T (or 2y € Q*, ke S) and
r = £(Q;) (r = ¢(QF)), then

w*{|z — zo| <1} < CMr. (9.17)
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Ro(e)Q" | RQ*

Qk

Qj

Figure 9.1: Disposition when special rule applies.

Let us discuss the case of Qj, z0 € ;. We remark that if @ is a dyadic square with
@ D Qj, then one has w*(Q) < M/{(Q) because otherwise the process would not have
been stopped.

Q Take now a dyadic square D Q; with side
length 2™¢(Q;) such that r < 2™0(Q;) < 2r.
r We just said that w*(Q) < 2Mr. Now the
Q, disc {|z — 29| < r} is contained in 4 dyadic squares
of the same side length as (). Take one of these
squares Q' different from Q. If Q" does not con-
Q" tain any @j or QF then w*(Q') = 0. Otherwise
w*(Q') < 2Mr.

Q' The case zg € QF is dealt with similarly.

The next lemma shows that the union of the family of squares {Q;};er and a dilation
of the family {Qg}xres contains K.

Lemma 9.23. K < |J 2RQ* U | Q;.

keS JeT
Proof. Recall that now K = Ky = |J Kn Q. Solet Q € Gy and E = K n Q. If
QEGpq
Q = Q; for some j € T then F < Q; and so E = | J2RQ* u | Q.
k JeT

If Q # Q; for every j € T then there is a first index j; such that ) < RQM\Q';ifj1 € S
then Q < RQ’', j; € S, and we are done. If j; ¢ S there is a first index jp such that
Q7' < RQ™\Q?2. In this case £(Q72) > 2£(Q7") because if we had £(Q7!) > £(Q’?) then
Q72 = RQ7 and Q2 < RQ'\@Q7*, so that @72 would have disappeared. If jo € S we have
Q < RQ’? and we are done. If jo ¢ S there is a first j3 such that Q72 < RQ73\Q’* and so
on.

We get a sequence j; < jo < - < jp with ji,...,5n—1 ¢ 5, jn € S so that

Q  RQ™, Q% < RQ’*+'  and K(jS-%—l) > Qg(jS).
Note that every pair of cubes Q1 and Q2 with £(Q2) = 24(Q1), satisfies that
Q c2RQ; and Q1 < RQy = @ < 2RQs.
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Then, using this argument inductively on {Q7F}7_,, we get that Q = 2RQ’". O

9.8 Surrounding K* by level curves of the Green function

To continue the proof of the Theorem, let ) be a square Q = Q;, jeT or ) = QF ke S
and let B be the corresponding disc. Let G(z) = G&x(z) be the Green function of the
domain * with pole at c0. The goal of this section is to find a closed curve o surrounding
B, contained in a level set of G, and such that

IVG(2)] < CM?log

1
, ZE€Eo, 9.18
@ (918
for a positive constant C.

By (9.11), the Green function G is the logarithmic potential of the equilibrium measure
plus the Robin constant divided by 27, that is,

21G(z) = f log |z — w| dw™ (w) + Yr*
K*

= j log |z — w| dw* (w) + f log |z — w| dw™ (w) + ygx = u(z) +v(2) + Yi*.
B K*\B

We have the estimate

dw™ (w)

[Vou(z)| < C
K*\B |z —w|

< CM log (1Q)7 z€ Q. (9.19)

To show this last inequality, fix z € (). We have

[ e s [ do*(w)
kx\B |2 —wl ~ ilognt(Q) B (2)\Byy1(2) |z — w|
log, diam K * 9.17) logz diamK* 1
< ) 2w*(By(2) < Y 27iCMY ~ CMlogzm.
J=logy ¢(Q) Jj=log, ¢(Q)

Assume for simplicity that the center of the square @, and so of the disc B, is the origin.
Next we will estimate the derivative %f(z) from below, namely

ou w*(B)

=220 for 2] = 2r(B), 2
6r(z) c 2] or |z| r(B) (9.20)

with 0 < ¢ < 1 universal.
Write z = ret?. Since

. 1 A
u(re?) = 3 f log |re? — w|? dw* (w),
B

191



9 Harmonic measure in the complex plane

we have
u _ } 1 ﬁ 0 T *
() = QJB P s ((re = w)(re™ — @) du* (w)
(Z B ’11})2 > *
= Re| ————F— | dw™(w).
Jme ()
Note that

i ) om (5 (53 ) ).

Trivially,

(o) 42

0 / z
Figure 9.2: The scalar product (w, z — w) is negative when the angle |(ﬂu\z| < 3.

On the other hand,

(z —w) z 1 1 w
lz—w2 |22 z—w Z

_ _ 1 o
Re (Z f (<Zw>2 _ 22> dw*<w)> _ L Re(@Gow) ey,
12l Jp \lz —wl* || 2l Jop |z —wl
Note that, whenever |z| = 2r(B), then Re (w (z — w)) = (w, z — w) is positive on an open

r(B)z

z

SO

arc centered at , and subtaining an angle grater than %’r On the complementary arc

b={wedB:{w,z—w)<0}c {rB)e . 3 <t< 3},

we get that |z — w| > (1 + 7)r(B) for a universal 7 > 0 (in fact one can easily show that
1

T > 3), S0
2/

w ‘ 1
<

2—w| 147
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All in all,
1 v (2 — - 1 w*(B
1 Rc%w(ZWMMDJ | o w) > B
2| Jop [z —w]? 2| Jylz —w L+7 |2
S0 * (D * (D * (D
2F8£(Z)>w (B) 1 w (B): T w*(B)
or |z 1+71 |7 1+71 |z

establishing (9.20).
We are now ready to estimate the gradient of the Green function G. Define

w*(B)

a = a(B) = max <leogw@),2r<3)) ,

and distinguish two cases:

.
B
Case 1: a = 2r(B), that is, w(B) < 2M?log 75+

r(B) HQ)-
We let o to be the circle 0B, so we need to prove estimate (9.18) in this setting. First
we claim that

sup |VG| < Cinf VG| (9.21)
0B oB

for some constant C, which we will prove below. In order to prove (12.30), assume that
zp = 0 and take two points z and 2’ with |z| = |2/| = 2rr(B). Then we have

m1G() < G(z) < mG(?)

for some constant m by Harnack’s inequality. Applying boundary Harnack’s inequality to
rotations of G in the domain 3B\B (see for instance Corollary 8.18), we deduce that

m1G(Z) < G(z) <mG(Z) for r(B) < |z| = || < 2r(B).
Dividing by |z| — r(b) and taking limit as |z| — r(B), we get
m~10,G|(¢) < |0,G|(2) < m|d,G|(Z), |z] = || =r(B),

and (12.30) follows.
We have

w*(B) = J |0,G|dH = 27 inf VG| r(B),
0B 0B

and for z € 0B, using (12.30) we get

: w*(B)
< < : .
IVG(z2)| ClargWG(z)] C (B) (9.22)
. . W*(B) 2 1 :
Since we are under the hypothesis B) < 2M*log g5, we get (9.18), i.e., [VG(2)| <
T
2 1
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.
Case 2: o > 2r(B), that is, w(B) = M?log ﬁ.
We note that .
w*(Q) - 2M(Q) <if(Q). 0.23)

S M2log2 S M2log2 S M
The inequality w*(Q) < M{(Q), for Q = @, comes from the fact that @); has survived
the process to get to w*. If Q = QF, take the dyadic square @ with side length 2 £(QF)
and containing QF. Since the process has stopped, w*(QF) < w*(@) < Mf(@) =2M/(Q).
Taking in (9.23) M > 8, we obtain a < £(Q)/2 and so {|z — 20| = a} < Q.
Now we want to prove that

IVG(2)| < 4 M?log

6(22)’ a < |z — 2| < pa, (9.24)
where p is such that g > €™, a condition that will be used later, with C' fixed in
(9.28) below. Choosing M > 8u we obtain au < £(Q)/2, by (9.23). Hence the annulus
a < |z — 29| < pa is contained in Q\B, a fact that will be used in the sequel without
further mention.

First, let us show

2nC

10
5 a*:(z) > [Vo(z)|,  a<[z— 2| < pa. (9.25)
By (9.20) we get
0 *(B *(B
ﬁ(z)>cw (B) > 2 ( ), a < |z — 20| < pa,
or |z — 2o po

w*(B)

and since we are in case 2, that is, = M?1log ;1, by taking the quotient M /u big

UQ)’
enough we obtain

1 ou c o 1 (919 ¢ M|V
> >

> |Vu(2)], a<|z-— 2z < pa,

by (9.19), settling (9.25).
Finally, using (9.25) we get
dw* (w)

9.25
27|VG(2)| < |[Vu(z)| + [Vo(z)| < 2|Vu(z)| < C ,
oB |2 — Wl

a < |z — 20| < pa,

and |z —w| = |z — 20| — |w — 20| = a —r(B) = §, which gives

w*(B) = C M?log

1
VG(:) < 02 70

a < |z — 20| < pa,
establishing (9.24).
Assume zp = 0, let ¢ = sup{G(2) : |z|] = a} and take as ¢ the connected component

of {G = ¢} that contains a point on |z| = a. The curve o encloses a domain that contains
the disc {|z| < a}.
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AR

—

Figure 9.3: Disposition in case 2.

We claim that o remains inside {|z| < pa}, which, in view of (9.24), yields the required
estimate (9.18).

We have . .
Vao) < [ <o s
B |z —wl 2|
because
|z —w| > |z| — |w| > ’;‘-F(;—T(B) > |'22‘
By (9.20), for |2| = a > 2r(B) we get
.
B
%:f(z) >c°"|i| ) and [Vu(2)| < 20_12—1:(2).

Therefore, combining the previous estimate with
(9.25), for a < |z| < po we get

27 [VG(2)| < |Vu(2)] + [Vo(2)] < C’Z—Z(z). (9.26)
Moreover, by(9.25) we have
oG ou ov
27 ﬁ(z) = g(z) + g(z) (9.27)
ou 9.25) 1 0u 9.20
0 > E(Z)—|VU(Z)| > 55(2) > 0.

The curve o contains at least a point a on the circle {|z] = a}. Consider the maximal
subarc 7 of ¢ containing a and contained in the disc {|z] < pa}. By (9.27), each ray
emanating from the origin intersects 7 only once, and so 7 can be parametrized by the
polar angle 6 in the form r(f)e? with 6; < 6 < 6. Without loss of generality assume
01 <0 < 62 and r(0) = a.
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9 Harmonic measure in the complex plane

If 7 = o we are done. If not, 7(62) = pa and we will reach a contradiction. If ¥ = €' is

the radial direction and 5 = ie? is the orthogonal direction to 7, then (12.37) yields

oG

12.37) o 9.27) oG
— <
55 (%)

< |VG(2)] < CE(Z) W(Z)

Since G(r(0)e') = ¢, taking the derivative with respect to § one gets

0= <VG(T(9)6i€),T,(9)6i0 + ir(9)ei9> = r’(@)aaf + r(@)aaf
and so .
o) _|oe||e¢
() < ar s < C. (9.28)
Therefore

r(82) _ (™16
log ~(0) —JO 0 df < 2rC

and, recalling the way p has been chosen,
pa = () < e2r(0) = e*Ca < pa,

which is a contradiction. By (9.24) we obtain the desired inequality (9.18).

9.9 The estimate of the gradient of Green’s function on the
level curves

In the previous section we have exhibited for each disc B = Bj, jeTorB=DBF keSS, a
simple curve o contained in a level curve of G and surrounding B, on which estimate (9.18)
holds. Let now I' be the curve formed by the set of ¢’s corresponding to each disc Bj
or B¥. Then T separates K* from infinity.

In this section we prove the estimate

f llog| VG| 6,G| dH" < C loglog(1/p). (9.29)
r

At this point we write log™ = max{log, 0} and log = log™ —log™. Since we are assuming
that M < log(1/p), we have, by (9.18),

log™ |[VG(2)| < log(CM?1og1/¢(Q)) < C loglog(1/p), zeT.

Note that

—f 0,G dM’ =ZJ 3,GdM' =) w*(B)
r o Jo B

which is clear for those terms for which ¢ = ¢B and follows from the divergence theorem
for the others, because ¢ surrounds 0B, and Proposition 7.14 applies. In both cases we use
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9 Harmonic measure in the complex plane

that VG is continuous up to the analytic boundaries ¢ and 0B by the reflection principle
for harmonic functions.
Hence

f 10,Glog™ [VG| dH! < C loglog(1/p) f 10,G|dH
I Iy
= C loglog(1/p) Zw*(B) = C loglog(1/p).
B

In order to estimate the integral on I" of 0,G log™ |[VG| we need the following lemma.
Lemma 9.24. Let G(z) = G&(z) be the Green function of the domain Q with pole at
nfinity and let I' = Lj\j I be the union of finitely many closed Jordan curves I'; enclosing
disjoint (bounded) jozrldan domains, so that T' c {|z| < 1}, T separates K = C*\Q from

infinity and there are constants cj, j = 1,...,N such thatT'; < {G(z) = ¢;},j=1,...,N.
Then

j 10, G| log [VG| dH! > —log 4.

r

The proof of this lemma will be discussed in Section 9.11. By Lemma 9.24 we have
f 10,G| log™ |VG|dH' < f 10,G| log™ |VG|dH" + log 4,
r r

which completes the proof of (9.29).

9.10 End of the proof of the Main Lemma 9.22 and of the
Jones-Wolff Theorem

Recall from (9.14) that for a fixed € > 0 and for each n > 0 we have to find a set A ¢ K
with H11¢(A) < n and w(K\A) < n.
Decompose the set of indices T as T = 11 u Ty with
Ty ={jeT:w*(B;) = p’r;},
Ty ={jeT:w"(B)) < p7?rs},

Jre(ye)]

K\A= | J(KnQy).

JET:

where r; = r(Bj).
Set

A=

keS

KN (U 2RQ’“>

We know, by Lemma 9.23, that
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Inequality (9.16) yields, using that Y, ¢ w*(QF) < 1,

'Héo-i-& (K N (U 2RQ1€>) < (2R>1+a Z g(Qk‘)l-‘,—a

keS keS

1+e 1+e
R Zw*(Qk)1+s < ( R ) < g

< - -
= (M C())l+€ ies MC()

for M big enough. By Lemma 6.20 with s = 1 + € and the definition of the radius of Bj
in the disc construction (9.13) we obtain

Hie (U (K Q») < S HY(K Q) <C. Y] Capy (K 0 Q)"

JjeT Jje€T Jje€T1

=C. Z rjp° = C: Z rj p% p?
jeT1 jeT

< C: 2 2w (By) < Cpf? < U
JjeTy

[\

provided p is small enough.
We have got H1F¢(A) < n and it remains to estimate w(K\A). By inequality (9.15)

9.15) 1 _
mepw<LﬂKm@0 < — > wH(By).
. Ccy
JET, JeT2
Now we remark that for j € T, we are in the Case 1 of the Section 9.8, that is

By o
M?log(1/p) ~ 7"

Indeed, since w*(B;) < p¥/?r; it is enough to see that
p* < 2M*log(1/p),

which clearly holds for p sufficiently small.
For z € 0B;, j € Ty, we know by (9.22) that

*( 0.
WG@n<c“(f)<CfR

T

so that - -
log [VG(z)| <logC + 2 logp < 1 log p,

for small enough p. Hence, for such small p,

S
[log| VG (2)[| = 7 log(1/p).
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We then get
1 1
w(K\A) < p Z Z f 10,G| dH
JjeT> ]ETQ
C

<— - 0, G| |log|VG|| dH!
i ZTf 0,61 log V|

C
<—"
coelog(1/p)
929 C loglog(1/p)
eco log(1/p) ’

f 16,G| [log| VG| !
T

due to (9.29). Thus w(K\A) < n if p is small enough. Therefore for fixed € > 0 and given
n > 0, we can choose M and p such that the set A satisfies the desired conclusion.

0.11 Proof of the lemmas

9.11.1 Proof of Lemma 9.21

Since the disc construction is scale invariant, changing scale we may assume that £(Q) = 1.
Let & stand for the center of Q).

Proof of a). Denote by p the equilibrium measure for (Qu E)¢. Since QU E an unbounded
domain, by (7.9) the Green function G¢(z) of the domain Q U E with pole at & can be
written in the form

GS(Z)=55(Z)—UM() J(Sg( ) = Up(w ))dWQuE( ) (9.30)

L (og E=9 gu(a) + H
o Nl
T or g‘

Note that both measures p and w§  p are supported in IQ\RQ. From (9.30) it is clear
that the Green function can also be written in the form

1 1
Gi(z) = %log Py

du(a) dwd, p(w), zeQuUE.

+h(z,8), 2zeQUE, (€QUE, (9.31)
with
h(z,€) = —Uy(z) — f (E5(w) — Up(w)) dugy, () (9.32)

1 - —
=g [ "L s, zenvn ccaun
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9 Harmonic measure in the complex plane

Note that h(z,&) is continuous by Lemma 6.26, and the change of integration order we
have used above is well justified by Tonelli’s theorem. Using the notation V = 20, we
obtain

1
Veh(,6)| < 5-

1 z
| dehusw
PQ\RQ W — §

so@), £cQ, eQUE.  (933)

Next, for a given zp € 0Q, we wish to estimate h(zp,&p) from below, where & is the
center of (). To this end, note that, for all a € supp up < IQ\RQ, |z0 — a| = %(R -1) >
R/4 = 3|& — 20| (because we assume R > 2), and thus, for all w € 0Q\RQ,

lw—al < |w—&|+ [& — 20| + |20 — a| < |w — &l + 3|z — al.
Thus, using the two estimates |z — a| > R/4 and |w — &| > R, we derive

|20 — al

| jw—&o| _ 10w — &l |20 —
R/4 '

— < —

+3‘Zo—a

Hence,

_ — R
lw —&ol [20 — al > logi()’ we 0NRQ, ae dQ\RQ.

1
©8 |w — al 1

Plugging this into (9.32), we obtain

1 R
h(zo, &) = b log —. (9.34)

Let now ug and pg be the equilibrium measures of E and B respectively and set
ue) = | GEEdup(@), o) = | ) duste)

For every zy € Q) one has

B

u(n) = o+ h(z0,&) + O(1/R), ne B,
v(n) = 32 + h(z0,€0) + O(/R), neE,

where the constant in O(1/R) is independent of zp. To see this just write

h(n,€) = (h(n,€) — h(n,%0)) + (~(§0,n) — h(S0, 20)) + h(20,&0)s

use (9.33), the symmetry of the Green’s function and the fact that the equilibrium potential
of a regular compact set is equal to the Robin constant on the set (see Lemma 6.26).
Now since u = v = 0 on 0Q\RQ we get

u(z) = [ u©dog©) = | ue) o), 2efl
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Hence, for z ¢ K U @,

u(z) = (32 + hizo, &) + O(/R)) w3 (B),

0(z) = (3£ + hlz0,60) + O(1/R)) wa(E).

Assume for the sake of simplicity that {x = 0. Then by plugging the identity (9.31) into
the above definitions of v and v we obtain

Set
pe) = o) —o(e) = [ <1og Lty ﬂ) A (€)
+ | ne, >du3<a>—f h(z.€) dpup (€)
B E

Thus, for z € Q\RQ,

oo < |[ s E =@ + | [ 01659 - .0 duse)
i |[ 49— ne 0 st = 0 (7).

Therefore
u(z) =v(z) + O(1/|z|), =ze€ Q\RQ.

Recalling that Cap; (B) L 1 Capp(E)'¢ one gets

. (2 . oz) + O/l
Q (2m)~ty5 + h(20,0) + O(1/R)  (2m) ' (ve(1 +¢) +log2) + h(z0,0) + O(1/R)

(v + 27h(z0,0) + O(1/R)) wg(E) + O(1/|z])
vE(1 4+ ¢€) 4+ log2 + 27h(z0,0) + O(1/R)

Clearly there exists Ry such that for R > Ry we have

_ 1 2 1

~ 241 +¢) + log2 + 27h(z0,0)

2|

since the denominator vg(1+¢)+log 2+27mh(29,0) is bounded below away from 0 by (9.34).
Appealing again to (9.34) we obtain that, whenever ¢ < % and log % > 4log 2, then
’7E+27Th(20,0) < 1

ve(1 4 ¢) +log2 + 21h(2,0) ~ 4
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and so

Letting z — oo completes the proof of a) in the lemma. O
Proof of b). Assume that {, = 0 and let U = {|z| < R/2}. The Green function of U is

g
1 - znrp

G*(&) = log , (9.35)

o §
R2 ~ R/2
see Section 3.4 and Exercise 3.2.1. Let G be the Green function of U\B and G the
Green function of U\E. We claim that

G3(6) —G*(§) = . G"(€) dwip g(w), 2§ € U\B. (9.36)
On one hand, both sides are harmonic and continuous up to the boundary. On the other
hand, if z tends to a point in 0U both sides converge to 0, while z — zy € 0B implies
that both sides converge to G*°(§). By the maximum principle both sides must coincide.
Analogously one obtains

Gp(&) = G*(§) - . GY(&) dwpp(w), 2z, € U\E. (9.37)

Consider a relatively open subset A of 0Q\RQ. We want to prove

R

W(A) ST (A), o] = 7, (9.38)

where w?(A) = w§(A) and &*(A) = w

Assume, to get a contradiction, that gzgigﬁg = X\ > 1. Then, since A c 02 is both relatively

open and relatively closed, by Corollary 5.36 we get

lim AO*(A) —w?(A)=A—-1>0,
z—EeA

and

lim A&*(A) — w*(A) = 0,

z—EEAC

while we have
A*(A) —w?(A) =0, |z|=

The maximum principle yields

A (A) — w?(A) > 0, zedU.
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oU = {|2| = R/2}

nue

{IZI R/4}

/\ACHUC

Figure 9.4: Disposition in the proof of b).

Since w¢(A) is a harmonic function on U\E vanishing on 0E (by Corollary 5.36 again)
and, similarly, &%(A) is a harmonic function on U\B vanishing on 0B, we get,

0= A&™(A) — w*(A)
1 ~ 20 1 20
“ o ) )\wg(A) dwpi 5(€) = o LU w'(A) dwgy 5 (8)-

Now, since 0U is analytic, VG is continuous in a neighborhood of dU and we can apply
Proposition 7.14 to get de\E\aU = |0,GR2|dH oy Thus,

7.14 1
o

uG‘;%’(f)\ AG*(A) dH (6) - %J 10,G32 ()| wé(A) dH (€).
We will prove below the inequality
R
2GHEO] = 10,65, |2l =, geaU. (9.39)

Using this fact, we obtain

12.38) 1

0 = —
27TaU

LG (©)] (Aa€(4) - wf(4)) ar'() > 0,
which is a contradiction. Then (9.38) holds.

By (9.38) and the maximum principle, w?(A) < &*(A) for z € Q and |z| = £, and letting
|z] — o0, item b) of Lemma 9.21 follows.

It remains to prove (12.38), which follows from

Gy > GO, =75, SR<lg<R (9.40)
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Since G%(§) = G%(E), €] = R/2, then, by the maximum principle, it is enough to show
(9.40) for || = 2
We start by proving

8 C 8 C 3
1 - —-=<GY¢ <1 — —, <1, = —-R, 9.41
o8 (5) -G e ©=<top(3)+ G ol l -3 (9.41)
where C is a positive constant and R is sufficiently large. We have

Lt

w 9.35 8
GY(&) = log <3> + log 7

-
The absolute value of each of the last two terms is less than or equal to C/R for some

constant C' and (9.41) follows.
Inserting (9.41) into (9.36) and (9.37) we get

G5(8) = G*(§) - <10g (i) + g) wing(B), lel==, lel=2

) |£|:7

e B~

620 < &*(©) — (10w (5) - 5 ) wtral®). 1o~

Clearly (9.40) is a consequence of the two preceding inequalities and the following claim.

Claim 9.25. For R large enough one has

<log (2) + Z) wir5(B) < (log <§) - Z) Wi p(E), || = %

Proof of the Claim. Recall that we are assuming ¢(Q) = 1, so that for all compact sets K,

Cap, (F) = Cap. (K n Q) < 1/4/2 and hence vg > logv/2 > 0.
Moreover

vg =7l +¢)+1log2 > yg.
Let r» = r(B) be the radius of B. The function

R/2 1 _
1 U\B
"g(\z\)log(R/a)—logr’ 2eU\B,

is harmonic on U\B, vanishes on |z| = R/2 and is 1 on |z| = r. Thus it is precisely
w(ZJ\B(B). Since —log r(B) = 75 we have

: (B _ R/2 1 _
ino® =ox () ey 2 0\B 942

We turn now our attention to wf]\ p(E). Consider the function

R/2 1
1= J, Jos g ) ey

ze U\E.
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Since {, logﬁd;@(w) = g for z € E, (see Lemma 6.26), we infer that f(z) = 1 for
zel.
If we E, z€ U one has |z —w| = R/2+ O(1) and so

R/2 R/2 — |z — w|
1 S 1——FF—~r——— | = —log(1 1 =0(1 .
og 2~ oy (1- AL o8(1 + O(1/R)) = O(1/R)
We conclude that O(L/R)
| < ————"~—, ze0l,
TS ogm2) + 70
so that the function
~ 2C/R

satisfies f(z) <1, z € E, and f(z) <0, z € 0U, for an appropriate large constant C'. From
Corollary 5.36 and the maximum principle it follows that

~

J) < winp(B), 2 U\E.

To estimate this harmonic measure we write

—2C 1 / R/2
z E) > 1 —log—— | d
“0e ) > Bios Rz +vp) | loa(B/2) 15 ], <°g Fowl T > p(w)
1 R/2
4 1 =T, + Ty + T3.
log(R/2) +ye ° o 1T
By (9.42)
1 R/2 ( 1 1 ) R/2 _
T3 = log + - log —— = w?, 5(B)+T14.
5 g (B2 + 75 8 T \log(®2) T yp  log(®2) + g ) (8 T~ wrstB)ITTa
For the term T4 we have
Y58 —VE R/2 evg + log2

Ty = log

(log(R/2) + i) (0a(R/2) + 15) ° 2] ~ (log(R/2) + 27p + log2)°"

provided € < 1, because v5 < 2vg + log 2.
For the term T5 we have

1 |z — w| ‘
Hhl<———— log ———— | dug(w
72| log(R/2) + vE JE : ] ()
with
og = = o (14 EZI =B “1og1-+ 00/m) - 01/
Hence
C C
|T2| < < )
R(log(R/2) +vg) = R(log R + 7E)

205



9 Harmonic measure in the complex plane

because vg = log v/2. Since |T}| obviously satisfies the same estimate, we conclude that

_ evg + log2 C
z > z — y .4
“ine(B) 2 s Bt o B o e)? T Rllog R ) (943)

for some positive constant C'.
Recall that the claim is

<log (i) + g) Wi 3(B) < (log (g) - g) N %.
R

From now to the end of the proof of the claim z denotes a point satisfying |z| = 7.
By (9.43), for R > Ry(e) we get

winp(E) = wlZ]\B(B) + C(

as long as
< Cenvg, (9.44)

which is clearly true for R large enough, because vg = log /2. It is sufficient to show

(o (3) + R)<ina(® < (15 (5) =) (40009 + g )

CW(Z]\B(B) C

_ 4 C EYE
<-Zwr B+ (log(Z)-Z)o——E
R 7 sl )+<°g <3> R)C(logR+~yE)2’

which amounts to, for R > Ry(¢),

or

“ing(B) _ VB
R 7 (logR+p)*
By (9.42), for |z| = R/4, we have
_ log 2 log 2 2

Z _(B) = — < .
wins(B) log(R/2) +~v5  log(R/2) + (1 +¢e)yp +1og2 ~ logR+vE

Then, for R > Ry(e), we get

win5(B) < 2 <C EYE
R " R(ogR+vr)  (logR+vg)?’

where the last inequality is equivalent to (9.44) again, and the claim follows. O
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9.11.2 Proof of Lemma 9.24

Recall that G(z) = G&(z) stands for the Green function of the domain € with pole at
N
infinity and I' = |J I'; is a union of finitely many closed Jordan curves I'; enclosing
j=1
disjoint (bounded) Jordan domains €2;, with I' = D, I" separating K = C*\Q from infinity
and there are constants ¢;, j = 1,..., N such that I'; € {G(z) = ¢;}, 7 =1,...,N.
We will use complex notation in order to keep ideas simple. Recall that a real-valued
function f has Laplacian Af = 400f = 400f, gradient Vf = 20f = 20f, and its normal

(or any other directional) derivative is
0uf =V, vy =<20f,v) = 2Re (0fv) = 2Re (fv).

Moreover, whenever « is a curve oriented counterclockwise, the tangent vector is iv, so
vdH!' = %. Green’s formula in complex notation reads as

2f<ag—&f>dm= (g‘%fd.z), (9.45)
Q o0 ?

1

for f,g € WHH(Q) n C(Q), see [AIM09, Theorem 2.9.1], for instance.

To study Lemma 9.24, we infer from the discussion above that
d
J —0,G log |VG|dH! = —2Re f 0G log |[VG|vdH! = 2Re f 0G log(2]0G)) TZ
r r r
Put in other words, we want to show that
dz
2Re | 0Glog(2|0G|) ke log 4. (9.46)
r

Note that, replacing K by {g < ¢} for small ¢ > 0, we can assume () is a finitely
connected domain with smooth boundary.

Now consider a disc Br so that I' ¢ Bp, and write Ug = Bpg\ Uévzl Q. By Green’s
formula we get

dz (9.45

f oG log(2|0G|) f —Gélog(2|6Gl)%
T T

i
+ 2J G00log(2|0G|) — 00G log(2|0G|) dm (9.47)
Ur
dz = dz
+ 0Glog(2|0G|) — + Galog(2|0G|)— | .
0BRr 2 2
First note that the first term in the right-hand side of (9.47) is
dz
=

_ N
f Gélog(Q]&G])d—; _ Zcif dlog(|0G])
r i=1 L

Next we will use the following fact about level curves of harmonic functions:
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Lemma 9.26. Let v be a smooth Jordan curve contained in a level set of a harmonic
function f without critical points. Then
1 00 f

ami ), op T

Proof. Indeed, Af = 400f, so df is holomorphic by the Cauchy-Riemann equations.
Then, writing ¥ = 0f oy, we get
1 1

oof 90f .. d¢

2mi ), Of " 2mi

Varargdf _Varargi

= Ind(¥,0) =

5

But the variation of the argument of the gradient along a smooth level curve is precisely
27, so the lemma, follows. O

Note that
00GOG + 0Go0G 000G

dlog(|0G|) = falog(|8G] ) = (9.48)

20G0G T 20G”
SO
J&log |aG|) falog |aG|)dZ 926
Thus,
f Gélog 2\aGy c,f 2log( yaG| = ﬂ'ZcZ (9.49)

~ Now we deal with the second 1ntegral in the right-hand side of (9.47). Here, since
00G = 0, we only have to deal with {;, Gddlog(2|0G|) dm.

Lemma 9.27. Let Q) be an open set, and let f : Q — R a harmonic function. Then 0f
is a holomorphic function which has at most a countable number of zeroes {&;}2, <
without accumulation points in §, with multiplicities {m;};°, and

[ee}
- T
d0log|of] = 21'_21%5&,
i.e., for every p € C.(Q) we have
_ T O
(0olog|of], oy = 5 > mip(&). (9.50)
i=1

Note that using real analysis notation, since Alog|Vf| = Alog ]%Vf| = 4001og |0f],
we are claiming that

0¢]
Alog |V f| = 2%2 m;dg,.
i=1
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Proof. Note that Af = 400f, so f is holomorphic by the Cauchy-Riemann equations,
and the first assertion is just a compendium of Cauchy local theory basic results. To see
(9.50), consider a fixed critical point &. Note that for € small enough, B.(&;) contains no
other critical points, so we can apply the argument principle to obtain

J (98f dz = 2mim;
oB.(e) OF "

Now,

00f(2)
of(z)

_ 00f(z) ., dz .
_LBE@» 3i(n) P T HO (LBE(&) lp(&) — w(2)] d |>.

Since |p(&) — ¢(2)| = O(¢), and ’66]”(2)

O (%) by I'Hopital’s rule, we conclude that

aé‘f dz
2mm;p(&;) = lim
p(&) = lim 56 I

As in (9.48) we have
00f

so we obtain

d
2mm;p(&) = 2 lim w0 log |0f| il
e=0 aBE(Sl) t

On the other hand we have

log|0f| = O(log(Ce™)),

S0
_ dz
lim J oplog|of ‘| < lim m O(elog(e)) = 0.
e—0 (& 2 e—0
All in all, we get
d . dz
2mmip(&) = 2 hm (cp&log |0f] 4 oplog \6f]z> )
—~0JoB. (&) L !

Assume that there is an open set U <  so that suppp < U and {&}2, n U = {&}Y,
We get

N
M ommp(e) 2 ~4lim (080 1log |0f| — 08y log [0f]) dm
=1 €0 U\Uﬁil Bs(fi)
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9 Harmonic measure in the complex plane

In abscence of critical points, by (9.51) we get

doofof —odfoof
2(0.f)? N

0dlog|of| = 0,

SO

N
9.45 = =
D 2mmigts) "= 4 [ (@3ploglofl) dm = 1@0og 011,
=1
O

By the preceding lemma, in Ug there is a finite number of critical points, say {&}5,,
and the second integral on the right-hand side of (9.47) is

L
2 G00log(2|0G|) — 00G log(2|0G]) dm = 2 G00log(2|0G|)dm = 7 2 m;G(&).
Ur Ur i=1
(9.52)
Next we turn our attention to the last integral in (9.47). We will let R tend to infinity, so
we need to understand the asymptotic values of the relevant functions inside the integral.
Recall that we can write the Green function G as

21 G(z) = vk + J log |z — w| dug (w) = log |z| + vk + ho(z2), (9.53)
K

where

m@=LmﬂxMww»

is harmonic and satisfies hg(o0) = 0. In fact for z ¢ 2D, we get the bound

= o () o= (2)

Differentiating, we obtain

ono(e) = o [ dutw) =0 ().

and ) ) )
2 _ w _Z v - —
0°ho(z) = 5,2 L(z—wd'uK(w) ZL{ G w) dug(w) =0 <|z\3> .
Also ) ) ) .
5“”=@m+mﬁ%@:4m+o<wﬂ’

and its logarithm

log(2|0G|) = lo + 18h (z)| =1o ! +0 !

= —_— — zZ)| = JRE— _
& lorz T 77N &l2ms |z| )’
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9 Harmonic measure in the complex plane
and finally

210g(2/0G)) = (x5 + O(1)) <2;; L0 (;)) ;1 L0 (|Zl|2> .

With all this estimates at hand, we get

= f (aalog(2|ac:|) % +Ga 10g(2]8G|)d.2>
0BRr

1 1 1 dz

ZLBR (mw(m)) (l"g m\%(R)) 0

1 1 —1 1 dz

2 O(m)) 0

2 z
1 1 1 d dz
=J (log#—(f)(g))fz—i-f < log\z|—7K+(’)< >>Z
oBg Az 27z RS 7 Az R2 i
In 0BRr we have ‘%’;l iz = _d—;, S0
1 1| & 1 dz| row vk log(2m)
IR = —log|—|+—+0|—| ) — — - . .

All in all, combining (9.47) with (9.49), (9.52) and (9.54) we have obtained

L

d log(2
J oG log( 2|6G|) — —WZCJ +772ml (&) + PYQK 0g(27r)‘
J=1 =1
Note that
9.53) VYK 1 vk  log2
a=GC) = or T3 Klog|z—w|d,uK(w)<§+ o

Thus, estimate (9.46) follows immediately from the next claim.

N
Claim 9.28. LetI' = | J I'; be the union of finitely many closed Jordan curves I'; enclos-
j=1
ing disjoint (bounded) Jordan domains Q;, with K < Uj Qj, and there are constants c;,
j=1,...,N such thatT'; c {G(2) = ¢}, j=1,...,N. Then

N L
Do < Y I miG(&) + ¢, (9.55)

j=1 i=1
for every jo < N.

In order to show (9.55), we will simply associate to each critical point & of multiplicity
m; a total amount of m; curves I';, such that ¢; < G(&;), and we will do this by applying
the argument principle conveniently.
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9 Harmonic measure in the complex plane

Figure 9.5: Green function with K = [JTI';. In this case, there are five simple critical
points, four of them sharing a common level set, but paired two by two in
connected components of their level curve.

Recall that we have N Jordan curves I'; which bound Jordan domains €2; and such
that G|1“j = ¢j. Let us define ¢y := minj¢j<y ¢;. By Lemma 9.27 the derivative 0G is
holomorphic, and it has a finite number of critical points in {G > ¢p}. Thus, we can find
dp > 0 small enough, so that for each &; there is no critical point & with G(&;) < G(&) <
G(&;) + do. In particular, the level set {z : G(z) = G(&;) + dp} is a finite union of smooth
Jordan curves, and there exists a component I'? of this level set enclosing a Jordan domain
Q% so that & € Q. Note that we cannot grant that I'' < D.

Note that several & may give rise to the same domain ¢ (and the same level Jordan
curve I'"), but for this to happen it must be that G(&;,) = G(&;,). For this reason, we may
change our enumeration, so that we have a finite family of Jordan domains Q¢ bounded by
Jordan curves I'* with i € {1,--- , M} (here M < L) satisfying that G|p: = ¢!, and critical
points {fzk}i\ll with multiplicity {mlk}g;l so that &, € O and G(& i) = ¢t — dy.

With this enumeration, we have a family of Jordan domains

{915 v (@},

whose boundaries {I‘j};\’:l U {T}M, | are smooth Jordan curves included in level sets of
the Green function of levels

{Cj}j‘\[:l Y {ci}ij\il'

Moreover, the domains are either disjoint or one is included in the other one.
Next we partition into a disjoint family of domains: let

N M o
O=on o\ on
j=1 =1
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9 Harmonic measure in the complex plane

Figure 9.6: We pick level sets surrounding critical points, and then we rename the elements
to create the tree structure.

Each of this new domains is bounded by a finite number of Jordan level curves, it con-
tains the critical points {&k;}kNil and no other critical point. For this reason and by the
maximum principle, one can infer that every I'; of level ¢; such that I'; < é’ﬁi, satisfies
that ¢; < G(& k), and the same can be said about IV < o0 whenever j # 1. By Lemma
9.26 and the argument principle, we get

~. A 1 02G Ni
#{components of Q2" different from I} — 1 = — —dz = Z m; .

Thus, if we write m; := Z,]ﬂv;l mj i, then
#{components of o0 different from '} = m; + 1.

Next we can create a graph of inclusion: The graph has nodes I'" and leaves I';. a node
or a leave is said to be a direct descendant of a node I'? if it is a component of o0 different
from T'*. Each node I'" has exactly m; + 1 descendants, as we have discussed. Moreover
each descendant has level

¢j<G&q1)<c orct <G&a) < (9.56)

Since the graph has no loops, it is a tree. Here we begin an inductive pruning process.

Assume first that there are no critical points. Then it must be N = 1, and (9.55) holds
trivially.

Otherwise, since the number of nodes and leaves is finite, we can find a node I'' of
multiplicity m; which only has leaves as direct descendants. Then, we can create a new
tree by cutting away all the leaves which are descendant to I'!, say {I'; };n:lf 1, and convert
I'! to a leave of the new tree corresponding to the family of curves [ = {f] };V: ", that is,

a smaller number of level Jordan curves satisfying the hypothesis of Claim 9.28:

I)=T' and T =TDjm, for 2<j <N —my,
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9 Harmonic measure in the complex plane

Figure 9.7: Inductive pruning process. In the first step we prune I'! to get a reduced tree
with four leaves and two nodes of multiplicities m; = 2 and my = 1, then
pruning I'? we get two leaves and one simple node and finally pruning I'® we
are left with just one leave and no nodes, that is, without critical points.

with levels

& =c and Cj = Cjtm, for 2 <j < N —my,

which satisfies (9.55) by induction hypothesis. The nodes of the new tree will be {I""}Z o
with multiplicities {m;}%, and (9.56) will be satisfied as well. Then in case jo < mj + 1
we can assume that jo = 1 and then

9.56 N —my
Z Cj < Cio + m1G(£1) Z mlG fl Z C]o — Cl)-
j=1 j=m1+2 j=1

Applying the induction hypothesis (9.55) with jo = 1, we get

L

mlG fl + Z m;G 51) +¢1 + (Cjo Cl)'
=2

||M2

If, instead, the singular index jo > mq + 1, then we just bound ¢; < ¢! = & and apply

the induction hypothesis (9.55) with jo = jo —m

9.56 Nom L
Z ¢ < mlG(él) Z Ej < mlG(&) + Z mlG(EZ) + Cjy-
j=1 j=1 i=2
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10 Ahilfors regular domains

10.1 Some types of domains

In this chapter we will study the connection between harmonic measure and surface mea-
sure for some types of domains Q = R? with finite surface H% ! |5q.

For m > 0, we say that a measure y on R? is m-Ahlfors regular if there exists some
constant C' > 0 such that

C™lr™ < u(B,(z)) < Cr™  for all z € suppp and 0 < r < diam(supppu).

In the case m = d — 1, quite often we will just say that u is Ahlfors regular. A set £ c R?
is a called m-~Ahlfors regular if the measure H™|g is m-Ahlfors regular.

For an easy notation, in this chapter we will set d = n + 1 and we will work in R?*!,
A domain Q < R™! whose boundary is n-Ahlfors regular is called an Ahlfors regular
domain. Below we will consider C'*7 domains (with v € (0, 1)), Lipschitz domains, and
chord-arc domains. For simplicity we will assume all to be bounded. All of them are
Ahlfors regular domains. In fact, it holds

CY domains c Lipschitz domains c chord-arc domains — Ahlfors regular domains.

Next we will define C7, Lipschitz, and chord-arc domains. First, a chord-arc domain is
an NTA Ahlfors regular domain. To introduce Lipschitz domains takes some more work.
We say that Z < R"*! is a (7, /)-cylinder if there is an orthonormal coordinate system
x = (T,xn+1) € R™ x R such that

Z ={(Z,xn41) : |Z] < T, |Tng1| < 1007}
Also, for all s > 0, we denote
sZ = {(Z,xn41) 1 |ZT| < 87, |Tpt1] < 10sl7}.

We say that  is a Lipschitz domain with Lipschitz character (¢, N, Cp) is there is rg > 0
and at most N (7,/)-cylinders Z;, j = 1,..., N, with C’O_lro < 7 < Cyrog such that

(i) 8Z; n 0 is the graph of a Lipschitz function A; with |[VA;|, < ¢, A;(0) = 0, in
the coordinate system associated with Z;,

(i) 002 = U,(Z; n oQ),

(iii) and
8Z; N Q={(Z,xns1) € 82t Tpy1 > A](.f)}, (10.1)

in the coordinate system associated with Z;.
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10 Ahlfors regular domains

We also say that 2 is a Lipschitz domain with Lipschitz constant /.
On the other hand we say that Q < R"*! is a special Lipschitz domain if there is a
coordinate system = = (Z,z,+1) € R” x R and a Lipschitz function A : R” — R such that

Q={(Z,xn+1) : Tny1 > A(Z)}.

For 0 < v < 1, Q < R*"! is a C'7 domain if it is a Lipschitz domain such the
Lipschitz functions A; in (i), (i), (iii) above are of class C1"7, and their derivatives are
~v-Holder uniformly on j. That is, there exists some constant C' such that, for all 5 and all
z,y € 8Z; nR" (in the local coordinate system for Z;),

[VA;(z) = VA;(g)| < Clz—g[.

Now we will prove a lemma which can be considered as a variant of Liouville’s theorem
for harmonic functions in a half-space. This lemma will play an important role in the
study of harmonic measure both in C*7 and Lipschitz domains.

Lemma 10.1. Let u be a positive harmonic function in the upper half space H = {x €
R 2,0 > 0} and continuous in H which vanishes in 0H. Then there exists some
constant A > 0 such that

u(xz) =Axpy1  forallxe H.

Proof. Let 19 = ep41. We choose A = u(xg) and we let v(z) = Ax,.1 for z € H. Since
both u and v are positive and harmonic in H and vanish continuously in dH, by the
boundary Harnack principle applied to H n B,(0) (see Theorem 8.17) with arbitrarily
large r > 0, we have that u(z) ~ v(z) for all x € H. Thus, u grows at most linearly at .

Since u vanishes in 0H, it can be extended by reflection to the lower half space. Next
we use the fact that that any harmonic function in R"*! satisfying |u(x)| < C(1 + |2|) in
R"*! is a polynomial of degree at most 1, by Proposition 2.13. From this fact one easily
gets that uw = Axp1. O

10.2 C!' domains

Our first result is the following.

Theorem 10.2. Let Q < R™! be a bounded C'Y domain, with 0 < ~ < 1. For all
xo € Q, the harmonic measure w™ for Q0 and the surface measure o = H"|sq are mutually
absolutely continuous, and moreover the density % 18 bounded and bounded away from
0. That is, there exists some constant C > 0 such that

dw®°

' < ¥ (&) <C  foro-a.e. &€ . (10.2)
o
Further, the Green function for Q satisfies
IVG™(z)| < C  for all x € Q\B(xo, 2da(wo)). (10.3)

The constant C' in both inequalities only depends on vy, the CYV character of Q, diam(2),
and dgo(xo).

216



10 Ahlfors regular domains

Before going into the proof of the theorem, we will introduce Jones’ 5 coefficients used
to measure the flatness of sets. Given a set £ = R"™! a ball B := B,(z) c R**!, and a
hyperplane L < R**!, we let

dist(y, L)

Boo,p(B,L) = Bo,p(z,7,L) = sup ————. (10.4)
yeEN By () r

We recall also the notion of Hausdorff distance: Given two sets E, F < Rl we set

disty(F, F) = max (sup dist(z, F'), sup dist(y, E))
rel yeF
This is the so-called Hausdorff distance between E and F.
We will use the following auxiliary fact:

Lemma 10.3. Let Q < R"*! be a bounded C*Y domain with 0 < < 1. Then there exist
constants ¥ > 0 and ro > 0 such that, for all £ € 09, if L¢ denotes the tangent hyperplane
to 0N at &, we have

/

Buw,oa(§,m, Le) < (%)7 for 0 <r <. (10.5)

the constants +',rq depend on ~y and the C*7 character of Q.

The proof is standard and we leave this for the reader.

Proof of Theorem 10.2. Denote w = w*™ and G = G*. We will show that there exists
some dg > 0 depending on 7, the C!"7 character of €2, diam(f2), and dg(zo) such that

G(z) ~ dg(z) for all z € Q with do(x) < dp, (10.6)

with the implicit constant depending also on 7, the C!7 character of 2, diam(f2), and
da(zo). Since © is an NTA domain, this condition implies that, for any surface ball
A < 09 with radius r(A) < do,

w(A) ~ G(XA)r(A)" !~ r(A)" Tdo(Xa) ~ r(A), (10.7)

where Xa is a corkscrew point for A such that r(A) < do(Xa) < 7(A). So any small
enough surface ball A satisfies w(A) ~ o(A). By the Radon-Nykodim-Lebesgue differenti-
ation theorem, this implies (10.2). Further, from (10.6) and interior Caccioppoli estimates,
(10.3) follows easily too.

Let 79 be as in (10.5). Below we will choose dy < min(ry/10,dq(z0)/2). To prove (10.6)
for a given x € Q with dg(x) < dy, let £ € 092 be such |z — &| = do(z) and, for each k > 1
such that 2%dq(z) < dy, denote By, = B(¢,2%dqg(z)) and Ag = By n Q. Also, let y € Q
be a corkscrew point for Ay such that yp € By and do(yx) ~ 2de(x). Without loss of
generality, suppose that { = 0 and that the tangent hyperplane L¢ to 02 in ¢ is horizontal.
It is immediate to check that, for each k,

do(yk) ~ 7(Bk) =~ Ykn+1s
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10 Ahlfors regular domains

where yp, 41 is the vertical component of yy.
We wish to estimate
Glyr)  Glyk-1)

Ykn+1 Yk—1,n+1

for 1 < k < ko, where ky will be fixed in a moment. To this end, consider the ball Ek,
concentric with By, and radius

~ 5 ~ % 1+ o 1A %
r(By) = ( (Bk) T 7“02) t 2 1y (dQ( ) %7“02)1+W , (10.8)

with +" as in (10.5). Notice that By < By. Let ko be the maximal integer such that

(Bko) dp, so that dy/2 < r(BkO) do. Denote By, = B o0(&,r (By), Lg) and (for fixed
k)let h: Qn Bk — R be the solution of the Dirichlet problem in € N Bk with boundary
data

Cut1 = Brr(By)  if Gor1 > Brr(By),

for ( € (2 N Bk) where (1 is the (n + 1) component of (. Remark that the boundary
data is continuous and 2 N Bk is Wiener regular. Notice also that h vanishes in 02 n Bk
and that

\(2) = zns1| < Ber(Bgp) for all z € Q n By, (10.9)

by the maximum principle, since this inequality holds in the boundary of N ék and the
function f(z) := h(z) — zp+1 is harmonic in that domain. Next, observe that

! ’

i i
/ B 2 do\ 2
(B <o r(B =80 (") v () «<omy (010)
0 0
if we assume dy < r9. Since Yk n+1 X Yk—1,n+1 ~ r(Bg), from (10.9) we infer that
h(yk) =~ Ykl = Yk—1n+1 = h(yr—1). (10.11)
We write
G G(yp_ G G(yp— 1 1
Ykn+l  Yk—1n+l h(yx)  h(yr-1) h(Yk)  Yrntt
1 1
+ G(yp— - .
(We-1) h(Yk—1)  Yk—1n+1

By (10.9), (10.11), a Harnack chain estimate, and (10.10), the second and third term on
the right hand side of (10.12) satisfy

1 1 1 1
G - |+ Gy _
(o) h(yk)  Ykn+1 (5-1) h(Yk-1)  Yk—1.n+1

Brr(B B, r(B

3 G(ykz)M + G(yk—l)ﬁkgi(k)
yk,n+1 yk,nJrl
~ ~ ’Y/ ’Y/
Brr(B r(B r(B 2 @G r(B Pl

r G(Z/k) ;2( k*) < G(yk) g k) ( (T k)> ~ (ye) ( ( k)>

kn+1 Yient1 0 Ykn+1 To
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10 Ahlfors regular domains

Finally, to deal with the first term on the right hand side of (10.12), we use Corollary
8.19:
‘G(yk) Glyr—1) | _ Gyr) <|yk —yk—1|>a < Gluk) <T(Bk)>a
h T oh(yk) \ O r(By) ~ Ykni1 \r(By)/)

(
where a € (0,1) is some constant depending on the NTA character of €. Recalling the
choice of r(By) in (10.8), we get

ye)  h(yk-1)

/
@

- Gyw) (r(Bk)) 57

Ykn+1 To

h(yk)  P(yk-1)

ay’
2742

‘G(yk) G(yr—1)

Putting altogether, since 7" := < %/, we derive

’

Gyr)  Glyr—1)
Yk,n+1 Yk—1,n+1

)

- Gy (T(Bk)>7,

Ykn+1 70

or equivalently,

" 1"

o 0 (7)) =3l 0 (50) )

ko ,Y//

B
Z (7“( k:)) <o,
k=1 o

Since

we deduce that

Gx) Gy)  Glk) __ Glyw)  w(B( do))

Totl  Yinel  Ykomtl  doWkomt1) dgy ’
arguing as in (10.7) for the last estimate. As %%’do)) ~ 1 (with constants depending on
da(xo), do, diam(£2), and the NTA character of 2), the theorem follows. O

Remark 10.4. By inspection of the proof above, one can check that the following holds.
If @ < R* ! is an NTA domain, zq € Q, & € 09, and there exists a hyperplane L¢ 3 € such
that, for some 7/ > 0 and 79 > 0,

/

BOO,(?Q(E, r, Lx) < <TL;)>PY for O<r < 0,

then (5 .
0< liminfw < 1jmsupL(§’T>) < o0
r—0 (2r)n 0 (2r)"

The liminf and limsup above are called the lower and upper n-dimensional densities of
w® at £, respectively.
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10 Ahlfors regular domains

dw®0
do

Our next goal is to prove that, for a C17 domain 2 < R™*!, the density function
is v-Holder continuous:

Theorem 10.5. Let Q  R™*! be a bounded C*Y domain, with 0 <~ < 1. For all zg € Q,

the density dﬁj% belongs to C7. Further, G* € C17(Q\B(zo, 3da(z0))).

Remark that if G® € C17(Q\B(zo, 3da(z0))), then the derivatives of G extend con-
tinuously to 0, and thus G* € C'(Q\B(zo, 3da(wo))). Then, as shown in Proposition
7.7,

w' = —(0,G™) o,

where v is the unit outer normal to d€2. Therefore, for o-a.e. £ € 01,

dw™o

2 (€) = ~(@,6™)() = ~(VG™(©), V().

Using that both VG® and v are «-Holder continuous and bounded in 052, it follows
immediately that d‘;l’;o (&) is Holder continuous. Hence, to prove Theorem 10.5 it suffices
to show that G* e CY7(Q\B(zo, 3da(70))). To do so, we will use PDE techniques.

For a function f : E — R (or a vector field f : E — R%) and v > 0, we consider the

seminorm F@) — )
z)—J\Yy

fll = sup .
H HCV(E) cyeErty |x_y|7

We will prove the following result:

Theorem 10.6. Fory e (0,1), let Q = R"*! be a CY bounded domain and let u : @ — R
be harmonic in Q and continuous in Q. Let f € C*(Q) be such that u = f on 02 and
suppose that uwe C17(Q). Then

IVl en iy S 1Vl + 19 Flingagy + 1V Floon

with the implicit constant depending on v and the CYY character of €.

Remark 10.7. The a priori assumption that v € C17(Q) can be removed in Theorem
10.6, by an approximation argument and using suitable interpolation inequalities between
different norms. See for example [GT01, Chapter 6]. However, to study harmonic measure
in C1"" domains we will only apply Theorem 10.6 in the particular case when u is the Green
function for 2. This will allow to use somewhat simpler arguments in the proof of Theorem
10.5.

The main step to prove Theorem 10.6 is the following.

Lemma 10.8. For ye (0,1), let Q = R""! be a bounded C' domain with diam() > 1.
Let By be a ball of radius 1 centered in 0S) and let By be a concentric ball with radius

1/2. For all § > 0, there exists some positive constant C(d) such that for all functions
u, f € CY(Q n By), with u harmonic in Q N By and u = f in 0Q n By, it holds

IVl 5y ey < 51V 5,2y + €O IVl 10 + [V F 5,y + IV F i 10)-
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10 Ahlfors regular domains

Proof. Assume that the lemma does not hold. Then there exists some § > 0 such that
for every k > 1 there are C1*® domains Q;, = R*™! (with a uniform C1 character) with
diam(Qx) > 1 and functions wuy, fr € C17(Q n By), with u; harmonic in Q n By and
ug = fr in 0, N By, so that
IVurlen s, ynan) > 01Vl (B, A0y (10.13)
b IVl + IV Sl s,y + 19 Felleimoe):

Claim 10.9. There are points xy, yy € B3/4 N Q. such that

|\ — yi| ~ do, (zx) ~ da, (yr) (10.14)
" Vuaew) — Vur(ys)]
UR\Tk) — VUE YK
|z — yi|? R ’|vuk”0”(31/209k)‘ (10.15)
Further, |z, — yp| < k=17,
Assume for the moment the claim to hold and denote pr = |z} — yk|.~ Notice that

pr — 0 as k — o0. Consider the domain Qk = pgl(Qk — xp). Clearly, 0 € Qy for each k.
Further, the fact that do, (%) ~ pi (by (10.14)), implies that dg (0) ~ 1. Equivalently,

there is some fixed constant R > 0 such that oV N Br(0) # @ for all K > 1. Then, up

to a subsequence we can assume that Qk and 6§~Zk converge locally in Hausdorff distance,
respectively, to a domain H and a closed set F' = 0H. By Lemma 10.3, it follows that F’
is hyperplane and so H is a half-space containing the origin.

Consider the polynomial

pi(2) = ug(zr) + ppVug(zk) - 2,
and, for QO = pi () — 1), let Uy : Q) — R be defined by

N u(x + prz) — pr(z)
up(z) = T .
Pk ||Vuk|‘c'w(3m9k)
Observe that
uk(o) = vuk(o) =0,
and for all z € ﬁk and k big enough so that x, + prz € By,

- IVUkl ¢y mgayy lPR2]
Vit (2)| = |Vug(zp + prz) — Vug (x| < G (Brn) P, (10.16)

P IV Ukl en 5y na) P IV Ukl e 3y nap)

Also, for all z,y € Qk and k big enough so that both =y + pry and zp + pry are in By,
_ |Vug (g + prz) — Vug(zk + pry)|

Vg (z) — Vg (y)] (10.17)

pi ”vukHc'v(Bka)

Hvuk”c'w(Bka) ’ka - Pky"y

= |z —y[".
i IV Ukl e 3, ey
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10 Ahlfors regular domains

From the above conditions it follows that wy is a locally bounded equicontinuous family of
harmonic functions, and by the Ascoli-Arzela theorem, up to a subsequence, the functions
uy, converge to another harmonic function % : H — R locally in C* norm in compact
subsets of H. From the above estimates, we infer that

u(0) = Vu(0) =0, (10.18)
for all z€ H,
Vi(z)] < 2], (10.19)
and for all x,y € H,
|Vu(z) — Vau(y)| < |z —y|. (10.20)

On the other hand, by (10.15) and (10.13), the point & = p, ' (yx — =) satisfies

v v IV A
’vak(fk” _ | gk(yk) Uk($k)| > C'Y(Bl/Q Q) > 5.
Pr [ Vuklen s, nap) [Vurlen s, nay)

Notice also that |{x| = 1 and dg, (&) ~ 1, by (10.14). Hence, up to a subsequence,
converges to some point £ € H such that

=1 [VaE)lzé. (10.21)

From the conditions (10.18), (10.19), and (10.20), it follows that @& and Vu can be
extended continuously to the whole H. We intend to show that Vi is constant in JH,

which will lead to a contradiction. To this end, let fk : §~2k — R be defined by

() = fr(zk + prz) — pi(2)

1
pk‘-‘r’y HVUk HC’Y (Bl f\Qk)

il

so that | o, = fk| o6y Denote by V7, and Vr the respective tangential gradients in o,
and 0H. That is, V1, 9(2) = Vg(2) — vk(2) (vk(2) - Vg(2)) for any function g and z € o,
where vy, is the outer unit normal of Q. We define Vrg(z) for z € 0H analogously. From

~

the definitions of @ and fk, we deduce that Vr, 1y, = V1, fi.
Remark that since dH is a hyperplane, the outer unit normal is constant. Then, for

any z € ()., it makes sense to consider the “tangential gradient” Vpug(z) = Vug(z) —
v(z) (v(z) - Vug(z)), where v is the outer unit normal of H. Next we intend to estimate
|Vt (x) — Vg (y)| for z,y € 0H:

[Vt (x) — Vot (y)| (10.22)
< |Variip(x) = Vo iip(@)| + [V, fi(@) = Vo, fe@)| + Vo, (y) — Voiie(y)].
We estimate the first and third terms on the right hand side using (10.16):
Vrtg(a) = Vo (@) + Vo ae(y) = Vrugy)l < (@) — vl + uly) —v]) [Vi] | 5

< k(@) = vl + [ly) — vl.
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Regarding the middle term on the right hand side of (10.22), by the definition of fk we
have

|kaJ?k(w) - kaJ?k(y”
o eV fi(wr + o) — pe Vi fi(ex + pey)| + [Vpr(z) = Vi pi(y)|
Pr HvukHcv(Bka)
Vi + pra) = Vi fula + pry)l IV 7, () uk(@k) — V3, () uk (k)|
Pg HvukHc'w(Bka) PZ ”vuk”CW(Blka)

=: 57 + 5.
To we deal with S; we write, using (10.13), for k£ big enough,

S, < IV fi(zr + pr) — V fr(xr + pey)| + [ve(x) — ve(w)] |V fi(y)]
P IV Ukl e 3, ey

IVFilensinoanl® =917 ve(@) = ve@)] 1V filloo, 8, noe,
Hvuk‘HC’Y(Blka) p’/z ”vukHC”Y(Blka)
< |z —y|7 n Vg () — Vk(?/)"

k kp)
Denoting by vgq, the outer unit normal to {2 and using that €2, is CY7 with a uniform
character, we deduce that

() = vi(y)| = [va, (25 + prez) — va, (2 + pey)| < oy |z — Y[ (10.23)

So we get

z —ul
s < \ky\
To estimate So we use again (10.23) and (10.13) assuming k big enough:

vk () — vk @) [Vur]o,iro, |2 =yl

S < <
PZ HvukHCW(Bka) k
Putting altogether, we obtain

|z —y|7

|V (z) — Vrig(y)| < [ve(x) —v| + |v(y) —v| + C A

Suppose now that x,y € Bys(0), for some fixed M > 10. Using the fact that the domains
Q) are C17, it is easy to check that then, up to a subsequence,

vk (x) — v| + |vk(y) — v| < e,

where €, — 0 as kK — o0. Hence,

M7 ~
|Vt (z) — Vrur(y)| < e + - for all z,y € 0Qx n B(0). (10.24)
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For a fixed M > 10 and any small 7 > 0, let us consider the neighborhood V, =
U,(0H) n By(0) and let us estimate |Vl (z) — Vrig(y)| for 2,y € Ve A Q. Assume k
to be large enough so that dQ; n B(0, M) < V; and 0H ~ By(0) © U (0€). Then, there
exist 2,y € 09 such that

lz —2'| <27 and |y—9| <27

We split

|Vriy(x) — Vrig(y)|
< Vot (z) — Veug(a')| + |Vt (@) — Ve (y)| + Vet (y') — Votg(y)|.

By (10.24), the middle term on the right hand side is bounded above by Cey, + C%. On
the other hand, we can bound the first term using (10.17):

]VTiIk(x) — VTﬂk(JJ/)’ < |Vﬂk($) — VT'ljk<$/)‘ < ’1‘ — .%'/"Y < 7.

The third term is estimated in the same way. So we have

~ ~ MY
\Vrug(z) — Vrug(y)| <77 +ep + -

Letting £ — o0, we deduce that
|\Vru(x) — Vru(y)| <77 forallz,ye H NV,

By continuity, the same estimate holds for all z,y € 0H n Bjps(0). Since 7 can be taken
arbitrarily small and M arbitrarily large, we deduce that Vi is constant in 0 H, as wished.

Since Vpu is constant in the hyperplane 0H, there exists a first degree polynomial
p(z) such that @ — p vanishes identically on 0H. Now we can argue as in the proof of
Lemma 10.1: we can extend the function w := % — p by reflection to the whole R"*!. The
extension, which we still denote by w, is harmonic and by (10.19), [Vw(z)| < C(1 + |z|)Y
in R"*!. By the mean value theorem, it follows that |w(z)| < C(1 + |2])'*?, and then by
Proposition 2.13 we deduce that w is a polynomial of degree at most 1. This implies that
the gradient of ¥ — p, and so the one of 1, is constant in H, which contradicts the fact
that Va(0) = 0 and |Vi(€)| = 4, by (10.18) and (10.21). O

To conclude the proof of Lemma 10.8 it remains to prove Claim 10.9.
Proof of Claim 10.9. Let ag, by € By N §Y; be such that

|ag — bi|7

1
> 5 Hvuk”CW(Blmf“Qk)'
Denote ¢, = |a — bg|. From (10.13) it easily follows that ¢, — 0 as k — co. Indeed, this
implies
Jug(ar) = ur(B)l _ 41Vurloomng, _ IV ler s, .00
7 k0] ’
(10.25)

HvukHC’v(Bmek) = ’ak _ bk|7

224



10 Ahlfors regular domains

and so £ < k17 - 0as k — o0.

Observe now that if B is some ball such that 2B < €, with center xpg, from the
harmonicity of u; and the subharmonicity of |Vuy — Vug(zp)| in 2B, we deduce that, for
all z,y € B,

[Vug(2) — Vug(y)| _ [Vuw(z) — Vug(y)| r(B)' 7

< < |V2up|loo.pr(B)Y 10.26

< | Vur — Vug(zp)|lo,11p7(B)77 £ max

Suppose first that |ay — b| = % dg, (ar). Consider a non-tangential path I' joining a
and by. We cover I' by a family of ball B; = B, (2;), j € J, so that the balls %Bj are
pairwise disjoint, with r; = %dgk(zj). Notice that, for every j € J,

1

- (day, (ak) + HNIT)) < 2HN(D).  (10.27)

1 1
T do, (z5) < E(dﬂk(ak) + lar — z) < )

By the triangle inequality we have

|Vug(ag) — Vug(by)| < Z sup |Vug(z) — Vug(y)|.

jeJ z,yeB;
We claim that there exists some j such that

sup [Vuy(2) — Vue(®)] 2 Vil s, ooy - (10.25)
z,y€B;
Indeed, suppose that for each j the supremum above is bounded by A HVukHCw( BjarQ) 7"]7,
for some small A > 0 to be fixed below. For ¢ > 0, let {B;} e, be the family of the balls
Bj such that 27"H}(T) < r(B;) < 27TV HY(T). It is easy to check that #.J; < 1, with the
implicit constant depending on the NTA character of € (see, for example, the proof of
Lemma 8.6). Then we have

HVukH;(Blka)|Vuk(ak) — Vauy(br)] < A Z]r] <A ; 47, (27 L))
JE 1=
SAY D @THI D)) A AHND)) ~ Mag, — b7,

=0 jeJ;
which leads to a contradiction if A is small enough.

Let j € J be such that (10.28) holds. From (10.26) we deduce that

|Vug(2) — Vug(z;)|
zegllz.iBXBj r(Bj)v < Hv“k”CW(Bl/gerk)-

We choose x;, = z; and we let y, be the point in ¢1.5B; which attains the maximum
above. Since

max(]a:k — ak\, |yk — ak\) < HI(F) < |ak — bk’ = fk — 0 as k — o0,
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it follows that ay,by € Bsyy for k large enough. Also, by (10.27), |zg — yx| = r(B;) <

2HYT) < 4 < k=17 It is easy to check that z; and vy satisfy the other properties
required in the claim, too.

Consider now the case when |ay — by| < 55 do, (ar) =: do. From (10.26) applied to the
ball By, /10(ax) we obtain
[Vug(ar) — Vur(br)| _ Vur(z) — Vug(ar)|

< max
lag, — bi|7 2€0Bg, 8(ax) dd

We take z; = aj, and we choose yy, € 0B, 3(ax) to be a point where the maximum on the
right hand side is attained, so that (10.15) holds. Notice that, since d, < 1/2 and ay, € By 2,
we have yj, € Bs/y. The same argument as in (10.25) shows that |zp — yx| < k=17, The
property (10.14) is also easily checked. O

Proof of Theorem 10.6. Let 7 be the constant in the definition of Lipschitz and C'*7 do-
mains. Consider two points x,y € Q and suppose first that | — y| > 7/10. Then we

write
- v <2IVul = < IVul - |z —y|
| U(l’) - U(y)| = ” u”oo,Q ~ H uHoQQ s :

Suppose now that |z — y| < 7/10 and do(x) > 7/5. In this case, y € By := B, /jo(r) and
2B, < ). So by interior Caccioppoli estimates, since Vu is harmonic in 285,

|z —y|”
< | Vullpa :

IVu(z) = Vuy)] < [Vulo,B, |2 =yl < [Vu|o,zs, -

|z —
T
In the case |x—y| < 7/10 and dg(z) < 7/5, we apply Lemma 10.8 to the ball B = B, (&),
where &, € 09 satisfies [v — &,| = do(z). Since z,y € 1B, we derive
Vu(e) - Vu(y)| < [Vulgo 1 g 2~ o

< [0IVulen @ + CO(IVlog + 1V enan) + V]
() (092)

oo,(’)Q)] ‘x - y"y‘
Gathering the estimates for the different cases, we infer that
IVulgn @y < 01Vl g + COT(IVulyg + IV Flen@n) + 1V Floen)-

Thus, choosing § small enough and using the fact that |Vul| .., @) < o by assumption, we
get

IVl gy S CO IVl + 19 F Loy + 1V o)
O

Proof of Theorem 10.5. Welet By = B Ldg(x)" As explained above, it suffices to show that

G e CY(\By). To this end we will apply Theorem 10.6 and a suitable approximation
argument.
We consider a sequence of domains 2, j > 1, satisfying the following:

226



10 Ahlfors regular domains

o ;< Q1 < Qfor every j, and Q = Uj Q.
e Each Q; is a C* domain.
e The domains §2; have a uniform CY7 character.

We leave for the reader to check that one can construct such sequence of domains €2;.
Denote by G]x-o the Green function of €2; (assuming j large enough so that zo € ;) and

let @ = Q\By and Q; = Q;\By. It is immediate to check that  and Q; are also C'1
domains, uniformly on j for j big enough. Notice that Gfo vanishes identically on 0§2;
and satisfyes

VGRS 5

do(zo) 1+ in 0By, for all i > 0.
Q\Zo

In particular, G;O is a harmonic function in SNZj with C® boundary data. Then it follows

that G7° € C*(;) (ie., G} € C™(8y) for all m > 1). See for example [GM12, Theorem
4.14] or [Fol95, Chapter 7]. Then, by Theorem 10.6, choosing f; to be a C* function in
R™*! that vanishes in a neighborhood of 0Q2; and equals G;CO on 0By, and applying also
Theorem 10.2, we deduce that

IVG2 e @y < VG2, + IV Fillen ety + ity S IVG2 g, +Clda(zo)) < M,

where M is some constant that depends on dg(zo) and the C17 character of (Nlj, so that
M is uniform on j. In other words,

IVG:;O(.%) — VGfo(y)| <Mz —y|” forall jand z,ye€ ﬁj. (10.29)

We assume that G* and G;”O vanish identically in Q¢ and Qf, respectively. Notice that
G™ — G?O is harmonic in €2;. Further, by the Hélder continuity of G in a neighborhood
of 012, it holds that

G™(y) — G5 (y)] = G™(y) < da(y)® for all y € 09,

for some o > 0 and some implicit constant depending on the CDC character of 2;. By
the maximum principle, it follows that

|70 — G0 < G = G0)|c,00, < distr (09, 09;)* — 0,

as j — o0, where disty stands for the Hausdorff distance. Hence, VG;?O converges locally
uniformly in compact subsets of Q2 to VG*°. So letting 7 — oo in (10.29), we deduce that

IVG™ (z) — VG™(y)| < M |z —y|”  for all z,y €,

which proves that G™ € C’LV(SN)) and completes the proof of the theorem. O
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10.3 Dahlberg’s theorem for Lipschitz domains

10.3.1 Introduction

Our objective in this section is to prove the following fundamental theorem of Dahlberg
[Dah77]:

Theorem 10.10. Let Q c R be either a bounded Lipschitz domain or a special Lips-
chitz domain and denote by o the surface measure in 0. Let B be a ball centered in 02
and xg € Q such that dist(zg,2B n Q) = C;'r(B). Then the following holds:

(a) The harmonic measure w™ and o are mutually absolutely continuous.

(b) We have

1/2
dw®o \ 2 dw®o w™ (B)
do <C do=C , 10.30
<J[Bmasz< do ) ) Broa do o(B) (10:30)

where C' depends only on n, the Lipschitz character of 2, and C1.

(c) w™ € Ay (o), with the Ay constants depending only on n, the Lipschitz character of
Q, C1, and dist(zg, 092).

Next we will describe the strategy for the proof of Dahlberg’s theorem. First, notice
that a Lipschitz domain is NTA, and thus its associated harmonic measure is doubling.
Using this doubling property it is immediate to check that it suffices to prove the theorem
for a ball B small enough such that xo ¢ 48 and 4B is contained in 27;, where Z; is one
of the cylinders in the definition of Lipschitz domain.

We will follow the notation in Definition 8.1. Namely, given B centered in 02 we will
write

Ap:= Bn Q)

whenever 0f) is clear from the context.

Suppose that the boundary of €2 is smooth and that the Green function belongs to
C?(€), so that Green’s formula can be applied to G := G and to its partial derivatives
(away from zp). In this case w™ and o are mutually absolutely continuous and

dw™o
do

= —0,G,

where 0, G is the normal derivative of G in 02 (we assume that v is the outer unit normal
for Q). Since G is constantly equal to 0 in 0f2, the tangential derivative of G vanishes in
012, and moreover

—0,G = |0,G| ~ 011G in 8Z; N 09,

in the coordinate system for Z;. Therefore,

dw®\ 2
f < ) do ~ — 0,G Opy1G do.
Ap \ do Ap
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Let ¢ : R™! — R be a bump function which equals 1 in B and vanishes away from 2B5.
Since G vanishes at the boundary and both G and 0,,+1G are harmonic in 2B, by Green’s
formula,

xo \ 2
f <d°" > do < —f 00,Gon1Gdo = — | 0,(0 Q) dni1G do
Ap \ do o0 o0

= f ( — A(¢G) 0p+1G + chA(&nHG)) dm = —f A(p Q) Opy1G dm
Q Q
Q
By the definition of ¢, Theorem 8.13, and Caccioppoli’s inequality, we obtain

J |A@ G 041G + 20,41G Vi - VG| dm (10.31)
Q

1 ) 1/2 ) 1/2 1 )
< — G*dm J On+1G dm) + J VG| dm
T(B)z <Jﬂm23 ) < Qn2B ’ o | T(B) Qn2B { |

1 2y o L (@B w(B)
< B oy &9 S 1 <r<B>n—1> B~ =B

which yields (10.30). The fact that w™ is an Ay (o) weight follows then easily from this
reverse Holder property.

For arbitrary Lipschitz domains the argument above does not work because we cannot
assume a priori that ¢,G and 0,,,1G are defined in 02 and that the Green formula applied
above holds. To prove Dahlberg’s theorem with full rigor, first we will consider the case
when the boundary 09 is of class C! and we will prove a discrete version of (10.30)
following an approach based on the arguments above. Later we will deduce the full result
by an approximation argument

10.3.2 An auxiliary lemma

Lemma 10.11. Let Q < R™! be an NTA domain, let B a ball centered in 092, and let
H={y:yn+1 >0} and L = 0H. For any ¢ > 0 there exists some 6 = §(e) > 0 (depending
on g, the NTA character of Q and the function ) such that the following holds. Suppose
that Q n 6~'B c H and that

disty (02 67'B,L n67'B) < 6r(B). (10.32)

Let u: QN6 1B — R be a continuous function vanishing identically in 0Q n 6~ 'B and
positive and harmonic in QN d~'B. Then there exists some constant A > 0, depending on
u, such that

|u(y) — Ayn+1| <€ luflo,p forallye Qn B, (10.33)

Further, if y € Q n B satisfies dist(y, 0Q2) > %’I“(B) and € is small enough, then we have

IVu(y)| ~ dnsruly) ~ r(B) ™" uly) (10.34)
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and
r(B) [VZu(y)| + [Veu(y)] < € [Vu(y)| < [Vu(y)], (10.35)

where Vi, denotes the tangential derivative in L.

Remark that, for § small enough, the condition (10.32), the fact that Q n 6B < H,
and the interior and exterior corkscrew properties of 2, imply that the upper component
of 6 ' B\ Us,(p)(L) is contained in €, and the lower component in Q°.

Proof. Consider an arbitrary point yg € B n € such that dist(yo, 0Q2) = r(B)/4. Then we
will prove (10.33) with

U
\ = (%0) '
Yon+1
Denote v(y) = Aypt+1. For the sake of contradiction, suppose that there exists some

e > 0 such that for any § = 1/k there is an NTA domain € (with some bounded NTA
character independent of k), a ball By, centered in 0€ such that Q; n (kBg) < H and
distz7 (0Q N (kBg), L (kBy)) < k=1 r(Byg), and a continuous function uy, : Q N kB — R
vanishing identically in 0 N kBr — R, positive and harmonic in Qi n kBy, such that

lur = vklloo, Brnn > € lurloo, By (10.36)

with vg(y) = % Yn+1. By translating and dilating By and 2 if necessary, we may
assume that By, = B1(0).
Since the domains ) are NTA (with constants uniform in k), we infer that for any

1< M<k/2,
luklloones <nr unk(yo)-

Hence, the sequence of functions wuy(yo) ! uy is uniformly locally bounded in compact
subset of R"*! (we assume these functions to be extended by zero in €2¢). These functions
are also uniformly Hoélder continuous in %Bk (by Lemma 7.28). Also, since

diStH(aQ N (k‘Bk), Ln (k‘Bk)) — 0,

by the Arzela-Ascoli Theorem we infer that there is a subsequence uy; (yo)~ ! ug; that
convergences uniformly to some function % which is positive and harmonic in H and
vanishes continuously in L = 0H. Clearly we have @(yg) = 1 and so & does not vanish
identically in H. Thus, by Lemma 10.1 we know that %(y) = —— y,41 in H.

Yo,n+1

On the other hand, notice also that vel) 1 Yn+1 for all k, and thus by (10.36)

ug (Yo) Yo,n+1

we get the contradiction

lug; —vr,lloo,B luk; — vk, oo, B

2 lim su

~

0 = i — o = lim
J—® Uk, (%0) J—0 Hulchoo,B

= )

: ; _ u(yo)
which proves (10.33) with A = Yomi1’

Our next objective is to derive (10.34) and (10.35) from (10.33) with the preceding choice
of A, and with B replaced by 2B (it is clear that this estimate also holds in this case, by
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modifying suitably §). By the mean value property and the usual interior Caccioppoli
estimates for harmonic functions, we deduce that for all y € Q n B satisfying dist(y, 0Q2) >
1 7(B), we have

1 €
[On1u(y) — Al + [Viu(y)| < 2|Vu(y) — Aenta] S +(B) [u —vllw,0n2B < (B |ulloo,
(10.37)
and )
9 €
VZu(y) — 0] < W [u —v| w028 < W |ulloo,B- (10.38)
Notice now that
y o o) uly) 1
Yo,n+1 r(B) r(B)

and so from (10.37) we deduce that, for ¢ small enough,

lulleo,5,

A
[Ons1u(y) = Al < [Vuly) = Aensa| < 5,

and so Opt1u(y) ~ |Vu(y)| ~ A, which yields (10.34). On the other hand, from (10.37)
and (10.34) we derive

10.37) ¢ 810 wu(y) (10.34
< _ 53 53 .
Vi) = sl X e S R e [Vu)

Finally, the estimate r(B) |[V2u(y)| < € |Vu(y)| in (10.35) follows from (10.38) in an anal-
ogous way. O

10.3.3 A key lemma for the smooth case

As in Section 10.3.1, to prove Dahlberg’s theorem, we will assume that the ball B is small
enough, so that xo ¢ 48 and 4B is contained in 27, where Z is one of the cylinders Z;
defined above. We denote by D(01, Z) the family of the following “dyadic cubes” of 09
obtained as follows. Let D(R™) the usual dyadic lattice of R™. Let II; be the orthogonal
projection from 87 to R™ = R"™ x {0}, in the coordinate system associated with Z. Then
we let

D(0Q,Z) = {1;1(Q) n N : Q e D(R™),Q < 8Z nR"}.

Here again we are identifying R™ with R™ x {0}. Observe that the cubes from this family
are contained in 0Q N 8Z. We also denote ¢(IT,}(Q) n Q) := £(Q) and we call this the
side length of Hgl(Q) N 0f). Its center is the point whose projection by Il coincides with
the center of Q). We let Dy (052, Z) be subfamily of the cubes from D(0S2, Z) with side
length 2%, and given a cube R € D(09, Z), we let Dy (08, Z, R) be the subfamily of the
cubes from D(052, Z) which are contained in R and have side length 27%¢(R).
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Lemma 10.12. Let Q < R™™! be a (bounded) Lipschitz domain. Let Z < R™"1 be one
of the cylinders in the definition of the Lipschitz character of Q. Let R € D(092, Z) such
that AR = 4Z and xo € ) such that dist(xo,4R) > 4diam(R). Suppose that o) is C1 in a
neighborhood of 4R. Then, for any k = 1, we have

w™(Q)\” w™(R)\ 2
QeDkéz,Z,R)< o(Q) > @) <C < o(R) > o(R), (10.39)

with C' depending only on the Lipschitz character of ).
Notice that (10.39) can be considered as a discrete version of (10.30).

Proof. Suppose that 02N Z coincides with the graph of the Lipschitz function y,+1 = A(y)
in Z. Fort > 0, let Ay(y) = A(y) +t and let Q, = {y € Q : yp+1 > Ai(y)} (the definition
of the function A away from 4Z does not matter).

For every @ € Dy(0R, Z, R) consider a C* bump function pg which equals 1 on %Q
and vanishes in R”“\Bdiam(Q) (zg) and in H§1(2Q) (here xg is the center of @), with

UQ)|Vpg| + UQ)*|V2pg| < 1. Since the function G := G* belongs to W12(Q\B,(x))
for any r > 0, we infer that

6

7.
w(Q) < — f VGVygdm = —lim [ VG Vegdm = —lim J 0v, G pq doy,
Q t—0 t—0 o

Q¢

where v; and o denote the outer unit normal and the surface measure for 0€2;, respectively.
Consequently, denoting 2Q; = H§1(2Q) N oY,

2 )<wx0(@>2"<@)<hms‘m ) )<2QtﬁutG¢Qdot>20(Q)l

QeDy(992,Z,R 7(Q) =0 0ep(09.7,R
(10.40)

< lim sup Z f 0,,G? @2Q doy
20 Qepn(an.z,R) V2

Slimsupf 10,,G|* p% do.
t—-0 Jar,

Since A € CY(U) where U o IIz(4R), by a compactness argument we get

sup |VA(Z) — VA(Y)| < w(t) for z € 3R

lz—yl<t

and t small enough, with lim;_,qw(t) = 0. In particular, for every 6 > 0 there exists t;
such that w(46~1t5) < §2. This implies that the tangent n-plane L, = {x € R*™! : 2,1 =
A(y) + VA(y) - (T — y)} satisfies

/800,69(57134155 (y)7 Ly) < sup |A(j) - A(gj) - VA(37> ) (f - §)|

< w(4675) < 62
|z—gl<o—1t 46~ 1 ( )
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by the mean value theorem applied to A.

Now, for every € > 0 we can apply Lemma 10.11 to find § = ¢(¢) so that fixing t = 5. as
in the previous paragraph, for every y € 2R, we can infer (taking in the lemma B = By (y),
and with L being a suitable n-plane T}, orthogonal to 14(y) so that 0,41 in Lemma 10.11
is precisely 0,, here) after applying perhaps Harnack’s inequality, that for £ small enough
and all y € 2R,

IVG(y)| ~ 10, G(y)| = —0,,Gy) ~ t5z, Gly) (10.41)

and
tse) IV?G(y)| + VL, G(y)| < e[VG(y)| « [VG(y)], (10.42)

where V1, denotes the tangential derivative in 0€;. Let ¥y, be the orthogonal projection
of the vertical unit vector e, 41 (in the local coordinates of Z) on the tangent n-plane L.
Note that

On1G(y) = ent1- VG(y) = leny1,v1(y)) 0, G(y) + (ent1, [Ty 71T, 015,115, G (v),

with the convention (e 1, |¥,|~ v,) 93,13, G(y) = 0 whenever 4, = 0. Since A is Lips-
chitz, the scalar product {e,+1,v(y)) is bounded below, and taking into account (10.41)
and (10.42), we derive

—0,G(y) =0, G(y)| = On4+1G(y) for all y € 2R;.

Thus, for € small enough, and ¢ = #5(.) we have

I := f |ayt6(€) G2 % doy,., ~ — 01, G On+1G % doy (10.43)
2Rt5(5) 2Rt

= — 00, (G %) Ops1G doy + 2 G R 0u, R Ons1G doy.
2R 2Ry
We estimate the last integral on the right hand side above using Cauchy-Schwarz, the
Holder continuity of G' in a neigborhood of Bgjam(r)(7r), (10.41), and the connection
between w”® and G:

1 1/2
f |G ©R Oy pR On41G| dot < — sup G(y) (J VR Ons1G|? dcn) a(R)"?
2R, U(R) 2R, 2R,

728 1 ts(e) ) “ 1/2 1/2
G sup G(y) I/ 0(R
{(R) <£(R) YEB3diam(r) (*R) ( ) : )

7.13<7.15 té(s) @ waO(R) Il/2
~ (R)) o(R)2*

To estimate the first integral on the right hand side of (10.43) we use Green’s formula
again and we take into account that 0,,41G is harmonic away from xg in 2:

O (G %) Ops1Gdoy = | A(G %) Ops1G dm + G 0% 0,,0n41G doy  (10.44)
2R Qt 2Ry
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10 Ahlfors regular domains

The first integral on the right hand side is estimated exactly as in (10.31). Indeed, denoting
by Bpr some ball centered in 0f2 that contains suppyr and such that diam(Bgr) ~ ¢(R),
we get

J A(G @) dniaGldm < f AQ3 G 1G4 20041G V3 - VG dm
Qq Q

1 ) 1/2 , 1/2 1 )
< —Q G“dm J On+1G dm> + J VG dm
T(BR)Q <J\QGBR ) < Qf’\BR ‘ o ‘ r<BR) QﬁBR | |

1 2y o | WOR) NP w(R)?
< 0 o, & s (et ) 80~

To deal with the last integral on the right hand side of (10.44) we apply (10.41) and
(10.42):

f G2 o onnGldoy < | G2 V26 doy
2Rt 2Rt

sj (H2nG) ¢ (et 10, C) doy
2R
= EJ‘ 10,,G? % doy = €l..

2R

Altogether, we obtain

(SO T 2
I{-,‘ < <t6(5)> w O(R) 11/2 + w O(R)

) sz T om Tl

For e small enough, this yields
T 2
<Y °(R)
o(R)
Plugging this estimate into (10.40) for any sequence t;.. ) with £; — 0, the lemma follows.
O

10.3.4 Proof of Theorem 10.10

We assume that B is small enough so that zg ¢ 4B and 4B is contained in 27, where Z
is one of the cylinders in the definition of Lipschitz domain.

By reducing B and translating the dyadic lattice D(052, Z) if necessary, taking into
account that w® is doubling, we may assume that B n 0f) is contained in some cube
R € D(Z,00) like the one in the statement of Lemma 10.12, so that moreover /(R) ~ r(B).
We claim that for any k£ > 1 we have

5 <W”“’<Q>)2 Q) <C (“’Uu(j?)Q o(R). (10.45)

QeDy (09,7,R) 7(Q)
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whith C' depending only on the Lipschitz character of 2.

To prove the claim we approximate by a domain €25 whose boundary is C' in 2Z. To
this end, we consider a smooth approximation of the identity {¢s}s-0 in R™, we take a
bump function 7 : R®™ — 0 which equals 1 in a neighborhood of 3Z n R™ and vanishes in
R™3.1Z, and for z € R™ we denote

A5(Z) = Ax ¢n(z)5(2)a

where § « /(R) and we understand that A = ¢g(z) = A(z). It is easy to check that As
is Lipschitz (uniformly in §), with [VAs|e < |[VA|w (see Exercise 10.3.1 below), and
that As is C® in a neighborhood of 3R. We let Qs be the domain whose boundary is the
graph of As in 4Z and coincides with 0Q in R"*1\4Z. We denote by w;® the harmonic
measure in )5 with pole zg, and we let Q5 = HEI(Q) N 0Qs for Q € D(Z,00), so that
Q5 € D(Z, 595)

For every € > 0 and every § < dp(e) small enough (possibly depending on k) we have

w™(3Q) < wi’(Qs) +e0(Q)  for every Q € Dy(09, Z, R). (10.46)

Indeed, w((;')(Q(;) is a function harmonic in s, which extends continuously to 1 in 3Qs,
with a Hélder modulus of continuity uniform in §. This can be derived by applying Lemma
7.28 to the function 1 — w((s')(Q(;). Then, writing

1, for x € Q°,

1)5(33) = {wg(Qé), for z € Q)

from Lemma 2.14 it easily follows that for ever sequence ¢; — 0 there exists a subsequence
{jr}r and a function v harmonic in € and Hélder continuous in a suitable ball B with
%Q c B (and %Q(g < B for every §) with v[gq = 1, such that vs; — v uniformly in
compact subsets of Q and vs;, — v in C*(B). Note that v extends continuously to 1 in a
neighborhood of %Q and thus

lim w2 (Qs,,) = v(wo) = W™ (5Q)

by the maximum principle. Therefore,

lign iélfwgo(Qg) > w™(3Q) for all Q € Dy(0, Z, R),

which proves (10.46) because the number of cubes is finite. By a similar argument, we
infer that for § small enough we have

w™(R) = wi°(3Rs) — e0(R). (10.47)
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From (10.46), Lemma 10.12, (10.47), and the doubling properties of w and wy, we get

(@) W2(Q)\ :
2 < a(Q) ) (@)= 2 [( 75(Qs) > 05(Qs) + ¢ U(Qa)]

QeDy (09, 7Z,R) Qs5€Dy(025,Z,R)

wxo (Ré) 2
< () e+ oy

z0 2
w™(R) 12
o(R)
Now the claim (10.45) follows immediately by letting ¢ — 0.
The theorem follows easily from (10.45). First we show that w™ € Ay (o), with the

Ay constants depending on the Lipschitz character of Q and dist(zg, dQ2). To this end, it
suffices to prove that there are dg,ep € (0,1) such that for any compact set F c R,

o(E)<dpo(R) = w"(E)<egow™(R). (10.48)

o(R).

Indeed, from the regularity of o, we infer that for any dp € (0, 1) there exists some k large
enough and some family I}, Dy (02, Z, R) such that the set E = UQE 1, @ satisfies

EcE, o(E)<o(E)+da(R) <25 (R).

By Cauchy-Schwarz and (10.45), we get

<o e Y O D g < (3 (DUDY () iy

Qely, (@) Qely (@)
w™(R)\ > ” 12 V2 ()12 — c5l/2 w0
<C(<U<R>) (R)> 6120 (R)V2 = CoY 2w (R).

So (10.48) holds if we choose Jy small enough. In particular, this implies that w®® is
absolutely continuous with respect to o.
Finally we turn our attention to the estimate (10.30). Given any n > 0, by the Lebesgue
differentiation theorem, for o-a.e. y € R there exists some k, > 1 such that
‘doﬂo w™(Q)

e (y) — =) ‘ <n ifreQeD(00Q,72)and £(Q) < 27" /I(R).

Denote R(ko) = {y € R : ky < ko} for kg € N. Then, using again (10.45) we obtain

dw™ 2 dw®™ w”CO(Q)>2
JR(ko) ( do > do <2 Z f R(ko)nQ ( o(Q) do

QeDy (00,7,R)
°(Q)
+ 2 o(Q)
QeDy, Zé;QZR < 7(Q) >

coromsc (18 s
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10 Ahlfors regular domains

Since R coincides with Uk0>1 R(kp) up to a set of zero o measure, by the monotone
converge theorem we derive

() e (5 ot () s

Since 7 is arbitrarily small and w™ (R) ~ w™(B), clearly this yields (10.30). O

Exercise 10.3.1. Show that, in the proof above, Aj is uniformly Lipschitz as claimed.
Hint: show first that if f,(2) = ¢y)s(z — ¥), then [V fy(2)| < W, and |As(z) —
A(2)| < n(2)8|VA|,. Then treat separately the cases 0 < n(2') < n(z) with By .5(2') <
3By 2)5(2), 0 < n(2') < n(z) with By:ns(2') 0 By)s(2) = @, and 0 = n(2') < n(2),
referring to the previous estimates.

10.4 Harmonic measure in chord-arc domains

Recall that a chord-arc domain in R"*! is an NTA domain whose boundary is n-Ahlfors
regular. A chord-arc domain in R™*! is an NTA domain whose boundary is n-Ahlfors
regular. Here we say that a domain Q — R"*! satisfies the corkscrew condition if it
satisfies the interior corkscrew condition from Definition 8.5 with rg = diam(Q2), that is,
for all £ € 0 and 0 < r < diam(0€?) there exists some ball B ¢ B,.(§) n Q with r(B) ~ r.
We say that € is a two-sided corkscrew domain if both € and R"*1\Q satisfy the corkscrew
condition. It is clear that any chord-arc domain is also a two-sided corkscrew domain.

We will need the following geometric result, proved independently by David and Jerison
[DJ90] and Semmes [Sem90]:

Theorem 10.13. Let Q < Rt be an Ahlfors reqular and two-sided corkscrew domain.
Then, for all & € 02 and all r € (0,diam(02)) there exists a Lipschitz domain Ug,
Q N By(&) such that

H'(Ape n0Uer) 217,

where Ap¢ = 0Q N B,.(§). The Lipschitz character of the domains Ug, and the implicit
constant above only depend on n and the parameters involved in the n-Ahlfors regularity
of 002 and the two-sided corkscrew condition for ).

Remark that, for the theorem above to hold, the two-sided corkscrew condition can be
weakened, for example, by replacing the corkscrew balls by suitable discs of codimension
one not intersecting 0€2, see [Sem90]. An immediate corollary of the above result is that the
boundary of an Ahlfors regular two-sided corkscrew domain is uniformly n-rectifiable (see
[DS93] for the definition of uniform n-rectifiability). Another consequence is the following.

Theorem 10.14. Let Q < R™"! be a chord-arc domain. The harmonic measure for €
18 an Ay weight with respect to the surface measure o. In particular, there are constants
d,e € (0,1) such that for any ball B centered in 02, any xo € Q\2B, and any Borel set
E c Ap = Q) n B, the following holds:

o(E)>d0(B) = w"(E)=>=cw™(B).
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Proof. By Theorem 10.13, for a ball B as above there is a Lipschitz domain U < £ n %B
such that
o(ApndU) = no(Ap),

where 1 > 0 depends on the parameters of the chord-arc domain character of 2. We claim
that if ¢ is close enough to 1 and o(E) > d 0(Ap) (for E < B n 012), then

H'(EnoU) zs5y H"(OU). (10.49)
Indeed,

o(EndlU)=0(FE)—oc(E\0U) = o(E)—o(Ap\oU)
= O'(E) — O’(AB) +U(AB N 6U) = 50’(AB) — (1 —?7)0’(AB)
~(0+n—1)r(B)" ~s5, H"(OU).

Consider a corkscrew point zp € U such that dist(zp,0U) ~ r(B)". By Dahlberg’s
theorem, wy” is an A, (H"|or) weight, so (10.49) implies

wiP (EnoU) 25y wi? (0U).

By the maximum principle for the harmonic measure of nested domains (see Lemma 5.32),
we obtain

5.32
WP (B) 2 wiP(EndU) = wiP(Endl) 25, wi?(0U) = 1.

All in all,
w?f” (E) Zsn 1.

Then, by the change of pole formula for NTA domains we deduce
2o 8.21 2o
wq (E) < sn Wq (AB)7

which proves the last claim in the theorem, see Remark 4.51.

10.5 [P-solvability of the Dirichlet problem in terms of harmonic
measure

Let Q  R™*! be an open set and set o := H"|sq to be its surface measure. In Definition
8.30 we define the cone with vertex £ € 02 and aperture a > 0 by

Lo(&) ={yeQ:|¢—y| < (1+a)dist(y,Q)} (10.50)
and the non-tangential maximal function operator of a measurable function u : 2 — R by

Nou)(€) == sup |u(y)], € o0 (1051)
yel'a(€)
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Theorem 10.15. Let Q < R™! be an open set with such that 0S) is n-Ahlfors regular.
For a, 8 > 0 and any function u : Q — R, we have

INa(w) ] r (o) ~a,p [Np(w)|Lp(0)-
For the proof, see [HMT10, Proposition 2.2], for example.

Because of the preceding result, when estimating |Nu(u)|1r(s), quite often we will not
just write M(u) in place of N,(u). For definiteness, we can think that o = 1, although
the relevant value of o will not be important for us.

For 1 < p < oo, we say that the Dirichlet problem is solvable in LP for the Laplacian
(writing (D)) is solvable) if there exists some constant Cp, > 0 such that, for any f €
C.(09), the solution u : 2 — R of the continuous Dirichlet problem for the Laplacian in
Q with boundary data f satisfies

IN ()] e(o) < Cp | £l Lr(o)-

By the maximum principle, it is clear that (Dy) is solvable. Consequently, by interpola-
tion, if (D)) is solvable, then (D,) is solvable for g > p.

The objective of this section is to characterize the solvability of (D)) for 1 < p < o0 in
terms of the analytic properties of harmonic measure. We need the following result.

Lemma 10.16. Let Q < R™! be a domain with bounded n-Ahlfors regular boundary.
Given x € €1, denote by w”® the harmonic measure for £ with pole at x. Suppose that w”®
is absolutely continuous with respect to surface measure for every x. Let p € (1,00) and
A > 1 and suppose that, for every ball B centered at 02 with diam(B) < 2diam(Q2) and
all x € AB n Q such that dist(z,0Q) = A~1r(B), it holds

< J(AB <d;:>19 dg) " <ro(B), (10.52)

for some k > 0. Then, if A is big enough, the Dirichlet problem is solvable in L*®, for
s> p'. Further, for all f € L? (¢) n C(0%), its harmonic extension u to Q0 satisfies

”N(U)Hm’,oo(g) S K HfHLp’(g)- (10.53)

Proof. Let f e C(09Q) and let u the solution of the Dirichlet problem in €2 with boundary
data f. Suppose that f > 0. Consider a point £ € 02 and a non-tangential cone I'(§) < €,
with vertex £ and with a fixed aperture. Fix a point x € I'(§) and denote dg(x) =
dist(z, 02). We intend to estimate u(z), first assuming dg(z) < 2 diam(052).

To this end, we pick a smooth function ¢ which equals 1 in B;(0) and vanishes in
R\ By(0). For some M > 4 to be chosen later, we denote

_ Yy
pm(y) = s0<7MdQ($)>-
We set
foly) = F(y) pm(y =€), fily) = fy) = foly),
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and we denote by ug and u; the corresponding solutions of the associated Dirichlet prob-
lems so that v = ug + u1.

In the following computations, to shorten notation we denote d, = dg(z). To estimate
up(x) we use (10.52) to show that

d X
up(x) = Jfo dw® < f f “ do
Banrd, (€) do

1y’ Z\ P 1/p
<(|  wae) (] (d“’) do
Bonrdy (€) Banrd, () do

o 1/p'
e < RO(M) Moy 16),

< K O(M) Moy £(8)

for p’ = p/(p — 1), assuming A > 2M, where we wrote M,y f := (Mg(lf\p/))l/p .

Next we deal with wuj(x), which we extende by 0 outside Q. Note that u; # 0 implies
that Bfq () 002 # @, so Mdg(z) < diam(0Q). First we estimate _SBMdz (6) u1 dm by
the integral of its non-tangential maximal function. To do so, we use a classical trick of
relating Whitney cubes W := W(2) in Q (see Section 8.3.2) to a certain dyadic structure
in 0Q: denote by Ip < W the family of those cubes that intersect B := Bjpsq,(£). By
the properties of W, the cubes P € Ip are contained in CB := Bgg, (§), for some C
depending just on n and the parameters in the construction of W. For every cube P € Ip
we define b(P) to be a Whitney cube of the same side-length intersecting 02 such that for
every £ € b(P) n 02 we have P c T'(¢). This is well defined as long as « is big enough,
and the number of cubes @) € W such that b(Q)) = b(P) is bounded by a dimensional
constant (depending also on «). Again we have b(P) < C'B. Then, taking into account
that u; < u, we have

f urdm < ) f udm < Y inf  Nu(y) (P)"*! (10.54)
Bay (§) P

Pelp pely YEUP)no

< : n+1
< Z erIjl(gQ Nu Z ((P)
QeW:QcC'B Pelp: Q=b(P)

S YN ((9) Nudo < Md, | Nudo.

QEWIQCC’B 3QﬁaQ C'B
So we deduce

J( updm < Nudo < My(Nu)(€).
Bardy (§) ¢'B

Now, taking into account that f; vanishes in Bjpsq, (§), from the Hélder continuity of uy
in Q N Byg,2(§) (see Lemma 7.27) and the fact that uy is subharmonic in Byyq, ¢) (see
Lemma 5.7), we infer that

1 1
w@ < g f mdm s MA@),
M Bard, (§) M
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for some « > 0 depending just on the Ahlfors regularity constant of 02.
Altogether, for all z € T'(§) with do(x) < 2diam(0€Q2) we have

u(r) < KO Moy () + 12 Mo(Nu)(€). (10.55)

In case that Q is unbounded, it turns out that the closure of A := {z € Q : dq(z) <
2diam(0€2) > 2diam(0f2)} is contained in the cone I'(§) if the aperture of I'(€) is assumed
to be big enough. Thus, by the maximum principle, since (10.55) holds for z € dA and
u vanishes at oo, it follows that the same estimate is also valid for x € I'(¢) n A. Hence
(10.55) holds for all z € I'(§) in any case. So we obtain

Nu(€) < £ C(M) Mgy f(£) + % My (Nu)(€)  for all £ € 9. (10.56)

Thus, for s > p/,

C
INulps(o) < 5 C(M) Mgy fllLs (o) + e |Mo(Nw)ps (o)
!/

C
< KOO | |10) + 1w Wtlego)

Since f is continuous and 09 is bounded, |[Nu|zs) < o0, and hence, choosing M (and
thus A) big enough, we get

INu|ps(o) < 6 C' (M) [ fllL5(o)-

Regarding the last statement of the lemma, recall that M, ;s is bounded from L (o)
to LV (o) and that M, is bounded in LP"®(c). Then, from (10.56) we infer that

C
HNUHLP/aOO(g) <kC(M) HMa,p’fHLp’,oo(g) + M ’|MJ(NU)HLPI7W(O')
C
< KOO Il ) + 77 Wl o
Since HNUHL,,/@(U) < 0, the latter gives (10.53) for M and A big enough. O
Theorem 10.17. Let Q < R™"! be a domain with bounded n-Ahlfors regular boundarsy.

Given x € §, denote by w® the harmonic measure for Q with pole at x. For p € (1,00), the
following are equivalent:

(a) (D) is solvable for Q.

(b) The harmonic measure w is absolutely continuous with respect to o and for every
ball B centered in 02 and for all x € Q n 3B\2B with diam(B) < 2diam(0S), it

holds ’
( J[B (iﬁ)p d”) "<om) (10.57)
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(¢) The harmonic measure w is absolutely continuous with respect to o and there is
some A > 1 big enough such that, for every ball B centered in 02 with diam(B) <
2diam(02) and all z € AB ~ Q such that dist(z,0Q) = A~1r(B), it holds

(h, () )" s

By duality, (10.57) is equivalent to the following: for every ball B centered in 02, for
all z € Q" 3B\2B, and all f € C.(02 n B),

[,

Denoting by u the harmonic extension of f to €2, it can be rewritten as

< oo (B) .

u(@)] < 1l oy (B) 7 (10.58)

Proof of Theorem 10.17. (a) = (b). To prove (10.58), by standard arguments (as in
(10.54), say) and the L¥ solvability of the Dirichlet problem, it follows that

1/p’
[ ans f  wwirs ({  w@Pds) " Sl
4B CBnofN CBnoN

By the subharmonicity of |u| (extended by 0 in Q¢, see Lemma 5.7) in 4B\B, we have
lu(z)| < J[ |u|dm for all z € Q n 3B\2B.
4B

Together with the previous estimate, this implies (b).

(a) = (c). The arguments are almost the same as the ones in the proof of (a) = (b),
just replacing the condition z € Q n 3B\2B by x € Q n AB, dist(z,0Q) > A~1r(B). We
leave the details for the reader.

(b) = (a). First we will show that there exists some ¢ > 0 such that for any ball B
centered in 0 with diam(B) < 2diam(02) and for all z € Q\6B,

pre A\ Vo)
( J[ <d;; ) da> <o(B), (10.59)
B

To this end, notice first that, for all x € Q n d(2B), by (7.20)

w*(8B) 2 1.
Then, for any function f € C.(B n 0f2), the assumption in (b) and the preceding estimate
give

_ / wx 8B
[0(@)] < Cfl oy (B) VP < 0f|L,,/<(,)JU§>1/; for all z € Q1 9(2B),
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where, as above, u is the harmonic extension of f to 2. By the maximum principle we
infer that the above inequality also holds for all y € Q\2B. By duality it follows that

dw'\"  \"" _wY(8B)
- <
( J[B < do > do> ~ o(B) for all y € 0\25.

So for any given ball By centered in 092 with diam(Bp) < 2diam(0f2) and y € Q\6By and
any ball B’ centered at 1.1By n 092 with r(B’) < 2r(By), we have

(£, (&) )" <=5

By Gehring’s lemma (see [GM12, Theorem 6.38], for example) adapted to n-Ahlfors regular
sets, there exists some € > 0 such that

pt+e 1/(p+e)
( J[ <dwy> da) < wy(8Bo)’
B, \ do a(Bo)
which yields (10.59).

Next we intend to apply Lemma 10.16 with p+¢ in place of p. To this end, given A > 1,
a ball B centered in 09 with diam(B) < 2diam(0f2), and z € AB with dist(z,0Q) >
A~1r(B), we cover B n 0f) with a family of balls B;, i € I, with r(B;) = (100A)~'r(B),
so that the balls B; are centered at B n 02, x ¢ 6B; for any i € Ig, and #Ip < C(A).
Applying (10.59) to each of the balls B; and summing over i € Ig, we infer that

<J[AB (d;-x)p+5 da) 1/(p+e) _ C(A)U(B)il.

From Lemma 10.16 we deduce that (D) is solvable for s > (p+¢)’, and thus in particular

for s = p'.

(¢) = (b). We will argue in the same way as in the proof of (a) = (b), using the
estimate (10.53) instead of the solvability of (D). Again by duality, it suffices to show
that for every ball B centered in 02 with diam(B) < 2diam(0f?), for all z € Q n 3B\2B
and all f € C.(02 n B), the harmonic extension u of f to € satisfies

lu(z)] < HfHLp’(g)U(B)_l/p : (10.60)
By standard arguments, the Kolmogorov inequality, and Lemma 10.16, we have

1

4.10 , (10.53 o
f peldms N o S IN@li B S 1l o B

Since f vanishes in 0Q\B, by the subharmonicity of |u| (extended by 0 to Q€) in 4B\B
we have

lu(z)| < J[ |u|dm for all z € Q N 3B\2B,
4B

which, together with the previous estimate, implies (10.60). O
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Remark 10.18. The arguments in the above proof of (b) = (a) show that solvability of
(Dyy) for some p’ € (1, 00) implies solvability of (D,/_.) for some € > 0.

Remark 10.19. The above theorem also holds if 02 is unbounded. Indeed, the only place
where the boundedness of 02 is used is in Lemma 10.16, to ensure that [|Nul|zs(,) < o
and |Nupp () < 0. A way of circumventing this technical problem is the following.
For r > 0, consider the open set Q, := Qn B,(0). It is easy to check that 02, is n-Ahlfors
regular and that an estimate such as (10.52) also holds for the harmonic measure wq, , with
bounds uniform on r, so that (Ds) is solvable for ,, with s > p/, and (10.53) also holds.
Given f e C(092) with compact support, let » > 0 be big enough so that suppf < B,(0),
and let f, : 0 — R be such that f, = f in Q2 n B.(0) and f, = 0 in 0Q, N Q. The
we apply Lemma 10.16 to the solution wu, of the Dirichlet problem with data f. in €,.
Letting 7 — oo, then one easily deduces that [|Nu|pss) < K[ f]Ls(r), as well as the related
estimate (10.53). We leave the details for the reader.

Theorem 10.20. Let Q < R™ be a bounded domain. Then we have:

(a) If Q is a Lipschitz domain, then there exists some £y > 0 depending just on the
Lipschitz character of 2 such that (D)) is solvable for p = 2 — eg.

(b) If Q is chord-arc domain, then there exists some pg > 1 depending just on the chord-
arc character of Q such that (Dp) is solvable for p = py.
Proof. Suppose that  is a Lipschitz domain. Let z € £ such that dg(zo) := dist(xg, 0Q) ~
diam(0f2). By Dahlberg’s theorem, the density function % satisfies the reverse Holder
inequality (10.30) with exponent 2. By Gehring’s lemma (see Lemma 4.53) we deduce
that an analogous reverse Holder inequality holds for some exponent gy > 2. That is, for
any ball B centered in 0f), with Ap = B n (), we get

zo \ 90 1/q0 z0 o
( J( (d” > do—> <o 24— oetBs) (10.61)
Ap \ do Ap do o(Ap)

Note that the change of pole formula readily implies that for x € 2 " 3B\2B with dg(z) ~
r(B), we obtain w”-a.e.

dw®  dw® dw™ _pdw™

do  dw® do do
In case do(z) < A7!r(B), then using Lemma 8.10 we get %= < w™(Ap) 192 Conse-
quently, the condition (b) in Theorem 10.17 is satisfied, with exponent gg, which implies

that (Dq{)) is solvable, where ¢, is the conjugate exponent of go. By interpolation, (D)) is
solvable for p > ¢, with ¢ < 2.

P (Ag)

In case that € is assumed to be just a chord-arc domain, by Theorem 10.14 we know
that d‘(‘i’;o is an Ay (o) weight, and thus there exists some gy > 1 such that a reverse Holder
inequality such as (10.61) holds. As above, by the change of pole formula and by Theorem
10.17 we infer that (Dqé) is solvable, and by interpolation, (D,) is solvable for p > ¢,

with ¢; € (1, ). O
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11 Rectifiability of harmonic measure

A set E < R™! is called n-rectifiable if there are Lipschitz maps f; : R? — R»*L
1=1,2,..., such that

H”(E\Ufi(]R")) ~ 0. (11.1)

A set ' < R™"! is called purely n-unrectifiable if H"(F n E) = 0 for every n-rectifiable set
E. As for sets, one can define a notion of rectifiability also for measures: a measure y is
said to be n-rectifiable if it vanishes outside an n-rectifiable set £ < R®*! and, moreover,
it is absolutely continuous with respect to H"|g.

In this chapter we will investigate the connection between rectifiability and harmonic
measure. First, under suitable assumptions on a domain < R"*! we will show that
harmonic measure for €2 and the Hausdorff measure H" are mutually absolutely continuous
on the set of cone points of 0f2, which is a rectifiable set. Afterwards, in the converse
direction, we will see that if the harmonic measure w for €2 and that the Hausdorff measure
H™ are mutually absolutely continuous on some subset E < 0€2, then F is n-rectifiable, or
equivalently, w|g is n-rectifiable.

11.1 Harmonic measure in the set of cone points
Definition 11.1. Let 2 = R™™! be open. A point x € 9 is called a cone point (for ) if
there exist a unit vector v € R"*1 a € (0,1), and r > 0 such that

Clz,v,a,r) :=={yeBp(z): (y—x) - v>aly—z|} < Q.

Remark that C'(z,v,q,r) is a one sided truncated open cone with vertex x and axis
parallel to v.

First we will show that the set of cone points for an open set €2 is n-rectifiable. We will
prove this using the following basic lemma.

Lemma 11.2. Let 0 < r < o0 and let v € R*! be a unit vector and V the orthogonal
vector space to v. Let E < R"! be such that diam(E) < r and

EnC(z,v,a,r) =@ forallzeE. (11.2)
Then E is contained in the graph of a Lipschitz function A:V — V=+.

Proof. Denote by Ily the orthogonal projection onto V. Consider x,y € E. Since y ¢
C(z,v,a,r), then (y—x)-v < o |y—z|; and since x ¢ C(y, v, o, r), then (z—y)-v < aly—x|.
Therefore,

((y—z)-v[<aly—a
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11 Rectifiability of harmonic measure

Consequently,
My (y) — My (@) = |z —y[> = |(y —2) - v]* = (1 = a?) [& —y|*.

So Iy | is one to one with Lipschitz inverse, with Lip((ITy|g)~!) < (1 — o?)~1/2. O

Proposition 11.3. Let Q < R™! be open. Let K < 0 the subset of all cone points. Then
K can be covered by a countable collection of Lipschitz graphs and thus it is n-rectifiable.
In particular, H" |k is o-finite.

Notice that the proposition ensures something stronger than the n-rectifiability of K:
this is contained in a countable union of Lipschitz graphs, without leaving any subset of
zero measure H™.

Proof. Let {v;}icr be a countable and dense family of unit vectors in the sphere S". For
i€l and m > 1, let K;,, the subset of the cone points x € K such that

C(z,v;,1/m,1/m) < Q.

It follows easily that

i€l m=1

For each 7,m, consider a covering of K; ,, with a finite or countable family of open balls
Bj, j € Jim, centered in K;,, with radii 1/(2m). For each i,m, j, the set K, n B;
satisfies the assumption (11.2), with v = v;, « = 7 = 1/m. So K; ,, n Bj is contained in a
Lipschitz graph. O

Our main objective in this section is to prove the following result.

Theorem 11.4. Let Q < R ! be a bounded domain, let p € Q, and let K < 09 be the
subset of cone points for Q. Then H" |k < wg];{, that is, H" is absolutely continuous with
respect to wgy on K.

Suppose moreover that the following holds: there exists some ¢ > 0 such that

HE(Br(§)\Q) = cr™  for all £ € 0Q and r > 0. (11.3)

Then wh|k « H"|k, that is, wg, is absolutely continuous with respect to H™ on K.

For simply connected domains in the plane, this result is a well-known theorem of
McMillan [McM69]. The extension to higher dimensions announced above is due to Ak-
man, Azzam, and Mourgoglou [AAM19].

If @ < R""! is an open set satisfying (11.3) for some ¢ > 0, we say that Q has large
n-dimensional complement, or just large complement, for short. Notice that if ) has
large complement, then it is Wiener regular and satisfies the CDC. The assumption of
having large complement cannot be eliminated in the second statement in the theorem.
For example, let E  [0,1] < C be the usual ternary Cantor set, and consider the planar
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11 Rectifiability of harmonic measure

domain Q = By(0)\E. It is immediate to check that all the points from 0 (and, in
particular the ones from E) are cone points. However, w(E) > 0, while #"(E) = 0. On
the other hand, remark that all planar simply connected domains have large complement,
taking into account that o€ is connected.

We will first prove the absolute continuity of surface measure with respect to harmonic
measure on the set K of cone points for 2. We will derive this from Dahlberg’s theorem
and the maximum principle.

Proof of H"|k « wP|k in Theorem 11.4. As in the proof of Proposition 11.3, let {v;}ies
be a countable and dense family of unit vectors in the sphere S™. For i € [ and m > 1, let
K; , the subset of the cone points € K such that

C(z,v;,1/m,1/m) < Q,

so that

el m=1

For each 7,m, consider a covering of K;,, with a finite family of open balls B;, j € J; m,
centered in K; ,,, with radii 1/(5m). Observe that

Qi,m,j = 2Bj N U C(:L',’Ui, l/m, 1/m) c Q.

:BEKiﬁmﬁBj

Further, using Lemma 11.2, it is easy to check that each (2;,, ; is a Lipschitz domain, and
that

Ki,mC U 6Qi7m7j.

jEJi,'m

By Dahlberg’s theorem and Lemma 5.32, it follows that
Hn’agi,m,j NK o K WQ, 5 ’Ki,m S wQ‘Ki,m'
Since this holds for all i, m, j, we deduce that H"|x « wq. ]

The proof of the fact that wP|x « H"|x when Q has large complement is more compli-
cated. We will need the following auxiliary lemma.

Lemma 11.5. Let Q < R be a Wiener regqular bounded domain, let p € Q, and let
E < 02 be a Borel set. Then w(E) = 0 if and only if

supwi(E) < 1. (11.4)
e
Proof. We write w = wq. We only have to show that the condition (11.4) implies that
wP(E) = 0, since the converse implication is trivial. To this end, assume first that E is

closed and denote
A =supw”(F).

zef)

247



11 Rectifiability of harmonic measure

Since FE is closed, by Corollary 5.36, for every & € 0Q\F,

lim w*(E) = 0.
z—E
For any € > 0, let f. € C'(092) be a function which equals A on E and vanishes away from

an e-neighborhood of E. From the above conditions, it follows that the function defined
by u(x) = w*(E) belongs to the Perron class L. for €2, and thus

() = ulx) < Hy, () = f fdo®  forall ze Q.

On the other hand, by the outer regularity of harmonic measure and the definition of f;,
we have

lim Jfg dw® = AW (E).
e—0

Hence,
w'(F) < Aw*(E).

Since A < 1, this implies that w”(E) = 0.

In the case when E is an arbitrary Borel set, the condition (11.4) implies that for any
closed subset ' < E it also holds sup,cqw§(F') < 1. Hence wP(F') = 0 and thus, by the
inner regularity of harmonic measure, we infer that w?(E) = 0. O

The main tool to prove the second statement in Theorem 11.4 is the following:

Theorem 11.6. Let Q < R™"*! be a bounded domain with large complement and let p € Q.
Let T' be a Lipschitz graph and denote by Vi and Vy the two connected components of
R™™ND. Let E < 0QnT be a Borel set with wP(E) > 0. Then there are points x; € V; N2,
fori=1,2, such that

wony, (B) + wily, (£) > 0.

For x = (Z,7,41) € R*"! and h,7 > 0 we will use the following notation for an open
cylinder centered at z with height 2h and radius r:

Cy(z,mh) = {z e R"! 1 |Z] <7, |n41] < B}
For each i = 1,2, we define
Vi = Cy(p, 4diam(09), 4 diam(dQ)) N V;,

in a coordinate system such that I' is a Lipschitz graph with respect to a horizontal
hyperplane. Notice that each set 171 is a bounded Lipschitz domain such that 2 n'V; <
Vi Vi

Theorem 11.6 is proven in [AAM19] in the more general situation where I" is the bound-
ary of a two sided chord-arc domain (i.e., the sets V1, V4 above are assumed to be chord-arc
domains). In turn, the results in [AAM19] are inspired by the ones of Wu [Wu86], where
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11 Rectifiability of harmonic measure

a similar result is proved for domains {2 satisfying an exterior corkscrew condition. The
assumption that I' is a Lipschitz graph in Theorem 11.6 simplifies some technical points
in the arguments in [AAM19] and it suffices to complete the proof of Theorem 11.4.

To deduce the second statement in Theorem 11.4, recall that K can be covered by a
countable collection of Lipschitz graphs I';, j > 1. If wP(E) > 0 for some Borel set £ < K,
then there exists some j such that w?(EnTI;) > 0. Let Vi, V5 the connected components of

R™ T, and let 171, Vs be associated bounded Lipschitz domains as above. By Theorem
11.6, wéimf/i(E N T';) > 0 either for i = 1 or 2. Since w% (EnTy) = wé"mf/i(E N T;), either
w%(E nI';)>0 or wéz(E nI;)>0.

By Dahlberg’s theorem for Lipschitz domains, this implies that H"(E) = H"(EnT;) > 0.

This shows that wh|x < H"|k.

To prove Theorem 11.6 we need the following auxiliary result.

Lemma 11.7. Let Q, T, 171~, ‘72, x1, and xo be as in Theorem 11.6. Let x € I' n Q) and
denote r = dq(x) and U; = V; n Q. For i = 1,2 and some ¢ > 0, consider balls

Ber(yi) © Vi 0 By(x).
Let E < 0Q2n T be a Borel set such that
wip (B) = wip (B) =0
and suppose that
Wi (QUNT nQ)) 2 1 either fori=1 ori=2. (11.5)

Then there exists some v € (0,1) such that w§(E) < v, with v depending on the above
implicit constant and c.

Proof. Let B; = B(y;, 3cr). By (11.5), there exists some n € (0,1) such that

in W (TCnQ) <n.
b <

Suppose the minimum is attained for ¢ = 1, for example. Then, by the Markov property
for harmonic measure in Theorem 5.54,

w (B) = wir (B) + L Qwé(E) dw (2) <0 +n=1.
a)

Therefore, w¥ (E€) > 1 — 7, and then, by Harnack’s inequality in the ball Bs,,)(z),
w¥(E°) > t for some t > 0 depending on 7. Hence,

wi(E) <1-t.
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11 Rectifiability of harmonic measure

Proof of Theorem 11.6. Let E < 00 n T be a Borel set and let V;, and V; be as in the
theorem. Suppose that

wglmf/l(E) = w?;m%(E) =0 forallz e Qn Vi, 220 Va.

We intend to show that this implies that wf,(E) = 0, which will prove the theorem. To
this end, we claim that it suffices to show that there exists some v > 0 such that

wH(E) <y forallzel nQ. (11.6)

Indeed, if this holds, then, by the Markov property in Theorem 5.54, for ¢ = 1,2 and for
all x € Q ' V; we have

GHE) =wh o (B)+ | Gh(E)dwr () <0+ =7

Together with (11.6), this implies that w§(E) < v < 1 for all z € Q and so, by Lemma
11.5, w)(E) = 0, which proves our claim.

Denote U; = V; n Q. By Lemma 11.7, to prove (11.6) it suffices to show that
Wi (OUNT nQ)) 2 1 either for i =1 or i = 2, (11.7)

for y; € U; as in that lemma. We distinguish three cases. For a large My > 2 and
a small g9 € (0,1/2) both to be fixed below, suppose first that there exists some zy €
090 A By, (z) A Vi such that dist(z,T) > eor (recall that r = dg(2)). Since V; is an NTA
domain, there exists a Harnack chain of balls { B’ }1<j<n such that y; € B! and zy € BV,
with 10B7 < V; for each j, and such that N < C(eg, Mp). Notice that BN ~ U, # @
because zg € 0U;. Let jo = 1 be the smallest integer such that 2B/ n 0Q # @ (notice
that jo < V). Since U satisfies the CDC, for all y € 2B n U; we have

wf) (OUL\(T' " Q) = wf) (U1 n 10BP\(T' n Q) = wf; (0Uy N 10B%) 2 1. (11.8)
Then, by the Harnack inequality,

yielgl wir, (OUN\(T n Q) ~ yierg2 Wi (UNT n Q) ~ ...~ yeggﬂ wir, (OU\(T n Q)

(11.9)

2 inf wf (QUN\(T nQ)) 2 1.
yeBIO !

So in this case (11.7) holds, with the implicit constant depending on IN. Analogously, we
also deduce that (11.7) is satisfied if there exists some zg € 02 N By, (x) N Va such that
dist(zo,I") = eor.

It remains to deal with the case when

dist(z,T) <egr for all z€ dQ N By, (x) N (Vi L Va). (11.10)
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11 Rectifiability of harmonic measure

Since 0B,(x) n 0 # @, from the fact that Q has large complement it follows that
HT (Bay(2)\Q) 2 . Thus, HZ ((Bar(z) n V;)\Q) 2 ™ either for i = 1 or i = 2. Without

loss of generality, we suppose that
HD ((Bar(z) n V1)\Q) 2 7" (11.11)
Of course, this is equivalent to saying that HZ% ((Ba,(z) N 71)\(2) 2.
Claim 11.8. There exists a Lipschitz domain W < Uy satisfying the following:
(a) diam(W) < Cr, y1 € W, and dw(y1) ~ r.

(b) Either H"(OW n T n 0Q) = cr™ for some fized ¢ > 0, or there exists a Borel set
G < OW\oU; such that H"(G) 2 r™ and

wi, (QUN\T n Q) 21 forall z€G.

The Lipschitz character of W only depends on the Lipschitz constant of I'.

The construction of the domain W requires a delicate stopping time argument and will
be carried out later. First we will show how the theorem follows from the properties of W
stated in the claim.

Suppose first that H"(0W n T n 0Q) = ¢r™ for some ¢ > 0. In particular, this implies
that H"(OW nT' n 0Q) ~ H"(0W). Since W < U; and

OW nT noQ < oU\(T nQ),
we deduce that
wi QUIN\T N Q) = wii (AW AT 1 0Q) = wiy(0W n T n 0Q). (11.12)

From the fact that wy}; is an Ay weight with respect to #"|sw (by Dahlberg’s theorem),
using that H"(OW n T n Q) ~ H"(0W), we infer that

Wi (OW AT N Q) ~ wiy (W) ~ 1.

Together with (11.12), this gives (11.7), for ¢ = 1.
Assume now that there exists a Borel set G as in the statement (b) in Claim 11.8. By
the Markov property in Theorem 5.54, we have

wii (QUN\(T " Q) = wip, (AU\(T Q) + f wir, (OUL\(T " Q) dwify (2)
OW\OUL

> f Wi (QUI\(T Q) dutp (2) 2 Wl ().
G

As above, using that wjj, is an Ay weight with respect to H"|ow and that H™(G) ~
H™(OW), we get wi(G) ~ wi;(0W) ~ 1. Thus,

W U\ A Q) 2 1.

This concludes the proof of the theorem, modulo Claim 11.8. 0
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11 Rectifiability of harmonic measure

Proof of Claim 11.8. Without loss of generality, we assume that 0B(z,r) intersects 02
at the origin and that I' is a Lipschitz graph with respect to the horizontal hyperplane
{(J,Yn+1) : Yn+1 = 0}. Abusing notation, we identify R™ with R” x{0}. Welet A : R" —» R
be the Lipschitz function whose graph coincides with I". Recall that, by the choice of x
and y1,

cr<|lr—wy|<r and cr<dist(y;, ') < 2r.

Denote A = |[VA|, and A = 10 + 10A. Notice that
I' n Cy(0,10r,00) = Cy(0, 107, 10A7).
We choose My large enough so that
Cy(0,107, Ar) < B(x, Myr/2).

Also, we assume that y; is contained in the upper component of Cy(0, 10r, Ar)\T.

Construction of W. To construct W, first we consider the function h : R — R defined
by
h(g) = sup {(t — A(7))" : (7,t) € Cy(0,10r, Ar) \ Q,

where (s)™ = max(s,0). In case the set on the right hand is empty, we set h(y) = 0. Recall
that dist(z,I") < ggr for all z € 02N Cy(0, 107, Ar), by (11.10). That is, dQ2nCy(0, 10r, Ar)
is contained in an (ggr)-neighborhood of I'. By connectivity, since y; does not belong to
this neighborhood and belongs to the upper component of Cy(0, 107, Ar)\I', and moreover
y1 € Q, it follows that the upper component of Cy(0,10r, Ar)\U.,(I") is contained in 2.
Consequently,

+

h(y) < Cegr  for all y € R™. (11.13)

Next we consider the following function d : R™ — R:

d(7) = sup (4h(z) — 0|7 — z|),

zZeR"

for some large constant § > 2 to be fixed below. Notice that this is a #-Lipschitz function,
since the supremum of a family of #-Lipschitz functions is #-Lipschitz. Observe also that

d(g) = 4h(y) =0 for all j € R™.

Also, by (11.13),
d(y) < Ceor  for all g € R™. (11.14)

We let Ay : R™ — R be the Lipschitz function
Aw (7) = A(y) + d(©),
we denote by 'y its graph, and we define

W = {7 yn+1) € Cy(0,5r, A7) : yny1 > Aw (9)}-
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11 Rectifiability of harmonic measure

Clearly, this is a Lipschitz domain with diam(W') ~ r. Further, from (11.14) it follows
that
I'w n Cy(0,107, Ar) < Uceyr (') n Cy(0, 107, Ar).

This implies that y; € W, since y; is in the upper component of Cy(0,5r, Ar)\I' and
dist(y,I') ~ r. Together with the fact that |y; — z| < r, this gives dw(y) ~ r. Remark
that W n Q # @ (because y; € W), and 0Q2 n W = &, by the definition of h and the fact
that d < h. Hence, using also that W is connected,

WecQnV, =U.

Proof of (b). We introduce a lattice D(I") of “dyadic cubes” of I as follows. Let D(R™) be
the usual dyadic lattice of R™. Let II be the orthogonal projection from I" to R” = R™ x {0}.
Then we set

D) ={IT"HQ)nT: Qe DR")}.

Here again we are identifying R™ with R” x {0}. We also denote £(II"}(Q) n T) := £(Q)
and we call this the side length of II71(Q) nT. Its center is the point whose projection by
IT coincides with the center of Q.

Also, for a given a > 1, if P € D(I") is such that P = II(Q), for some @ € D(R"), we set
aP = II(aQ) (for definiteness, we assume a() to be half open-closed, in the same way as
Q). We denote by zp the center of P and we let Bp = B(zp, {(P)).

Now we consider the family M of the maximal cubes @ € D(T") such that there exists
some y € 3@ such that h(Il(y)) > ¢(Q). From (11.13), it follows that £(Q) < eor for all
Q € M. By the definition of h and the family M, one easily deduces that there exists
some constant C > 2, possibly depending on A, such that

Vi n Cy(0,10r,Ar)\Q = | ] C1Bg.
QeM

So we can write

Vi nCy(0,5rAr)\Qc | caBQkJ[(r\ U Q)rﬂ((&(OiﬁyAr)\Q)} (11.15)
QeM QeM

Next we claim that

[(F\Jgt(Q)r\(CyUL5r,Ar)\Q)]C'an (11.16)

By the definition of 'y, this is equivalent to showing that any point y belonging to the
set on the left hand side satisfies d(y) = 0 (with y = II(y)). That is, h(z) — 0|y — 2| <0
for any z € R™. This is clear if § = Z (since h(y) = 0). Otherwise, let P € D(R") be such
that y € P and z € 313\3P (where P stands for the parent of P), so that |y — z| ~ ¢(P).
If |Z| < 10r, then h(Zz) < ¢(P), since P ¢ M and thus, if 6 is chosen large enough,

4h(z) — 0|y — z| < CU(P) —col(P) <0.
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11 Rectifiability of harmonic measure

In case that 10r < |Z|, then |§—Z| = 5r and from (11.13) it also follows that h(z)—0|7—Zz| <
0. So (11.16) holds.

By (11.11) we know that H% (Vi n Cy(0,3r,3Ar)\Q) 2 7" Then, from (11.15) and
(11.16) we infer that either

’Hgg( L (C1Bg ~ Cy(0,3r, %Ar)\Q)) > (11.17)
QeM
Hr (Fw A Cy(0, 31, Ar) \Q) > H&((F\Qg/l Q) A (Cy (0,3, Ar)\Q)) > (11.18)

Since W < Q, it is clear that I')y n Cy (0,57, Ar)\ Q < 0€2. So in the last case we deduce
that

H'(OW AT noQ) = r",
which gives (b), under the assumption (11.18).

To complete the proof of Claim 11.8 we will show that if (11.17) holds, then there
exists a subset set G = dW\0U; such that H"(G) 2 r™ and wg, (OUL\(I' 1 ©2)) 2 1 for

all z € G. Observe first that if @ € M is such that C1Bg n Cy(0, 3r, %Ar) # &, then
4Q N T < Cy (0, 5r, Ar) for g9 small enough, because £(Q) < gor. Then, by by (11.17),

< 1L (| (C1Bq 0 Cy(0,3r, 501\ Q)) < 3 uQ)".  (11.19)
QeM QeM:
4QNI'<Cy (0,57, 2 Ar)

By the definition of M, for each ) € M, there exists some yg € 3Q) such that

d(gq) = 4h(7q) = 44(Q).

Let us check that the converse estimate d(yg) < ¢(Q) holds. Indeed, given zZ € R", let
P € D(I') be the minimal cube such that P 5 @ (where @ is the parent of Q) and
z € 3II(P). If P = Q, then
Ah(Z)— 05—z <4h(2) < 40(Q) = 84(Q)
by the maximality of M. If P # Q, then |yg — Z| ~ £(P) and so, again by the definition
of M,
h(z) =0y —z| < ¢(P)—COLP) <O,

assuming 6 large enough. Taking the supremum over all Z € R", we deduce that d(7¢g) <

84(Q)-

Consider the points

YQ.00 = (Y, A¥Q) + M(Fq)):  vo.ow = (Yo, A(Fg) + d(¥q))-

Notice that
YQ,00 € o0 and YyQ.ow € aVV,
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11 Rectifiability of harmonic measure

by the definitions of A and d. Further,

dist(yg,00,T) ~ |yq.e0 — yql = MIq) ~ £(Q),
and
dist(yg.ow, T) ~ lyg.ow — yq| = d(¥q) ~ £(Q). (11.20)
Moreover,
W00 —yQ.ow| = d(Hq) — h(¥o) < 8U(Q). (11.21)

This estimate implies that dist(ygow,0?) < £(Q). The converse estimate also holds.
Indeed, by the definition of h and M, for all z € Cy(0, 107, Ar) n 02 such that z € II(3Q)),

~

lg.ow — 2| = 4h(Fg) — h(z) = 44(Q) — U(Q) = 2((Q).
Obviously, |yg.ew — 2| 2 €(Q) if z ¢ Cy(0,10r, Ar), and so

dist (yg.ow» 09) 2 ((Q). (11.22)

From (11.20), (11.21), and (11.22) we infer that there exists some constant n € (0,1/4)
such that

|z—yg.00| ~ dist(z,0Q) ~ dist(z,I') ~ £(Q) for all z € B(yg.ow,n(Q)) ndW. (11.23)

So for such points z, since Vi is an NTA domain, there exists a Harnack chain of balls
{B’7}1<j<n such that z € B! and yg a0 in BY, with 10B7 < V; for each 7, and such that
N < 1. Notice that BN n 0U; # @ because yg,00 € 0Up. Taking the smallest integer
jo = 1 such that 2B% n 002 # @ and arguing as in (11.8) and (11.9), we derive that

wir, (QUN\T n Q) 21 for all z e B(yg,ow,nl(Q)) n dW. (11.24)

To define G, let My < M be a subfamily of cubes such that the cubes 4Q), with Q € My,
are pairwise disjoint, 4Q nI" < Cy(0, 5r, %Ar), and

U 4Q < U 20Q.
QeM: QeMo
4QﬁFCCy(O,5T’,%AT‘)

Then we set

G=|J Blgow nl(Q)) nw.
QeMo

Notice that G < 0W\0Uy, by (11.23) and the above definition. Also, by (11.24), we have
wir, (QUI\(T'n Q) 2 1 for all 2 € G, and by (11.19),

HUG) ~y ), H'UQ) = > H'(Q) 2 "
QeMo QeM:
4QNT'cCy (O,51’,%Ar)

So G satisfies all the required properties in (b). This completes the proof of Claim 11.8,
and thus of Theorem 11.6. 0
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11 Rectifiability of harmonic measure

11.2 Rectifiability of harmonic measure when it is absolutely
continuous with respect to surface measure

In this section we will prove the following result.

Theorem 11.9. Let Q < R™! be a bounded open set and let p € 2. Suppose that there
exists a set E < 0Q such that 0 < H"(E) < © and that the harmonic measure wh|p is
mutually absolutely continuous with respect to H"|g. Then E is n-rectifiable.

Of course, in the theorem above, saying that F is n-rectifiable is equivalent to saying
that wf)|p is n-rectifiable. Remark that the theorem also holds for unbounded open sets
with compact boundary. In fact, the theorem for this type of domains can be easily be
derived from the case when €2 is bounded. We leave the details for the reader.

The proof of Theorem 11.9 relies on the solution of David-Semmes problem from [NTV14b]
and [NTV14c] about the connection between the L? boundedness of the Riesz transform
and rectifiability. Given a measure p in R"*! its (n-dimensional) Riesz transform equals

Ru(x) = f ﬁ du(y),

whenever the integral makes sense (notice that this a vectorial integral). For ¢ > 0, we
also consider the e-truncared version, defined by

Ren(o) = | e duty),

|z—y|>e |SU -

The maximal Riesz transform of y is defined by

Rap(x) = sup [Repu(w)|.

e>0

We also consider the maximal radial operator M,,, defined by

Mn,u(x) = sup M

r>0 rm

For a given function f € L}, (u), we denote

Ruf(z) = R(fw)(x), Repf(x) =Re(fp)(x), Rupf(®)=Ral(f p)(z).

We say that R, is bounded in L?(p) if the operators R.,,, are bounded in L?(x) uniformly
on € > 0.

The connection between the Riesz transform and harmonic measure stems from the
fact that the Riesz kernel K equals the gradient of the fundamental solution £ modulo a
constant factor. That is,
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11 Rectifiability of harmonic measure

Consequently, from the identity (7.2), we deduce

n VyG(z,y) = K(y — ) — o K(y — 2) dw”(2) = K(y —2) = Rw"(y) for y ¢ suppw”.

Next we show that it suffices to prove Theorem 11.9 for Wiener regular domains.
Lemma 11.10. To prove Theorem 11.9 we can assume that ) is Wiener regular.

Proof. Let E < 092 be as in Theorem 11.9. By the Borel regularity of H"™ and w, we
can assume that F is in fact Borel. By an exhaustion argument, it suffices to show that
there exists a subset F' < E with ‘H"(F') > 0 which is n-rectifiable (see for example the
argument below near (11.25)).
For any € > 0, let S~25 c 2 be the Wiener regular open set constructed in Proposition 6.37.
For E as above, let E. = E n 8625, so that by Lemma 6.38,
lim wt (E:) = ll_r)r(l) wy (E) = wy(E).

e—0 e e

Let € > 0 be small enough so that w% (E:) > 0. By Lemma 5.32, we have

(A) < w((A)  for any Borel set A < 90 n 9.

D
wx
Qe

So w% is absolutely continuous with respect to wf, in 02 N o0, Consequently, there

£

exists a subset F' < FE. where w% and wf) are mutually absolutely continuous and both

wg (F) >0, w)(F) >0 (see exercise 4.3.1). Since F is a subset of E, wg is also mutually

absolutely continuous with H"|p and H"(F) > 0. By Theorem 11.9 applied to the Wiener
regular domain (2., then we deduce that F' is n-rectifiable, and so we are done. ]

To prove Theorem 11.9 we will use the following result.

Theorem 11.11. Let i be a Radon measure in R"*' and E < suppu such that 0 <
H"(E) < 0 and p|g is mutually absolutely continuous with respect to H"™|g. If Rypu(x) <
w for p-a.e. x € E, then p|g is n-rectifiable.

This theorem follows from the following deep result from [NTV14c|, which can be con-
sidered a non-quantitative version of the David-Semmes problem.

Theorem 11.12. Let E < R™! be such that 0 < H"(E) < 0. Suppose that Riyn|p 18
bounded in L*(H"|g). Then E is n-rectifiable.

The next result can be proved using a sophisticated T'b theorem of Nazarov, Treil, and
Volberg [NTV14a], [Vol03] in combination with the methods in [Tol00]. For the detailed
proof in the case of the Cauchy transform, see [Tol14, Theorem 8.13].

Theorem 11.13. Let i be a Radon measure with compact support in R**1 and consider
a p-measurable set G with p(G) > 0 such that

Gc{reR"™ : Muu(z) < 0 and Rap(z) < o0}

Then there exists a Borel subset Go = G with u(Go) > 0 such that sup,eq, Mnptlg, () < ©
and R is bounded in L*(p|c,)-

IU“GO
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11 Rectifiability of harmonic measure

We will prove neither Theorem 11.13 nor Theorem 11.12, since both results are out of
the scope of these notes. Instead, we will outline how one can deduce Theorem 11.11 from
Theorems 11.12 and 11.13.

Proof of Theorem 11.11 using Theorems 11.12 and 11.13. This follows by a standard ex-
haustion argument. Indeed, let p and F satisfy the assumptions in Theorem 11.11. We
can assume F to be bounded, so that u(E) < o0. Let

f =sup{u(F): F c E is Borel n-rectifiable}. (11.25)

It is is immediate to check that the supremum is attained, that is, there exists a Borel
n-rectifiable set F' ¢ E such that u(F) = S.
We have to check that § = u(E). Suppose that this is not the case, and let G = E\F.
By assumption, we have Ry u(x) < oo for u-a.e. z € G. Also, for x € G, we have
H"(Br(z) n E)

. u(Br(x)) .. pu(Br(x)) .
1 — 2 1 1 5 . 11.2
imsup =2 < Hmsup g ey msup ——5 (11.26)

The first limsup on the right hand side is finite H™-a.e. in G by Theorem 4.12 and thus
p-a.e. in G because of the absolute continuity of p with respect to H" in E, while the last
one is also finite by the classical density bounds for Hausdorff measure (see for instance
[Mat95, Theorem 6.2]). Hence the left hand side is also finite p-a.e. in G, or equivalently,

Mpp(z) <o for p-ae. x e G.

Then, by Theorem 11.13, there exists a Borel subset Gy < G with u(Go) > 0 such that
Ry, is bounded in L%(pi|c,). Denote by p the density of j|g, with respect to H"|q,, so
that plg, = pH"|G,, and let 7 > 0 be such that the set

Gor ={reGy:p(x)>T}

has postive measure p. It is immediate to check that Ry Gy, 18 bounded in L? (H"Go.r )

and thus G ; is n-rectifiable, by Theorem 11.12. As a consequence, the set F' = F U G,
is n-rectifiable and p(F’) > u(F) = B, which contradicts the definition of F' and f. O

To prove Theorem 11.9, recall that Lemma 6.20 asserts the following: If E < R**! is
compact and n —1 < s < n+ 1, in the case n > 1, we have

n—1

Cap(E) R sn Hgo(E) S .

In the case n = 1,

W =

Capr(E) Rs H(E):
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11 Rectifiability of harmonic measure

Proof of Theorem 11.9. Let Q, E, and p be as in Theorem 11.9, with {2 Wiener regular,
and write w instead of wq. By the regularity of H"|p and of w, we can assume that E is
compact. We will show that

RewP(x) < oo  for wP-ae. x € E,

which implies that wP|g is n-rectifiable, by Theorem 11.11. For simplicity, in this proof we
will work with closed balls B,(€) (this is not essential, but it will ease some calculations
because many lemmas in the preceding sections about the relationship between harmonic
measure and the Green function are stated in terms of closed balls).
By the same argument as in (11.26), it follows that M,wP(z) < oo for wP-a.e. x € E.
For k> 1, let
Ey ={re F: M,wP(z) < k},

so that F = U,621 Ep, up to a set of wP-measure zero. For a fixed k > 1, let x € E} be a
density point of Ej, and let ¢y be small enough so that

wp(BT(lT) N Ek) > 1 for 0 <r < ry

wP (B (1))

[\]

with rg < |z — p[/100. Observe that, since wP(B,(z) N Ej) < kp" for all z € Ej, and all
p > 0, by Frostman’s Lemma we have

HT (By(2) 0 0Q) = H™ (B, (x) n Ey) = e(k) wP(Br(z) N By) > 0(2":) WP (B, (z)), (11.27)

for 0 < r < 7.
To show that R.wP(x) < oo for x € Ej as above, clearly it suffices to show that

sup |RywP(z)| < o0. (11.28)

0<r<rg

To estimate R,wP(x) for 0 < r < rg, first we assume that
WP (Byor(z)) < 50"wP (B, (z)). (11.29)

We consider a radial C® function ¢ : R"*! — [0, 1] which vanishes in Bj(0) and equals 1
on R"™1\B,(0), and for r > 0 and z € R™"! we denote ¢,(z) = ¢ (2) and ¢, = 1 — ¢,.
We set

Ryl (z) = f K(z— ) pr(z — y) duP(y).

Note that

Rer(@)] < |[ e =)@ = ) 4P )]+ [ [y = o1l = D] [K (o = )] a2(0)
(11.30)
< [RewP(@)| + C MypwP ().
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11 Rectifiability of harmonic measure

For a fixed z € B}, and z € R"™\[supp(p,(x — ) wP) U {p}], consider the function

wr(2) = €(2) ~ [ £7(:) r(a — ) (), (11.31)

so that, by Lemma 7.4,

G*(p) = ur(z) — Jé’z(y) U (z —y)dwP(y) for m-a.e. z € R*HL, (11.32)
Differentiating (11.31) with respect to z, we obtain

Vu, () = VE(2) ~ [ Ve (o~ 1) d? (o).
In the particular case z = x we get
en Vur(z) = K(z — p) — RowP(z),

and thus

IRywP () + [V, (z)]. (11.33)

| < ;
dist(p, 0Q2)™
Since u, is harmonic in R™ !\ [supp(¢r(z — ) wP) U {p}] (and so in B,(z)), we have

1
V()| J[B | fue(2) —old (11.34)

for any constant « € R, possibly depending on z and r. From the identity (11.32) we
deduce that

1 1
V@ s | e |
r By (x) r By ()

= I +11,

| @) - ) inta - gy dr ()] az

for any constant o/ € R, possibly depending on x and r. To estimate the term I we use
Fubini and the fact that suppy, < Ba,(0):

1
s — J J |EY(2) — | dz dwP(y).
2 yeBar () JzeBy ()

In the case n > 2 we choose o = 0, and we get

1 1 P (Bar
ns-— J f ——dzdu(y) < wP(Bar(x)) < Mo (2).
rr yeBa,(x) J2zeB(x) ’Z - y|n T

1

In the case n = 1 we take o/ = % log and then we obtain

Ar>
1 4
1< — f log T d dw® (y)
r yEBar(z) J2€Br(z) ‘Z - y‘
1 f 1 2
< = log dz dwP(y) < — f rdwP(y) < MiwP(x).
3 yEBay(z) J2€B3,(y) |Z - y‘ 73 yEBa,(z)
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11 Rectifiability of harmonic measure

Next we want to show that I <, 1. Clearly it is enough to prove that
1
—|GP(y)| <k 1 for all y € By(z) n Q (11.35)
,

(now under the assumptions x € Ey, 0 < r < 1¢/2, and (11.29)). To prove this, observe
that, in the case n > 2, by Lemma 7.19,

Gp(y) < wp(BBT(x))

< BT ally e Bo(z) A Q.
Can(Br(2)\ ) (=)

Notice now that, by Lemma 6.20 and (11.27), we have

n—1

Cap(B,(2)\Q) = HL (B (x) N 89)%1 2 wP(B(z)) w .

Thus, by (11.29) and the fact that M,wP(z) < 1,

1y wP (Bgr()) _ wP(Bs,(z)) " WP (Bs,(z)) 22 (11.29
PO S B ) (=) R

(B, (x))

which proves (11.35). Almost the same arguments work in the case n = 1. Indeed, by
Lemma 7.23,

_ r 2
") < Bur) (195 v )
< w?(Baor (7)) ot [; o forallve By (z) n Q.

By Lemma 6.20 and (11.27), we have
Capy,(Br (2)\Q) 2 Hip(By(2) 0 09Q) 25 w?(B, (1)),

and thus, by (11.29), _
1 wP(Baor(x))
SGEP(y) S ————2 <
r (y) ~k Ldp(Bqn(Jf)) ~k oL

which proves again (11.35). So in any case we deduce that

~ 1

R,ywP < |[RywP C MpwP <k ————— +1 11.36
R (0)] < 1Ry (0)] 4 C My (2) S s+ (11.30
for x € Ej, and 0 < r < ro/2 satisfying (11.29).

In the case when (11.29) does not hold, we consider the smallest ' > r of the form
v’ = 40’r, j > 0, such that either ' > 7 or (11.29) holds with r’ replacing r. Let jo > 1
be such that r’ = 40%°r and write

Ry? ()] < [Ros? ()| + | K (= )| duly) < [Rupwp(@)] + ¢ 3 D100 (0),

r<lz—y|<r!
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11 Rectifiability of harmonic measure

To estimate the last sum, notice that, for all 1 < 57 < jo — 1,
WP (Bygir () < 507"wP (Bygsis1,(x)),
and thus, by iterating this estimate,
Jo

2 B403r 7)) < O 5000w (B4, () < wP (B, (x)) < Mo (z)
(407r)m = 4oU—don (4000 () T '

On the other hand, in case that " < ro, then (11.36) holds (with r replaced by 7’), and in
case that " > rg, then we have ' ~ ry and we write

P
|Rr’wp(w)| 5 = (/a?) S in
(r') To
So in any case we deduce that
|RrwP ()] <k L + __ +1
o dist(p, o)™

which yields (11.28). O

11.3 The maximal Riesz transform of harmonic measure under
the CDC

In the previous section, to prove Theorem 11.9 we have estimated the maximal Riesz
transform R.wP in terms of the maximal radial function M,wP. For domains satisfying
the CDC, a quite precise bound holds, as shown below.

Theorem 11.14. Let Q < R™*! be an open set with compact boundary satisfying the CDC
and let p € Q. Then, for every x € 051,

RywP () < C MpwP (),
where the constant C' depends only on n and the CDC.

We remark that in the case when 2 is unbounded with compact boundary, in the
theorem we ask the CDC to hold with 79 = diam(0€2) in the definition in Subsection 7.5.1.
That is, for some ¢ > 0, we require that for all £ € 0Q and all r € (0, diamof?),

Cap(B,(£)\Q) = cr?? in the case d > 3, (11.37)

and
Capy (B ()\Q) = in the case d = 2. (11.38)
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11 Rectifiability of harmonic measure

Proof of Theorem 11.14. The arguments are quite similar (but somewhat simpler) to the
ones used in the proof of Theorem 11.9. However, for the sake of completeness we will
show the full details of the proof, repeating some of the estimates.

We have to show that, for all x € 092 and r > 0,

|RywP(x)] < C MuwP(x),

where the constant C' depends only on n and the CDC. We can assume that r < diamos?,
because otherwise R,wP(x) = 0. We will consider first the cases n = 1 with  bounded,
and n > 2 with 2 bounded or unbounded with compact boundary. We will deal with the
remaining case n = 1 with € unbounded with compact boundary at the end of the proof.

We consider a radial C® function ¢ : R"*! — [0, 1] which vanishes in B;(0) and equals
1 on R""\B;(0), and for 7 > 0 and z € R""! we denote ¢,(2) = ¢ (£) and ¢, = 1 — ;.
We set

Ryl (z) = f K(z— ) pr(z — y) duP(y).

Note that

Rer(@)] < |[ e =)@ = ) 4P @)+ [ [y = o1l = 0] Ko = )] ar(0)
(11.39)
< [RewP(@)| + C MypwP ().

For a fixed z € 9Q and z € R"™\[supp(¢, (z — -) wP) U {p}], consider the function
w(2) = () - [ €12) o — 1) de (), (1140

so that, by Lemma 7.4',

G*(p) = ur(z) — fﬁy(z) U (z —y)dwP(y) for m-a.e. z € R*HL, (11.41)
Differentiating (11.40) with respect to z, we obtain

Vu, () = VE(2) = [ Ve (o - 1) d? (o).
In the particular case z = x we get
en Vup(z) = K(z — p) — RpwP(z),

and thus

IR rwP (z) — + [V, (2)]. (11.42)

< ——
|z — p

Tt is easy to check that the proof of this lemma extends easily to the case n > 2 with € unbounded with
compact boundary
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11 Rectifiability of harmonic measure

Since u, is harmonic in R™*!\[supp(¢r(z — ) wP) U {p}] (and so in B,(z)), we have

1
|V (z)| < - :I:B " lur(2) — | dz, (11.43)

r

for any constant « € R, possibly depending on z and r. From the identity (11.41) we
deduce that

1 1
Vur(z)| < Jf G(p)dz + © Jf
By () By ()

r r

f (E¥(2) — ') Yp(z — y) dwP(y)| dz
— [ 411,

for any constant o/ € R, possibly depending on x and r. To estimate the term I we use
Fubini and the fact that suppy, < Ba,(0):

IT < n1+2 J J |EY(2) — o | dz dwP(y).
r yeBar () JzeBy(x)

In the case n = 2 we choose o = 0, and we get

wP(Bar(z))

,rn

17 <

1
< ———dzdwP(y) <
2 LeBgr(m) LeBr(m) |z —ynt )

< MpwP(x).

In the case n = 1 we take o/ = % log %, and then we obtain

IT < 1 j log ar dz dwP (y)
3
7 JyeBa,(z) JzeB,(z) |Z - y|
< % f j log ar dz dwP(y) < % j 2 dwP (y) < MywP(x).
r yEBar () J2€Bs,(y) |Z - y‘ r yEBar ()

Next we want to show that I < M,wP(z). To this end, it is enough to prove that

! |GP (y)] < MpwP(z) for all y € B.(x) n Q. (11.44)
,

In the case n > 2, this is an immediate consequence of Lemma 7.19 and the CDC. Indeed,

1 wP(Bgr(z))  _ wP(Bs ()

-Gy =

" S T Cap(By(2)\ Q) S e < MpwP(z)  for all y e Bo(x) n Q.

In the case n = 1, we use Lemma 7.23 instead of Lemma 7.19, and we deduce

So in any case (11.44) holds.
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11 Rectifiability of harmonic measure

Combining (11.39), (11.42), and the estimates obtained for the terms I and 11, we get

1

]Rrwp(x)| < ‘ﬁrwp(x)‘ + anp(x) < anp(x) + m

(11.45)

To complete the proof of the theorem, we will show that ﬁ < MpwP(x). Suppose first

that |[p — 2| < 2diam(0€2). Then we use the fact that, by Lemmas 7.16 and 7.20 and the
CDC, we have wP(By,—z|(z)) 2 1, and thus

1 < wp(B4|p—a:|($))
lz —p/" =~ |z —p

< MpwP(z). (11.46)
Consider now the case |p — x| > 2diam(d92) (so €2 is unbounded in this case and n > 2).

By Theorem 7.33 (d)

bl Cap(e0)
dist(p, 0Q)»—1  dist(p, 0Q)"—1"

P00 = £ 5w (p) = [ () do() ~
Using the CDC, we have

Cap(02) diam(0Q)" !
p ~ ~
SO G, T S Jr—ppT

Thus,
1 1 wP(00)
< < =
|z —p|™ |z —p/m~tdiam(0Q) ~ diam(09)

— < MuwP ().

So (11.46) also holds, and the proof of the theorem is concluded in the cases n = 1 with
2 bounded and n > 2 with © having compact boundary.

Suppose now that n = 1 and 2 is unbounded with compact boundary. We will reduce
this case to the case when (2 is bounded. To this end, consider R > 0 large enough so that
0Q < Br»(0) and let Qr = Q n Br(0). Arguing as above, we deduce that, for all z € 0Q
and all 0 < r < diam(092), denoting by wg the harmonic measure for g,

1

ﬁrwpa: < Myb(x) + ——
Resdy(o)] < Mudy(o) + =

(11.47)
uniformly on R (notice that, to obtain this estimate, the CDC (11.38) for Qg is only
required for r < diam(0f2), and this clearly holds).

Recall that for every f e C(0f2), and every p € 2, we have

— 1 P
o fdw? = lim LQ fdwg,,
by Remark 5.44. On the other hand, by Proposition 6.36 (b), w?(0§2) = 1. So we deduce
that

lim wR(&BR(O)) = 0.

R—0
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11 Rectifiability of harmonic measure

Consequently,

lim [R,wh(z)] = |R,wP(z)]  and  limsup Miwh(z) S MiwP(z).
R—a R—0

So using (11.39) and letting R — o0 in (11.47), we derive
1
|z —p|

As above, in the case |p — z| < 2diam(0f2), by Lemma 7.20 and the CDC, we have
wP(Byjp—y|(x)) 2 1, and so (11.46) holds. For [p — x| > 2diam(0Q), we write

IRywP ()] S [Row? (z)| + MywP(z) € MywP(z) + (11.48)

1 1 wP(00)
< = < P(x).
|l —p| ~ diam(02)  diam(0Q) ~ Maw!(z)
Thus, |R,wP(z)| < MiwP(x) in any case. O

Recall that the upper n-dimensional density of a Borel measure p at € R™*! is defined
by
i B(z,r))
O™*(u,z) = limsup M
In the case when (2 is unbounded with compact boundary (satisfying the CDC, as above),
we have the following result for harmonic measure with pole at co.

Theorem 11.15. Let Q  R™*! be an unbounded open set with compact boundary satis-
fying the CDC. Then, for any x € 051,

Riw™(z) < C Mpw™(x) (11.49)

and
limsup |[R.w® ()| < C O™ *(w™, z). (11.50)

e—0

where the constant C' depends only on n and the CDC.

Proof. The first estimate follows from Theorem 11.14 by taking a sequence of poles pj € 2
tending to o0, and and dividing by £(pg) in the case n > 2.

To prove (11.50), by a quick inspection of the proof of Theorem 11.14, one can check
that the following sharper version of (11.45) and (11.48) holds:

wP(B(z,t)) 1
RruP(x)| < su L+ ,
Ree (o)l = s =35 |z —pl"

for some fixed constant ¢ > 0 depending on n. By taking again a sequence of poles py € €2
tending to oo, and dividing by £(pg) in the case n = 2, and then letting k — o0, we get

|R,w®(x)| < sup M.

t>cr tn

Letting » — 0, (11.50) follows. O
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12 The dimension of harmonic measure

Recall that the dimension of a Borel measure x4 in R? is defined as follows:
dimy (1) = inf{dimy(F) : E < RY Borel , u(E°) = 0}.

In Chapter 9 we showed that for planar domains, the dimension of harmonic measure is
at most 1. In this chapter we will study the dimension of harmonic measure for domains
in arbitrary dimensions. For d > 3, one might expect that the dimension of harmonic
measure for domains in R is at most d — 1, as in the complex plane. However, this is
not the case. Indeed, Wolff in [Wol95] constructed a domain 2 = R? whose associated
harmonic measure has dimension larger than 2. This example is easily extended to higher
dimensions.

The main result that we will prove in this chapter is a theorem due to Bourgain [Bou87],
which asserts that for any open set 2 = R?, the dimension of wq is at most d — £(d), for
some positive constant €(d). The sharp constant £(d) (which is smaller than 1, because of
Wolft’s example) is not known. We will also study the so-called dimension drop, i.e., the
fact that dimy (wq) < dimy (0€2), which occurs typically in fractional dimensions.

Before turning to Bourgain’s theorem, we show a basic (but sharp) lower bound for the
dimension of harmonic measure.

Proposition 12.1. Let Q < R% be an open set with compact boundary which is not polar.
Then, for any xg € €2,
dimH(wéo) >d— 2.

The fact that 0f) is not polar ensures that w*® is a non-trivial measure, by Proposition
6.36.

Proof. Remark first that the proposition is only meaningful for d > 3. We have to check
that w’(E) = 0 for any Borel set E < 0Q such that dimy (FE) < d—2. To this end, notice
that by Lemma 6.20 and the subsequent corollary, if dimy(E) < d — 2, then Cap(F) = 0.
In case that 2 is bounded, by Theorem 6.33 this implies that w¢ (E) = 0, as wished.

In case that € is unbounded with compact boundary, let » > 0 be such that {z¢} LU Q2 <
B,(0) and denote Q. = Q N B;(0). Then we have w (E) = 0, and so by Lemma 5.45, we
deduce

d

To check that the lower bound d — 2 is sharp, one just has to consider a compact set
E < RY with dimy(E) = d — 2 and with Cap(E) > 0. Then, setting Q = R\ E, it follows
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12 The dimension of harmonic measure

that 02 is not polar and w™ (9€2) > 0 if 2 belongs to the unbounded component of 2, by
Proposition 6.36. Obviously, we have dimy w® < dimyg 02 = d — 2.

Exercise 12.0.1. For d > 3, construct a compact set E < R? such that dimy(F) =d—2
and Cap(FE) > 0.

12.1 Bourgain’s theorem on the dimension of harmonic measure

In this section we will prove the following result:

Theorem 12.2. For d > 3 there exists some constant £(d) > 0 such that for every open
set Q < R® with compact boundary and every xo € Q we have

dimpg (wyy)) < d —e(d).
Lemma 12.3. To prove Theorem 12.2, we can assume that ) is Wiener reqular.

The proof of this lemma is almost the same as the one of Lemma 9.18 and so we skip
it.
From now on, in this section we assume that Q  R? is an open Wiener regular set with

compact boundary and we denote E = 0f).
Recall that the s-dimensional Hausdorff content of F < R? equals

MW (F) = inf{Zdiam(Ai)S . Fc UAi}.

Lemma 12.4. Assume d = 3. Let s > d—1, let Q < R? be an open cube, and let
Q« = Sd%/QQ. Then, for any § € (0,1), one of the following alternatives holds:

wH(En Q) =c(d)d  forallzeQun,

or

HH(E 0 Qx) < 64(Q)°,
with c¢(d) > 0.

Proof. Let B be a ball concentric with Q with radius

_ dqL/2

r(B) = L 1(@u) = - @),

16
Notice that Qx € B c 4B %Q c Q. Therefore, 4B n 02 © EnQ, and then , by Lemma
7.16 and Remark 7.17, for all z € B n § we have

Cap(B n E)

_ Cap(B\Q
B _ iy S,

wi(E N Q) = wy(4B) = c(d) (BT
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12 The dimension of harmonic measure

Of course, this holds for all z € Q4 N Q because Qs — B.
Now, by Lemma 6.20, it holds that

Cap(B N E) = Cap(E n Q) 2q H:(E N Q*)%.

Actually, in Lemma 6.20 it is shown that this holds for s € (d — 2,d] with the implicit
constant depending both on d and s. However, it is immediate to check that when s > d—1,
the proof in that lemma yields an estimate depending only on d. Gathering the estimates
above, we obtain

wh(E n Q) = d(d)

d—2
H (EGQ*) s ~y <H00(EQQ*)> ’ for all z € Q..

r(B)*2 0(Q)

It H,(E ~ Q) > 64(Q)*, this implies that w&(E N Q) 2q 65 > 4, which proves the
lemma. ]

We introduce now two additional Hausdorff contents. For s € [d — 1,d), F < R? and
e > 0, we set

H:(F) = inf { Mdiam(4,)° : F < | JA;, diam(4;) < s}, (12.1)

and

ME(F) = inf { D 0Q) Qe D Fe | JQu Q) < 5}, (12.2)

where D stands for the family of the usual dyadic cubes in R? and #(Q;) denotes the side
length of @;. It is immediate to check that H3(F) ~q M:(F).

Below we will the following notation. Given a cube @ € D and m > 0, D,,(Q) is the
family of the cubes P € D such that P < @ and ¢(P) = 27"™/(Q).

In the rest of the section we assume that we are under the assumptions of Theorem 12.2
(and that  is Wiener regular). Recall that E = 0€2. Also, we denote w = w¢y’. The proof
of Theorem 12.2 is based on the following lemma.

Lemma 12.5. There is some sog < d and some mqg > 1, both depending on d, such that
for all s € [s9,d) and every Qo € D such that zo ¢ Qo, one of the following alternatives
holds:

(a) M;_ mo04(Qo )(E N Qo) < £(Qo)*, or
(b) ZPeDmO(QO)W(P)l/2 ((P)"? < § w(Qo)? £(Qo)"2.

Remark that Mj 5 1 (Qo) = £(Qo)*.

In the proof of the preceding lemma we will use Theorem 5.54. Given two Wiener
regular open sets V, V< ]Rd with compact boundary such that V < V', that theorem
asserts that, for every z € V and every Borel set A < 0V, it holds

wir(A) = wi (A) + LV\&V wy (A) dw? (y). (12.3)
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12 The dimension of harmonic measure

Proof of Lemma 12.5. We will fix the constants sg and mg along the proof of the lemma.
We denote £y = £(Qo).

Let kq be the smallest natural number such that k; > 8d"/2. Let Q € Dy, (Qo) and
Q* = (2kg + 1)Q. By Lemma 12.4, choosing some positive absolute constant ¢ depending
only on d, either

() Mgy (E 1 Q) < 1UQ), or
(ii) wq(E N Q*) = ci1(d) for all z € Q N Q and some fixed ¢;(d) > 0.
We distinguish two cases:

Case 1. There exists some Q € Dy, (Qo) satisfying (i). Since Qo\Q is covered by 2970 — 1
cubes from Dy, (Qo), we have

szmogo (E @ QO) < M;ﬂnogo (QO\Q) + M;*mogo (E N Q)
1
< (@0 )27l + Q)
1
_ 2(dfs)m0€(s) - § 9—mos 68 _ (2(dfs)mo o 27mosfl)€8

Observe that, for any given mg, by continuity, if s < d is close enough to d,

2(d—s)mo . 2—mos—1 <1,

and then the alternative (a) of the lemma holds. Below we will choose m large enough
independently of s.

Case 2. All the cubes Q € D,,,(Qo) satisfy (ii). In this case we will prove that the
alternative (b) of the lemma holds. To prove this we will show that the inner part of Qg
has very small harmonic measure. To this end, denote Fy = )y and let Iy be family of
the cubes @ € Dy, (Qo) whose boundaries intersect 0Fy. Then we let

F| = Fy\ U Q.

Qelo

Inductively, let I; be family of the cubes @ € Dy, (Qo) whose boundaries intersect JFj,
for j = 1. Then we let
Fin=F\J o
Qel;
So Fjj;1 is the half open-closed cube obtained by eliminating the interior of the union of
the “outer” cubes from Dy,,(Qo) in Fj.
Observe that

Gj:= U Q" < Fj_op,\Fjt2ky
QEIJ'

for j > 2ky. Since wE(E n Q*) = c1(d) for all Q € I;, with j > 2kg, and all z € Q N Q, we
deduce that

wé(E N (Fj—de\Fj+2kd)) = wé(E N G]) = Cl(d) for all x € aF} N Q.
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12 The dimension of harmonic measure

Consequently,
(B O Fiyakg) = wi(E 0 Fyoany) — (B 0 (Fyan,\Fyaon,)
S wo(E 0 Fjgg,) —ci(d)
< (1 =ca(d)wh(En Fij_g,) forallxze dF; nQ. (12.4)

We claim that (12.4) also holds with zp in place of z. This would follow from the
maximum principle if w§(E N Fj_oy,) and w§(E N Fjiak,) were continuous functions of x
in the closure of Q\E Since this may fail, we need to be a bit more careful. Instead, we
apply the Markov property (12.3) to the open sets Q and Q\F;. Then we deduce that, for
every Borel set A < 09,

wi?(A) = ;‘iF (A) + LF Qw%(A) dwgiﬁj(y).

In particular, choosing first A = E n Fj o, and later A = E n Fj_g,, from (12.4) we
infer that

wéo (E N Fj+2kd) = Q\F (E N F; +2kd) LF . wgy)(E M Fj-‘r?kd) dwg‘iﬁ(y)

<0+ (1—cr(d)) L (B 0 Fjag,) ol ()
F;nQ
< (I —c(d) wy (En Fj_a,),

which proves our claim.
Iterating, it follows that

W (B N Fyjr,) < (1—c1(d) wiP(E n Qo) for all j = 0 such that 45k, < 2m0~ L.

Hence, for ng > 1 being a multiple of 4k, such that ng < 2701,

nQ

we (B0 Fog) < (1= c1(d))) ™ wi? (E 0 Qo). (12.5)

Next we estimate the sum in (b). By Cauchy-Schwarz,

Z w(P)1/2 E(P)d/Q

PeDmo (QO)

_ Z w(P)1/2 /_:d(P)l/Q + 2 w(P)1/2 ﬁd(P)1/2
P€Dy (Qo): P Fa, P€Dmy (Qo): PcQo\Fi

S ‘*L’(Fno)l/2 £d(Fno)1/2 + ‘*‘)(Q()\Fno)l/2 Ed(QO\Fno)l/Z
g
< (1= e1(d)) ™0 w(Qo) 2 £9(Q0)"? + w(Qo) Y LU(Q0\Fno) 2.
Since Qo\Fp, is made up of at most C(d) ng 2™0(4=1 cubes Q € Dy, (Q), we have

LYQo\Fp,y) < C(d) ng 2mold= 27mod £d(Qq) = C/(d) ng 27™ £(Qo)™.
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12 The dimension of harmonic measure

Therefore,

D w(P)PUP)? < (1= er(d))"e/BFa) 1+ C(d) ng 27™) w(Qo)Y? £(Qo)™?.
PeDmq (Qo)

Choosing first ng large enough and later mg large enough too (depending on ng), the
statement (b) in the lemma follows. O

Proof of Theorem 12.2. As shown in Lemma 12.3, we can assume that €2 is Wiener regular.
Denote E = 0Q and w = wgy’. We will show that for every dyadic cube Ry € D such that
zo ¢ Ro, dimy (w|g,) < d — e(d), with e(d) > 0. This suffices to prove theorem. To this
end, we will prove that there exists a some ¢ = #(d) € (d — 1, d) such that, for every 7 > 0,
there exists a subset F, c E n Ry satisfying

HL(E) <7 and w(En R\E;)<T. (12.6)
It is immediate to check that this implies that dimy(w|g,) < t.

The tree T and the stopping cubes.

To prove the existence of the aforementioned set E; we will construct a suitable tree of
dyadic cubes from D(Rp) which we proceed to define. First we need some terminology.
We say that a cube @ € D(Ry) is of type H (Hausdorff content estimate) if the alternative
(a) in Lemma 12.5 holds for Qy = Q. Otherwise it satisfies (b) we say that this is of type
W (harmonic measure estimate). We write Q € H and @ € W respectively. Now, for any
Q € D(Ry) of type H, we let Next(Q) < D(Q) be a subfamily of cubes which cover E N @,
with ¢(P) < 27™4(Q), and so that, for so < s < d,

> UPy <@

PeNext(Q)

In case that Q € D(Ry) is of type W, we let Next(Q) be the subfamily of the cubes from
Din (Q) that intersect E. Now we define inductive the following layers of cubes from
D(Ry). We set To = {Ro}, and for j > 1, we set

We also set T = Uj>07;'- One can think of 7 as a tree whose root is Ry and whose
branches join the every cube Q € T with the descendants belonging to Next(Q). For
Q € T\{Ro}, we denote by p(Q) the “parent” of @ in T, that is, p(Q) is the cube from T
such that @ € Next(p(Q)). We also set p(Ry) = Ro.

We fix some small number ¢ € (0,1). We let 7* be the subfamily of the cubes @ € T
such that £(p(Q)) = 0 £(Rp) and we let Stops be the family of minimal cubes from 7%, so
that any @) € Stops belongs to 7* but no cube from Next(Q) belongs to 7* (which means
that £(Q) < § £(Ryp)). By construction, we have

EnRyc U Q

QEeStops
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12 The dimension of harmonic measure

and

Q) < 04(Rp) for all Q e Stops.

Next we enumerate the cubes from 7* n W as follows. We denote by Wy the family
of the cubes from 7% n W which are maximal. Inductively, for j > 1, we let W} be the
family of the cubes from 7* n W which are contained in some cube from W;_; and which
are maximal. Of course, for j large, enough W; will be empty.

We split Stops into two subfamilies: for some natural number ng to be fixed later, we
let

Stopy = {@ € Stop; : @ is not contained in any cube from W, }

and
Stopy, = Stops\Stopy.

That is, Stopy is the family of cubes from Stops which is contained in less than ng cubes
from 7* n W, while the cubes from Stopy;, are contained in more that ny cubes from
T W.

FEstimates to prove (12.6).
Recall that if Q € H, then

Y, UPY <HQ)y

PeNext(Q)
for sy < s < d. On the other hand, if Q € W,
S WP P < Qo) Qo) (127

PeNext(Q)

Further since all the cubes from Next(Q) have side lengths 27™0¢(Q), we have
dUP)y <20Q)
PeNext(Q)

assuming s to be close enough to d (so s depends on d and my).

We claim that
dupry<2 ) UP)y. (12.8)
PEWj PEWj_1

Indeed, let Q € W;_1, with Q € Tj for some k > 0. Denote by ’7? the cubes from 7; which
are contained in some cube from W;_; and that are not contained in any cube from Wj.
Then, using that there are no cubes of type W between the layers W;_1 and W}, we get

Lurs Y wpr= Y wpr+ Y upy

2 L
PE’E+1:PCQ PE77C+1(\W]':PCQ Pefrk]Jrl:PCQ

D (PP + )] doooupy

PeTpp1nW;:PcQ Pe’nﬂl:PCQ P'eTyo:P'cP

- > (P + P

PE7—]€+1(\WJ‘:PCQ Ple7~—k]‘+2:PICQ

\Y
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12 The dimension of harmonic measure

Iterating, we obtain

= doooupyr= > «py.

i2k+1 PET;nW;:PcQ PeW;:PcQ

Summing over all the cubes Q € W;_1, (12.8) follows.
Iterating the estimate (12.8), we deduce that

D1 UP) < 2U(Ry)°.

PeW;
Therefore,
no—1 no—1 ‘
DoaP)y < > Y UP) < D] 2U(Ry)® < 27 U(Ry)’
PeStopy j=0 PeW; j=0

Choosing s = (s + d)/2, we get

SMoup) < D UP) (50(Ro)) T < 20802 4(Ry)*.

PeStopyg PeStopyg

Hence, choosing
no = |logy 6=/,

it follows that

D UP) < U(Ry)Y. (12.9)

PeStopy

It remains to deal with the family of cubes from Stopy,. By Hoélder’s inequality and
(12.7), for each j > 1, we have

Z w(P)1/2 d/2 Z Z 2 w(P)1/2 e(P)d/Z

PeW; ReW;_1 QeNext(R) PEW;_1:PcQ
Z Z w(Q)VQ E(Q)d/Q
ReW;_1 QeNext(R)

<i D w(R)V R,

ReW;—1

Iterating and using Holder again, we obtain

1 1
S WP AP < Y w(R) R € (R (o).
PEWnO_l R€W1

Assume that § is a dyadic number. That is, § = 2~" for some natural number h. Denote
by Sy the family of cubes @ € Dp(Rp) that contain some cube from Stopy,. Then, by
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12 The dimension of harmonic measure

construction, the cubes from Sy are contained in cubes from W, _1,. So once more by
Holder, and using that ng = log, 6¢~9/2 — 1, we get

> w@PU = )] > W@V
QeSw PeWy,y—1 QeSw:QcP
< Z w(P)1/2 f(P)dﬂ
PEWnO—l
1

< 4%0—1

w(Ro)Y2 6(Ro)¥? < 16697 w(Ro) 2 €(Ro)¥2.  (12.10)

Consider the families

Sy = {Q €Sy :w(Q) = <f((1§0))> w(Ro)}, S = Sw\Siy-
We have
Q) < 5((50)) ((Ry)® for each Q € S}y,
and thus
DUy < ) w((g)) ¢(Ro)* < U(Rp)*. (12.11)
Qes}, Qesy, V0

On the other hand, the cubes Q € S3, satisfy

w(@ < f(g))fwmo) -5 (52 )dwmo).

and so, by (12.10),
(@) \"?
DT w(@) <D N w(@)t? () w(Ro)? <1662 y(Ry). (12.12)
] ((Ry)
QeS3, QeStopy,

Let t = (s’ + d)/2 = (s + 3d)/4 and denote

E. = U QUUQ.

QeStopy QES‘I,V

Since the cubes @ in the unions above satisfy ¢(Q) < § £(Rp), by (12.9) and (12.11), we
have

HL(B:) < (06(R) ™ Miyay (1 @) + 0 B) ™ My (U @)

QeStopy QES%V
< (5t—s’ + 5t—s) K(Ro)t < 5(d—s)/4 K(Ro)t.

On the other hand, notice that

EnRyc E,;u U Q.
QeSZ,
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12 The dimension of harmonic measure

Then, by (12.12),

W(E A R\E,) < w( g Q) < 16892y (Ry).
QesSZ,

So (12.6) holds with 7 = min(C§(d=9)/4 16 §(4—9)/2), O

12.2 Dimension drop

For a domain 2 = RY, when the (Hausdorff) codimension of 0 is not 1 or 02 is of fractal
type, many examples show that we may have dimw < dimdf2. This is the so-called
“dimension drop” for harmonic measure, which seems to be a frequent phenomenon. This
was first observed by Carleson [Car85] for some domains defined as complements of suitable
Cantor type sets in the plane.

In this section we will show that if 02 is s-Ahlfors regular for some s € (d — 1,d), then
the harmonic measure has a dimension drop. We will prove that the same holds in the
planar case if 0 is contained in a line and s € [1/2,1). The first result is due to Azzam
[Azz20] and the second one to Tolsa [Tol24].

Recall that, for s > 0, a measure p on R? is called s-Ahlfors regular if there exists some
constant Cy > 0 such that

Cy'r® < u(Br(z)) < Cor®  for all z € suppu and 0 < 7 < diam(suppp).

A set £ < R? is a called s-Ahlfors regular if the measure H*|g is s-Ahlfors regular. If we
want to specify the constant C involved in the Ahlfors regularity, we may say that that
wor E are (s,Cy)-Ahlfors regular.

12.2.1 A general result about dimension drop on Ahlfors regular sets

Our proof of the dimension drop for harmonic measure is based on the following result,
which has an independent interest.

Theorem 12.6. For d > 1, s > 0, Cy > 1, there exists an M = M(d,s,Cy) > 1
(sufficiently big) such that the following holds. Let E  R% be an (s, Cy)-Ahlfors reqular
set. Let v be a measure supported on E and ¢y € (0,1) such that, for allz € E, 0 < r <
diam(E), there exists a ball B,(y) with y € B,(x) n E, c1r < p <, satisfying either

vBW) _ B vB) _ o v(Be) (213
pS rS ps 7«8
Then dimv < s — €, with € depending on cy,d, M.

The arguments to prove this theorem stem from the techniques developed by Bourgain
in Theorem 12.2, and later used by Batakis [Bat96], and more recently by Azzam [Azz20)].
First we will prove the following.
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12 The dimension of harmonic measure

Lemma 12.7. Under the assumptions of Proposition 12.6, let p = H*|g and let D, be a
dyadic lattice associated with v as in Definition 4.23 and Theorem 4.26. Then there exist
some mg = 1 depending on c¢1 and some v € (0,1) depending on ¢1 and M such that

D v(P)Pu(P)? <y w(@Q)Pu(@). (12.14)
PeDMmO(Q)

In the lemma, D, ;n,(Q) stands for the family of cubes P € D,, contained in @ with side
length ¢(P) = £,™°, that is, if Q € D,, i, then P € D 1p.!

Proof. By Theorem 4.26, there exists a dyadic lattice associated with p, which we denote
by D,. For ) € D,,, we denote
v(Q)

Qs

We claim that the assumptions of the theorem imply that there exists some constant
a € (0,1) such that for any Q € D, there exists another cube Py € D, contained Q
satisfying:

GV(Q) =

(a) either 6,(Py) = C~'MY?0,(Q) or 6,(Py) < CM~26,(Q) (for some constant C
depending on s and the parameters involved in D)), and

(b) £(Ry) = al(Q).

Indeed, let zg be the center of ) and let Bg be a ball centered at zg as in the Definition
4.23, so that Bg n suppp < @, with radius r(Bg) ~ ¢(Q). By the assumptions of the
theorem applied to 3 Bg, there exists a ball B,(y) with y € £Bg, ¢j r(Bg) < p < 3r(Bg),
satisfying either

1 1
vBW)) o g a8 vB) g1 2 B0) (12.15)
p° UQ)* p® (Q)®
Observe that in any case B,(y) nsupp(p) < Q. If the second option in (12.15) holds, then
we take a cube Py € D, contained in B,(y) with ¢(Fy) ~ p, and then we have

V(%BQ) -1
— — . SM0,(Q).
p° (@) @)
So Py satisfies both (a) and (b).
1
If the first option in (12.15) holds, then we can assume that “3B0) M~126,(Q),

0(Q)*
because otherwise we can take a cube Py € D, contained in §Bg with ((FP)) ~ ¢(Q) and

then, arguing as above we deduce that 6, (Py) < M~126,(Q), and thus Py does the job.

HV(PO) S

1t is easy to check that we can take the constant 7o = 1/2 in Definition 4.23 just eliminating or repeating
intermediate generations if necessary, allowing for example cubes Q) to have a unique child.
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12 The dimension of harmonic measure

1
So suppose that VE(QCS?) > M~1/20,(Q) and that the first option in (12.15) holds. Then

there exists B,(y) with y € 1 Bg, ¢| 7(Bg) < p < 1r(Bg), such that
WBw) -, Y3B0)

p° Q)
Since B,(y) n supp(p) is contained in @, it can be covered by a finite number of cubes

P € D,, contained in Q with ¢(P) ~ p. The cube P = Py with maximal v measure satisfies
v(Py) 2 v(B,(y)) and so

z M'20,(Q).

0,(Py) = “BoW) < hpzg ).
pS

This completes the proof of the claim.

Assume that the constant a > 0 in (b) is of the form a = ¢;™°, for some natural
number mg and let ng, with 1 < ng < myg, be such that Py € D, »,(Q). Suppose that
0,(Py) < CM~Y20,(Q). By Cauchy-Schwarz, we have

> v(P)2u(P)? < v(Q\Po) A u(Q\Po)? < v(Q) (1(Q) — (Py)) 2.

PEDyung (Q):P#Ps

On the other hand, we have

1/2 1/2 _ V(Po)l/2 1/2
v(Po) " p(Po) e = — =175 (o) ~ 0,(Fo) " p(Fo)
11(Po)Y/
< M_1/49y(Q)1/2 (B ~ M_1/4V(Q)1/2M( )1/2 1(Po)
n(Q) "
Gathering the two previous estimates and using the inequality (1 — :c)l/ 2 1-— *$ for
0 <z < 1, we obtain
1/2 1(Po)

Y v(P)YPu(P) < v(@Q)VA (@) = n(Po)? + CM (@) u(Q)

PeDyng (Q)
— (02 1/2 _ ) 2 _1/a14(Fo)
Q7 4(@) <<1 Q) ) oM Q) >

(
< v(@"u@*(1- 1),

assuming CM /4 < 1 for the last inequality. Taking into account the s-Ahlfors regularity
of u, we have

wQ)

M(PO) ~ E(PO)S —mos
W@ S Qe S

Hence, taking v =1 — ¢, "°°, we have

S u(P)Pu(P) 2 < (@) (@),

PeDyy ng (Q)
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12 The dimension of harmonic measure

On the other hand, by Cauchy-Schwarz, splitting each P € D), ,,(Q) into its descendants
from D, 1, (Q), we get

SoouP)Pup)yr< Y () up)?, (12.16)
PeDyng (Q) PeDyumg (Q)

and thus the Proposition follows in this case.
Suppose now that 6,(Fy) > C’M*I/QGV(Q). The arguments are quite similar to the
previous ones, interchanging the roles of u and v. Indeed, By Cauchy-Schwarz,

3 V(P)2u(P)Y? < (1(Q) — v(Py)) (@) 2.

PED, 1o (Q):P#Po

Also, we have

/
B B0 = () I < ) 0,
< MV(R),(Q) 2 = TN (@) (@)

From two previous estimates and using again the inequality (1 — z)Y/2 < 1 — s for
0 < z < 1, we obtain
(Ho)

N UP)YPu(P)? < (W(Q) — v(Po)) (@)Y + M ()2 p(Q) 2
PeDy, 10 (Q) v(Q)

= v(Q)*u(@)" 2(<1 - VV(<€20>))1/2 ! CM_1/4V(<]Z2O>)>
<v(@"u@*(1- ;4.

since we are assuming that CM 4 < i. Observe now that

v(P) — 6u(Po) ((P)* 1/2 j—mos
Q) 0@ oy M=

mos

where as before, v = 1 — £,"°°. Therefore,

Y, vP)Pu(P)? <y u(Q) (@)
PeDyng (Q)

Finally, the same estimate as in (12.16) completes the proof of the lemma. O

Proof of Theorem 12.6. The arguments to prove the theorem are quite similar to the ones
used in the proof of Bourgain’s Theorem 12.2. Indeed, notice that the estimate (12.14)
in Lemma 12.7 is similar to (b) in Lemma 12.5. We will use a construction analogous to
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12 The dimension of harmonic measure

the tree type construction in the proof of Theorem 12.2, but a bit simpler due to the fact
that now we do not have to distinguish between two options such as (a) and (b) in Lemma
12.5. For the convenience of the reader, we will show the full details.

We introduce now a dyadic Hausdorff content for subsets of E := supp(u) analogous to
the one in (12.2). For F' ¢ F and t,e > 0, we denote

M, (F) = inf { 3 6Q0)": Qie Dy F e | Qi Q) < <. (12.17)

By the properties of Dy, it is immediate to check that that HL(F) ~ Mj, (F) with the
implicit constant depending on the parameters in the definition of D,,.

We will show that for every cube Ry € D, , dimy(v|r,) < t for some ¢t < s depending
on « in Lemma 12.7, which suffices to prove theorem. To this end, we will prove that, for
every T > 0, there exists a subset F: ¢ ' n Ry satisfying

HL(E) <7 and v(EnR\E,) <T. (12.18)

It is immediate to check that this implies that dimy (v|gr,) < t.

For mg as in Lemma 12.7, for every k > 1 we have

D (@@ = > D u@Vu(@)Me
eru,kmo (Ro) PEDu,(kfl)mo (Ro) QEDM»mO (P)
<y D v(P)Y2u(P)M2.

PEDM,(kfl)mO (RO)

Iterating, we deduce that

D1 (@@ < AFv(Ro) P u(Ro)'? for all k> 1. (12.19)
QEDu,kmO (RO)

For any fixed k > 1, denote J; = Eakmo, so that £(Q) = 6, £(Ro) for Q € Dy gm,(Ro)-
For some t' € (0, s) to be fixed below, consider the families

s,1={QeDu,kmo<Ro>:v<Q>>(fg) u(Ro>}, Sk = Dy (B0)\ -

‘We have

v(Q)
v(Ro)

UQ)Y < ((Ro)"  for each Q € S},

and thus

D) < ) v(@) U(Ro)" < U(Ry)". (12.20)
Qes} Qes! v(Ro)

On the other hand, the cubes @) € S,? satisfy

1@ < ( f((%)t/ vire) = 37 (D) vira)
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12 The dimension of harmonic measure

and so, by (12.19),

/ s/
S @<l % @ (DY e

QeS? Q€D kmg (Ro)

,—8 174 R 1/2 ,—5
oS @@ (L) < o (o),
QED/J,,knLO (RO) M 0

Recalling that 05, = £ kmo for ¢4 is close enough to s we have

5}?’—5)/2 - %kmo(t’—s)ﬂ AR < A2

and thus
> Q) s+ u(Ro). (12.21)
QeS?

Let t = (t' + s)/2 and denote

E. =[] @

QeS}
Since the cubes @ in the union above satisfy £(Q) < o ¢(Ry), by (12.20), we have
H(Br) < (55 6(Ro)) M@’MRO)( U Q) < 6" U(Ro)t = 0"t U(Ry)".
QeS}

On the other hand, notice that

EnRyc E, U U Q.
QeS?

Then, by (12.21), v(E n R)\E;) < v*?v(Ry). Hence, for k large enough (12.18) follows.
O

12.2.2 Dimension drop in the case of codimension smaller than one

Theorem 12.8. Let Q < R? be an open set with compact (s, Cy)-Ahlfors reqular boundary,
for some s € (d—1,d) and Co = 1. Then, for any p € Q, dimywy < s — ¢, for some
e > 0 depending on s and Cj.

Remark that in the plane this theorem is a consequence of the Jones-Wolff Theorem
9.16 about the the dimension of harmonic measure in the plane. Indeed, this implies that
dimy wg <1 <s.
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12 The dimension of harmonic measure

Proof. Notice first that the s-Ahlfors regularity of 02 for some s > d — 1 implies that (2
satisfies the CDC.

By Theorem 12.6, it suffices to prove that for every x € 02 and 0 < r < dq(p)/4, there
exists a ball B,(y) with y € B.(x) n E, cir < p < r, satisfying (12.13). For a fixed p € Q
and a big constant M to be chosen below, we may assume that

wh (B (z)) < 4°M wP(B,4()),

because otherwise the second option in (12.13) holds. We claim that the above estimate
implies that there exists some point qg € B, /2(33) N  such that

.z LI ana sa(a) 2 (12.22)

To prove this, consider a C® function ¢ such that XB,s(z) S P S XBa,s(x) a0d Vol <
r~1. For some small A € (0,1/50) to be chosen, denote

U)\ = {LE e Bgr/g(CC) : 59(:6) < )\T}

We write
WP (B, () < feodwp - f VGP(y) Voly) dy (12.23)

<[ werw ey + | 96 Vel dy =i 1+ 1.
U Q\Uy

Next we intend to show that I; < pr (B,/a(x)) if A is taken small enough. To this end, by
Vitali’s covering theorem we can cover Uy with a family of balls { B;}ier := {B(zi, 6Ar) }ier,
with x; € Uy, so that the balls %Bi, for ¢ € I, are disjoint. From the fact that the balls
%Bi are disjoint and they have the same radius, it is immediate to check that the larger
balls 30B; have finite superposition, that is,

Z x308; < C
i€l

We also assume A small enough so that the balls 30B; are contained in B, (x). Then, using
Caccioppoli and Lemma 7.19, together with CDC for €2, we deduce that

1/2
ney [ Ivewvewias ;3| |vap<y>|2dy) (B

el iel @

1/2
<5 ([ wwra) me <SS 6w

iel iel Y€2Bi

P(30B;)
< Nd-1pd-2 Z ) Ty 2 )\wp<U3OBi> S AWP(Br(7)) € MAWP (B, /4(x)).

el

Hence, taking A = ¢/M with c sufficiently small, we derive Iy < wP(B, /4(z))/2, as wished.
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12 The dimension of harmonic measure

From (12.23) and the last estimate obtained for I;, we infer that

1
w%aﬂw»<2f WwaVﬂwdysf VP ()| dy
Q\U)\ r BSr/S(x)\UA

st sup [VGP(y) sa sup G"(y).
Y€ Bayg()\Ux YEB, /2 () N\U» /2
Thus, there exists some g € B, () N Q\U, o such that

1 1
GP(q0) 2 N—_pr(Br/4(x)) M Njwp(BT(x))a
which proves our claim (12.22).

Consider the ball By = Bs,,(4,)(q0), 0 that By = Q and dByndQ # @. Let { € dBon oS

and take ¢ = q°2+5, so that ¢1 € Byp. Then we have | — 1] = da(q1), and letting

B = B|€_q1|(q1), it holds
BicBycQ and {£} =0B;noQ.

Notice also that | — qo| < |z — qo| < /2 and so £ € By ().

Assume that ¢ is the origin in R? and that ¢ = (0,...,0,—|¢|). Let I' be the upper
half of the sphere ¢B;. Notice that dist(T", 0By) ~ r(Bpy) ~ r. Then, by a Harnack chain
argument, since GP is harmonic in By, it follows that

GP(y) ~ GP(qp) forall yeT. (12.24)
Denote by 71 the radius of B;. That is, 7 = | — q1|. Let us check that

GP(z) 2 chst(;;,&lﬂ GP(qo) for all z € By n B, /(). (12.25)
Indeed, by (12.24) and the maximum principle,
GP(2) 2 wj, (1) GP(qo) in By. (12.26)
By the explicit formula for wj (T') in Example 5.27, we have
wg, () = f r%——|z\2d do(z) 2 dist(z,0B1) for all z € By n B, 4(§),
yel Kgr1 |y — 2| r

which, together with (12.26), gives (12.25).
Now, by Lemma 7.19, (12.25) and (12.22), one easily deduces that the first option in
(12.13) holds. Indeed, for 0 < p < r1/4, we have
d—1 d—1

P(Bp(€) 2 p™2 sup GP(2) 2 T GP(q0) 20r Bt WP (Br ().
ZEBp/S (6) r r

Equivalently,

and so, taking p small enough, the first estimate in (12.13) follows. O
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12 The dimension of harmonic measure

12.2.3 Dimension drop for subsets of lines in the plane

Theorem 12.9. Let Q2 < R? be an open set with compact (s, Cy)-Ahlfors regular boundary
contained in a line, for some s € [1/2,1) and Cy = 1. Then, for any p € Q, dimy wf) <
s — ¢, for some € > 0 depending on s and Cy.

To prove this theorem, we will use the following result due to David, Feneuil, and
Mayboroda [DFM21], which has its own interest.

Lemma 12.10. Let Q < R? be an open set with (s, Cy)-Ahlfors regular boundary, for
some s € (0,d —1). Then Q is a uniform domain.

Proof. The fact that s < d — 1 implies that R\ 0 is connected and so Q = R\ dQ. Then,
the corkscrew condition follows easily from the Ahlfors regularity of 0f2.

To prove the Harnack chain condition, let z1,22 € Q and r,A > 0 be such that
dist(x;,000) > r and |21 — 22| < Ar. We claim that there are points y; € B, /3(z;)
such that the segment S := [y1,y2] satisfies dist(S,092) > or, with 6 = 0(A,d,s) > 0.
That is, there is a thick tube contained in § that connects B, 3(z1) and B, 3(z2).

To prove our claim, denote by L a hyperplane through the origin orthogonal to S. Let
5 € (0,1) be a small constant to be chosen soon. We can find N > C~16'~% points
zj € L n B,/3(0) such that [z; — 2| > 46r for i # j. For each j, let S; be the translated
segment S; = z; + 5. Suppose that dist(S;, ) < 6r. Then we can find points w; € 02
such that dist(wj, S;) < r. The balls B; = Bs,(w;) are disjoint because dist(.S;, S;) > 40r.
Then, from the (s, Cp)-Ahlfors regularity of 0Q and the fact that all the balls B; are
contained in By, |4, g, (wk) (for any wy), we deduce that

NCO—l((Sr)S < U(Bj N 59) = U(UBj N 5Q> < U(B2r+\x1—x2|(wk)) < 00(2 + A)Srs.
J

Thus,
Cley o8t < Co(2 + A,

which gives a contradicition if § is chosen small enough, depending on Cy,d, s. So there
exists a segment S; such that dist(S;, 0Q2) > dr, and taking y1 = 1 + 2; and y2 = 2 + 2;
the claim follows.

To construct a Harnack chain between x1 and 2, we can choose B, 3(z1) and B, 3(72)
as the first and last balls of the chain, respectively. To choose the other balls of the chain,

we consider a family of points ai,...,a, € S such that |ay — ary1| < 6r/4, m < CAI~L,
and we take balls B, o(ag), for 1 < k < m. It is immediate to check that this chain of
balls satisfies the required properties in Definition 8.5. O

Proof of Theorem 12.9. Notice that 2 is a uniform domain satisfying the CDC.
First we will show that, for £ = 02, B,(z), and z( as above, there exists y € B.(z) n E

such that
W (By(y)) 2%
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12 The dimension of harmonic measure

for all p € (0, r), for some ¢’ € (0,1) depending only on s, Cp, and n. Clearly, this implies
the first estimate in (12.13) for s € (3,1) and p small enough. For the cases s = 1 we
will need more careful estimates. Notice also that, modulo a constant factor, the estimate
(12.27) is independent of the pole py as soon as py is far enough from B, (x), since € is a

uniform domain.

The arquments for the case s € [, 1).
Without loss of generality, we assume that E < R = R x {0}. Let z € E and 0 < r <
diamFE. Taking into account that s < 1, by a pigeon-hole argument, there is an open
interval I = (a,b) = [z — 7, x] which does not intersect E and satisfies ¢ := H(I) ~; r.
By enlarging I if necessary, we can assume that b € E. Notice that b is contained in
[z — (1 — ¢)r,x] because x € E, for some ¢ > 0 depending on s.

We choose y = b. Again by the s-Ahlfors regularity of E and the pigeon-hole principle,
there exist radii 71,79 with £/2 < r; <19 < ¥, ro —r1 ~4 £ ~ r such that

ATLW(?/) NE=g.

Here A, »,(y) stands for the open annulus centered in = with inner radius r; and outer
radius 7. Observe that the left component of A, ,,(y) N R is contained in 1.

Next we apply a “localization argument”. We denote F; = E n By, (y), 1 = EX,
r’ = (r1 + r9)/2. It is immediate to check that Ej is still s-Ahlfors regular and thus Q; is
a uniform domain too. We claim that for any subset F' — Fy and any p € 0B, (y),

W (F) ~5 WP (F), (12.28)

where wy stands for the harmonic measure for ;. To prove the claim, consider first
p € 0B, (y) such that
WP(F) = max wi(F).
) = _max W(F)
Using that wi(F') is harmonic in Q and vanishes in F7\F and the maximum principle, we
get

cmm=L@wwﬂwmﬂn+L%@wmw@

<WP(F)+ sup wi(F) wP(E\E).
ZEE\E1

Observe that, by Lemma 7.20, Lemma 6.20, the CDC, and a Harnack chain argument,
wP(Ey) = o, for some §y > 0 depending just on s. Hence, w?(FE\E7) < 1 — dg. Also, since
wi(F) is harmonic in Cy\B,/(y) and E\E; < Cy\B,(y), by the maximum principle we
have
sup wi(F) < max wi(F)=wl(F).
2€E\F, q€0B,/(y)
Therefore,
WI(F) < wP(F) + Wl (F) (1 —d),
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or equivalently, w!(F) < &; ' wP(F). By the definition of " and Harnack’s inequality, we
infer
wi(F) < wP(F)

for all p € 0B, (y). On the other hand, by the maximum principle, we have trivially that
WY (F) = wP(F), which concludes the proof of the claimed estimate (12.28).

Next we will perform another modification of the domain €. For a fixed p € (0,71/4),
consider the intervals J = [y,y + p/2], J' = [y,y + p| and define F» = F; u J and
Qy = ES = 1\J. By the CDC and the uniformity of 1, we infer that, for all ¢ € 0B, 5(y),

wWi(J' N E) 21 =wi(J).
We also have wi(J' n Ey) = wi(J) =

principle, since both wf(J' n E;) and w
deduce that

0 for all ¢ € J° n Ey. Then, by the maximum
5(J) are harmonic in Q1\B,2(y) = Q2\B,2(y) we

WI(J' 0 Br) 2 W)

for all g € QQ\BP/Q(y), and in particular for all p € 0B, (y).
Finally we let E3 = [y,y + 1] and Q3 = Ef, so that E» < E3. By the maximum
principle, we have
wy(J) = wi(J)

for all p € 0B,(y). Hence, gathering the above estimates, we infer that, for all p € 0B, (y),
WP(J' N E)~g (I " E)Z Wb () = wh(J). (12.29)

Now it just remains to estimate wf(.J). We can do this by means of a conformal trans-
formation. Indeed, observe first that, by a Harnack chain argument and the maximum
principle, w(J) ~ w§(J) for all p € dB,/(y). Next, suppose for simplicity that y = —r1/2,
so that E3 = [—71/2,71/2]. The map f : B1(0) — Q3 defined by

1 1
f(z) = (z + ;) T (12.30)
is a conformal transformation from B;(0) to 23 such that f(0) = oo, with f(0B;(0)) =

693 = Eg. ThUS,
1

WE () = 5= H D).

An easy computation shows that

AN ={e:1—0<a<n+6},

with 231()) ) N
0 = arccos (1 S > = arccos (1 - E) ~ (E) : (12.31)
Thus, ) K 12 12
Wi (J) = = ~ (E) N (;) . (12.32)
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Consequently, by the change of pole formula for uniform CDC domains and (12.29), we
deduce that, for p € 0Br/(y),

wPo (B, (y)) . o b (P\2
o (B(a)) ~ & BeW) =& 0 B) 2 Wfi(]) ~ (5", (12.33)

r

which completes the proof of (12.27).

The case s = 1/2.
In this case the inequality (12.27) does not suffice to prove (12.13) and we need a better
estimate. We consider the preceding domains €1, 0,3, so that, for all p € 0B (y),
(12.29) holds. However, the estimate wh(J) > wh(J) is too coarse for our purposes.
Instead, we write

B~ 0) = | W) e (2),

1)
The density d?-tl\ can be computed explicitly by means of the conformal transformation

12.30). Using the identity w®(J) = 7 'arccos (1 — DY and differentiating, it
3 1
follows that

dwsP 1
—(t) = :
Al w5 D3 +0)
Thus,
dws’ 1
—(t)  ————— forte|—ri1/2,0], 12.34
dHl\E3() ) [—71/2,0] ( )
and so 0
dt
Wwh(J zj wh(J) —— — —— 12.35
2( ) 7;1 2( )m) ( )

(recall that we are identifying R = R x {0}).

To estimate the integral in (12.35) from below, consider the annuli Ay = Agx, or+1,(y)
for k > 1, and let N = [log, ’;)] By the s-Ahlfors regularity of E and pigeonholing, for
every k € [1, N] there exists an interval I, < Ay n E3 (recall E3 is an interval) such that
HY(I) ~ 2Fpand I, " E = I}, n By = @. Let I, be another interval concentric with Iy,
and half length. Then we write

dt

0
wh(J f - 12.36
oo ) e 2 Z e (12:36)
We claim that 12
Wh(J) = <‘t_py|> for all ¢ e b, Iy. (12.37)
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Assuming this for the moment, we obtain

N b\ V2 &t
WwE(J) = J < >
iz 0 o) e
N

1/2 dt 1/2 r 1/2
*Zﬁ < i > e~ V) e (D)

By (12.29) and the change of pole formula, arguing as in the preceding subsection, we
obtain

(B, (1) WP(By(y)) = wP(J' A E) 2 wb(J) ~ log;

g (12.38)

wP (B, (y)) r <p>1/2
which implies (12.13) for p small enough.

It remains to prove (12.37). To this end, for each ¢ € I;;, let t’ € R be the point symmetric
to t with respect to y. That is, ' = —r; —t. Notice that ¢’ is on the left side of the interval
Es5 (recall that the leftmost point of E3 is y = —r1/2). By a Harnack chain argument and
the maximum principle, we have

Wi(J) ~ wh () = W ().

Now we can compute explicitly w (J) by means of the conformal transformation in (12.30).
Indeed, consider the change of variable ¢’ = y — - h. Then, it follows easily that

) —(1L+h) ++/h(2+h).

~1
1+ h++/h2+h)

So f~1(#') is a point in the unit disk belonging to the segment (—1,0) such that

r 1/2
= 1= O] = e VR R 2 - (22

™

Recall that f~1(J) = [r — 0,7 + 0], with § ~ (%)1/2, by (12.31). Hence, | —1— f~1(¥)] =

H(f~1(J)). Taking into account that, for any point ¢ € B1(0) and n := 10dist(q, 0B1(0)),
w%1(0)|3n(q) is comparable to 77_17-[1|,931(0)m3n(q), we deduce that

0 R (ﬁ)l/Q L2 P2

rl ~ —_—

N GO (m-m)m T —yi2 -y

W () = wh )

1
which yields (12.37). O
Theorem 12.9 does not hold for 0 < s < 0.249. Indeed, for such values of s, David,

Jeznach, and Julia [DJJ23] have constructed an s-Ahlfors regular compact subset E <
R x {0} for which H*|g and harmonic measure for Q = R*\E are mutually absolutely
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continuous. An interesting open problem consists in finding the sharp threshold sy such
that for all s-AD regular sets with s € (sg, 1) contained in a line in the plane, the dimension
drop for harmonic measure occurs. Clearly, by Theorem 12.9 and [DJJ23], we have 0.249 <
so < 1/2. Also, for s-Ahlfors regular sets E in the plane not contained in a line, it is an
open question if there exists some s; < 1 such that the dimension drop for Wg2\ g OCCUrs
whenever s < s < 1.

Exercise 12.2.1. Let £ — R? be the 1/4 planar Cantor set, defined inductively by
setting QY = [0,1]?, and then choosing the squares Q"™ of the (m + 1)-th generation
by replacing each square Q7" from the m-th generation by four closed sub-squares in the
corners with side length equal to %E(Q}”), so that the the cubes Q’,?H have side length
4=m=1 " Then we set E,, = U?:l Q7" and E = My _o Em. One can check that this set
satisfies 0 < HY(F) < . See [Mat95, Section 4.12]. Also, from the fact that it has
orthogonal projections of zero length both on the horizontal and vertical axis, it follows
that F is purely 1-unrectifiable.

Prove that, for @ = C\E, dimywd < 1. To do so, you could first check that if Q
is a given closed square and Qg = R2\Q, for a point £ in a corner of @, it holds that
w®(B,(€)) ~ r?/3, via a suitable conformal transformation. Then, try to argue as in the
proof of Theorem 12.9.
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