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1 Introduction

In these notes we provide a straightforward introduction to the topic of harmonic measure.
This is an area where many advances have been obtained in the last years and we think
that this book can be useful for people interested in this topic.

In the first Chapters 2-6 we have followed classical references such as [Fol95], [Car98],
[GM05], [Lan72], [AG01], and [Ran95], as well as some private notes of Jonas Azzam. A
large part of the content of Chapter 7 is based on Kenig’s book [Ken94], and on papers by
Aikawa, Hofmann, Martell, and many others. Chapter 8 is based on a paper by Jerison
and Kenig [JK82]. In Chapter 9, the proof of Jones-Wolff theorem about the dimension
of harmonic measure in the plane follows the presentation of [CTV18]1. In some parts of
Chapter 10 we follow the book of Caffarelli and Salsa [CS05] and some work by Mourgoglou
and the second named author of these notes. A large part of Chapter 11 follows [AHM`16].

We apologize in advance for possible inaccuracies or lack of citation. Anyway, we remark
that this work is still under construction and we plan to add more content as well as more
accurate citations in future versions of these notes.

1We thank J. Cuf́ı and J. Verdera for allowing us to reproduce a large part of the content from [CTV18].
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2 Harmonic functions

2.1 Definition and basic properties

Given an open set Ω Ă Rd we say that a real-valued function u is harmonic in Ω if
u P C2pΩq and

∆upxq “

d
ÿ

j“1

B2
jupxq “ 0

for every x P Ω (later on we will see that the C2 hypothesis can be replaced by just locally
integrable if we consider the distributional Laplacian).
Let κd denote the area of the unit sphere Sd´1 Ă Rd, that is,

κd “
2π

d
2

Γpd{2q

see [Fol95, Proposition 0.7] for instance, and dσ denote the surface measure. Recall that
the volume of the unit ball is then |B1p0q| “

κd
d (see [Fol95, Corollary 0.8]). Below, we

denote Brpxq the open ball centered at x with radius r, and Srpxq “ BBrpxq.
Throughout the notes |U | “ mpUq stands for the Lebesgue measure of a set U , and

´
ş

U f dµ for the average integral of f with respect to the measure µ in U , i.e., 1
µpUq

ş

U f dµ.

We will use also dx “ dmpxq for the integration with respect to Lebesgue measure and
mU pfq for the mean of f with respect to the Lebesgue measure in U .

Lemma 2.1 (Mean value theorem). Let Ω Ă Rd be open. If u P C2pΩq is harmonic, then

upx0q “ ´

ż

Brpx0q

upyqdy “ ´

ż

B1p0q

upx0 ` ryqdy for every Brpx0q Ă Ω Ă Rd. (2.1)

Moreover

upx0q “ ´

ż

Srpx0q

upyqdσpyq “ ´

ż

S1p0q

upx0 ` ryqdσpyq for every Brpx0q Ă Ω Ă Rd. (2.2)

Proof. Changing variables, we have that

Apρq :“
1

ρd

ż

Bρpx0q

upxqdx “

ż

B1

upρx` x0qdx.

On the other hand, set

rApρq :“

ż

B1

∇upρx` x0q ¨ x dx

“

ż

Bρpx0q

∇upxq ¨ px´ x0q

ρ

dx

ρd
“

1

2ρd`1

ż

Bρpx0q

∇upxq ¨ ∇|x´ x0|2 dx.

3



2 Harmonic functions

Since u satisfies that ∆u “ 0 in Ω, we can apply Green’s formula twice to obtain

rApρq “
1

2ρd`1

ż

Sρpx0q

|x´ x0|2∇upxq ¨ ν dx´
1

2ρd`1

ż

Bρpx0q

∆upxq |x´ x0|2 dx

“
1

2ρd´1

ż

Sρpx0q

∇upxq ¨ ν dx “ 0, (2.3)

where ν stands for the normal vector to the sphere pointing outward.
Since u P C2pΩq, for every x we have

şr
ρ∇uptx` x0q ¨ x dt “ uprx` x0q ´ upρx` x0q by

the fundamental theorem of calculus. Applying Fubini’s Theorem we get

0
(2.3)
“

ż r

ρ

rAptq dt “

ż

B1

ż r

ρ
∇uptx` x0q ¨ x dt dx “

ż

B1

puprx` x0q ´ upρx` x0qq dx (2.4)

“ Aprq ´Apρq.

So Aprq “ Apρq for all ρ ă r.
On the other hand, taking the mean and using the continuity of u we obtain
ˇ

ˇ

ˇ

ˇ

upx0q ´
d

κd
lim
ρÑ0

Apρq

ˇ

ˇ

ˇ

ˇ

“ lim
ρÑ0

1

|Bρpx0q|

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bρpx0q

pupx0q ´ upxqq dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
ρÑ0

oρÑ0p1q “ 0.

To see the coincidence with the average on spheres, note that in polar coordinates we
have

Apρq “
1

ρd

ż

S1p0q

ż ρ

0
uptθqtd´1dt dθ.

From this formula one can easily show that (2.2) implies (2.1), but we need to prove the
converse. Let us differentiate this expression. We get that

0 “ A1pρq “
´d

ρd`1

ż

S1p0q

ż ρ

0
uptθqtd´1dt dθ `

1

ρd

ż

S1p0q

upρθqρd´1dθ (2.5)

“
´d

ρ
Apρq `

1

ρd

ż

Sρpx0q

upρθqdθ.

Since upx0q “ d
κd
Apρq by (2.1), we readily get (2.2) multiplying the last expression times

ρ
κd
.

Remark 2.2. Arguing as above, it follows that if u P C2pΩq satisfies ∆u ě 0 in Ω, then

upx0q ď ´

ż

Brpx0q

upyqdy ď ´

ż

Srpx0q

upyqdσpyq (2.6)

whenever Brpx0q Ă Ω Ă Rd. Indeed, instead of (2.3), we have

rApρq “
1

2ρd´1

ż

Sρpx0q

∇upxq ¨ ν dx´
1

2ρd`1

ż

Bρpx0q

∆upxq |x´ x0|2 dx

“
1

2ρd´1

ż

Sρpx0q

∆upxq dx´
1

2ρd`1

ż

Bρpx0q

∆upxq |x´ x0|2 dx

“
1

2ρd`1

ż

Bρpx0q

∆upxq pρ2 ´ |x´ x0|2q dx ě 0.

4



2 Harmonic functions

Then, as in (2.4), we deduce that

Aprq ´Apρq ě 0 if ρ ă r.

Then, letting ρ Ñ 0, the first inequality in (2.6) follows.
Further, notice that the preceding discussion shows that A1pρq ě 0, and then by (2.5)

it follows that

0 ď
´d

ρ
Apρq `

1

ρd

ż

Sρpx0q

upρθqdθ,

which is equivalent to the last inequality in (2.6).

Theorem 2.3 (Converse of the mean value Theorem). If u P CpΩq satisfies (2.1) or (2.2),
then u P C8 and it is harmonic.

Proof. Note that we have seen that (2.1) and (2.2) are in fact equivalent. Thus, it suffices
to assume that u satisfies (2.2).

Let ψ P C8pr0, 1sq be a non-negative function with
ş8

0 ψptqtd´1dt “ 1. Define ϕεpxq :“
1

κdεd
ψ
´

|x|

ε

¯

. Then
ş

ϕε “ 1 for every ε. Next consider the subset Ωε :“ tx P Ω : Bεpxq Ă

Ωu. If x P Ωε then we claim that

upxq “

ż

upyqϕεpx´ yq dy.

Indeed,

upxq ´

ż

upyqϕεpx´ yq dy “

ż

pupxq ´ upyqqϕεpx´ yq dy

“

ż ε

0

ψp
ρ
ε q

κdεd

ż

S1p0q

pupxq ´ upx` ρθqq dθ dρ
(2.2)
“ 0.

We can conclude that u is C8 in Ωε and, therefore, in the whole of Ω.
To get the harmonicity, note that the derivative with respect to r of

ş

S1p0q
upx`ryqdσpyq

is zero by assumption. That is

0 “
d

dr
´

ż

Srpxq

upyqdσpyq “ c
d

dr

ż

S1p0q

upx` ryqdσpyq “ c

ż

S1p0q

Bνupx` ryq dσ

“ c ´

ż

Srpxq

Bνu dσ
Green Thm

“
c

rd´1

ż

Brpxq

∆u dx.

Since the Laplacian vanishes on every ball, we deduce that it is actually zero everywhere.

In particular, every harmonic C2 function is C8. Therefore we can restate the definition
of harmonic function:

Definition 2.4. We say that a function u : Ω Ñ R is harmonic if u P CpΩq and it satisfies
the mean value property (2.1).

5



2 Harmonic functions

As we have seen, every harmonic function satisfies also the mean value property in
spheres, it is C8pΩq and ∆u “ 0. This self-improvement property is also true for harmonic
distributions, we will see that later on.

Theorem 2.5 (The maximum principle). Let Ω be a domain (i.e. open and connected
set). If u is harmonic and real-valued and A :“ supΩ u ă 8, then either upxq ă A for
every x P Ω or upxq “ A for every x P Ω.

Proof. tx P Ω : upxq “ Au is relatively closed by continuity and open by the mean value
theorem.

Corollary 2.6. Let Ω be a bounded open set. If u P CpΩq is harmonic and real-valued,
then the supremum and the infimum are attained at the boundary.

Proof. Assume that the supremum is not attained at the boundary. Then, by compactness
it must be attained in the interior. This implies that u is constant in some component
of Ω, which in turn implies that the supremum is also attained at the boundary of that
component, a contradiction. Also the infimum is attained at the boundary since infΩ u “

´ supΩp´uq.

Theorem 2.7 (Uniqueness theorem). Let Ω be a bounded open set. If u1, u2 P CpΩq are
harmonic in Ω, and u1|BΩ ” u2|BΩ, then u1|Ω ” u2|Ω.

Proof. Apply the corollary to u1 ´ u2.

Theorem 2.8 (Liouville’s theorem). Let u be a bounded harmonic function in Rd. Then
u is constant.

Proof. Note that for r ą 2|x|

|upxq ´ up0q| “

ˇ

ˇ

ˇ

ˇ

ˇ

´

ż

Brpxq

upyqdy ´ ´

ż

Brp0q

upyqdy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
d

κdrd

ż

Br`|x|p0qzBr´|x|p0q

|upyq|dy

ď
d}u}8

κd

|Br`|x|p0qzBr´|x|p0q|

rd
Àd

|x|}u}8

r
rÑ8
ÝÝÝÑ 0.

2.2 The Caccioppoli inequality

We have shown that every harmonic function u P CpΩq is C8pΩq. Next we turn our
attention to weakly harmonic functions.

Definition 2.9. Given an open set Ω Ă Rd, we say that u P W 1,2
loc pΩq is weakly harmonic

if every test function φ P C8
c pΩq satisfies that

x∆u, φy :“ ´x∇u,∇φy “ 0. (2.7)

We say that u P D1pΩq is distributionally harmonic if, instead, test functions satisfy

x∆u, φy :“ xu,∆φy “ 0. (2.8)

6



2 Harmonic functions

Arguing by density, if u is weakly harmonic then equation (2.7) is verified also for every
φ P W 1,2

c pΩq. Note that every harmonic function is weakly harmonic, and every weakly
harmonic function is distributionally harmonic, but the converse has not been established
yet (see Proposition 2.19 below).

Lemma 2.10 (Caccioppoli Inequality). Let Ω Ă Rd be an open set, and let u be weakly
harmonic in Ω. Then for every t ą 0 and every ball B of radius r such that pt` 1qB Ă Ω,
we have

ż

B
|∇u|2 ď

4

prtq2

ż

pt`1qBzB
u2.

Proof. Let η be a Lipschitz function such that χB ď η ď χpt`1qB and with |∇η| ď 1
rt .

Since u is weakly harmonic and η is compactly supported in Ω, we have that

0 “

ż

pt`1qB
∇u ¨ ∇puη2q.

By the Leibniz rule, the former identity can be written as
ż

pt`1qB
η2|∇u|2 “ ´

ż

pt`1qB
2uη∇u ¨ ∇η,

and using Hölder’s inequality we get

ż

pt`1qB
η2|∇u|2 ď

˜

ż

pt`1qB
4u2|∇η|2

¸
1
2
˜

ż

pt`1qB
η2|∇u|2

¸
1
2

.

Thus,
ż

B
|∇u|2 ď

ż

pt`1qB
η2|∇u|2 ď

ż

pt`1qB
4u2|∇η|2 ď

4

prtq2

ż

pt`1qBzB
u2.

The Caccioppoli inequality is also valid for subharmonic functions, see Section 5.1. This
inequality implies the universal control for the gradient in terms of the distance to the
boundary and the L8 norm of u:

Lemma 2.11. Let Ω Ă Rd be an open set, and let u be harmonic in Ω. Then

|∇upxq| À
}u}L8pΩq

dΩpxq
, (2.9)

where dΩpxq :“ distpx, BΩq.

Proof. Since the derivatives of u are harmonic, by the mean value theorem and the Cac-
cioppoli inequality

|∇upxq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

ż

B 1
2 dΩpxq

pxq

∇u dm

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

¨

˝ ´

ż

B 1
2 dΩpxq

pxq

|∇u|2 dm

˛

‚

1
2

ď

˜

4

p12dΩpxqq2
´

ż

BdΩpxqpxq

|u|2 dm

¸
1
2

À
1

dΩpxq
}u}L8pΩq,

7



2 Harmonic functions

as claimed.

By iterating the estimate in Lemma 2.10, we immediately obtain the following.

Lemma 2.12. Let u be a harmonic function in B1p0q. Then, for all k ě 1,

}u}CkpB1{2p0qq ď Cpkq }u}L8pB1p0qq.

Then we deduce the following generalization of Liouville’s theorem.

Proposition 2.13. Let γ ą 0 and let u be harmonic in Rd such that |upxq| ď Cp1` |x|qγ

for all x P Rd. Then u is a polynomial of degree at most tγu.

Proof. For r ą 0, consider the function urpxq “ upr xq. Since ur is harmonic, for any
k ą 1, by Lemma 2.12 we have

}Dku}L8pBr{2p0qq “
1

rk
}Dkur}L8pB1{2p0qq ď

Cpkq

rk
}ur}L8pB1p0qq

“
Cpkq

rk
}u}L8pBrp0qq ď

C 1pkqp1 ` rqγ

rk
.

For k “ tγu`1, the term on the right hand side tends to 0 as r Ñ 8, and thusDku vanishes
identically in Rd. Consequently, u is a polynomial of degree at most k ´ 1 “ tγu.

Lemma 2.14. Every sequence of uniformly bounded harmonic functions in an open set
Ω is locally equicontinuous, it has a converging subsequence, and the limit is harmonic as
well.

Proof. Let tunun with ∆un “ 0 in Ω and }un}L8pΩq ď C ă 8.
By assumption un is a sequence of uniformly bounded and, by Lemma 2.11, uniformly

locally equicontinuous functions. By the Ascoli-Arzelá theorem, un has a partial converg-
ing uniformly in every compact subset of Ω.
To see that the limit is also harmonic just apply the converse to the mean value theorem

(see Theorem 2.3) to the limiting function.

2.3 Harnack’s inequality

Lemma 2.15 (Harnack’s inequality). Let B be a ball and let u ě 0 be a harmonic function
in 2B. Then

sup
B
u ď C inf

B
u.

Remark that the estimate above is equivalent to saying that

C´1upxq ď upyq ď C upxq for all x, y P B.

8



2 Harmonic functions

Proof. Set B “ Bpx0, rq. To prove the lemma it suffices to show that, for all y, z P B,
upyq À upzq, with the implicit constant depending only on d. Suppose first that |y ´ z| ď

r{4. Then we have Bpy, r{4q Ă Bpz, r{2q ĂĂ 2B, and so we have, by the mean value
property,

upyq “ ´

ż

Bpy,r{4q

u dx À ´

ż

Bpz,r{2q

u dx “ upzq.

In the case when |y ´ z| ą r{4, we partition the segment ry, zs into eight segments Ij
with equal length and disjoint interiors. So we write

ry, zs “
ď

0ďjď7

ryj , yj`1s,

and we assume that y “ y0, z “ y8. Since the length of ry, zs is at most diampBq “ 2r, it
holds |yj ´yj`1| ď r{4 for each j. By the previous estimate, then we have upyjq À upyj`1q

for each j. Thus,
upyq “ upy0q À upy1q À ¨ ¨ ¨ À upy8q “ upzq.

Note that by modifying the argument above we can get that for every t ě 0 there exists
an optimal constant εptq so that every harmonic function u ě 0 in p1 ` tqB satisfies

sup
B
u ď p1 ` εptqq inf

B
u.

The reader can prove that ε is non-increasing and εptq
tÑ0
ÝÝÑ 8. But the interesting asymp-

totic behavior is for t Ñ 8:

Lemma 2.16 (Asymptotic Harnack inequality). There exists a nonnegative function

εptq
tÑ8
ÝÝÝÑ 0 so that every harmonic function u ě 0 in p1 ` tqB satisfies that

sup
B
u ď p1 ` εptqq inf

B
u.

Proof. The proof follows by an argument very similar to the one in the preceding lemma.
Indeed, assume t ě 8, say, and consider arbitrary points x, z P B. Furthermore, assume
without loss of generality that rpBq “ 1. Then we have Bpx, t{2q Ă Bpz, 2`t{2q Ă p1`tqB
and so

upxq “
1

|Bpx, t{2q|

ż

Bpx,t{2q

u dy ď
1

|Bpx, t{2q|

ż

Bpz,2`t{2q

u dy

“
|Bpz, 2 ` t{2q|

|Bpx, t{2q|
upzq “

ˆ

4 ` t

t

˙d

upzq.

So we may choose εptq “
`

4`t
t

˘d
´ 1.

Lemma 2.17. Let Ω Ă Rd be a domain and let x, y P Ω. Then there is a constant Cx,y ą 0
depending just on x, y, and Ω such that for any positive harmonic function u in Ω, it holds

C´1
x,y upxq ď upyq ď Cx,y upyq.

9



2 Harmonic functions

Remark that the important fact about the estimate above is that the constant Cx,y does
not depend on the particular function u.

Proof. Let γ Ă Ω be a compact curve contained in Ω whose end points are x and y, and
let δ “ distpγ, BΩq. By the compactness of γ, there is a finite covering of γ by open balls
Bi, i “ 1, . . . ,m, centered in γ with rpBiq “ δ{2 (with m depending on Ω and γ).

We reorder the balls Bi as follows. Suppose that x P B1 without loss of generality. If
m ě 2, because of the connectivity of γ, there exists another ball Bi, call it B2, such that
B1 X B2 ‰ ∅. Next, if m ě 3, by the connectivity of γ again, there exists another ball,
call it B3, such that pB1 Y B2q X B3 ‰ ∅, and so on. Denote Uk “

Ť

1ďiďk Bi, so that
Uk “ Uk´1 YBk, Uk´1 XBk ‰ ∅, and γ Ă Um.
Given u harmonic and positive in Ω, by Harnack’s inequality upzq « upz1q for all z, z1 P

Bi (since 2Bi Ă Ω). Then, by induction it follows easily that upzq « upz1q for all z, z1 P Uk

(with the implicit constant depending on k), for k “ 1, . . . ,m. In particular, upxq «m

upyq.

2.4 The fundamental solution

To conclude this chapter, we will see that every harmonic distribution (see Definition
2.9) is in fact a C8 function. This is a quite general fact for elliptic partial differential
equations with C8 fundamental solutions, see [Fol95, Theorem 1.58] for the details.
Let us define

Epxq “

$

’

’

’

’

&

’

’

’

’

%

|x|2´d

pd´ 2qκd
if d ą 2,

´ log |x|

2π
if d “ 2,

(2.10)

Note that, since κ2 “ 2π, for every n ě 1 its gradient is

∇Epxq “
´x

κd|x|d
. (2.11)

Proposition 2.18. The fundamental solution of p´∆q in Rd is precisely E, i.e. ´∆E is
the Dirac delta distribution δ0.

The preceding proposition must be understood in the sense that for every test function
φ P DpRdq :“ C8

c pRdq, we have

φp0q “: xδ0, φy “ ´x∆E , φy “ ´xE ,∆φy.

Proof of Proposition 2.18. Consider ϵ ą 0 and let ν be the normal vector to Sϵ pointing
towards the origin. For φ P C8

c we have

´xE ,∆φy “

ż

∇E ¨ ∇φ. (2.12)

10



2 Harmonic functions

Indeed,

ˇ

ˇ

ˇ

ˇ

´xE ,∆φy ´

ż

∇E ¨ ∇φ
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bϵ

E∆φ`

ż

Bc
ϵ

E∆φ`

ż

∇E ¨ ∇φ
ˇ

ˇ

ˇ

ˇ

ˇ

Green
ď

ˇ

ˇ

ˇ

ˇ

ż

Bϵ

E∆φ
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bc
ϵ

∇E ¨ ∇φ´

ż

∇E ¨ ∇φ
ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

Sϵ

E∇φ ¨ ν

ˇ

ˇ

ˇ

ˇ

À }∆φ}8}E}L1pBϵq `

ˇ

ˇ

ˇ

ˇ

ż

Bϵ

∇E ¨ ∇φ
ˇ

ˇ

ˇ

ˇ

` }E}L8pSϵq}∇φ}8ϵ
d´1.

For d “ 2, using (2.10) we have }E}L1pBϵq «
şϵ
0 r| log r|dr

ϵÑ0
ÝÝÑ 0 and }E}L8pSϵq “ c| log ϵ|.

In case d ą 2, then using (2.10) we have }E}L1pBϵq «
şϵ
0 rdr

ϵÑ0
ÝÝÑ 0 and }E}L8pSϵq “ cϵ2´d.

All in all, letting ϵ Ñ 0 we get (2.12).
Moreover,

| ´ xE ,∆φy ´ φp0q|
(2.12)

“

ˇ

ˇ

ˇ

ˇ

ż

∇E ¨ ∇φ´ φp0q

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bϵ

∇E ¨ ∇φ`

ż

Bc
ϵ

∇E ¨ ∇φ´ φp0q

ˇ

ˇ

ˇ

ˇ

ˇ

Green
À }∇φ}8

ż

Bϵ

|x|
1´d

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Sc
ϵ

∇E ¨ νφ´ φp0q

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bc
ϵ

∆Eφ
ˇ

ˇ

ˇ

ˇ

ˇ

Now,
ş

Bϵ
|x|

1´d
« ϵ

ϵÑ0
ÝÝÑ 0, and ∆E ” 0 in Bc

ϵ . Moreover, for y P Sϵ we get

∇Epyq ¨ νpyq “
´y

κd|y|d
¨

´y

|y|
“

1

κdϵd´1
“

1

σpSϵq
.

Thus,

| ´ xE ,∆φy ´ φp0q| À

ˇ

ˇ

ˇ

ˇ

ˇ

´

ż

Sc
ϵ

φ´ φp0q

ˇ

ˇ

ˇ

ˇ

ˇ

ϵÑ0
ÝÝÑ 0,

as claimed by the continuity of φ at the origin.

The preceding proposition implies that for every test function φ P DpΩq, we have

´∆pE ˚ φqpxq “ φpxq. (2.13)

Note that E ˚ φ P C8 because E P L1
loc.

In fact we obtain the following:

Proposition 2.19. Let u be a harmonic distribution in an open set Ω. Then u P C8pΩq,
and u is a harmonic function.

Remark that a distribution is called harmonic if it is distributionally harmonic.
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2 Harmonic functions

Proof. Given a distibution T with compact support contained in a bounded open set V ,
for every φ P C8

c pRnq we can define

xE ˚ T, φy :“ xT, ψpE ˚ pφ´qq´y,

where ψ is any cuttof function ψ P C8
c with χsuppT ď ψ ď χV , and f´pxq :“ fp´xq.

This definition does not depend on the particular choice of ψ, because the test function
in the right-hand side will not vary in the support of T . Moreover, we claim that this
distribution is in fact C8 out of the support of T . Indeed, for any test function φ with
suppφ X suppT “ ∅, one can consider ε :“ distpsuppφ, suppT q, and given a C8 function
ϕ such that χBε{4

ď ϕ ď χBε{2
, one can infer that xE ˚ T, φy “ xpp1 ´ ϕqEq ˚ T, φy. The

latter can be shown to be a C8 distribution arguing as in the proof of [Gra08, Theorem
2.3.20].
When u is a distribution in an open set Ω such that ∆u “ 0, given a ball B Ă Ω we

can define a cut-off function ψB P C8 such that χ 1
2
B ď ψB ď χB. Then ∆pψBuq is a

distribution supported in Bz1
2B and therefore E ˚ p∆pψBuqq is a well-defined distribution.

Given φ P DpΩq :“ C8
c pΩq, assuming if necessary that ψB∇ψ ” 0, we have

xE ˚p´∆pψBuqq, φy “ xp´∆pψBuqq, ψpE ˚pφ´qq´y “ xψBu,´∆pE ˚pφ´qq´y
(2.13)

“ xψBu, φy,

i.e. E ˚ p´∆pψBuqq “ ψBu in the distributional sense. Since the former is in fact C8 out
of the support of ∆pψBuq, we conclude in particular that in 1

2B, the function u “ ψBu is
C8. Harmonicity comes by integration by parts.

The approach above can be slightly modified in order to obtain the hypoellipticity of
the laplacian:

Theorem 2.20 ([Fol95, Theorem 1.58]). The laplacian ∆ is hypoelliptic, i.e., if u is a
distribution on a bounded open set Ω such that ∆u P C8pΩq then u P C8pΩq.

Remark 2.21. Note that E P Lp
loc for every p ă d

d´2 , and ∇E P Lp
loc for every p ă d

d´1 .

The integrability at infinity is obtained for p ą d
d´2 , and p ą d

d´1 respectively.
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3 The Dirichlet Problem

3.1 The weak formulation

Consider the problem of finding a solution u P C2pΩq X CpΩq in an open set Ω Ă Rd to
the Dirichlet problem with boundary data f P CpBΩq:

#

∆u “ 0 in Ω,

u “ f on BΩ.
(3.1)

To obtain a general theory of existence and uniqueness, we can work in Sobolev spaces
with only one derivative, and this requires a weak formulation of the Dirichlet problem.
Assume that u P C1pΩq, and let φ P C8

c pΩq. Then Green’s theorem implies that

0 “

ż

Ω
φ∆u “ ´

ż

Ω
∇u ¨ ∇φ`

ż

BΩ
φ∇u ¨ ν dσ “ ´

ż

Ω
∇u ¨ ∇φ. (3.2)

Equation (3.2) provides us with a weak formulation of ∆u “ 0. But how can we encode
the boundary behavior? Set

H1pΩq :“ W 1,2pΩq :“ tf P L2pΩq : Bif P L2pΩq for 1 ď i ď n` 1u,

and we define

H1
0 pΩq :“ C8

c pΩq
H1pΩq

and the quotient space
H1{2pBΩq :“ H1pΩq{H1

0 pΩq

(see [Sch02, Theorem 3.13], for instance). Given f P H1pΩq, its class in H1{2pBΩq is often
called “the trace of f”. Now, in a bounded open set Ω, if u “ f in BΩ and u, f P C2pΩq,
then one can show that u ´ f P H1

0 pΩq. Moreover, the identity (3.2) can be extended by
density to φ P H1

0 pΩq.
All in all, in an open set Ω, we say that u P H1pΩq is a (weak) solution to the Dirichlet

problem (3.1) if
$

&

%

ż

Ω
∇u ¨ ∇φ “ 0 for every φ P H1

0 pΩq, and

f ´ u P H1
0 pΩq.

(3.3)

Note that if u P C2pΩq XH1pΩq is a weak solution (3.3), then it is also a solution to (3.1)
for f regular enough.
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3 The Dirichlet Problem

Let us write v :“ u´ f . Solving (3.3) is equivalent to finding v P H1
0 pΩq solving

ż

Ω
∇v ¨ ∇φ “ ´

ż

Ω
∇f ¨ ∇φ for every φ P H1

0 pΩq, (3.4)

which in the strong formulation reads as

#

∆v “ ∆f in Ω,

v “ 0 on BΩ.

Proposition 3.1. Let Ω Ă Rd be open and let u P H1
0 pΩq be a harmonic function. Then

it is the null function.

Proof. There exist C8
c functions ψi such that ψi Ñ u in H1. Note that

ż

∇ψi ¨ ∇ψi “

ż

∇ψi ¨ ∇pu´ ψiq `

ż

∇ψi ¨ ∇u.

But the last integral is null because u is harmonic. Thus, using the Cauchy-Schwartz
inequality we get

}∇ψi}
2
L2 ď }∇ψi}L2}∇pu´ ψiq}L2 ,

i.e.
}∇ψi}L2 ď }∇pu´ ψiq}L2 .

Taking limits,
}∇u}L2 “ lim

iÑ8
}∇ψi}L2 ď lim

iÑ8
}∇pu´ ψiq}L2 “ 0.

Thus, u is constant and has trace 0, so it is the null function.

Remark 3.2. Note that the preceding result does not apply to log |x| in the complement
of B1, since it does not have trace 0 according to the definitions, neither to xd in Rd

`.
Indeed, C8

c functions cannot approach in L2 norm a function which does not belong to
L2. The condition u P H1pΩq is not satisfied in this case.

Theorem 3.3 (Riesz representation theorem for Hilbert spaces, see [Sch02, Theorem
2.1]). Let H be a Hilbert space with inner product p¨, ¨q, and let H˚ be its dual. Then for
each u˚ P H˚ there exists a unique u P H such that

xu˚, vy “ pu, vq.

Corollary 3.4. Let Ω be open and let f P H
1
2 pBΩq. If the Dirichlet problem (3.1) has a

solution u P H1pΩq, then this is unique and moreover u P C8pΩq. If Ω is bounded, then
the solution exists.

Proof. The uniqueness of the solution comes from Proposition 3.1 and the smoothness
from hypoellipticity (see Section 2.4).
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3 The Dirichlet Problem

Suppose now that Ω is bounded. Then }∇v}L2pΩq is a norm for the functions v P H1
0 pΩq

(because of the Poincaré inequality) and the associated scalar product equals

pv, φq “

ż

∇v ¨ ∇φ for all v, φ P H1
0 pΩq.

Let F denote a representative of f in H1pΩq. Consider the linear functional TF : H1
0 pΩq Ñ

R defined by

TF pφq “ ´

ż

Ω
∇F ¨ ∇φ for every φ P H1

0 pΩq.

By the Riesz representation theorem, there exists a unique v P H1
0 pΩq such that pv, φq “

TF pφq for every φ P H1
0 pΩq. Then u :“ v ` F is weakly harmonic in Ω, since

ż

∇u ¨ ∇φ “

ż

∇pv ` F q ¨ ∇φ “ ´

ż

Ω
∇F ¨ ∇φ`

ż

Ω
∇F ¨ ∇φ “ 0

for every φ P H1
0 pΩq. Moreover, u “ f on BΩ in the sense that F ´ u “ v P H1

0 pΩq. So u
solves (3.3).

3.2 The Green function

Let Ω Ă Rd be a bounded open set, let x P Ω, and define the fundamental solution (to
´∆) with pole at x as

Expyq :“ Epx´ yq,

see (2.10). Note that E0 “ E . The equation

#

∆v “ 0 in Ω,

v “ ´Exp¨q on BΩ
(3.5)

has a unique weak solution vx P H1pΩq by Corollary 3.4. Then we define the Green
function with pole at x as

Gxpyq :“ vxpyq ` Expyq. (3.6)

Using Remark 2.21, we immediately obtain the following result:

Lemma 3.5. Let Ω be a bounded open set, and let Gx be its Green function with pole
x P Ω. Then Gx P W 1,ppΩq for every p ă d

d´1 .

The thoughtful reader may notice that Ex is not an H1 function, so (3.5) is not well
defined, but this can be fixed by multiplying E times ψx

BΩ, which is defined to be a C8

function vanishing in a neighborhood of x such that ψx
BΩ ” 1 in a neighborhood of BΩ,

i.e., vx is the weak solution to
#

∆v “ 0 in Ω,

v “ ´ψx
BΩEx on BΩ.

(3.7)
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Definition 3.6. Given x P Ω, define dΩpxq :“ distpx, BΩq and call Ux :“ B 1
2
dΩpxqpxq.

Then, since Ux X BΩ “ ∅, we can find a compact set Kx and open sets Vx, rVx such that
BΩ Ă Vx Ă rVx Ă Kx Ă Ux

c
and a bump function ψx

BΩ P C8pRdq satisfying

χVx ď ψx
BΩ ď χ

rVx
. (3.8)

Note that for every φ P C8
c pΩq one has

ż

∇Gxpyq ¨ ∇φpyq dy “

ż

∇vxpyq ¨ ∇φpyq dy `

ż

∇Expyq ¨ ∇φpyq dy

“ 0 `

ż

∇Epzq ¨ ∇zφpx` zq dz
P.2.18

“ φpxq. (3.9)

That is ∆Gx “ ´δx as a distribution in D1pΩq, with “vanishing” boundary values, i.e.,
with ψx

BΩG
x P H1

0 pΩq (see (3.8) above and Remark 2.21), so we say that Gx is the weak
solution to

#

´∆Gx “ δx in Ω,

Gx “ 0 on BΩ.
(3.10)

For any given φ P C8
c pΩq, we can write

φpyq “

ż

Ω
∇φpzq ¨ ∇Gypzq

by (3.9). We want to apply this identity to φ “ Gx, but it is not a test function, so we
need to be more careful.

Lemma 3.7. Let Ω Ă Rd be a bounded open set. Then

Gxpyq “

ż

Ω
∇Gx ¨ ∇Gy dm,

whenever x, y P Ω are different points. In particular,

Gxpyq “ Gypxq.

In other words, the Green function is symmetric and, therefore, it is harmonic also with
respect to x. As a consequence, vxpyq “ vypxq and it is harmonic with respect to x P Ω as
well. Note that for the lemma to make sense, we need that ∇Gx ¨ ∇Gy P L1pΩq. A priori
one may think that for p ă d

d´1 , estimate Gx P W 1,p
loc pΩq from Lemma 3.5 is not enough to

grant integrability of ∇Gx ¨ ∇Gy. However, both terms are C8 away from the pole, and
since x ‰ y, then integrability comes from the local boundedness of the Green function
away from the pole together with the integrability of the singularities.

Proof of Lemma 3.7. In order to apply (3.9), we need to substitute the Green function by
a suitable test function approximating it. Let ψ :“ ψx

BΩψ
y
BΩ, and consider

Gx “ p1 ´ ψqGx ` ψGx. (3.11)
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Let U :“ prVx Y rVyqzΩc (see Definition 3.6) so that supppψq XΩ Ă U . Since ψGx P H1
0 pUq,

there exists tφkukPN Ă C8
c pUq so that

φk
kÑ8

ÝÝÝÝÑ
H1pΩq

ψGx, (3.12)

which allows us to approximate the last term in (3.11). On the other hand, let η P

C8pRq such that χp0,1{2q ď η ď χp0,1q and write ηkpzq :“ ηpk|x ´ z|q, which allows us to
approximate the Green function around the pole p1 ´ ψqGx in (3.11) by p1 ´ ηk ´ ψqGx.

Next, we define
fkpzq :“ p1 ´ ηkpzq ´ ψpzqqGxpzq ` φkpzq,

which is in C8
c pΩq for k large enough. Note that subtracting ηk skips the pole x where

the Green function is not C8, and subtracting ψ skips the boundary, while the values of
ψGx are substituted by the approximation φk. Since ψpyq “ φkpyq “ ηkpyq “ 0, for k
large enough

Gxpyq “ fkpyq
(3.9)
“

ż

Ω
∇fk ¨ ∇Gy dm

“

ż

Ω
∇Gx ¨ ∇Gy dm`

ż

Ω
∇pfk ´Gxq ¨ ∇Gy dm. (3.13)

The lemma follows if we prove that
ˇ

ˇ

ˇ

ˇ

ż

Ω
∇pfk ´Gxq ¨ ∇Gy dm

ˇ

ˇ

ˇ

ˇ

kÑ8
ÝÝÝÑ 0 (3.14)

Indeed,
Gx ´ fk “ pηk ` ψqGx ´ φk,

and
∇pGx ´ fkq “ ∇ηkGx ` ηk∇Gx ` ∇pψGx ´ φkq.

Since y R supp∇pGx´fkq, ∇Gy stays bounded in the integral (3.14). For z P U ĂĂ Rdztxu

also Gx and ∇Gx stay bounded. Therefore we only need to show that

11 :“

ż

U
|∇pψGx ´ φkq|

kÑ8
ÝÝÝÑ 0,

and

22 :“

ż

B1{kpxq

|∇ηkpzqGxpzq ` ηkpzq∇Gxpzq|
kÑ8
ÝÝÝÑ 0.

By the Cauchy-Schwartz inequality, since |U | ă 8, using (3.12) we get the integrability
of the first term:

11 ď |U |
1
2 }∇pψGx ´ φkq}2

kÑ8
ÝÝÝÑ 0.

Finally, for d ě 3 and k large enough, we can neglect the vx term and bound the last
term by

22 À

ż

B1{kpxq

k|x´ z|2´d ` |x´ z|1´d ď k
1

k2
`

1

k
kÑ8
ÝÝÝÑ 0,

17



3 The Dirichlet Problem

proving (3.14). When d “ 2 the limit is also 0:

ż

B1{kpxq

k| logp|x´ z|q| ` |x´ z|´1 À k
1

k2

ˆ

´ logpkq `
1

2

˙

`
1

k
kÑ8
ÝÝÝÑ 0.

Consider f P C8
c pΩq. Then define

vpxq :“ ´

ż

Ω
Gxpyqfpyq dy “ ´f ˚ Epxq ´

ż

Ω
vxpyqfpyq dy.

Since vx is harmonic, ∆v “ f in Ω. Moreover, if Gx is continuous up to the boundary,
then Gxpyq vanishes for x P BΩ. So v is the natural candidate to be the solution to the
Dirichlet problem

#

∆v “ f in Ω,

v “ 0 on BΩ.
(3.15)

Assuming regularity on BΩ, we can define the Poisson kernel

P xpξq :“ ´BνG
xpξq for every x P Ω, ξ P BΩ.

If u P CpΩq is harmonic in Ω, then we can write formally

upxq “

ż

upzqδxpzq “

ż

Ω
pupzqp´∆Gxpzqq ` ∆upzqGxpzqq

Green
“

ż

BΩ
p´upζqBνG

xpζq ` BνupζqGxpζqqdζ.

If Gx vanishes continuously in the boundary, we get that

upxq “

ż

BΩ
upζqP xpζqdζ.

Therefore, we expect that the Dirichlet problem (3.1) may be solved by integrating the
boundary values times the Poisson kernel for regular enough domains. Harmonic measure
will be a generalization of the Poisson kernel to more rough domains.

Exercise 3.2.1. Let Ω Ă Rd be a bounded open set, and let G be its Green function.
Then

Rd´2G
´ x

R
,
y

R

¯

is the Green function for the set RΩ “ tRx : x P Ωu.

18



3 The Dirichlet Problem

3.3 Limitations of the weak formulation

The weak solution to the Dirichlet problem exposed above is only half-satisfactory. We get
existence and uniqueness for every bounded open set, but it is not quite clear what does it
mean to have 0 trace. In practical applications of (3.1) we would like to prescribe boundary
values f only in the boundary of the domain, and not in a neighborhood of it. Moreover,
one should expect that in case f is continuous, then the solution u is continuous up to the
boundary, with u|BΩ ” f . However, the weak solutions above may not be continuous up
to the boundary.

Example 3.8. Let Ω “ B1zt0u Ă Rd with d ě 3, and take f “ 0 in BB1p0q and fp0q “ 1.
A natural candidate to “represent” f in H1pΩq is the function F pxq “ 1 ´ |x|χB1 is in
H1pΩq. Let us see that its class in H1

0 pΩq coincides with the class of Gpxq ” 0, i.e., let’s

show that F ´G “ F P C8
c pΩq

H1pΩq
.

Let η P C8pRq such that χp´8,1{2q ď η ď χp´8,1q. Then let φεpxq “ ηpε´1|x|q and let
ψεpxq “ ηpε´1p|x| ´ 1` εqq, and consider hε :“ ψεp1´φεqF P C8

c pΩq. Then we have that
F “ hε in Bc

1 Y pB1´εzBεq

}F ´ hε}2 “ }p1 ´ ψεp1 ´ φεqqp1 ´ |x|χB1q}2 ď p|B1zpB1´ε YBε|q
1
2

εÑ0
ÝÝÝÑ 0.

On the other hand, since

}∇φε}8 ` }∇ψε}8 ď ε´1
›

›η1
›

›

8
,

and using that the support of F ´hε is contained in B1zB1´ε YBε, using the product rule
we deduce that

}∇pF ´ hεq}2 “ }∇rp1 ´ ψεp1 ´ φεqqp1 ´ |x|χB1qs}L2pB1zB1´εYBεq

ď

´

}ε∇ψε}
2
L2pB1zB1´εq ` }∇φε}

2
L2pBεq

¯
1
2

` }∇p|x|χB1q}L2pB1zB1´εYBεqq

εÑ0
ÝÝÝÑ 0.

We have seen that F P C8
c pΩq

H1pΩq
and therefore F ” 0 in H1

0 pΩq. Thus, the weak
solution to the Dirichlet problem

#

∆u “ 0 in Ω,

u “ F on BΩ
(3.16)

is u “ 0.

The example above is related to the fact that a point has capacity zero in Rd for every
d ě 2, see Chapter 6. We will see in further chapters that, in fact, there exists no harmonic
function u in Ω “ B1zt0u Ă Rd vanishing in BB1 such that limzÑ0 upzq “ 1 for d ě 2.

Further, is there a one-to-one relation between H
1
2 pBΩq and some class of functions

defined in BΩ? If the boundary of the domain is regular enough (existence of local bi-

lipschitz, C1 parameterizations should suffice, for instance), then the traces H
1
2

`εpBΩq of

W 1`ε,2 coincide with the Besov space B
1{2`ε
2,2 pBΩq, with an appropriate definition using

partitions of the unity and local parameterizations, see [Tri83, Section 3.3.3], for instance.
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3 The Dirichlet Problem

3.4 Solvability of the Dirichlet problem for continuous functions:
the case of the unit ball

Definition 3.9. We say that the Dirichlet problem (3.1) in an open set Ω is solvable for
continuous functions if there exists a function uf P CpΩq for every f P CpBΩq such that
∆u “ 0 in Ω and upyq “ fpyq for y P BΩ.

Note that such a solution would be unique by the Uniqueness Theorem 2.7.

Next we will study the sovability of the Dirichlet problem for continuous functions in
the case Ω is the unit ball. First we will need to introduce the Green function in the unit
ball, which has a nice algebraic expression.

Lemma 3.10. Let x, y P Rdzt0u. Then

ˇ

ˇ

ˇ

ˇ

x

|x|
´ |x|y

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

|y|x´
y

|y|

ˇ

ˇ

ˇ

ˇ

.

Proof. Let t P R, t ą 0. Then

ˇ

ˇ

ˇ

x

t
´ ty

ˇ

ˇ

ˇ

2
“

|x|2

t2
´ 2x ¨ y ` t2|y|2.

Evaluating for t “ |x| and for t “ |y|´1 we reach the same expression.

Define

vxpyq :“

#

´Ep x
|x|

´ |x|yq if x ‰ 0,

´Epe1q if x “ 0.

Note that for |ξ| “ 1, x ‰ 0 we get that
ˇ

ˇ

ˇ

x
|x|

´ |x|ξ
ˇ

ˇ

ˇ
“ |x´ ξ| from the previous lemma,

so vxpξq “ ´Epx ´ ξq. The same happens when x “ 0 because the fundamental solution
depends only on the modulus. Moreover, for fixed x P B1, v

x has no singularity in B1,
given that

x

|x|
´ |x|y “ 0 ùñ y “

x

|x|2
ùñ y R B1.

Therefore vx P C1pB1q Ă H1pΩq and ∆vx “ 0 in B1. So the Green function (3.6) in the
unit ball is

Gxpyq :“

#

Epx´ yq ´ Ep x
|x|

´ |x|yq if x ‰ 0,

Ep´yq ´ Epe1q if x “ 0.

Note that Gxpyq “ Gypxq by Lemma 3.10.
Now we can compute the Poisson kernel: for x “ 0, |ξ| “ 1, it is

BνG
0pξq “ ξ ¨ ∇Epξq

(2.11)
“ ξ ¨

´ξ

κd|ξ|d
“ ´

1

κd
,
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3 The Dirichlet Problem

and for x ‰ 0, |ξ| “ 1 we get

BνG
xpξq “ ξ ¨ ∇y

ˆ

Epx´ yq ´ E
ˆ

x

|x|
´ |x|y

˙˙

|y“ξ

(2.11)
“ ξ ¨

¨

˚

˝

x´ ξ

κd|x´ ξ|d
´

x
|x|

´ |x|ξ

κd

ˇ

ˇ

ˇ

x
|x|

´ |x|ξ
ˇ

ˇ

ˇ

d
|x|

˛

‹

‚

L. 3.10
“ ξ ¨

˜

x´ ξ ´
`

x´ |x|2ξ
˘

κd |x´ ξ|
d

¸

“ |ξ|2
|x|2 ´ 1

κd |x´ ξ|
d

“
|x|2 ´ 1

κd |x´ ξ|
d
.

Summing up, for x P B1 and |ξ| “ 1 we get

P xpξq “
1 ´ |x|2

κd |x´ ξ|
d
. (3.17)

Theorem 3.11. Let f P L1pBB1q and define

uf pxq :“

ż

BB1

P xpζqfpζq dσpζq for x P B1.

Then u is harmonic on B1. If f is continuous, then uf P CpB1q, with uf |BB1 “ f . If
f P LppBB1q, then uf pr¨q Ñ f in LppBB1q as r Ñ 1.

Proof. The function uf is well defined because the Poisson kernel is bounded for x fixed.
Since G is harmonic on x, P is also harmonic on x and so is uf .
We claim that for every x P BB1, P

x dσ is a probability measure, i.e.,

ż

BB1

P x dσ “ 1. (3.18)

Indeed, for x “ 0 it is trivial. By (3.17), the mean value theorem and Lemma 3.10 we get

1

κd

(3.17)
“ P 0

ˆ

x

|x|

˙

(2.2)
“ ´

ż

P |x|ξ

ˆ

x

|x|

˙

dσpξq
L. 3.10

“ ´

ż

P x pξq dσpξq,

as claimed.
If f is continuous and ξ P BB1, then

|fpξq ´ uf prξq|
(3.18)

“

ˇ

ˇ

ˇ

ˇ

ż

BB1

P rξpζqpfpξq ´ fpζqq dσpζq

ˇ

ˇ

ˇ

ˇ

ď

ż

|ζ´ξ|ďδ

ˇ

ˇ

ˇ
P rξpζq

ˇ

ˇ

ˇ
|fpξq ´ fpζq| dσpζq `

ż

|ζ´ξ|ąδ

ˇ

ˇ

ˇ
P rξpζq

ˇ

ˇ

ˇ
|fpξq ´ fpζq| dσpζq

(3.18)
ď sup

|ζ´ξ|ďδ
|fpξq ´ fpζq| ` 2}f}8 sup

|ζ´ξ|ąδ

ˇ

ˇ

ˇ
P rξpζq

ˇ

ˇ

ˇ
.
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The first term in the right-hand side of the last estimate can be made arbitrarily small
by fixing δ small enough, and then the second term can also be made small by choosing
r close enough to 1. Choices can be made independently of ξ. This shows that uf pr¨q

converges uniformly to uf , and this implies global continuity.
If f P LppBB1q, then we can use the density of C8 on Lp to find a function fε P C8pBB1q

with }f ´ fε}LppBB1q ď ε. Now,

}f ´ uf pr¨q}LppBB1q
ď }f ´ fε}LppBB1q ` }fε ´ ufεpr¨q}LppBB1q

` }ufεpr¨q ´ uf pr¨q}LppBB1q
.

Choosing ε small enough and r close enough to 1, the two first terms can be made arbi-
trarily small.
Regarding the last one, we claim that }ufεpr¨q ´ uf pr¨q}LppBB1q

ď }fε ´ f}LppBB1q. In-
deed, for p “ 1 we have

}ugpr¨q}L1pBB1q
ď

ż

BB1

ż

BB1

P rξpζq |gpζq| dσpζq dσpξq ď }g}L1pBB1q

ż

BB1

P rξpζq dσpξq.

Note that the mean value theorem
ż

BB1

P rξpζq dσpξq “ κdP
0pζq “ 1,

so g ÞÑ ug is bounded in L1pBB1q with norm 1. On the other hand,

}ugpr¨q}L8pBB1q
ď sup

ξPBB1

ż

BB1

P rξpζq |gpζq| dσpζq ď }g}8 sup
ξPBB1

ż

BB1

P rξpζq dσpζq
(3.18)

“ }g}8.

By interpolation we get that f ÞÑ uf pr¨q is a bounded operator in LppBB1q with norm 1.
This fact proves the claim and, therefore, the Lp convergence follows.

Remark 3.12. For the ball Brp0q, with r ą 0, we have a similar result. In this case the
Poisson kernel for Brp0q equals

P x
Brp0qpξq “

r2 ´ |x|2

κd r |x´ ξ|
d
.

Then the same result as in Theorem 3.11 holds for f P L1pBBrp0qq, with P xpζq replaced
by P x

Brp0q
pζq. That is, the function

uf pxq :“

ż

BBrp0q

P x
Brp0qpζq dσpζq for x P Brp0q,

solves the Dirichlet problem with boundary data f in Brp0q when f is continuous. Also,
for f P LppBBrp0qq, we have that uf pr¨q Ñ f in LppBBrp0qq as r Ñ 1.
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3.5 Double layer potential: exploiting the jump formulas

When a domain Ω has bounded and smooth boundary, say BΩ P C1`ϵ, then a usual way to
solve the Dirichlet problem (3.1) for continuous functions is via the double layer potential.
We will not prove here the results, but we will sketch the main ideas, which can be found
for instance in [Fol95, Chapter 3].
Consider the gradient of the fundamental solution

∇Expyq “
px´ yq

κd|x´ y|d
,

which is the kernel of the so-called Riesz transform of homogeneity 1 ´ d. In particular,
the normal derivative of E in the boundary of Ω,

Kxpζq :“ BνExpζq “ νpζq ¨ ∇Expζq “
px´ ζq ¨ νpζq

κd|x´ ζ|d

for ζ P BΩ and x P Rdztζu is well defined whenever BΩ has C1 parameterizations. Then
for every g P CpBΩq and every x P RdzBΩ, we can consider the double layer potential

Dgpxq :“

ż

BΩ
Kxpζqgpζqdσpζq,

which is harmonic in pBΩqc.
The double layer potential is not well defined a priori in the boundary of the domain,

but it makes sense to define its principal value for ξ P BΩ as

TKpgqpξq :“ p.v.Dgpξq “ lim
εÑ0

ż

BΩzBεpξq

Kxpζqgpζqdσpζq. (3.19)

This pointwise definition does not coincide with the (non-tangential) limit of the double
layer potential,

Dgpξq :“ n.t. lim
xÑξ

Dgpxq “ lim
xÑξ:2dΩpxqě|x´ξ|

Dgpxq,

where dΩpxq “ distpx, BΩq. However, they are related by the so-called jump formula:

Dgpξq “
1

2
gpξq ` TKpgqpξq,

which is a consequence of the identities

ż

Kxpζq dσpζq “

$

’

&

’

%

1 if x P Ω,

1{2 if x P BΩ, understood as a principal value,

0 if x P Ω
c
.

When the boundary has parameterizations in C1`ε, the normal vector becomes Hölder
continuous and the singularity of Kx is of homogeneity below d ´ 1, and it is therefore
integrable with respect to the surface measure, so we can omit the principal value in (3.19).
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Then the kernel Kx becomes somewhat smoothing in this case, in the sense that TK maps
L8pBΩq to CpBΩq for instance, and it is compact in L2pBΩq, and the operator 1

2 I`TK is
Fredholm in L2pBΩq. Moreover, if p12 I`TKqpgq P CpΩq with g P L2pBΩq, then g P CpBΩq.

In fact, if Ω is simply connected and C1`ε, then 1
2 I`TK happens to be invertible in

L2pBΩq. Thus, given f P CpΩq, one can find a unique solution to the Dirichlet problem
by finding the unique solution to the equation f “ p12 I`TKqpgq. Then u :“ Dpgq, i.e.
u “ Dp12 I`TKq´1pfq satisfies (3.1) in the sense that

#

∆u “ 0 in Ω,

n.t. limxÑξ upxq “ fpξq on BΩ.
(3.20)

If Ω is multiply connected, some modifications related to the connectivity of the com-
plement need to be done in order to find an inverse operator in a suitable function space.
The Dirichlet problem in the unbounded component can also be solved in this way, and

assuming a priori that the solution uf satisfies that uf pxq “ OxÑ8p|x|3´dq one can get
also uniqueness.
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4 Basic results from measure theory and
weights

4.1 Measures

Following [Mat95] or [EG15], we will define a measure on a set X as a function on the parts
of X, regardless of the σ-algebra of measurable sets. This is often called exterior measure
in some references, but it is quite elementary to define the σ-algebra of measurable sets
once the (exterior) measure is given. Conversely, every countably additive non-negative
set function on a σ-algebra of subsets of X can be extended to every set, see [Mat95]. Let
us assume that X is a metric space.

Definition 4.1. We say that µ : tA : A Ă Xu Ñ R is a measure if

1. µpHq “ 0,

2. µpAq ď µpBq whenever A Ă B Ă X and

3. µ
`
Ť8

i“1Ai

˘

ď
ř8

i“1 µpAiq, whenever Ai Ă X for every 1 ď i ă 8.

We say that A Ă X is µ-measurable if

µpEq “ µpE XAq ` µpEzAq for every E Ă X.

Definition 4.2. Given a set X, we say that a collection Σ of subsets of X is a σ-algebra
whenever Σ is closed under complement, countable unions, and countable intersections.
When X is a topological space, we define the collection of Borel sets of X as the minimal
σ-algebra containing all the open sets in the topology.

Lemma 4.3. The measurable sets form a σ-algebra. If tAiu
8
i“1 is a collection of µ-

measurable and pairwise disjoint sets, then

µ

ˆ

ď

i

Ai

˙

“
ÿ

i

µpAiq. (4.1)

If tBiu
8
i“1 is a collection of µ-measurable sets with Bi Õ B, i.e., if B1 Ă B2 Ă ¨ ¨ ¨ and

B “
Ť

iBi, then µpBq “ limi µpBiq.
If tCiu

8
i“1 is a collection of µ-measurable sets with Ci Œ C, i.e., if C1 Ą C2 Ą ¨ ¨ ¨ and

C “
Ş

iCi, and moreover µpC1q ă `8, then µ pCq “ limi µpCiq.

Definition 4.4. Let µ be a measure on a metric space X.
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1. µ is a Borel measure if all Borel sets are µ-measurable.

2. µ is a Borel regular measure if it is a Borel measure and for every A Ă X there is a
Borel set B Ą A such that µpBq “ µpAq.

3. µ is a Radon measure if it is Borel,

a) µpKq ă 8 for every compact set K Ă X,

b) µpV q “ suptµpKq : K Ă V is compactu for every open set V Ă X,

c) µpAq “ inftµpV q : V Ą A is openu for every set A Ă X.

4. In those cases, if the metric space is separable we say that suppµ :“
č

F“F :µpF cq“0

F .

Proposition 4.5 ([EG15, Theorem 1.8]). Let µ be a Radon measure in Rd. Then, for
each µ-measurable set A

µpAq “ suptµpKq : K Ă A is compactu.

Proposition 4.6 ([Mat95, Corollary 1.11]). Every locally finite Borel measure is a Radon
measure.

4.2 Integration

Let µ be a measure in Rd. We say that ϕ : Rd Ñ R is a simple function whenever there
exist a finite number of µ-measurable sets tAju

N
j“1 and coefficients tαju

N
j“1 Ă R such that

ϕ “

N
ÿ

j“1

αjχAj .

We can define its integral by
ż

ϕdµ :“
N
ÿ

j“1

αjµpAjq.

The set of simple functions is denoted by Sµ. Note that for ϕ P Sµ, the decomposition de-
scribed above is not unique, but its choice does not change the value of the integral. Given
a non-negative measurable function f : Rd Ñ R (i.e., a function such that f´1pr,`8q is
measurable for every r P R), we define its integral

ż

f dµ :“ sup

"
ż

ϕdµ : ϕ P Sµ with 0 ď ϕ ď f

*

.

Integration in measurable subsets is defined as
ż

A
f dµ :“

ż

fχA dµ.
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Theorem 4.7 (Fubini’s theorem). Suppose that µ, ν are locally finite Borel measures on
Rd1 and Rd2 respectively. If f is a non-negative Borel function on Rd1`d2, then

ż ż

fpx, yq dµpxq dνpyq “

ż ż

fpx, yq dνpyq dµpxq.

Corollary 4.8. Suppose that µ is a locally finite Borel measure on Rd. If f is a non-
negative Borel function on Rd, then

ż

fpxq dµpxq “

ż 8

0
µptx P Rd : fpxq ě tuq dt.

Given a µ-measurable function f : Rd Ñ R, and 0 ă p ă 8, we say that f P Lppµq

whenever }f}Lppµq :“
`ş

|f |p dµ
˘

1
p ă `8. In case f P L1pµq, we can define

ż

f dµ :“

ż

f` dµ´

ż

f´ dµ,

where
f` :“ maxtf, 0u, and f´ :“ maxt´f, 0u.

Note that f “ f` ´ f´, with f`, f´ ě 0. We say that f P L1
locpµq if fχK P L1pµq for

every compact set K. In this case we can define the centered Hardy-Littlewood maximal
operator

Mµfpxq :“ sup
rą0

´

ż

Brpxq

|f | dµ,

and the uncentered maximal operator

Mµ,ufpxq :“ sup
BQx

´

ż

B
|f | dµ.

We say a measurable function f is in the weak space Lp,8pµq, writting f P Lp,8pµq,
whenever

}f}Lp,8pµq :“ sup
0ătă8

t pµtx : |fpxq| ą tuq
1
p ă 8.

Jensen’s inequality ´
ş

A f À p ´
ş

A |f |p dµq
1
p , extends to the weak space as follows (see

[Mat95, Lemma 20.24], for instance)

Lemma 4.9. Both maximal operators Mµ and Mµ,u are bounded operators from L1 to
L1,8, and from Lp to Lp, see [Mat95, Chapter 2] or [Gra08, Exercise 2.1.1].

Lemma 4.10 (Kolmogorov’s inequality). Let µ be a Radon measure in Rd, and let g : Rd

be a Borel function such that }g}Lp,8 ă 8, with 1 ă p ă 8. Then for every µ-measurable
set A Ă Rd with µpAq ă 8 we have

´

ż

A
|g| dµ ď

p

p´ 1

}g}Lp,8pµq

µpAq
1
p

.

Exercise 4.2.1. Let µ be a Radon measure and let E “ supppµq. Show that continuous
functions are dense in L1pµq. Hint: Use the density of simple functions and via regularity
and Urysohn’s lemma, find continuous functions approximating f in the L1 norm.
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4.3 Differentiation of measures

Definition 4.11. Let µ and ν be Radon measures on Rd. We say that ν is differentiable
with respect to µ at x P supppµq if the limit

dν

dµ
pxq :“ lim

rÑ0

νpBrpxqq

µpBrpxqq

exists and is finite. We call this limit the density (or the derivative) of ν with respect to
µ.

Theorem 4.12 (see [Rud87, Theorem 1.29]). Whenever µ and ν are Radon measures,
the density dν

dµ is a µ-measurable function well defined µ-almost everywhere.

Definition 4.13. Let µ and ν be Borel measures on Rd. The measure ν is absolutely
continuous with respect to µ, written ν ! µ if

µpAq “ 0 ùñ νpAq “ 0, for all A Ă Rd.

The measures are mutually singular, written ν K µ, if there exists a Borel set B Ă Rd so
that

µpRdzBq “ 0 “ νpBq.

Theorem 4.14 (Radon-Nikodym derivative, see [Rud87, Theorem 1.30]). Let µ and ν be
Radon measures on Rd, with ν ! µ. Then dν

dµ P L1pµq and

νpAq “

ż

A

dν

dµ
dµ (4.2)

for all µ-measurable sets A Ă Rd.

Theorem 4.15 (Lebesgue decomposition theorem). Let µ and ν be Radon measures on
Rd. Then

ν “ νac ` νs,

where νac and νs are Radon measures such that

νac ! µ and νs K µ.

Moreover,
dν

dµ
pxq “

dνac
dµ

pxq and
dνs
dµ

pxq “ 0 µ´ a.e. x P Rd,

so

νpAq “

ż

A

dν

dµ
dµ` νspAq

for all Borel sets A Ă Rd.
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Theorem 4.16 (Lebesgue differentiation theorem). Let µ be a Radon measure on Rd,
and f P L1

locpµq. Then

lim
rÑ0

´

ż

Brpxq

f dµ “ fpxq, for µ-a.e. x P Rd,

and the same can be said replacing balls by cubes centered at x.

We say that a point x satisfying the previous equality is a density point of f with respect
to µ.

Exercise 4.3.1. Let µ and ν be Radon measures on Rd, with ν ! µ and νpRdq ą 0. Show
that there exists a µ-measurable set G with νpGq ą 0 and µ|G ! ν|G ! µ|G.

Exercise 4.3.2. Let µ and ν be Radon measures on Rd, with ν ! µ, and let f P L1pνq

be a Borel function. Show that f dν
dµ P L1pµq, with

ż

f dν “

ż

f
dν

dµ
dµ.

4.4 Muckenhoupt weights in general measures

In this section we define quantitative versions of mutual absolute continuity such as A8

for measures supported in closed subsets of Rd.
In this section we will consider a Radon measure µ, X will denote its support and we

will consider balls in X:

Definition 4.17. Let X Ă Rd. For every x P X and r ą 0 we write the restricted ball

∆r,x :“ ∆rpxq :“ Brpxq XX.

Note that, in particular, we always assume that restricted balls are centered in X. We
also use the classical notation for rescaled balls in the setting of restricted balls:

t∆r,x :“ ∆tr,x

Definition 4.18. Let µ be a Radon measure in Rd. Given a Radon measure ν supported
in X :“ suppµ, we say that ν P ABδ0,ε0pµ,Uq in an open set U Ă X if for every restricted
ball ∆ Ă U ,

µpEq ă δ0µp∆q ùñ νpEq ď ε0νp∆q @x P U , E Ă ∆ Borel. (4.3)

We say that ν P A8pµ,Uq if for every δ0 P p0, 1q, there exists ε0 P p0, 1q such that (4.3)
is satisfied. We say that ν P B1pµ,Uq if for every ε0 P p0, 1q, there exists δ0 P p0, 1q such
that (4.3) is satisfied. If this is satisfied for U “ E we simply omit U .
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Remark 4.19. Note that the existence of δ0 and ε0 satisfying (4.3) implies that ν|U ! µ|U

by the dyadic Lebesgue differentiation theorem. Indeed, if νpEq ą 0, there exists a point
x P E X suppµ with

lim
rÑ0

νpE X ∆r,xq

νp∆r,xq
“ 1.

Thus, for r small enough we need to have νpE X ∆r,xq ą ε0νp∆r,xq and ∆r,x Ă U , and we
get µpEq ě δ0µp∆r,xq ą 0, so we have shown absolute continuity.
Moreover, note that (4.3) is equivalent to

µpEq ą p1 ´ δ0qµp∆q ùñ νpEq ě p1 ´ ε0qνp∆q @x P U , E Ă ∆ Ă U Borel, (4.4)

by substituting E by ∆zE. Thus, it is also equivalent to

νpEq ă p1 ´ ε0qνp∆q ùñ µpEq ď p1 ´ δ0qµp∆q.

Note that this implies suppµ “ supp ν. By symmetry, we have shown that

ν P ABδ0,ε0pµ,Uq ðñ µ P AB1´ε0,1´δ0pν, Uq,

so in any case we get µ|U ! ν|U . Put in other words, the ABδ,ε condition is a quantitative
version of mutual absolute continuity.
Note that Theorem 4.14 implies that dν “ wdµ, so we will write also w “ dν

dµ P

ABδ0,ε0pµ,Uq. Given w P L1
locpµq, one can construct such a measure ν using (4.2).

Next we define the reverse Hölder classes of weights Bp and the Muckenhoupt classes
Ap.

Definition 4.20. Let µ be a Radon measure in Rd and letX :“ suppµ. Given w P L1
locpµq

and a relatively open set U Ă X,

• we say that w P Bppµ,Uq whenever the following reverse Hölder inequality is satisfied

ˆ

´

ż

∆
wp dµ

˙
1
p

ď C ´

ż

∆
w dµ for every restricted ball ∆ with ∆ Ă U.

• we say that w P Appµ,Uq whenever w
1

1´p P L1
locpµq and

´

ż

∆
w dµ

ˆ

´

ż

∆
w

1
1´p dµ

˙p´1

ď C for every restricted ball ∆ with ∆ Ă U.

The minimal constants satisfying these properties are called rwsBppµ,Uq and rwsAppµ,Uq

respectively. If this is satisfied for U “ Rd we omit U in the notation. If we call ν :“ wdµ,
then we may write also ν P Bppµ,Uq and ν P Appµ,Uq respectively.
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Remark 4.21. Let µ be a Radon measure in Rd, let X :“ suppµ and let F Ă X be a set
with positive measure. Assume that w P L1

locpµq satisfies

ˆ

´

ż

F
wp dµ

˙
1
p

ď C1 ´

ż

F
w dµ. (4.5)

If E is a µ-measurable subset of F , then by the Hölder inequality,

ż

E
w dµ ď

ˆ
ż

F
wp dµ

˙
1
p

µpEq
1´ 1

p “

ˆ

´

ż

F
wp dµ

˙
1
p

µpF q
1
pµpEq

1´ 1
p .

If we define ν using (4.2), by (4.5) we obtain

νpEq

νpF q
ď C1

ˆ

µpEq

µpF q

˙1´ 1
p

.

Thus, for every 0 ă ε0 ă 1, writing δ0 :“ pC´1
1 ε0q

1
α we have that

µpEq ă δ0µpF q ùñ νpEq ď ε0νpF q.

In particular, ν|F ! µ|F .
Let us write ν P Bα

1 pµ,Uq if suppν Ă suppµ and there exists C1 ě 1 such that

νpEq

νp∆q
ď C1

ˆ

µpEq

µp∆q

˙α

for every Borel E Ă ∆ Ă U. (4.6)

When we consider all restricted balls ∆ Ă U in the estimates above, we get

Bppµ,Uq Ă B
1´ 1

p

1 pµ,Uq Ă B1pµ,Uq Ă
ď

0ăδ,εă1

ABδ,εpµ,Uq.

Remark 4.22. If µ is a Radon measure and ν P ABδ,εpµ,Uq, then ν ! µ ! ν by Remark
4.19. In particular, 0 ă w´1 ă `8 µ-a.e.

In general, given a Borel set F Ă X, if we assume

´

ż

F
w dµ

ˆ

´

ż

F
w

1
1´p dµ

˙p´1

ď C,

then 0 ă w ă `8 µ-a.e. in F as well. Writing w dµ “ dν in the integral, see Exercise
4.3.2, the preceding estimate is equivalent to

νpF qp

µpF qp

ˆ

´

ż

F
w´p1

dν

˙p´1

ď C,

where 1
p ` 1

p1 “ 1. That is, w´1 satisfies (4.5) with dν in place of dµ, and p1 instead of p.
When we consider these condicions for all ∆ Ă U in place of F , we get

w´1 P Bp1pν, Uq ðñ w P Appµ,Uq,
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with rwsAppµ,Uq “ rw´1s
p1

Bp1 pν,Uq
.

Back to Remark 4.21 we get

Appµ,Uq Ă A
1
p
8pµ,Uq Ă A8pµ,Uq Ă

ď

0ăδ,εă1

ABδ,εpµ,Uq,

where we say that ν P Aα
8pµ,Uq if µ P Bα

1 pν, Uq. This is a consequence of the duality
relation

ν P Appµ,Uq ðñ µ P Bp1pν, Uq

ν P Aα
8pµ,Uq ðñ µ P Bα

1 pν, Uq

ν P A8pµ,Uq ðñ µ P B1pν, Uq

ν P ABδ0,ε0pµ,Uq ðñ µ P AB1´ε0,1´δ0pν, Uq.

(4.7)

4.5 Dyadic grids in metric spaces with a doubling measure

To establish the weight theory for doubling measures whose support is not dense in Rd,
we will use a dyadic decomposition of suppµ.

Definition 4.23. Given a closed set X Ă Rd, a dyadic grid associated to X with constants
0 ă ℓ0 ă 1, 0 ă a1 ă 8 is a collection D of Borel subsets of X such that D “

Ť

kPZDk

with Dk “ tQiuiPIk , with the following properties:

(a) Completeness: for every k P Z we have X “
Ť

QPDk
Q.

(b) Nesting : For every k0 ď k1 and Qj P Dkj for j P t0, 1u, then either Q1 Ă Q0 or
Q1 XQ0 “ ∅.

(c) Tree structure: For each Q1 P Dk1 and each k0 ă k1 there exists a unique cube
Q0 :“ Qk0pQ1q P Dk0 such that Q1 Ă Q0. If k1 “ k1 ´ 1, then we say that Q0 is the
parent of Q1 write Q0 “ PpQ1q.

(d) Scaling : For Q P Dk there are zQ P Q and balls BQ “ BpzQ, a1ℓ
k
0q and rBQ “

BpzQ,
1
2ℓ

k
0q such that BQ XX Ă Q Ă rBQ.

Definition 4.24. We say that Q P Dk is a dyadic cube of generation k, and write rQ :“
1
2ℓ

k
0, and ℓpQq :“ ℓk0. We call rQ the exterior radius of Q and ℓpQq its side–length. Note

that we abuse notation because two dyadic cubes Q and R can have the same set of points
but rQ ‰ rR because they belong to different generations. According to the previous
definition, for every x P X, there exists a unique dyadic cube Qkpxq containing x for every
k P Z.

We say that two dyadic cubes of the same generation Q,R P Dk are neighbors if λ rBQ X

λ rBR ‰ ∅, writing R P N pQq, with λ ě 1. Then we define the triple cube 3Q :“
Ť

RPN pQq R, by analogy with the usual dyadic grid. Note that 3Q Ă 3λ rBQ. We say that
3Q P 3D.
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Remark 4.25. Assume that ℓ0 ă 1
3 (this can be guaranteed by skipping generations).

Let λ “ 2mintp1 ´ 3ℓ0q´1, ℓ´1
0 u. Then

FpQq Ă 3Q Ă 3FpQq.

Moreover,
λ rBQ Ă λ rBFpQq.

Proof. Let us show first that λ ě 1
1´3ℓ0

implies 3Q Ă 3FpQq. Let x P 3Q X R with

R,FpQq P Dk. To show that λ rBFpQq X λ rBR ‰ ∅, it is enough to show that x P λ rBFpQq.
But

distpx, cFpQqq ď distpx, cQq ` distpcQ, cFpQqq ă 3λrQ ` rFpQq “ p3λℓ0 ` 1qrFpQq.

Now, assume consider λ ą ℓ´1
0 , and let us show that FpQq Ă 3Q. We want to prove

that whenever FpRq “ FpQq, then λ rBQ X λ rBR ‰ ∅. Let zQ and zR be the centers of
both cubes. Then we have

distpzQ, zRq ď diamp rBFpQqq “ 2ℓ´1
0 rp rBQq “ 2ℓ´1

0 rp rBRq,

which implies that λ rBQ X λ rBR ‰ ∅.
The last assertion comes from assuming x P λ rBQ, then

distpx, zFpQqq ď distpx, zQq ` distpzQ, zFpQqq ď λrQ ` 2rFpQq “ pλℓ0 ` 2qrFpQq ď λrFpQq.

Theorem 4.26 (see [HK12, Theorem 2.2]). Let X Ă Rd be a closed set. There exists a
dyadic grid D associated to X with constants 0 ă ℓ0 ă 1, 0 ă a1 ă 8 depending only on
the dimension.

Remark 4.27. Consider a Radon measure in Rd, and let X “ supppµq. There exist
a dyadic grid D associated to X with constants 0 ă ℓ0 ă 1, 0 ă a1 ă 8, with all the
constants depending on the dimension satisfying also the following hypothesis: there exists
a dimensional constant 0 ă η, C1 ă `8 such that

(e) Thin boundary : For Q P Dk we have

µptx P Q : distpx,XzQq ď tℓk0uq ď C1t
η µpQq

and
µptx P Qc : distpx,Qq ď tℓk0uq ď C1t

η µpQq

for every t ą 0.

See [?, Theorem 3.2], for instance. There is also a construction with open cubes in [Chr90,
Theorem 11] which cover the support of µ modulo null sets.
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Definition 4.28. Given a dyadic grid D associated to X :“ suppµ, we define the dyadic
maximal operator by

Mµ,Dfpxq :“ sup
kPZ

´

ż

Qkpxq

|f | dµ for every f P L1
locpµq.

Lemma 4.29. The dyadic maximal operator Mµ,D is a bounded operator from L1 to L1,8,
and from Lp to Lp.

The proof is left as an exercise for the reader, see for instance [Mat95, Theorem 2.19].

Lemma 4.30 (Dyadic Lebesgue differentiation theorem). Let µ be a Radon measure in
Rd and let D be defined as above. For every f P L1

locpµq, we have

lim
kÑ8

´

ż

Qkpxq

f dµ “ fpxq for µ-a.e.x P X.

Proof. Let

En “

#

x P X :

ˇ

ˇ

ˇ

ˇ

ˇ

lim sup
kÑ0

´

ż

Qkpxq

f dµ´ fpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ą 1{n

+

.

We want to show that µpEnq Ñ 0 as n Ñ 8. To do so, pick fδ continuous such that
}f ´ fδ}L1pµq ă δ, see Exercise 4.2.1. Then write En “ An YBn Y Cn with

An “

#

x P X : lim sup
kÑ0

´

ż

Qkpxq

|f ´ fδ| dµ ą 1{p3nq

+

Bn “

#

x P X :

ˇ

ˇ

ˇ

ˇ

ˇ

lim sup
kÑ0

´

ż

Qkpxq

fδ dµ´ fδpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ą 1{p3nq

+

Cn “ tx P X : |fδpxq ´ fpxq| ą 1{p3nqu .

Note that µpBnq “ 0 by continuity. Also

´

ż

Qkpxq

|f | dµ ď Mµ,Dpfq,

so

µpAnq ď 3n}Mµ,Dpf ´ fδq}L1,8pµq

L.4.29
ď Cnδ,

while

µpCnq ď 3n

ż

Cn

|fδ ´ f | dµ ď 3nδ,

and the lemma follows from this estimates, by picking δ “ 1
n2 .

Definition 4.31. We say that µ is a doubling measure in Rd with constant Cµ if

µpB2rpxqq ď CµµpBrpxqq for every x P supppµq and every r ą 0.
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Given Q0 P D Y 3D, we write

DpQ0q :“ tQ P D : Q Ă Q0u and 3DpQ0q :“ t3QXQ0 : Q P DpQ0qu.

Definition 4.32. Let µ be a Radon measure in Rd, and let D be a dyadic grid associated
to suppµ. Given Q0 P D Y 3D, we say that µ is D-doubling in Q0 with constant rCµ if

sup
RPN pQqXDpQ0q

µp3QXQ0q

µpRq
ď rCµ for every Q P DpQ0q.

Note that if µ is doubling with constant Cµ, then it is also D-doubling with constant
rCµ Àa1 Cµ, and so from now on we will write Cµ for the greatest constant.

Next we will adapt an iterated Calderón-Zygmund decomposition (see, for instance
[Gra09, Corollary 9.2.4]) to doubling Radon measures in Rd.

Lemma 4.33 (Calderón-Zygmund decomposition). Let µ be a Radon measure in Rd and
let D be a dyadic grid associated to suppµ. Let Q P Dk0 Y 3Dk0, let f P L1pQq be non-
negative. If µ is D-doubling in Q with constant Cµ, and t ě C´1

µ ´
ş

Q f dµ, then there exist
a decomposition Q “ Ut Y Gt Y Zt in disjoint µ-measurable sets and a family of disjoint
dyadic cubes Ft Ă

Ť

kěk0
Dk Y tQu such that

CZ1. Ut :“
Ť

RPFt
R, and these cubes satisfy t ă ´

ş

R f dµ ď Cµt.

CZ2. For x P Gt we have fpxq ď t.

CZ3. µpZtq “ 0.

We call this a Calderón-Zygmund decomposition at level t.

Proof. Consider Fk to be the maximal family of cubes R P
Ť

kěk0
Dk Y tRu such that

´

ż

R
f dµ ą t.

The case t ă ´
ş

Q f dµ is trivial, so we assume Q R Fk.

To prove the first claim, note that either PpRq is an eligible cube where the stopping
condition fails, or R is one of the building blocks of Q whenever Q P 3D. In any case,
using for a moment the convention that PpRq “ Q in the latter case, we get

´

ż

R
f dµ ď Cµ ´

ż

PpRq

f dµ ď Cµt.

The second and third conditions follows from the dyadic Lebesgue differentiation theorem
above (Zt is the exceptional set).

Lemma 4.34 (Calderón-Zygmund iteration). Let µ be a Radon measure in Rd and let D
be a dyadic grid associated to suppµ. Let Q P D Y 3D, let f P L1pQq be non-negative.
Assume that µ is D-doubling in Q with constant Cµ, 0 ă δ ă 1 and α0 ě C´1

µ ´
ş

Q f dµ.

For every j ě 1, define αj :“
“

Cµδ
´1
‰j
α0. Then the sequence of Calderón-Zygmund

decompositions Q “ U j YGj Y Zj with U j :“
Ť

RPFj R at levels αj satisfies:
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CZ4. If R P F j then there exists a cube R̂ P F j´1 such that R Ă R̂.

CZ5. µpU j`1q ď δµpU jq ď ¨ ¨ ¨ ď δj`1µpU0q
jÑ8
ÝÝÝÑ 0.

CZ6. If R P F j then µpR X U j`1q ă δµpRq.

Proof. For the first condition, note that for R P Fj`1

´

ż

R
f dµ ą αj`1 ą αj ,

so R must be contained in some maximal cube satisfying this property (perhaps itself!).
The first claim is proven.
On the other hand, for every R P F j we have

Cµαj

CZ1
ě ´

ż

R
f dµ ě

1

µpRq

ż

RXUj`1

f dµ ě
1

µpRq

ÿ

RĂR:RPFj`1

µpRq ´

ż

R
f dµ

CZ1, CZ4
ą

αj`1

µpRq
µpR X U j`1q.

Since αj`1 “ Cµδ
´1αj , CZ6 follows.

CZ5 follows by summing on cubes CZ6, and using condition CZ4.

Finally we introduce a Whitney covering for generalized dyadic grids.

Lemma 4.35 (Whitney decomposition). Let µ be a Radon measure supported in X Ă Rd,
let D be a dyadic grid associated to X with constants 0 ă ℓ0 ă 1, 0 ă a1 ă 8, and
let Ω Ă X be a relative open set, with non-empty relative complement F :“ XzΩ and λ
defined in Definition 4.24. Then, there exist α “ αpℓ0q ą 7 and a collection W Ă D of
dyadic cubes, which we call a Whitney decomposition (or covering) of Ω, satisfying the
following properties:

Wh1. The Whitney cubes cover Ω, i.e., Ω “
Ť

QPW Q.

Wh2. Whitney cubes are disjoint, i.e.,

ÿ

QPW
χQ “ χΩ.

Wh3. Their exterior radius is comparable to their distance to the boundary, namely,

pαλ´ 1qrQ ď distpQ,F q ď ℓ´1
0 pαλ` 1qrQ.

Wh4. If Q,R P W satisfy that 3QX 3R ‰ ∅, then

ℓ0 ď
ℓpQq

ℓpRq
ď ℓ´1

0 .
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Wh5. The triple cubes have bounded overlapping, namely,
ÿ

QPW
χ3Q ď CW ,

with C
1
d
W depending only on ℓ0, a1 and λ.

Proof. Take the maximal dyadic cubes such that

αλrQ ď distpcQ, F q. (4.8)

Property Wh1 follows from Definition 4.23, since every x P X satisfies that rQkpxq “
1
2ℓ

k
0 Ñ 0, while distpcQkpxq, F q Ñ distpx, F q ą 0 as k Ñ 8. Property Wh2 follows from

the construction.
The bound below in Wh3 follows from construction and the triangle inequality, while

the bound above follows from the stopping time condition and the triangle inequality as
well. Indeed,

distpcQ, F q ď distpcPpQq, F q ` rPpQq

(4.8)
ă pαλ` 1qrPpQq “ pαλ` 1qℓ´1

0 rQ, (4.9)

and Wh3 follows since distpQ,F q ď distpcQ, F q.
Let us show Wh4. Assume that 3R X 3Q ‰ ∅, with rR ď rQ. Then, there exists

x P BpcQ, 3λrQq XBpcR, 3λrRq. Thus,

distpcR, F q ě distpcQ, F q ´ p3λrQ ` 3λrRq
Wh3
ě pαλ´ 1 ´ 6λqrQ ě pα ´ 7qλrQ.

Combining with (4.9) we get

rR
rQ

ě
pα ´ 7qλ

pαλ` 1q
ℓ0 ě

α ´ 7

α ` 1
ℓ0 ą ℓ20

if α is big enough.
To end with the last property, assume x P Ω, and let Q P W be a cube of maximal rQ

such that x P 3Q. Then for any other R P W with x P 3R , we have

BR Ă BpcQ, 3λrQ ` 3λrR ` rpBRqq Ă BpcQ, p6λ` 2a1qrQq.

For every such R we have

rpBRq “ 2a1rR
Wh4
ě 2a1ℓ0rQ.

By the disjointness of inner balls BR with R P Dk, (that is
ř

QPDk
χBQ

ď 1), we infer that

#tP P W : 3P X 3Q ‰ ∅, rpRq “ ℓ0rpQqu ď
|BpcQ, p6λ` 2a1qrQq|

|BR|
.

Arguing anagously for rpRq “ rpQq, Wh5 follows with C ď

´

6λ`2a1
2a1

¯d
`

1 ` ℓ´1
0

˘d
.
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4.6 Muckenhoupt weights and doubling measures

In this section we define A8 weights in subsets of Rd equipped with doubling measures
introduced in the previous section. Recall that given Q0 P D Y 3D, we write

DpQ0q :“ tQ P D : Q Ă Q0u and 3DpQ0q :“ t3QXQ0 : Q P DpQ0qu.

4.6.1 Equivalent conditions in dyadic grids

Definition 4.36. Let µ be a Radon measure in Rd, let D be a dyadic grid associated
to X :“ suppµ, let Q0 P D Y 3D (see Definition 4.24), and let ν be a Radon measure
supported in X.

• We say that ν P ABδ0,ε0pµ,D, Q0q if

µpEq ă δ0µpQq ùñ νpEq ď ε0νpQq for every Borel set E Ă Q P DpQ0q Y 3DpQ0q,

(or equivalently, µpEq ą p1 ´ δ0qµpQq ùñ νpEq ě p1 ´ ε0qνpQq for every E Ă Q Ă

Q0 Borel, where Q P D Y 3D.)

• We say that ν P A8pµ,D, Q0q if for every δ0 P p0, 1q, there exists ε0 P p0, 1q such
that ν P ABδ0,ε0pµ,D, Q0q.

• We say that ν P B1pµ,D, Q0q if for every ε0 P p0, 1q, there exists δ0 P p0, 1q such that
ν P ABδ0,ε0pµ,D, Q0q.

• We say that ν P Bα
1 pµ,D, Q0q if there exists C ě 1 such that

νpEq

νpQq
ď C

ˆ

µpEq

µpQq

˙α

for every Borel set E Ă Q Ă Q0 with Q P D Y 3D. (4.10)

• We say that ν P Aα
8pµ,D, Q0q if µ P Bα

1 pν,D, Q0q.

• We say that ν P Bppµ,D, Q0q whenever ν ! µ and the density w “ dν
dµ satisfies the

following reverse Hölder inequality

ˆ

´

ż

Q
wp dµ

˙
1
p

ď C ´

ż

Q
w dµ for every Q P D Y 3D with Q Ă Q0.

• We say that ν P Appµ,D, Q0q whenever ν ! µ, the density w “ dν
dµ satisfies that

w
1

1´p P L1
locpµq and

´

ż

Q
w dµ

ˆ

´

ż

Q
w

1
1´p dµ

˙p´1

ď C for every Q P D Y 3D with Q Ă Q0.

The minimal constants satisfying the last two properties are called rwsBppµ,D,Q0q and
rwsAppµ,D,Q0q respectively.
If any one of this conditions is satisfied for every Q0 P D Y 3D, we simply omit Q0 in

the notation.
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Remark 4.37. If µ is a Radon measure and ν P ABδ,εpµ,D, Q0q, then µ|Q0 ! ν|Q0 ! µ|Q0

using the dyadic Lebesgue differentiation theorem as in Remark 4.19, and suppν “ suppµ
so D is associated to supp ν. If, instead, we assume ν P Appµ,D, Q0q, then 0 ă w ă `8

µ-a.e. as well, and ν ! µ ! ν so D is associated to supp ν again. As in Remarks 4.19 and
4.22, we get

ν P Appµ,D, Q0q ðñ µ P Bp1pν,D, Q0q

ν P Aα
8pµ,D, Q0q ðñ µ P Bα

1 pν,D, Q0q

ν P A8pµ,D, Q0q ðñ µ P B1pν,D, Q0q

ν P ABδ0,ε0pµ,D, Q0q ðñ µ P AB1´ε0,1´δ0pν,D, Q0q,

(4.11)

and rwsAppµ,D,Q0q “ rw´1s
p1

Bp1 pν,D,Q0q
.

Lemma 4.38. Let µ is a Radon measure in Rd, let D be a dyadic grid associated to
suppµ, and let Q0 P D Y 3D. Then

Bppµ,D, Q0q Ă B
1´ 1

p

1 pµ,D, Q0q Ă B1pµ,D, Q0q Ă
ď

0ăδ,εă1

ABδ,εpµ,D, Q0q,

and

Appµ,D, Q0q Ă A
1
p
8pµ,D, Q0q Ă A8pµ,D, Q0q Ă

ď

0ăδ,εă1

ABδ,εpµ,D, Q0q.

All conditions above are again quantitative versions of mutual absolute continuity.

Proof. Consider all subcubes of Q0 in Remark 4.21 to get the first chain of inclusions. The
second comes immediately as a consequence of (4.11).

Theorem 4.39. Let µ, ν be Radon measures in Rd with suppν Ă suppµ, let D be a dyadic
grid associated to suppµ and let w :“ dν

dµ . If µ is a D-doubling measure in Q0 P D Y 3D,
then if ν P ABδ0,ε0pµ,D, Q0q with 0 ă δ0, ε0 ă 1, then ν P Bppµ,D, Q0q for some 1 ă

p ă p0 ă 8, with p0 depending on δ0, ε0 and the doubling constant, and the Bp constant
depending also on p.

Proof. Consider a given dyadic cube Q Ă Q0 (or Q “ Q0 P 3D). Apply Lemma 4.34, with

f “ w, α0 “ ´
ş

Qw dµ “
νpQq

µpQq
and δ “ δ0. Given R P F j , by CZ6, we get

νpR X U j`1q ď ε0νpRq,

and therefore νpU j`1q ď ε0νpU jq ď ¨ ¨ ¨ ď εj`1
0 νpU0q. In particular, Q “ pQzU0q Y

p
Ť

k UkzUk`1q Y Z, with µpZq “ νpZq “ 0.

39



4 Basic results from measure theory and weights

Now,
ż

Q
wp dµ “

ż

QzU0

wp´1w dµ`
ÿ

jě0

ż

UjzUj`1

wp´1w dµ

CZ2
ď αp´1

0 νpQzU0q `
ÿ

jě0

αp´1
j`1νpU jq

ď αp´1
0 νpQzU0q `

ÿ

jě0

rpCµδ
´1
0 qj`1α0sp´1εj0νpU0q

ď αp´1
0

˜

1 `
ÿ

jě0

pCµδ
´1
0 qpj`1qpp´1qεj0

¸

νpQq

“

ˆ

1 `
pCµδ

´1
0 qp´1

1 ´ pCµδ
´1
0 qp´1ε0

˙

νpQqp

µpQqp´1
,

whenever pCµδ
´1
0 qp´1ε0 ă 1, because α0 “ ´

ş

Qw dµ “
νpQq

µpQq
.

If p ´ 1 “ θ ´ log ε0
logCµ´log δ0

, we get pCµδ
´1
0 qp´1 “ ε´θ

0 . For 0 ă θ ă 1 we get ε´θ
0 ε0 ă 1,

implying summability above, and the last estimate reads as

´

ż

Q
wp dµ ď

˜

1 `
ε´θ
0

1 ´ ε1´θ
0

¸

νpQqp

µpQqp
“ C

ˆ

´

ż

Q
w dµ

˙p

,

as claimed.

Corollary 4.40. Let µ be a Radon measure in Rd, let D be a dyadic grid associated to
suppµ. If µ is a D-doubling measure in Q0 P D Y 3D, then

ď

1ăpă8

Bppµ,D, Q0q “
ď

0ăαă1

Bα
1 pµ,D, Q0q “ B1pµ,D, Q0q “

ď

0ăδ,εă1

ABδ,εpµ,D, Q0q.

Proof. Combine Remark 4.37 with Theorem 4.39.

Corollary 4.41. Let µ be a Radon measure in Rd, let D be a dyadic grid associated to
suppµ. If we define

Xdpµ,D, Q0q :“ tν P Xpµ,D, Q0q : ν is D-doubling in Q0u

with X P tAp, A
α
8, A8, ABδ,εu, and Q0 P D Y 3D, then

ď

1ăpă8

Ad
ppµ,D, Q0q “

ď

0ăαă1

Aα,d
8 pµ,D, Q0q “ Ad

8pµ,D, Q0q “
ď

0ăδ,εă1

ABd
δ,εpµ,D, Q0q.

Proof. Combine Corollary 4.41 with (4.11).

Lemma 4.42. Let µ be a Radon measure in Rd and let D be a dyadic grid associated to
suppµ. If µ is a D-doubling measure in Q0 P D Y 3D and ν P A8pµ,D, Q0q then ν is
D-doubling in Q0.
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If, instead, µ is doubling in restricted balls ∆ with 2∆ Ă U and ν P A8pµ,Uq, then ν is
doubling in balls ∆ such that 2∆ Ă U .

By duality, if ν is D-doubling in Q0 and ν P B1pµ,D, Q0q, then µ is doubling as well,
and the same holds for balls instead of cubes.

Proof. We proof the first statement, the others being proved analogously. Note that µ
being D-doubling in Q0 (see Definition 4.32) is equivalent to

µp3QXQ0zRq ď

ˆ

1 ´
1

Cµ

˙

µp3QXQ0q for every Q P DpQ0q and every R P N pQq.

Thus, if ν P A8pµ,D, Q0q, picking δ0 “ 1 ´ 1
Cµ

, there exists ε0 such that

νp3QXQ0zRq ď ε0νp3QXQ0q for every R P N pQq.

we find out that ν is D-doubling in Q0 as well with constant Cν “ 1
1´ε0

, that is,

νp3QXQ0q ď
1

1 ´ ε0
νpRq for every R P N pQq X DpQ0q.

Remark 4.43. In view of Lemma 4.42 and Lemma 4.38, when µ is D-doubling in Q0,
Corollary 4.41 reads

ď

1ăpă8

Appµ,D, Q0q “
ď

0ăαă1

Aα
8pµ,D, Q0q “ A8pµ,D, Q0q “

ď

0ăδ,εă1

ABd
δ,εpµ,D, Q0q.

4.6.2 From dyadic grids to balls

Lemma 4.44. Let µ be a Radon measure in Rd, let D be a dyadic grid associated to
suppµ. Then, if µ is a doubling measure, there exists a relative open set U Ą Q0 with
diameter comparable to ℓpQ0q (with constants depending only on d) such that

Appµ,Uq Ă Appµ,D, Q0q Ă Appµ,Q0q.

In particular Appµq “ Appµ,Dq.

Proof. Let w :“ dν
dµ . First, let us show that Appµ,D, Q0q Ă Appµ,Q0q. If ∆ Ă Q0 is a

restricted ball, there exists a cube Q∆ P D with ∆ Ă 3Q X Q0 and rp∆q « rpQ∆q. If
w P Appµ,D, Q0q, we get

´

ż

∆
w dµ

ˆ

´

ż

∆
w

1
1´p dµ

˙p´1

ÀCµ,p ´

ż

3QXQ0

w dµ

ˆ

´

ż

3QXQ0

w
1

1´p dµ

˙p´1

ď C.

To show the other inclusion, Appµ,Uq Ă Appµ,D, Q0q, let U :“ UQ0 be an open set

containing rBQ for every Q P DY3DpQ0q (here, in case Q P 3D we need to define BQXX Ă
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Q Ă rBQ with comparable radius, task that we leave for the reader to complete). Then, if
w P Appµ,Uq, we get

´

ż

Q
w dµ

ˆ

´

ż

Q
w

1
1´p dµ

˙p´1

ÀCµ,p ´

ż

rBQ

w dµ

˜

´

ż

rBQ

w
1

1´p dµ

¸p´1

ď C.

Lemma 4.45. Using the notation in Lemma 4.44, if µ is a doubling Radon measure
satisfying µp rBQq ď CµµpBQq for Q P D Y 3D, we have

AB1´C´1
µ δ,1´εpµ,Uq Ă AB1´δ,1´εpµ,D, Q0q,

and
AB1´C´1δ,1´εpµ,D, Q0q Ă AB1´δ,1´εpµ,Q0q

with C ą 1 depending on Cµ, and the dimensional parameters involved in the definition
of D. In particular,

A8pµ,Uq Ă A8pµ,D, Q0q Ă A8pµ,Q0q.

Proof. Assume ν P AB1´C´1
µ δ,1´εpµ,Uq. Every set E Ă Q P DpQ0q Y 3DpQ0q satisfies the

implication

µpEq ě δµpQq ùñ µpEq ě δC´1
µ µp rBQq ùñ νpEq ą ενpBQq ą ενpQq.

The other inclusion follows analogously by granting the existence of ∆ Ă Q∆ P 3DpQ0q

with ℓpQ∆q « ℓp∆q for every boundary ball ∆ Ă Q0 as in the preceding proof.

Define
Xdpµq :“ tν P Xpµq : ν is doublingu

and
Xdpµ,Dq :“ tν P Xpµ,Dq : ν is D-doubling for every Q0 P Du

with X P tAp, A
α
8, A8, Bp, B

α
1 , B1, ABδ,εu.

Corollary 4.46. Let µ be a Radon measure in Rd, let D be a dyadic grid associated to
suppµ. Following the hypothesis in the previous two lemmas (except that we allow µ to be
non-doubling), we obtain

Bd
ppµ,Uq Ă Bd

ppµ,D, Q0q Ă Bd
ppµ,Q0q,

and
Bd

1pµ,Uq Ă Bd
1pµ,D, Q0q Ă Bd

1pµ,Q0q.

In particular Bd
ppµq “ Bd

ppµ,Dq and Bd
1pµq “ Bd

1pµ,Dq.

Proof. This is an immediate consequence of lemmas 4.44 and 4.45 combined with the
duality relations (4.7) and (4.11).
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Lemma 4.47. If µ is a doubling Radon measure in Rd and D is a dyadic grid associated
to suppµ, then

ď

1ăpă8

Appµ,Dq “
ď

0ăαă1

Aα
8pµ,Dq “ A8pµ,Dq “ A8pµq “

ď

0ăαă1

Aα
8pµq “

ď

1ăpă8

Appµq.

Proof. By Remark 4.22 and Lemma 4.45 we get

Appµ,UQ0q Ă A
1
p
8pµ,UQ0q Ă A8pµ,UQ0q Ă A8pµ,D, Q0q.

By Remark 4.43 and Lemma 4.44 we also have

A8pµ,D, Q0q
R.4.43

“
ď

1ăpă8

Appµ,D, Q0q Ă
ď

1ăpă8

Appµ,Q0q.

Since
Appµq “

ď

Q0PD
Appµ,Q0q “

ď

Q0PD
Appµ,UQ0q,

we conclude the proof.

Corollary 4.48. If µ is a Radon measure in Rd and D is a dyadic grid associated to
suppµ, then

ď

1ăpă8

Bd
ppµ,Dq “

ď

0ăαă1

Bα,d
1 pµ,Dq “ Bd

1pµ,Dq “ Bd
1pµq “

ď

0ăαă1

Bα,d
1 pµq “

ď

1ăpă8

Bd
ppµq.

Proof. This is an immediate consequence of Lemma 4.47 combined with the duality rela-
tions (4.7) and (4.11).

Corollary 4.49. Let µ be a doubling Radon measure in Rd and D be a dyadic grid asso-
ciated to suppµ, then

A8pµq “ Bd
1pµq.

Proof. By Lemma 4.47, Remark 4.43 we get

A8pµq
R.4.43

“
ď

0ăδ,εă1

ABd
δ,εpµ,Dq.

By Corollary 4.40, if we restrict to doubling measures, we have

ď

1ăpă8

Bd
ppµ,Dq “

ď

0ăαă1

Bα,d
1 pµ,Dq “ Bd

1pµ,Dq “
ď

0ăδ,εă1

ABd
δ,εpµ,Dq.
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To end we check that, in case µ and ν are both assumed to be doubling a priori, then
all the conditions studied here are equivalent. Given a cube Q P D Y 3D there exists
a restricted ball ∆Q Ă Q with comparable diameter (see Definition 4.23) and given a
restricted ball ∆ we can define Q∆ to be the largest dyadic cube such that x P Q∆ Ă ∆.
It is easy to see that Q∆ and ∆ also have comparable diameter. If µ is a doubling measure,
there exists a constant rCµ ě 1 such that

µpQq ď rCµµp∆Qq and µp∆q ď rCµµpQ∆q (4.12)

for every restricted ball ∆ and every cube Q P D Y 3D.

Lemma 4.50. If µ is a doubling Radon measure, D is a dyadic grid associated to suppµ
and Q0 P D Y 3D, then

ď

0ăε,δă1

ABd
δ,εpµ,Q0,Dq “

ď

0ăε,δă1

ABd
δ,εpµ,Q0q.

In particular,

ν P ABd
δ,1´εpµ,Q0,Dq ùñ ν P ABd

rC´1
µ δ,1´ rC´1

ν ε
pµ,Q0q,

and
ν P ABd

δ,1´εpµ,Q0q ùñ ν P ABd
rC´1
µ δ,1´ rC´1

ν ε
pµ,Q0q,

with Cµ and Cν defined as in (4.12).

Proof. Assume that ν P ABd
δ,1´εpµ,Q0q and consider a set E Ă Q P DpQ0q Y 3DpQ0q.

First note that

νpE XBQq ď p1 ´ εqνpBQq ùñ νpBQzEq ě ενpBQq ùñ νpQzEq ě rC´1
ν ενpQq,

so we get
νpE XBQq ď p1 ´ εqνpBQq ùñ νpEq ď p1 ´ rC´1

ν εqνpQq,

or, equivalently,

νpEq ą p1 ´ rC´1
ν εqνpQq ùñ νpE XBQq ą p1 ´ εqνpBQq.

Since ν P ABd
δ,1´εpµ,Q0q, we deduce that

νpEq ą p1 ´ rC´1
ν εqνpQq ùñ µpE XBQq ě δµpBQq.

Now using the doubling condition for µ we get

νpEq ą p1 ´ rC´1
ν εqνpQq ùñ µpEq ě rC´1

µ δµpQq,

that is,
ν P ABd

rC´1
µ δ,1´ rC´1

ν ε
pµ,Q0q.

the other statement is proven analogously.
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Remark 4.51. Whenever µ and ν are doubling Radon measures with common support,
all the conditions we have studied are equivalent. That is ν P A8pµq if and only if

ν P
ď

1ăpă8

Appµq ðñ ν P
ď

1ăpă8

Bppµq ðñ ν P
ď

0ăε,δă1

ABδ,εpµq Y
ď

0ăε,δă1

ABδ,εpµ,Dq.

Thus, to prove that ν P A8pµq we can check a reverse Hölder inequality, bound an Ap

constant or find constants 0 ă δ, ε ă 1 such that ν P ABδ,εpµq or ν P ABδ,εpµ,Dq.

Remark 4.52. Last, but nor least, assume that µ is doubling, with µp rBQq ď CµµpBQq

for Q P 3D. Then if ν P A1´δ0,ε0pµq with δ0 ď C´1
µ we can immediately infer from Lemma

4.45 that ν P A1´Cµδ0,ε0pµ,Dq Ă A8pµq. In particular ν is also doubling.

4.6.3 Self-improvement properties

We are interested in the self-improvement properties of weights. In general, we have the
inclusions Appµq Ă Ap`εpµq and Bppµq Ă Bp´εpµq.

In the doubling setting of Remark 4.51 above (where µ and ν are both doubling), we
also have a self-improvement property for w P Appµq. Namely, for ε small enough we have

rwsA p`ε
1`ε

pµq ď rwsB1`εpµqrw
1´p1

s
p´1
B1`εpµq

rwsAppµq.

Indeed, since w P Appµq is equivalent to w1´p1

P Ap1pµq Ă A8pµq, we get the existence

of a reverse Hölder class for both w and its dual weight w1´p1

, say w,w1´p1

P B1`εpµq if
ε ă ε0. An analogous self-improvement property is satisfied for reverse Hölder classes:

Lemma 4.53 (Gehring Lemma for doubling weights). Let µ and ν be mutually absolutely
continuous doubling measures in Rd with w “ dν

dµ . If w P Bppµq, then there exists ε0 such
that for every ε ă ε0 we have w P Bp`εpµq.

Proof. By Remark 4.22, w P Bppµq is equivalent to w´1 P Ap1pνq. By Remark 4.43 we
infer the existence of δ0 such that w´1 P Ap1´δpνq for δ ă δ0. But this is equivalent to
w P Bpp1´δq1pµq, with

pp1 ´ δq1 “

ˆ

p

p´ 1
´ δ

˙1

“
p´ δpp´ 1q

1 ´ δpp´ 1q
ą p.

That is, take ε0 “
pp´1q2δ0
1´δ0pp´1q

.

The self-improvement property above still holds when ν is not doubling:

Lemma 4.54 (Gehring Lemma). Let µ be a doubling Radon measure in Rd, let D be a
dyadic grid associated to suppµ and let ν be an absolutely continuous measure with respect
to µ, with w “ dν

dµ . If rwsBppµ,D,Q0q ď CRH , where Q0 P D Y 3D, then there exists ε0 such
that for every ε ă ε0 we have w P Bp`εpµ,D, Q0q, with ε0 depending only on CRH , Cµ

and p; and rwsBp`εpµ,D,Q0q depending also on ε. Namely,
ż

R
wp`ε dµ À

ˆ

´

ż

R
w dµ

˙ε ż

R
wp dµ

for every R P DpQ0q Y 3DpQ0q.
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Proof. Since we won’t use restricted triple cubes, we assume without loss of generality
that R “ Q0. Perform an iterated Calderón-Zygmund decomposition (see Lemma 4.34)
with f “ w, with δ to be fixed depending on Cµ, CRH and p and with α0 :“ ´

ş

Q0
w dµ.

We write αj :“ ρjα0, with ρ “ Cµδ
´1. We will show that for ε “ q ´ p small enough we

can find a constant CpCµ, CRH , p, qq ą 0 such that
ż

Q0

wq dµ ď CpCµ, CRH , p, qqαq´p
0

ż

Q0

wp dµ.

Combining CZ1 and Hölder’s inequality, for Q P F j we get

αj ă

ˆ

´

ż

Q
wp

˙
1
p

ď CRH ´

ż

Q
w dµ.

Now we define the level set Aj :“ tx P Q0 : wpxq ą αju Ă U j for j ě ´1 (with the
convention U´1 “ Q0, F´1 “ tQ0u). Then

αjµpQq ă CRH

ˆ
ż

QXAj´1

w dµ` αj´1µpQq

˙

.

Since αj´1 “ C´1
µ δαj , if we pick δ ď

Cµ

2CRH
, then

αjµpQq ă 2CRH

ż

QXAj´1

w dµ.

Note that for j ě 0 we have
ż

Uj

wp dµ “
ÿ

QPFj

µpQq ´

ż

Q
wp dµ ď Cp

RH

ÿ

Q

µpQq

ˆ

´

ż

Q
w dµ

˙p
CZ1
ď pCRHCµαjq

p
ÿ

Q

µpQq.

All in all, for j ě 0 we get
ż

Aj

wp dµ ă 2Cp`1
RH Cp

µα
p´1
j

ż

Aj´1

w dµ.

Trivially we also have
ż

Aj´1zAj

wp dµ ď αp´1
j

ż

Aj´1zAj

w dµ,

so
ż

Aj´1

wp dµ ă Cpα
p´1
j

ż

Aj´1

w dµ,

with Cp :“ 1 ` 2Cp`1
RH Cp

µ.

By Lemma 4.55 below, fixing ρp´1 ě 2Cp (that is, δ ď Cµ{r2p1`2Cp`1
RH Cp

µqs
1

p´1 ), we get

ż

Q0

wq dµ ď αq´p
0

ż

Q0

wp dµ

ˆ

1 `
p2Cpqq´ppp2Cpqp´1 ´ 1q

pp2Cpqq´1 ´ 1q ´ 2Cppp2Cpqq´p ´ 1qp2Cpqp`q´2

˙

,

as claimed.
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Lemma 4.55. Let µ be a Radon measures supported in U Ă Rd, let f P Lppµq, let α0 ą 0,
let αj “ ρjα0 with ρp´1 ě 2C0 ą 2, and consider Aj :“ tx P U : fpxq ą αju. If

ż

Aj´1

fp dµ ă C0α
p´1
j

ż

Aj´1

f dµ, for every j ě 0, (4.13)

then
ż

U
f q dµ ď αq´p

0

ż

U
fp dµ

ˆ

1 `
ρq´ppρp´1 ´ 1q

pρq´1 ´ 1q ´ 2C0pρq´p ´ 1qρp`q´2

˙

,

for every q ą p such that the denominator in the right-hand side is positive.

Proof. To ensure finiteness of certain integrals below, we will need to find the same esti-
mates for AjzAN for N large and j ď N . Note that

ż

AN

f dµ ď

ż

AN

fp

αp´1
N

dµ ď

ż

Aj´1

fp

ρpp´1qpN´jqαp´1
j

dµ.

Thus,
ż

Aj´1zAN

f dµ
(4.13)

ě

˜

1

C0α
p´1
j

´
1

ρpp´1qpN´jqαp´1
j

¸

ż

Aj´1

fp dµ.

If ρ is big enough, say ρpp´1qpN´jq ě 2C0 for every N ě j ` 1, we deduce

ż

Aj´1zAN

f dµ ě
1

2C0α
p´1
j

ż

Aj´1

fp dµ,

so
ż

Aj´1zAN

fp dµ ď 2C0ρ
p´1αp´1

j´1

ż

Aj´1zAN

f dµ. (4.14)

In case N “ j, estimate (4.14) holds trivially:

ż

Aj´1zAj

fp dµ ď αp´1
j

ż

Aj´1zAj

f dµ “ ρp´1αp´1
j´1

ż

Aj´1zAj

f dµ.

Now, for q ě 1 let us write

IN pqq :“

ż

A0zAN

f q dµ “

N´1
ÿ

j“0

ż

AjzAj`1

f q dµ.

For t ě 0 consider the summation by parts identity

N´1
ÿ

j“0

αt
j`1

ż

AjzAj`1

f q dµ “ αt
1

ż

A0zAN

f q dµ`

N´1
ÿ

k“1

pαt
N´k`1 ´ αt

N´kq

ż

AN´kzAN

f q dµ,

“ αt
1IN pqq `

N´1
ÿ

k“1

pρt ´ 1qαt
N´k

ż

AN´kzAN

f q dµ, (4.15)
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Then for q ą p we get

IN pqq ď

N´1
ÿ

j“0

αq´p
j`1

ż

AjzAj`1

fp dµ
(4.15)

“ αq´p
1 IN ppq `

N´1
ÿ

k“1

pρq´p ´ 1qαq´p
N´k

ż

AN´kzAN

fp dµ

(4.14)
ď αq´p

1 IN ppq `
2C0pρq´p ´ 1qρp´1

pρq´1 ´ 1q

N´1
ÿ

k“1

pρq´1 ´ 1qαq´p
N´kα

p´1
N´k

ż

AN´kzAN

f dµ.

(4.15)
“ αq´p

1 IN ppq `
2C0pρq´p ´ 1qρp´1

pρq´1 ´ 1q

˜

N´1
ÿ

j“0

αq´1
j`1

ż

AjzAj`1

f dµ´ αq´1
1 IN p1q

¸

.

In Aj we have αj`1 “ ραj ď ρ|f |, so

IN pqq
(4.14)

ď αq´p
1 IN ppq `

2C0pρq´p ´ 1qρp´1

pρq´1 ´ 1q

´

ρq´1IN pqq ´ p2C0q´1αq´p
1 IN ppq

¯

,

which implies

IN pqq

ˆ

1 ´
2C0pρq´p ´ 1qρp`q´2

pρq´1 ´ 1q

˙

ď αq´p
1 IN ppq

ˆ

1 ´
pρq´p ´ 1qρp´1

pρq´1 ´ 1q

˙

.

If q ´ p is small enough, the factors above are positive and we obtain

IN pqq ď αq´p
0 IN ppq

ρq´ppρp´1 ´ 1q

pρq´1 ´ 1q ´ 2C0pρq´p ´ 1qρp`q´2
.

Since
ż

U
f q dµ ď αq´p

0

ż

UzA0

fp dµ`

ż

A0

f q dµ,

the lemma follows letting N Ñ 8, since µpAN q Ñ 0.

4.7 Weak conditions

Lemma 4.56 (Gehring Lemma for enlarged balls). Let λ ą 1. Let µ be a doubling Radon
measure in Rd, and let ν be an absolutely continuous measure with respect to µ, with
w “ dν

dµ . Let U Ă X be a relative open set with µpUq ă 8. If

ˆ

´

ż

∆
wp dµ

˙
1
p

ď CRH ´

ż

λ∆
w dµ for every boundary ball with λB Ă U,

given a compact set K Ă U with positive measure then there exists ε0 such that for every
ε ă ε0,

ˆ

´

ż

K
wp`ε dµ

˙
1

p`ε

ď CRH,ε,λ

ˆ

´

ż

U
wp dµ

˙
1
p

,

with ε0 depending only on CRH , p, the doubling constant Cµ, λ and the Whitney constants;

and CRH,ε depending also on ε, µpKq

µpUq
and distpK,XzUq

diamK .
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This lemma will be deduced from the following version for dyadic cubes.

Lemma 4.57 (Gehring Lemma for enlarged cubes). Let µ be a doubling Radon measure in
Rd, let D be a dyadic grid associated to X “ suppµ and let ν be an absolutely continuous
measure with respect to µ, with w “ dν

dµ . Let U Ă X be a relative open set with µpUq ă 8.
If

ˆ

´

ż

Q
wp dµ

˙
1
p

ď CRH ´

ż

3Q
w dµ for every Q P D with 3Q Ă U,

given a compact set K Ă U with positive measure then there exists ε0 such that for every
ε ă ε0

ˆ

´

ż

K
wp`ε dµ

˙
1

p`ε

ď CRH,ε

ˆ

´

ż

U
wp dµ

˙
1
p

,

with ε0 depending only on CRH , p, the doubling constant Cµ and the Whitney constants;

and CRH,ε depending also on ε, µpKq

µpUq
and distpK,XzUq

diamK .

Proof. Let W be a Whitney decomposition of U , see Lemma 4.35. If U “ X, then just
consider W “ tUu.

Consider the auxiliary function ϕpxq “
ř

QPW χQpxqµpQq, and let

α0 :“

ˆ

´

ż

U
pµpUqwqp dµ

˙
1
p

.

Note that for Q P W we get

´

ż

Q
pwϕqp dµ “ µpQqp´1

ż

Q
wp dµ ď µpUqp´1

ż

U
wp dµ “ αp

0.

Write αj :“ ρjα0, with ρ “ C2
µδ

´1, so αp
j “ ρpjαp

0, with δ to be fixed depending on CRH .
Thus, we can perform an iterated Calderón-Zygmund decomposition with f “ pϕwqp and
ground levels αp

j at every whitney cube Q “ U j
Q Y Gj

Q Y Zj
Q with U j

Q :“
Ť

RPFj
Q
R, and

write U j “
Ť

QPW U j
Q and so on and so forth. Note that ρp “ CµpC2p´1

µ δ´pq, and in
particular

ρp ě Cµ

assuming δ ă 1, so the notation is different than in Lemma 4.34 (in the statement of the
iterated decomposition we should now replace δ by C1´2p

µ δp and αj by αp
j ).

We will show that for ε “ q´p small enough we can find a constant CpCµ, CRH , CW , p, qq ą

0 such that
ż

U
pϕwqq dµ ď CpCµ, CRH , CW , p, qqαq´p

0

ż

U
pϕwqp dµ. (4.16)

Note that picking

k0 :“

S

Cd,CW ` log diamK
distpK,Ucq

´ log ℓ0

W

,
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we can grant that for x P K and x P Qx P W we have 3Fk0pQxq Ą K, which in particular
implies

µpKq ď Ck0`1
µ µpQxq “ Ck0`1

µ ϕpxq.

This yields

ˆ

µpKqq´1

ż

K
wq dµ

˙
1
q

À Ck0`1
µ

ˆ

µpUq

µpKq

˙
1
q
ˆ

´

ż

U
pϕwqq dµ

˙
1
q

.

Therefore, we get

ˆ

µpKqq´1

ż

K
wq dµ

˙
1
q (4.16)

À Ck0`1
µ

ˆ

µpUq

µpKq

˙
1
q

C
1
qµpUq

q´p
q

`
p
q

ˆ

´

ż

U
wp dµ

˙

q´p
pq

` 1
q

,

and the lemma follows by fixing appropriately the constant CRH,ε.

It remains to establish (4.16). By CZ1, for Q P W and P P F j
Q we get

αp
j ă ´

ż

P
pϕwqp ď Cµα

p
j , (4.17)

and thus

αj ă

ˆ

´

ż

P
pϕwqp dµ

˙
1
p

“ µpQq

ˆ

´

ż

P
wp dµ

˙
1
p

ď CRHµpQq ´

ż

3P
w dµ.

Next we claim that µpQq ď C2
µϕ in 3P and thus we get

αj ă CRHC
2
µ ´

ż

3P
ϕw dµ.

Indeed, note that ´
ş

Qpϕwqp ď αp
j implies P ‰ Q. By Remark 4.25 we have 3P Ă 3Q, but

3P may intersect a Whitney cube rQ ‰ Q. Assume that x P rQX 3P , and there must exist
a cube R with x P R P N pP qztP u. Since 3P Ă 3Q, we get 3 rQX 3Q ‰ ∅ and Wh4 implies
if say Q P Dk0 , then

rQ P Dk0´1 Y Dk0 Y Dk0`1.

Since P Ĺ Q, we deduce R Ă rQ and Remark 4.25 also implies λ rBQ X λ rB
rQ

‰ ∅. In
particular, either they are neighbors or one of them is neighbor to the father of the other.
In any case,

ϕpxq “ µp rQq ě C2
µµpQq,

and the claim follows.
Now we define the level set Aj :“ tx P U : ϕpxqwpxq ą αju Ă U j for j ě ´1 (with the

convention U´1 “ U). Then

αjµp3P q ă CRHC
2
µ

ˆ
ż

3PXAj´1

ϕw dµ` αj´1µp3P q

˙

.

50



4 Basic results from measure theory and weights

Since αj´1 “ C´2
µ δαj , if we pick δ ď 1

2CRH
, then

αjµp3P q ă 2CRHC
2
µ

ż

3PXAj´1

ϕw dµ.

Note that
ż

Uj

pϕwqp dµ “
ÿ

PPFj

µpP q ´

ż

P
pϕwqp dµ

(4.17)
ď Cµα

p
j

ÿ

PPFj

µpP q.

All in all, for j ě 0 we get
ż

Aj

pϕwqp dµ ă 2C3
µCRHα

p´1
j

ÿ

PPFj

ż

3PXAj´1

ϕw dµ ď 2C3
µCRHα

p´1
j CW

ż

Aj´1

ϕw dµ.

Trivially we also have
ż

Aj´1zAj

pϕwqp dµ ă αp´1
j

ż

Aj´1zAj

ϕw dµ,

so
ż

Aj´1

pϕwqp dµ ă C0α
p´1
j

ż

Aj´1

ϕw dµ,

with C0 :“ 1 ` 2CWCRHC
3
µ.

By Lemma 4.55, if ρp´1 ě 2C0, i.e.

δ “ min

#

C2
µ

p2C0q
1

p´1

,
1

2CRH

+

,

we infer that
ż

U
pϕwqq dµ ÀC0,q,p α

q´p
0

ż

U
pϕwqp dµ,

as claimed, with q ´ p ď CC0,p.

Proof of Lemma 4.57. Let Q P D with 3Q Ă U . By covering Q with finitely many bound-
ary balls ∆i with radii comparable to ℓpQq such that λ∆i Ă 3Q, we deduce that

ˆ

´

ż

Q
wp dµ

˙
1
p

À
ÿ

i

ˆ

´

ż

∆i

wp dµ

˙
1
p

À
ÿ

i

´

ż

λ∆i

w dµ À ´

ż

3Q
w dµ.

So Lemma 4.57 implies that

ˆ

´

ż

K
wp`ε dµ

˙
1

p`ε

ď C 1
RH,ε

ˆ

´

ż

U
wp dµ

˙
1
p

for some ε ą 0.
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4.8 The Riesz representation theorem

Recall that a topologic space X is said to be locally compact if every point x P X has a
neighborhood whose closure is compact.

Theorem 4.58 (Riesz representation Theorem). Let X be a locally compact metric space
and L : CcpXq Ñ R a positive linear functional. Then there is a unique Radon measure µ
such that

Lf “

ż

f dµ for f P CcpXq.

The approach presented below is based on the proof of [Rud87, Chapter 2], where the
reader may find all the details and the proofs of every single lemma used here.

Proof. Given an open set V Ă X we write f ă V whenever f P CcpV q, and 0 ď f ď χV .
We define

µpV q :“ suptLf : f ă V u.

Note that for open sets U Ă V it follows immediately that µpUq ď µpV q. Therefore it
makes sense to define for every E Ă X

µpEq :“ inftµpV q : V Ą E and V is openu.

We will use often the following immediate consequence of the positivity of Lf :

If f, g P CcpXq are such that 0 ď f ď g, then Lf ď Lg (4.18)

First we claim that µ is a measure.

1. Since H is open, µpHq “ suptLf : f ă Hu “ L0 “ 0.

2. Given sets A Ă B Ă X,

tV : V Ą A and V is openu Ą tV : V Ą B and V is openu

trivially, and taking infimum in a subset always increases the result, so

µpAq ď µpBq. (4.19)

3. Let Ai Ă X for 1 ď i ă 8, and let ε ą 0. Consider open sets Vi Ą Ai such that
µpViq ď µpAiq ` ϵ

2i
, and let f ă V :“

Ť

i Vi so that µpV q ď Lf ` ε.

Since K :“ suppf is compactly contained in V we infer that there exist n P N and
a finite subcovering, i.e., a subset tiju

n
j“1 Ă N so that K Ă

Ťn
j“1 Vij .

There exists a partition of the unity in K for the covering Vij , i.e., there exist
functions hj ă Vij with χK ď

ř

j hj ď 1. Then

µ

˜

ď

i

Ai

¸

ď µpV q ď Lf ` ε “ Lf
ř

j hj
` ε “

ÿ

j

Lfhj
` ε

ď
ÿ

j

µ
`

Vij
˘

` ε ď
ÿ

i

´

µpAiq `
ε

2i

¯

` ε ď
ÿ

i

µpAiq ` 2ε, (4.20)

concluding the proof that µ is a mesaure.
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Next we show that µ is in fact a Radon measure. To show that we begin by aq ´ cq in
Definition 4.4:

a) Let K Ă X be a compact set. Then K is contained in a ball B. Consider a continuous
function χK ď f ď χB, which exists by Urysohn’s lemma. Then call V :“ tx : fpxq ą

1{2u. Every function g ă V satisfies that g ď 2f . Therefore

µpKq ď µpV q “ suptLg : g ă V u
(4.18)

ď 2Lf ă 8.

b) Let V be an open set. We will prove that its measure coincides with the supremum of
the measures of its compact subsets. Let ε ą 0 and f ă V such that µpV q ď Lf ` ε.
Then write K :“ suppf and consider an open set U Ą K. It is clear that f ă U and
thus µpUq ą Lf . Since this holds for every such U , passing to the infimum we can infer
that µpKq ě Lf . All in all,

µpV q ď Lf ` ε ď µpKq ` ε.

Since such a compact set can be obtained for every ε, we conclude that

µpV q ď suptµpKq : K Ă V u.

The converse inequality follows from (4.19).

c) µpEq :“ inftµpV q : V Ą E and V is openu follows by definition.

To complete the proof that µ is Radon, we will check that it is Borel regular. First of
all, let K1, K2 be compact, disjoint subsets of X. We claim that

µpK1q ` µpK2q “ µpK1 YK2q. (4.21)

Indeed, it is well known that there exist open sets Vi Ą Ki, such that V1 X V2 “ H (see
[Rud87, Theorem 2.7], for instance), and also there exists an open set W Ą K1 Y K2

such that µpW q ă µpK1 Y K2q ` ε. Moreover, there exist functions fi ă Vi X W so that
µpVi XW q ď Lfi ` ε. Then, since the supports of fi are disjoint, f1 ` f2 ă W and we get

µpK1q ` µpK2q
(4.19)

ď µpV1 XW q ` µpV2 XW q ď Lf1 ` Lf2 ` 2ε

“ Lf1`f2 ` 2ε ď µpW q ` 2ε ă µpK1 YK2q ` 3ε,

proving the claim.
Since the µ-measurable sets form a σ-algebra, to show that µ is a Borel measure we

only need to check that every open set V is µ-measurable, i.e., every E Ă X satisfies that

µpEq “ µpE X V q ` µpE X V cq.

By the subadditivity shown in (4.20), it suffices to prove that

µpEq ě µpE X V q ` µpE X V cq (4.22)
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and for this we may assume that µpEq ă 8.
First let us assume that E is an open set with finite measure. Then write rV “ V X E,

so E X V c “ E X pV c Y Ecq “ E X pV X Eqc “ E X rV c, i.e. we have to show that

µpEq ě µprV q ` µpE X rV cq.

Let K1 Ă rV be a compact set such that

µprV q ď µpK1q ` ε.

Then consider an open set U Ą E X rV c so that µpUq ď µpE X rV cq ` ε. Define rU :“
U X E XKc

1 which is again an open set. Then

µprUq
(4.19)

ď µpUq ď µpE X rV qc ` ε,

and
E X rV c “ U X E X rV c Ă U X E XKc

1 “ rU Ă Kc
1 X E. (4.23)

To end consider a compact set K2 Ă rU such that µprUq ď µpK2q ` ε. All in all,

µprV q ` µpE X rV cq
(4.23)

ď µpK1q ` ε` µprUq ď µpK1q ` µpK2q ` 2ε

(4.21)
“ µpK1 YK2q ` 2ε

(4.19)
ď µpEq ` 2ε,

and (4.22) follows for open sets.
Consider a set E Ă X (without the openness assumption). Then there exists an open

set VE Ą E such that µpVEq ď µpEq ` ε. Then

µpE X V q ` µpE X V cq
(4.19)

ď µpVE X V q ` µpVE X V cq “ µpVEq ď µpEq ` ε,

proving (4.22) for general sets.
To end we have to check that Lf “

ş

f dµ for every f P CcpXq. For simplicity we may
assume that f is real valued. Moreover, it suffices to show

Lf ď

ż

f dµ, (4.24)

since we can apply the same inequality to ´f to obtain the converse estimate.
Let ra, bsYt0u be the range of f . For every n consider tyiu

n`1
i“0 with y0 ă a, yn`1 “ b and

0 ă yi`1 ´yi ď pb´aq{n “: ε for every i ď n. Let Ei :“ f´1ppyi´1, yisqX suppf , which are
Borel sets and, thus, measurable. Consider open sets Vi Ą Ei with µpViq ă µpEiq ` ε

n`1
and such that fpxq ă yi `ε for every x P Vi; and let hi be a partition of the unity of suppf
with respect to the covering tViu, that is hi ă Vi with χtsuppfu ď

ř

i hi ď 1. Then

Lf “
ÿ

i

Lhif

(4.18)
ď

ÿ

i

pyi ` εqLhi
ď
ÿ

i

pyi ` εqµpViq ď
ÿ

i

pyi ´ ε` 2εq

ˆ

µpEiq `
ε

n` 1

˙

“
ÿ

i

µpEiqpyi ´ εq ` 2ε
ÿ

i

µpEiq `
ε

n` 1

ÿ

i

yi ` ε2
(4.1)
ď

ż

f dµ` εp2µpsuppfq ` b` εq
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and (4.24) follows choosing ε arbitrarily small.
As for uniqueness, assume that µ1, µ2 are Radon measures satisfying the hypotheses of

the Theorem. Since Radon measures are determined by their values on compact sets, we
only need to check that µ1pKq “ µ2pKq for every compact set K Ă X. Consider such a
compact set, and let V Ą K be an open set such that µ2pV q ď µ2pKq ` ε. By Urysohn’s
lemma, there exists f ă V such that χK ď f . Then

µ1pKq “

ż

χK dµ1 ď

ż

f dµ1 “ Lf “

ż

f dµ2 ď

ż

χV dµ2 “ µ2pV q ď µ2pKq ` ε.

4.8.1 Image measure

Definition 4.59. The image of a measure µ under a mapping f : X Ñ Y (also known as
push-forward measure) is defined by f#µpAq “ µpf´1pAqq for A Ă Y .

Theorem 4.60. If X, Y are separable metric spaces, f is continuous and µ is a compactly
supported Radon measure, then f#µ is a Radon measure, with suppf#µ “ fpsuppµq.

Theorem 4.61. If X, Y are metric spaces, f is a Borel mapping, µ is a Borel measure
and g is a nonnegative Borel function, then

ż

g df#µ “

ż

pg ˝ fq dµ.

4.8.2 Weak convergence

Let tµiu
8
i“0 be a collection of Radon measures in a metric spaceX. We say that µi converge

weakly to µ0, and write
µi á µ0,

if

lim
iÑ8

ż

φdµi “

ż

φdµ0 for every φ P CcpXq.

As a consequence of the Riesz representation theorem, one can prove that a uniformly
locally finite collection of measures has a weakly convergent subsequence:

Theorem 4.62. If tµiu
8
i“1 is a collection of Radon measures in Rd, with

sup
i
µipKq ă `8,

for every compact set K Ă Rd, then there is a weakly convergent subsequence tµiku8
k“1,

and a Radon measure µ with
µik á µ.

Consider the Dirac delta measure δi in i P N. Note that the sequence δi á 0. This
example shows that the weak convergence of measures does not imply the convergence of
the measure of a particular set. However, the following semicontinuity properties hold:
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Theorem 4.63. Let tµiu
8
i“0 be a collection of Radon measures in a locally compact metric

space X. If µi á µ0, K Ă X is compact and G Ă X is open, then

µ0pKq ě lim sup
iÑ8

µipKq,

and
µ0pGq ď lim inf

iÑ8
µipGq.

4.9 Hausdorff measure and dimension

For every subset A Ă Rd, 0 ď s ă `8 and 0 ă δ ď `8, define

Hs
δpAq :“ inf

#

ÿ

i

diampEiq
s : A Ă

ď

i

Ei with diampEiq ď δ

+

,

and let
HspAq :“ lim

δŒ0
HspAq

be the s-dimensional Hausdorff measure of A. The quantity Hs
8pAq also plays an im-

portant role and is called s-dimensional Hausdorff content of A. The Hausdorff measure
happens to be a Radon measure. The 0-dimensional Hausdorff measure is the counting
measure, the 1-dimensional measure is a generalization of the length measure in Rd, and
the d-dimensional measure is a multiple of the Lebesgue measure.

If A is a set with HspAq ă `8, then Hs|A is locally finite and, in fact, it happens to be
a Radon measure (see [Mat95, chapter 4]).
Another interesting fact is that although

Hs
8pAq ď Hs

δpAq Õ HspAq,

having null Hausdorff content is equivalent to having zero Hausdorff measure:

Hs
8pAq “ 0 ðñ HspAq “ 0.

Theorem 4.64. For 0 ď s ă t ă 8 and A Ă Rd,

1. HspAq ă `8 implies HtpAq “ 0, and

2. HtpAq ą 0 implies HspAq “ `8.

This leads to the concept of Hausdorff dimension:

Definition 4.65. The Hausdorff dimension of a set A Ă Rd is

dimHA “ supts : HspAq ą 0u.

Equivalently,
dimHA “ supts : Hs

8pAq ą 0u.

From the previous theorem, one can infer that

dimHA “ supts : HspAq “ `8u “ infts : HspAq ă `8u “ infts : HspAq “ 0u.
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4.10 Frostman’s lemma

The following result is Frostman’s Lemma, which is a fundamental tool in geometric
measure theory and in potential theory.

Theorem 4.66. Let E be a Borel set in Rd. Then HspEq ą 0 if and only if there exists
a non-zero finite Radon measure µ compactly supported in E such that

µpBrpxqq ď rs for every x P Rd and r ą 0.

Further,

Hs
8pEq « sup

␣

µpEq : suppµ Ă E, µpBrpxqq ď rs for every x P Rd and r ą 0
(

,

with the implicit constant depending only on d.

Below we provide a proof for the case when E is a compact set. The case when E is
σ-compact is easily deduced from this. These two cases suffice for the purposes of these
notes.

Proof. Suppose first that such a measure µ exists, and let us see that Hs
8pEq ě µpEq.

Indeed, consider a covering
Ť

iAi Ą E, and take for each i a point xi P Ai. Since the
union of the balls BdiampAiq

pxiq covers E, we get

ÿ

i

diampAiq
s ě

ÿ

i

µ
`

BdiampAiq
pxiqq

˘

ě µpEq.

Taking the infimum over all possible coverings of E, we obtain Hs
8pEq ě µpEq.

For the converse implication of the theorem, assume that E is contained in a dyadic
cube Q0. The measure µ will be constructed as a weak limit of measures µn, n ě 0. The
first measure is

µ0 “ Hs
8pEq

Ld|Q0

LdpQ0q
.

For n ě 1, each measure µn vanishes in RdzQ0, it is absolutely continuous with respect
to Lebesgue measure, and in each cube from DnpQ0q (this is the family of dyadic n-
descendants of Q0), it has constant density with respect to Lebesgue measure. It is defined
from µn´1 as follows. If P P DnpQ0q and P is a dyadic child of Q P Dn´1pQ0q (then we
write P P ChpQq), we set

µnpP q “
Hs

8pP X Eq
ř

RPChpQq Hs
8pR X Eq

µn´1pQq. (4.25)

Observe that
ÿ

PPChpQq

µnpP q “ µn´1pQq for all Q P Dn´1pQ0q,

and thus µnpRdq “ µn´1pRdq.
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4 Basic results from measure theory and weights

As said above, µ is just a weak limit of the measures µn. The fact that µ is supported
on E is easy to check: from the definition of µn in (4.25), µnpP q “ 0 if P P DnpQ0q does
not intersect E. As a consequence, µkpP q “ 0 for all k ě n too, and thus,

supppµkq Ă U2´n`1diampQ0qpEq for all k ě n, (4.26)

where UtpEq stands for the t-neighborhood of E, that is,

UtpEq “ tx P Rd : distpx,Eq ă tu.

From (4.26) one gets that supppµq Ă U2´n`1diampQ0qpEq, for all n ě 0, which proves the
claim.
Next we will show that

µnpP q ď Hs
8pP X Eq for all P P DnpQ0q.

This follows easily by induction: it is clear for n “ 0, and if it holds for n´ 1 and Q is the
dyadic parent of P , then

µn´1pQq ď Hs
8pQX Eq ď

ÿ

RPChpQq

Hs
8pR X Eq.

Thus, from (4.25), we infer that µnpP q ď Hs
8pP X Eq, as claimed. As a consequence, for

all j ě n,
µjpP q ď Hs

8pP X Eq for all P P DnpQ0q.

Moreover, by construction, all the dyadic cubes which do not intersect Q0 have zero
measure µj .
Since every open ball Br of radius r with 2´n´1ℓpQ0q ď r ă 2´nℓpQ0q (where ℓpQ0q

stands for the side length of Q0) is contained in a union of at most 2d dyadic cubes Pk

with side length 2´nℓpQ0q, we get

µjpBrq ď

2d
ÿ

k“1

µjpPkq ď

2d
ÿ

k“1

Hs
8pPk X Eq ď 2d diampPkqs ď c rs,

for all j ě n. Letting j Ñ 8, we infer that µpBrq ď c rs.
So we have constructed a measure µ supported on E such that µpEq “ Hs

8pEq with
µpBrpxqq ď c rs for all x P Rd and all r ą 0, which implies

Hs
8pEq À sup

␣

µpEq : suppµ Ă E, µpBrpxqq ď rs @x P Rd, r ą 0
(

.
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5 Harmonic measure via Perron’s method

To solve the Dirichlet problem for a very general class of open sets, it is convenient to
use harmonic measure. Before introducing this notion, we will introduce subharmonic
functions and we will show the solution of the Dirichlet problem via Perron’s method.

5.1 Subharmonic functions

Definition 5.1. For Ω Ă Rd open, we say that u : Ω Ñ r´8,8q is subharmonic if it is
upper semicontinuous in Ω and

upxq ď ´

ż

Brpxq

u (5.1)

whenever Brpxq ĂĂ Ω.
On the other hand, u : Ω Ñ p´8,`8s is superharmonic if it is lower semicontinuous

and upxq ě ´
ş

Brpxq
u whenever Brpxq ĂĂ Ω.

Recall that u is called upper semicontinuous at x P Ω if lim supyÑx upyq ď upxq, and it is
lower semicontinuous if lim infyÑx upyq ě upxq. It is easily checked that, if K is compact
and u : K Ñ r´8,8q is upper semicontinuous, then u attains the maximum on K.
Analogously, if u : K Ñ p´8,8s is lower semicontinuous, then u attains the minimum on
K. Note that upper semicontinuity does not imply local Lebesgue integrability. However,
the function is locally bounded above and therefore, the average ´

ş

Brpxq
u in the previous

definition is in r´8,`8q.
Of course, any function that is harmonic in Ω is both subharmonic and superharmonic.

Further, u is subharmonic if and only if ´u is superharmonic. Other immediate properties
are stated below.

Lemma 5.2. If u, v are subharmonic in Ω, then u`v and maxpu, vq are both subharmonic
in Ω. On the other hand, if u, v are superharmonic in Ω, then u ` v and minpu, vq are
both superharmonic in Ω.

Proof. This is immediate.

Subharmonicity condition can be checked in spheres instead of balls:

Lemma 5.3. If u is upper semicontinuous in Ω and upxq ď ´
ş

BBrpxq
u whenever Brpxq ĂĂ

Ω, then u is subsharmonic.
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5 Harmonic measure via Perron’s method

Proof. We can assume that ´8 ă ´
ş

Br
u dm (otherwise there is nothing to prove). By

upper semicontinuity, we have a bound above and therefore u is in L1pBq and we can
apply Fubini’s theorem to recover the solid means as

´

ż

Br

u dm “
d

κdrd

ż r

0

ż

BBt

u dσ dt “
d

rd

ż r

0
´

ż

BBt

u dσ td´1dt ě
dupxq

rd

ż r

0
td´1 dt “ upxq.

Subharmonic functions satisfy the maximum principle (and superharmonic functions
satisfy the minimum principle):

Lemma 5.4 (Maximum principle). If u is a subharmonic function in a bounded open set
Ω such that

lim sup
xÑξ

upxq ď 0 for every ξ P BΩ,

then u ď 0 in Ω. If moreover Ω is connected, then either u ” 0 or u ă 0 in Ω.

Proof. By considering each component of Ω separately, we can assume that Ω is con-
nected and it is enough to prove the second statement of the lemma. Suppose first that
u does not achieve a supremum in Ω. If xj P Ω is such that limj upxjq “ supΩ u, then
limj distpxj , BΩq “ 0, for otherwise we could extract a subsequence converging to a point
inside Ω and obtain a contradiction. Using that Ω is bounded, by passing to a subsequence
we may assume that xj Ñ ξ P BΩ. By assumption, this implies that every x P Ω satisfies

upxq ă sup
Ω
u “ lim

j
upxjq ď lim sup

yÑξ
upyq ď 0.

If u achieves the supremum at some x P Ω, then there exists r such that Brpxq Ă Ω.
Assume that there exists y P Brpxq such that upyq ă upxq “ supΩ u. Then, by upper
semicontinuity we would get

sup
Ω
u “ upxq ď ´

ż

Brpxq

u ă sup
Ω
u,

reaching a contradiction. Therefore, the function is constant in the ball Brpxq. This
implies that the set where the supremum is achieved is open. But it is also relatively
closed in Ω by semicontinuity and so u is constant in Ω.

Next we give a couple of characterizations of subharmonicity under certain a priori
regularity conditions. First, we check the behavior of the Laplacian when a subharmonic
function has two derivatives, and then we use it to show that the fundamental solution to
´∆, see (2.10), is an example of superharmonic function.

Lemma 5.5. Let Ω Ă Rd be open and u P C2pΩq. The function u is subharmonic in Ω if
and only if ∆u ě 0 in Ω.
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5 Harmonic measure via Perron’s method

Proof. The fact that ∆u ě 0 in Ω implies the subharmonicity of u is a direct consequence
of Remark 2.2. To prove the converse implication, we have to show that ∆upxq ě 0 for
every x P Ω. To this end, consider the function

vpyq “ upyq ´ upxq ´ ∇upxq py ´ xq.

Since u is subharmonic and any affine function is harmonic, it follows that v is also
subharmonic. The Taylor expansion of v in x equals

vpyq “
1

2
py ´ xqT D2upxq py ´ xq ` op|y ´ x|2q,

where D2upxq is the Hessian matrix of u. For any ball Brpxq Ă Ω, we have

0 “ vpxq ď ´

ż

Brpxq

v dy “
1

2
´

ż

Brpxq

py ´ xqT D2upxq py ´ xq dy ` opr2q

“
1

2

ÿ

i,j

Bi,jupxq ´

ż

Brpxq

pyi ´ xiq pyj ´ xjq dy ` opr2q

“ c∆upxq r2 ` opr2q,

where we took into account that
ş

Brpxq
pyi ´xiq pyj ´xjq dy vanishes if i ‰ j and is positive

otherwise. Dividing by cr2, we deduce

∆upxq ` op1q ě 0,

with op1q Ñ 0 as r Ñ 0. This implies that ∆upxq ě 0, and the proof of the lemma is
concluded.

Lemma 5.6. The fundamental solution of ´∆ is harmonic in Rdzt0u and superharmonic
in Rd.

Proof. Harmonicity can be easily checked. To prove superharmonicity, notice first that E
is lower semicontinuous. Next, for every ε ą 0 let φε be a C

8, positive, radially decreasing,
function supported on Bεp0q with

ş

φε “ 1. Then E ˚ φε P C8pRdq. Further,

∆pE ˚ φεq “ ´φε ď 0.

Thus, by Lemma 5.5, E ˚φε is superharmonic in Rd. Consequently, for any ball B centered
in x0 ‰ 0 and any ε ą 0,

´

ż

B
E ˚ φε ď E ˚ φεpx0q.

Letting ε Ñ 0, we deduce

´

ż

B
E ď Epx0q.

In case x0 “ 0, we have Epx0q “ `8 and the last inequality is satisfied trivially.
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5 Harmonic measure via Perron’s method

Now we turn our attention to continuous subharmonic functions. Although the maxi-
mum of two subharmonic is subharmonic in their common domain of definition, in some
occasions we want to extend the domain. Here we check a particularly easy case which
consists in extending a subharmonic function out of its domain of definition as a constant
function.

Lemma 5.7. Let Ω be an open set, let u be a subharmonic, continuous function in Ω, let
V be a connected component of Ω

c
and let t P R such that t ě supξPBV XBΩ lim supxÑξ upxq.

Then

ru “

"

maxpu, tq in Ω,

t in V .

is subharmonic and continuous in Ω Y V .

Proof. Without loss of generality, we may assume t “ 0. Continuity is left as an exercise for
the reader. To establish subharmonicity in U “ Ω Y V , we will check that rupxq ď ´

ş

BB ru
whenever B “ Brpxq ĂĂ U . This is rather trivial when rupxq “ 0 because ru is non-
negative. Thus, we may assume that rupxq “ upxq ą 0 and, in particular, x P Ω. Let v be
the solution to the Dirichlet problem in B with boundary values fpyq :“ rupyq for y P BB,
given in Theorem 3.11.
Since v is harmonic in B, continuous in B and it has non-negative boundary values, by

the maximum principle we get that v is non-negative in A “ B X Ω, and moreover it is
continuous up to the boundary in A. In particular, u´ v is subharmonic in A.

Note that BA “ pBB X Ωq Y pBΩ X Bq. Consider now y P BA. If y P BB X Ω, then
rupyq ´ vpyq “ rupyq ´ fpyq “ 0 by definition. Otherwise, y P BΩ X B and by assumption
lim supzÑyprupzq ´ vpzqq ď 0 ´ vpyq ď 0. All in all, by the maximum principle we obtain
ru ď v in B, implying in particular that

rupxq ď vpxq “ ´

ż

BB
v “ ´

ż

BB
ru,

and subharmonicity follows by Lemma 5.3.

Next we characterize continuous subharmonic functions as those functions whose interior
values in balls lie below the solution to the Dirichlet problem with the same boundary
values.

Lemma 5.8. Let Ω Ă Rd be open and u P CpΩq. Then u is subharmonic if and only if
for every ball B ĂĂ Ω and every harmonic function v such that upxq ď vpxq for every
x P BB, it holds either v ą u or v ” u in B.

Proof. The only if implication follows by the maximum principle to the subharmonic
function u´ v. To see the converse, let Brpxq ĂĂ Ω and let v be the harmonic function in
Br continuous up to the boundary that agrees with u on BBr (see Theorem 3.11). Then

´

ż

BBr

u dσ “ ´

ż

BBr

v dσ “ vpxq ě upxq.

The proof is completed by Lemma 5.3.
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5 Harmonic measure via Perron’s method

Let u P CpΩq be subharmonic in a ball B. Let ũ be the harmonic function in B that
agrees with u on BB and set U :“ χΩzBu` χBũ. Note that U ě u by Lemma 5.8. This is
called the harmonic lift of u in B.

Lemma 5.9. Let Ω Ă Rd be open. If u P CpΩq is subharmonic in Ω, x P Ω and B “

Brpxq ĂĂ Ω, then the harmonic lift of u in B is also subharmonic in Ω.

Proof. Let U be the harmonic lift of u in B. Consider v harmonic in a ball B1 Ă Ω with
B1 X B ‰ H and v ě U in the boundary of B1. We want to prove that either v ą U or
v ” U in B1.

Case 1: BB XB1 “ ∅, that is B1 Ă B and U is harmonic in B1. Then the claim follows
by Lemma 5.8 applied to U .

Case 2: BB X B1 ‰ ∅ and vpyq ą Upyq in BB X B1. Using the continuity of U and the
maximum principle applied to U ´ v in B1zB and B1 X B separately, we get that v ą U
in B1.
Case 3: BB X B1 ‰ ∅ and there exists y P BB X B1 such that vpyq ď Upyq “ upyq. In

this case, since v ě u in BB1, Lemma 5.8 implies that v ” u in B1. If BB1 X B ‰ H, the
identity v ” u in B1 implies the existence of a point in BB1 XB ‰ H where upyq ď Upyq ď

vpyq “ upyq and therefore U ” u by Lemma 5.8. If, instead, BB1 X B “ H, that is if
B Ă B1, then u is harmonic in B and, therefore, U ” u as well and the claim follows.

Next we provide a couple of properties of subharmonic functions, again under certain
a priori conditions. First we see that subharmonicity is preserved by an approximation
of the identity. Then we use this fact to show that subharmonic Sobolev functions are
weakly subharmonic, see Remark 5.14 below. This properties will be used to show the
Caccioppoli inequality for subharmonic functions.

Lemma 5.10. Let Ω Ă Rd be open and let u P L1
locpΩq be subharmonic. For ρ ą 0, denote

Ωρ “ tx P Ω : distpx,Ωcq ą ρu. Then following holds:

(a) If µ is a (non-negative) Radon measure supported in Bρp0q and u ˚ µ is upper semi-
continuous in Ωρ, then u ˚ µ is subharmonic in Ωρ.

(b) If φ is a continuous non-negative function supported in Bρp0q, then u ˚φ is subhar-
monic in Ωρ.

Proof. Clearly, the statement (b) is a consequence of (a), since u˚φ is continuous because
φ is continuous and compactly supported. To prove (a), we have to check that for any
x P Ωρ and r ą 0 such that Brpxq Ă Ωρ, we have u ˚ µpxq ď ´

ş

Brpxq
u ˚ µdm. Without

loss of generality, assume that x “ 0 and Brp0q Ă Ωρ. Denoting rupyq “ up´yq and
pχBrp0q “ mpBrp0qq´1χBrp0q, we have

´

ż

Brp0q

u ˚ µdm “
@

u ˚ µ, pχBrp0q

D

“
@

µ, ru ˚ pχBrp0q

D

.

Notice now that for any y P suppµ, Brpyq Ă Br`ρp0q Ă Ω (because suppµ Ă Bρp0q and
Brp0q Ă Ωρ) and so

ru ˚ pχBrp0qpyq “ ´

ż

Brpyq

ru dm ě rupyq.
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5 Harmonic measure via Perron’s method

Consequently,

´

ż

Brp0q

u ˚ µdm ě
@

µ, ru
D

“ u ˚ µp0q.

Lemma 5.11 (Locality of subharmonicity). Let u P L1
locpΩq be an upper semicontinuous

function in Ω satisfying (5.1) whenever B̄rpxq Ă Ω, with r ă ρ, then u is subharmonic
in Ω.

From here, it is possible to show as well that if u P L1
locpU Y V q is subharmonic on two

open sets U and V , then it is also subharmonic in the union U Y V .

Proof of Lemma 5.11. First we will show that, if φ P C1 is a non-negative, non-increasing
radial function supported in B1p0q with

ş

φ “ 1, then

u ˚ φεpxq
εÑ0
ÝÝÝÑ upxq for every x P Ω. (5.2)

Let x P Ω and ε ă ρ. Abusing notation we write φp|x|q :“ φpxq. Using that φp|x|q “

´
ş8

|x|
φ1ptq dt, we get

φεpxq “
1

εd
φpε´1|x|q “ ´

1

εd

ż 8

0
χr0,tspε

´1|x|qφ1ptq dt,

Then, by Fubini’s Theorem,

u ˚ φεpxq “

ż

Rd

upyqφεp|x´ y|q dmpyq “ ´
1

εd

ż 8

0
φ1ptqmpBεtpxqq ´

ż

Bεtpxq

upyq dmpyq dt.

Since φ1 ď 0, by (5.1), we obtain

u ˚ φεpxq ě ´upxq

ż 8

0
φ1ptqmpBtp0qq dt.

Note that

´

ż 8

0
φ1ptqmpBtp0qq dt “ ´

ż

Rd

ż 8

|y|

φ1ptq dt dmpyq “ }φ}L1 ,

so that we get
u ˚ φεpxq ě upxq. (5.3)

Next we show (5.2) arguing by contradiction. Assume that u ˚φεpxq does not converge
to upxq, i.e., there exists a δ ą 0 and a sequence εn Ñ 0 such that

|u ˚ φεnpxq ´ upxq| ě δ.

By (5.3) we have u ˚ φεnpxq ´ upxq ě 0, so we necessarily have

u ˚ φεnpxq ´ upxq ě δ.
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5 Harmonic measure via Perron’s method

Since φεn has integral one, is non-negative, and is supported on the ball Bεnp0q, there
exists a set with positive measure in Bεnpxq where upyq ě upxq ` δ. In particular, we can
fix yn P Bεnpxqztxu with

upynq ě upxq ` δ.

Since yn Ñ x, we get

lim sup
yÑx

upyq ě lim sup
nÑ8

upynq ě upxq ` δ,

contradicting upper semicontinuity, so (5.2) has been established.
To prove the lemma, note that it is enough to show that u satisfies (5.1) in every ball

B compactly contained in Ω. Consider a function φ P C2pB1p0qq as above. By Lemma
5.10, the function u˚φε is subharmonic in balls of radius r ă ρ´ ε contained in Ωε, which
using Lemma 5.5 implies that ∆pu ˚φεq ě 0 in Ωε. Using Lemma 5.5 again, we derive the
subharmonicity of u ˚ φε in a neighborhood of B for ε small enough. In particular

u ˚ φεpxq ď ´

ż

B
u ˚ φε dm. (5.4)

Now, since u P L1pBq, by standard properties about approximations of the identity (see
[Gra08, Theorem 1.2.19], for instance), we infer that

ż

B
u ˚ φε dm Ñ

ż

B
u dm

as ε Ñ 0. Recalling also that u ˚ φεpxq Ñ upxq, passing to the limit in both sides of (5.4)
we recover (5.1) for the ball B, as wanted.

Remark 5.12. Note that we have shown than given a subharmonic function u P L1
locpΩq,

if φ P C1 is a non-negative, non-increasing radial function supported in B1p0q with
ş

φ “ 1,
then

u ˚ φεpxq
εÑ0
ÝÝÝÑ upxq for every x P Ω.

Lemma 5.13. Let Ω Ă Rd be open, let u P L1
locpΩq be subharmonic in Ω, and φ P C8

c pΩq,
with φ ě 0. Then, its distributional gradient satisfies

x∇u,∇φy ď 0.

Consequently, if u P W 1,p
loc pΩq with 1 ă p ď 8 and φ P W 1,p1

c pΩq with φ ě 0, we have

ż

∇u ¨ ∇φ ď 0. (5.5)
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5 Harmonic measure via Perron’s method

Proof. For every ε ą 0, let ψε be a C8, positive, radially decreasing, function supported
on Bεp0q with

ş

ψε “ 1. Let Ωε “ tx P Ω : distpx,Ωcq ą εu and take ε small enough such
that suppφ Ă Ωε. Then we have

x∇u,∇φy “ ´

ż

u∆φdx “ ´ lim
εÑ0

ż

pu ˚ ψεq∆φdx “ ´ lim
εÑ0

ż

∆pu ˚ ψεqφdx.

Since u˚ψε is C
8 and subharmonic in Ωε, it follows that ∆pu˚ψεq ě 0 in Ωε, see Lemmas

5.5 and 5.10. Thus,
ż

∆pu ˚ ψεqφdx ě 0

for any ε ą 0 small enough, and so x∇u,∇φy ď 0.
The second statement in the lemma follows easily by a density argument.

Remark 5.14. A function f P W 1,2
loc pΩq satisfying (5.5) is called weakly subharmonic.

Note that we don’t ask for semicontinuity in this definition. What we call weakly subhar-
monic is sometimes called a subsolution to ∆u “ 0, see [Ken94, Section 1.1], for instance.

Lemma 5.15 (Caccioppoli Inequality). Let Ω Ă Rd be open and let u P W 1,2
loc pΩq be weakly

subharmonic in Ω and non-negative. Then for every ball B Ă Ω of radius r we have

ż

B
|∇u|2 ď

4

prtq2

ż

pt`1qBzB
u2,

where t “ distpB, BΩq

Proof. The arguments are very similar to the ones in Lemma 2.10. Let η be a Lipschitz
function such that χB ď η ď χpt`1qB and with |∇η| ď 1

rt . Since u is weakly subharmonic,
η is compactly supported, and uη2 ě 0, by Leibniz’ rule we have

ż

pt`1qB
η2|∇u|2 “

ż

pt`1qB
∇u ¨ ∇puη2q ´

ż

pt`1qB
2uη∇u ¨ ∇η ď ´

ż

pt`1qB
2uη∇u ¨ ∇η.

By Hölder’s inequality we get

ż

pt`1qB
η2|∇u|2 ď

˜

ż

pt`1qB
4u2|∇η|2

¸
1
2
˜

ż

pt`1qB
η2|∇u|2

¸
1
2

,

and so
ż

B
|∇u|2 ď

ż

pt`1qB
η2|∇u|2 ď

ż

pt`1qB
4u2|∇η|2 ď

4

prtq2

ż

pt`1qBzB
u2.
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5 Harmonic measure via Perron’s method

5.2 Perron classes and resolutive functions

Throughout this section we assume that Ω Ă Rd is a bounded open set (not necessarily
connected).
For f P CpBΩq, the Perron method, that we will describe below, associates a harmonic

function uf : Ω Ñ R to f . Even if f is continuous, the function uf may not extend
continuously to the boundary to coincide with f , see Example 3.8. However, We will see
that if Ω is regular enough in some sense, then uf extends continuously to BΩ and its
boundary values coincide with f .

Definition 5.16. Given a bounded function f : BΩ Ñ R, define the lower Perron class as

Lf “
␣

u P CpΩq : is subharmonic and lim sup
xÑξ

upxq ď fpξq for all ξ P BΩ
(

,

and the upper Perron class as

Uf “
␣

u P CpΩq : u is superharmonic and lim inf
xÑξ

upxq ě fpξq for all ξ P BΩ
(

.

Note that the constant function x ÞÑ supBΩ f is an element of Uf (and x ÞÑ infBΩ f is an
element of Lf ). Therefore, Uf and Lf are non-empty and we can define the real-valued
functions

Hf pxq “ sup
uPLf

upxq, Hf pxq “ inf
uPUf

upxq

for x P Ω, which we call lower Perron solution and upper Perron solution respectively.

Remark 5.17. If f P CpΩq is harmonic in Ω, for every u P Lf we can apply the maximum
principle (see Lemma 5.4) to u´ f to infer that u ď f in Ω. In particular, we deduce that
f “ Hf “ Hf . So if the solution of the Dirichlet problem with continuous boundary data
exists, then it coincides with the lower and upper Perron solutions.

Lemma 5.18. For every bounded function f : BΩ Ñ R, the functions Hf and Hf are
harmonic.

Proof. We will show only the case Hf . The other follows by noting that Hf “ ´H´f .

Fix x P Ω and B “ Brpxq with B Ă Ω. Let tuju
8
j“1 Ă Lf be a sequence of subharmonic

functions so that ujpxq
jÑ8
ÝÝÝÑ Hf pxq. By replacing uj by maxpuj , infBΩ fq if necessary (see

Lemma 5.2), we may assume that the sequence of functions uj is uniformly bounded from
below.
Let Uj be the harmonic lift of uj in B, which is subharmonic by Lemma 5.9 and therefore

Uj ď Hf . This sequence is uniformly bounded above by supBΩ f by the maximum principle
and it is also bounded below since the uj ’s are uniformly bounded from below. Thus,
passing to a subsequence if necessary, we may assume that Uj converges pointwise in B to
a harmonic function U (see Lemma 2.14). As we have seen, uj ď Uj ď Hf and, therefore,
Upxq “ Hf pxq.

We claim that U ” Hf in B. Assume not. Then there is y P B so that Upyq ă Hf pyq,
and by definition of Hf , there must be v P Lf so that Upyq ă vpyq ď Hf pyq. Set
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vj “ maxtUj , vu (which is again subharmonic by Lemma 5.2) and let Vj be the harmonic
lift of vj in B, so now Vj is harmonic in B. Passing to a subsequence, we may assume
Vj converges pointwise to a harmonic function V in B. Since Uj ď Vj , we have that
U ď V ď Hf in B, and so Upxq “ V pxq “ Hf pxq, which implies U “ V in B by
the maximum principle. However, Upyq ă vpyq ď Vjpyq which implies Upyq ă V pyq, a
contradiction.

Lemma 5.19. Every bounded function f : BΩ Ñ R satisfies Hf ď Hf .

Proof. Let u P Uf and v P Lf . Then v ´ u is subharmonic with lim supxÑξpv ´ uq ď

fpξq ´ fpξq “ 0 for all ξ P BΩ, and so by the maximum principle, v ď u. Taking infimum
and supremum over Uf and Lf respectively, we get Hf ď Hf .

Definition 5.20. We say that a bounded function f : BΩ Ñ R is resolutive if Hf “ Hf .

Lemma 5.21. If f, g are resolutive so are ´f , f ` g, and λ f for any λ P R. Further,

Hf`g “ Hf `Hg and Hλf “ λHf .

Proof. Note that if u P Uf and v P Ug, then u`v P Uf`g, and so Hf`g ď u`v. Therefore,
Hf`g ď Hf `Hg. Similarly, Hf`g ě Hf `Hg “ Hf `Hg. Therefore Hf`g ď Hf`g and
the converse inequality follows from Lemma 5.19.
Also being f resolutive implies that H´f “ ´Hf “ ´Hf “ H´f . For λ ě 0, Hλf “

λHf and Hλf “ λHf and thus Hλf “ λHf . For λ ă 0, we write Hλf “ Hp´λqp´fq “

´λHp´fq “ λHf .

Lemma 5.22. If f P CpΩq is subharmonic in Ω, then f |BΩ is resolutive.

Proof. Since f is subharmonic and continuous up to the boundary, we have f P Lf , and
so f ď Hf . Note that Hf is harmonic (hence superharmonic) and lim infxÑξHf pxq ě

lim infxÑξ fpxq “ fpξq, so Hf P Uf , hence Hf ě Hf .

Lemma 5.23. Polynomials are resolutive in every bounded open set.

Proof. Let u be a polynomial. Note that the function vpxq “ |x|2 satisfies ∆v “ 2d ą 0. In
particular v is subharmonic in Rd by Lemma 5.5. Since ∆u is a polynomial, it is bounded
in any bounded open set Ω. Thus, for k ą 0 large enough, ∆pu ` kvq ą 0 in Ω. So both
v and u ` kv are subharmonic in Ω and continuous in Ω. Hence they are resolutive, and
therefore u “ pu` kvq ´ kv is resolutive too.

Theorem 5.24 (Wiener). CpBΩq functions are resolutive.
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Proof. Let f P CpBΩq and ε ą 0. By the Stone-Weierstrass theorem [Sto48], we may find
a polynomial u such that |f ´ u| ă ε on BΩ. Thus,

Hf ď Hu`ε “ Hu ` ε “ Hu ` ε ď Hf ` 2ε,

and letting ε Ñ 0 gives that f is resolutive.

In this way, we can associate to a continuous function f a harmonic function Hf :“
Hf “ Hf . The fact that f is resolutive is not the reason we can pick an association. For
example, we could just associate to any bounded function f on the boundary the harmonic
function Hf . The property of being resolutive is significant for us not because it helps
us to define a harmonic function for f , but because the fact that Hf and Hf agree (for
resolutive functions) will be useful in maximum principle arguments when trying to prove
continuity at the boundary. Further, as shown above, the set of resolutive functions is a
vector space and the map f ÞÑ Hf is linear in this vector space, as shown in Lemma 5.21.

As mentioned earlier, Hf may not coincide with f at the boundary, even if f is contin-
uous. To give an example, consider Ω “ B1p0qzt0u Ă Rd, and let fpξq “ 0 for ξ P BB1p0q,
fp0q “ 1. Define

uεpxq :“
ε

|x|d´2

for d ě 3 (for d “ 2 use the logarithm). Since uε ą 0 is harmonic and goes to `8 at the
origin, we immediately get uε P Uf , so

Hf pxq ď
ε

|x|d´2

εÑ0
ÝÝÝÑ 0.

Since 0 P Lf trivially, we get that Hf pxq ě 0 and Lemma 5.19 implies that Hf pxq “ 0.
That is, Hf is the same for Ω “ B1p0q and for Ω “ B1p0qzt0u.

5.3 Harmonic measure via Perron’s method

Throughout this section we assume that Ω Ă Rd is a bounded open set, unless otherwise
stated. Next we provide the definition of harmonic measure via the so-called Perron’s
method.

Definition 5.25. Let Ω Ă Rd be open and bounded and let x P Ω. The harmonic measure
for Ω based at x (or with pole in x) is the unique Radon measure ωx on BΩ such that

Hf pxq “

ż

BΩ
fpξqdωxpξq for all f P CpBΩq.

The existence and uniqueness of ωx is ensured by the Riesz representation theorem, i.e.
Theorem 4.58, and the linearity of the map f ÞÑ Hf , implied by Theorem 5.24 and Lemma
5.21. Abusing notation we extend ωx by 0 to the whole Rd, that is ωxpRdzBΩq :“ 0.
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Remark 5.26. Note that 1 P L1 X U1, so H1pxq “ 1 regardless of any consideration on
the geometry of Ω by Lemma 5.19. Therefore

ωxpBΩq “

ż

1dωx “ H1pxq “ 1.

So ωx is a probability measure.

Example 5.27. Consider the case of the unit ball B1. We showed in Theorem 3.11
that the Dirichlet problem is solvable in B1 and that, for any f P CpBB1q, its harmonic
extension equals

uf pxq “

ż

BB1

P xpζqfpζq dσpζq for x P B1,

where P xpξq is the Poisson kernel:

P xpξq “
1 ´ |x|2

κd |x´ ξ|
d
.

Since uf “ Hf for all f P CpBB1q, by the uniqueness of ωx it follows that

dωxpξq “ P xpξq dσpξq.

In the case x “ 0, we have

dω0pξq “
1

κd
dσpξq.

That is, ω0 is the normalized surface measure on the unit sphere.

In many geometric and qualitative analytic properties of harmonic measure, the choice
of the pole plays no role. This is due to the fact that harmonic measures with different
poles are mutually absolutely continuous in (connected) domains. To prove this fact, we
start by checking the harmonicity with respect to the pole of the harmonic measure of a
given compact set.

Lemma 5.28. Let Ω Ă Rd be a bounded open set and let ωx be the harmonic measure for
Ω. Let K Ă BΩ be compact. Then the function upxq :“ ωxpKq is harmonic in Ω.

Proof. For each n ě 1, let Un be the p1{nq-neighborhood of K, i.e. Un “ tx : distpx,Kq ă

1{nu. Consider a sequence of functions fn P CpBΩq such that χK ď fn ď χUnXBΩ, so that
fn Ñ χk pointwise in BΩ.

By dominated convergence theorem, it follows that, for any fixed x P Ω,

upxq “ ωxpKq “ lim
nÑ8

ż

fn dω
x ď ωxpU1q ď 1.

Since unpxq :“
ş

fndω
x, with n ě 1, is a uniformly bounded sequence of harmonic func-

tions, the limit is also harmonic (see Lemma 2.14).
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Lemma 5.29. Let Ω Ă Rd be a bounded domain and let ωx be the harmonic measure for
Ω. For all x, y P Ω, the measures ωx and ωy are mutually absolutely continuous.

Proof. By the inner regularity of Radon measures, it suffices to show that ωxpKq « ωypKq

for any compact set K, with the implicit constant depending only on Ω, x, y, but not on
K. This is an immediate consequence of Lemma 2.17, as upxq :“ ωxpKq is a positive
harmonic function in Ω,

As a matter of fact, the harmonicity with respect to the pole is also satisfied when the
set is Borel regular. The proof in this case is a bit more technical, since the approximating
open sets given by Borel regularity in Definition 4.4 depend on the particular pole.

Remark 5.30. There may be sets which are not Borel, but which are measurable for
certain ωx0 , however mesurability for other poles should may not be obvious. Fortunately,
measurability for ωx is immediate from absolute continuity and Borel regularity. Indeed,
if A is measurable for ωx0 , then there exists a Borel set B Ą A such that ωx0pAq “ ωx0pBq,
that is ωx0pBzAq “ 0. Given another pole x P Ω we get ωxpBzAq “ 0, which implies that
BzA is measurable also for ωx. The ωx-measurability of A “ B X pBzAqc follows from
this fact. Thus we can define ω-measurable set without specifying the particular pole.

Lemma 5.31. Let Ω Ă Rd be a bounded open set, let ωx be the harmonic measure for
Ω, and let A Ă BΩ be a ω-measurable set. Then the function upxq :“ ωxpAq is harmonic
in Ω.

Proof. If A is compact, this has already been shown in Lemma 5.28. If A is open, then
ωxpAcq is harmonic and we write upxq “ ωxpAq “ 1 ´ ωxpAcq. So u is harmonic in Ω.

Let A Ă Ω be now an arbitrary ω-measurable set A and fix x P Ω. By the regularity of
ωx, there exists a sequence of open sets Un Ą A such that ωxpUnzAq ď 1{n. Moreover, we
can take Un`1 Ă Un by redefining the sequence suitably. Then, letting G “

Ş

ně1 Un, we
have ωxpGzAq “ 0. By the mutual absolute continuity of all the harmonic measures ωy,
with y P Ω, it follows that ωypGzAq “ 0 for all y P Ω. Thus, since A is ω-measurable (and
therefore, it is ωy-measurable), we get

ωypGq “ ωypGzAq ` ωypGXAq “ ωypAq “ upyq

for all y P Ω.
Now it just remains to notice that ωypGq is a harmonic function, since it equals a

pointwise limit of uniformly bounded harmonic functions, because Lemma 4.3 implies

ωypGq “ lim
nÑ8

ωypUnq.

The next result will be useful in other chapters when studying the properties of harmonic
measure.
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Lemma 5.32. Let Ω, rΩ Ă Rd be bounded open sets such that rΩ Ă Ω and BΩ X BrΩ ‰ ∅.
Denote by ωΩ and ω

rΩ
the respective harmonic measures for Ω and rΩ. For any x P rΩ and

any Borel set A Ă BΩ X BrΩ, it holds

ωx
rΩ

pAq ď ωx
ΩpAq.

Proof. To simplify notation we write ω “ ωΩ and rω “ ω
rΩ
. By the regularity properties

of harmonic measure, it suffices to prove that rωxpAq ď ωxpAq for any compact subset
A Ă BΩ X BrΩ. Consider an arbitrary function φ P CpBΩq such that φ “ 1 on A. To
illustrate the main idea of the proof, suppose first that Dirichlet problem is solvable in
Ω for any continuous boundary data, so that the Perron solution v “ Hφ in Ω of the
Dirichlet problem with boundary data φ extends continuously to BΩ and v|BΩ “ φ. Then,

rωxpAq ď

ż

BrΩ
v drωx “ vpxq “

ż

BΩ
φdωx.

Then taking the infimum over all the functions φ P CpBΩq as above, we deduce that
rωxpAq ď ωxpAq.
In the general case, we need a more careful argument. For φ as above and any ε ą 0,

let u P UΩ
φ (the upper Perron class for φ in Ω) be such that

ż

BΩ
φdωx ě upxq ´ ε.

By the definition of UΩ
φ , we have

lim inf
yÑξ

upyq ě φpξq “ 1 for all ξ P A.

Then, by the compactness of A, there exists δ-neighborhood UδpAq such that upyq ě 1´ ε
for all y P UδpAq XΩ. Consider now a function rφ P CpBrΩq supported on UδpAq X BrΩ which

equals 1 on A and is bounded above uniformly by 1. Then we claim that u|
rΩ

P U rΩ
p1´εqrφ

(the upper Perron class for p1 ´ εqrφ in rΩ). Indeed, u is superharmonic in rΩ and

lim inf
yÑξ

upyq ě 0 “ rφpξq for all ξ P BrΩzUδpAq,

and
lim inf
yÑξ

upyq ě 1 ´ ε ě p1 ´ εqrφpξq for all ξ P BrΩ X UδpAq.

Therefore,

p1 ´ εq rωxpAq ď

ż

BrΩ
p1 ´ εqrφdrωx ď upxq ď

ż

BΩ
φdωx ` ε.

Since ε is arbitrarily small, we have rωxpAq ď
ş

BΩ φdω
x. Taking the infimum over all the

functions φ P CpBΩq such that φ “ 1 on A, we derive rωxpAq ď ωxpAq.

72



5 Harmonic measure via Perron’s method

5.4 Wiener regularity

In this section we continue to assume that Ω Ă Rd is a bounded open set, unless stated
otherwise. In view of Lemma 5.31 it is tempting to refer to the harmonic measure of any
set A Ă BΩ as the harmonic function in Ω having boundary values χA. Unfortunately, χA

is not a continuous function, and it is not clear what does it mean to have a discontinuous
function as trace, for instance, when A is a dense subset with null harmonic measure.
If the boundary is regular enough, this limit may be understood in the Lp sense, for
instance, see Theorem 3.11, but the limit would be defined almost everywhere in some
sense. We could expect, however, that limxÑξ ω

xpAq “ 1 if distpξ, BΩ X Acq ą 0, and
limxÑξ ω

xpAq “ 0 if distpξ, Aq ą 0. Unfortunately, we cannot grant yet that Hf |BΩ ” f
for continuous functions. We need to describe when this happens, that is, we need to
study regular points.

Definition 5.33. We say that ξ P BΩ is a regular point if whenever f P CpBΩq, Hf pxq Ñ

fpξq as Ω Q x Ñ ξ, i.e.
ż

BΩ
fpζqdωxpζq

ΩQxÑξ
ÝÝÝÝÑ fpξq. (5.6)

We say that Ω is Wiener regular if every point in the boundary is regular.

From the definition above, it follows easily that if a domain Ω is Wiener regular, then
the support of harmonic measure is the whole boundary of Ω.
A method for proving regularity at a point ξ P BΩ consists in showing the existence of

a barrier function for ξ, that is, a function v : Ω Ñ R such that

1. v is superharmonic in Ω.

2. lim infyÑζ vpyq ą 0 for all ζ P BΩztξu.

3. limyÑξ vpyq “ 0.

Notice that, by the minimum principle applied to each component of Ω, v ą 0 in Ω.

Theorem 5.34. If ξ P BΩ has a barrier function, then for any bounded function f on BΩ
which is continuous at ξ, we have

lim
xÑξ

Hf pxq “ lim
xÑξ

Hf pxq “ fpξq.

In particular, ξ is a regular point.

Proof. Let v be a barrier for ξ and let ε ą 0. Since f is continuous in ξ, there is δ ą 0 so
that |ζ ´ ξ| ď δ implies |fpζq ´ fpξq| ă ε. Since v is superharmonic, the infimum of v in
Ωδ :“ ΩzB̄δpξq is attained in BΩδ, see Lemma 5.4. That is, there exists some y P BΩδ such
that

inf
Ωδ

v “ lim inf
zÑy

vpzq.
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If y P BΩ, then lim infzÑy vpzq ą 0 by the definition of barrier, and if y P ΩX BBδpξq, then
lim infzÑy vpzq ě vpyq ą 0 too, by the lower semicontinuity of v and the fact that v ą 0
in Ω. Thus infΩδ

v ą 0. So we can pick k ą 0 such that

k lim inf
zÑζ

vpzq ą 2 sup |f | for every ζ P BΩzB̄δpξq

(we can do this because f is bounded).
Now, since fpζq ă fpξq ` ε on B̄δpξq X BΩ and fpζq ď 2 sup |f | ` fpξq on BΩzB̄δpξq, we

have
fpζq ď k lim inf

zÑζ
vpzq ` fpξq ` ε for all ζ P BΩ.

Thus, k v ` fpξq ` ε P Uf and therefore Hf pxq ď kvpxq ` fpξq ` ε in Ω and so

lim sup
xÑξ

Hf pxq ď lim sup
xÑξ

k vpxq ` fpξq ` ε ď 0 ` fpξq ` ε.

Letting ε Ñ 0 we get lim supxÑξHf pxq ď fpξq, and arguing analogously we can also prove
that lim infxÑξHf pxq ě fpξq. The theorem is an immediate consequence of this fact, by
Lemma 5.19.

The preceding theorem asserts that the existence of a barrier for ξ P BΩ implies that ξ
is a regular point. The converse result is also true:

Theorem 5.35. Let Ω be a bounded open set and let ξ P BΩ be a regular point. Then
there exists a barrier for ξ. This barrier can be chosen to be harmonic in Ω.

Proof. Let upxq “ |x ´ ξ|2. Obviously, f :“ u|BΩ P CpBΩq. We claim that v “ Hf is a
barrier for ξ. Indeed, this is harmonic in Ω and limyÑξHf pyq “ fpξq by the regularity of
ξ. Also, u is subharmonic (because ∆u ą 0) and so u P Lf and then u ď Hf “ Hf “ v in
Ω. Therefore, for all ζ P BΩztξu,

lim inf
yÑζ

vpyq ě lim inf
yÑζ

upyq “ upζq ą 0.

As a consequence, the harmonic measure of any open set with pole approaching to a
boundary point interior to this set tends to 1.

Corollary 5.36. Let Ω be a bounded open set and let ξ P BΩ be a regular point. For every
open set U Ă Rd containing ξ,

lim
ΩQxÑξ

ωxpUq “ 1.

Also
lim

ΩQxÑξ
ωxpU

c
q “ 0.
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Proof. By Urysohn’s lemma, there exists a continuous function f : BΩ Ñ R such that
fpξq “ 1 and f |UcXBΩ ” 0. Then we have

Hf pxq “

ż

f dωx ď

ż

χU dω
x “ ωxpUq

by the monotonicity of integration. Since ξ is a regular point we have

1 ě lim sup
ΩQxÑξ

ωxpUq ě lim inf
ΩQxÑξ

ωxpUq ě lim
ΩQxÑξ

Hf pxq “ fpξq “ 1.

The other estimate follows by an analogous reasoning assuming fpξq “ 0 and f |U
c
XBΩ ”

1.

Remark 5.37. There is a thickness property described in terms of capacity which char-
acterizes regularity as well, see Chapter 6 for more details.

Remark 5.38. One easy criterion for ξ to have a barrier is the existence of an exterior
tangent ball, that is, the existence of B “ Brpyq Ă Ωc so that BΩX BB “ tξu. In this way,
the function wpxq “ Eypξq ´ Eypxq is a barrier function at ξ.

Note that harmonic measure associates a function Hf pxq to each continuous function f
on the boundary, although we don’t necessarily know if it is a “true” extension in the sense
that it is continuous up to the boundary and coincides with f there; all we know is that
it is a harmonic function. If it happens that Ω is Wiener regular, then

ş

fdωx “ Hf pxq is
a harmonic function continuous up to the boundary with boundary values f .

5.5 The Dirichlet problem in unbounded domains with compact
boundary

In order to study the properties of harmonic measure it is convenient to extend the study
of the Dirichlet problem to unbounded open sets with compact boundary and to define
the harmonic measure for this type of domains too. This the objective of this section.
Let Ω Ĺ Rd be an unbounded open set with compact boundary. Solving the Dirichlet

problem in Ω for a function f P CpBΩq consists in finding a function u P C2pΩq X CpΩq

satisfying the following:

$

’

’

’

’

&

’

’

’

’

%

∆u “ 0 in Ω,

u “ f on BΩ,

}u}8,Ω ă 8,

when d ě 3, limxÑ8 upxq “ 0.

(5.7)

Proposition 5.39. Let Ω Ĺ Rd be un unbounded open set with compact boundary and let
f P CpBΩq. If there exists a solution u P C2pΩq XCpΩq satisfying (5.7), then it is unique.
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Proof. Let u, v P C2pΩq X CpΩq be two solutions of (5.7) and let us check that they are
equal. Suppose first that d ě 3. For r ą 0, denote Ωr “ ΩXBrp0q. Let r be large enough
so that BΩ Ă Brp0q. For 0 ă r0 ă r, by the maximum principle, taking into account that
u “ v on BΩ,

}u´ v}8,Ωr0
ď }u´ v}8,Ωr “ }u´ v}8,BΩr “ }u´ v}8,Srp0q ď }u}8,Srp0q ` }v}8,Srp0q.

By the last condition in (5.7), }u}8,Srp0q ` }v}8,Srp0q Ñ 0 as r Ñ 8, and so u “ v in Ωr0 ,
with r0 arbitrarily large.
Next we consider the case d “ 2. Without loss of generality, we assume that BΩ Ă

B1{4p0q. Let ξ P BΩ, and for a given δ ą 0, consider the function

hδpxq “ upxq ´ vpxq ´ δ log |x´ ξ|.

By the continuity of u and v at ξ, for any ε ą 0 there exists some ρ P p0, 1{4q such that

|upxq ´ vpxq| ď ε for all x P Ω such that |x´ ξ| ď ρ.

For r " ρ, consider the domain Ωρ,r “ Ω X BrpξqzBρpξq. We assume r large enough so
that BΩ Ă Brpξq. Notice that

BΩρ,r Ă BΩ Y pΩ X Sρpξqq Y Srpξq.

Notice that |u ´ v| ď ε and | log | ¨ ´ξ|| ď | log ρ| in pBΩzBρpξqq Y pΩ X Sρpξqq Ă B1{2p0q.
Thus,

|hδ| ď ε` δ| log ρ| in pBΩzBρpξqq Y pΩ X Sρpξqq.

On the other hand, for x P Srpξq, log |x ´ ξ| “ log r. So for a given δ ą 0, if r is large
enough taking into account also that u and v are bounded, we have

hδ ď 0 in Srpξq.

From the last estimates and the maximum principle, we deduce that

hδ ď ε` δ| log ρ| in Ωρ,r,

Letting r Ñ 8, we get infer that the same estimate is valid in ΩzBρpξq. That is,

upxq ´ vpxq ´ δ log |x´ ξ| ď ε` δ| log ρpεq| for all x P Ωρpεq,

where we wrote ρpεq to emphasize the dependence of ρ on ε. Since this inequality holds
for all δ ą 0, we derive that u ď v ` ε in Ωρpεq. Finally, letting ε Ñ 0 and ρpεq Ñ 0, it
follows that u ď v in Ω. Interchanging the roles of u and v in the arguments above, we
deduce v ď u in Ω, and so we are done.

Definition 5.40. Let Ω be an unbounded open set with bounded boundary. We say that
Ω is Wiener regular if for r ą 0 such that BΩ Ă Brp0q, the set Ωr :“ Ω XBrp0q is Wiener
regular. Also, we say that ξ P BΩ is a regular point for Ω if it is regular for Ωr.
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Let us check that the definition does not depend on the precise r ą 0 such that BΩ Ă

Brp0q. Notice first that BΩr “ BΩ Y BBrp0q. By the exterior tangent ball criterion in
Remark 5.38 it follows all the points ξ P BBrp0q are Wiener regular (for the open set Ωr).
To deal with the points from BΩ, let 0 ă r1 ă r2 be such that BΩ Ă Br1p0q. If v2 is barrier
for ξ P BΩ in Ωr2 , then it is also a barrier in Ωr1 , and so the Wiener regularity of ξ in Ωr2

implies the Wiener regularity in Ωr1 . Conversely, let v1 be a harmonic barrier for ξ in Ωr1

(see Theorem 5.35) and consider r0 ă r1 such that we still have BΩ Ă Br0p0q. Then

mr0 :“ inf
BBr0 p0q

v1pxq ą 0

because of the superharmonicity of v1, the other properties in the definition of a barrier,
and the minimum principle. Then we define

v2pxq “

"

minpv1pxq,mr0q in Ω XBr0p0q,
mr0 in RdzBr0p0q,

which is superharmonic in Ωr2 by Lemma 5.7 and moreover it is a barrier for this set at
ξ. Thus the Wiener regularity of ξ in Ωr1 implies the Wiener regularity in Ωr2 .

Remark 5.41. Note that, arguing as above, we also see that ξ is regular for an unbounded
set Ω Ă Rd with compact boundary if and only if there exists a barrier at ξ.

We will show below that if Ω Ĺ Rd is an unbounded open set with compact boundary
which is Wiener regular, then the Dirichlet problem in (5.7) is solvable for all f P CpBΩq.
The main step is contained in the following theorem.

Theorem 5.42. Let Ω Ĺ Rd be an unbounded open set with compact boundary and let
f P CpBΩq. For r ą 0 such that BΩ Ă Brp0q, denote Ωr “ Ω X Brp0q and let Hr

f be the
Perron solution of the Dirichlet problem in Ωr with boundary data equal to f in BΩ and
equal to 0 in Srp0q. Then the following holds:

(a) The functions Hr
f converge uniformly in bounded subsets of Ω to a function harmonic

and bounded in Ω as r Ñ 8. Further, Hr
f pxq ď HR

f pxq if 0 ă r ď R and x P Ωr.

(b) In the case d ě 3, the limiting function Hf satisfies limxÑ8 Hf pxq “ 0.

(c) If ξ P BΩ is a regular point, then limΩQxÑξHf pxq “ fpξq.

Remark that (a) asserts that the convergence of the functions Hr
f to Hf is uniform in

ΩXBr1p0q for any r1 ą 0. This a stronger statement than just asking for the local uniform
convergence in compact subsets of Ω.

By the theorem above, it is clear that if Ω Ĺ Rd is a Wiener regular unbounded open set
with compact boundary, then Hf is the solution of the Dirichlet problem stated in (5.7).

Proof of Theorem 5.42. We claim that it suffices to prove the theorem for f ě 0. Indeed,
for an arbitrary function f P CpBΩq, we can write f “ f` ´ f´, so that the functions f˘

are non-negative and continuous. Then we have

Hr
f “ Hr

f` ´Hr
f´ ,

77



5 Harmonic measure via Perron’s method

and it is enough to prove the statements (a), (b), (c) for f˘.

(a) Let r0 ą 0 be such that BΩ Ă Br0{2p0q. The fact that 0 ď f ď supBΩ f , ensures that

0 ď Hr
f ď sup

BΩ
f in Ωr, for all r ě r0. (5.8)

Next we will show that, for r0 ă r ă R,

Hr
f ď HR

f in Ωr. (5.9)

This is an easy consequence of the maximum principle. Indeed, for s ą r0 denote by
Ls
f and Us

f the respective lower and upper Perron classes in Ωs for the function fs which
equals f on BΩ and vanishes in Ssp0q. Given u P Lr

f , let ru : ΩR Ñ R be defined by

ru “

$

&

%

maxpu, 0q in Ωr,

0 in BRp0qzBrp0q.

By Lemma 5.7, ru is subharmonic in ΩR and so that ru P LR
f . So for all x P Ωr we have

upxq ď rupxq ď HR
f pxq “ HR

f pxq.

Taking the supremum over all u P Lr
f , we deduce Hr

f pxq ď HR
f pxq, so that (5.9) holds.

From the monotonicity of the family of functions tHr
furą0 ensured by (5.9) and the

bound in (5.8), we infer that the limit limrÑ8 Hr
f pxq exists for all x P Ω and that the

limit function Hf is bounded. Since the functions Hr
f , for r ą 0, are harmonic in Ωr and

uniformly bounded, it follows that the preceding limit is uniform on compact subsets of
Ω.
Next we will show that for any r1 ą r0, the functions Hr

f converge uniformly on Ωr1 .
Observe first that they converge uniformly in Sr1p0q since this is a compact subset of Ω.
So given ε ą 0, there exists r2 ą r1 such that

}Hs
f ´Hf }8,Sr1 p0q ă ε for all s ą r2.

For R ą r ą r2, consider now two arbitrary functions ur P Ur
f and uR P LR

f . Notice that

lim sup
ΩQxÑξ

uRpxq ď fpξq ď lim inf
ΩQxÑξ

urpxq on BΩ.

Since }Hr
f ´HR

f }8,Sr1 p0q ă ε, we also have

uR ď HR
f ď Hr

f ` ε ď ur ` ε in Sr1p0q.

Using that uR ´ ur is subharmonic in Ωr1 and the maximum principle, it follows that

uR ď ur ` ε in Ωr1 .
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Taking the supremum over all uR P LR
f and the infimum over all ur P Ur

f and using that
continuous functions are resolutive, we deduce that

HR
f ď Hr

f ` ε in Ωr1 .

Together with (5.9), this implies }Hr
f ´HR

f }8,Ωr1
ď ε. Letting R Ñ 8, it follows that

}Hr
f ´Hf }8,Ωr1

ď ε for all r ą r2,

which proves (a).

(b) Suppose d ě 3. Let M ą 0 be large enough so that

fpξq ď M Epξq for all ξ P BΩ.

By the maximum principle, using that E is superharmonic in Rd, we easily infer that
u ď M E in Ωr for all u P Lr

f , for r ą r0. This implies that Hr
f ď M E in Ωr. Letting

r Ñ 8, it follows that Hf ď M E in Ω, and so

lim sup
xÑ8

Hf pxq ď lim sup
xÑ8

Epxq “ 0.

Since Hf is non-negative, this implies that Hf vanishes at infinity.

(c) For all r ą r0, since ξ P BΩ is regular point for Ωr, then limΩQxÑξH
r
f pxq “ fpξq.

Together with the uniform convergence of Hr
f to Hf in Ωr1 for any given r1 ą r0, this

easily yields limΩQxÑξHf pxq “ fpξq.

Under the assumptions and notation of Theorem 5.42, it is immediate to check that, for
any x P Ω, the functional CpBΩq Q f ÞÑ Hf pxq is linear and bounded. Indeed, the linearity
is due to the linearity of CpBΩq Q f ÞÑ Hr

f pxq and the boundedness follows from the fact
that infBΩ f ď Hr

f ď supBΩ f for all r ě r0, which yields

}Hf }8,Ω ď }f}8,BΩ (5.10)

letting r Ñ 8.

Definition 5.43. Let Ω Ă Rd be an unbounded open set with compact boundary and let
x P Ω. The harmonic measure for Ω with pole at x is the unique Radon measure ωx on
BΩ such that

Hf pxq “

ż

BΩ
fpξqdωxpξq for all f P CpBΩq,

where is Hf defined as in Theorem 5.42. The existence and uniqueness of ωx is ensured
by the Riesz representation theorem, i.e. Theorem 4.58. Abusing notation we extend ωx

by 0 to the whole Rd, that is ωxpRdzBΩq :“ 0.
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Remark 5.44. By the definition, for any unbounded open set with compact boundary
Ω Ă Rd, for any f P CpBΩq, and any x P Ω, we have

ż

BΩ
fpξqdωxpξq “ lim

rÑ8

ż

BΩ
fpξqdωx

Ωr
pξq.

By Theorem 5.42, the convergence is uniform in bounded subsets of Ω.

Lemma 5.45. Let Ω Ă Rd be an unbounded open set with compact boundary, let x P Ω
be the pole of ω :“ ωx

Ω. Let Ωr “ Ω XBr and for r ą |x| let ωr :“ ωx
Ωr
. For any Borel set

A Ă BΩ we have
ωrpAq Õ ωpAq as r Ñ 8.

Proof. Let us assume that A “ U is a bounded open set in BΩ and let us consider only
values of r such that U ĂĂ Br. The preceding remark states that ωr á ω, and by
Theorem 4.63 we only need to check that ωpUq ě lim supωrpUq. By the inner regularity
of Radon measures we have

ωpUq “ sup
fďχU

ż

fdω “ sup
fďχU

Hf pxq,

where the supremum is taken over all functions f P CpBΩq supported in U . By Theorem
5.42, for every r large enough we have

ωpUq ě sup
fďχU

Hr
f pxq “ sup

fďχU

ż

fdωr “ ωrpUq.

For general bounded Borel sets, note that ωrpAq is an increasing sequence by Lemma
5.32, so let s :“ limrÑ8 ωrpAq. We need to check that s “ ωpAq.

We claim that s ď ωpAq. Indeed, by the definition of s, for every ε ą 0 there exists
r “ rε so that s´ ε ď ωrpAq. By outer regularity, there exists a bounded open set Uε Ą A
so that ωpUεq ď ωpAq ` ε. Thus,

s ď ωrpAq ` ε ď ωrpUεq ` ε
L.5.32

ď ωpUεq ` ε ď ωpAq ` 2ε.

Since ε is arbitrarily small, the claim follows.
To prove that s ě ωpAq, we apply the preceding estimate to BΩzA and we take into

account that limrÑ8 ωrpBΩq “ ωpBΩq, because BΩ is relatively in open in BΩ 1. Then we
get

s “ lim
rÑ8

ωrpAq “ lim
rÑ8

ωrpBΩq ´ lim
rÑ8

ωrpBΩzAq ě ωpBΩq ´ ωpBΩzAq “ ωpAq,

and thus s “ ωpAq, as wished.

1In general, for unbounded open sets Ω, the harmonic measure ω for Ω is not a probability measure, that
is, ωpBΩq ‰ 1. See Proposition 5.48 below.
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Remark 5.46. By lemmas 5.45, 5.31 and 2.14 we obtain that upxq “ ωxpAq is harmonic
in Ω in the setting of the previous results, and Lemma 2.17 implies the mutual absolute
continuity of ωx and ωy for x and y in the unbounded component of Ω.

We can also recover the monotonicity of harmonic measure when the domain increases
in Lemma 5.32 for unbounded open sets.

Lemma 5.47. Let Ω, rΩ Ă Rd be open sets with compact boundary such that rΩ Ă Ω and
BΩ X BrΩ ‰ ∅. Denote by ωΩ and ω

rΩ
the respective harmonic measures for Ω and rΩ. For

any x P rΩ and any Borel set A Ă BΩ X BrΩ, it holds

ωx
rΩ

pAq ď ωx
ΩpAq.

Proof. The only relevant case here is when both domains are unbounded and x belongs
to the unbounded component of rΩ. Then, following the notation of the previous results,
we get

ω
rΩ

pAq
L.5.45

“ lim
r
ω
rΩr

pAq
L.5.32

ď lim
r
ωΩrpAq

L.5.45
“ ωΩpAq.

Observe that, by (5.10) it follows that

0 ď ωxpBΩq ď 1 for all x P Ω. (5.11)

The following proposition provides additional information.

Proposition 5.48. Let Ω Ĺ Rd be a Wiener regular unbounded open set with compact
boundary and let x P Ω. In the case d “ 2, ωxpBΩq “ 1, that is, ωx is a probability measure.
In the case d “ 3, if x belongs to the unbounded component of Ω, then 0 ă ωxpBΩq ă 1.

In particular, the proposition implies that the statement (b) in Theorem 5.42 may fail
in the case d “ 2. Without the Wiener regular assumption on Ω, further information will
be obtained later in Proposition 6.36.

Proof. Since Ω is Wiener regular, in the case d “ 2 the function identically 1 in Ω solves
the Dirichlet problem (5.7) for f “ 1 in BΩ. By the uniqueness of the solution, Hf “ 1
identically in Ω and thus ωxpBΩq “ 1.

In the case d ě 3, again we have ωxpBΩq “ H1pxq by Theorem 5.42. On the other hand,
the statement (b) in the same theorem asserts that H1pxq Ñ 0 as x Ñ 8. So H1 is a
non constant non negative harmonic function in the unbounded component of Ω which is
bounded above by 1, by (5.10). By the strong maximum principle (applied to Ω X Brp0q

and r large enough) it follows that 0 ă ωxpBΩq “ H1pxq ă 1.

Example 5.49. Let Ω “ RdzB̄1p0q for d ě 3. The solution of the Dirichlet problem for
f ” 1 in BΩ is the function upxq “ |x|2´d. Thus,

ωxpBΩq “
1

|x|d´2
for all x P Ω.
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Corollary 5.36 also has a counterpart in unbounded open sets with compact boundary.

Corollary 5.50. Let Ω be an open set with compact boundary and let ξ P BΩ be a regular
point. For every open set U Ă Rd containing ξ,

lim
ΩQxÑξ

ωxpUq “ 1.

Also
lim

ΩQxÑξ
ωxpU

c
q “ 0.

Proof. We have already seen that ωxpUq ď 1 so we need to show

lim
xÑξ

ωxpUq ě 1.

To prove this, we can assume that U is bounded by intersecting with a bounded ball
containing BΩ. Choose any radius r big enough. Using Corollary 5.36, we can pick δ so
that

ωx
r pUq ě 1 ´ ε for every x P Bδpξq X Ω.

Then
ωxpUq ě ωx

r pUq ě 1 ´ ε for every x P Bδpξq X Ω,

showing the first statement.
On the other hand, note that the first statement implies that

lim
ΩQxÑξ

ωxpBΩq “ 1.

Thus,

0 ď ωxpU
c
q “ ωxpBΩq ´ ωxpUq ď ωxpBΩq ´ ωxpUq

ΩQxÑξ
ÝÝÝÝÑ 1 ´ 1 “ 0,

establishing the second claim.

Next we wish to show that, in the case d “ 2, we can easily define the notion of harmonic
measure with pole at 8. First we need the following auxiliary result, which has its own
interest.

Proposition 5.51. Let Ω Ă Rd be an open set and let x0 P Ω. Let u : Ωztx0u Ñ R
be a harmonic function such that upxq “ opEpx ´ x0qq as x Ñ x0. Then u extends as a
harmonic function to the whole Ω.

Of course, the proposition applies to the particular case where u is bounded and har-
monic in Ωztx0u. See also Theorem 6.35 for a related result.

Proof. Let B̄rpx0q be a closed ball contained in Ω, with r ă 1, and let v be the solution
of the Dirichlet problem in Brpx0q with boundary data u|Srpx0q. For any ε ą 0, consider
the function

hεpxq “ upxq ´ vpxq ´ ε Epx´ x0q, for x P Brpx0qztx0u.
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This is harmonic in Brpx0qztx0u and limxÑx0 hεpxq “ ´8. By the maximum princi-
ple applied to any annulus As,rpx0q with s sufficiently small, we deduce that hε ď 0 in
Brpx0qztx0u. Since this holds for any ε ą 0, we get u ď v in Brpx0qztx0u. Reversing the
roles of u and v, we obtain the opposite inequality. Thus u “ v in Brpx0qztx0u and so the
proposition follows just letting u “ v in the whole Brpx0q.

Corollary 5.52. For some r ą 0, let u : CzB̄rp0q Ñ R be a harmonic and bounded
function. Then limzÑ8 upzq exists and the function defined by vpzq :“ up1{zq can be
extended to a harmonic function in B1{rp0q.

Proof. The function vpzq :“ up1{zq is harmonic and bounded in B1{rp0qzt0u. So it extends
to a harmonic function in B1{rp0q by the preceding proposition. Thus,

lim
zÑ8

upzq “ lim
zÑ0

vpzq

exists.

Now we can define harmonic measure with pole at 8 for an unbounded open set with
compact boundary in the plane as in Definition 5.43, just putting x “ 8 there:

Definition 5.53. Let Ω Ă R2 be an unbounded open set with compact boundary. The
harmonic measure for Ω with pole at 8 is the unique Radon measure ω8 on BΩ such that

lim
xÑ8

Hf pxq “

ż

BΩ
fpξqdω8pξq for all f P CpBΩq,

where Hf is defined as in Theorem 5.42. The existence and uniqueness of ω8 is ensured
by the Riesz representation theorem.

Obviously, for any function f P CpBΩq (and Ω as in the definition),

ż

BΩ
fpξqdω8pξq “ lim

zÑ8

ż

BΩ
fpξqdωzpξq.

Observe that for any z belonging to the unbounded component of Ω, the measures ωz

and ω8 are mutually absolutely continuous. Indeed, for any Borel set E Ă BΩ, it follows
easily from the strong maximum principle applied to the function vpzq “ ω1{zpEq in a
neighborhood of the origin that vp0q “ 0 if and only if v vanishes identically, see Exercise
5.5.1.
In the case d ě 3, one can also the define the notion of harmonic measure with pole at

8 for unbounded open set with compact boundary in Rd, at least under the assumption
of Wiener regularity, following a different approach. We postpone this task to Chapter 7.

Exercise 5.5.1. Given an unbounded domain Ω Ă C with compact boundary, show that
for every Borel set E Ă BΩ, we have

lim
zÑ8

ωzpEq “ ω8pEq.
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Exercise 5.5.2. Let Ω Ă Rd be open with compact boundary and suppose that Ω is not
connected. Let U be a connected component of Ω and let x P U . Show that

suppωx
Ω Ă BU.

5.6 A Markov type property of harmonic measure

In this section we will show the following result.

Theorem 5.54. Let Ω, rΩ Ă Rd be open sets with compact boundary such that rΩ Ă Ω.
Suppose also that rΩ is Wiener regular and that the points from BΩ X BrΩ are regular for
Ω. Denote by ωΩ and ω

rΩ
the respective harmonic measures for Ω and rΩ. Then, for every

x P rΩ and every Borel set A Ă BΩ, it holds

ωx
ΩpAq “ ωx

rΩ
pAq `

ż

BrΩzBΩ
ωy
ΩpAq dωx

rΩ
pyq. (5.12)

This result can be deduced from the connection between harmonic measure and Brow-
nian motion, using the strong Markov property of Brownian motion. However, below we
provide an analytic proof.

Proof. To shorten notation, we write ω “ ωΩ and rω “ ω
rΩ
. Suppose first that A is compact.

For any ε ą 0, let fε : BΩ Ñ R be a continuous function which equals 1 on A and vanishes
away from an ε-neighborhood of A. Denote

uεpxq “

ż

BΩ
fε dω

x, vεpxq “

ż

BrΩ
uε dω

x.

In the above definition of vε we identify uε|
BrΩXBΩ

” fε|
BrΩXBΩ

. In this way, from the

regularity of the points from BΩX BrΩ for Ω, it follows that uε|
BrΩ

is a continuous function.
We claim now that

uεpxq “ vεpxq for all x P rΩ. (5.13)

Indeed, by the Wiener regularity of rΩ and the regularity of the points from BΩ X BrΩ for
Ω, we have

lim
xÑξ

uεpxq “ lim
xÑξ

vεpxq for all ξ P BrΩ.

and, when rΩ is unbounded and n ě 2, by the definition of uε and vε,

lim
xÑ8

uεpxq “ lim
xÑ8

vεpxq “ 0.

Then, by the maximum principle, our claim follows.
From the identity (5.13), for x P rΩ, we deduce

uεpxq “ vεpxq “

ż

BrΩzBΩ
uε drω

x `

ż

BrΩXBΩ
uε drω

x “

ż

BrΩzBΩ
uε drω

x `

ż

BrΩXBΩ
fε drω

x. (5.14)
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By dominated convergence, for every y P Ω, uεpyq Ñ ωypAq as ε Ñ 0. So the left
hand side of (5.14) converges to ωxpAq and the first integral on the right hand side to
ş

BrΩzBΩ
ωypAq drωxpyq. Again by dominated convergence, the last integral on the right hand

side tends to rωxpAq. Thus the identity (5.12) holds when A is compact.
Suppose now that A is an arbitrary Borel set. By the inner regularity of Radon measures,

there is a sequence of compact sets Ek Ă A, with Ek Ă Ek`1, such that ωxpEkq Ñ ωxpAq

and rωxpEkq Ñ rωxpAq as k Ñ 8. Let U and rU be the respective connected components
of Ω and rΩ that contain x, so that rU Ă U and supp rωx Ă B rU Ă U (see Exercise 5.5.2).
Then, for every k we have

ωxpEkq “ rωxpEkq `

ż

BrΩXUzBΩ
ωypEkq drωxpyq “ rωxpEkq `

ż

BrΩXU
ωypEkq drωxpyq. (5.15)

Since wkpyq :“ ωypAzEkq is a positive harmonic function in U , by connectedness we have
(see Lemma 2.17):

wkpyq «x,y wkpxq Ñ 0 as k Ñ 8, for all y P U .

Equivalently, ωypEkq Ñ ωypAq for all y P U . Therefore, passing to the limit in (5.15) and
using dominated convergence, we obtain

ωxpAq “ rωxpAq `

ż

BrΩXU
ωypAq drωxpyq “ rωxpAq `

ż

BrΩzBΩ
ωypAq drωxpyq.

85



5 Harmonic measure via Perron’s method

86



6 Potential theory

6.1 Potentials

Recall that the fundamental solution of the minus Laplacian in Rd equals

Epxq “

$

’

’

’

’

&

’

’

’

’

%

|x|2´d

pd´ 2qκd
if d ě 3,

´ log |x|

2π
if d “ 2,

For a Radon measure µ in Rd, we consider the potential Uµ defined by

Uµpxq “ E ˚ µpxq “

ż

Epx´ yq dµpyq, (6.1)

and the energy integral

Ipµq :“

ĳ

Epx´ yqdµpyqdµpxq. (6.2)

For d ě 3, Uµ is called the Newtonian potential of µ, and for d “ 2, the logarithmic or
Wiener potential of µ.

Lemma 6.1 (Semicontinuity properties). For non-negative Radon measures µn á µ with
compact support we have:

(a) lim infyÑx Uµpyq ě Uµpxq for all x P Rd. So the potential Uµ is lower semicontinuous
in Rd.

(b) lim infnÑ8 Uµnpxq ě Uµpxq for all x P Rd.

(c) lim infnÑ8 Ipµnq ě Ipµq.

(d) The potential Uµ is superharmonic.

The proof of this lemma is an easy exercise that we leave for the reader. The superhar-
monicity of Uµ is a consequence of the lower semicontinuity of Uµ, the superharmonicity
of E , and Lemma 5.10 (a). For more details, alternatively, the reader may have a look at
[Lan72] or [Ran95].

Theorem 6.2 (Continuity principle for potentials). Given a compactly supported Radon
measure µ in Rd, if Uµ P Cpsuppµq, then Uµ P CpRdq.
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Proof. In the case d “ 2, by a suitable contraction we can assume that diampsuppµq ď 1{2,
so that Epx´ yq ą 0 for all x, y P suppµ.
Since Uµ is continuous in Rdzsuppµ we only have to check the continuity in suppµ. Let

φ : Rd Ñ R be a radial continuous function such that χRdzB1p0q ď φ ď χRdzB1{2p0q and, for
each δ ą 0, let

fδpxq “

ż

|x´y|ěδ
Epx´ yq dµpyq, f̃δpxq “

ż

Epx´ yqφ
´x´ y

δ

¯

dµpyq.

Since tf̃δu is a monotone family of continuous functions and Uµ|suppµ is continuous, the

convergence of rfδ to Uµ is uniform in suppµ, by Dini’s theorem. In turn, since rfδ ď fδ ď

Uµ, this implies the uniform convergence of fδ to Uµ in suppµ. Equivalently, UχBδpxqµpxq Ñ

0 uniformly on x P suppµ as δ Ñ 0.
To prove the continuity of Uµ at a given x P supppµq, fix ε ą 0, and take δ P p0, 1{4q

such that UχBδpzqµpzq ă ε for all z P suppµ and such that µpBδpxqq ă ε (that the latter
condition holds for δ small enough is due to the fact that µ has no point masses, because
Uµpzq ă 8 for all z P suppµ). For y P Bδ{4pxq, we write

|Uµpxq ´ Uµpyq| ď

ż

|x´z|ăδ{2
Epx´ zq dµpzq `

ż

|x´z|ăδ{2
Epy ´ zq dµpzq

`

ˇ

ˇ

ˇ

ˇ

ż

|x´z|ěδ{2
pEpx´ zq ´ Epy ´ zqq dµpzq

ˇ

ˇ

ˇ

ˇ

.

The first integral on the right hand side is bounded above by ε. The third one tends to
0 as y Ñ x, because for a fixed δ ą 0, the function gpyq “

ş

|x´z|ěδ{2 Epy ´ zq dµpzq is

continuous in Bδ{4pxq. To estimate the second integral on the right hand side, let y1 be the
closest point to y from suppµ. Notice that |y1 ´ y| ď |x´ y| ď δ{4, and thus y1 P Bδ{2pxq.
It is immediate to check that then

|z ´ y1| À |z ´ y| for all z P suppµ.

Thus, in the case d ě 3, Epy ´ zq À Epy1 ´ zq, and so, using that y1 P suppµ,
ż

|x´z|ăδ{2
Epy ´ zq dµpzq À

ż

Bδ{2pxq

Epy1 ´ zq dµpzq À

ż

Bδpy1q

Epy1 ´ zq dµpzq À ε.

In the case d “ 2, we have |y´z| ě |y1 ´z| for z P B|y´y1|py
1q and so Epy´zq ď Epy1 ´zq

for such z. On the other hand, for z P suppµzB|y´y1|py
1q, we have |y ´ z| « |y1 ´ z| and

thus

Epy ´ zq “ Epy1 ´ zq `
1

2π
log

|y1 ´ z|

|y ´ z|
ď Epy1 ´ zq ` C.

Therefore,
ż

|x´z|ăδ{2
Epy ´ zq dµpzq ď

ż

Bδ{2pxq

Epy1 ´ zq dµpzq ` C µpBδ{2pxqq

ď

ż

Bδpy1q

Epy1 ´ zq dµpzq ` C µpBδ{2pxqq À ε.
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So for any dimension, we have

lim sup
yÑx

|Uµpxq ´ Uµpyq| À ε` lim sup
yÑx

ˇ

ˇ

ˇ

ˇ

ż

|x´z|ěδ{2
pEpx´ zq ´ Epy ´ zqq dµpzq

ˇ

ˇ

ˇ

ˇ

« ε.

Since ε is arbitrary, we have that Uµpyq Ñ Uµpxq as y Ñ x.

Theorem 6.3 (Maximum principle for potentials). Given a compactly supported Radon
measure µ in Rd, if Uµpxq ď 1 µ-a.e., then Uµpxq ď 1 everywhere in Rd.

Proof. Again, by contracting suitably suppµ, we can assume that diampsuppµq ď 1{2 in
the case d “ 2, see Exercise 6.1.2.

Let E “ suppµ. By the semicontinuity property in Theorem 6.1(a), it holds that
Uµpxq ď 1 for all x P E. Thus, it suffices to show Uµpxq ď 1 for all x P RdzE.
For any τ ą 0, by Egorov’s theorem, there is a compact subset F “ Fτ Ă E such that

µpEzF q ă τ and so that UχBεpxqµpxq converges uniformly to 0 in F as ε Ñ 0. We claim

that UχFµ is continuous in Rd. Indeed, by the preceding theorem, if suffices to show that
UχFµ P CpF q. To prove this, for any ε P p0, 1{2q and x, x1 P F such that |x ´ x1| ď εd, we
write

|UχFµpxq ´ UχFµpx1q| ď

ż

|x´y|ďε
Epx´ yqdµ|F pyq `

ż

|x´y|ďε
Epx1 ´ yqdµ|F pyq

`

ż

|x´y|ąε

ˇ

ˇEpx´ yq ´ Epx1 ´ yq
ˇ

ˇ dµ|F pyq

The first integral on the right hand side tends to 0 as ε Ñ 0 (uniformly on x P F ), and
the same happens with the second one, taking into account that ty : |x ´ y| ď εu Ă ty :
|x1 ´ y| ď 2εu. For the last one, in the case d ě 3, for y, x, x1 P F such that |x ´ y| ą ε
and |x´ x1| ď εd (in particular |x´ x1| ď ε{2), we have

ˇ

ˇEpx´ yq ´ Epx1 ´ yq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

c

|x´ y|d´2
´

c

|x1 ´ y|d´2

ˇ

ˇ

ˇ

ˇ

À
|x´ x1|

|x´ y|d´1
À ε.

In the case d “ 2, observe that
ˇ

ˇ

ˇ

ˇ

|x1 ´ y|

|x´ y|
´ 1

ˇ

ˇ

ˇ

ˇ

ď
|x1 ´ x|

|x´ y|
ď ε, for y, x, x1 such that |x´ y| ą ε and |x´ x1| ď ε2,

and thus, for some constant C ą 0,

ˇ

ˇEpx´ yq ´ Epx1 ´ yq
ˇ

ˇ «

ˇ

ˇ

ˇ

ˇ

log
|x1 ´ y|

|x´ y|

ˇ

ˇ

ˇ

ˇ

À ε.

Then, for any dimension d,
ż

|x´y|ąε

ˇ

ˇEpx´ yq ´ Epx1 ´ yq
ˇ

ˇ dµ|F pyq À εµpF q.
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Therefore,
lim
εÑ0

sup
x,x1PF :|x´x1|ďε2

|UχFµpxq ´ UχFµpx1q| “ 0,

and thus the claim holds.
Notice that UχFµpxq ď Uµpxq ď 1 for all x P F . Further, in the case d ě 3, UχFµpxq Ñ 0

when x Ñ 8, while in the case d “ 2 we get UχFµpxq Ñ ´8. Since UχFµ is harmonic in
RdzF and continuous in Rd, by the maximum principle (applied to ΩR “ BRp0qzF and
letting R Ñ 8), we deduce that UχFµpxq ď 1 for all x P RdzE Ă RdzF. Now we just have
to write

Uµpxq “ UχFµpxq ` UχEzFµpxq ď 1 ` UχEzFµpxq,

and note that UχEzFµpxq Ñ 0 for any x P RdzE, as τ Ñ 0 (recall that µpEzF q ď τ).

Exercise 6.1.1. Given a compactly supported Radon measure µ, show that Uµ is µ-
measurable.

Exercise 6.1.2. Given a compactly supported Radon measure µ in C such that Uµpxq ď 1
for µ-a.e. x P C, find c and λ such that supp cTλ,#µ Ă 1

4D and UcTλ,#µ ď 1.

6.2 Capacity

Definition 6.4. Given a bounded set E Ă Rd, we define its capacity CappEq by

CappEq “
1

infµPM1pEq Ipµq
, (6.3)

where the infimum is taken over the collection M1pEq of all probability Radon measures µ
supported on E. When d ě 3, CappEq is also called the Newtonian capacity of E, and for
d “ 2, the Wiener capacity of E.

In the case d “ 2, quite often we will write CapW pEq instead of CappEq. Remark
that CapW pEq may be negative, and we allow this to be infinite too. However, since
E is assumed to be bounded, we have infµPM1pEq Ipµq ą ´8, so having zero capacity is
equivalent to having Ipµq “ `8 for every µ P M1pEq. On the other hand, if diampEq ă 1,
then Epx´yq ě p2πq´1 log 1

diampEq
ą 0 for all x, y P E, and it follows that infµPM1pEq Ipµq ą

0, and so 0 ď CapW pEq ă 8.1

Definition 6.5. Given a set E Ă R2, we define its logarithmic capacity by

CapLpEq “ e´2π infµPM1pEq Ipµq
“ e

´ 2π
CapW pEq .

1We will see below that this also holds if E is contained in B1p0q.
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It is immediate to check that if E Ă F , then CappEq ď CappF q for d ě 3 and CapLpEq ď

CapLpF q for d “ 2.2 Another trivial property is that the capacities Cap, CapW , and CapL
are invariant by translations. Further, the Newtonian capacity is homogeneous of degree
d´ 2 when d ě 3. That is, for a given λ ą 0 and E Ă Rd, we have

CappλEq “ λd´2 CappEq.

This follows easily from the fact that the fundamental solution E is homogeneous of degree
2 ´ d in Rd, d ě 3. In the case d “ 2, E is not homogeneous, and the behavior of CapW
under dilations is more complicated. To study this, denote Tλpxq “ λx, so that if µ is a
probability measure supported on E, then the image measure Tλ#µ (see Definition 4.59)
is another probability measure supported on λE. Then, by Theorem 4.61 we have

IpTλ#µq “
1

2π

ĳ

log
1

|x´ y|
dTλ#µpxq dTλ#µpyq

“
1

2π

ĳ

log
1

|λx´ λy|
dµpxq dµpyq “ Ipµq ´

1

2π
log λ.

Taking the infimum, we derive

inf
ηPM1pλEq

Ipηq “ inf
µPM1pEq

Ipµq ´
1

2π
log λ,

So we get

CapW pλEq “
1

1

CapW pEq
´ 1

2π log λ
.

In particular, notice that for λ big enough we have CapW pλEq ă 0 3. On the contrary, in
the case d ě 3, Newtonian capacity is always non-negative. The rather strange behavior
of the Wiener capacity under dilations and other related technical issues is one of the
motivations for the introduction of logarithmic capacity. Clearly, CapLpEq ě 0 for any
compact set E, and moreover for any λ ą 0,

CapLpλEq “ e
´ 2π

CapW pEq
`log λ

“ λCapLpEq. (6.4)

So the logarithmic capacity is homogeneous of degree 1.

Remark 6.6. Note that given a bounded set E, the potential of the Lebesgue measure
restricted to E is bounded. In particular, if E has positive Lebesgue measure then its
capacity is not zero.
Given a compactly supported Radon measure µ, one can also check that if Uµ is a

bounded potential, then µpZq “ 0 for every set Z of capacity zero.

2In the case d “ 2, the inequality CapW pEq ď CapW pF q fails if CapW pF q ă 0, and it holds if CapW pF q ą

0, and in particular if diampF q ă 1.
3Also, formally, CapW pλEq “ 8 in case that

1

CapW pEq
“ 1

2π
log λ.
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Lemma 6.7 (Outer regularity of capacity). Let E Ă Rd be a compact set and let tVnuně1

be a decreasing sequence (i.e., Vn Ą Vn`1) of bounded open sets such that and E “
Ş

n Vn.
Then

lim
nÑ8

CappVnq “ CappEq for d ě 3

and
lim
nÑ8

CapLpVnq “ CapLpEq for d “ 2.

Proof. This is a straightforward consequence of the semicontinuity property of the energies
Ipµnq in Lemma 6.1 and Theorems 4.62 and 4.63. We leave the details for the reader.

Exercise 6.2.1. Show Remark 6.6 and Lemma 6.7.

Exercise 6.2.2. Let U Ă Rd be an open bounded set tVnuně1 be an increasing sequence
(i.e., Vn Ă Vn`1) of bounded open sets such that and U “

Ť

n Vn. Then

lim
nÑ8

CappVnq “ CappUq for d ě 3

and
lim
nÑ8

CapLpVnq “ CapLpUq for d “ 2.

6.3 The equilibrium measure

We say that a property holds q.e. (quasi everywhere) if it holds except on a set of capacity
zero.

Theorem 6.8 (Existence of equilibrium measure). Let E Ă Rd be a compact set with
CappEq ą 0. There exists a Radon probability measure µ supported on E such that

CappEq “
1

Ipµq
.

Further, any such measure satisfies Uµpxq “ pCapEq´1 q.e. x P E and Uµpxq ď pCapEq´1

for all x P E.

Proof. Remark first that, for the case d “ 2, by contracting E suitably, we can assume
that diampEq ď 1{2, so that Epx´ yq ą 0 for all x, y P E.
Let

γ :“ inftIpµq : suppµ Ă E and µpEq “ 1u. (6.5)

By the lower semicontinuity of I, see Lemma 6.1 c), there exists a measure µ realizing this
infimum. Since all the measures in the infimum are supported in the compact set E, so is
the minimizer µ, which is also a probability measure, see Theorems 4.62 and 4.63.
Next we claim that

Uµpxq ě γ q.e. x P E. (6.6)

We prove this claim by contradiction. Let

Tε :“ tx P E : Uµpxq ă γ ´ εu

92



6 Potential theory

and assume that CappTεq ą 0. Then there exists a probability measure τ supported on
Tε with Ipτq ă 8. By Chebyshev and restricting τ if necessary, we may assume that
Uτ pxq ď K ă 8 for a suitable K ą 0. For δ P p0, 1q, let

µδ :“ p1 ´ δqµ` δτ,

which is also a probability measure. Note that

Ipµδq “

ĳ

Epx´ yq pp1 ´ δqdµpyq ` δdτpyqq pp1 ´ δq dµpxq ` δ dτpxqq

“ p1 ´ δq2Ipµq ` 2δp1 ´ δq

ĳ

Epx´ yq dµ dτ ` δ2Ipτq

“ γ ´ 2δγ ` 2δ

ż

Uµdτ ` opδ2q ď γ ´ 2δγ ` 2δpγ ´ εq ` opδ2q ă γ

for δ small enough. This contradicts the fact that µ minimizes (6.5). Therefore, CappTεq “

0 for every ε ą 0, that is, the claim (6.6) holds, see Exercise 6.2.2.
We also claim that

Uµpxq ď γ for every x P E. (6.7)

Let ν :“ µ|Tε . Then Uνpxq ď Uµpxq ă γ ´ ε for x P Tε. By the maximum principle Uν

is bounded and therefore νpTεq “ 0 (see Remark 6.6), i.e., µpTεq “ 0. Since Tε Õ T0, by
Lemma 4.3 we get that µpT0q “ 0. We have that

γ “ Ipµq “

ż

tUµąγu

Uµ dµ`

ż

tUµ“γu

Uµ dµ`

ż

tUµăγu

Uµ dµ.

The third integral is zero and therefore, since µ is a probability measure, we infer that
the first integral must be zero as well, so µptUµ ą γuq “ 0 and therefore (6.7) holds µ-
almost everywhere. The lower semicontinuity property of Uµ (see Lemma 6.1 a)) implies
that (6.7) holds everywhere in the support of µ and by the maximum principle it holds
everywhere.

We will show soon that, for a compact set E with positive capacity, the probability
measure µ supported on E such that CappEq “ 1

Ipµq
is unique. This probability measure

µ is called the equilibrium measure of E, and its potential Uµ, the equilibrium potential
of E.

Corollary 6.9. Let E be compact with CappEq ą 0 and let µ be an equilibrium measure
of E. Let ν be another Radon measure and let A “ tx P E : Uνpxq ă 8u. Then Uµ equals
pCapEq´1 ν-a.e. in A.

Proof. In the case d “ 2, we assume that E Ă B1{2p0q. For k ą 1, let Ak “ tx P E :
Uνpxq ď k and Uµpxq ă pCappEqq´1u. If νpAkq ą 0, then the (non-zero) measure τ “ ν|Ak

satisfies
Uτ pxq ď Uνpxq ď k for all x P Ak.

So we deduce that Ipτq ă `8 and so CappAkq ą 0. This contradicts the fact that
Uµpxq “ pCappEqq´1 q.e. in E.
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Before proving the uniqueness of the equilibrium measure, we need to prove the following
positivity result for the energy of signed measures. Remark that for a signed measure, its
potential and its energy are defined in the same way as in (6.1) and (6.2), as soon as the
corresponding integrals make sense.

Theorem 6.10. Let ν be a compactly supported Radon signed measure in Rd such that
Ip|ν|q ă 8. Assume also that νpRdq “ 0 in the case d “ 2. Then

Ipνq ě 0.

Further, Ipνq ą 0 unless ν “ 0.

The fact that Ipνq is always non-negative (under the assumptions above) is quite re-
markable. Observe that in the case d “ 2 the assumption that νpRdq “ 0 cannot be
eliminated. Indeed, if E is a compact set with CapLpEq ą 1, then its equilibrium measure
µ satisfies Ipµq ă 0.

Proof. Assume first that, besides satisfying the assumptions in the theorem, ν is of the
form ν “ gm, where m is the Lebesgue measure in Rd and g P C8

c pRdq. Then E ˚ g is a
C8 function and we have

g “ ´∆pE ˚ gq.

In the case d ě 3, since 0 ď Epxq À |x|2´d, we have

|E ˚ gpxq| Àg
1

|x|d´2
and |∇E ˚ gpxq| Àg

1

|x|d´1
(6.8)

as x Ñ 8. Then, by integrating by parts, it easily follows that

Ipgmq “

ż

pE ˚ gq g dm “ ´

ż

pE ˚ gq∆pE ˚ gq dm
(6.8)
“

ż

|∇pE ˚ gq|2 dm (6.9)

(notice that all the integrals above make sense because of (6.8). In the case d “ 2, since
νpRdq “ 0, it is immediate to check that we have the improved decay

|E ˚ gpxq| Àg
1

|x|d´1
and |∇E ˚ gpxq| Àg

1

|x|d
(6.10)

as x Ñ 8. Then we can integrate by parts again to deduce that (6.9) also holds. In any
case, in particular, the identity (6.9) shows that Ipgmq ě 0.
Consider now an arbitrary signed measure satisfying the assumptions of the theorem.

Consider a radial non-increasing C8 bump function φ such that 0 ď φ ď χB2p0q with
ş

φ “ 1 and, for ε ą 0, set φεpxq “ 1
εd
φpε´1xq. Then the measure νε “ φε ˚ ν is of the

form νε “ gεm, with gε P C8
c pRdq, and has zero mean in the case d “ 2. So by (6.9) it

holds

Ipνεq “

ż

|∇E ˚ νε|2 dm ě 0. (6.11)
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So to prove that Ipνq ě 0 it suffices to show that Ipνεq Ñ Ipνq as ε Ñ 0. To this end,
applying Fubini we write

Ipνεq “

ż

pφε ˚ E ˚ νqφε ˚ ν dm “

ż

pφε ˚ φε ˚ E ˚ νq dν.

Observe now that, for any x P Rd, since φε ˚ φε is C8 with unitary mass, radial non-
increasing, and compactly supported, then it is a convex combination of functions of the
form 1

mpBrp0qq
χBrp0q (see the proof of Lemma 5.10). Since E is superharmonic, by Lemma

5.10,
φε ˚ φε ˚ Epxq ď Epxq for all x P Rd (6.12)

(this could also be checked by a direct computation), and also φε ˚ φε ˚ Epxq Ñ Epxq as
ε Ñ 0 for all x ‰ 0.

We claim that in the case d “ 2 we can assume that suppν Ă B1{4p0q. Indeed, for any
λ ą 0, consider the dilation Tλx “ λx. Then, for a suitable λ ą 0, it turns out that the
image measure pTλq#ν is supported on B1{4p0q and it satisfies

IppTλq#νq “
1

2π

ĳ

log
1

|x´ y|
dpTλq#νpxq dpTλq#νpyq

“
1

2π

ĳ

log
1

|λx´ λy|
dνpxq dνpyq “ Ipνq ´

1

2π
νpRdq2 log λ “ Ipνq,

which yields the claim.
So for any d ě 2 and ε small enough we can assume that Epx ´ yq ą 0 for all x, y P

suppν Y suppνε. Then, by the dominated convergence theorem, for all x P suppν such
that E ˚ |ν|pxq ă 8, taking into account (6.12) and the fact that φε ˚φε ˚ Epxq Ñ Epxq for
all x ‰ 0, it follows that

lim
εÑ0

φε ˚ φε ˚ E ˚ νpxq “ E ˚ νpxq,

and moreover E ˚ νpxq ď E ˚ |ν|pxq. By another application of dominated convergence,
since Ip|ν|q ă 8, we infer that

lim
εÑ0

Ipνεq “ lim
εÑ0

ż

pφε ˚ φε ˚ E ˚ νq dν “ Ipνq, (6.13)

which concludes the proof of the fact that Ipνq ě 0.
Next suppose that Ipνq “ 0. From (6.11) and (6.13), we deduce that

lim
εÑ0

ż

|∇E ˚ νε|2 dm “ 0.

By an easy application of Fubini’s theorem, it follows that E ˚ ν P L1
locpRdq. Now, we

can compute the distributional Laplacian of the induced distribution, which happens to
be precisely ∆pE ˚ νq “ ´ν. On the other hand, it is well known that E ˚ νε “ φε ˚ E ˚ ν
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tends to E ˚ ν in L1
locpRdq, that is in L1pBrp0qq for any r ą 0. Together with the Poincaré

inequality, denoting by mBrp0qpE ˚ νq the mean of E ˚ ν in Brp0q, this implies

´

ż

Brp0q

|E ˚ ν ´mBrp0qpE ˚ νq| dm “ lim
εÑ0

´

ż

Brp0q

|E ˚ νε ´mBrp0qpE ˚ νεq| dm

À lim
εÑ0

ˆ

´

ż

Brp0q

|∇pE ˚ νεq|2 dm

˙1{2

r “ 0.

So we deduce that E ˚ ν is constant a.e. with respect to Lebesgue measure. Since this
happens for any ball Brp0q and E ˚ ν tends to 0 at 8, it turns out that E ˚ ν vanishes
a.e. Then, from the fact that ν “ ´∆pE ˚ νq in the sense of distributions, we infer that
ν “ 0.

Theorem 6.11. Let E Ă Rd be a compact set with CappEq ą 0. Then the equilibrium
measure for E is unique.

From now on we will usually refer to the equilibrium measure for E as µE .

Proof. Aiming for a contradiction, suppose that there are two equilibrium measures µ and
ν for E. For t P p0, 1q, consider the measure

σt “ t µ` p1 ´ tq ν.

Obviously, σt is a probability measure. Let us see that Ipσtq ă Ipµq for t small enough.
Indeed, we have

Ipσtq “

ż

E ˚ σt dσt “ t2 Ipµq ` tp1 ´ tq

ż

E ˚ µdν ` tp1 ´ tq

ż

E ˚ ν dµ` p1 ´ tq2 Ipνq

“ p1 ´ 2tq Ipνq ` t

ż

E ˚ µdν ` t

ż

E ˚ ν dµ`Opt2q.

The sum of the two integrals on the right hand side can be rewritten as
ż

E ˚ µdν `

ż

E ˚ ν dµ “

ż

E ˚ pµ´ νq dν ` Ipνq `

ż

E ˚ pν ´ µq dµ` Ipµq

“ 2Ipνq ´

ż

E ˚ pµ´ νq dpµ´ νq “ 2 Ipνq ´ Ipµ´ νq

From the identities above, we deduce

Ipσtq “ p1 ´ 2tq Ipνq ` 2t Ipνq ´ tIpµ´ νq `Opt2q “ Ipνq ´ tIpµ´ νq `Opt2q.

By Theorem 6.10, if µ ‰ ν, then Ipµ ´ νq ą 0, and so Ipσtq ă Ipνq “ Ipµq for t small
enough, which yields the desired contradiction.

From now on, M`pEq stands for the set of (non-negative) Radon measure supported
on E.
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Theorem 6.12. Let E Ă Rd be compact, and suppose also that diampEq ă 1 in the case
d “ 2. Then we have

CappEq “ sup
!

µpEq : µ P M`pEq, sup
Rd

Uµ ď 1
)

. (6.14)

Proof. The fact that diampEq ă 1 in the case d “ 2 implies that Epx´yq ě 1
2π log 1

diampEq
ą

0 for all x, y P E, which in turn implies that Ipµq is positive and bounded away from 0 for
any measure µ supported on E, and so CapW pEq “ CappEq ě 0.

Denote by SE the supremum in (6.14). In case CappEq “ 0, then every µ P M`pEq

satisfies Ipµq “ `8. In particular, we infer that the potential Uµ is not bounded above
in the support of µ. Thus, the only measure in the left-hand side of (6.14) is the null
measure and SE “ 0 “ CappEq.

Let us assume CappEq ą 0. The fact that CappEq ě SE is immediate: for ε ą 0, let µ
be supported on E such that supRd Uµ ď 1 and such that µpEq ` ε ě SE . Consider the
probability measure ν “ µpEq´1µ. Then

Ipνq “ µpEq´2 Ipµq “ µpEq´2

ż

Uµpxq dµpxq ď µpEq´1.

Therefore,
CappEq ě Ipνq´1 ě µpEq ě SE ´ ε.

For the converse inequality, consider the equilibrium measure µE of E, so that UµE pxq ď

CappEq´1 for all x P Rd, by Theorem 6.8 and Theorem 6.3. Then the measure µ “

CappEqµE satisfies supRd Uµ ď 1 in Rd and thus SE ě µpEq “ CappEq.

Remark 6.13. Note that the supremum in (6.14) is attained for E uniquely by the
measure CappEqµE , where µE stands for the equilibrium measure of E. This can be
shown arguing as in Theorem 6.12.

Corollary 6.14 (Subadditivity of capacity). For Borel sets En Ă Rd, with diamp
Ť

nEnq ă

1 in the case d “ 2, we have

Cap
´

ď

n

En

¯

ď
ÿ

n

CappEnq.

Proof. Let F Ă
Ť

nEn be compact and let µ be supported on
Ť

nEn be such that }Uµ}8 ď

1 in Rd and µpF q “ CappF q. Then }UχEnXFµ}8 ď }Uµ}8 ď 1 for any n, and thus
µpEn X F q ď CappEn X F q ď CappEnq. Therefore,

CappF q “ µpF q ď
ÿ

n

µpEn X F q ď
ÿ

n

CappEnq.

Since this holds for any compact set F Ă
Ť

nEn, we are done since, by the definition of
capacity,

CappEq “ sup
FĂE:F is compact

CapF.
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Lemma 6.15. For any Radon measure µ in Rd with compact support and let λ ą 0. In
the case d ě 3 we have

Cap
`␣

x P Rd : Uµpxq ě λu
˘

ď
}µ}

λ
.

In the case d “ 2,

Cap
`␣

x P B1{2p0q : Uµpxq ě λu
˘

ď
}µ}

λ
.

Proof. Consider a compact set E Ă
␣

x P Rd : Uµpxq ě λu (in the case d “ 2, E Ă
␣

x P B1{2p0q : Uµpxq ě λu) and let ν be supported on E be such that supRd Uν ď 1 and
CappEq “ νpEq. Then we have

CappEq “ νpEq ď
1

λ

ż

Uµ dν “
1

λ

ż

Uν dµ ď
}µ}

λ
.

Taking the supremum on such sets E, the lemma follows.

Proposition 6.16. For a ball B̄ Ă Rd, we have

CappB̄q “ pd´ 2qκd rpB̄qd´2 if d ě 3,

and
CapLpB̄q “ rpB̄q if d “ 2.

Proof. Without loss of generality, assume that B̄ is centered in the origin and that it is
closed. In the case d “ 2, by homogeneity we can assume rpB̄q ă 1{2. Let x P B̄c and
notice that Expyq :“ Epx´yq is harmonic in the interior of B̄. Let σ be the surface measure
on BB̄. Then by the mean value theorem,

Uσpxq “

ż

BB̄
Epx´ yq dσpyq “ σpBB̄q Epx´ 0q “ σpBB̄q Epxq.

Note that Uσ is constant in BB̄ by symmetry, and therefore it is continuous in Rd by
the continuity principle. Thus, the same identity holds on BB̄. Therefore, using also the
maximum principle, in the case d ě 3, we get

sup
Rd

Uσ “ sup
BB̄

Uσ “ σpBB̄q EprpB̄qq “
κd rpB̄qd´1

pd´ 2qκd rpB̄qd´2
“
rpB̄q

d´ 2
.

Therefore, the measure µ “ pd´ 2qrpB̄q´1σ satisfies supRd Uµ “ 1 and so

CappB̄q ě µpB̄q “ pd´ 2qrpB̄q´1σpB̄q “ pd´ 2qκd rpB̄qd´2.

For the converse estimate, remark that in fact the measure µ satisfies Uµ ” 1 in BB̄.
Since µ is supported on BB̄ and Uµ is harmonic in the interior of B̄ and continuous in its
closure, by the maximum principle it is identically 1 in the whole B̄. Then, from Lemma
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6.15 we deduce that CappB̄q ď µpB̄q “ pd´ 2qκd rpB̄qd´2, which proves the lemma in the
case d ě 3.

In the case d “ 2 we argue analogously. Indeed, it is straightforward to check that,
for all x P BB̄ we have we have Uσpxq “ rpB̄q log 1

rpB̄q
. Then, by the same arguments as

before, it follows that

CapW pB̄q “
2π

log 1
rpB̄q

,

and so CapLpB̄q “ rpB̄q.

As a corollary of the preceding estimate for the logarithmic capacity, we obtain:

Corollary 6.17. Let µ be Radon measure supported on the (open) ball B1p0q Ă R2. Then
Ipµq ą 0.

Proof. Let E “ suppµ. Since E Ă B1p0q, there exists some ρ P p0, 1q such that E Ă Bρp0q.
Consequently, CapLpEq ď CapLpB̄ρp0qq “ ρ ă 1. Thus, e´2πIpµq ă 1, which implies that
Ipµq ą 0.

A quick inspection of the arguments above shows that CappB̄q “ CappBB̄q for any ball.
This also holds for any arbitrary compact set. In fact, we show below that the capacity of
a compact set equals the capacity of its outer boundary. For E Ă Rd compact, its outer
boundary, denoted by BoE, is the boundary of the unbounded component of RdzE.

Theorem 6.18. For any compact set E Ă Rd, we have CappEq “ CappBoEq (and so
CapLpEq “ CapLpBoEq in the case d “ 2).

Proof. First we show that CappEq “ CappBEq. To this end, it suffices to show that the
equilibrium measure µ of E is supported on BE (in the case d “ 2, if necessary, we can
assume that E Ă B1{2p0q). To prove this, recall that by Theorem 6.8 Uµpxq “ pCapEq´1

q.e. x P E. In particular, this holds a.e. in the interior of E with respect to Lebesgue
measure, see Remark 6.6. Since ´∆Uµ “ µ in the sense of distributions, for any C8

function φ supported on the interior of E, it holds
ż

φdµ “ ´xUµ,∆φy “ ´pCapEq´1

ż

suppφ
∆φ “ 0.

Thus µ vanishes identically on the interior of E, which shows that suppµ Ă BE.
To show that CappEq “ CappBoEq, let Ω be the unbounded component of RdzE and

let pE “ RdzΩ (so that pE coincides with the union of E and the bounded components of
RdzE). Then we have BoE “ B pE and

BoE Ă BE Ă E Ă pE.

Since Capp pEq “ CappBoEq, we also have CappEq “ CappBoEq.

Remark 6.19. From the uniqueness of the equilibrium measure and the fact that CappEq “

CappBoEq, it follows that the equilibrium measure of E is supported on BoE.
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6.4 Relationship between Hausdorff content and capacity

Lemma 6.20. Let E Ă Rd be compact and d´ 2 ă s ď d. In the case d ě 3, we have

Hs
8pEq

d´2
s Às,d CappEq Àd Hd´2

8 pEq.

In the case d “ 2, we have

CapLpEq Ás Hs
8pEq

1
s .

Proof. First we consider the case d ě 3. To check that CappEq À Hd´2
8 pEq, for any ε ą 0

we consider a covering of E by a family of open balls Bi, i ě 1, such that

ÿ

i

rpBiq
d´2 Àd Hd´2

8 pEq ` ε.

Since E is compact, we may assume that the family of balls Bi is finite. Then, using the
subadditivity of the Newtonian capacity (see Corollary 6.14) and Proposition 6.16, we get

CappEq ď
ÿ

i

CappB̄iq «
ÿ

i

rpBiq
d´2 Àd Hd´2

8 pEq ` ε,

which shows that CappEq Àd Hd´2
8 pEq.

To see that CappEq Ás,d Hs
8pEq

d´2
s , we apply Frostman’s Lemma 4.66. This tells us

that there exists some Borel measure µ supported on E such that

Hs
8pEq «d µpEq (6.15)

and
µpBrpxqq ď rs for all x P Rd and r ą 0. (6.16)

Then, for all x P Rd we have

cUµpxq “

ż

1

|x´ y|d´2
dµpyq “

ż 8

0
µ
`␣

y : |x´ y|2´d ą t
(˘

dt

“

ż 8

0
µ
`

B
`

x, t
1

2´d
˘˘

dt
(6.16)

ď

ż µpEq
2´d
s

0
µpEq dt`

ż 8

µpEq
2´d
s

t
s

2´d dt «s,d µpEq1´ d´2
s .

Therefore,

CappEq
(6.14)

ě
µpEq

}Uµ}8

Ás,d
µpEq

µpEq1´ d´2
s

“ µpEq
d´2
s

(6.15)
« d Hs

8pEq
d´2
s .

In the case d “ 2, we may and will assume that diampEq ă 1 since, for any λ ą 0.

CapLpλEq “ λ CapLpEq and Hs
8pλEq

1
s “ λHs

8pEq
1
s .

100



6 Potential theory

We apply again Frostman’s Lemma to get a measure µ supported on E satisfying (6.15)
and (6.16). Then, for any τ ě 0 for x P suppµ we have

2π Uµpxq “

ż

log
1

|x´ y|
dµpyq “

ż 8

0
µ
´!

y : log
1

|x´ y|
ą t

)¯

dt

“

ż 8

0
µ
`

B
`

x, e´t
˘˘

dt
(6.16)

ď

ż τ

0
µpEq dt`

ż 8

τ
e´ts dt “ τ µpEq `

1

s
e´τs.

We choose τ “ ´1
s logµpEq (notice that τ ě 0 because µpEq

(6.16)
ă 1, since diampEq ă 1),

and then we obtain

2π Uµpxq ď
µpEq

s

ˆ

log
1

µpEq
` 1

˙

.

Hence, for the probability measure σ “ µpEq´1µ, we have

2π Ipσq ď
1

s

ˆ

log
1

µpEq
` 1

˙

.

Therefore,

CapW pEq ě
1

Ipσq
ě

2πs

log 1
µpEq

` 1
,

or equivalently,

CapLpEq ě e
log µpEq´1

s “ CpsqµpEq
1
s

(6.15)
« s Hs

8pEq
1
s .

Comparing the previous lemma with definition 4.65, we get the criticallity of dimension
d´ 2.

Corollary 6.21. Let E Ă Rd be a compact set. If CapE ą 0, then dimHE ě d ´ 2.
Instead, if CapE “ 0, then dimHE ď d´ 2.

Remark 6.22. It can be shown that if Hd´2pEq ă 8 for a bounded set E Ă Rd, then
CappEq “ 0. See [Mat95, Theorem 8.7], for example.

6.5 Wiener’s criterion

Given a bounded open set Ω Ă Rd, by Theorem 5.34 and Theorem 5.35, a point ξ P BΩ
is regular (for the Dirichlet problem) if and only if there is a barrier function for ξ in Ω.
In this section we show a characterization of more metric-geometric type. This is the so
called Wiener’s criterion.

Theorem 6.23 (Wiener’s criterion). For d ě 2, let Ω Ă Rd be a bounded open set and let
ξ P BΩ. The following are equivalent:
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(a) ξ is a regular point.

(b)
8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzΩq

CappB̄pξ, 2´kqq
“ 8.

Here Āpξ, r1, r2q denotes the closed annulus centered at ξ with inner radius r1 and outer
radius r2. Recall also that in the case d ě 3, CappB̄pξ, 2´kqq « 2´kpd´2q, and in the case
d “ 2, CappB̄pξ, 2´kqq “ CapW pB̄pξ, 2´kqq « 1{k. Thus, in the latter case, the condition
(b) is equivalent to

(b’)
8
ÿ

k“1

k CapW pĀpξ, 2´k´1, 2´kqzΩq “ 8.

Remark 6.24. In the case d ě 3, the condition (b) is equivalent to

(b”)
8
ÿ

k“1

CappB̄pξ, 2´kqzΩq

CappB̄pξ, 2´kqq
“ 8.

Indeed, it is trivial that (b) ñ (b”). To see that (b”) ñ (b) we use the subadditivity of
Newtonian capacity to write

ÿ

kě1

CappB̄pξ, 2´kqzΩq

CappB̄pξ, 2´kqq
À

ÿ

kě1

ÿ

jěk

CappĀpξ, 2´j´1, 2´jqzΩq

CappB̄pξ, 2´kqq

“
ÿ

jě1

CappĀpξ, 2´j´1, 2´jqzΩq
ÿ

kďj

1

CappB̄pξ, 2´kqq
.

Now observe that the last sum on the right hand side is comparable to
ř

kďj 2
kpd´2q «

2jpd´2q « CappB̄pξ, 2´jqq´1. Thus,

ÿ

kě1

CappB̄pξ, 2´kqzΩq

CappB̄pξ, 2´kqq
À

ÿ

jě1

CappĀpξ, 2´j´1, 2´jqzΩq

CappB̄pξ, 2´jqq
,

which yields the desired implication.

6.5.1 Sufficiency of the criterion for Wiener regularity

Proof of (b) ñ (a) in Theorem 6.23 in the case d ě 3. We will construct a barrier rw :
Ω Ñ R for the point ξ. We will show that there exists a harmonic function w : Ω Ñ R
satisfying:

(i) limΩQxÑξ wpxq “ 1.

(ii) lim supxÑζ wpxq ă 1 for all ζ P BΩztξu.
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Then we just have to take rw “ 1 ´ w to get the desired barrier.
To shorten notation, write Āk “ Āpξ, 2´k´1, 2´kq, Bk “ Bpξ, 2´kq, and B̄k “ Bk. For

a fixed large constant Λ ě 10 to be chosen below and for any n0 ą 1, the condition (b)
ensures the existence of natural numbers N,M , with n0 ď N ă M such that

Λ ď
ÿ

NďkďM

CappĀkzΩq

CappB̄kq
ď Λ ` 1

(notice that each summand in the sum above is at most 1). For each k ě n0, if CappĀkzΩq “

0, define µk ” 0 and if CappĀkzΩq ą 0 let µk be the equilibrium measure for ĀkzΩ. Con-
sider the function

ukpxq “ CappĀkzΩqUµk
pxq;

and set
vpxq “

ÿ

NďkďM

ukpxq.

Claim 6.25. Let d ě 3. For any ε ą 0, if Λ “ Λpεq is chosen large enough, the function
v satisfies

vpξq « Λ, (6.17)

vpxq ď p1 ` εq vpξq for all x P Ω, (6.18)

|vpxq ´ vpξq| ď C
|x´ ξ|

rpB̄M q
vpξq for all x P Ω X B̄M , (6.19)

and

vpxq ď
1

10
vpξq for all x P ΩzB̄N´k0 if k0 ě 2 is large enough. (6.20)

Remark that the constant k0 in the last estimate does not depend on ε. In the case
N ´ k0 ď 0, we understand that B̄N´k0 “ 2k0B̄N .

Proof of the Claim. The estimate (6.17) is easy: for each k P rN,M s we have

ukpξq “ CappĀkzΩqUµk
pξq « CappĀkzΩq EprpBkqq «

CappĀkzΩq

CappB̄kq
.

Thus,

vpξq «
ÿ

NďkďM

CappĀkzΩq

CappB̄kq
« Λ. (6.21)

Next we turn our attention to (6.18), which is the most delicate part of the claim.
Notice first that, by the maximum principle, it suffices to prove this for x P B̄NzBM “
Ť

NďiďM Āi. So fix x P Ai, with N ď i ď M . For some h ě 1 to be chosen soon, we write

vpxq “

i´h´1
ÿ

k“N

ukpxq `

M^i`h
ÿ

k“N_i´h

ukpxq `

M
ÿ

k“i`h`1

ukpxq “: vapxq ` vbpxq ` vcpxq.
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To estimate vbpxq we just take into account that

ukpyq ď CappĀkzΩqUµk
pyq ď 1 for all y P Rd,

by Theorem 6.8. So we deduce
vbpxq ď 2h` 1.

To deal with vapxq, we will use the fact that, |x ´ ξ| ď rpB̄iq ă 2´k2´h for k ă i ´ h,
implying

ukpxq “ ukpξq ` pukpxq ´ ukpξqq “ ukpξq ` CappĀkzΩq pUµk
pxq ´ Uµk

pξqq (6.22)

ď ukpξq ` C CappĀkzΩq
|x´ ξ|

distpξ, Ākqd´1

ď ukpξq ` C CappĀkzΩq
rpB̄iq

rpB̄kqd´1

ď ukpξq ` C 2´h CappĀkzΩq

CappB̄kq
.

For vcpxq, we take into account that for k ą i` h we get rpB̄iq ą 2hrpB̄kq, so

ukpxq ď C
CappĀkzΩq

distpx, Ākqd´2
ď C

CappĀkzΩq

rpB̄iq
d´2

ď C 2´hpd´2qCappĀkzΩq

CappB̄kq
.

Consequently, gathering the estimates obtained for k ă i´ h and for k ą i` h and using
also (6.21), we get

vapxq ` vcpxq ď
ÿ

NďkďM

ukpξq ` C 2´h
ÿ

NďkďM

CappĀkzΩq

CappB̄kq
ď vpξq ` C 2´h vpξq.

Thus,

vpxq “ vapxq ` vbpxq ` vcpxq ď vpξq ` p2h` 1q ` C 2´h vpξq ď vpξq

´

1 `
C h

Λ
` C 2´h

¯

.

So choosing h large enough and then Λ large enough as well, (6.18) follows.
To prove (6.19), we can assume x P 1

2B̄M because of (6.18). Arguing as in (6.22), we
obtain

|ukpxq ´ ukpξq| ď C CappĀkzΩq
|x´ ξ|

distpξ, Ākqd´1
À C

CappĀkzΩq

CappB̄kq

|x´ ξ|

rpB̄M q
.

Summing over k P rN,M s and using (6.21), we deduce (6.19).
Finally we deal with (6.20). So we take x P ΩzB̄N´k0 , for k0 ě 2. Then we have

ukpxq «
CappĀkzΩq

distpx, B̄kqd´2
ď

CappĀkzΩq

2pd´2qk0 rpB̄kqd´2
« 2p2´dqk0 ukpξq.

Hence, summing on k P rN,M s, we obtain

vpxq À 2p2´dqk0
ÿ

NďkďM

ukpξq “ 2p2´dqk0 vpξq.
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Applying the preceding claim, we construct sequences of natural numbers Nj , Mj ,
and functions vj , for j ě 1, as follows. We choose N0 “ 1, M0 “ 2. Assuming that
Nj´1 ă Mj´1 have already been chosen, by applying Claim 6.25 with some ε P p0, 1{2q

to be fixed below and n0 “ Mj´1 ` k0, for some k0 ě 2 to be fixed below too, we find
Mj ą Nj ě n0 so that the function

vjpxq “
ÿ

NjďkďMj

ukpxq

satisfies (6.17), (6.18), (6.19), and (6.20) (with vj in place of v). Now we define

wpxq “
ÿ

jě1

2´j vjpxq

vjpξq
. (6.23)

Obviously, wpξq “ 1 and it is easy to check that w is superharmonic in Rd (since each
function vj is superharmonic by Lemma 6.1). Consequently,

lim inf
yÑξ

wpyq ě wpξq “ 1. (6.24)

Our next objective is to show that

lim sup
yÑζ

wpyq ă 1 for all ζ P BΩztξu and wpyq ă 1 for all y P Ω. (6.25)

Observe that the latter condition together with (6.24) implies the condition (i) above, i.e.,
limΩQyÑξ wpyq “ 1. To prove (6.25) it suffices to show that for any h ě 1 there exists
δh ą 0 such that

wpxq ď 1 ´ δh for all x P B̄Mh
zB̄Mh`1

. (6.26)

To prove this, for a given x P B̄Mh
zB̄Mh`1

, we split

wpxq “

h´1
ÿ

j“1

2´j vjpxq

vjpξq
` 2´h vhpxq

vhpξq
` 2´h´1 vh`1pxq

vh`1pξq
`

ÿ

jěh`2

2´j vjpxq

vjpξq
“: S1 `S2 `S3 `S4.

(6.27)
By (6.19), the first sum satisfies

S1 “

h´1
ÿ

j“1

2´j vjpxq

vjpξq
ď

h´1
ÿ

j“1

2´j `

h´1
ÿ

j“1

2´j |vjpxq ´ vjpξq|

vjpξq

ď p1 ´ 2´h`1q ` C
h´1
ÿ

j“1

2´j rpB̄Mh
q

rpB̄Mj q
ď p1 ´ 2´h`1q ` C

h´1
ÿ

j“1

2´j 2k0pj´hq,

where we took into account that rpB̄Mj`1q ď 2´k0rpB̄Mj q for each j, by the construction
of the sequence Mj . For k0 ě 3, we have

h´1
ÿ

j“1

2´j2k0pj´hq “
2´h

2k0´1 ´ 1
ď

2´h

2k0´2
“ 2´h´k0`2.
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Thus,
S1 ď p1 ´ 2´h`1q ` C2´h´k0 .

For S2 and S3 we apply (6.18):

S2 ` S3 ď p1 ` εqp2´h ` 2´h´1q.

Finally we estimate S4. For this term we use the fact that if x R B̄Mh`1
and j ě h` 2,

then by (6.20) we have vjpxq ď 1
10 vjpξq, assuming k0 large enough. Therefore,

S4 ď
1

10

ÿ

jěh`2

2´j “
1

10
2´h´1. (6.28)

Gathering the estimates for S1, . . . , S4, we obtain

wpxq ď p1 ´ 2´h`1q ` C2´h´k0 ` p1 ` εqp2´h ` 2´h´1q `
1

10
2´h´1

“ 1 ´ 2´h

ˆ

9

20
´ C2´k0 ´

3ε

2

˙

.

Then, choosing ε small enough and k0 large, we derive wpxq ď 1 ´ 2´h´2, which proves
(6.26) and completes the proof of (b) ñ (a).

Proof of (b) ñ (a) in Theorem 6.23 in the case d “ 2. The proof is very similar to the
one above for d ě 3 and so we only point out the differences in the argument. Given
1 ă n0 ď N ă M , we define the functions uk and v as above. Then the estimates (6.17),
(6.18), and (6.19) in Claim 6.25 also hold if Λ is chosen large enough, while for (6.20) we
require now that k0 ě 10N{11 and N large enough.
The proof of this variant of Claim 6.25 for the case d “ 2 is very similar to the one for d “

3. Indeed, (6.17) has the same proof. Regarding (6.18), we split vpxq “ vapxq`vbpxq`vcpxq

as in the case d ě 3. We have vbpxq ď 2h` 1 by the same arguments as for d ě 3. To deal
with vapxq we estimate the functions uk for k ă i ´ h by arguments quite similar to the
ones in (6.22). Indeed, notice that

|Uµk
pxq ´ Uµk

pξq| À

ż

ˇ

ˇ

ˇ

ˇ

log
|x´ y|

|ξ ´ y|

ˇ

ˇ

ˇ

ˇ

dµkpyq

Writing
ˇ

ˇ

ˇ

ˇ

log
|x´ y|

|ξ ´ y|

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

log

ˆ

1 `
|x´ y| ´ |x´ ξ|

|ξ ´ y|

˙
ˇ

ˇ

ˇ

ˇ

ď
|x´ ξ|

|x´ y|
,

we deduce

|Uµk
pxq ´ Uµk

pξq| À
|x´ ξ|

distpξ, Ākq
.
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Thus,

ukpxq “ ukpξq ` CappĀkzΩq pUµk
pxq ´ Uµk

pξqq (6.29)

ď ukpξq ` C CappĀkzΩq
|x´ ξ|

distpξ, Ākq

ď ukpξq ` C CappĀkzΩq
rpB̄iq

rpB̄kq

ď ukpξq ` C 2´h CappĀkzΩqUµk
pξq,

where we used the trivial bound Uµk
pξq ě 1 in the last inequality for N large enough. For

vcpxq, we take into account that for k ą i` h we have

ukpxq ď CappĀkzΩq Epdistpx, Ākqq ď CappĀkzΩq Epc rpB̄iqq

ď CappĀkzΩq

ż

Epξ ´ yq dµkpyq
Epc rpB̄iqq

infyPĀk
Epξ ´ yq

ď ukpξq,

since Epc rpB̄iqq ď infyPĀk
Epξ ´ yq for k ą i` h with h large enough.

Consequently, gathering the estimates obtained for k ă i ´ h and for k ą i ` h and
using also (6.17) and (6.21), we get

vapxq ` vcpxq ď p1 ` C2´hq
ÿ

NďkďM

ukpξq “ p1 ` C2´hq vpξq.

Thus,

vpxq “ vapxq ` vbpxq ` vcpxq ď vpξq ` p2h` 1q ` C 2´h vpξq ď vpξq

´

1 `
C h

Λ
` C 2´h

¯

.

So choosing h large enough and then Λ large enough, we get (6.18).
The proof of (6.19) also follows by arguments very similar to the ones for the case d “ 2

and so we skip them.
Finally we deal with (6.20). So we take x P ΩzB̄N´k0 , for k0 ě 10N{11 and N large

enough. For x P B1{2pξq, then we have

Uµk
pxq “

ż

Epx´ yq dµkpyq ď

ż

Epξ ´ yq dµkpyq
supyPĀk

Epx´ yq

infyPĀk
Epξ ´ yq

ď Uµk
pξq

logpc 2k0 rpB̄N qq

logpc1 rpB̄N qq
ď Uµk

pξq
C `N ´ k0
C 1 `N

.

From the condition that k0 ě 10N{11 we deduce that N ´ k0 ď N{11, and thus for N
large enough it holds C`N´k0

C1`N ď 1
10 . Hence, multiplying by CappĀkzΩq and summing on

k P rN,M s, we obtain

vpxq ď
1

10

ÿ

NďkďM

ukpξq “
1

10
vpξq for all x P ΩzB̄N´k0 .
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To complete the proof of (b) ñ (a) we choose sequences Nj andMj as in the case d ě 3,
but with the additional requirement that Nj ě 20Mj´1 for each j, say. This condition
ensures that we will be able to apply (6.20) to estimate the term S4 in (6.27) arguing as
in (6.28). Then almost the same arguments as the ones for the case d ě 3 show that the
function w defined in (6.23) is barrier for ξ. We leave the details for the reader.

6.5.2 Necessity of the criterion for Wiener regularity

Recall that in Definition 5.40 we introduced the notion of Wiener regularity for unbounded
open sets with compact boundary. Before proving the necessity part in Theorem 6.23, i.e.,
the implication (a) ñ (b), we need the following auxiliary result.

Lemma 6.26. Let E Ă Rd be compact with CappEq ą 0 and let ΩE be the unbounded
component of RdzE. Suppose that ΩE is Wiener regular and let µ be the equilibrium mea-
sure for E. Then the equilibrium potential Uµ is continuous in Rd and Uµ “ pCappEqq´1

identically on E.

Proof. Without loss of generality, we assume that E Ă B1{2p0q. For r ą 2 we denote
ΩE,r “ ΩE X Brp0q and we let ur be the solution of the Dirichlet problem in ΩE,r with
boundary data:

ur “

"

pCappEqq´1 in BΩE ,
Uµ in BBrp0q.

We extend ur to pE “ RdzΩE by setting urpxq “ pCappEqq´1 for x P pE, so that ur is
continuous in Brp0q, by the Wiener regularity of ΩE,r.
Observe that, for all ξ P BΩE ,

0 ď lim sup
xÑξ

purpxq ´ Uµpxqq ď pCappEqq´1.

Therefore, since ur “ Uµ in BBrp0q, by the maximum principle we get

}ur ´ Uµ}8,ΩE,r
ď pCappEqq´1.

As this estimate is uniform in r, we deduce that there exists a sequence rk Ñ 8 such that
urk converges locally uniformly on compact subsets of ΩE to some function u harmonic
in ΩE . In particular, it converges uniformly on BB1p0q. Since urk equals pCappEqq´1 in
BΩE for all k, by the maximum principle it follows that the convergence is also uniform in
ΩE X B̄1p0q. Then we deduce that u is continuous in ΩE and so it extends continuously to
the whole Rd. Further, u equals pCappEqq´1 in pE, u ď pCappEqq´1 in ΩE , and together
with the fact that u is continuous in Rd and harmonic in ΩE , this implies that u is
superharmonic in Rd. Notice also that

}u´ Uµ}8,Rd ď pCappEqq´1.

The preceding estimate implies that u is non-constant in the case d “ 2, since Uµpxq Ñ

´8 as |x| Ñ 8. In the case d ě 3, it is also easy to check that u is non-constant. Indeed,
let rur : Ā1,rp0q Ñ R be defined by

rurpxq “ CappEq´1 Ep1q´1 Epxq ` max
BBrp0q

Uµ,
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where, abusing notation, we wrote Ep1q “ Epyq for |y| “ 1. It is immediate to check that
ur ď rur in BĀ1,rp0q, and thus also in A1,rp0q by the maximum principle. Then, letting
r Ñ 8, it follows that upxq ď CappEq´1 Ep1q´1 Epxq for |x| ą 1, which implies that u is
non-constant.
The superharmonicity of u in Rd implies that ´∆u is a non-negative measure in the

sense of distributions. This is an immediate consequence of Lemma 5.13 and the Riesz
representation theorem. The fact that u is non-constant and the maximum principle
ensures that ∆u is not the zero measure.

Now we claim that there exists some constant c0 P R such that

u “ ´E ˚ ∆u` c0 (6.30)

in the L1
locpRdq sense. To prove this, observe first that the function v :“ u ` E ˚ ∆u is

harmonic in Rd, and for |x| " 1 it satisfies

|vpxq| ď |upxq| ` |E ˚ ∆upxq| ď pCappEqq´1 ` Uµpxq ` |E ˚ ∆upxq| ď C0 ` C1 |Ep|x|q|,

where C0 and C1 depend on u. In the case d ě 3, this implies that v is bounded and so it
is constant, by Liouville’s theorem. In the case d “ 2, we also deduce that v is constant.
This follows easily from Lemma 2.11 applied to v in BRp0q, letting R Ñ 8:

}∇v}8,BR{2p0q À
}v}8,BRp0q

R
À
C0 ` C1 logR

R
Ñ 0.

So in any case (6.30) holds.
Let us see now that the pointwise identity

upxq “ ´E ˚ ∆upxq ` c0 (6.31)

holds for all x P Rd. Indeed, this holds in ΩE by the continuity of E ˚∆u and u in ΩE . So
it remains to show that

pCappEqq´1 “ ´E ˚ ∆upxq ` c0 for all x P pE.

To this end, notice that for each t ą 0, by the identity (6.30) in the L1
loc sense and the

continuity of u,

c0 ` ´

ż

Btpxq

E ˚ p´∆uq dm “ ´

ż

Btpxq

u dm
tÑ0
ÝÑ upxq.

On the other hand, by the superharmonicity of E ˚ p´∆uq (recall that ´∆u is a positive
measure), ´

ş

Btpxq
E ˚ p´∆uq dm ď E ˚ p´∆uqpxq, and so

CappEq´1 “ upxq “ c0 ` lim sup
tÑ0

´

ż

Btpxq

E ˚ p´∆uq dm ď c0 ` E ˚ p´∆uqpxq.

For the converse inequality, we take into account that c0 ` E ˚ p´∆uq ď CappEq´1 a.e. in
Rd, and thus the same estimate happens everywhere in Rd by the lower semicontinuity of
E ˚ p´∆uq (see Lemma 6.1(a)). So (6.31) holds for all x P Rd.
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From (6.31) we deduce that

E ˚ p´∆uqpxq “ pCappEqq´1 ´ c0 “: c1 for all x P pE.

Since ´∆u is a non-zero positive measure supported on pE Ă B1{2p0q, it follows that c1 ą 0.
So letting k “ pc1CappEqq´1, it turns out that E ˚p´k∆uqpxq “ pCappEqq´1 for all x P E.
Next we will show that this implies that ´k∆u “ µ. To this end, by Theorem 6.10 it
suffices to prove that ´k∆u is a probability measure and that Ipµ` k∆uq “ 0.
To prove that ´k∆u is a probability measure we first apply Theorem 6.12, taking into

account that }E ˚p´kCappEq∆uq}8 “ 1, and then we derive CappEq ě }´kCappEq∆u},
or equivalently, } ´ k∆u} ď 1. For the converse inequality we apply Lemma 6.15 and we
obtain CappEq ď } ´ kCappEq∆u}, so that } ´ k∆u} “ 1.

Next we will show that Ipµ ` k∆uq “ 0. Notice first that Ip|µ ` k∆u|q ă `8 because
both E ˚ µ and E ˚ p´k∆uq are uniformly bounded in E. We write

Ipµ` k∆uq “

ż

Upµ`k∆uq dpµ` k∆uq “

ż

`

Uµ ´Up´k∆uq

˘

dµ` k

ż

`

Uµ ´Up´k∆uq

˘

dp∆uq.

Both integrals on the right hand side vanish because Up´k∆uq equals identically pCapEq´1

in E Ą suppµ, while Uµ equals pCapEq´1 µ-a.e. and p´k∆uq-a.e. by Corollary 6.9. Hence,
Ipµ ` k∆uq “ 0 and thus µ “ ´k∆u. In turn, this implies that Uµ “ ´k E ˚ ∆u, and so

Uµ is continuous in Rd and identically equal to pCapEq´1 in pE.

Proof of (a) ñ (b) in Theorem 6.23. As above, we write Āk “ Āpξ, 2´k´1, 2´kq, Bk “

B2´kpξq, and B̄k “ Bk. To get a contradiction, suppose that ξ P BΩ is a regular point
such that

8
ÿ

k“1

CappĀkzΩq

CappB̄kq
ă 8.

Without loss of generality, assume also that Ω Ă B1{2p0q.

We will replace Ω by an auxiliary Wiener regular open subset rΩ Ă Ω so that ξ P BΩXBrΩ.
We define rΩ as follows. For each k ě 1 such that ĀkzΩ ‰ ∅, let ρk P p0, 2´k´3q be such
that

CappUρkpĀkzΩqq ď CappĀkzΩq ` 2´k CappB̄kq,

where UℓpGq stands for the ℓ-neighborhood of G. We cover ĀkzΩ by a finite number of
closed balls Bk,j centered in ĀkzΩ with the same radius ρk, and we let Ek “

Ť

j Bj,k. In

case that ĀkzΩ “ ∅, then we let Ek “ ∅ be a closed ball Bk,1 contained in Āk such that
CappBk,1q “ 2´k CappB̄kq. Finally, we let

rΩ “ Ωz
ď

kě1

Ek.

It is easy to check that rΩ is open. Further,

ÿ

kě1

CappĀkzrΩq

CappB̄kq
ď

ÿ

kě1

CappEk´1 Y Ek Y Ek`1q

CappB̄kq
.
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Using that CappEk´1 Y Ek Y Ek`1q ď CappEk´1q ` CappEkq ` CappEk`1q and that
CappB̄k´1q « CappB̄kq « CappB̄k`1q, it follows that

ÿ

kě1

CappĀkzrΩq

CappB̄kq
À

ÿ

kě1

CappEkq

CappB̄kq
ď

ÿ

kě1

CappĀkzΩq

CappB̄kq
`

ÿ

kě1

2´k ă 8. (6.32)

Also ξ P BrΩ because the preceding estimate implies that, for k large enough, CappĀkzrΩq !

CappB̄kq « CappĀkq, so that Āk X rΩ ‰ ∅.
To check that rΩ is Wiener regular, notice first that ξ is a Wiener regular point for rΩ,

because if v : Ω Ñ R is a barrier for ξ in Ω, then v|
rΩ
is a barrier of ξ in rΩ. Further, it

is immediate to check that any other point ζ P BrΩ with ζ ‰ ξ belongs to the boundary
of some ball Bk.j , and so ζ is Wiener regular because of the existence of an outer tangent

ball in ζ (namely, Bk.j). So rΩ satisfies the required properties.
For k ě 1 we denote

Fk “ tξu Y
ď

jěk

Ej .

Notice that Fk is a compact set such that Fk Ă B̄k´1, and by the same arguments as
above, it follows easily that RdzFk is Wiener regular and that ξ P BFk.
Next we will derive a contradiction from the fact that ξ is a regular point for rΩ and the

condition (6.32). For 0 ă ε ă 1{4, let N ě 2 be such that

ÿ

kěN

CappEkq

CappB̄kq
ă ε. (6.33)

Because of the Wiener regularity of rΩ, there exists a function f P C
`

rΩ
˘

, harmonic in rΩ,

with 0 ď f ď 1, with fpξq “ 0 and f “ 0 in BrΩzB̄N`1. By the continuity of f , there exists

s ă 2´N´1 such that fpxq ą 1 ´ ε in rΩ X B̄spξq.
Let us see that there exists M ě 1 large enough such that 2´M ă s{4 and such that the

equilibrium potential UFM
for FM satisfies

CappFM qUFM
pxq ď ε for all x P RdzB̄spξq.

Indeed, we have

CappFM qUFM
pxq ď CappB̄M´1q EpdistpFM , BBspξqq À

Epsq

Ep2´M`1q
,

which tends to 0 as M Ñ 8. We denote VFM
“ CappFM qUFM

.
Let AN,M “

Ť

NďkďM Ek. Again, RdzAN,M is Wiener regular because because AN,M

is the union of a finite number of balls, and we can apply the criterion of the outer
tangent ball. Let UAN,M

be the equilibrium potential of AN,M and denote VAN,M
“

CappAN,M qUAN,M
. By Lemma 6.26, it turns out that VFM

and VAN,M
are continuous and

VFM
`VAN,M

ě 1 on FM YAN,M . Then, by the definition of f and the maximum principle

it follows that VFM
` VAN,M

ě f in rΩ. Therefore,

VAN,M
ě f ´ VFM

ě 1 ´ 2ε in BBspξq X rΩ.
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We also have VAN,M
“ 1 ą 1 ´ 2ε in AN,M , and so by the maximum principle applied to

the set BspξqzAN,M (recall that 2´M`2 ă s ă 2´N´1), it follows that

VAN,M
pξq ě 1 ´ 2ε. (6.34)

Now we intend to contradict this estimate. To this end, notice that for x P BB1{2pξq,

VAN,M
pxq “ CappAN,M qUAN,M

pxq

ď CappBN´1q Epdistpx,AN,M qq À CappBN´1q « Ep2´N q´1.

In AN,M we also have

VAN,M
pxq “ 1 ď

ÿ

NďkďM

VEk
pxq “

ÿ

NďkďM

CappEkqUEk
pxq.

Then, by the maximum principle and by (6.33),

VAN,M
pξq ď

ÿ

NďkďM

CappEkqUEk
pξq ` C Ep2´N q´1

«
ÿ

NďkďM

CappEkq

CappB̄kq
` Ep2´N q´1 À ε` Ep2´N q´1,

which contradicts (6.34).

6.6 Kellogg’s theorem

A set E Ă Rd is called polar if CappEq “ 0. Of course, in the case d “ 2, this is equivalent
to saying that CapLpEq “ 0. Kellogg’s theorem asserts that, for any bounded open set
Ω Ă Rd, the set of (Wiener) irregular points is polar. In order to prove this, we will need
some auxiliary results, which have their own interest.
Recall that in Section 5.4 we introduced the notion of barrier functions, whose existence

characterizes the regularity of boundary points. Next we introduce the weaker notion of
generalized barrier, which also can be used to characterize regular points, as we will see
below. Given an open set Ω Ă Rd, a function v : Ω Ñ R is called a generalized barrier for
Ω at ξ P BΩ if

1. v is superharmonic in Ω,

2. v ą 0 in Ω, and

3. limxÑξ vpxq “ 0.

It is immediate to check that a barrier for ξ is also a generalized barrier. The converse
statement is not true. However, we have the following key result.

Theorem 6.27. Let Ω Ă Rd be open and bounded. A point ξ P BΩ is regular for Ω if and
only if there exists a generalized barrier for Ω at ξ.

112



6 Potential theory

To prove this theorem, we will use the following simple result:

Lemma 6.28. For r ą 0, let V Ă Srp0q be relatively open in Srp0q, and for any x P Brp0q

let

gpxq “

ż

Srp0q

P x
Brp0qpζqχV pζq dσpζq,

where σ is the surface measure on Srp0q. Then,

lim
Brp0qQxÑξ

gpxq “ 1 for all ξ P V .

Recall that P x
Brp0q

is the Poisson kernel for the ball Brp0q, which was introduced in
Remark 3.12.

Proof. This is an immediate consequence of Example 5.27 and Corollary 5.36.

Proof of Theorem 6.27. The statement in the theorem is equivalent to saying that there
exists a barrier at ξ P BΩ for Ω if and only if there exists a generalized barrier. Since
any barrier is also a generalized barrier, we are left with showing that the existence of a
generalized barrier at ξ P BΩ for Ω implies the existence of a “usual” barrier. To this end,
consider the function φ : Ω Ñ R defined by φpxq “ |x ´ ξ|2. The fact that ∆φ ě 0 away
from ξ ensures that φ is subharmonic in Ω. The function f :“ φ|BΩ is continuous in BΩ,
and thus it is also resolutive. Further, since φ P Lf (recall that this is the lower Perron
class for Ω, introduced in Definition 5.16), we have v :“ Hf “ Hf ě φ in Ω. Thus, v is a
positive harmonic function in Ω such that for all ζ P BΩztξu,

lim inf
ΩQxÑζ

vpxq ě fpζq ą 0.

Hence to show that v is a “usual” barrier for ξ, it suffices to prove that

lim
ΩQxÑξ

vpxq “ 0. (6.35)

To prove (6.35), without loss of generality, assume that ξ “ 0. Let u be a generalized
barrier at 0 for Ω and let r ą 0 be such that Srp0q X Ω ‰ ∅. For a given ε ą 0, consider
a compact subset Er,ε Ă Srp0q X Ω such that σppSrp0q X ΩqzEr,εq ď ε σpSrp0qq, where σ
is the surface measure on Srp0q. Notice that γr,ε “ infEr,ε u ą 0 (recall that u is lower
semicontinuous in Ω and so the infimum on any compact subset of Ω is attained in that
compact subset). Consider the set Vr,ε “ pSrp0q X ΩqzEr,ε, which is relatively open in
Srp0q. Let g : Srp0q Ñ R be defined by the “harmonic extension” of χVr,ε to Brp0q, that
is,

gpxq “

ż

Srp0q

P x
Brp0qpζqχVr,εpζq dσpζq,

where P x
Brp0q

is the Poisson kernel for Brp0q with pole at x. Let h : ΩXBrp0q Ñ R be the
function defined by

h “ r2 ` γ´1
r,ε diampΩq2 u` diampΩq2 g,
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Notice that h is superharmonic in ΩXBrp0q. We claim that for any function s P Lf (recall
that this means that s P CpΩq is a subharmonic function such that lim supxÑη spxq ď fpηq

for all η P BΩ), it holds that

lim inf
xÑη

hpxq ě lim sup
xÑη

spxq for all η P BpΩ XBrp0qq. (6.36)

Indeed, if η P Brp0q X BΩ, then

lim inf
xÑη

hpxq ě r2 ě fpηq ě lim sup
xÑη

spxq.

On the other hand, if η P Er,ε, since u is lower semicontinuous in Ω,

lim inf
xÑη

hpxq ě γ´1
r,ε diampΩq2 lim inf

xÑη
u ě γ´1

r,ε diampΩq2 upηq ě diampΩq2 ě sup
BΩ

f.

Finally, for η P Vr,ε “ Srp0q X ΩzEr,ε, by Lemma 6.28,

lim inf
xÑη

hpxq ě diampΩq2 lim inf
xÑη

gpxq “ diampΩq2 ě sup
BΩ

f.

Our claim holds since, in the last two cases, we can use that s P Lf implies }s}8 ď supBΩ f .
From the superharmonicity of h´ s and the maximum principle in Lemma 5.4 (applied

to s´ h) and (6.36), we deduce that

spxq ď hpxq for all x P Brp0q X Ω.

Since this estimate holds for all s P Lf , we deduce that Hf pxq ď hpxq for all x P Brp0qXΩ.
Thus,

lim sup
xÑ0

Hf pxq ď r2 ` γ´1
r,ε diampΩq2 lim sup

xÑ0
u` diampΩq2 lim sup

xÑ0
g

“ r2 ` 0 ` gp0q “ r2 ` diampΩq2
σpVr,εq

σpSrp0qq
ď r2 ` diampΩq2 ε.

Choosing ε “ r2 diampΩq´2, we get lim supxÑ0Hf pxq ď 2 r2. Since r can be taken arbi-
trarily small and Hf is positive, we deduce that

lim
xÑ0

vpxq “ lim
xÑ0

Hf pxq “ 0,

as wished.

Theorem 6.29. Let E Ă Rd be compact with CappEq ą 0 and let ΩE be the unbounded
component of RdzE. Let µ be the equilibrium measure for E. If a point ξ P BΩE is irregular
for ΩE, then Uµpξq ă CappEq´1. In particular, the set of irregular points for ΩE is polar,
and moreover it is contained in a polar Fσ set.

Recall that a set E Ă Rd is called Fσ if it can be written as a countable union of closed
sets.
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Proof. Let us see that if Uµpξq ě CappEq´1, then ξ is regular. Remark that the inequality
Uµpξq ě CappEq´1 is equivalent to Uµpξq “ CappEq´1 because }Uµ}8,Rd ď CappEq´1.
We claim that the function v “ CappEq´1 ´ Uµ is a generalized barrier at ξ for ΩE (i.e.,
for ΩE X Brp0q for any r ą 0 such that E Ă Brp0q). To check this, notice first that v is
harmonic and that v ą 0 in ΩE . The latter assertion follows from the fact that v is non-
constant and non-negative in ΩE and ΩE is connected. By the semicontinuity property (a)
in Lemma 6.1, we know that lim infyÑξ Uµpyq ě Uµpξq. Consequently, lim supyÑξ vpyq ď

vpξq “ 0. So v is a generalized barrier at ξ for ΩE , and by Theorem 6.27 ξ is a regular
point for ΩE .

To prove the second statement of the theorem observe that, by what we have just proved,
the set of irregular points for ΩE is contained in the set

S “ tx P E : Uµpxq ă CappEq´1u,

which is a polar set, by Theorem 6.8. Therefore, the set of irregular points for ΩE is also
polar. Further, writing S “

Ť

jě1 Sj , with

Sj “
␣

x P E : Uµpxq ď CappEq´1 ´ 1
j

(

,

by the lower semicontinuity of Uµ it is clear that S is an Fσ set, since each Sj is closed.

Remark 6.30. In fact, the converse of the first statement in Theorem 6.29 also holds.
That is, for ΩE and µ as in Theorem 6.29, a point ξ P BΩE is irregular if and only if
Uµpξq ă CappEq´1. However, we will not need this result and so we skip the proof.

Theorem 6.31. Let Ω Ă Rd be open and bounded. A point ξ P BΩ is irregular for Ω if
and only if there exists some component Ω0 of Ω such that ξ P BΩ0 and x is irregular for
Ω0. In particular, if x is not in the boundary of any component of Ω, then it is regular for
Ω.

Proof. Denote by tΩjujPJ the family of components of Ω. If ξ P BΩj and ξ is irregular for
Ωj , then there is not any barrier at ξ for Ωj , which it readily implies that there is not any
barrier at ξ for Ω. Thus, ξ is irregular for Ω.
In the converse direction, suppose that there is not any Ωj such that ξ is irregular for

Ωj . To prove that ξ is regular for Ω, we intend to define a generalized barrier v at ξ for
Ω. For any Ωj such that ξ P BΩj , since ξ is regular for Ωj , there exists a barrier vj at ξ
for Ω. For such Ωj , we define v “ minpvj , 1{jq. For the components Ωj such that ξ R BΩj ,
we let v “ 1{j on Ωj .

To check that v is a generalized barrier at ξ for Ω, notice first that v is superharmonic
and positive in Ω. To see that limxÑξ vpxq “ 0, let ε ą 0 and consider the finite set
Jε “ tj P J : j ď ε´1u. If Jε “ ∅, then u ď ε on Ω. Otherwise, for each j P Jε there
exists an open neighborhood Vj of ξ such that either Vj X Ωj “ ∅ or v ď ε in Vj X Ωj . So
letting V “

Ť

jPJε
Vj it turns out that V is an open neighborhood of y where v ď ε on V .

So limxÑξ vpxq “ 0 as wished, and thus v is the desired generalized barrier.
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Theorem 6.32 (Kellogg’s theorem). Let Ω Ă Rd be open and bounded. Then the set of
irregular points for Ω is polar. Further, this is contained in an Fσ polar set.

Proof. By Theorem 6.31, it suffices to show that the set of irregular points for any com-
ponent of Ω is irregular, taking into account that the number of components is at most
countable and that a finite or countable union of polar sets is polar. So to prove the
theorem we can assume that Ω is connected.
Given a bounded connected set Ω, for any ξ P BΩ let Bξ be an open ball centered in

ξ such that Ω X BBξ ‰ ∅. Consider the domain Ωξ “ Ω Y pRdzBξq. Notice that Ωξ is
an unbounded connected set with bounded boundary, and then by Theorem 6.29 the set
of irregular points for Ωξ is polar (we can assume that CappBΩξq ą 0 because otherwise
any subset of BΩξ is polar) and it is contained in an Fσ polar set. Now remark that
Bξ X BΩ Ă BΩξ and that any point from Bξ X BΩ which is irregular for Ω is also irregular
for Ωξ. This follows immediately from Wiener’s criterion for regularity (although it could
be also easily deduced from the characterization of regularity in terms of existence of
barriers). Therefore, the subset of irregular points for Ω that belong to Bξ X BΩ is polar
and it is contained in an Fσ polar set.
Finally, since BΩ is compact, there exists a finite covering of BΩ with balls Bξi , for a

finite subset of points ξi P BΩ. By the preceding discussion, the set of irregular points for
Ω that belong to Bξi X BΩ is polar. Since a finite union of polar sets is also polar and a
finite unions of Fσ sets is an Fσ set, the theorem follows.

Exercise 6.6.1. Prove that the set of irregular points for an open set Ω Ă Rd with
compact boundary is itself an Fσ set.
Hint: This follows from Wiener’s criterion. Indeed, using subadditivity and Proposition

6.16, one can check that an equivalent form of the criterion is the following. A point ξ P BΩ
is regular for the Dirichlet problem in Ω if and only if

Spxq “

8
ÿ

k“1

CappApx, 2´k´2, 2´k`1qzΩq

CappB̄px, 2´kqq
“ `8,

that is, we may pick open enlarged annuli instead of closed. Now, CappApx, 2´k´2, 2´k`1qzΩq

is lower semicontinuous, so Spxq can be shown to be lower semicontinuous as well. Thus,
the set tx P Rn`1 : Spxq ą λu is open and thus the set of Wiener regular point is a Gδ set
(relative to BΩ), and the set of the irregular points from BΩ is an Fσ set.

6.7 Removability of polar sets

Theorem 6.33. Let Ω Ă Rd be bounded and open, and let Z Ă BΩ be a Borel polar set.
Then, for any x P Ω,

ωxpZq “ 0.

116



6 Potential theory

Proof. In the case d “ 2, we will assume that Ω Ă B1{2p0q. The measure ωx is Radon and
thus it is inner regular. Then it is enough to prove the theorem for Z being a compact
(polar) set. Under this assumption, by the outer regularity of capacity (see Lemma 6.7),
for any ε ą 0 there is an open set V Ą Z such that CappV q ă ε. By the compactness
of Z, we can find finitely many open balls Bi, i “ 1, . . . ,m, centered on Z such that
2Bi Ă V XB1{2p0q and

Z Ă
ď

1ďiďm

Bi.

Consider the compact set E “
Ť

1ďiďmBi and let ΩE “ RdzE. Since E consists of a
union of finitely many balls, it follows either by Wiener’s criterion or by the exterior ball
criterion in Remark 5.38 that ΩE is Wiener regular. Then, by Lemma 6.26, if µ stands for
the equilibrium measure for E, the potential Uµ is continuous in Rd and Uµ “ pCappEqq´1

identically on E.
Consider now the function fpxq “ CappEqUµpxq, and notice that it is superharmonic

and continuous in Rd, and it equals 1 on E. Also, it is positive in Ω since Ω Ă B1{2p0q in
the planar case. So we have

ωxpZq ď ωxpEq ď

ż

f dωx. (6.37)

By definition, letting g “ f |BΩ, the last integral above equals Hgpxq. Since f belongs to
the upper Perron class for g, we have Hgpxq ď fpxq. Thus,

ωxpZq ď fpxq “ CappEqUµpxq ď CappV qUµpxq ď εUµpxq. (6.38)

As µ is a probability measure supported on E,

Uµpxq “

ż

Epx´ yq dµpyq ď sup
yPE

Epx´ yq Ñ sup
yPZ

Epx´ yq as ε Ñ 0.

Since supyPZ Epx´ yq ă 8, letting ε Ñ 0 in (6.38), we deduce that ωxpZq “ 0.

Definition 6.34. Let Ω be a bounded open set and let E Ă Ω be a compact set. We say
that E is removable for bounded harmonic functions in Ω if every function f : ΩzE Ñ R
which is harmonic and bounded can be extended to the whole Ω as a harmonic function.

Theorem 6.35. Let Ω be a bounded open set and let E Ă Ω be a compact set. Then E is
removable for bounded harmonic functions in Ω if and only if E is polar.

Notice that, in particular, the removability of a compact set E for bounded harmonic
functions does not depend on the bounded open set Ω containing E.

Proof. First we show that if CappEq ą 0 then E is not removable. To this end, let µ be
the equilibrium measure of E and Uµ the corresponding equilibrium potential. Then Uµ

is a bounded harmonic function in ΩzE. Further, it is easy to check that Uµ cannot be
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extended harmonically to a function f harmonic in the whole Ω. Otherwise, f would be
a function continuous in Ω and harmonic in Ω such that maxΩ f is not attained in BΩ,
because supE f “ CappEq´1 ą maxBΩ f . So we get a contradiction.
To prove the converse implication, let Ω Ă Rd be bounded and open and let E Ă Ω be

a compact polar set. Without loss of generality we can assume that Ω Ă B1{2p0q in the

case d “ 2. We claim that there exists a Wiener regular open set rΩ which contains E and

such that rΩ Ă Ω. For example rΩ can be constructed as the interior of the union of finitely
many dyadic cubes of the same size in a suitable way. We leave the details for the reader.
Given ε ą 0, let Vε be an open set such that E Ă Vε and CappVεq ă ε. By the

compactness of E, we can find finitely many open balls Bi, i “ 1, . . . ,m, centered on Z
such that 3Bi Ă Vε X rΩ and

E Ă
ď

1ďiďm

Bi.

Consider the compact set Fε “
Ť

1ďiďm 2Bi and let rΩε “ rΩzFε. Notice that

BrΩε “ BrΩ Y BFε.

For x P rΩε, we bound ωx
rΩε

pBFεq as in Theorem 6.33: by considering the equilibrium

measure µ of Fε, as in (6.38) we deduce that

ωx
rΩε

pBFεq ď CappFεqUµpxq ď εUµpxq ď Cpxq ε,

with Cpxq independent of ε (assuming ε small enough).
Next we will show that if f : ΩzE Ñ R is harmonic and bounded, then f extends to

the whole Ω as a harmonic function. To this end, let g be the harmonic extension of f |
BrΩ

to rΩ and fix x P rΩ. Take ε ą 0 small enough such that x P rΩε. Observe that both f and

g are harmonic in rΩε and continuous in rΩε and their boundary values coincide in BrΩ. So
we have

fpxq ´ gpxq “

ż

BrΩε

pf ´ gq dωx
rΩε

“

ż

BFε

pf ´ gq dωx
rΩε

ď }f ´ g}
8,rΩ

ωx
rΩε

pFεq À }f}8,ΩCpxq ε.

Since ε is a positive constant which can be taken arbitrarily small, we infer that fpxq “

gpxq. So we deduce that f “ g in rΩ. That is, f extends harmonically to the whole rΩ, just
defining f “ g in E.

Next we will apply some of the results obtained in this chapter to prove an enhanced
version of Proposition 5.48 about the harmonic measure for unbounded open set with
compact boundary.

Proposition 6.36. Let Ω Ă Rd be an unbounded open set with compact boundary and let
x P Ω. Then the following holds:

(a) If CappBΩq “ 0, then ωxpBΩq “ 0.

118



6 Potential theory

(b) If CappBΩq ą 0 and d “ 2, then ωxpBΩq “ 1, that is, ωx is a probability measure.

(c) If CappBΩq ą 0 and d ě 3, then 0 ă ωxpBΩq ă 1 whenever x belongs to the unbounded
component of Ω.

Proof. (a) Suppose that CappBΩq “ 0. Recall that

ωxpBΩq “ lim
rÑ8

Hr
f pxq “: Hf pxq,

where Hr
f is the Perron solution of the Dirichlet problem in Ωr :“ ΩXBrp0q with boundary

data equal to 1 in BΩ and to 0 in Srp0q. So Hr
f pxq “ ωx

Ωr
pBΩq. For r large enough so that

BΩ Ă Brp0q, we have ωx
Ωr

pBΩq “ 0, by Theorem 6.33. Thus, Hr
f pxq “ 0 for any r large

enough and so ωxpBΩq “ 0.

(b) Suppose now that CappBΩq ą 0 and d “ 2. By (5.11), ωxpBΩq ď 1, so we only have
to show the converse inequality. Consider the function

uε “ 1 ` εUµ,

where µ is the equilibrium measure for BΩ. Since Uµpxq Ñ ´8 as x Ñ 8, for any
r large enough we have BΩ Ă Brp0q and moreover uε ă 0 on Srp0q. Notice also that
uε ď 1 ` ε CappBΩq´1 on R2. So the function

vε “
1

1 ` ε CappBΩq´1
uε

belongs to the class Lr
f , the lower Perron class in Ωr for the function fr which equals f

on BΩ and vanishes on Srp0q. Thus, for any x P Ωr,

Hr
f pxq ě vεpxq “

1

1 ` ε CappBΩq´1
p1 ` εUµpxqq.

Recalling that this holds for any r large enough, we can take the limit as r Ñ 8 to deduce
that the same estimate holds for Hf pxq. That is,

ωxpBΩq ě
1

1 ` ε CappBΩq´1
p1 ` εUµpxqq.

Letting ε Ñ 0, we infer that ωxpBΩq ě 1, which completes the proof of (b).

(c) In this case CappBΩq ą 0 and d ě 3. Denote by Ωo the unbounded component of Ω.
The same arguments as in Proposition 5.48 show that ωxpBΩq ă 1 for x P Ωo. So we only
have to check that ωxpBΩq ą 0. By Theorem 5.42 (c), if ξ P BΩ is a regular point, then

lim
ΩQxÑξ

ωxpBΩq “ lim
ΩQxÑξ

Hf pxq “ 1. (6.39)

By Theorem 6.18,
CappBΩoq “ CappR2zΩoq ě CappBΩq ą 0.

By Kellogg’s theorem, the set of irregular points is polar, and thus there exists some
regular point ξ P BΩo. Therefore, (6.39) holds for this point ξ, and thus ωxpBΩq does not
vanish identically in Ωo. Since ω

xpBΩq ě 0 for all x P Ω, by the strong maximum principle
it follows that ωxpBΩq ą 0 in the whole Ωo.
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6.8 Reduction to Wiener regular open sets

In this section we show some results which will be used later in these notes to reduce the
proof of some properties for harmonic measure in general open sets to the case when these
sets are Wiener regular. More precisely, the results in this section will be used to prove
the Jones-Wolff theorem about the dimension of harmonic measure in the plane and to
show the rectifiability of harmonic measure when it is absolutely continuous with respect
to Hausdorff measure of codimension 1 in Rd.

Proposition 6.37. Let Ω Ă Rd be open with compact boundary and let p P Ω. Let Z Ă BΩ
be the family of irregular points of Ω. For any ε ą 0, then there exists a covering of Z by
a countable or finite family of closed balls tB̄iuiPI satisfying the following properties:

(i) The balls B̄i are centered in BΩ and they have bounded overlap.

(ii) Capp
Ť

iPI 2B̄iq ď ε.

(iii) rΩ :“ Ωz
Ť

iPI B̄i is open.

(iv) BrΩ Ă

ˆ

BΩz
Ť

iPI B̄i

˙

Y
Ť

iPI BB̄i.

(v) rΩ is Wiener regular.

(vi) For any x P rΩ, if either d “ 2 with Ω Ă B1{2p0q, or d ě 3, we have

ωx
rΩ

´

ď

iPI

2B̄i

¯

ď ε sup
yPBrΩ

Epx´ yq. (6.40)

In the case when d “ 2 and Ω is unbounded, suppose that CapLpBΩq ą 0, that x
belongs to the unbounded component of Ω, and that ε is small enough. Then,

ωx
rΩ

´

ď

iPI

2B̄i

¯

ď Cε, (6.41)

with C depending on distpx, BΩq.

Proof. Let Z Ă BΩ be the subset of irregular points of BΩ. By Kellogg’s theorem CappZq “

0, and moreover Z is contained in an Fσ set Z0 such that CappZ0q “ 0. By the outer
regularity of capacity for compact sets and the fact that Z0 is an Fσ set, we deduce that
there exists an open set U containing Z0 with CappUq ď ε. Now, for each x P Z0 we
consider a closed ball B̄x contained in U , and by Besicovitch covering theorem we find a
subamily tB̄iuiPI Ă tB̄xuxPZ0 with bounded overlap which covers Z0, so that the properties
(i) and (ii) in the lemma hold.
Next we will show that the set rΩ “ Ωz

Ť

iPI B̄i is open. Indeed, we claim that

ď

iPI

B̄iz
ď

iPI

B̄i Ă BΩ. (6.42)
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This inclusion implies that

Ω z
ď

iPI

B̄i “ Ωz

«˜

ď

iPI

B̄iz
ď

iPI

B̄i

¸

Y
ď

iPI

B̄i

ff

“ Ωz
ď

iPI

B̄i “ rΩ,

and thus ensures that rΩ is open.
To show the claim (6.42) consider x P

Ť

iPI B̄iz
Ť

iPI B̄i and recall that, by construction
each ball B̄i is closed. Then x must be the limit of a sequence of points belonging to
infinitely many different balls B̄ik , ik P I. It turns out that then we have rpB̄ikq Ñ 0.
This is a straightforward consequence of the fact that any family of balls B̄j , j P J Ă I,
such that distpB̄j , xq ď 1 and 0 ă ε ď rpB̄jq ď 1 must be finite, by the finite overlap of
the family tB̄iuiPI . The fact that rpB̄ikq Ñ 0 implies that x P BΩ, since the balls B̄i,k are
centered in BΩ.

To prove (iv), write

BrΩ “ B

ˆ

Ωz
ď

iPI

B̄i

˙

Ă BΩ Y
ď

iPI

B̄i “ BΩ Y

ˆ

ď

iPI

B̄iz
ď

iPI

B̄i

˙

Y
ď

iPI

B̄i

“ BΩ Y
ď

iPI

B̄i “

ˆ

BΩz
ď

iPI

B̄i

˙

Y
ď

iPI

B̄i.

On the other hand, by construction the interior of each ball B̄i lies in the exterior of rΩ,
and thus

BrΩ “ BrΩzextprΩq Ă

„ˆ

BΩz
ď

iPI

B̄i

˙

Y
ď

iPI

B̄i

ȷ

zextprΩq Ă

ˆ

BΩz
ď

iPI

B̄i

˙

Y
ď

iPI

BB̄i,

which proves (iv).
Next we check that rΩ is Wiener regular. That is, all the points x P BrΩ are Wiener

regular for rΩ. We have to show that

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzrΩq

CappB̄pξ, 2´kqq
“ 8

for all x P BrΩ. By (iv) we know that either x P
`

BΩz
Ť

iPI B̄i

˘

or x P BB̄i for some i P I.
In the latter case we have

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzrΩq

CappB̄pξ, 2´kqq
ě

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kq X B̄iq

CappB̄pξ, 2´kqq
“ 8,

since the complement of any ball B̄i is Wiener regular. If x P BΩz
Ť

iPB̄i
B̄i, then we know

that x is Wiener regular for Ω, because Z Ă
Ť

iPI B̄i. Thus, using just that rΩc Ą Ωc, we
obtain

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzrΩq

CappB̄pξ, 2´kqq
ě

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzΩq

CappB̄pξ, 2´kqq
“ 8.
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So the proof that rΩ is Wiener regular is concluded.
The arguments to prove (vi) are quite similar to the ones for Theorem 6.33. For any

d ě 2 we consider any finite subfamily J Ă I of the closed balls B̄i, and we let E “
Ť

iPJ B̄i, so that E is compact and CappEq ď ε, by (ii). Since E consists of a union
of finitely many closed balls, it follows either by Wiener’s criterion or by the exterior
ball criterion in Remark 5.38 that ΩE is Wiener regular. Then, by Lemma 6.26, if µE
stands for the equilibrium measure for E, the potential UµE is continuous in Rd and
UµE “ pCappEqq´1 ě ε´1 in E.

Suppose first that d ě 3 or d “ 2 with Ω Ă B1{2p0q. Consider the function fpxq “

CappEqUµE pxq, and notice that it is superharmonic and continuous in Rd, and it equals
1 on E. Also, it is positive in Ω since Ω Ă B1{2p0q in the planar case. So we have

ωx
rΩ

pEq ď

ż

f dωx
rΩ
. (6.43)

By definition, letting g “ f |
BrΩ

, the last integral above equals Hgpxq. Since f belongs to

the upper Perron class for g in rΩ, we have Hgpxq ď fpxq. Thus,

ωx
rΩ

pEq ď fpxq “ CappEqUµE pxq ď εUµE pxq ď ε sup
yPE

Epx´ yq, (6.44)

using that µ is a probability measure supported on E for the last inequality. Since the
estimate above holds for any finite subfamily J Ă I, (6.40) holds.
In the case when d “ 2 and Ω is unbounded, we can assume that CappBΩq ą 0. Then

consider the function
gpxq “ UµE pxq ´ UµBΩ

pxq,

where µBΩ is the equilibrium measure for BΩ. Notice that g is superharmonic in Ω and

gpxq ě
1

CappEq
´

1

CappBΩq
ě

1

ε
´

1

CappBΩq
for x P E.

Then for ε small enough, gpxq ě 1
2ε ą 0 on E, and since g vanishes at 8, by the maximum

principle g is positive in the unbounded component of Ω. Thus, for x in this component,

ωx
rΩ

pEq ď 2ε gpxq “ 2εpUµE pxq ´ UµBΩ
pxqq

“
ε

π

ż

log
diamBΩ ` distpx, BΩq

|x´ y|
dµEpyq ´

ε

π

ż

log
diamBΩ ` distpx, BΩq

|x´ y|
dµΩpyq

ď
ε

π

ż

log
diamBΩ ` distpx, BΩq

|x´ y|
dµEpyq ď

ε

π
log

diamBΩ ` distpx, BΩq

distpx,Eq
,

where in the before to last inequality we took into account that log diamBΩ`distpx,BΩq

|x´y|
is

positive in BΩ. For ε small enough, distpx,Eq ě 1
2distpx, BΩq, and then (6.41) follows.
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Lemma 6.38. Let Ω Ă Rd be open with compact boundary and let p P Ω. For any ε ą 0,
denote by rΩε the Wiener regular set rΩ constructed in Proposition 6.37. In the case d “ 2
suppose that CapLpBΩq ą 0. Then, for any Borel set A Ă BΩ,

lim
εÑ0

ωp
rΩε

pAq “ ωp
ΩpAq. (6.45)

Proof. In the case d “ 2 we can assume that BΩ Ă B1{2p0q by a suitable dilation. Let
A Ă BΩ be a Borel set. Then, by Lemma 5.32,

ωp
rΩε

pAq “ ωp
rΩε

pAX BΩ X BrΩεq ď ωp
ΩpAX BΩ X BrΩεq ď ωp

ΩpAq. (6.46)

To estimate ωp
ΩpAq in terms of ωp

rΩε
pAq, observe first that

ωp
ΩpBΩq ď ωp

rΩε
pBrΩεq. (6.47)

Indeed, either if d “ 2 or Ω is bounded, then both terms above equal 1, and in the case
when d “ 3 and Ω is unbounded observe that the function

upxq “

#

ωx
rΩε

pBrΩεq if x P rΩε,

1 if x P RdzrΩε,

is continuous in Rd (because rΩε is Wiener regular), it is superharmonic in Rd, and it tends
to 0 at 8. Then, from the definition of harmonic measure in unbounded domains with
compact boundary, it follows easily that ωx

ΩpBΩq ď upxq for all x P Ω, which gives (6.47).
Applying (6.46) to BΩzA, using (6.47) and Lemma (5.47), we get

ωp
ΩpAq “ ωp

ΩpBΩq ´ ωp
ΩpBΩzAq ď ωp

ΩpBΩq ´ ωp
ΩpBΩ X BrΩεzAq

ď ωp
rΩε

pBrΩεq ´ ωp
rΩε

pBΩ X BrΩεzAq

“ ωp
rΩε

pBrΩεzBΩq ` ωp
rΩε

pBrΩε X BΩq ´ ωp
rΩε

pBrΩε X BΩzAq

“ ωp
rΩε

pBrΩεzBΩq ` ωp
rΩε

pBrΩε X BΩ XAq

“ ωp
rΩε

pBrΩεzBΩq ` ωp
rΩε

pAq.

Hence,
|ωp

rΩε
pAq ´ ωp

ΩpAq| ď ωp
rΩε

pBrΩεzBΩq. (6.48)

Since BrΩε is contained in the union of the balls Bi, i P I, in Proposition 6.37, by the
property (vi) in the proposition ωp

rΩε
pBrΩεzBΩq tends to 0 as ε Ñ 0.

Notice that, by (6.48), the convergence in (6.45) is uniform with respect to the set
A Ă BΩ.
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7 Harmonic measure and Green function in
Wiener regular open sets

In this section we will assume that Ω is an open Wiener regular set.

7.1 The Green function in terms of harmonic measure in
bounded open sets

For a bounded open Wiener regular set Ω Ă Rd, we may write the Green function in terms
of harmonic measure. Let us see how.
Given x P Ω, define the harmonic extension

vxpyq :“ ´

ż

BΩ
Expzq dωypzq for y P Ω, (7.1)

where Ex is the fundamental solution of the minus Laplacian with pole at x. Note that
Ex is continuous in z P BΩ and Ω is Wiener regular, so vx P CpΩq and its boundary values
are opposite to those of the fundamental solution. Thus,

Gxpyq “

#

Expyq ` vxpyq for y P Ωztxu,

0 otherwise,
(7.2)

is continuous away from the pole, and harmonic in RdzpBΩ Y txuq.
Thus, in a sense G is the continuous solution to the Dirichlet problem

#

´∆Gx “ δx in Ω,

Gx “ 0 on BΩ.

Lemma 7.1. Let Ω Ă Rd be a Wiener regular bounded open set. The Green function for
Ω is non-negative in Ω, and positive in the component of Ω that contains x. Further, it is
subharmonic in Rdztxu.

Proof. To prove the first statement, notice that Gx ” 0 in any component V of Ω which
does not contain x, by the maximum principle, since Gx is harmonic in V and vanishes
continuously in BV . If Vx is the component of Ω that contains x, we consider any ε ą 0
small enough such that B̄2εpxq Ă Vx, and we set Vx,ε “ VxzB̄εpxq. For ε small enough,
Gx ą 0 in BB̄εpxq, and then by the maximum principle, it follows that Gx ą 0 in Vx,ε. So
Gx ą 0 in Vx.
Regarding the second statement, using the maximum principle for harmonic functions,

one can check that the Green function satisfies the condition in Lemma 5.8, implying the
subharmonicity of the Green function (7.2) away from the pole.
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Here there is a small trouble. We have defined the Green function in two different
ways, solving the Dirichlet problem in the Sobolev sense and in the continuous sense.
Fortunately, both definitions coincide in Wiener regular open sets:

Lemma 7.2. Let Ω Ă Rd be a Wiener regular bounded open set. Let vx and Gx be defined
as in (7.1) and (7.2), and let ψx be a bump function satisfying χB2tpxqc ď ψx ď χBtpxqc for

t ă 1
3distpx, BΩq. Then vx P H1pΩq, and ψxGx P H1

0 pΩq. So Gx coincides with the other
Green function defined in Section 3.2. In particular the Green function is symmetric and
Gx P W 1,ppΩq for every p ă d

d´1 .

Proof. First we will check that Gx P H1pΩzB3tpxqq. Since Ω is bounded, it is enough to
check that }Gx}H1pBXΩq ă `8 for every ball B such that 2BXB2tpxq “ H. To show this
fact we will use Caccioppoli inequality, but in order to apply it, we need to know a priori
the finiteness of the L2 norm of the gradient. To avoid a circular argument, we need to
define

uεpyq :“ maxtGxpyq ´ ε, 0u for y P B2tpxqc. (7.3)

Let us check the properties of uε. First, since Gx P C8pΩzB2tpxqq, we can infer that
uε P H1p2Bq (see [EG15, Theorem 4.4]). On the other hand, since Gx is subharmonic
away from the pole (see Lemma 5.7), also uε is subharmonic. Moreover, it is non-negative.
Finally, we can apply the Caccioppoli inequality and the maximum principle to get

ż

B
|∇uε|2 À rpBq´2

ż

2B
|uε|2 ď rpBq´2

ż

2B
pGxq2 À rpBqd´2 max

BB2tpxq
pGxq2,

which is independent of ε.
By the monotone convergence theorem, we get

ż

BXΩ
|∇Gx|2 “ lim

εÑ0

ż

B
|∇uε|2 À rpBqd´2 max

BB2tpxq
pGxq2 ă `8,

i.e.,
Gx P H1pΩzB3tpxqq,

and thus vx “ Gx ´ Ex P H1pΩzB3tpxqq as well. Since it is C8 in a neighborhood of the
pole, we get vx P H1pΩq.
It remains to check ψxGx P H1

0 pΩq. For every y P Ω define uεpyq :“ maxtψxpyqGxpyq ´

ε, 0u. Then

lim
εÑ0

uεpyq “ ψxpyqGxpyq, and lim
εÑ0

∇uεpyq “ ∇pψxGxqpyq.

Moreover, by the triangle inequality

}uε ´ ψxGx}H1pΩq ď }uε}H1pΩq ` }ψxGx}H1pΩq ď 2}ψxGx}H1pΩq.

Thus, by the dominated convergence theorem, we get

}uε ´ ψxGx}H1
εÑ0
ÝÝÝÑ 0.
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7 Harmonic measure and Green function in Wiener regular open sets

Note that uε is compactly supported in ΩzBtpxq, and it is Lipschitz. Thus, we have
shown the existence of Lipschitz functions (not C8 in general) with compact support
converging to ψxGx in the Sobolev norm. Proving that this implies that ψxGx P H1

0 pΩq

is an exercise left for the reader.
Now, vx is the harmonic extension of a continuous function, and hence weakly harmonic

by Theorem 2.3 and integration by parts. Moreover,

vx ` ψxEx “ vxp1 ´ ψxq ` ψxGx P H1
0 pΩq.

Thus it is the unique weak solution to (3.7) in the sense of (3.3), see Corollary 3.4. That
is, both definitions (3.7) and (7.1) of vx coincide. Therefore, both definitions of Green
function coincide as well, and Lemmas 3.5 and 3.7 apply.

Remark 7.3. In fact, when a Sobolev function vanishes continuously in the boundary, its
gradient can be extended by zero in the complement of the open set, the proof is similar to
[EG15, Theorem 4.4]. Thus, we have shown that Gx P H1pRdzBεpxqq, with ∇Gxpyq ” 0
for y P Ωc.

For x P RdzΩ and y P Ω, we will also set

Gxpyq “ 0. (7.4)

This choice, together with Lemmas 3.7 and 7.2 implies that

Gxpyq “ Gypxq for all px, yq P Rd ˆ RdzpΩc ˆ Ωcq with x ‰ y. (7.5)

Note that the equation (7.2) is still valid for x P RdzΩ and y P Ω. The case when x P BΩ
and y P Ω is more delicate and the identity (7.2) may fail. However, we have the following
partial result:

Lemma 7.4. Let Ω Ă Rd be bounded and Wiener regular and let y P Ω. For m-almost all
x P Ωc we have

Expyq ´

ż

BΩ
Expzq dωypzq “ 0. (7.6)

Clearly, in the particular case where mpBΩq “ 0, this result is a consequence of the
aforementioned fact that (7.2) also holds for all x P RdzΩ, y P Ω, with Gxpyq “ 0.

Proof. Let A Ă Ωc be a compact set with mpAq ą 0. Observe that the potential UA :“
UχAm “ E ˚χA is continuous, bounded in Rd, and harmonic in Ac, see Remark 6.6. Then,
by Fubini we have for all y P Ω,

ż

A

ˆ

Expyq ´

ż

BΩ
Expzq dωypzq

˙

dmpxq “ UApyq ´

ż

BΩ

ż

A
Expzq dmpxq dωypzq

“ UApyq ´

ż

BΩ
UApzq dωypzq “ 0,

using that UA is harmonic in Ω Ă Ac and bounded on BΩ for the last identity. Since the
compact set A Ă Ωc is arbitrary, the lemma follows.
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Remark 7.5. As a corollary of the preceding lemma we deduce that

Gxpyq “ Expyq ´

ż

BΩ
Expzq dωypzq for m-a.e. x P Rd.

Lemma 7.6. For all x P Ω and all φ P C8
c pRdq, we have

ż

φdωx ´ φpxq “

ż

Ω
∆φGx dm “ ´

ż

Ω
∇φ ¨ ∇Gx dm.

Proof. The first identity follows from Lemma 3.7 and (7.4), the preceding remark, and
Fubini. Indeed,

ż

Ω
∆φpyqGxpyq dy “

ż

Rd

∆φpyqGypxq dy “

ż

∆φpyq

ˆ

Eypxq ´

ż

BΩ
Eypzq dωxpzq

˙

dy

“ p∆φ ˚ Eqpxq ´

ż

BΩ
p∆φ ˚ Eqpzq dωxpzq

“ ´φpxq `

ż

BΩ
φpzq dωxpzq.

The last identity in the lemma follows integrating by parts and a density argument if
φ P C8

c pΩq. Thus we can reduce to the case x R suppφ. Replacing Gx by uε as in (7.3),
we get

ż

∇ ¨ puε∇φq “ 0

by the divergence theorem. Thus, the last identity follows by letting ε Ñ 0, since

ˇ

ˇ

ˇ

ˇ

ż

∇ ¨ rpGx ´ uεq∇φs dm

ˇ

ˇ

ˇ

ˇ

ď

ż

tyPΩ:Gxpyqďεu

|∇Gx ¨ ∇φ| dm` ε

ż

Ω
|∆φ| dm

εÑ0
ÝÝÝÑ 0.

Notice that, by the preceding lemma, in the sense of distributions, that is in the dual
space D1pRdq (here, as in the literature in functional analysis, D stands for C8 functions
with compact support, equipped with a certain topology, see [Rud91, Chapter 6]), we have

∆Gx “ ωx ´ δx for all x P Ω.

For smooth domains with smooth Green function, we have the following:

Proposition 7.7. Let Ω Ă Rd be a bounded C1 domain, x P Ω and suppose that Gx P

C1pΩzBtpxqq for some t ą 0. Then

ωx “ ´pBνG
xqσ,

where ν is the unit outer normal to BΩ and σ is the surface measure on BΩ.
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Proof. It suffices to show that for any φ P D “ C8
c pRdq it holds

ż

BΩ
φdωxpyq “ ´

ż

BΩ
φpyq BνG

xpyq dσpyq.

We may assume that φ vanishes in a neighborhood of x by modifying suitably φ far away
from BΩ, since the domain of integration in both integrals above is BΩ. So consider r ą 0
such that B2rpxq Ă Ω and suppφ Ă RdzB2rpxq. Denote Ωr “ ΩzB̄rpxq. Using that Gx

is harmonic in Ωr and that φ vanishes in B2rpxq, by Lemma 7.6 and Green’s formula we
have

ż

φdωxpyq “

ż

Ω
∆φpyqGxpyq dy “

ż

Ωr

∆φpyqGxpyq dy

“ ´

ż

BΩr

φpyq BνG
xpyq dσpyq “ ´

ż

BΩ
φpyq BνG

xpyq dσpyq.

Lemma 7.8. Let B be a ball centered in BΩ and let x P Ωz2B. Then,

ωxpBq À rpBqd´2 ´

ż

2B
Gxpyq dy.

Proof. Let φ be a bump function such that χB ď φ ď χ2B with }D2φ} À 1
rpBq2

. By

Lemma 7.6, we have

ωxpBq ď

ż

φdωx “

ż

∆φpyqGxpyq dy À
1

rpBq2

ż

2B
Gxpyq dy “ rpBqd´2 ´

ż

2B
Gxpyq dy.

As we shall see in further chapters, when Ω is an NTA or CDC uniform domain, for x
and B as in the preceding lemma, we have

ωxpBq « rpBqd´2GxpXBq,

where XB is an interior corkscrew point for B. One can view the result in the preceding
lemma as a weak version of the estimate ωxpBq À rpBqd´2GxpXBq. In the next sections
we will obtain some estimates in the converse direction.

7.2 The Green function in unbounded open sets with compact
boundary

Let Ω Ă Rd be a Wiener regular unbounded open set with compact1 boundary. In the
case d ě 3, we defined the Green function for Ω in the same we did for bounded open sets.

1We assume compact sets to be non-empty.
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That is, given x P Ω, we consider the harmonic extension

vxpyq :“ ´

ż

BΩ
Expzq dωypzq for y P Ω, (7.7)

Then we define the Green function with pole at x as follows:

Gxpyq “

#

Expyq ` vxpyq for y P Ωztxu,

0 otherwise.
(7.8)

Notice that Gx is continuous away from the pole, harmonic in RdzBΩ, and Gxpyq Ñ 0 as
y Ñ 8.

In the case d “ 2 we cannot define Gx as above because otherwise this will have a pole
at 8, which is not convenient. Instead we want Gx to be bounded at 8. If Ω is not
dense in Rd, we can take a point ξ P R2zΩ and we can define Gx as above, replacing Ex

in (7.7) and (7.8) by Ex ´ Eξ. Notice that Ex ´ Eξ has a logarithmic singularity (i.e., a
pole) at x, it is continuous in BΩ, and it is bounded at 8. Then it easily follows that the
Green function Gx defined in this way has a pole at x, it is bounded at 8, and vanishes
continuously on BΩ.
For an arbitrary Wiener regular unbounded open set with compact boundary in the

plane, we defineGx as in (7.7) and (7.8), replacing Ex by Ex´Uµ, where µ is the equilibrium
measure for BΩ. Again it turns out that the Green function Gx defined in this way has
a pole at x, it is bounded at 8, and vanishes continuously on BΩ. Indeed, recall that
the equilibrium potential is continuous in Rd when Ω is Wiener regular by Lemma 6.26.
Further, this can be written as follows, for y P Ω,

Gxpyq “ Expyq ´ Uµpyq ´

ż

BΩ
pEx ´ Uµq dωy

“
1

2π

ż

BΩ
log

|y ´ ξ|

|y ´ x|
dµpξq ´

1

2π

ż

BΩ

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωypzq.

(7.9)

The analog of Lemma 7.1 holds for unbounded domains with compact boundary:

Lemma 7.9. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary.
The Green function for Ω is non-negative in Ω, and positive in the component of Ω that
contains x. Further, it is subharmonic in Rdztxu. In the case d ě 3, Gx vanishes at 8,
and in the case d “ 2, it is bounded at 8

The proof is similar to the one of Lemma 7.1 and we leave this for the reader.
Next we show that the Green function Gx is “locally” in the Sobolev space H1

0 pΩq. More
precisely:

Lemma 7.10. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary
and let x P Ω. Let Gx be defined as in (7.8) in the case d ě 3 and as in (7.9) in the case
d “ 2. For 0 ă t ă 1

3distpx, BΩq, let ψx be a bump function satisfying χB2tpxqc ď ψx ď

χBtpxqc. For any r ą 0 such that BΩ Ă Brp0q, let ψr be a bump function such that
χBrpxq ď ψr ď χB2rpxq. Then ψx ψrG

x P H1
0 pΩq.
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The arguments for this lemma are similar to the ones for Lemma 7.2 and so we omit
them again.

Lemma 7.11. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary.
For r ą 0 such that BΩ Ă Brp0q, let Ωr “ Ω X Brp0q. For x P Ω and r ą |x|, let Gx

and Gx
r be the respective Green functions for Ω and Ωr with pole at x. Then Gx

r Ñ Gx as
r Ñ 8 uniformly on bounded sets.

Proof. In the the case d ě 3, for x, y P Ω with x ‰ y, we have

Gxpyq “ Expyq ´

ż

BΩ
Expzq dωy

Ωpzq.

The same identity holds for Gx
r , replacing BΩ and ωΩ by BΩr and ωΩr , respectively. Thus,

Gx
r pyq ´Gxpyq “

ż

BΩ
Expzq dωy

Ωpzq ´

ż

BΩr

Expzq dωy
Ωr

pzq

“

ˆ
ż

BΩ
Expzq dωy

Ωpzq ´

ż

BΩ
Expzq dωy

Ωr
pzq

˙

´

ż

BBrp0q

Expzq dωy
Ωr

pzq.

By Remark 5.44, the term in parentheses on the right hand side tends to 0 as r Ñ 8. On
the other hand, the second term can be bounded as follows:

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBrp0q

Expzq dωy
Ωr

pzq

ˇ

ˇ

ˇ

ˇ

ˇ

À
1

distpx, BBrp0qqd´2
ωy
Ωr

pBBrp0qq ď
1

distpx, BBrp0qqd´2
,

which also tends to 0 uniformly on bounded subsets of Ω.
In the case d “ 2, the Green function Gx for Ω can be written as in (7.9). The Green

function Gx
r for Ωr can be written in a similar fashion, for y P Ωr:

Gx
r pyq “

1

2π

ż

BΩ
log

|y ´ ξ|

|y ´ x|
dµpξq ´

1

2π

ż

BΩr

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωr
pzq. (7.10)

Here µ is the equilibrium measure for BΩ. To check the preceding identity, notice that µ
is a probability measure and we have

1

2π

ż

BΩ
log |y ´ ξ| dµpξq ´

1

2π

ż

BΩr

ż

BΩ
log |z ´ ξ| dµpξq dωy

Ωr
pzq “ 0,

because the Uµpyq “ ´ 1
2π

ş

BΩ log |y´ ξ| dµpξq is harmonic and continuous in Ωr. Then, by
(7.9) and (7.10), we get

2πpGx
r pyq ´Gxpyqq “

ż

BΩ

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωpzq ´

ż

BΩr

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωr
pzq

“

„
ż

BΩ

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωpzq ´

ż

BΩ

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωr
pzq

ȷ

´

ż

BBrp0q

ż

BΩ
log

|z ´ ξ|

|z ´ x|
dµpξq dωy

Ωr
pzq.
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By Remark 5.44 (applied with fpzq :“ Expzq ´ Uµpzq “ 1
2π

ş

BΩ log |z´ξ|

|z´x|
dµpξq), it follows

that the first term in brackets tends to 0 uniformly in bounded subsets of Ω. Using the fact
that fpzq Ñ 0 as z Ñ 8, we also get easily that that the last term tends to 0 uniformly
in bounded subsets of Ω.

Thanks to the preceding lemma, many of the results obtained in the previous section
for the Green function in Wiener regular bounded open sets can be extended to the case
of unbounded open sets with compact boundaries. First, we easily get that the Green
function is symmetric:

Lemma 7.12. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary.
For all x, y P Ω, with x ‰ y, the Green function for Ω satisfies Gxpyq “ Gypxq.

Proof. Let Ωr “ Ω XBrp0q, with r ą 0 big enough so that BΩ Ă Brp0q and x, y P Ωr. Let
Gr denote the Green function for Ωr. Then we have

Gxpyq “ lim
rÑ8

Gx
r pyq “ lim

rÑ8
Gy

rpxq “ Gypxq.

From now on, quite often we will write

Gpx, yq “ Gxpyq “ Gypxq.

Lemma 7.13. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary.
For all x P Ω and all φ P C8

c pRdq, we have

ż

φdωxpyq ´ φpxq “

ż

Ω
∆φpyqGxpyq dy “ ´

ż

Ω
∇φpyq ¨ ∇Gxpyq dy.

Proof. The first identity follows from the one derived for bounded open sets in Lemma 7.6
and from the uniform convergence of Gx

r to Gx in bounded subsets of Ω (by Lemma 7.11)
and the weak convergence of ωx

Ωr
to ωx (by Remark 5.44). The second one follows from

the first one by integration by parts.

Proposition 7.14. Let Ω Ă Rd be a domain with compact boundary BΩ “ E Y γ where
E is either compact or empty, γ is a C1 curve and E X γ “ H, and let x P Ω. If
Gx P C1pΩ Y γq, then

ωx|γ “ ´pBνG
xqσ,

where ν is the unit outer normal to γ Ă BΩ and σ is the surface measure on γ.

Proof. This follows from the preceding lemma, arguing as in Proposition 7.7.
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Lemma 7.15. Let Ω Ă Rd be a Wiener regular unbounded open set with compact boundary.
Let B be a ball centered in BΩ and let x P Ωz2B. Then,

ωxpBq À rpBqd´2 ´

ż

2B
Gxpyq dy.

Proof. This is proven in the same way as Lemma 7.8 for the case of bounded open sets.

7.3 Newtonian capacity, harmonic measure, and Green’s
function in the case d ě 3

In this whole section we assume that Ω is a Wiener regular open set with compact boundary
in Rd, with d ě 3 (Ω either bounded or unbounded).

Lemma 7.16. Let d ě 3 and Ω Ă Rd be an open Wiener regular set with compact
boundary. Let B̄ be a closed ball interesecting centered at BΩ. Then

ωxpB̄q ě cpdq
Capp14B̄zΩq

rpB̄qd´2
for all x P 1

4B̄ X Ω,

with cpdq ą 0.

Proof. We can assume that Ω is bounded. Otherwise, the estimate above follows from the
analogous estimate applied to Ωr “ Ω XBrp0q letting r Ñ 8.

Let µ 1
4
B̄zΩ be the equilibrium measure for 1

4B̄zΩ, and let µ “ Capp14B̄zΩqµ 1
4
B̄zΩ, so

that }Uµ}8 ď 1 and }µ} “ Capp14B̄zΩq. Notice that, for all x P Bc,

Uµpxq “

ż

cd
|x´ y|d´2

dµpyq ď
cd}µ}

p34rpB̄qqd´2
.

Consider the function fpxq “ Uµpxq ´
cd}µ}

p 3
4
rpB̄qqd´2 . Using that fpxq ď 0 in Bc, fpxq ď 1

in B̄, and that f is harmonic and bounded in Ω, by Corollary 5.36 and the maximum
principle we deduce that, for all x P Ω,

ωxpB̄q ě ωxpBq ě fpxq.

In particular, for x P 1
4B̄ X Ω we have

ωxpB̄q ě

ż

cd
|x´ y|d´2

dµpyq ´
cd}µ}

p34rpB̄qqd´2

ě
cd}µ}

p12rpB̄qqd´2
´

cd}µ}

p34rpB̄qqd´2
“ cd

`

2d´2 ´ p43qd´2
˘ Capp14B̄zΩq

rpB̄qd´2
,

which proves the lemma.
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Remark 7.17. In fact, a quick inspection of above proof shows that Lemma 7.16 also
holds assuming that 1

4B̄ X Ω ‰ ∅ instead of assuming that B is centered at BΩ. Notice
also that the lemma is trivially true if 1

4B̄zΩ “ ∅.

Lemma 7.18. Let d ě 3 and Ω Ă Rd be an open Wiener regular set with compact
boundary. Let B̄ be a closed ball centered at BΩ. Then, for all a ą 2,

ωxpaB̄q Á inf
zP2B̄XΩ

ωzpaB̄q rpB̄qd´2Gxpyq for all x P Ωz2B̄ and y P B̄ X Ω, (7.11)

with the implicit constant independent of a.

Proof. We can assume that Ω is bounded. Otherwise, the estimate above follows from the
one applied to Ωr “ Ω XBrp0q letting r Ñ 8.
Fix y P B̄XΩ and note that for every x P Bp2B̄qXΩ we have infzP2B̄XΩ ω

zpaB̄q ď ωxpaB̄q

and, therefore

Gxpyq ď Expyq «
1

|x´ y|d´2
ď

c

rpB̄qd´2
ď

c ωxpaB̄q

rpB̄qd´2 infzP2B̄XΩ ω
zpaB̄q

. (7.12)

Let us observe that the two non-negative functions

upxq “ c´1Gxpyq rpB̄qd´2 inf
zP2B̄XΩ

ωzpaB̄q and vpxq “ ωxpaB̄q

are harmonic, hence continuous, in ΩzB̄. Note that (7.12) says that u ď v in Bp2B̄q X Ω
and hence limΩz2B̄QzÑxpv ´ uqpzq “ pv ´ uqpxq ě 0 for every x P Bp2B̄q X Ω. On the other

hand, for a fixed y P B̄XΩ, one has that limΩQzÑxG
zpyq “ 0 for every x P BΩ. Gathering

all these we conclude that
lim inf

Ωz2B̄QzÑx
pv ´ uqpzq ě 0

for every x P BpΩz2B̄q. The lemma follows by the maximum principle.

Combining the two preceding lemmas, choosing a “ 8, we obtain:

Lemma 7.19. Let d ě 3 and Ω Ă Rd be an open Wiener regular set with compact
boundary. Let B̄ be a closed ball centered at BΩ. Then,

ωxp8B̄q Ád Capp2B̄zΩqGxpyq for all x P Ωz2B̄ and y P B̄ X Ω. (7.13)

We will show in Chapter 8 that, in the case when Ω is an NTA domain, we have
ωxp8B̄q « ωxpB̄q and Capp2B̄zΩq « CappB̄q “ rpB̄qd´2, so that we recover the estimate

ωxpB̄q Á rpB̄qd´2Gxpyq,

for y P 1
4B̄. Thus, Lemma 7.19 can be considered as a weak version of the converse

inequality to the one in Lemma 7.8.
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7.4 Logarithmic capacity, harmonic measure, and Green’s
function in the plane

Lemma 7.20. Let Ω Ă R2 be a Wiener regular open set with compact boundary and let
B̄ be a closed ball centered at BΩ. Then

ωxpB̄q Á
1

log
CapLpB̄q

CapLp14B̄zΩq

“
1

log
rpB̄q

CapLp14B̄zΩq

for all x P 1
4B̄ X Ω.

Remark the estimate in the lemma is equivalent to saying that

ωxpB̄q Á
1

1

CapW p14B̄zΩq
´

1

CapW pB̄q

for all x P 1
4B̄ X Ω.

Proof. We can assume that Ω is bounded by proving first the estimate above for Ωt “

ΩXBtp0q and then letting t Ñ 8. We denote r “ rpB̄q. Replacing Ω by 1
4r Ω if necessary,

we can assume that diampB̄q ă 1. Then, denoting E “ 1
4B̄zΩ, identity (6.14) holds.

Let µ be the optimal measure for the supremum in (6.14), so that suppµ Ă E, µpEq “

CapW pEq, and the potential Uµ “ E ˚ µ is harmonic out of E and it satisfies }Uµ}8 ď 1.
For all z P 1

4B̄ and all y P E we have |z ´ y| ď 1
2 r. Therefore,

Uµpzq “
1

2π

ż

log
1

|z ´ y|
dµpyq ě

1

2π

ż

log
2

r
dµpyq “

µpEq

2π
log

2

r
for all z P 1

4B̄.

Also, for z P Bc, we have distpz, Eq ě 3
4rpB̄q, and thus

Uµpzq ď
1

2π

ż

log
4

3r
dµpyq “

µpEq

2π
log

4

3r
for all z P Bc.

Consider now the function

f “ Uµ ´
µpEq

2π
log

4

3r
.

Observe that

fpzq ě
µpEq

2π
log

2

r
´
µpEq

2π
log

4

3r
“
µpEq

2π
log

3

2
for all z P 1

4B̄

and
fpzq ď 0 for all z P Bc.

Combining the maximum principle with Corollary 5.36, and using the fact that x P 1
4B̄XΩ

we deduce that

ωxpB̄q ě
fpxq

sup f
ě

µpEq

2π sup f
log

3

2
“ c

CapW pEq

sup f
.
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Regarding sup f , taking into account that }Uµ}8 ď 1, it is clear that

sup f ď 1 ´
1

2π
log

4

3r
µpEq “ 1 ´

1

2π
log

4

3r
CapW pEq ď 1 ´

1

2π
log

1

r
CapW pEq.

Therefore,

ωxpB̄q ě c
CapW pEq

1 ´ 1
2π log 1

r CapW pEq
“ c1 1

log
1

CapLpEq
´ log

1

r

“ c1 1

log
r

CapLpEq

.

Remark 7.21. It is easy to check that the constant 1{4 in the preceding lemma can be
replaced by any constant α P p1{4, 1{3q, with the implicit constant depending on α.

Lemma 7.22. Let Ω Ă R2 be an open Wiener regular set with compact boundary and let
B̄ be a closed ball centered at BΩ. Then, for all a ą 2,

ωxpaB̄q Á inf
zP2B̄XΩ

ωzpaB̄q ´

ż

B̄
|Gxpyq ´mB̄pGxq| dy for all x P Ωz2B̄. (7.14)

Proof. We can assume that Ω is bounded by proving first the estimate above for Ωt “

Ω XBtp0q and then letting t Ñ 8.

Let fpxq “
ωxpaB̄q

infzP2B̄XΩ ωzpaB̄q
. Then (7.14) can be written as

´

ż

B̄
|Gxpyq ´mB̄pGxq| dy ď fpxq.

Consider a continuous function φB such that χ 3
2
B̄ ď φB ď χ 7

4
B̄. For x P Ωz2B, we

write using (7.5)

2πGxpyq “ 2πGypxq “ log
1

|x´ y|
´

ż

log
1

|ξ ´ y|
dωxpξq “ g1pyq ` g2pyq,

with

g1pyq “ log
1

|x´ y|
´

ż

p1 ´ φBpξqq log
1

|ξ ´ y|
dωxpξq

and

g2pyq “ ´

ż

φBpξq log
1

|ξ ´ y|
dωxpξq,

for every fixed x. We will treat separately the local and the non-local parts:

2π ´

ż

B̄
|Gxpyq ´mB̄pGxq| dy ď ´

ż

B̄
|g1 ´mB̄g1| dy ` ´

ż

B̄
|g2 ´mB̄g2| dy “: I1 ` I2.
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First we will estimate the local term I2. To this end, let r denote the radius of B̄ and
let

rg2pyq “ ´

ż

φBpξq log
4r

|ξ ´ y|
dωxpξq,

so that rg2 “ g2 ´ CpB, rq, for a suitable constant CpB, rq. Then we have

I2 “ ´

ż

B̄
|rg2 ´mB̄rg2| dy ď 2mB̄|rg2| “ 2 ´

ż

B̄

ż

φBpξq log
4r

|ξ ´ y|
dωxpξq dy

ď 2

ż

2B̄
´

ż

B̄
log

4r

|ξ ´ y|
dy dωxpξq À

ż

2B̄
´

ż

B̄pξ,3rq

log
4r

|ξ ´ y|
dy dωxpξq,

By a change of variable, we have

´

ż

B̄pξ,3rq

log
4r

|ξ ´ y|
dy “ ´

ż

B̄p0,3q

log
4

|y|
dy “ C,

and thus

I2 À ωxp2B̄q ď ωxpaB̄q ď
ωxpaB̄q

infzP2B̄XΩ ω
zpaB̄q

“ fpxq

for any a ě 2.
To deal with the non-local term I1, we write

I1 ď ´

ż

B̄
´

ż

B̄
|g1pyq ´ g1pzq| dy dz

ď ´

ż

B̄
´

ż

B̄

ˇ

ˇ

ˇ

ˇ

log
|x´ z|

|x´ y|
´

ż

p1 ´ φBpξqq log
|ξ ´ z|

|ξ ´ y|
dωxpξq

ˇ

ˇ

ˇ

ˇ

dy dz.

Denote

Ay,zpxq “ log
|x´ z|

|x´ y|
´

ż

p1 ´ φBpξqq log
|ξ ´ z|

|ξ ´ y|
dωxpξq,

so that
I1 ď sup

y,zPB̄

|Ay,zpxq|.

To estimate Ay,zpxq (for y, z P B̄) notice that both Ay,z and f are harmonic in Ωz2B̄.
Further, since

|x´ z|

|x´ y|
«

|ξ ´ z|

|ξ ´ y|
« 1 for all x P Ωz2B̄, ξ P BΩz3

2B̄, and y, z P B̄,

we infer that
|Ay,zpxq| À 1 for all x P Ωz2B̄ and y, z P B̄.

Further, using (5.6) it is immediate to check that

lim
ΩQxÑζ

Ay,zpxq “ 0 for all ζ P BΩz2B̄ and y, z P B̄.
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On the other hand,
fpxq ě 1 for all x P Ω X aB̄

and
fpxq ě 0 for all x P Ω.

Then, by the maximum principle, it follows that

Ay,zpxq ď C fpxq for all x P Ωz2B̄ and all y, z P B̄.

Consequently,
I1 “ I1pxq ď sup

y,zPB̄

|Ay,zpxq| À fpxq.

Together with the estimate we obtained for I2, this proves the lemma.

Lemma 7.23. Let Ω Ă R2 be an open Wiener regular set with compact boundary. Let B̄
be a closed ball centered at BΩ. Then,

Gxpyq À ωxp8B̄q

ˆ

log
CapLpB̄q

CapLp14B̄zΩq

˙2

for all x P Ωz2B̄ and y P 1
5B̄ X Ω. (7.15)

Proof. We can assume that Ω is bounded by proving first the estimate above for Ωt “

Ω XBtp0q and then letting t Ñ 8.
To prove the lemma we will estimate ´

ş

1
4
B̄ G

xpzq dmpzq in terms of ´
ş

B̄

ˇ

ˇGxpzq ´

mB̄G
x
ˇ

ˇ dmpzq and then we will apply Lemmas 7.22 and 7.20.
Let B̄ “ B̄rpξq, with ξ P BΩ. For 9

10r ă s ď r, consider the open set Ωs “ Bspξq X Ω.
Then, for all x P Ωz2B̄ and y P 1

4B̄ X Ω, we have

Gxpyq “

ż

BΩs

Gxpzq dωy
Ωs

pzq “

ż

BBspξq

Gxpzq dωy
Ωs

pzq,

where ωΩs is the harmonic measure for Ωs and we took into account that Gxpzq vanishes
when z P BΩ. Notice that Ωs may not be connected, in this case the harmonic measure is
defined to be zero outside the boundary of the component containing the pole.
Remark that, for all y P 1

4B̄ X Ω there exists some function ρys : BBspξq Ñ r0,8q such
that

ωy
Ωs

|BBspξq “ ρys
H1|BBspξq

2πs
,

with }ρys}8 À 1. This follows easily from the fact that, by the maximum principle,

ωy
Ωs

pEq ď ωy
Bspξq

pEq for all E Ă BBspξq

and the explicit formula for ωy
Bspξq

, see Example 5.27. Writing

ρypzq “ ρy
|z´ξ|

pzq,
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by Fubini we have

Gxpyq “
1

0.1r

ż r

0.9r

ż

BBspξq

Gxpzq dωy
Ωs

pzq ds (7.16)

“
10

r

ż r

0.9r

ż

BBspξq

Gxpzq ρypzqdH1pzq
ds

2πs
“

ż

A0.9r,rpξq

Gxpzq dµypzq,

where µy is the measure

dµypzq “
10

2π r |z ´ ξ|
ρypzq dm|A0.9r,rpξqpzq.

Averaging (7.16) over y P 1
4B̄ and applying Fubini, we get

m 1
4
B̄G

x “ ´

ż

1
4
B̄

ż

A0.9r,rpξq

Gxpzq dµypzq dy “

ż

A0.9r,rpξq

Gxpzq dµpzq, (7.17)

where

dµpzq “ ρpzq dm|A0.9r,rpξqpzq, ρpzq “
10

2π r |z ´ ξ|
´

ż

1
4
B̄
ρypzq dy

understanding that ρypzq ” 0 when y R Ω. Notice that }ρ}8 À r´2, since }ρy}8 À 1 for
all y P 1

4B̄.
Observe now that, by Lemma 7.20 and the subsequent remark, we have

ωy
Ωs

pB0.9spξqq Á
1

log
s

CapLpB0.29spξqzΩq

for all y P B0.29spξq X Ωs.

Since 1
4B̄ Ă B0.29spξq for 9

10r ă s ď r, we infer that

ωy
Ωs

pB0.9spξqq Á
1

log
s

CapLp14B̄zΩq

«
1

log
r

CapLp14B̄zΩq

for all y P 1
4B̄ X Ωs.

Thus,
ωy
Ωs

pBBspξqq ď 1 ´ ε0,

where
ε0 “

c

log
r

CapLp14B̄zΩq

,

for some c ą 0. Thus,

}µ} “ µpA0.9r,rpξqq “ ´

ż

1
4
B̄

1

0.1r

ż r

0.9r
ωy
Ωs

pBBspξqq ds dy ď 1 ´ ε0.

Next we consider the measure

ν “
1

2

ˆ

µ`
m| 1

4
B̄

mp14B̄q

˙

,
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so that
1

2
ď νpB̄q “

1

2

`

µpB̄q ` 1
˘

ď 1 ´
ε0
2
.

From (7.17) and this estimate we infer that

m 1
4
B̄G

x “
1

2

ż

A0.9r,rpξq

Gxpzq dµpzq `
1

2
m 1

4
B̄G

x

“ νpB̄q ´

ż

B̄
Gxpzq dνpzq ď

´

1 ´
ε0
2

¯

´

ż

B̄
Gxpzq dνpzq.

Therefore,

ε0
2

´

ż

B̄
Gxpzq dνpzq ď ´

ż

B̄
Gxpzq dνpzq ´m 1

4
B̄G

x (7.18)

ď

ˇ

ˇ

ˇ

ˇ

´

ż

B̄
Gxpzq dνpzq ´mB̄G

x

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
mB̄G

x ´m 1
4
B̄G

x
ˇ

ˇ

ˇ

ď ´

ż

B̄

ˇ

ˇGxpzq ´mB̄G
x
ˇ

ˇ dνpzq ` ´

ż

1
4
B̄

ˇ

ˇGxpzq ´mB̄G
x
ˇ

ˇ dmpzq.

Recall now that νpB̄q « 1 and that

ν “
1

2

´

ρχA0.9r,rpξq `
1

mp14B̄q
χ 1

4
B̄

¯

m|B̄ “: rρm|B̄,

it is clear that }rρ}L8pB̄q À r´2. Hence,

´

ż

B̄

ˇ

ˇGxpzq ´mB̄G
x
ˇ

ˇ dνpzq À
1

r2

ż

B̄

ˇ

ˇGxpzq ´mB̄G
x
ˇ

ˇ dmpzq

À ´

ż

B̄

ˇ

ˇGxpzq ´mB̄G
x
ˇ

ˇ dmpzq.

By the definition of ν, (7.18), and the preceding estimate, we obtain

ε0
4

´

ż

1
4
B̄
Gxpzq dmpzq ď

ε0
2

´

ż

B̄
Gxpzq dνpzq À ´

ż

B̄

ˇ

ˇGxpzq ´mB̄G
x
ˇ

ˇ dmpzq,

From the preceding estimate, taking into account that Gx is subharmonic in R2ztxu and
using Lemmas 7.22 and 7.20, for all y P 1

5B̄ we get

Gxpyq À ´

ż

1
4
B̄
Gxpzq dmpzq À ε´1

0 ´

ż

B̄

ˇ

ˇGxpzq ´mB̄G
x
ˇ

ˇ dmpzq

À
ωxp8B̄q

infzP2B̄XΩ ω
zp8B̄q

log
r

CapLp14B̄zΩq
À ωxp8B̄q log

8r

CapLp2B̄zΩq
log

r

CapLp14B̄zΩq

À ωxp8B̄q

ˆ

log
r

CapLp14B̄zΩq

˙2

.
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Notice that, in the case when Ω is an NTA domain, we have ωxp8B̄q « ωxpB̄q and
CapLp14B̄zΩq « CapLpB̄q “ rpB̄q, so that we recover the estimate

ωxpB̄q Á Gxpyq,

for y P 1
5B̄, as in the case d ě 3.

7.5 Capacity density condition

7.5.1 The CDC and Wiener regularity

Let Ω Ĺ Rd be an open set in Rd and let ξ P BΩ and r0 ą 0. We say that Ω satisfies the
pξ, r0q-local capacity density condition if there exists some constant c ą 0 such that, for
any r P p0, r0q,

CappB̄rpξqzΩq ě c rd´2 in the case d ě 3,

and
CapLpB̄rpξqzΩq ě c r in the case d “ 2.

We say that Ω satisfies the capacity density condition (CDC) if it satisfies the pξ, r0q-local
capacity density condition for all ξ P BΩ and all r0 P p0,diampBΩqq and moreover Ωc

contains more than one point. For example, a Jordan domain in the plane satisfies the
CDC, or more generally, any planar bounded domain whose boundary consists of finitely
many curves (we do not allow degenerate curves consisting of a single point).
The CDC can be understood as a strong form of Wiener regularity. In fact, we have:

Proposition 7.24. Let Ω Ă Rd be an open set with compact boundary and let ξ P BΩ and
r0 ą 0. If the pξ, r0q-local capacity density holds for Ω, then ξ is a regular point for the
Dirichlet problem.

As a corollary, if Ω satisfies the CDC, then it is Wiener regular.

Proof. This is an easy consequence of the Wiener criterion, more precisely of the impli-
cation (b) ñ (a) in Theorem 6.23. Indeed, we just have to check that the pξ, r0q-local
capacity density condition implies that

8
ÿ

k“1

CappĀpξ, 2´k´1, 2´kqzΩq

CappB̄pξ, 2´kqq
“ 8.

As shown in Remark 6.24, in the case d ě 3 this is equivalent to the fact that

8
ÿ

k“1

CappB̄2´kpξqzΩq

CappB̄2´kpξqq
“ 8.

Now we just have to observe that pξ, r0q-local capacity density condition is equivalent to
the fact that CappB̄rpξqzΩq ě c CappB̄rpξqq for 0 ă r ă r0, which clearly implies the
above estimate.
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The case d “ 2 is a little trickier. Notice first that, for r P p0, 1q the estimate
CapLpB̄rpξqzΩq ě c r implies that

CapW pB̄rpξqzΩq

CapW pB̄rpξqq
“

log 1
CapLpB̄rpξqq

log 1
CapLpB̄rpξqzΩq

ě
log 1

r

log 1
c r

“
log 1

r

log 1
r ` C

ě
1

2
,

assuming r small enough in the last inequality. Observe now that CapW pB̄r4pξqq “
1
4 CapW pB̄rpξqq. Then, by the subadditivity of CapW we deduce

1

2
ď

CapW ppB̄rpξqzΩqzBr4pξqq ` CapW pB̄r4pξqq

CapW pB̄rpξqq
“

CapW pĀr4,rpξqzΩq

CapW pB̄rpξqq
`

1

4
.

Hence
CapW pĀr4,rpξqzΩq

CapW pB̄rpξqq
ě

1

4
. (7.19)

Now we can estimate the Wiener’s series from below as follows, considering j0 large
enough,

ÿ

jěj0

ÿ

4jďkď4j`1´1

CapW pĀpξ, 2´k´1, 2´kqzΩq

CapW pB̄pξ, 2´kqq

ě
ÿ

jěj0

ÿ

4jďkď4j`1´1

CapW pĀpξ, 2´k´1, 2´kqzΩq

CapW pB̄pξ, 2´4j qq
ě

ÿ

jěj0

CapW pĀpξ, 2´4j`1
, 2´4j qzΩq

CapW pB̄pξ, 2´4j qq
.

By (7.19), each of the summands on the right hand side is at least 1{4 and so the sum is
infinite.

Remark 7.25. By Lemmas 7.16, 7.20, 7.19, and 7.23, if Ω satisfies the CDC, then it holds

ωxpB̄q Á 1 for all x P 1
4B̄ X Ω, if rpB̄q ă diampBΩq (7.20)

and

Gxpyq À
ωxp8B̄q

rpB̄qd´2
for all x P Ωz2B̄ and y P 1

5B̄ X Ω, if rpB̄q ă diampBΩq, (7.21)

with constants depending on the CDC.

Remark 7.26. It is immediate to check that if Ω and Ω1 are open sets in Rd satisfying
the CDC, then Ω X Ω1 also satisfies the CDC.

Exercise 7.5.1. Let Ω Ă Rd be an open set with compact boundary and let ξ P BΩ.
Prove that if there exist c ą 0 and a sequence of radii rk Ñ 0 such that

CappB̄rkpξqzΩq ě c rd´2
k in the case d ě 3,

and
CapLpB̄rkpξqzΩq ě c rk in the case d “ 2,

then ξ is a regular point for the Dirichlet problem.
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7.5.2 Hölder continuity at the boundary

Lemma 7.27. Let Ω Ă Rd be an open set, let ξ P BΩ, and let r ą 0. Suppose that
Ω X Brpξq is Wiener regular, and Ω satisfies the pξ, rq-local capacity density condition
with constant c. Let u be a nonnegative function which is continuous in Brpξq X Ω and
harmonic in Brpξq X Ω, and vanishes on Brpξq X BΩ. Then there is α ą 0 depending on c
(but not on r) such that

upxq À

ˆ

|x´ ξ|

r

˙α

sup
BrpξqXΩ

u for all x P Ω XBrpξq. (7.22)

Proof. For very k ě 0, let Bk “ B6´krpξq and Ωk “ Ω X Bk. Since u vanishes identically
on BΩ XBk, for all x P BBk`1 X Ω we have

upxq “

ż

BΩk

upyq dωx
Ωk

pyq “

ż

BBkXΩ
upyq dωx

Ωk
pyq ď ωx

Ωk
pBBk X Ωq sup

BBkXΩ
u.

By the pξ, r0q-local capacity density condition (which also holds for Ωk) and Lemmas 7.16
and 7.20,

ωx
Ωk

pBBk X Ωq “ 1 ´ ωx
Ωk

pBΩ X B̄kq ď 1 ´ c0

for some c0 P p0, 1q. Thus,

sup
BBk`1XΩ

u ď p1 ´ c0q sup
BBkXΩ

u.

By the maximum principle and iterating, we deduce that

sup
BkXΩ

u “ sup
BBkXΩ

u ď p1 ´ c0qk sup
BB0XΩ

u.

This readily proves the lemma.

As an easy corollary we get a result about Hölder regularity:

Lemma 7.28. Let Ω Ă Rd be an open set and let B be a ball with radius r0 centered
in BΩ. Suppose that Ω satisfies the pξ, r0q-local CDC for every ξ P BΩ X 2B. Let u be a
nonnegative function which is continuous in 2B X Ω and harmonic in 2BXΩ, and vanishes
continuously on 2B X BΩ. Then there is α ą 0 such that

|upxq ´ upyq| À

ˆ

|x´ y|

r0

˙α

sup
2BXΩ

u for all x, y P B X Ω. (7.23)

Proof. Remark that every ξ P Bp2Bq X Ω satisfies the local CDC with respect to 2B X Ω,
so that in particular, by replacing Ω by Ω X 2B if necessary, we can assume that Ω is a
bounded CDC open set, that is, the pξ, r0q-local CDC holds for all ξ P BΩ.
To prove the lemma, clearly we may assume that |x ´ y| ď r{4. Denote as usual

dΩpzq :“ distpz, BΩq, and suppose first that

|x´ y| ď
1

2
maxpdΩpxq, dΩpyqq “:

1

2
dΩpx, yq.
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Assume that dΩpyq ď dΩpxq “ dΩpx, yq, say, and consider the ball B1 “ Bpx, dΩpx, yqq.
Notice that B1 Ă Ω X 2B and x, y P 1

2B
1. So by standard arguments it follows that, for

any α P p0, 1s,

|upxq ´ upyq| ď }∇u}8, 1
2
B1 |x´ y| À }u}8,B1

|x´ y|

rpB1q
ď }u}8,2B

|x´ y|

dΩpx, yq

ď }u}8,2B

ˆ

|x´ y|

dΩpx, yq

˙α

.

(7.24)

Notice also that the same estimate holds trivially in case that |x´ y| ą 1
2 dΩpx, yq.

On the other hand, by Lemma 7.27, there exists some α P p0, 1q such that

upxq À

ˆ

dΩpxq

r0

˙α

}u}8,2B,

whenever dΩpxq ă r0{2. The same inequality holds trivially if dΩpxq ě r0{2. Replacing x
by y, we obtain the analogous estimate for y. Thus,

|upxq ´ upyq| ď upxq ` upyq À

ˆ

dΩpxq

r0

˙α

}u}8,2B `

ˆ

dΩpyq

r0

˙α

}u}8,2B

À

ˆ

dΩpx, yq

r0

˙α

}u}8,2B.

(7.25)

Taking the geometric mean of (7.24) and (7.25), the lemma follows (with α{2 instead of
α).

As another immediate consequence of Lemma 7.27 we get the following:

Lemma 7.29. Let Ω Ă Rd be a Wiener regular open set with compact boundary, let
ξ P BΩ, and let r0 ą 0. Suppose that Ω satisfies the pξ, r0q-local capacity density condition.
Then there is α ą 0 such that, for all r P p0, r0q,

ωxpBpξ, rqcq À

ˆ

|x´ ξ|

r

˙α

for x P Ω XBrpξq. (7.26)

7.5.3 Improving property of the CDC

As shown in Lemma 6.20, if a set E Ă Rd satisfies CappEq ą 0, then Hd´2
8 pEq ą 0.

Further, this estimate is sharp in the sense that one cannot infer that Hs
8pEq ą 0 for

any s ą d ´ 2. In fact, it is not difficult to construct a compact set E Ă Rd such that
CappEq ą 0 with dimHpEq “ d´ 2, see Exercise 7.5.2 below. Similarly, if Ω Ă Rd satisfies
the CDC, then it easily follows from Lemma 6.20 that

Hd´2
8 pΩc X B̄rpξqq Á rd´2 for all ξ P BΩ, r ą 0.

From the previous discussion, it would appear that the exponent d ´ 2 in this estimate
might be sharp. Surprisingly, this can be improved, as the following theorem shows.
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7 Harmonic measure and Green function in Wiener regular open sets

Theorem 7.30. Let r0 ą 0 and let Ω Ă Rd be an open set satisfying the pξ, r0q-local
capacity density condition for every ξ P BΩ. Then there exists some s ą d ´ 2 and some
c ą 0 such that

Hs
8pΩc X B̄rpξqq ě c rs for all ξ P BΩ, 0 ă r ď r0.

The constant c ą 0 and the precise s ą d´2 depend only on d and on the constant involved
in the local CDC.

Proof. Suppose first that d ě 3. Denote E “ Ωc. Observe first that the fact that Ω
satisfies the pξ, r0q-local CDC for every ξ P BΩ is equivalent to saying that

CappE X B̄rpxqq Á rd´2 for all x P E, 0 ă r ď r0.

Fix now a point ξ P BΩ and 0 ă R ď r0, and let us see that Hs
8pE X B̄Rpξqq Á Rs for

some s ą d´ 2, with both s and the implicit constant depending only on the local CDC.
To this end, define E1 “ EX B̄R{4pξq. Note that RdzE1 may not satisfy the CDC. To deal
with this issue, we consider the sets Em defined inductively, for m ě 2, by

Em “ E X
ď

xPEm´1

B̄2´mRpxq.

It is immediate to check that the closure F of
Ť

mě1Em is contained in BRpξq X E and
satisfies

CappF X B̄rpxqq Á rd´2 for all x P F , 0 ă r ď R.

Equivalently, the open set RdzF satisfies the CDC.
Let µF be the equilibrium measure of F , and denote ηs “ RsµF . We intend to show

that there exists some s ą d´ 2 such that

ηspBrpxqq À rs for all x P F , 0 ă r ď R. (7.27)

By Frostman’s lemma, clearly this implies that

Hs
8pE X B̄Rpξqq ě Hs

8pF q Á }ηs} “ Rs,

as wished. To prove (7.27), let η “ ηd´2 “ Rd´2 µF , and notice that the CDC satisfied by
F c ensures that F c is Wiener regular, so that by Lemma 6.26,

Uηpxq “ Rd´2 1

CappF q
for all x P F .

So the function

fpxq “ Rd´2 1

CappF q
´ Uηpxq

is continuous in Rd, harmonic in F c, it vanishes in F , and it is non-negative in F c, by the
properties of the equilibrium potential. Further }f}8 ď Rd´2 1

CappF q
À 1. So by Lemma

7.28, f is Hölder continuous and, for some α ą 0 depending on the CDC it holds

|Uηpxq ´ Uηpyq| “ |fpxq ´ fpyq| À

ˆ

|x´ y|

R

˙α

for all x, y P B̄2Rpξq. (7.28)
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7 Harmonic measure and Green function in Wiener regular open sets

Fix x P F and 0 ă r ď R, and let φr be a bump function such that χBrpxq ď φr ď χB2rpxq,
with }∇φr}8 À 1{r. Since ´∆Uη “ η in the sense of distributions, we have

ηpBrpxqq ď

ż

φr dη “ ´

ż

Uη ∆φr dy “ ´

ż

pUηpyq ´ Uηpxqq∆φrpyq dy,

where, in the last identity, we used the fact that
ş

∆φr dy “ 0. Plugging the estimate
(7.28), we deduce

ηpBrpxqq À
1

r2

ż

B2rpxq

|Uηpyq ´ Uηpxq| dy À rd´2
´ r

R

¯α
,

or equivalently,
ηd´2`αpBrpxqq À rd´2`α.

So (7.27) holds with s “ d´ 2 ` α.
In the case d “ 2, by a suitable dilation, we may assume that R “ 1{4, say. Then the

arguments above work in a similar fashion, so that at the end we deduce that ηαpBrpxqq À

rα.

Corollary 7.31. Let r0 ą 0 and let Ω Ă Rd be an open set with compact boundary. Then,
Ω satisfies the pξ, r0q-local capacity density condition for every ξ P BΩ if and only if there
exists some s ą d´ 2 and some c ą 0 such that

Hs
8pΩc X B̄rpξqq ě c rs for all ξ P BΩ, 0 ă r ď r0.

Proof. The fact that local CDC condition implies the s-lower content regularity above is
shown in Theorem 7.30. The converse statement is an immediate consequence of the lower
bound of CappΩcXB̄rpξqq in terms of Hs

8pΩcXB̄rpξqq, for s ą d´2, deduced from Lemma
6.20.

Exercise 7.5.2. Construct a compact set E Ă Rd such that CappEq ą 0 with dimHpEq “

d´ 2, see [Tol14, Section 4.7], for a possible construction scheme.

7.6 Harmonic measure and Green’s function with pole at infinity

In this section we will study the connection between harmonic measure with pole at
infinity and Green’s function with pole at infinity for unbounded open sets with compact
boundary. We will study first the case of the plane, which is simpler, and later the higher
dimensional case.
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7 Harmonic measure and Green function in Wiener regular open sets

7.6.1 The case of the plane

Recall that for an unbounded open set with compact boundary the notion of harmonic
measure with pole at 8 was introduced in Definition 5.53. From that definition, it follows
that for any function f P CpBΩq,

ż

BΩ
fpξqdω8pξq “ lim

zÑ8

ż

BΩ
fpξqdωzpξq. (7.29)

Analogously, for any Borel set E Ă BΩ, we have ωzpEq Ñ ω8pEq as z Ñ 8, see Exercise
5.5.1.
In the context above, denote by G : ΩˆΩ Ñ R the Green function for Ω. For any fixed

point y P Ω, the function Gpy, ¨q is harmonic at 8 (i.e., it has a removable singularity at
8), by Corollary 5.52. Thus we can define

G8pyq “ Gpy,8q “ lim
zÑ8

Gpy, zq. (7.30)

Theorem 7.32. Let Ω Ă R2 be a Wiener regular unbounded open set with compact bound-
ary. Let tpkuk Ă Ω be a sequence of points such that pk Ñ 8. Then the functions Gpk

converge uniformly in bounded subsets of Ω to G8, the measures ωpk |BΩ converge weakly
to ω8, and the following holds:

(a) G8 is harmonic and positive in Ω.

(b) ω8 is mutually absolutely continuous with ωp, for every p belonging to the unbounded
component of Ω.

(c) For every φ P C8
c pR2q,

ż

Ω
G8 ∆φdm “

ż

φdω8.

(d) ω8 coincides with the equilibrium measure of BΩ (and so it is a probability measure)
and moreover, for every z P Ω,

G8pzq “
1

CapW pBΩq
´ E ˚ ω8pzq.

Proof. Statement (a) is immediate due to (7.30).
The weak convergence of ωpk to ω8 is equivalent to (7.29). It is clear that this implies

that ω8 is a probability measure (this can also be derived directly from the definition
of ω8 and the Riesz representation theorem). Further, we already discussed the mutual
absolute continuity of ω8 and ωp after Definition 5.53.

From the pointwise convergence given by (7.30) and an easy application of the Arzelà-
Ascoli theorem, it follows that the functions Gpk converge uniformly in compact subsets of
Ω to G8 as pk Ñ 8. To prove the uniform convergence in bounded subsets of Ω, let r ą 0
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be an arbitrary radius such that BΩ Ă Srp0q. Since the functions Gpk vanish continuously
on BΩ, by the maximum principle the sequence tGpkukě1 is a uniform Cauchy sequence
in Ω X Brp0q, and so the convergence is uniform in Ω X Brp0q and, therefore, in bounded
subsets of Ω. In particular, G8 extends continuously to Ωc as G8|Ωc ” 0.
The statement (c) of the theorem is a consequence of the fact that, for φ P C8

c pR2q and
ξ away from the support of φ,

ż

Ω
Gξpzq∆φpzq dmpzq “

ż

φdωξ.

Then we let ξ Ñ 8 and use the uniform convergence of Gξ to G8 in bounded sets and
the weak convergence of ωξ to ω8, and (c) follows.

To prove (d), recall that

Gpz, ξq “
1

2π

ż

BΩ
log

|ξ ´ x|

|ξ ´ z|
dµpxq ´

1

2π

ż

BΩ

ż

BΩ
log

|y ´ x|

|y ´ z|
dµpxq dωξpyq

“
1

2π

ż

BΩ
log

|ξ ´ x|

|ξ ´ z|
dµpxq ´

ż

BΩ
pEzpyq ´ Uµpyqq dωξpyq

where µ is the equilibrium measure of BΩ. Letting ξ Ñ 8, since the potential is continuous
and the harmonic measures ωξ converge weakly to ω8, we obtain

G8pzq “ 0 ´

ż

BΩ
pEzpyq ´ Uµpyqq dω8pyq “

ż

Uµpyq dω8pyq ´

ż

Ezpyq dω8pyq.

For the first summand we take into account that

Uµpyq “
1

CapW pBΩq
for all y P BΩ,

since Ω is Wiener regular, and so

G8pzq “
1

CapW pBΩq
´ Uω8pzq for every z P Ω.

Thus, Uω8 is continuous up to BΩ, with

1

CapW pBΩq
“ Uω8pzq for every z P BΩ.

By the uniqueness of the equilibrium measure µ (see Theorem 6.11), we infer that ω8 “

µ.

7.6.2 The higher dimensional case

For d ě 3, let Ω Ă Rd be an unbounded Wiener regular open set with compact boundary.
In this case we cannot define the harmonic measure with pole at infinity directly as the
weak limit of the measures ωp with p Ñ 8 because this limit is always zero. Instead we can
define harmonic measure and the Green function with pole at infinity by a limiting process
involving renormalization. The construction is summarized in the following theorem:
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Theorem 7.33. For d ě 3, let Ω Ă Rd be an unbounded Wiener regular open set with
compact boundary. Let tpkuk Ă Ω be a sequence of points such that pk Ñ 8. Then
the functions Eppkq´1Gpk converge uniformly in bounded subsets of Ω to some function
G8 : Ω Ñ R, the measures Eppkq´1ωpk converge weakly to some measure ω8 supported in
BΩ, and the following holds:

(a) G8 is harmonic and positive in Ω.

(b) ω8 is mutually absolutely continuous with ωp, for every p in the unbounded compo-
nent of Ω.

(c) For every φ P C8
c pRdq,

ż

Ω
G8 ∆φdm “

ż

φdω8.

(d) ω8 is the equilibrium measure of BΩ times CappBΩq (and, so }ω8} “ CappBΩq) and
moreover, for every x P Ω,

G8pxq “ 1 ´ E ˚ ω8pxq “ 1 ´ ωxpBΩq.

In particular, the limiting function G8 and the limiting measure ω8 do not depend
on the chosen sequence tpkuk.

Proof. Let µ be the equilibrium measure of BΩ. Observe first that, for all p P Ω,

ωppBΩq “ CappBΩqUµppq, (7.31)

since the right hand side is a function that is harmonic in Ω and continuous in Ω, it equals
1 in BΩ, and vanishes at 8, see Proposition 5.39.

Consider now an arbitrary sequence tpkuk Ă Ω such that pk Ñ 8. We write

Eppkq´1ωpk “ CappBΩq
Uµppkq

Eppkq

1

ωpkpBΩq
ωpk . (7.32)

It is immediate to check that

lim
pkÑ8

Uµppkq

Eppkq
“ 1.

Thus there exists a subsequence tpkjuj such that Eppkj q´1ω
pkj converges weakly ˚ to some

measure rω supported on BΩ, with total mass CappBΩq.
Notice also that the Green function satisfies

Eppkq´1Gpx, pkq ď Eppkq´1Epx´ pkq Ñ 1 as k Ñ 8, for all x P Ω.

Thus there exists another subsequence tpkhuh such that the functions Eppkhq´1Gpkh con-
verge locally uniformly in compact subsets of Ω to some harmonic function rg : Ω Ñ R
such that }rg}8 ď 1. Without loss of generality, we may assume that the subsequences
tpkjuj and tpkhuh coincide. Using that the functions Eppkhq´1Gpkh vanish continuously in
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BΩ, and using the maximum principle, as in the proof of Theorem 7.32, it follows that
they converge uniformly on bounded subsets of Ω.
Given φ P C8

c pRdq, we have

Eppkj q´1

ż

Ω
Gpx, pkj q∆φpxq dx “ ´Eppkj q´1φppkj q ` Eppkj q´1

ż

φdω
pkj .

By the uniform convergence of Eppkj q´1Gp¨, pkj q to rg in bounded subsets of Ω, the left hand
side converges to

ş

Ω rg∆φdx as j Ñ 8, and by the weak ˚ convergence of Eppkj q´1ω
pkj

and the fact that φppkj q “ 0 for j big enough, it is clear that the right hand side converges
to

ş

φdrω. So we deduce that
ż

Ω
rg∆φdx “

ż

φdrω.

From this fact, it is clear that rg does not vanish identically on Ω. Taking into account
that rg is non-negative by construction and harmonic in Ω, it follows that rg is (strictly)
positive in Ω.
Next we will show that rω coincides with the measure CappBΩqµ. To this end, recall

that for any x P Ω,

G
pkj pxq “ Epx´ pkj q ´

ż

Epx´ zq dω
pkj pzq.

Hence,

Eppkj q´1G
pkj pxq “ Eppkj q´1Epx´ pkj q ´ Eppkj q´1

ż

Epx´ zq dω
pkj pzq.

The left side converges to rgpxq as j Ñ 8, while the first term on the right hand side tends
to 1 and the last one to

ş

Epx´ zq drωpzq. So we deduce that

rgpxq “ 1 ´

ż

Epx´ zq drωpzq “ 1 ´ U
rωpxq. (7.33)

Since rgpxq is positive in Ω, we deduce that U
rωpxq ă 1 for all x P Ω, and thus U

rωpxq ď 1
for all x P BΩ. Since }rω} “ CappBΩq, by the uniqueness of the equilibrium measure µ of
BΩ, it follows that rω “ CappBΩqµ, as claimed.

In particular, the identity rω “ CappBΩqµ ensures that the measure rω does not depend on
the chosen subsequence tpkjuj , which in turn implies that the initial sequence of measures
Eppkq´1ωpk converges to rω. From the relationship between rg and rω in (7.33), we deduce
that rg does not depend on the subsequence tpkjuj either, and analogously this implies the
local uniform convergence in bounded subsets of Ω of the functions Eppkq´1Gpk .

The preceding arguments show that setting ω8 “ rω and G8 “ rg, the properties (a),
(c) and (d) hold. In particular, notice that the identities stated in (d) follow from (7.33)
and (7.31). So it just remains to prove (b).
Consider a ball B Ă Rd centered at the origin such that BΩ Ă 1

2B. It suffices to show
that ω8 is absolutely continuous with respect to ωp with p P BB. To this end, observe
first that, by a Harnack chain argument,

ωppEq « ωp1

pEq for all p, p1 P BB and all Borel set E Ă BΩ,
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with the implicit constant independent of p, p1 P E. Consider the function

fEpxq “
rpBqn´1

|x|n´1
ωppEq.

Observe that fEppq “ ωppEq « ωqpEq for all q P BB. Also,

lim
qÑ8

fEpqq “ 0 “ lim
qÑ8

ωqpEq.

So by the maximum principle we deduce that fEpxq « ωxpEq uniformly for all x P Bc and
E Ă BΩ. So we get

ωxpEq

ωppEq
«
fEpxq

fEppq
“
rpBqn´1

|x|n´1
“
fBΩpxq

fBΩppq
«
ωxpBΩq

ωppBΩq
.

Thus,
ωppEq

ωppBΩq
«

ωxpEq

ωxpBΩq
for all x P Bc,

and then
ωppEq

ωppBΩq
« lim sup

yÑ8

ωypEq

ωypBΩq
« lim inf

yÑ8

ωypEq

ωypBΩq
.

By the identity (7.32) and for k large enough, it follows that for p P BB,

Eppkq´1ωpkpEq

CappBΩq
“
Uµppkq

Eppkq

ωpkpEq

ωpkpBΩq
«
Uµppkq

Eppkq

ωppEq

ωppBΩq
.

Letting k Ñ 8, by Theorem 4.63 for every open set E we derive

CappBΩq´1ω8pEq À
ωppEq

ωppBΩq

and for every compact set E we get

CappBΩq´1ω8pEq Á
ωppEq

ωppBΩq
.

By the regularity of Radon measures we infer

CappBΩq´1ω8pEq «
ωppEq

ωppBΩq

for every Borel set E Ă BΩ, which proves (c).

Remark 7.34. Notice that the estimate in Lemma 7.18 also holds for the harmonic
measure and the Green function with pole at 8. To check this, just multiply the inequality
(7.11) by Epxq´1 and take the limit as x Ñ 8 and apply Theorem 4.63.
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7.6.3 Immediate consequences

Using the same proofs as in Section 7.1, Theorems 7.32 and 7.33 immediately imply the
following facts.

Proposition 7.35. Let Ω Ă Rd be an unbounded domain with compact boundary BΩ “ EY

γ where E is either compact or empty, γ is a C1 curve and EXγ “ H. If G8 P C1pΩYγq,
then

ω8|γ “ ´pBνG
8qσ,

where ν is the unit outer normal to γ Ă BΩ and σ is the surface measure on γ.

Lemma 7.36. Let Ω Ă Rd be an unbounded Wiener regular open set with compact bound-
ary. Let B be a ball centered in BΩ. Then,

ω8pBq À rpBqd´2 ´

ż

2B
G8pyq dy.

152



8 Harmonic measure in uniform domains
satisfying the CDC and in NTA domains

This chapter deals with properties of harmonic measure on uniform domains satisfying
the CDC and in NTA domains. Most of the material is based on [JK82]. In this chapter
we assume that the domain Ω has compact boundary. We will use the following notation,
in the spirit of Definition 4.17.

Definition 8.1. Let Ω Ă Rd. For every ξ P BΩ and r ą 0 we write the boundary ball

∆r,ξ :“ ∆rpξq :“ Brpξq X BΩ.

We also use the classical notation for rescaled balls in the setting of boundary balls:

t∆r,ξ :“ ∆tr,ξ.

8.1 CDC, uniform, and NTA domains

Definition 8.2. A CDC domain is a domain satisfying the CDC condition.

Recall that CDC domains are Wiener regular.

Definition 8.3. A domain Ω Ă Rd satisfies the exterior corkscrew condition if there exist
r0 ą 0 and A ą 0 such that for every ξ P BΩ and r ă r0 there exists a point Xex

r pξq “

Xex
r,ξ “ Xex

∆r,ξ
P Ω

c
satisfying |Xex

r pξq ´ ξ| ă r and dΩpXex
r pξqq :“ distpXex

r pξq, BΩq ą A´1r.

We call Xex
r pξq an exterior corkscrew point of ξ at scale r, and Bex

∆r,ξ
:“ Bex

r,ξ :“ B r
2A

pXex
r,ξq

is called exterior corkscrew ball. Note that Bex
r,ξ Ă 2Bex

r,ξ Ă Ω
c
.

It is immediate to check that, for any bounded domain, the exterior corkscrew condition
implies the CDC condition, and thus the Wiener regularity of Ω.
Next we recall one of the Hölder regularity properties already shown for CDC domains.

Theorem 8.4. Let Ω Ă Rd be a CDC domain with compact boundary, let u P CpBrpξqXΩq

be non-negative harmonic, vanishing continuously on ∆r,ξ with ξ P BΩ and r ă diampBΩq.
Then there are constants C0 and α depending on d and the CDC character so that

upxq ď C0

ˆ

|x´ ξ|

r

˙α

sup
BrpξqXΩ

u for every x P Brpξq X Ω.

Definition 8.5. A uniform domain Ω Ă Rd is a domain satisfying
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8 Harmonic measure in UCDC and NTA domains

• Interior corkscrew condition: There exist r0 ą 0 and A ą 0 such that for every ξ P BΩ
and r ă r0 there exists a point Xrpξq “ Xr,ξ “ X∆r,ξ

P Ω satisfying |Xrpξq ´ ξ| ă r
and dΩpXrpξqq ą A´1r. We call Xrpξq a (interior) corkscrew point of ξ at scale
r, and Bin

∆r,ξ
:“ Bin

r,ξ :“ B r
2A

pXrpξqq is called interior corkscrew ball. Note that

Bin
r,ξ Ă 2Bin

r,ξ Ă Ω.

• Harnack chain condition: for ε ą 0 and x1, x2 P Ω with dΩpxjq ą ε and |x1 ´ x2| “

r ă r0, there exists N depending only on r
ε and a collection of balls tBju

N
j“0 with

x1 P B0, x2 P BN such that 2Bj Ă Ω for every 0 ď j ď N and Bj X Bj´1 ‰ ∅ for
every 1 ď j ď N . This collection of balls is called a Harnack chain joining x1 and
x2.

Lemma 8.6. A domain Ω Ă Rd is uniform if and only if for every x0, x1 P Ω with
|x0 ´ x1| ă r0 there exists a non-tangential path, i.e. a continuous map γ : r0, 1s Ñ Ω
such that

1. γpjq “ xj for j P t0, 1u,

2. the length of the curve ℓpγq ď rA |x0 ´ x1| and

3. for t P p0, 1q we have dΩpγptqq ě distpγptq, tx0, x1uq{ rA.

Proof. We can show first the ‘if’ part. Let ξ P BΩ, r ă mintr0,diampΩqu. Consider
x0 P B r

4
pξq X Ω and x1 P BBrpξq X Ω (which exists by connectedness) and consider the

path γ connecting x0 and x1. Then the point Xrpξq :“ y P γp0, 1q X BB r
2
pξq is a corkscrew

point, so Ω satisfies de corkscrew condition.
Let us prove that the Harnack chain condition is also satisfied. To this end just consider

ε ą 0 and x1, x2 P Ω with dΩpxjq ą ε and |x1 ´ x2| “ r ă r0. We may assume that
r ą dΩpxjq{4, for j “ 1, 2, because otherwise it suffices to consider a the ball BdΩpxjq{2pxjq.
Take the collection of balls tB 1

10
dΩpyqpyquyPγpr0,1sq. By the 5r-covering theorem there exists

a subcollection of disjoint balls Bj , j P J , such that 5Bj cover γpr0, 1sq. The radii of
the balls are bounded below by a constant times distpγpr0, 1sq, BΩq ą C´1

rA
ε by the third

condition.
We claim that, for every k ą 0, the number of balls with 2kC´1

rA
ε ď rpBjq ă 2k`1C´1

rA
ε

is bounded by a constant C1 depending on d and rA. It is enough to consider the balls
whose center is closer to the endpoint x1.
Note that the centers xpBjq of the balls Bj satisfy

distpxpBjq, x1q ď rAdΩpxpBjqq “ 10 rArpBjq.

For any t ą 0, the collection of balls Bj such that t ď rpBjq ă 2t is disjoint by assumption,
each one has measure bounded below by a dimensional constant times td, and all of them
are contained in the ball centered at x1 with radius 10 rArpBjq `rpBjq ď p20 rA`2qt, whose
measure is bounded above by a dimensional constant times Cd

rA
td. Thus the number of

balls is bounded above by Cd
rA
as claimed.
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Also we can bound above the radii of the balls Bj , j P J as follows: by the assumption
that r ą dΩpx1q{4 and the second condition,

rpBjq “
1

10
dΩpxpBjqq ď

1

10

`

dΩpx1q ` |x1 ´ xpBjq| ď
1

10

`

4r ` ℓpγq
˘

ď p1 ` rAqr.

Thus, the number of balls is bounded by

N ď C1

`

log2pp1 ` rAqrq ´ log2pC´1
rA
εq
˘

“ C1 log2
p1 ` rAqr

C´1
rA
ε
.

To show the converse, assume that Ω is uniform and let x0, x1 P Ω with dΩptx0, x1uq ď

|x0 ´x1| ă r0 (otherwise the straight segment joining x0 and x1 would be a non-tangential
path trivially). Let ξj P BΩ be points minimizing distpxj , ξq, and for every 0 ď k ď kj :“

tlog2p
|x0´x1|

dΩpxjq
qu consider the corkscrew point yjk :“ X2kdΩpxjqpξjq, and let also yj´1 “ xj .

The number of balls in a Harnack chain between two consecutive points yjk and yjk`1 is
uniformly bounded. The same can be said about the Harnack chain joining y0k0 and y1k1 .
Joining the centers of the balls in these Harnack chains between consecutive points we find
a path satisfying the three conditions above. Indeed 1 holds trivially, 2 is a consequence
of the fact that the number of balls of each scale is uniformly bounded and, therefore, the
length of the curve can be controlled by a geometric sum whose bigger term is comparable
to |x0 ´ x1|. The third condition follows from the fact that for every ball B from the
Harnack chains dΩ is comparable with rpBq and the distance from the ball to the closest
end-point is bounded again by a geometric series whose bigger term is comparable to
rpBq.

Put in plain words, the definition we give here of uniform domains in terms of corkscrew
points and Harnack chains coincides with the definition in terms of “cigar” (i.e. non-
tangential) paths from the Sobolev extension domains in [Jon81]. Also from the previous
proof we can infer that the definition coincides with the one in [GO79], where the distance
distpγptq, tx0, x1uq in the third condition is replaced by the arc-length distance to the
endpoints.

Roughly speaking, the domain cannot have outer cusps, thin tubes or slits. In two
dimensions inner cusps are also banned.
The Harnack chain condition, using Lemma 2.15, gives us that, whenever u is a positive

harmonic function on Ω,

C´NpΛqupyq ď upxq ď CNpΛqupyq whenever
|x´ y|

dΩptx, yuq
ď Λ.

By the previous proof, uniformity tells us that for k ě 1, by picking non-tangential paths
we can assume

Np2kq ď C1 log2

´

CA2
k
¯

ď C1pk ` log2pCAqq,

that is whenever |x´ y| ď mint2kdΩptx, yuq, r0u with k ě 2 we have

C´k
A upyq ď upxq ď Ck

Aupyq. (8.1)
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8 Harmonic measure in UCDC and NTA domains

Note that the value of CA may have increased in our reasoning, but it depends only on
the constant A and the dimension d.

Definition 8.7. We say that a domain is UCDC (uniform domains satisfying the capacity-
density condition) if it is both CDC with constant A and uniform with constants r0 and
A. More precisely, we assume that there exists a radius 0 ă r0 ď diampBΩq and a constant
A such that

1. The interior corkscrew and the Harnack chain conditions in Definition 8.5 are satis-
fied with constants r0 and A.

2. Every pair of points x0, x1 P Ω with |x0´x1| ă r0 can be joined with a non-tangential
path as in Lemma 8.6, with constant rA “ A.

3. The domain satisfies the CDC with constant A´1, that is, for any r P p0,diampBΩqq,

CappB̄rpξqzΩq ě A´1 rd´2 in the case d ě 3,

and
CapLpB̄rpξqzΩq ě A´1 r in the case d “ 2.

4. Further we assume that there exists a constant CA such that (8.1) is satisfied, and
we also assume that

N ptq ď CAp1 ` log2 pAt` 1qq.

5. If the boundary of the domain is bounded, we assume without loss of generality
that r0 “ diampBΩq. Indeed, just by taking worse constants depending on the
ratio r0

diampBΩq
we can check that both corkscrew conditions and the Harnack chain

condition are satisfied as well for r0 ď r ď diampBΩq.

Note that, if Ω were unbounded with compact boundary, we could pick r0 “ 8 regarding
the uniformity constants, but the CDC would not hold for big balls, and estimate (7.20)
would cease to be true in higher dimensions, so we will keep r0 “ diampBΩq in this case
to clarify ideas.
From this point onwards, we will write CA and cA for constants which depend only on

the uniformity constants and the CDC as well. Note that in the preceding definition, we
write A for the maximum constant between A and rA. In particular, for UCDC domains,
by (7.20) and the Harnack chain property (8.1) we have:

Lemma 8.8. Let Ω Ă Rd be a UCDC domain with compact boundary and let ξ P BΩ and
r ď diampBΩq. Then for x P B4rpξq X Ω with distpx, BΩz∆r,ξq ě r

A , we get

ωxp∆r,ξq ě cA.

Proof. Let’s write ∆ “ ∆r,ξ. First assume that x “ X∆. Then using a Harnack chain,
and (7.20) we get

ωX∆p∆q
(8.1)
«A ωX∆{4p∆q

(7.20)

ÁA 1.
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8 Harmonic measure in UCDC and NTA domains

If dΩpxq ě r
2A , then using a Harnack chain again we obtain

ωxp∆q
(8.1)
«A ωX∆p∆q ÁA 1.

If, instead, dΩpxq “ ρ ă r
2A , then let ζ P BΩ such that dΩpxq “ |x´ζ|. By our assumption,

ζ P ∆, and ∆ρ,ζ Ă ∆. Thus,

ωxp∆q ě ωxp∆ρ,ζq
(8.1)
«A ωXρ,ζ p∆ρ,ζq ÁA 1.

Definition 8.9. A non-tangentially accessible domain (NTA domain for short) is a uni-
form domain satisfying also the exterior corkscrew condition.

It is clear that any NTA domain is UCDC. The notion of NTA domain was introduced by
Jerison and Kenig in [JK82]. In this work they studied the behavior of harmonic measure
in this type of domains. Roughly speaking, NTA domains cannot have outer cusps, inner
cusps, thin tubes, slits or isolated points in the boundary.

8.2 Green’s function for UCDC domains

Next we show that the supremum of a nonnegative harmonic function in a ball coincides
modulo constant with the value at the corkscrew point:

Lemma 8.10. Let Ω be a UCDC domain. Let u ě 0 harmonic in Ω, vanishing continu-
ously on ∆2r,ξ with ξ P BΩ and r ă r0, then we have

sup
ΩXBrpξq

u ď CAupXr,ξq.

Proof. Via Harnack inequality (8.1), we can control

sup
ΩXBrpξq

u ď CA sup
ΩXBrpξq:dΩpxqăr{8

upxq,

and for ζ P ∆r,ξ we have
upXr{8,ζq «A upXr,ξq.

Thus, to simplify notation, we can assume that 8r ă r0, u vanishes on 8∆ with ∆ :“ ∆r,ξ,
and let us assume that upX2∆q “ 1. We will prove that

sup
ΩXB2rpξq

u À 1.

Theorem 8.4 implies the existence of a constant A1 ą 1 s.t. for every ζ P 3∆ and every
s ă r

sup
Bpζ,A´1

1 sqXΩ

u ď
1

2
sup

Bpζ,sqXΩ
u. (8.2)
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8 Harmonic measure in UCDC and NTA domains

The second observation is about the quantitative behavior of Harnack chains described
in (8.1): if x P Brpζq X Ω with ζ P 3∆, n P N, and dΩpxq ě A´n

1 r, then

|X2r,ξ ´ x| ă 6r ď 6An
1dΩpxq ùñ C´k

A upxq ď upX2r,ξq “ 1,

where k “ 1 ` tlog2p6An
1 qu « n. Thus, we can pick A2 :“ C

k{n
A ą 1 above, and we deduce

that whenever x P B2rpζq X Ω, we have

upxq ą An
2 ùñ dΩpxq ă A´n

1 r. (8.3)

Now we argue by contradiction: consider N so that 2N ą A2 and let n “ N`3. Assume
that there exists y0 P Ω X B2rpξq with upy0q ą An

2 . Then, by (8.3) we can find ξ0 P BΩ
satisfying that

|y0 ´ ξ0| ă A´n
1 r.

Note also that
|ξ ´ ξ0| ď |ξ ´ y0| ` |y0 ´ ξ0| ď 2r `A´n

1 r ă 3r.

for A1 large enough, and by (8.2) we have

sup
Bpξ0,A

´n`N
1 rq

u ą 2N sup
Bpξ0,A

´n
1 rq

u ą A2 ¨An
2 “ An`1

2 .

We have proven the existence of y1 P Bpξ0, A
´n`N
1 rq with upy1q ą An`1

2 . Since N ´n ă

0, we can apply (8.3) to find ξ1 P BΩ so that

|y1 ´ ξ1| ă A´n´1
1 r.

Note also that

|ξ ´ ξ1| ď |ξ ´ ξ0| ` |ξ0 ´ y1| ` |y1 ´ ξ1| ď p2 `A´n
1 `A´n`N

1 `A´n´1
1 qr ă 3r,

for A1 large enough, and by (8.2) we have

sup
Bpξ1,A

´n´1`N
1 rq

u ą 2N sup
Bpξ1,A

´n´1
1 rq

u ą A2 ¨ upy1q ą An`2
2 .

Iterating the construction, we find yk P Bpξk´1, A
´n`N´k`1
1 rq with upykq ą An`k

2 . We
can apply (8.3) to find ξk P BΩ so that

|yk ´ ξk| ă A´n´k
1 r.

Note also that

|ξ´ξk| ď |ξ´ξk´1|`|ξk´1´yk|`|yk´ξk| ď

˜

2 `A´n
1 `

k
ÿ

j“1

´

A´n`N´j`1
1 `A´n´j

1

¯

¸

r ă 3r,

for A1 large enough, and by (8.2) we have

sup
Bpξk,A

´n´k`N
1 rq

u ą 2N sup
Bpξk,A

´n´k
1 rq

u ą A2 ¨ upykq ą An`k`1
2 ,

so the induction can be carried on.
Note that yk is a Cauchy sequence converging to a point in 3∆. Therefore, we reach a

contradiction with the continuity of u.
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8 Harmonic measure in UCDC and NTA domains

Lemma 8.11. Let Ω be a UCDC domain with compact boundary, let G :“ GΩ be its
Green function and let x P ΩzBpξ, 2rq, with ξ P BΩ and r ď diampBΩq. Then the boundary
ball ∆ :“ ∆r,ξ satisfies

ωxp∆q ď CAr
d´2GxpX∆q

Proof. Let ϕ P C8 bump function so that χBrpξq ď ϕ ď χB5r{4pξq (so ϕpxq “ 0) and

|D2ϕ| À r´2. Then
ż

Ω
Gxpyq∆ϕpyq dmpyq

L.7.13
“

ż

ϕpξq dωxpξq ě ωxp∆q.

Consider the domain rΩ :“ ΩzB 1
4
dΩpxqpxq, which is a UCDC domain with perhaps worse

constant than the original one (but depending on it). Note that for y P BB 1
4
dΩpxqpxq we

have

|ξ ´ y| ě |x´ ξ| ´ dΩpxq{4 ě
3

4
|x´ ξ| ě

3

2
r.

Thus, Gx is a function vanishing on the boundary ball ∆ 3
2
r,ξ with respect to the domain

rΩ. We can cover ty P B 5
4
r,pξq : dΩpyq ă r{16u with balls Bζ :“ B r

16
pζq so that Gx is a

harmonic nonnegative function vanishing on 2∆ζ “ 2∆ r
16

pζq, and then apply Lemma 8.10
to conclude that Gxpyq ÀA G

xpX∆ζ
q on Br{16pζq XΩ. Using (8.1) we obtain GxpX∆ζ

q «A

GxpX∆q, and also Gxpyq «A G
xpX∆q for y P B 5

4
rpξq such that dΩpyq ě r{16. All in all, we

get

ωxp∆q ď

ż

Ω
Gxpyq∆ϕpyq dmpyq ď

ż

B 5
4 rpξq

Gxpyq|∆ϕpyq| dmpyq
L 8.10

À A,d r
d´2GxpX∆q.

Note that by the results in Chapter 7 and the Harnack chain condition, we get the
converse inequality:

Lemma 8.12. Let Ω be a UCDC domain with compact boundary, and let ∆ :“ ∆r,ξ with
ξ P BΩ and r ď diampBΩq. If x P ΩzBin

1
2
∆
, then

rd´2GxpX 1
2
∆q ÀA ω

xp∆q.

Proof. From Lemmas 7.19 and 7.23, together with the CDC (see 3. in Definition 8.7), we
have

rd´2Gxpyq ÀA ω
xp∆q for all x P Ωz1

4B̄ and y P p40q´1B̄ X Ω. (8.4)

If x R Bin
p40Aq´1∆, set Y :“ Xp40Aq´1∆. Otherwise set Y :“ Xp40Aq´2∆, so that in both cases

we get x R B 1
2
dΩpY qpY q and so Y,X 1

2
∆ R B 1

4
dΩpxqpxq, see Exercise 8.2.1 below. Note that

independently of our choice for Y , Green’s function Gx is non-negative and harmonic in
the domain ΩzB 1

4
dΩpxqpxq, which is a UCDC domain with perhaps worse constants than

Ω. Thus, (8.1) applies in this setting, and we get

GxpX 1
2
∆q «A G

xpY q.

159



8 Harmonic measure in UCDC and NTA domains

If x P Ωz1
4B̄, by (8.4) with y “ Y the lemma follows. If, instead, x P ΩX 1

4B̄, then consider
two situations. First, if dΩpxq ą p40Aq´3r, then using (8.1) in ΩzB 1

2
dΩpY qpY q we get

rd´2GxpY q
(8.1)
« A r

d´2GX∆pY q
(8.4)

ÀA ωX∆pA´1∆q
(8.1)

À A ω
xp∆q.

Finally, whenever x P Ω X 1
4B̄ with dΩpxq ď p40Aq´3r, then

rd´2GxpY q
(7.5)
“ rd´2GY pxq

(8.1)
« A r

d´2GX∆pxq
(8.4)

ÀA ωX∆pA´1∆q
(5.11)

ď 1
(7.20)

ÀA ωxp∆q.

Combining Lemmas 8.11 and 8.12 we get the following remarkable fact.

Theorem 8.13. Let Ω be a UCDC domain with compact boundary, and let ∆ :“ ∆r,ξ

with ξ P BΩ and r ď diampBΩq. For x P ΩzBpξ, 2rq

ωxp∆q

rd´2GxpX∆q
«A 1.

Exercise 8.2.1. Let Ω be an open set. Given x, y P Ω, show that

x R B 1
2
dΩpyqpyq ùñ y R B 1

4
dΩpxqpxq.

8.3 Fundamental properties of the harmonic measure in UCDC
domains

8.3.1 The doubling condition

Lemma 8.14 (Doubling condition). Let Ω be a UCDC domain with compact boundary.
If ∆ :“ ∆r,ξ with ξ P BΩ and x P Ω, then

ωxp2∆q ď Cωxp∆q,

with C depending on dΩpxq

diampBΩq
, d, A, but neither on x nor on ∆.

Proof. Let r1 :“ p4Aq´1diampBΩq and assume first that 2r1 ď dΩpxq ď 1
2diampBΩq.

The case 2r ě r1 follows by Lemma 8.8 and the Harnack inequality. Indeed, we can
find a finite family of points ξj so that ∆r1{4pξjq cover the boundary, so there is a ξj0 so
that ξ P ∆r1{4,ξj0

and thus ∆r1{4,ξj0
Ă ∆. Therefore

ωxp∆q ě ωxp∆r1{4,ξj0
q
(8.1)

ÁA ω
Xr1{4,ξj0 p∆r1{4,ξj0

q
L. 8.8

ě cA ě cAω
xp2∆q,

the constants of the second estimate depending only on A and perhaps on the dimension.
If 2r ă r1, then we can use Theorem 8.13 twice and the Harnack chain:

ωxp2∆q
T 8.13
«A crd´2GxpX2∆q

(8.1)
«A crd´2GxpX∆q

T 8.13
«A ωxp∆q.
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8 Harmonic measure in UCDC and NTA domains

For the cases dΩpxq ă 2r1 and 2dΩpxq ą diampBΩq, consider a corkscrew point x0 P

BdiampBΩq{2pξq so that dΩpx0q ě 2r1, whose existence is granted by the interior corkscrew
condition. Since ωxp∆q and ωxp2∆q are harmonic functions, we get that

ωxp∆q « dΩpxq

diampBΩq
,A
ωx0p∆q ÁA ω

x0p2∆q « dΩpxq

diampBΩq
,A
ωxp2∆q.

Note that one cannot expect to avoid the dependence on x: if x Ñ 2∆z∆, then ωxp∆q Ñ

0 and ωxp2∆q Ñ 1. However, the doubling constant for a fixed ∆ “ ∆r,ξ is universal if we
pick the pole in ΩzpB4rpξqzBp1´A´1qrpξqq:

Lemma 8.15. In Lemma 8.14, if x P ΩzB4rpξq, then C does not depend on dΩpxq

diampBΩq
. The

same can be said whenever distpx, BΩz∆q ě r
A , and r ď diampBΩq.

Proof. The case 2r1 ď dΩpxq ď 1
2diampBΩq, where r1 :“ p4Aq´1diampΩq is already settled

in the proof of Lemma 8.14.
The case 2dΩpxq ą diampBΩq can be settled by standard maximum principle arguments

combined with Harnack. Indeed, the constant is universal for x P S2diampBΩqpζq for a fixed
ζ P BΩ, by the Harnack inequality, since both functions ωxp∆q and ωxp2∆q are harmonic
and non-negative:

ωxp∆q

ωxp2∆q

Harnack
« d,A

ωXdiampBΩq,ζ p∆q

ωXdiampBΩq,ζ p2∆q
«A 1,

since we have reduced to the previous case. In fact, both functions satisfy the Dirichlet
problem on unbounded domains (5.7) (see Theorem 5.42, Lemma 5.45, Remark 5.46 and
Example 5.49), so the maximum principle allows us to extend

ωxp∆q«Aω
xp2∆q

to the whole B2diampBΩqpζqc. The general case 2dΩpxq ą diampBΩq follows by Harnack
again.
Thus, we can assume dΩpxq ă 2r1. If x P B4rpξqc X Ω, that is, if distpx, ξq ą 4r, since

dΩpxq ă p2Aq´1diampBΩq, we infer that r ă 1
2diampBΩq. Thus, we can use Theorem 8.13

twice and the Harnack chain:

ωxp2∆q
T 8.13
«A rd´2GxpX2∆q

(8.1)
«A rd´2GxpX∆q

T 8.13
«A ωxp∆q.

Finally, if dΩpxq ă 2r1, x P B4rpξq X Ω with distpx, BΩz∆q ě A´1r, we get

ωxp∆q
L 8.8
Á A 1 ě ωxp2∆q,

and the lemma follows.

Exercise 8.3.1. In Lemma 8.15, it suffices to require distpx, 2∆z∆q ě r
A .
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8 Harmonic measure in UCDC and NTA domains

8.3.2 The boundary Harnack principle

Next we find localized UCDC domains, that is, given a UCDC domain Ω, we provide
intermediate domains contained in Ω which have diameter comparable to a ball, and at
the same time coincide with Ω in a comparable, smaller ball. This is obtained using a
Whitney covering, i.e., a covering of Ω with disjoint dyadic cubes, which are half-open
cubes with sides parallel to the axis, vertices in the grid 2´kZd for k P Z and with side–
length

ℓpQq :“ 2´k.

Then, we denote by W :“ WpΩq the set of maximal dyadic cubes Q Ă Ω such that
4Q X Ωc “ ∅. These cubes have disjoint interiors and can be easily shown to satisfy the
following properties:

(a) distpQ,Ωcq À ℓpQq À distpQ,Ωcq, where ℓpQq denotes the side length of the cube.

(b) If Q,R P W and 4Q X 4R ‰ ∅, then ℓpQq «d ℓpRq. In particular we may assume
that ℓpQq ď 4ℓpRq whenever Q̄X R̄ ‰ ∅.

(c)
ř

QPW χ2Q Àd χΩ.

When dealing with these cubes, we will usually refer to the the long distance

DpQ,Rq :“ diampQq ` diampRq ` distpQ,Rq.

Lemma 8.16. Let Ω be a UCDC domain. There exists a dimensional constant C such
that for every ξ P BΩ and r ă diampBΩq, there exists a UCDC domain rΩr,ξ such that

Ω XBA´1rpξq Ă rΩr,ξ Ă Ω XBCrpξq.

The constants of the UCDC domain are independent of ξ and r. Moreover, for ζ P

BrΩr,ξzB r
2
pξq, we have that dΩpζq ě cAr.

Proof. Consider a Whitney covering W :“ WpΩq. Now, let ∆ :“ ∆A´1r,ξ. For every ζ P ∆
and ρ ď A´1r, there exists Qin

ρ,ζ P W so that Qin
ρ,ζ X Bin

ρ,ζ ‰ ∅, and condition (a) ensures
that

A´1ρ À ℓpQq À ρ. (8.5)

Denote
F1 :“ tQ P W : Q “ Qin

ρ,ζ for some ζ P ∆ and ρ ď A´1ru.

We can identify Q P F1 with a pair prQ, ζQq so that Q “ Qin
rQ,ζQ

. Then, for Q,R P F1 there

exists a Harnack chain of balls tBQ,R
j u

NQ,R

j“1 following a non-tangential path joining Bin
rQ,ζQ

with Bin
rR,ζR

as in Definition 8.7, that is, BQ,R
j XBQ,R

j`1 ‰ ∅ with rpBQ,R
j q “ distpBQ,R

j , BΩq,
and

NQ,R
ÿ

j“1

rpBQ,R
j q ď CADpQ,Rq ď CAp5A´1rq “ Cr.
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8 Harmonic measure in UCDC and NTA domains

Note that in particular
BQ,R

j Ă tx P Ω : distpx,∆q ď Cru,

with C independent of A. By the third condition of non-tangential paths (see Lemma 8.6)
we can obtain also

distpBQ,R
j ,∆q

(8.5)
ď mintdistpBQ,R

j , Qq`CAℓpQq,distpBQ,R
j , Rq`CAℓpRqu

L.8.6,3.
ď CArpBQ,R

j q,

which improves the previous estimate when BQ,R
j is small.

Next we define

F2 :“ tQ P W : QXBR,S
j ‰ ∅ for some R,S P F1 and j ď NR,Su.

At this point the reader may note that every pair of cubes in F1 can be connected by a
chain of cubes in F2, whatever that means. However, we still need to show the existence
of Harnack chains joining cubes in F2zF1 (but this fact cannot be granted), and to prove
the inclusions of the domains. We will enlarge the family again.
To do so, note that given Q P F2, there exists a couple of cubes RQ, SQ P F1 so that

QXB
RQ,SQ

j ‰ ∅ for some j ď NRQ,SQ
. In particular,

distpQ,∆q ď distpB
RQ,SQ

j ,∆q ` 2rpB
RQ,SQ

j q ď mintCr,CAℓpQqu.

Next we define

F3 :“ tQ P W : distpQ,∆q ď mintCr,CAℓpQquu.

We get that F2 Ă F3 as discussed above, so the cubes in F1 can still be connected through
F3. Now, note that if distpQ, ξq ď r, then

distpQ,∆q ď distpQ, ξq ď r ď Cr,

and

distpQ,∆q ě dΩpQq
Q P W

ě ℓpQq.

That is, enlarging the constants defining F3 if necessary, we get the inclusions

Ω XBA´1rpξq Ă

˜

ď

QPF3

Q̄

¸˝

Ă Ω XBCrpξq.

However, we cannot grant the existence of non-tangential paths yet.
Now, for Q P F3 we claim that there exists ΨpQq P F1 so that

ℓpQq «A ℓpΨpQqq «A DpQ,ΨpQqq. (8.6)

Indeed, since distpQ,∆q ď mintCr,CAℓpQquu, we can take ζQ P CAQ X ∆. Then pick
ρ “ mintCAℓpQq, A´1ru and define ΨpQq :“ Qin

ρ,ζQ
, which satisfies (8.6).
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Estimate (8.6) means in particular that all the balls in the chain
!

B
Q,ΨpQq

j

)

joining Q

and ΨpQq are roughly of the same size and their number is bounded by universal constants
depending only on A and d. Therefore, we define

F4 :“ tR P W : B
Q,ΨpQq

j XR ‰ ∅ for some Q P F3, j ď NQ,ΨpQqu,

and let
rΩ :“

ď

QPF4

1.1Q.

The non-tangential paths condition is satisfied by construction: Ψ can easily be extended
to F4 so that (8.6) is satisfied. Now, for points in neighboring Whitney cubes the path
can be constructed thanks to the dilation of Whitney cubes. For points in Whitney cubes
Q1, Q2 further away, connect each cube Qj to ΨpQjq and then connect ΨpQ1q and ΨpQ2q

by a Harnack chain of balls B
ΨpQ1q,ΨpQ2q

j . Then the number of balls depends only on
DpQ1,Q2q

mintℓpQ1q,ℓpQ2qu
. Creating a non-tangential path out of this construction is an exercise left

to the reader.
The fact that the CDC condition holds for rΩ can be checked easily: for ξ P BrΩ X BΩ,

use the fact that Ω satisfies the CDC. Otherwise, ξ P BrΩ X Bp1.1Qq for Q P F4. For scales
smaller than ℓpQq, the CDC holds trivially (using condition (b) of the Whitney covering),
while for greater scales one can use the CDC of Ω.

Theorem 8.17 (Uniform boundary Harnack principle). Let Ω be a UCDC domain with
compact boundary, and let ∆ :“ ∆r,ξ with ξ P BΩ and 3CAr ă diampBΩq, where C is
the constant from Lemma 8.16. Let u, v ě 0 be harmonic in Ω vanishing continuously on
2C∆, and upX∆q “ vpX∆q. Then u

v «A 1 on A´1Brpξq X Ω.

Proof. Consider the intermediate domain rΩ :“ rΩ2r,ξ from Lemma 8.16. We write r∆r,ξ :“
rΩ XBrpξq, rω for the harmonic measure in rΩ and so on.
Denote

L1 :“ tζ P BrΩzBΩ : distpζ, BΩq ă
1

2
A´3ru

and
L2 :“ BrΩzpL1 Y BΩq.

Take a minimal covering of L1 with surface balls r∆j “ r∆jpζj , p2Aq´3rq Ă BrΩ with

j P t1, . . . , Nu. Since the covering is minimal and the balls r∆j are contained in a ball of
radius Cr, the number of balls N only depends on d and A.

On the other hand, the corkscrew condition grants the existence of

y1 P B3CArpξq X ΩzB3Crpξq Ă ΩzrΩ, such that dΩpy1q ą 3Cr and

and also of
y2 P BA´1rpξq X ΩzUA´2rpBΩq Ă rΩ.

By the non-tangential path condition, there exists a point

ζ0 P BrΩ X Ω Ă ΩzB2A´1rpξq,
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such that dΩpζ0q ą A´3r. Then the surface ball in BrΩ defined as r∆0 “ r∆ 1
2
A´3r,ζ0

Ă L2.

Now, by Theorem 8.13 and the Harnack chain condition, given x P A´1Brpξq X Ω we
get

rωxpr∆jq «A

ˆ

r

p2Aq3

˙d´2

GxpX
r∆j

q «A

´ r

2A3

¯d´2
GxpX

r∆0
q «A rωxpr∆0q,

and therefore

rωxpL1q ď

N
ÿ

j“1

rωxpr∆jq «A N rωxpr∆0q ď NrωxpL2q, (8.7)

the constants not depending on x.
Applying Lemma 8.10 and the Harnack chain condition in Ω, assuming CA large enough,

we obtain
sup
rΩ

u ď sup
BCrpξqXΩ

u ÀA upX∆Cr,ξq ÀA upX∆q. (8.8)

On the other hand, by Harnack inequality again infL2 v ÁA vpX∆q “ upX∆q. All in all we
get, for x P A´1Brpξq X Ω,

upxq
Max.P.

ď rωxppBΩqcq sup
rΩ

u
(8.8)

ÀA rωxppBΩqcqupX∆q
(8.7)

ÀA rωxpL2q inf
L2

v
Max.P.

ď vpxq.

The following corollary is immediate.

Corollary 8.18. Let Ω be a UCDC domain, and let V be an open set. For any compact set
K Ă V , there exists a constant C “ CV,K,A such that for all positive harmonic functions
u, v in Ω that vanish continuously on BΩ X V , then for every x, y P Ω XK

C´1upxq

vpxq
ď
upyq

vpyq
ď C

upxq

vpxq
.

We also have:

Corollary 8.19. Let Ω be a UCDC domain, and let ∆ :“ ∆r,ξ with ξ P BΩ and 0 ă r ď

diampBΩq. Let u, v ě 0 be harmonic in Ω vanishing continuously on 2∆. Then there exist
α “ αpAq ą 0 and CA ą 0 such that

ˇ

ˇ

ˇ

ˇ

upxq

vpxq
´
upyq

vpyq

ˇ

ˇ

ˇ

ˇ

ď CA
upX∆q

vpX∆q

ˆ

|x´ y|

r

˙α

for every x, y P Brpξq X Ω.

Proof. We fix η P ∆r,ξ and we take 0 ă s ď r{4. Then we set

Mpsq “ sup
yPB2spηqXΩ

upyq

vpyq
, mpsq “ inf

yPB2spηqXΩ

upyq

vpyq
.

Note that

Mpsq ´
u

v
“
Mpsqv ´ u

v
,

u

v
´mpsq “

u´mpsqv

v
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are quotients of non-negative harmonic functions in B2spηq X Ω which vanish in ∆2s,η.
Then, by Corollary 8.18, we deduce that for all x, y P Bspηq X Ω,

Mpsq ´
upxq

vpxq
ď CA

ˆ

Mpsq ´
upyq

vpyq

˙

.

Taking the infimum for x P Bspηq X Ω and the supremum for y P Bspηq X Ω, we get

Mpsq ´mps{2q ď CA

`

Mpsq ´Mps{2q
˘

,

or equivalently,

Mps{2q ď
CA ´ 1

CA
Mpsq `

1

CA
mps{2q. (8.9)

Analogously,
upxq

vpxq
´mpsq ď CA

ˆ

upyq

vpyq
´mpsq

˙

for all x, y P Bspηq X Ω. Thus,

Mps{2q ´mpsq ď CA

`

mps{2q ´mpsq
˘

,

or equivalently,

mps{2q ě
1

CA
Mps{2q `

CA ´ 1

CA
mpsq. (8.10)

Subtracting (8.10) from (8.9), we get

Mps{2q ´mps{2q ď
CA ´ 1

CA

`

Mpsq ´mpsq
˘

`
1

CA

`

mps{2q ´Mps{2q
˘

.

That is,
Mps{2q ´mps{2q ď θ

`

Mpsq ´mpsq
˘

,

with θ :“ CA´1
CA`1 ă 1. It is a routine task to check that this implies that

Mpsq ´mpsq ď C
`

Mpr{4q ´mpr{4q
˘

´s

r

¯α
À
upX∆q

vpX∆q

´s

r

¯α

for suitable C ą 0 and α ą 0. The corollary follows immediately from this estimate.

8.3.3 The change of pole formula

Lemma 8.20. Let Ω be a UCDC domain. Let u be harmonic and positive in Ω, with
ξ P BΩ. If u vanishes continuously on BΩz∆̄ where ∆ :“ ∆r,ξ with r ă diampBΩq, then for
all x P ΩzB2rpξq,

upxq «A upX∆qωxp∆q.
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Proof. Consider the annulus Ur :“ B2r`ρ{2pξqzB2r´ρ{2pξq, with

ρ :“ mintp6CAq´1diampBΩq, p4Cq´1ru,

where C is the constant from Theorem 8.17. Cover Ur X BΩ with balls Bρpξjq of radius ρ,
so that every x P Bρpξjq X Ω satisfies that

upxq

ωxp∆q

T 8.17
«A

upXρ,ξj q

ω
Xρ,ξj p∆q

(8.1)
«A

upX∆q

ωX∆p∆q

L 8.8
«A upX∆q.

The estimates extend to x P BB2rpξqXΩ by the Harnack inequality, and the lemma follows
by the maximum principle.

Lemma 8.21 (Change of pole formula). Let 2r ă diampBΩq, ∆1 Ă ∆ :“ ∆r,ξ0 and
x P ΩzB2rpξ0q. Then

ωX∆p∆1q «A
ωxp∆1q

ωxp∆q
.

In particular, dωx

dωX∆
« ωxp∆q ω-almost everywhere.

Proof. Apply Lemma 8.20 to upxq “ ωxp∆1q. The density estimate follows from Theorem
4.12 and the definition of density.

Next we revisit the change of pole formula under the localization procedure. Let ξ be a
boundary point, r ă 1

2dΩpx0q. Consider the intermediate domain rΩ “ rΩr,ξ as in Lemma

8.16, x “ Xr,ξ with respect to Ω, y P Bpx,A´3{2rqzBpx,A´2rq, ∆ “ ∆A´2rpξq. Then by
Theorem 8.13 and Lemma 8.8 we get

G
rΩ

py, xq « r2´d,

and, by Theorem 8.13 again and Harnack,

GΩpy, x0q « r2´dωp∆q.

Compare both functions on y using Theorem 8.17 to get

Claim 8.22. For z P BA´2rpξq X Ω

G
rΩ

pz, xq «
GΩpz, x0q

ωp∆q
.

By Claim 8.22 and Theorem 8.13 we get

Claim 8.23. For every surface ball ∆1 Ă ∆, we have

ωx
rΩ

p∆1q «
ωp∆1q

ωp∆q

Finally, from Claim 8.23 and Lemma 8.21 we obtain

Theorem 8.24. Let Ω be a UCDC domain and x0 P Ω a fixed point. Let ξ be a boundary
point, r ă 1

2dΩpx0q, and rΩ “ rΩr,ξ as in Lemma 8.16. For every Borel set E Ă ∆ :“
∆A´2r,ξ, we have

ω
Xr,ξ

rΩ
pEq «

ωx0pEq

ωx0p∆q
« ωXr,ξpEq.
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8.4 Estimates for the Radon-Nikodym derivative

Fix a UCDC domain Ω and a pole x0 P Ω and denote ω :“ ωx0 . Then the Radon-Nikodym

derivative Kpx, ξq “ dωx

dω pξq equals limrÑ0
ωxp∆r,ξq

ωp∆r,ξq
for ω-a.e. ξ (see Section 4.3).

To simplify the section, we define also Kpx, ξq ” 0 whenever dωx

dω pξq is not well defined

or dωx

dω pξq ‰ limrÑ0
ωxp∆r,ξq

ωp∆r,ξq
.

Lemma 8.25. Let x “ Xr,ξ0, ∆j “ ∆2jr,ξ0 with r ď 2jr ď 2diampBΩq and Rj “ ∆jz∆j´1.
Then

sup
ξPRj

Kpx, ξq ď
Cx0C2

´γj

ωp∆jq
,

with γ,C ą 0 depending only on A; and Cx0 depending only on dΩpx0q

diampBΩq
and A.

Proof. First we claim that whenever ∆1 Ă Rj , we get

ωxp∆1q ď CAω
X∆j p∆1q2´jα.

Indeed, if j ě 2, then combining Theorem 8.4, Lemma 8.10, and Harnack’s inequality we
get

ωxp∆1q
T.8.4
ÀA

ˆ

|x´ ξ0|

2j´2r

˙α

sup
yP2j´2Brpξ0qXΩ

ωyp∆1q
T.8.10, (8.1)

ÀA

ˆ

|x´ ξ0|

2jr

˙α

ω
X∆j p∆1q.

If, instead, j P t0, 1u, then

ωxp∆1q
(8.1)
«A ω

X∆j p∆1q «A ω
X∆j p∆1q2´jα,

and the claim is established.
To complete the proof, suppose first that dΩpx0q ě r1 :“ A´1diampBΩq. In this case,

whenever 2jr ď 2´1r1, we have x0 R B2¨2jrpξ0q and so the change of pole formula implies

ωp∆1q «A ω
X∆j p∆1qωp∆jq.

If, instead, 2´1r1 ă 2jr ď 2diampBΩq, then x0 and X∆j can be joined by a Harnack chain
with a number of balls controled only by the dimension and A, so

ωp∆1q
(8.1)
«A ω

X∆j p∆1q
L.8.8
«A ω

X∆j p∆1qωp∆jq.

In any case, for ξ P Rj we get

Kpx, ξq ď lim sup
rÑ0

ωxp∆r,ξq

ωp∆r,ξq
ÀA

2´jα

ωp∆jq
.

If instead, dΩpx0q ă r1, then pick rx P Ω such that dΩprxq ě r1, whose existence is
granted by the interior corkscrew condition. The Harnack chain condition (8.1) implies

the existence of Cx0 depending only on dΩpx0q

diampBΩq
and A such that

ωrxp∆q«Cx0ω
x0p∆q
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for every ∆, so applying the previous case we get

Kpx, ξq ď lim sup
rÑ0

ωxp∆r,ξq

ωp∆r,ξq
«Cx0 lim sup

rÑ0

ωxp∆r,ξq

ωrxp∆r,ξq
ÀA

2´jα

ωp∆jq
.

Lemma 8.26. Let r ă diampBΩq. Then

sup
ξPBΩz∆r,ξ0

Kpx, ξq
xÑξ0
ÝÝÝÑ 0.

Proof. Note that if ξx P BΩ is the point where dΩpxq “ ξx, and picking rx “ dΩpxq, then

ξ P Rj with jx,ξ « log2
|x´ξ|

dΩpxq
Á log2

r
dΩpxq

xÑξ0
ÝÝÝÑ 8. Thus, the previous lemma reads as

Kpx, ξq ď
Cx0C2

´γjx,ξ

ωp∆jx,ξq

xÑξ0
ÝÝÝÑ 0.

because ωp∆jx,ξq behaves like a constant by the doubling property.

8.5 Global boundary behavior of harmonic functions in CDC
uniform domains

A kernel function in Ω at ξ P BΩ is a positive harmonic function u in Ω that vanishes con-
tinuously on BΩztξu and such that upx0q “ 1. Note that lim supxÑξ upxq “ 8. Otherwise
tξu would have positive harmonic measure, and this cannot happen by Theorem 6.33.

Lemma 8.27. Let Ω be a UCDC domain. There exists a kernel function u at every
boundary point.

Proof. Let ξ P BΩ, and denote

umpxq “
ωxp∆2´m,ξq

ωp∆2´m,ξq
,

so that umpx0q “ 1.

By Harnack’s inequality and Lemma 2.14 there is a partial umj

jÑ8
ÝÝÝÑ u uniformly on

compact subsets of Ω, with u positive and harmonic in Ω.
Fix r ă diampBΩq and let ∆ :“ ∆r,ξ. For j big enough, we get

umj pxq
L 8.20

« A umj pX∆qωxp∆q
(8.1)

«r,x0,A umj px0qωxp∆q “ ωxp∆q

for every x P ΩzB2r. Therefore,

upxq «r,x0,A ω
xp∆q for every x P ΩzB2r

and therefore u vanishes in BΩz2∆. The lemma follows letting r Ñ 0.
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Lemma 8.28. Let Ω be a UCDC domain. Assume that u is a kernel function for Ω at ξ.
Then

upxq «A
ωxp∆q

ωp∆q
for every x P Ω.

Proof. Let r ą 0 be small enough and ∆ :“ ∆r,ξ. By Lemma 8.20

1 “ upx0q «A upX∆qωp∆q.

and
upxq «A upX∆qωxp∆q.

Therefore

upxq «A
ωxp∆q

ωp∆q

for all x P ΩzB2rpξq for r small enough.

Theorem 8.29. Let Ω be a UCDC domain. For every boundary point the kernel function
is unique.

Proof. We follow the approach of [CFMS81, Theorem 3.1]. Assume that u1, u2 are kernel

functions for Ω at ξ P BΩ. Then, for x P Ω we have u1pxq

u2pxq
ď C0

u1px0q

u2px0q
by Lemma 8.28.

Therefore
u1 ď C0u2. (8.11)

holds for every pair of kernel functions u1, u2.
If C0 “ 1 the lemma follows, so we may assume that C0 ą 1. In that case,

C0

C0 ´ 1
u2 ´

1

C0 ´ 1
u1 “ u2 `

1

C0 ´ 1
pu2 ´ u1q

is a kernel function as well by the maximum principle. Therefore (8.11) holds for this
function, namely

u1 ď C0

ˆ

u2 `
1

C0 ´ 1
pu2 ´ u1q

˙

so

C0

C0 ´ 1

ˆ

u2 `
1

C0 ´ 1
pu2 ´ u1q

˙

´
1

C0 ´ 1
u1 “ u2 `

2

C0 ´ 1
pu2 ´u1q `

1

pC0 ´ 1q2
pu2 ´u1q

is also a kernel function.
In general, if

u2 `

ˆ

k

C0 ´ 1
` tk

˙

pu2 ´ u1q (8.12)

is a kernel function, then (8.11) holds for this function as well, namely

u1 ď C0

ˆ

u2 `

ˆ

k

C0 ´ 1
` tk

˙

pu2 ´ u1q

˙

,
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so

C0

C0 ´ 1

ˆ

u2 `

ˆ

k

C0 ´ 1
` tk

˙

pu2 ´ u1q

˙

´
1

C0 ´ 1
u1

“ u2 `
k ` 1

C0 ´ 1
pu2 ´ u1q `

k ` tkpC0 ´ 1q

pC0 ´ 1q2
pu2 ´ u1q

is also a kernel function. By induction, a kernel function as in (8.12) can be obtained for
every k P N with tk ą 0.
Now, applying (8.11) again, we get that for every k

u2 `
k

C0 ´ 1
pu2 ´ u1q ď u2 `

ˆ

k

C0 ´ 1
` tk

˙

pu2 ´ u1q ď C0u2.

This implies that u2 ď u1. But interchanging the roles of u1 and u2 we obtain the converse
inequality and the lemma follows.

Definition 8.30. A non-tangential region at ξ P BΩ is denoted by

Γαpξq :“ tx P Ω : |x´ ξ| ă p1 ` αqdΩpxqu .

The non-tangential maximal function is denoted

Nαupξq :“ sup
Γαpξq

|u|

for u defined in Ω. Finally, we say that u converges to f non-tangentially at ξ if for any
α,

lim
ΓαpξqQxÑξ

upxq “ fpξq.

Usually the value of α is of little importance when dealing with harmonic functions
because typically the boundedness of the operator Nα does not depend on α. Therefore
we usually denote Nu for some value of α.

Definition 8.31. The centered Hardy-Littlewood maximal function with respect to ω is
defined as

Mωfpξq :“ sup
r

´

ż

∆r,ξ

|f | dω

for every f P L1
locpωq, and, more generally,

Mωµpξq :“ sup
r

µp∆r,ξq

ωp∆r,ξq

for every µ P MpBΩq :“ tFinite Radon measures supported in BΩu.
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The maximal function satisfies a weak-p1, 1q estimate, i.e.

ωtMωf ą λu ď
C

λ
}f}L1pωq, (8.13)

and for every 1 ă p ď 8

}Mωf}Lppωq ď C}f}Lppωq, (8.14)

see [Mat95, Theorem 2.19], for instance. In fact the weak estimate also holds for Radon
measures, by the same covering arguments used to prove the weak p1, 1q bounds:

Lemma 8.32. For µ P MpBΩq we have

ωtMωµ ą λu ď
C

λ
|µpBΩq|. (8.15)

Theorem 8.33. Let Ω be a UCDC domain. If µ is a finite Borel measure on BΩ with
Lebesgue decomposition (see Theorem 4.15) dµ “ fdω ` dν, where ν is mutually singular
with ω, and uµpxq :“

ş

Kpx, ζq dµpζq, then

Nuµ ď CαMων,

and u converges to f non-tangentially at ω-a.e. boundary point.

Proof. Consider the operator rN defined on MpBΩq by

rNµ :“ Nuµ,

where α is fixed (and the constants may depend on its value). First we claim that

rNµ ď CMωµ. (8.16)

Indeed, let us assume that y P Γαpξq, with distpy, ξq ď r ! r0, and let ∆ :“ ∆r,ξ. By
the Harnack inequality we have that

uµpX∆q “

ż

KpX∆, ζq dµpζq.

Decomposing as in Lemma 8.25 we get

uµpyq “
ÿ

j

ż

Rj

Kpy, ζq dµpζq
L 8.25
ÀA

ÿ

j

2´γAj

ωp∆jq

ż

Rj

dµpζq ď Mωµpξq
ÿ

j

2´γAj ÀA Mωµpξq.

Since rNµpξq “ supyPΓαpξq |uµpyq|, estimate (8.16) follows.
Note that combining (8.15) with (8.16) we obtain the weak type estimate

ωt rNµ ą λu ď
C

λ
|µpBΩq|. (8.17)
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It remains to compute the nontangential limit of uµ, proving that it coincides with f at
ω-a.e. boundary point. Let us write n.t. lim supyÑξ :“ lim supΓαpξqQyÑξ. Given ε, λ ą 0,
we want to prove that

0µ,λ0µ,λ :“ ω

#

n.t. lim sup
yÑξ

|uµpyq ´ fpξq| ą λ

+

ă ε. (8.18)

First we will compute the case ν “ 0. Whenever f P CpBΩq, we have that

uf pxq “

ż

fpζqKpx, ζq dωpζq
E.4.3.2

“

ż

fpζq dωxpζq “ Hfpxq,

so
uf pxq Ñ fpξq as x Ñ ξ P BΩ (8.19)

by Wiener regularity.
For f P L1pBΩq, consider simple functions tfnun converging in L1pωq to f . Since ω is a

Radon measure, we can find continuous functions tfn,juj converging to fn in L1pωq. By a
diagonal argument, we find a sequence of continuous functions tgnun converging in L1pωq

to f .
Using the triangle inequality, we can decompose the left-hand side of (8.18) as

0fω,λ0fω,λ ď ω

#

n.t. lim sup
yÑξ

|uf pyq ´ ugnpyq| ą
λ

3

+

` ω

#

n.t. lim sup
yÑξ

|ugnpyq ´ gnpξq| ą
λ

3

+

` ω

"

|gnpξq ´ fpξq| ą
λ

3

*

“ 11 ` 22 ` 33 .

By (8.13),

33 ď
C

λ
}f ´ gn}L1pωq.

The continuity of gn implies that ugn “ Hgn . By (8.19) Since Ω is Wiener regular, we get
that

22 “ 0.

Finally,

11 ď ω

"

rNpf ´ gnqpξq ą
λ

3

*

(8.17)
ď

C

λ
}f ´ gn}L1pωq.

Combining the three estimates, we obtain

ω

"ˇ

ˇ

ˇ

ˇ

n.t. lim sup
yÑξ

uf pyq ´ fpξq

ˇ

ˇ

ˇ

ˇ

ą λ

*

ď
C

λ
}f ´ gn}L1pωq ă ε

for n big enough (depending on λ and f), so (8.18) is settled whenever ν “ 0. In particular,

0fω,λ0fω,λ “ 0.
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8 Harmonic measure in UCDC and NTA domains

If ν ‰ 0, we write

0µ,λ0µ,λ ď ω

#

n.t. lim sup
yÑξ

|ufωpyq ´ fpξq| ą λ{2

+

` ω

#

n.t. lim sup
yÑξ

|uνpyq ´ 0| ą λ{2

+

“ ω

#

n.t. lim sup
yÑξ

|uνpyq ´ 0| ą λ{2

+

.

Let E Ă BΩ be an ω-measurable set given by the Radon-Nikodym decomposition, i.e. so
that ωpEq “ 0 “ νpBΩzEq. Since ν, ω are Radon measures, we can find a compact set
K Ă E and an open set U Ą E so that νpEzKq ă δ and ωpUq ă δ.

Now,

0µ,λ0µ,λ ď ω

#

n.t. lim sup
yÑξ

ˇ

ˇ

ˇ
uν|EzK

pyq

ˇ

ˇ

ˇ
ą λ{4

+

` ω

#

n.t. lim sup
yÑξ

ˇ

ˇuν|K
pyq

ˇ

ˇ ą λ{4

+

“ 44 ` 55 .

The weak estimate (8.17) implies that

44 ď ω
!
ˇ

ˇ

ˇ

rNνEzKpξq

ˇ

ˇ

ˇ
ą λ{4

)

ď
C

λ
νpEzKq ď

C

λ
δ.

Note also that

55 ď ωpUq ` ω

#

ξ P U c : n.t. lim sup
yÑξ

ˇ

ˇuν|K
pyq

ˇ

ˇ ą λ{4

+

.

Let r :“ distpK,U cq ą 0. Now, for every ξ P U c, y P Γαpξq we have that

uν|K
pyq :“

ż

K
Kpy, ζq dνpζq ď νpKq sup

ζPBΩz∆r,ξ

Kpy, ζq
L 8.26
ÝÝÝÑ
yÑξ

0,

so

ω

#

ξ P U c : lim sup
yÑξ

ˇ

ˇuν|K
pyq

ˇ

ˇ ą λ{4

+

“ 0.

Combining all the estimates, we get

0µ,λ0µ,λ ď
C

λ
δ ` δ ă ε

as long as we take δ small enough.

Remark 8.34. Note that f P L1pωxq if and only if f P L1pωq by Exercise 4.3.2 and
Lemma 8.25. Moreover, by the previous theorem we can say that

uf pxq :“ ufωpxq “

ż

fpξq
dωx

dω
pξq dωpξq

E.4.3.2
“

ż

fpξq dωxpξq,

is the harmonic extension of f P L1pωq in the ω-a.e. non-tangential sense, i.e.,

n.t.´ lim
xÑξ

uf pxq “ fpξq for ω-a.e. x P BΩ.

Note that uf coincides with its Perron extension Hf when f is continuous.
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9 Harmonic measure in the complex plane

9.1 Introduction

In this chapter we will study some fundamental results regarding harmonic measure in
the complex plane. We refer the interested reader to the book [GM05]. We will use the
symbol D to refer to the unit disc (or ball) B1p0q in the complex plane.
Let us begin by citing some key results which we are going to use during this chapter.

First, we say that a homeomorphism φ : Ω Ñ Ω1 with Ω,Ω1 Ă C is conformal whenever
B̄φ “ 0. Planar simply connected domains, i.e., domains Ω Ă Ĉ :“ C Y 8 such that
Ωc is connected, are conformally equivalent to the disc, as a consequence of the Riemann
mapping theorem, see [Con78, Chapter VII] for a proof.

Theorem 9.1 (Riemann mapping Theorem). Let Ω Ă C be a simply connected domain,
and let x P Ω, 0 ď α ă 2π. Then there is a unique conformal map φ : D Ñ Ω such that
φp0q “ x and argpφ1p0qq “ α.

The mappings φ defined by the previous theorem are usually referred to as Riemann
mappings. Note that changing the point x and the angle α in the theorem corresponds
to precomposing φ with a Möbius transform. In this sense, once we obtain a Riemann
mapping of a given domain, we can easily compute every single Riemann mapping of the
domain.
The regularity properties of the boundary of a domain are related to the boundary

behavior of their conformal mappings, see [Pom92, Theorem 2.6] for a detailed account.

Definition 9.2. We say that a set Γ is a curve whenever there exists a continuous pa-
rameterization γ : BD Ñ Γ (possibly with infinitely many self-intersections).
We say that a set E is locally connected if for every ε ą 0 there exists δ ą 0 such that

for every two points x, y P E with |x ´ y| ă δ there exists a connected subset F Ă E
containing both points and such that diamF ă ε.

The following result is a combination of the continuity theorem and the prime ends
theorem (see [Pom92, Theorem 2.1, Corollary 2.19])

Theorem 9.3 (Continuity theorem). Let Ω be a simply connected domain and let φ : D Ñ

Ω be a Riemann mapping. Then the following are equivalent:

• The boundary BΩ is a curve.

• The boundary BΩ is locally connected.

• The function φ has a continuous extension to D̄.
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9 Harmonic measure in the complex plane

In particular, φ : BD Ñ BΩ is a continuous parameterization of the curve and only a
countable number of points in BΩ have more than two preimages.

Carathéodory Theorem (see [Pom92, Theorem 2.6] ) is a natural counterpart to the
continuity theorem above regarding homeomorphic mappings. We say that a set Γ Ă C is
a Jordan curve if there exists a continuous, injective parameterization γ : BD Ñ Γ, and we
say that a domain Ω is a Jordan domain whenever BΩ is a Jordan curve (and therefore,
BΩ is bounded). Note that given a Jordan curve Γ, there are two Jordan domains which
have Γ as boundary, one of them is bounded, and the other one unbounded.

Theorem 9.4 (Carathéodory Theorem). Let φ : D Ñ Ω be a Riemann mapping of a
simply connected domain Ω Ă C. Then φ has a continuous and injective extension to D
if and only if Ω is a Jordan domain.

As a matter of fact, the previous result can be easily extended to the case of unbounded
Jordan domains, but we will omit these technicalities.
Another way to measure the regularity of the Riemann mapping is to find out to which

function spaces it belongs. The smoother the domain is, the more regular the Riemann
mapping will be. Next we define the Hardy spaces of analytic functions Hp, although in
this chapter we will only consider H1.

Definition 9.5. If 0 ă p ă 8, we say that an analytic function f : D Ñ C is in the Hardy
space Hp whenever

}f}Hp :“ sup
0ără1

ˆ
ż

BD
|fprζq|

p
|dζ|

˙
1
p

ă 8. (9.1)

If p “ 8, then f P H8 whenever

}f}H8 :“ sup
D

|f | ă 8.

One can show that the term in the supremum in (9.1) is increasing in r and, therefore,
it can be replaced by limrÕ1.

In virtue of Theorem 3.11, if 1 ă p ă 8, we get that whenever f extends non-
tangentially to the boundary as an Lp function, then

lim
rÑ1

ż

BD
|fprζq ´ fpζq|

p
|dζ| “ 0. (9.2)

In fact, for every finite p and every f P Hp one can define the non-tangential limit fpζq

almost everywhere, and identity (9.2) happens to be true, see [GM05, Appendix A]. Since
we are only interested in H1 we will refer only to this case:

Theorem 9.6. Let f P H1. Then f has non-tangential limit fpζq H1-almost everywhere
in BD and (9.2) is satisfied with p “ 1. In particular,

}f}H1 “ }f}L1pH1|BDq.

If, moreover, f ı 0, then fpζq ‰ 0 H1-almost everywhere in BD.

For the notion of non-tangential limit, see Definition 8.30.
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9 Harmonic measure in the complex plane

9.2 Harmonic measure and conformal mappings

One of the basic facts that makes the study of harmonic measure in the plane different
from higher dimensions is the availability of many conformal mappings in the plane and
the good behavior of harmonic measure under those mappings. We will take advantage
of this fact expressing the harmonic measure of a simply connected domain as the image
measure of the arc-length by a Riemann mapping.

Recall that given a continuous map φ : G Ñ G1 and a Borel measure µ on G, then the
image measure φ#µ is a measure on G1 defined by

φ#µpAq “ µpφ´1pAqq

for any Borel set A Ă G1. Then, for any Borel function f : G1 Ñ R, it holds
ż

f ˝ φdµ “

ż

f dφ#µ.

See Chapter 4.

Proposition 9.7. Let Ω,Ω1 Ă C be bounded Wiener regular domains, and let φ : Ω Ñ Ω1

be a continuous surjective map such that φpBΩq “ BΩ1. Suppose also that φ is holomorphic
in Ω, and let x P Ω and x1 “ φpxq. Denote by ωΩ and ωΩ1 the respective harmonic measures
for Ω and Ω1. Then,

ωx1

Ω1 “ φ#ω
x
Ω.

In particular, for any Borel set A Ă BΩ1, we have ωx1

Ω1pAq “ ωx
Ωpφ´1pAqq.

Proof. Let f : BΩ1 Ñ R be an arbitrary continuous function and let uΩ1,f be its harmonic
extension to Ω1. Then uΩ1,f ˝ φ is continuous in Ω, harmonic in Ω, and it coincides with
the harmonic extension of f ˝ φ : Ω Ñ R, i.e., uΩ1,f ˝ φ “ uΩ,f˝φ. Therefore,

ż

f dωx1

Ω1 “ uΩ1,f px1q “ uΩ1,f pφpxqq “ uΩ,f˝φpxq “

ż

f ˝ φdωx
Ω “

ż

f dφ#ω
x
Ω.

Since this holds for any continuous function f on BΩ1, the proposition follows.

Corollary 9.8. Let Ω Ă C be bounded and simply connected. Let φ : D Ñ Ω be a
conformal mapping which extends to a continuous map D̄ Ñ Ω. Then

ω
φp0q

Ω “
1

2π
φ#H1|BD.

That is, for any Borel set F Ă BΩ, and E “ φ´1pF q, we have

ω
φp0q

Ω pF q “
H1pEq

2π
.
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9 Harmonic measure in the complex plane

Proof. By topological arguments, φpBDq “ BΩ. By Proposition 9.7, we deduce that

ω
φp0q

Ω “ φ#ω
0
D “

1

2π
φ#H1|BD.

Remark that, by the continuity theorem, if Ω is a simply connected domain with locally
connected boundary (and in particular if it is a bounded Jordan domain), then the con-
formal mapping φ : D Ñ Ω extends continuously to BD, and thus the preceding corollary
applies. Notice also that whenever we know how to find a conformal map φ : D Ñ Ω, we
know how to find the harmonic measure ωΩ.

9.3 The Riesz brothers theorem

In this section we will prove the following result:

Theorem 9.9 (F. and M. Riesz Theorem). Let Ω Ă C be a bounded simply connected
domain whose boundary has finite length, and let φ : D Ñ Ω be a Riemann mapping for
Ω. Then, φ1 P H1pDq and

ωpAq “ 0 ðñ H1pAq “ 0.

The reader can find an elegant proof of this result in [GM05, Chapter VI], which covers
the case of Jordan domains. In these notes we use the same approach, adding some
technicalities to include every simply connected domain whose boundary has finite length.
Notice that the result does not depend on the precise pole for harmonic measure, since
harmonic measures for different poles (and the same domain) are mutually absolutely
continuous, see Lemma 5.29.
We begin by proving the Riesz brothers theorem for simply connected domains with

locally connected boundary. Later on, in Theorem 9.14 we will prove that having finite
length implies being locally connected for the boundary of a simply connected domain.

Theorem 9.10. Let Ω Ă C be a bounded simply connected domain with locally connected
boundary and let φ : D Ñ Ω be conformal. Then BΩ has finite length if and only if
φ1 P H1pDq. If φ1 P H1pDq, then

H1pBΩq ď }φ1}H1pDq ď 2H1pBΩq. (9.3)

More precisely, for every Borel set E Ă BΩ we get

H1pEq ď φ#νpEq ď 2H1pEq, (9.4)

where ν is the Radon measure defined by

νpAq :“
1

2π

ż

A
|φ1| dH1, (9.5)

for any Borel set A Ă BD.
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9 Harmonic measure in the complex plane

Proof. By the continuity theorem φ : BD Ñ BΩ is a continuous parameterization of the
curve and only a countable number of points in BΩ have more that two preimages.

Assume that φ1 P H1. Then given a partition 0 “ θ0 ă θ1 ă ¨ ¨ ¨ ă θn “ 2π, writing
ζj :“ eiθj , by the fundamental theorem of calculus we get

n
ÿ

j“1

|φpζjq ´ φpζj´1q|
T.9.3
“ lim

rÑ1

n
ÿ

j“1

|φprζjq ´ φprζj´1q|
FTC
“ lim

rÑ1

n
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż rζj

rζj´1

φ1pzq dz

ˇ

ˇ

ˇ

ˇ

ˇ

D.9.5
ď

›

›φ1
›

›

H1 .

Thus, the length of the parameterization (i.e., counting multiplicities) defined by

ℓpφq :“ sup
tζjunj“1

n
ÿ

j“1

|φpζjq ´ φpζj´1q| (9.6)

where the supremum is taken with respect to all the possible partitions, is bounded by
ℓpφq ď }φ1}H1 . Thus,

H1pBΩq ď ℓpφq ď
›

›φ1
›

›

H1 , (9.7)

and the boundary has finite length, see Exercise 9.3.1 for the details.
Conversely, let us assume that BΩ has finite length. First we claim that

ℓpφq ď 2H1pBΩq.

Indeed, consider a partition 0 “ θ0 ă θ1 ă ¨ ¨ ¨ ă θn “ 2π, and take ζj :“ eiθj and Fj :“
φ ˝ ei¨prθj , θj´1qq, which is a Borel set. Writing F :“ tζ P BΩ : #φ´1pζq ď 2u, since BΩzF
is countable (see Theorem 9.3 above), all these sets are Borel, so H1pFjq “ H1pF X Fjq.
Since

řn
j“1 χFjXF ď 2, we get

n
ÿ

j“1

|φpζjq ´ φpζj´1q| ď

n
ÿ

j“1

H1pFjq “

n
ÿ

j“1

H1pFj X F q “

n
ÿ

j“1

ż

F
χFjXFdH1 ď 2H1pF q,

and the claim follows taking supremum on all the possible partitions, because H1pF q “

H1pBΩq.
Given r P p0, 1q, let us choose a partition 0 “ θ0 ă θ1 ă ¨ ¨ ¨ ă θn “ 2π, and let ζj :“ eiθj ,

satisfying that
n
ÿ

j“1

|φprζjq ´ φprζj´1q| ě ℓpφrq ´ ε,

with ℓpφrq defined as in (9.6), where φrpζq :“ φprζq is a (rectifiable Jordan) curve. The
function

Ψpzq :“
n
ÿ

j“1

|φpzζjq ´ φpzζj´1q|

is subharmonic on D and by the continuity theorem Ψ is continuous on D̄, so the maximum
principle applies:

sup
D

Ψ
L.5.4
“ sup

BD
Ψ ď ℓpφq ď 2H1pBΩq.
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9 Harmonic measure in the complex plane

Now,
ż

BD

ˇ

ˇφ1przq
ˇ

ˇ |dz| “ ℓpφrq ď Ψprq ` ε ď 2H1pBΩq ` ε.

Thus, φ1 P H1, and we get the estimate

›

›φ1
›

›

H1 ď 2H1pBΩq.

Applying estimate (9.7), we obtain (9.3).
Next we turn our attention to the proof of (9.4). Let us assume that φ1 P H1pDq. We

can extend it non-tangentially to the boundary as an L1 function via Theorem 9.6, so ν
is a well defined Radon measure. First we show that

H1pφpUqq ď νpUq ď 2H1pφpUqq (9.8)

for every relative open set U Ă BD. It suffices to show this identity assuming that U “ J
is an open arc J “ ei¨pIq, where I is an open interval I “ pa, bq. Let a “ θ0 ă θ1 ă ¨ ¨ ¨ ă

θn “ b be a partition of I, and let ζj :“ eiθj . Then, arguing as before we get

H1pφpJqq ď ℓpφ|Jq ď lim
rÑ1´

ż

J
|φ1prζq||dζ|

T.9.6
“ νpJq.

On the other hand, assuming the partition satisfies

n
ÿ

j“1

|φprζjq ´ φprζj´1q| ě ℓpφr|Jq ´ ε,

and defining Ψ as before, we obtain

sup
D

Ψ “ sup
BD

Ψ ď ℓpφ|Jq ď 2H1pφpJqq,

so
ż

J
|φ1prζq||dζ| “ ℓpφr|Jq ď Ψprq ` ε ď 2H1pφpJqq ` ε.

But, again by Theorem 9.6, we get

νpJq “ sup
0ără1

ż

J
|φ1prζq||dζ| ď 2H1pφpJqq ` ε,

and (9.8) follows.
Now, given a Borel set E Ă BΩ, by the Borel regularity of ν we have

φ#νpEq “ inf
UĄφ´1pEq

νpUq
(9.8)
ě inf

UĄφ´1pEq
H1pφpUqq ě H1pEq,

establishing the left-hand side of (9.4). Regarding the right-hand side, we have

2H1pEq “ inf
V ĄE

2H1pV q “ inf
V ĄE

2H1pφpφ´1pV qqq.
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Since φ is continuous by Theorem 9.3, we infer that φ´1pV q is an open set whenever V is
open, so we get

2H1pEq
(9.8)
ě inf

V ĄE
νpφ´1pV qq ě νpφ´1pEqq.

Corollary 9.11. Let Ω Ă C be a bounded simply connected domain with locally connected
boundary. Then the harmonic measure and the arc-length measure in BΩ are mutually
absolutely continuous.

Proof. By Corollary 9.8, the harmonic measure is the pushforward of the arc-length mea-
sure, so

1

2π
H1pφ´1pEqq “ ωpEq

for every Borel set E Ă BΩ.
The preceding theorem implies the comparability of the length in BΩ with respect to

the pushforward of ν for Borel sets E Ă BΩ:

H1pEq ď νpφ´1pEqq ď 2H1pEq,

where ν stands for the measure defined in (9.5). In particular, the length in BΩ and the
pushforward of ν are mutually absolutely continuous, i.e.,

H1pEq “ 0 ðñ νpφ´1pEqq “ 0.

On the other hand, the arc-length in BD and ν are mutually absolutely continuous as
well, i.e.,

νpAq “ 0 ðñ H1pAq “ 0.

Indeed, by the inner regularity of Radon measures (see Proposition 4.5), we may assume
that A “ K Ă BD is compact. If H1pKq “ 0, then νpKq “ 0 by definition. On the other
hand, if νpKq “ 0, then since φ1 ‰ 0 a.e. (see Theorem 9.6), we get H1pKq “ 0 as well.

Their image measures are also mutually absolutely continuous, i.e. for every Borel set
E Ă BΩ we get

νpφ´1pEqq “ 0 ðñ ωpEq “ H1pφ´1pEqq “ 0.

All in all, the harmonic measure and the arc-length measure in BΩ are mutually absolutely
continuous as claimed.

We need the following auxiliary result:

Theorem 9.12. Let E Ă Rd be a compact connected set such that H1pEq ă 8. Then E
is arc-connected.

Proof. See Lemma 3.12 from [Fal85].
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Theorem 9.13. Let E Ă Rd be a compact connected set such that H1pEq ă 8. Then E
is locally connected.

Proof. We assume that E is not a single point. It suffices to check that for every ξ P E and
0 ă r ď diampEq{3, there exists a connected set F Ă EXB̄rpξq which is a neighborhood of
ξ in the topology of E. To this end, denote by tΓiuiPI the family of connected components
of E X B̄rpξq. We claim that each component Γi, i P I, intersects BBrpξq. Indeed, by
Theorem 9.12 E is arc-connected and, since E Ć B̄rpξq, there is an arc contained in E
that joins Γi to some point ξ1 P EzB̄rpξq. From this fact and the maximality of Γi, our
claim follows easily.
Let tΓiuiPI0 , with I0 Ă I, be the subfamily of connected components of EX B̄rpξq which

intersect B̄r{2pξq. Since each Γi, i P I0, intersects both BBrpξq and B̄r{2pξq, it holds that

H1pΓiq ě r{2 for each i P I0,

see [Fal85, Lemma 3.4]. Then, from the fact that H1pEq ă 8 and the disjointness of
the components Γi, it turns out that I0 is a finite set. That is, there are finitely many
components Γi, i P I0.
Let F “ Γk0 be the component Γi, i P I0, that contains ξ. To see that F is a neighbor-

hood of ξ in E, let
δ “ min

iPI0ztk0u
distpξ,Γiq.

Notice that δ ą 0 because I0 is finite. Next, let δ1 “ 1
2 minpδ, r{4q. Then we have

E XBpξ, δ1q Ă F and thus F is a neighborhood of ξ in E.

Corollary 9.14. Let Ω Ă C be a bounded simply connected domain whose boundary has
finite length. Then its boundary is locally connected.

Proof. Since Ω is simply connected its boundary is connected, and then we can apply
Theorem 9.13.

Exercise 9.3.1. Show the first estimate in (9.7), that is, H1pBΩq ď ℓpφq.

9.4 The dimension of harmonic measure in the plane

The dimension of a Borel measure µ in Rd is defined as follows:

dimHpµq “ inftdimHpEq : E Ă Rd Borel , µpEcq “ 0u.

This does not have to be confused with the dimension of suppµ. For example, let Q “

tqkukě1 be the set of all rational numbers, ordered in some way. Then consider the
following measure in R:

µ “
ÿ

kě1

2´k δqk ,

where δqk is the Dirac delta on qk. It is immediate to check that dimH µ “ 0, while
suppµ “ R and so dimHpsuppµq “ 1.
For simply connected domains Makarov [Mak85] proved in 1985 the following:
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Theorem 9.15. Let Ω Ă C be a simply connected domain. Then dimH ω “ 1. Further,
ωpEq “ 0 for any set E Ă BΩ with Hausdorff dimension dimHpEq ă 1.

Remark that the dimension of harmonic measure is independent of the chosen pole in
the domain. For arbitrary planar domains, Jones and Wolff proved the following result in
1988 [JW88]:

Theorem 9.16. For any open set Ω Ă C, the associated harmonic measure satisfies

dimHpωq ď 1.

Observe that the boundary of a planar domain may have Hausdorff dimension larger
than 1. This is the case, for example, of the Jordan domain enclosed by the von Koch
snowflake. It is well known that this curve has dimension log 4{ log 3. Further, it is easy to
check that, because of connectedness, the (closed) support of harmonic measure coincides
with the full boundary for any domain Ω. In spite of this fact, the dimension of harmonic
measure is always at most 1. So there is a set E Ă BΩ with dimHE ď 1 with full harmonic
measure. By Corollary 5.36, such set E must be dense in BΩ whenever Ω is Wiener regular.
The Jones-Woff theorem was sharpened by Wolff [Wol93] a few years later:

Theorem 9.17. For any open set Ω Ă C, there exists a set E Ă BΩ with σ-finite length
and full harmonic measure.

The rest of this chapter is devoted to the proof of the Jones-Wolff Theorem 9.16. We
will not prove the other theorems by Makarov and Wolff mentioned above.

9.5 Preliminary reductions for the proof of the Jones–Wolff
Theorem

We will prove Theorem 9.16 assuming BΩ to be bounded, since we have defined harmonic
measure in this case. The case where BΩ is unbounded easily follows from the bounded
case (once harmonic measure is properly defined). We will show first below that we may
assume that Ω is Wiener regular.

Lemma 9.18. To prove Theorem 9.16, it suffices to prove it when Ω is Wiener regular.

Proof. We may assume that CapLpBΩq ą 0 because otherwise dimHpωq ď dimHpBΩq “ 0.
For each ε “ 1{k, let rΩk be the Wiener regular open set constructed in Proposition 6.37
(denoted by rΩ there). Also, denote by Fk the union of the closed balls B̄i, i P I, in the
construction of rΩk. For a given p P Ω, let k ě k0 be small enough so that p P rΩk and
dΩppq « d

rΩk
ppq. Denote by ω and ωk the respective harmonic measures for Ω and rΩk. By

Theorem 9.16 applied to rΩk, there exists a subset Ek Ă BrΩk with full harmonic measure
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ωp
k and with Hausdorff dimension at most 1. Taking into account that BrΩk Ă Fk Y BΩ, by

Proposition 6.37(vi) we have1

ωp
kpEkq ď ωp

kpFkq ` ωp
kpEk X BΩq ď

C

k
` ωp

kpEk X BΩq, (9.9)

with the constant C above possibly depending on dΩppq.
Let

E “
ď

k

pEk X BΩq.

Notice that dimHpEq “ supk dimHpEkq ď 1. By (9.9), we have

ωp
kpEq ě ωp

kpEk X BΩq ě ωp
kpEkq ´

C

k
“ ωkpBrΩkq ´

C

k
ě ωkpBΩ X BrΩkq ´

C

k
. (9.10)

Now by Lemma 6.38, we know that

ωppEq “ lim
kÑ8

ωp
kpEq and ωppBΩq “ lim

kÑ8
ωp
kpBΩ X BrΩkq.

So letting k Ñ 8 in (9.10), we deduce that E has full harmonic measure ωp. Since E has
Hausdorff dimension at most 1, we infer that dimH ω

p ď 1.

The next reduction is the following.

Lemma 9.19. To prove Theorem 9.16 under the hypothesis of compact boundary, we
may assume that Ω is an unbounded domain with compact boundary and that the pole for
harmonic measure is 8.

Proof. We may assume that Ω is connected because the harmonic measure for Ω with pole
at p P Ω coincides with the harmonic measure for the component of Ω containing p, with
pole at p.
Suppose now that p ‰ 8. Consider the map φpzq “ 1{pz ´ pq. This is a conformal

mapping of the Riemann sphere, and by Proposition 9.7 (which also holds for unbounded
domains with compact boundary), denoting Ω1 “ φpΩq, we have

ω8
Ω1 “ φ#ω

p
Ω.

Hence, assuming that Theorem 9.16 holds for ω8
Ω1 , we infer that there exists some subset

E Ă BΩ1 with dimHE ď 1 and full measure ω8
Ω1 . Then φ´1pEq has full measure ωp

Ω and,
since φ|BΩ : BΩ Ñ BΩ1 is bilipschitz, we also have dimH φ

´1pEq ď 1.

Recall that in Theorem 7.32 we showed the following properties for the harmonic mea-
sure and for the Green function with pole at 8, for any unbounded Wiener regular domain
Ω with compact boundary:

1Although ωp
kpEkq “ ωkpBrΩkq “ 1, we prefer not to use this fact, so that the proof of this lemma extends

easily to unbounded domains in Rd, d ě 3. Recall that we cannot ensure that in these domains the
harmonic measure of the boundary equals 1.
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(i) For every φ P C8
c pR2q,

ż

Ω
G8pzq∆φpzq dmpzq “

ż

φdω8.

(ii) ω8 coincides with the equilibrium measure of BΩ and moreover, for every z P Ω,

G8pzq “
1

CapW pBΩq
´

1

2π

ż

BΩ
log

1

|ξ ´ z|
dω8pξq. (9.11)

Recall also that, for any compact set E Ă C,

1

CapW pEq
“ inf

µPM1pEq
Ipµq “ inf

µPM1pEq

ż

E ˚ µdµ,

where the infimum is taken over all probability measure supported on E. The number

γE “
2π

CapW pEq

is called the Robin constant of E. So we have CapLpEq “ e´γE .

Lemma 9.20. To prove Theorem 9.16, it is enough to prove that for any ε ą 0 the
following holds:

For each η0 ą 0 there is a set A Ă BΩ with H1`ε
8 pAq ă η0 and ωpBΩzAq ă η0. (9.12)

Proof. The statement (9.12) implies that for η0 ą 0 there is a set A Ă BΩ with H1`ε
8 pAq ă

η0 and ωpBΩzAq “ 0, which in turn implies that there is A Ă BΩ with H1`ε
8 pAq “ 0

and ωpBΩzAq “ 0. Now taking εn Ñ 0, one gets sets An Ă BΩ with H1`εn
8 pAnq “ 0 and

ωpBΩzAnq “ 0. Letting E “
Ş

nAn we have H1`εn
8 pEq “ 0, for each n, which gives that

the Hausdorff dimension of E is less than or equal to one, and ωpBΩzEq “ 0.

Sketch of the proof of Theorem 9.16
We will make a reduction to the case in which K :“ BΩ is a finite union of pieces of

small diameter and rather well separated. Then we will construct an auxiliary compactK˚,
which is a finite union of closed discs, using two special modification methods, called “the
disc construction” and the “annulus construction”. It is crucial to compare the harmonic
measure associated with Ω and that associated with the new domain Ω˚ “ C˚zK˚. This
is simple for the annulus construction, but much more delicate for the disc construction;
Lemma 9.21 below takes care of this issue. The gradient of the Green function G “ G8 of
Ω˚ with pole at 8 can be estimated on some special curves surrounding K˚ and contained
in level sets of G. All these ingredients allow to estimate the harmonic measure of Ω in
terms of the integral of the gradient of G on these curves. Lemma 9.24 is the main tool to
end the proof estimating this integral in the appropriate way. An ingredient in the proof
of Lemma 9.24 yields in the limiting case, assuming BΩ smooth, the formula

ż

BΩ
|BνG| log |BνG| dH1 ą ´c0,
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where G is now the Green function of Ω with pole at 8, ν is the outer unit normal to
BΩ and c0 ą 0. If BΩ is analytic, by the reflection principle for harmonic functions (see
Exercise 9.5.1 below) ∇G is harmonic in a neighborhood of BΩ and thus it is C1pΩ̄q. By
Proposition 7.35, the harmonic measure is (in the smooth case)

dω8 “ |BνG| dH1|BΩ “ ´BνGdH1|BΩ.

Let us do some heuristics here. Assume that at the point z the “dimension” of ω8 at z

is dpzq, which means that ωpB̄pz, rqq „ rdpzq, or equivalently ω8pB̄pz,rqq

r „ rdpzq´1. By the
previous identity and the Radon-Nikodym theorem, we have

|BνGpzq| “ lim
rÑ0

ω8pB̄pz, rqq

2r
,

so we get

lim
rÑ0

ż

BΩ
pdpzq ´ 1q logp2rq dω8pzq ě ´c0.

From this fact, we deduce that the integrand in the left hand side of the preceding identity
does not tend to ´8 in a set of positive measure as r Ñ 0, that is dpzq ď 1 for ω8-a.e.
z P BΩ, and so, ω8 lives in a set of dimension not greater than 1.
From now on, in the rest of this chapter, unless otherwise stated, we assume that Ω

is a Wiener regular unbounded domain with compact boundary, and we denote by ω its
harmonic measure with pole at 8. We will also write K “ BΩ.

Exercise 9.5.1 (Reflection principle for planar harmonic functions). Let U Ă C be a
finitely connected domain bounded by disjoint analytic Jordan curves, and let u : U Ñ R
be a harmonic function in U with u P CpŪq and such that u|BU ” 0. Show that u P C1pŪq,
that is, show that ∇u extends continuously to BU . (hint: solve first [Eva98, Problem 2.5.9]
and then use that every analytic curve is locally the image of a segment by a conformal
mapping.)

9.6 The disc and the annulus construction

Let us start with the disc construction.

Disc construction

Fix ε ą 0. Let Q be a closed square with sides parallel to the axes and side length ℓ “ ℓpQq

and set E “ Q X K. Replace E by a closed disc B̄ (B will stand for the corresponding
open disc) with the same center as Q and radius rpBq defined by

rpBq “
1

2

CapLpEq1`ε

ℓε
“

1

2

e´γEp1`εq

ℓε
. (9.13)

By (6.4) this construction is scale invariant, i.e., if we dilate Q and E by a constant λ,
then the ball defined by this method is dilated by the same factor λ as well. We get a new
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compact set rK “ pKzEq Y B̄, a new domain rΩ “ C˚z rK “ pΩYEqzB̄ and a new harmonic
measure rω “ ω8

rΩ
.

Note that B̄ Ă Q˝. In fact, since the logarithmic capacity of a disc is the radius (see
proposition 6.16), we have the estimate

CapLpEq ď

?
2

2
ℓ,

so that

rpBq ď
1

2

`?
2{2

˘1`ε
¨ ℓ1`ε

ℓε
“
ℓ

2

´?
2{2

¯1`ε
ă ℓ{2.

Annulus construction

Let Q be a closed square with sides parallel to the axis and take the square RQ, where
R is a number larger than 1 that will be chosen later. The reader has to think that R is
very large. Delete K X pRQzQq0 from K to obtain a new domain rΩ “ Ω Y pRQzQq0 and
a new harmonic measure rω “ ω

rΩ
.

It is important to have some control on the harmonic measure of the new domain
obtained after performing the disc or the annulus construction. For the annulus this is
easy: any part of K which has not been removed has larger or equal harmonic measure.
In other words, if A Ă BΩ satisfies A X pRQzQq “ H, then rωpAq ě ωpAq. This is a
consequence of Lemma 5.32 because A Ă BΩ X BrΩ and Ω Ă rΩ.
Estimating the harmonic measure after the disc construction is a difficult task. The

result is the following.

Lemma 9.21. Let Q be a square with sides parallel to the axis. Fix ε ą 0 and perform the
disc construction for this ε. Assume that RQzQ Ă Ω. Then there exists a number R0pεq
such that for R ě R0pεq one has

(a) rωpB̄q ě c0 ωpQXKq.

(b) rωpAq ě ωpAq, if A Ă BΩzRQ is both relatively open and relatively closed.

Above rω and ω are harmonic measures with pole at 8.
The proof of Lemma 9.21 will be presented in Section 9.11 and we will use it as a black

box in the arguments below.

9.7 The Main Lemma and the domain modification

Let Ω “ C˚zK, CapLK ą 0 and assume that K Ă t|z| ă 1{2u (this assumption will be
convenient later on, but it is not essential). Fix ε ą 0 and let R ą 2 ` R0pεq, R integer,
where R0pεq is the constant given by Lemma 9.21. We let M “ Mpε, ηq stand for a large
constant that will be chosen later (see Section 9.10) and we let ρ be a small constant so
thatM ď log 1{ρ, and ρ “ 1

2N
, N a positive integer. Consider the grid G of dyadic squares

of side length ρ and lower left corner at the points of the form tpm` niqρ; m,n P Zu. For
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each 1 ď p, q ď R, let Gpq be the family of (closed) squares Q P G with pm,nq ” pp, qq

(mod R ˆR). Then G “
R
Ť

p,q“1
Gpq.

Write Kpq “
Ť

QPGpq

K XQ, Ωpq “ C˚zKpq, ωpqpAq “ ω8
Ωpq

. We will show the following:

Main Lemma 9.22. For any ε ą 0 and for any η ą 0, one can choose Rpεq ą 0 large
enough and ρpη, εq small enough so that for all 1 ď p, q ď R there is a Borel set Apq Ă Kpq

satisfying
H1`ε

8 pApqq ă η and ωpqpKpqzApqq ă η. (9.14)

An important fact about the previous statement is that the constant R “ Rpεq does not
depend on η, so that η can be chosen later depending on Rpεq.

Let us see how Lemma 9.20, and so the Jones-Wolff theorem, is derived from Main
Lemma 9.22. Write A “

Ť

1ďp,qďRApq. Then, we have

H1`ε
8 pApqq ď

ÿ

1ďp,qďR

H1`ε
8 pApqq ď R2 η,

and, by Lemma 5.32,

ωpKzAq ď
ÿ

1ďp,qďR

ωpKpqzAq ď
ÿ

1ďp,qďR

ωpKpqzApqq
L.5.32

ď
ÿ

1ďp,qďR

ωpqpKpqzApqq
(9.14)

ď R2η.

Recalling that η can be taken arbitrarily small, for any given R, (9.12) follows.

Our next objective is to prove the Main Lemma 9.22. To this end, we need to perform
a domain modification which we proceed to describe.

Domain modification.
From now on we fix p, q and let Ω “ Ωpq, K “ Kpq, ω “ ωpq. We let tQjuj be the
family of squares in Gpq. We remark that, by the construction, for each square Qj one has
RQjzQj Ă Ω, so that we will be able to apply Lemma 9.21.

Fix ε ą 0 and perform the disc construction for ε in every square Qj , so that we get a
finite family of closed discs tB̄ju, whose union is a compact set K1, a new domain Ω1 “

CzK1 and a new harmonic measure ω1 “ ω8
Ω1
.

Next choose a dyadic square Q1 of largest side ℓpQ1q, not necessarily from Gpq, such
that

ℓpQ1q ě ρ and ω1pQ1q ě MℓpQ1q.

If such Q1 does not exist we stop the domain modification. If Q1 exists we perform
the annulus construction on Q1 (with constant R) and after this we perform the disc
construction on the square Q1, replacing K1 X Q1 by a disc B̄1. So we obtain a new
compact K2, a new domain Ω2 “ C˚zK2 and a new harmonic measure ω2 “ ω8

Ω2
.

Now we continue and take Q2 dyadic with largest side such that Q2 Ć Q1, ℓpQ2q ě ρ
and ω2pQ2q ě MℓpQ2q. If such Q2 does not exist we stop. Otherwise we perform the
annulus construction on Q2 but with a special rule: If B̄1 X pBpRQ2zQ2qq ‰ H, then we
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do not remove the set B̄1 X pRQ2zQ2q from K2. The reason for this rule is to get full balls
in all cases.
After that we perform the disc construction on Q2, replacing K2 X Q2 by the corre-

sponding disc B̄2, getting a new compact K3, a new domain Ω3 and a new harmonic
measure ω3.
We continue this process so that if K1 X Q1, K2 X Q2, . . . ,Kn´1 X Qn´1 have been

substituted by B̄1, . . . , B̄n´1 we choose now (if there exists) a dyadic cube Qn with largest
side so that

Qn Ć Qj , j “ 1, . . . , n´ 1, ℓpQnq ě ρ, ωnpQnq ě MℓpQnq.

Then (if we do not stop) we perform the annulus construction with respect to Qn but
without removing B̄j X pRQnzQnq, j “ 1, . . . , n ´ 1 in case that B̄j X pBpRQnzQnqq ‰ H

(this is the special rule). Finally we perform the disc construction on Qn, getting B̄n,
Kn`1, Ωn`1 and ωn`1.
At each step there are only finitely many candidate dyadic squares, because ρ ď ℓpQq ď

1{M. Since no Qj can be repeated (because Qj Ć Qℓ, ℓ “ 1, . . . , j ´ 1) the modification
process stops after finitely many steps. Let K˚,Ω˚ “ CzK˚, ω˚ “ ω8

Ω˚ be the final
outcome so that K˚ is the disjoint union of the non removed discs; more precisely,

K˚ “
ď

kPS

B̄k Y
ď

jPT

B̄j (some finite sets of indices S and T ),

where the B̄j are the original discs and the B̄k are the new discs produced after performing
the annulus and the disc constructions.
Now we want to prove by means of Lemma 9.21 the following estimates:

ω˚pB̄jq ě c0 ωpQjq, j P T, (9.15)

ω˚pQjq ě c0MℓpQjq, j P S. (9.16)

For (9.15) note first that we always have RQjzQj Ă Ω. Since Qj has survived all steps we
cannot have RQk Ą Qj at some step k. Since RQk is a union of dyadic squares, the other
possibility is RQk XQj “ H for all k and we can apply both inequalities in Lemma 9.21.
For (9.16), when we select Qj we have ωjpQ

jq ě MℓpQjq and after performing the
annulus and the disc constructions, we get ωj`1pB̄jq ě c0 ωjpQ

jq ě c0MℓpQjq. If k ą j
there are three possibilities: i) B̄j Ă RQkzQk, in which case B̄j has disappeared and
j would not be in S; ii) B̄j X pRQkzQkq “ H in which case ωk`1pB̄jq ě ωkpB̄jq and
iii) B̄j X BpRQkzQkq ‰ H.
In this last case we have ℓpQkq ě ℓpQjq since otherwise Qk would have disappeared. But
now since R ą 2`R0pεq we get that B̄j X pR0pεqQkzQkq “ H and so ωk`1pB̄jq ě ωkpB̄jq

by Lemma 9.21 part b). At the end we obtain

ω˚pQjq ě ω˚pB̄jq ě ¨ ¨ ¨ ě ωkpB̄jq ě ¨ ¨ ¨ ě ωj`1pB̄jq ě c0MℓpQjq.

We will also need the following estimate: If z0 P Qj , j P T (or z0 P Qk, k P S) and
r ě ℓpQjq (r ě ℓpQkq), then

ω˚t|z ´ z0| ă ru ď CMr. (9.17)
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Qk

R0(ε)Q
k RQk

Bj

Qj

Figure 9.1: Disposition when special rule applies.

Let us discuss the case of Qj , z0 P Qj . We remark that if Q is a dyadic square with
Q Ą Qj , then one has ω˚pQq ď MℓpQq because otherwise the process would not have
been stopped.

Qk

Q

Qj

Q′

r

z0

Take now a dyadic square Q Ą Qj with side
length 2mℓpQjq such that r ď 2mℓpQjq ď 2r.
We just said that ω˚pQq ď 2Mr. Now the
disc t|z´z0| ă ru is contained in 4 dyadic squares
of the same side length as Q. Take one of these
squares Q1 different from Q. If Q1 does not con-
tain any Qj1 or Qk then ω˚pQ1q “ 0. Otherwise
ω˚pQ1q ď 2Mr.
The case z0 P Qk is dealt with similarly.

The next lemma shows that the union of the family of squares tQjujPT and a dilation
of the family tQkukPS contains K.

Lemma 9.23. K Ă
Ť

kPS

2RQk Y
Ť

jPT

Qj.

Proof. Recall that now K “ Kpq “
Ť

QPGpq

K X Q. So let Q P Gpq and E “ K X Q. If

Q “ Qj for some j P T then E Ă Qj and so E Ă
Ť

k

2RQk Y
Ť

jPT

Qj .

If Q ‰ Qj for every j P T then there is a first index j1 such that Q Ă RQj1zQj1 ; if j1 P S
then Q Ă RQj1 , j1 P S, and we are done. If j1 R S there is a first index j2 such that
Qj1 Ă RQj2zQj2 . In this case ℓpQj2q ě 2ℓpQj1q because if we had ℓpQj1q ě ℓpQj2q then
Qj2 Ă RQj1 and Qj2 Ă RQj1zQj1 , so that Qj2 would have disappeared. If j2 P S we have
Q Ă RQj2 and we are done. If j2 R S there is a first j3 such that Qj2 Ă RQj3zQj3 and so
on.
We get a sequence j1 ă j2 ă ¨ ¨ ¨ ă jn with j1, . . . , jn´1 R S, jn P S so that

Q Ă RQj1 , Qjk Ă RQjk`1 and ℓpQji`1q ě 2ℓpQjiq.

Note that every pair of cubes Q1 and Q2 with ℓpQ2q ě 2ℓpQ1q, satisfies that

Q Ă 2RQ1 and Q1 Ă RQ2 ùñ Q Ă 2RQ2.
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Then, using this argument inductively on tQjkunk“1, we get that Q Ă 2RQjn .

9.8 Surrounding K˚ by level curves of the Green function

To continue the proof of the Theorem, let Q be a square Q “ Qj , j P T or Q “ Qk, k P S
and let B̄ be the corresponding disc. Let Gpzq “ G8

Ω˚pzq be the Green function of the
domain Ω˚ with pole at 8. The goal of this section is to find a closed curve σ surrounding
B̄, contained in a level set of G, and such that

|∇Gpzq| ď CM2 log
1

ℓpQq
, z P σ, (9.18)

for a positive constant C.
By (9.11), the Green function G is the logarithmic potential of the equilibrium measure

plus the Robin constant divided by 2π, that is,

2πGpzq “

ż

K˚

log |z ´ w| dω˚pwq ` γK˚

“

ż

B̄
log |z ´ w| dω˚pwq `

ż

K˚zB̄
log |z ´ w| dω˚pwq ` γK˚ “: upzq ` vpzq ` γK˚ .

We have the estimate

|∇vpzq| ď C

ż

K˚zB̄

dω˚pwq

|z ´ w|
ď CM log

1

ℓpQq
, z P Q. (9.19)

To show this last inequality, fix z P Q. We have

ż

K˚zB̄

dω˚pwq

|z ´ w|
À

log2 diamK˚

ÿ

j“log2 ℓpQq

ż

B
2j

pzqzB
2j´1 pzq

dω˚pwq

|z ´ w|

ď

log2 diamK˚

ÿ

j“log2 ℓpQq

21´jω˚pB2j pzqq
(9.17)

À

log2 diamK˚

ÿ

j“log2 ℓpQq

2´jCM2j « CM log2
1

ℓpQq
.

Assume for simplicity that the center of the square Q, and so of the disc B̄, is the origin.
Next we will estimate the derivative Bu

Br pzq from below, namely

Bu

Br
pzq ě c

ω˚pB̄q

|z|
, for |z| ě 2rpBq, (9.20)

with 0 ă c ă 1 universal.
Write z “ reiθ. Since

upreiθq “
1

2

ż

B̄
log |reiθ ´ w|2 dω˚pwq,
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we have

Bu

Br
pzq “

1

2

ż

B̄

1

|reiθ ´ w|2

B

Br

´

preiθ ´ wqpre´iθ ´ w̄q

¯

dω˚pwq

“

ż

B̄
Re

ˆ

pz ´ wq z̄

|z ´ w|2 |z|

˙

dω˚pwq.

Note that

Bu

Br
pzq “ Re

ˆ

z̄

|z|

ż

B̄

z

|z|2
dω˚pwq

˙

` Re

ˆ

z̄

|z|

ż

B̄

ˆ

pz ´ wq

|z ´ w|2
´

z

|z|2

˙

dω˚pwq

˙

.

Trivially,

Re

ˆ

z̄

|z|

ż

B̄

z

|z|2
dω˚pwq

˙

“
ω˚pB̄q

|z|
.

0

w

z

r(B)
|z − w|

Figure 9.2: The scalar product xw, z ´ wy is negative when the angle |y0wz| ă π
2 .

On the other hand,

pz ´ wq

|z ´ w|2
´

z

|z|2
“

1

z ´ w
´

1

z̄
“

w̄

z ´ wz̄
,

so

Re

ˆ

z̄

|z|

ż

B̄

ˆ

pz ´ wq

|z ´ w|2
´

z

|z|2

˙

dω˚pwq

˙

“
1

|z|

ż

BB

Re pw̄ pz ´ wqq

|z ´ w|2
dω˚pwq.

Note that, whenever |z| ě 2rpBq, then Re pw̄ pz ´ wqq “ xw, z ´wy is positive on an open

arc centered at rpBqz
z̄ , and subtaining an angle grater than 2π

3 . On the complementary arc

b “ tw P BB : xw, z ´ wy ď 0u Ă trpBqeipt`θq :
π

3
ď t ď

5π

3
u,

we get that |z ´ w| ą p1 ` τqrpBq for a universal τ ą 0 (in fact one can easily show that
τ ą 1

2), so
ˇ

ˇ

ˇ

ˇ

w

z ´ w

ˇ

ˇ

ˇ

ˇ

ď
1

1 ` τ
.

192



9 Harmonic measure in the complex plane

All in all,

1

|z|

ż

BB

Re pw̄ pz ´ wqq

|z ´ w|2
dω˚pwq ě

´1

|z|

ż

b

ˇ

ˇ

ˇ

ˇ

w

z ´ w

ˇ

ˇ

ˇ

ˇ

dω˚pwq ě ´
1

1 ` τ

ω˚pB̄q

|z|
,

so

2π
Bu

Br
pzq ě

ω˚pB̄q

|z|
´

1

1 ` τ

ω˚pB̄q

|z|
“

τ

1 ` τ

ω˚pB̄q

|z|
,

establishing (9.20).
We are now ready to estimate the gradient of the Green function G. Define

α “ αpB̄q “ max

ˆ

ω˚pB̄q

M2 log 1{ℓpQq
, 2rpBq

˙

,

and distinguish two cases:

Case 1: α “ 2rpBq, that is,
ω˚pB̄q

rpBq
ď 2M2 log 1

ℓpQq
.

We let σ to be the circle BB, so we need to prove estimate (9.18) in this setting. First
we claim that

sup
BB

|∇G| ď C inf
BB

|∇G| (9.21)

for some constant C, which we will prove below. In order to prove (12.30), assume that
z0 “ 0 and take two points z and z1 with |z| “ |z1| “ 2rpBq. Then we have

m´1Gpz1q ď Gpzq ď mGpz1q

for some constant m by Harnack’s inequality. Applying boundary Harnack’s inequality to
rotations of G in the domain 3BzB (see for instance Corollary 8.18), we deduce that

m´1Gpz1q ď Gpzq ď mGpz1q for rpBq ă |z| “ |z1| ă 2rpBq.

Dividing by |z| ´ rpbq and taking limit as |z| Ñ rpBq, we get

m´1|BνG|pz1q ď |BνG|pzq ď m|BνG|pz1q, |z| “ |z1| “ rpBq,

and (12.30) follows.
We have

ω˚pB̄q “

ż

BB
|BνG| dH1 ě 2π inf

BB
|∇G| rpBq,

and for z P BB, using (12.30) we get

|∇Gpzq| ď C inf
BB

|∇Gpzq| ď C
ω˚pB̄q

rpBq
. (9.22)

Since we are under the hypothesis
ω˚pB̄q

rpBq
ď 2M2 log 1

ℓpQq
, we get (9.18), i.e., |∇Gpzq| ď

CM2 log 1
ℓpQq

.
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Case 2: α ą 2rpBq, that is,
ω˚pB̄q

α
“ M2 log 1

ℓpQq
.

We note that

α ď
ω˚pQq

M2 log 2
ď

2MℓpQq

M2 log 2
ď

4

M
ℓpQq. (9.23)

The inequality ω˚pQq ď MℓpQq, for Q “ Qj , comes from the fact that Qj has survived

the process to get to ω˚. If Q “ Qk, take the dyadic square rQ with side length 2 ℓpQkq

and containing Qk. Since the process has stopped, ω˚pQkq ď ω˚p rQq ď Mℓp rQq “ 2MℓpQq.
Taking in (9.23) M ą 8, we obtain α ă ℓpQq{2 and so t|z ´ z0| “ αu Ă Q.

Now we want to prove that

|∇Gpzq| ď 4M2 log
1

ℓpQq
, α ď |z ´ z0| ď µα, (9.24)

where µ is such that µ ą e2πC , a condition that will be used later, with C fixed in
(9.28) below. Choosing M ą 8µ we obtain αµ ă ℓpQq{2, by (9.23). Hence the annulus
α ď |z ´ z0| ď µα is contained in QzB̄, a fact that will be used in the sequel without
further mention.
First, let us show

1

2

Bu

Br
pzq ě |∇vpzq|, α ď |z ´ z0| ď µα. (9.25)

By (9.20) we get

Bu

Br
pzq ě c

ω˚pB̄q

|z ´ z0|
ě c

ω˚pB̄q

µα
, α ă |z ´ z0| ď µα,

and since we are in case 2, that is,
ω˚pB̄q

α
“ M2 log 1

ℓpQq
, by taking the quotient M{µ big

enough we obtain

1

2

Bu

Br
pzq ě

c

2µ
M2 log

1

ℓpQq

(9.19)
ě

cM |∇v|

2µC
ě |∇vpzq|, α ď |z ´ z0| ď µα,

by (9.19), settling (9.25).
Finally, using (9.25) we get

2π|∇Gpzq| ď |∇upzq| ` |∇vpzq|
(9.25)

ď 2|∇upzq| ď C

ż

BB

dω˚pwq

|z ´ w|
, α ď |z ´ z0| ď µα,

and |z ´ w| ě |z ´ z0| ´ |w ´ z0| ě α ´ rpBq ě α
2 , which gives

|∇Gpzq| ď C
ω˚pB̄q

α
“ CM2 log

1

ℓpQq
, α ď |z ´ z0| ď µα,

establishing (9.24).
Assume z0 “ 0, let c “ suptGpzq : |z| “ αu and take as σ the connected component

of tG “ cu that contains a point on |z| “ α. The curve σ encloses a domain that contains
the disc t|z| ă αu.
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B
r

α

Q

σ

Figure 9.3: Disposition in case 2.

We claim that σ remains inside t|z| ď µαu, which, in view of (9.24), yields the required
estimate (9.18).
We have

|∇upzq| ď

ż

B̄

dω˚pwq

|z ´ w|
ď 2

ω˚pB̄q

|z|
, |z| ą α,

because

|z ´ w| ě |z| ´ |w| ě
|z|

2
`
α

2
´ rpBq ą

|z|

2
.

By (9.20), for |z| ě α ě 2 rpBq we get

Bu

Br
pzq ě c

ω˚pB̄q

|z|
and |∇upzq| ď 2c´1 Bu

Br
pzq.

σ
0

∇G
r⃗ = eiθ

s⃗ = ieiθ

Therefore, combining the previous estimate with
(9.25), for α ď |z| ď µα we get

2π |∇Gpzq| ď |∇upzq| ` |∇vpzq| ď C
Bu

Br
pzq. (9.26)

Moreover, by(9.25) we have

2π
BG

Br
pzq “

Bu

Br
pzq `

Bv

Br
pzq (9.27)

ě
Bu

Br
pzq ´ |∇vpzq|

(9.25)
ě

1

2

Bu

Br
pzq

(9.20)
ą 0.

The curve σ contains at least a point a on the circle t|z| “ αu. Consider the maximal
subarc τ of σ containing a and contained in the disc t|z| ď µαu. By (9.27), each ray
emanating from the origin intersects τ only once, and so τ can be parametrized by the
polar angle θ in the form rpθqeiθ with θ1 ď θ ď θ2. Without loss of generality assume
θ1 ă 0 ă θ2 and rp0q “ a.
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If τ “ σ we are done. If not, rpθ2q “ µα and we will reach a contradiction. If r⃗ “ eiθ is
the radial direction and s⃗ “ ieiθ is the orthogonal direction to r⃗, then (12.37) yields

ˇ

ˇ

ˇ

ˇ

BG

Bs
pzq

ˇ

ˇ

ˇ

ˇ

ď |∇Gpzq|
(12.37)

ď C
Bu

Br
pzq

(9.27)
ď C

BG

Br
pzq.

Since Gprpθqeiθq “ c, taking the derivative with respect to θ one gets

0 “ x∇Gprpθqeiθq, r1pθqeiθ ` irpθqeiθy “ r1pθq
BG

Br
` rpθq

BG

Bs

and so
|r1pθq|

rpθq
ď

ˇ

ˇ

ˇ

ˇ

BG

Br

ˇ

ˇ

ˇ

ˇ

´1 ˇ
ˇ

ˇ

ˇ

BG

Bs

ˇ

ˇ

ˇ

ˇ

ď C. (9.28)

Therefore

log
rpθ2q

rp0q
“

ż θ2

0

r1pθq

rpθq
dθ ď 2πC

and, recalling the way µ has been chosen,

µα “ rpθ2q ď e2πCrp0q “ e2πCα ă µα,

which is a contradiction. By (9.24) we obtain the desired inequality (9.18).

9.9 The estimate of the gradient of Green’s function on the
level curves

In the previous section we have exhibited for each disc B̄ “ B̄j , j P T or B̄ “ B̄k, k P S, a
simple curve σ contained in a level curve of G and surrounding B̄, on which estimate (9.18)
holds. Let now Γ be the curve formed by the set of σ’s corresponding to each disc B̄j

or B̄k. Then Γ separates K˚ from infinity.
In this section we prove the estimate

ż

Γ
|log|∇G| BνG| dH1 ď C log logp1{ρq. (9.29)

At this point we write log` “ maxtlog, 0u and log “ log` ´ log´. Since we are assuming
that M ď logp1{ρq, we have, by (9.18),

log` |∇Gpzq| ď logpCM2 log 1{ℓpQqq ď C log logp1{ρq, z P Γ.

Note that

´

ż

Γ
BνGdH1 “

ÿ

σ

ż

σ
BνGdH1 “

ÿ

B̄

ω˚pB̄q

which is clear for those terms for which σ “ BB and follows from the divergence theorem
for the others, because σ surrounds BB, and Proposition 7.14 applies. In both cases we use
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that ∇G is continuous up to the analytic boundaries σ and BB by the reflection principle
for harmonic functions.
Hence

ż

Γ
|BνG| log` |∇G| dH1 ď C log logp1{ρq

ż

Γ
|BνG| dH1

“ C log logp1{ρq
ÿ

B̄

ω˚pB̄q “ C log logp1{ρq.

In order to estimate the integral on Γ of BνG log´ |∇G| we need the following lemma.

Lemma 9.24. Let Gpzq “ G8
Ω pzq be the Green function of the domain Ω with pole at

infinity and let Γ “
N
Ť

j“1
Γj be the union of finitely many closed Jordan curves Γj enclosing

disjoint (bounded) Jordan domains, so that Γ Ă t|z| ă 1u, Γ separates K “ C˚zΩ from
infinity and there are constants cj, j “ 1, . . . , N such that Γj Ă tGpzq “ cju, j “ 1, . . . , N .
Then

ż

Γ
|BνG| log |∇G| dH1 ą ´ log 4π.

The proof of this lemma will be discussed in Section 9.11. By Lemma 9.24 we have

ż

Γ
|BνG| log´ |∇G| dH1 ď

ż

Γ
|BνG| log` |∇G| dH1 ` log 4π,

which completes the proof of (9.29).

9.10 End of the proof of the Main Lemma 9.22 and of the
Jones-Wolff Theorem

Recall from (9.14) that for a fixed ε ą 0 and for each η ą 0 we have to find a set A Ă K
with H1`ε

8 pAq ă η and ωpKzAq ă η.
Decompose the set of indices T as T “ T1 Y T2 with

T1 “ tj P T : ω˚pB̄jq ě ρε{2 rju,

T2 “ tj P T : ω˚pB̄jq ď ρε{2 rju,

where rj “ rpBjq.
Set

A “

«

K X

˜

ď

kPS

2RQk

¸ff

Y

«

K X

˜

ď

jPT1

Qj

¸ff

.

We know, by Lemma 9.23, that

KzA “
ď

jPT2

pK XQjq.
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Inequality (9.16) yields, using that
ř

kPS ω
˚pQkq ď 1,

H1`ε
8

˜

K X

˜

ď

kPS

2RQk

¸¸

À p2Rq1`ε
ÿ

kPS

ℓpQkq1`ε

ď
R1`ε

pM c0q1`ε

ÿ

kPS

ω˚pQkq1`ε ď

ˆ

R

M c0

˙1`ε

ď
η

2

for M big enough. By Lemma 6.20 with s “ 1 ` ε and the definition of the radius of B̄j

in the disc construction (9.13) we obtain

H1`ε
8

˜

ď

jPT1

pK XQjq

¸

ď
ÿ

jPT1

H1`ε
8 pK XQjq ď Cε

ÿ

jPT1

CapLpK XQjq
1`ε

“ Cε

ÿ

jPT1

rj ρ
ε “ Cε

ÿ

jPT1

rj ρ
ε{2 ρε{2

ď Cε

ÿ

jPT1

ρε{2 ω˚pB̄jq ď Cερ
ε{2 ď

η

2

provided ρ is small enough.
We have got H1`ε

8 pAq ă η and it remains to estimate ωpKzAq. By inequality (9.15)

ωpKzAq “ ω

˜

ď

jPT2

pK XQjq

¸

(9.15)
ď

1

c0

ÿ

jPT2

ω˚pB̄jq.

Now we remark that for j P T2 we are in the Case 1 of the Section 9.8, that is

ω˚pB̄jq

M2 logp1{ρq
ď 2rj .

Indeed, since ω˚pB̄jq ď ρε{2rj it is enough to see that

ρε{2 ď 2M2 logp1{ρq,

which clearly holds for ρ sufficiently small.
For z P BB̄j , j P T2, we know by (9.22) that

|∇Gpzq| ď C
ω˚pB̄jq

rj
ď C ρε{2,

so that
log |∇Gpzq| ď logC `

ε

2
log ρ ď

ε

4
log ρ,

for small enough ρ. Hence, for such small ρ,

|log|∇Gpzq|| ě
ε

4
logp1{ρq.
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We then get

ωpKzAq ď
1

c0

ÿ

jPT2

ω˚pB̄jq “
1

c0

ÿ

jPT2

ż

BB̄j

|BνG| dH1

ď
C

c0 ε logp1{ρq

ÿ

jPT2

ż

BB̄j

|BνG| |log|∇G|| dH1

ď
C

c0 ε logp1{ρq

ż

Γ
|BνG| |log|∇G|| dH1

(9.29)
ď

C

ε c0

log logp1{ρq

logp1{ρq
,

due to (9.29). Thus ωpKzAq ă η if ρ is small enough. Therefore for fixed ε ą 0 and given
η ą 0, we can choose M and ρ such that the set A satisfies the desired conclusion.

9.11 Proof of the lemmas

9.11.1 Proof of Lemma 9.21

Since the disc construction is scale invariant, changing scale we may assume that ℓpQq “ 1.
Let ξ0 stand for the center of Q.

Proof of a). Denote by µ the equilibrium measure for pΩYEqc. Since ΩYE an unbounded
domain, by (7.9) the Green function Gξpzq of the domain Ω Y E with pole at ξ can be
written in the form

Gξpzq “ Eξpzq ´ Uµpzq ´

ż

pEξpwq ´ Uµpwqq dωz
ΩYEpwq (9.30)

“
1

2π

ż

log
|z ´ a|

|z ´ ξ|
dµpaq `

1

2π

ĳ

log
|w ´ ξ|

|w ´ a|
dµpaq dωz

ΩYEpwq, z P Ω Y E.

Note that both measures µ and ωz
ΩYE are supported in BΩzRQ. From (9.30) it is clear

that the Green function can also be written in the form

Gξpzq “
1

2π
log

1

|z ´ ξ|
` hpz, ξq, z P Ω Y E, ξ P Ω Y E, (9.31)

with

hpz, ξq “ ´Uµpzq ´

ż

pEξpwq ´ Uµpwqq dωz
ΩYEpwq (9.32)

“
1

2π

ĳ

log
|w ´ ξ| |z ´ a|

|w ´ a|
dωz

ΩYEpwq dµpaq, z P Ω Y E, ξ P Ω Y E.
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Note that hpz, ξq is continuous by Lemma 6.26, and the change of integration order we
have used above is well justified by Tonelli’s theorem. Using the notation ∇ “ 2B̄, we
obtain

|∇ξhpz, ξq| ď
1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BΩzRQ

1

w ´ ξ
dωz

ΩYEpwq

ˇ

ˇ

ˇ

ˇ

ˇ

ď O

ˆ

1

R

˙

, ξ P Q, z P Ω Y E. (9.33)

Next, for a given z0 P BQ, we wish to estimate hpz0, ξ0q from below, where ξ0 is the
center of Q. To this end, note that, for all a P suppµ Ă BΩzRQ, |z0 ´ a| ě 1

2pR ´ 1q ě

R{4 ě 1
2 |ξ0 ´ z0| (because we assume R ě 2), and thus, for all w P BΩzRQ,

|w ´ a| ď |w ´ ξ0| ` |ξ0 ´ z0| ` |z0 ´ a| ď |w ´ ξ0| ` 3|z0 ´ a|.

Thus, using the two estimates |z0 ´ a| ě R{4 and |w ´ ξ0| ě 1
2R, we derive

|w ´ a| ď |w ´ ξ0|
|z0 ´ a|

R{4
` 3|z0 ´ a|

|w ´ ξ0|

R{2
“

10|w ´ ξ0| |z0 ´ a|

R
.

Hence,

log
|w ´ ξ0| |z0 ´ a|

|w ´ a|
ě log

R

10
, w P BΩzRQ, a P BΩzRQ.

Plugging this into (9.32), we obtain

hpz0, ξ0q ě
1

2π
log

R

10
. (9.34)

Let now µE and µB̄ be the equilibrium measures of E and B̄ respectively and set

upzq :“

ż

B̄
Gξpzq dµB̄pξq, vpzq :“

ż

E
Gξpzq dµEpξq.

For every z0 P BQ one has

upηq “
γB̄
2π

` hpz0, ξ0q `Op1{Rq, η P B̄,

vpηq “
γE
2π

` hpz0, ξ0q `Op1{Rq, η P E,

where the constant in Op1{Rq is independent of z0. To see this just write

hpη, ξq “ phpη, ξq ´ hpη, ξ0qq ` phpξ0, ηq ´ hpξ0, z0qq ` hpz0, ξ0q,

use (9.33), the symmetry of the Green’s function and the fact that the equilibrium potential
of a regular compact set is equal to the Robin constant on the set (see Lemma 6.26).
Now since u “ v “ 0 on BΩzRQ we get

upzq “

ż

BrΩ
upξq dωz

rΩ
pξq “

ż

BB
upξq dωz

rΩ
pξq, z P rΩ,

vpzq “

ż

BΩ
vpξq dωz

Ωpξq “

ż

BE
vpξq dωz

Ωpξq, z P Ω.
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Hence, for z R K YQ,

upzq “

´γB̄
2π

` hpz0, ξ0q `Op1{Rq

¯

ωz
rΩ

pB̄q,

vpzq “

´γE
2π

` hpz0, ξ0q `Op1{Rq

¯

ωz
ΩpEq.

Assume for the sake of simplicity that ξ0 “ 0. Then by plugging the identity (9.31) into
the above definitions of u and v we obtain

upzq “
1

2π
log

1

|z|
`

ż

B̄
hpz, ξq dµB̄pξq, z R B̄,

vpzq “
1

2π

ż

E
log

1

|z ´ ξ|
dµEpξq `

ż

E
hpz, ξq dµEpξq, z R E.

Set

φpzq :“ upzq ´ vpzq “

ż

E

ˆ

log
1

|z|
´ log

1

|z ´ ξ|

˙

dµEpξq

`

ż

B̄
hpz, ξq dµB̄pξq ´

ż

E
hpz, ξq dµEpξq

Thus, for z P ΩzRQ,

|φpzq| ď

ˇ

ˇ

ˇ

ˇ

ż

E
log

|z ´ ξ|

|z|
dµEpξq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

B̄
phpz, ξq ´ hpz, 0qq dµB̄pξq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

E
phpz, ξq ´ hpz, 0qq dµEpξq

ˇ

ˇ

ˇ

ˇ

“ O

ˆ

1

|z|

˙

.

Therefore
upzq “ vpzq `Op1{|z|q, z P ΩzRQ.

Recalling that CapLpB̄q
(9.13)

“ 1
2 CapLpEq1`ε one gets

ωz
rΩ

pB̄q “
upzq

p2πq´1γB̄ ` hpz0, 0q `Op1{Rq
“

vpzq `Op1{|z|q

p2πq´1pγEp1 ` εq ` log 2q ` hpz0, 0q `Op1{Rq

“
pγE ` 2πhpz0, 0q `Op1{Rqqωz

ΩpEq `Op1{|z|q

γEp1 ` εq ` log 2 ` 2πhpz0, 0q `Op1{Rq
.

Clearly there exists R0 such that for R ą R0 we have

ωz
rΩ

pB̄q ě
1

2

γE ` 2πhpz0, 0q

γEp1 ` εq ` log 2 ` 2πhpz0, 0q
ωz
ΩpEq `O

ˆ

1

|z|

˙

,

since the denominator γEp1`εq`log 2`2πhpz0, 0q is bounded below away from 0 by (9.34).
Appealing again to (9.34) we obtain that, whenever ε ă 1

8 and log R
10 ě 4 log 2, then

γE ` 2πhpz0, 0q

γEp1 ` εq ` log 2 ` 2πhpz0, 0q
ě

1

4
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and so

ωz
rΩ

pB̄q ě
1

4
ωz
ΩpEq `O

ˆ

1

|z|

˙

.

Letting z Ñ 8 completes the proof of a) in the lemma.

Proof of b). Assume that ξ0 “ 0 and let U “ t|z| ă R{2u. The Green function of U is

Gwpξq “ log

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 ´ w
R{2

ξ
R{2

w
R{2 ´

ξ
R{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (9.35)

see Section 3.4 and Exercise 3.2.1. Let GB̄ be the Green function of UzB̄ and GE the
Green function of UzE. We claim that

Gz
B̄pξq ´Gzpξq “

ż

BB
Gwpξq dωz

UzB̄pwq, z, ξ P UzB̄. (9.36)

On one hand, both sides are harmonic and continuous up to the boundary. On the other
hand, if z tends to a point in BU both sides converge to 0, while z Ñ z0 P BB implies
that both sides converge to Gz0pξq. By the maximum principle both sides must coincide.
Analogously one obtains

Gz
Epξq “ Gzpξq ´

ż

BE
Gwpξq dωz

UzEpwq, z, ξ P UzE. (9.37)

Consider a relatively open subset A of BΩzRQ. We want to prove

ωzpAq ď rωzpAq, |z| “
R

4
, (9.38)

where ωzpAq “ ωz
ΩpAq and rωzpAq “ ωz

rΩ
pAq. Take a point z0 with |z0| “ R

4 such that

sup
|z|“R{2

ωzpAq

rωzpAq
“
ωz0pAq

rωz0pAq
.

Assume, to get a contradiction, that ωz0 pAq

rωz0 pAq
“ λ ą 1. Then, since A Ă BΩ is both relatively

open and relatively closed, by Corollary 5.36 we get

lim
zÑξPA

λrωzpAq ´ ωzpAq “ λ´ 1 ą 0,

and
lim

zÑξPAc
λrωzpAq ´ ωzpAq “ 0,

while we have

λrωzpAq ´ ωzpAq ě 0, |z| “
R

4
.

The maximum principle yields

λrωzpAq ´ ωzpAq ą 0, z P BU.
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9 Harmonic measure in the complex plane

A

Ac ∩ U c

Ac ∩ U c

Ac ∩Q
B

Q

z0

∂U = {|z| = R/2}

{|z| = R/4}

Figure 9.4: Disposition in the proof of b).

Since ωξpAq is a harmonic function on UzE vanishing on BE (by Corollary 5.36 again)
and, similarly, rωξpAq is a harmonic function on UzB̄ vanishing on BB, we get,

0 “ λrωz0pAq ´ ωz0pAq

“
1

2π

ż

BU
λ rωξpAq dωz0

UzB̄
pξq ´

1

2π

ż

BU
ωξpAq dωz0

ΩzEpξq.

Now, since BU is analytic, ∇G is continuous in a neighborhood of BU and we can apply
Proposition 7.14 to get dωz0

ΩzE |BU “
ˇ

ˇBνG
z0
E

ˇ

ˇ dH1|BU . Thus,

0
P.7.14

“
1

2π

ż

BU

ˇ

ˇ

ˇ
BνG

z0
B̄

pξq

ˇ

ˇ

ˇ
λ rωξpAq dH1pξq ´

1

2π

ż

BU

ˇ

ˇBνG
z0
E pξq

ˇ

ˇ ωξpAq dH1pξq.

We will prove below the inequality

ˇ

ˇBνG
z
B̄pξq

ˇ

ˇ ě |BνG
z
Epξq| , |z| “

R

4
, ξ P BU. (9.39)

Using this fact, we obtain

0
(12.38)

ě
1

2π

ż

BU

ˇ

ˇ

ˇ
BνG

z0
B̄

pξq

ˇ

ˇ

ˇ

´

λrωξpAq ´ ωξpAq

¯

dH1pξq ą 0,

which is a contradiction. Then (9.38) holds.
By (9.38) and the maximum principle, ωzpAq ď rωzpAq for z P Ω and |z| ě R

4 , and letting
|z| Ñ 8, item b) of Lemma 9.21 follows.

It remains to prove (12.38), which follows from

Gz
B̄pξq ě Gz

Epξq, |z| “
R

4
,

3

8
R ď |ξ| ă

1

2
R. (9.40)
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9 Harmonic measure in the complex plane

Since Gz
B̄

pξq “ Gz
Epξq, |ξ| “ R{2, then, by the maximum principle, it is enough to show

(9.40) for |ξ| “ 3
8R.

We start by proving

log

ˆ

8

3

˙

´
C

R
ď Gwpξq ď log

ˆ

8

3

˙

`
C

R
, |w| ď 1, |ξ| “

3

8
R, (9.41)

where C is a positive constant and R is sufficiently large. We have

Gwpξq
(9.35)

“ log

ˆ

8

3

˙

` log

ˇ

ˇ

ˇ

ˇ

1 ´
wξ

R2

ˇ

ˇ

ˇ

ˇ

´ log

ˇ

ˇ

ˇ

ˇ

1 ´
w

ξ

ˇ

ˇ

ˇ

ˇ

.

The absolute value of each of the last two terms is less than or equal to C{R for some
constant C and (9.41) follows.

Inserting (9.41) into (9.36) and (9.37) we get

Gz
B̄pξq ě Gzpξq ´

ˆ

log

ˆ

8

3

˙

`
C

R

˙

ωz
UzB̄pB̄q, |z| “

R

4
, |ξ| “

3

8
R,

Gz
Epξq ď Gzpξq ´

ˆ

log

ˆ

8

3

˙

´
C

R

˙

ωz
UzEpEq, |z| “

R

4
, |ξ| “

3

8
R.

Clearly (9.40) is a consequence of the two preceding inequalities and the following claim.

Claim 9.25. For R large enough one has

ˆ

log

ˆ

8

3

˙

`
C

R

˙

ωz
UzB̄pB̄q ď

ˆ

log

ˆ

8

3

˙

´
C

R

˙

ωz
UzEpEq, |z| “

R

4
.

Proof of the Claim. Recall that we are assuming ℓpQq “ 1, so that for all compact sets K,
CapLpEq “ CapLpK XQq ď 1{

?
2 and hence γE ě log

?
2 ą 0.

Moreover
γB̄ “ γEp1 ` εq ` log 2 ą γE .

Let r “ rpBq be the radius of B̄. The function

log

ˆ

R{2

|z|

˙

1

logpR{2q ´ log r
, z P UzB̄,

is harmonic on UzB̄, vanishes on |z| “ R{2 and is 1 on |z| “ r. Thus it is precisely
ωz
UzB̄

pB̄q. Since ´ log rpBq “ γB̄ we have

ωz
UzB̄pB̄q “ log

ˆ

R{2

|z|

˙

1

logpR{2q ` γB̄
, z P UzB̄. (9.42)

We turn now our attention to ωz
UzEpEq. Consider the function

fpzq “

ż

E
log

R{2

|z ´ w|
dµEpwq

1

logpR{2q ` γE
z P UzE.
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Since
ş

E log 1
|z´w|

dµEpwq “ γE for z P E, (see Lemma 6.26), we infer that fpzq “ 1 for
z P E.

If w P E, z P BU one has |z ´ w| “ R{2 `Op1q and so

log
R{2

|z ´ w|
“ ´ log

ˆ

1 ´
R{2 ´ |z ´ w|

R{2

˙

“ ´ logp1 `Op1{Rqq “ Op1{Rq.

We conclude that

|fpzq| ď
Op1{Rq

logpR{2q ` γE
, z P BU,

so that the function

rfpzq “ fpzq ´
2C{R

logpR{2q ` γE

satisfies rfpzq ď 1, z P E, and rfpzq ď 0, z P BU, for an appropriate large constant C. From
Corollary 5.36 and the maximum principle it follows that

rfpzq ď ωz
UzEpEq, z P UzE.

To estimate this harmonic measure we write

ωz
UzEpEq ě

´2C

RplogR{2 ` γEq
`

1

logpR{2q ` γE

ż

E

ˆ

log
R{2

|z ´ w|
´ log

R{2

|z|

˙

dµEpwq

`
1

logpR{2q ` γE
log

R{2

|z|
“ T1 ` T2 ` T3.

By (9.42)

T3 “
1

logpR{2q ` γB̄
log

R{2

|z|
`

ˆ

1

logpR{2q ` γE
´

1

logpR{2q ` γB̄

˙

log
R{2

|z|
“ ωz

UzB̄pB̄q`T4.

For the term T4 we have

T4 “
γB̄ ´ γE

plogpR{2q ` γEqplogpR{2q ` γB̄q
log

R{2

|z|
ě

εγE ` log 2

plogpR{2q ` 2γE ` log 2q2
,

provided ε ă 1, because γB̄ ď 2γE ` log 2.
For the term T2 we have

|T2| ď
1

logpR{2q ` γE

ż

E

ˇ

ˇ

ˇ

ˇ

log
|z ´ w|

|z|

ˇ

ˇ

ˇ

ˇ

dµEpωq

with

log
|z ´ w|

|z|
“ log

ˆ

1 `
|z ´ w| ´ |z|

|z|

˙

“ logp1 `Op1{Rqq “ Op1{Rq.

Hence

|T2| ď
C

RplogpR{2q ` γEq
ď

C

RplogR ` γEq
,
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because γE ě log
?
2. Since |T1| obviously satisfies the same estimate, we conclude that

ωz
UzEpEq ě ωz

UzB̄pB̄q `
εγE ` log 2

plogR ` 2γEq2
´

C

RplogR ` γEq
, (9.43)

for some positive constant C.
Recall that the claim is

ˆ

log

ˆ

8

3

˙

`
C

R

˙

ωz
UzB̄pB̄q ď

ˆ

log

ˆ

8

3

˙

´
C

R

˙

ωz
UzEpEq, |z| “

R

4
.

From now to the end of the proof of the claim z denotes a point satisfying |z| “ R
4 .

By (9.43), for R ě R0pεq we get

ωz
UzEpEq ě ωz

UzB̄pB̄q ` C
εγE

plogR ` γEq2
,

as long as
logR ` γE

R
ď CεγE , (9.44)

which is clearly true for R large enough, because γE ě log
?
2. It is sufficient to show

ˆ

log

ˆ

8

3

˙

`
C

R

˙

ωz
UzB̄pB̄q ď

ˆ

log

ˆ

8

3

˙

´
C

R

˙ˆ

ωz
UzB̄pB̄q ` C

εγE
plogR ` γEq2

˙

or
Cωz

UzB̄
pB̄q

R
ď ´

C

R
ωz
UzB̄pB̄q `

ˆ

log

ˆ

4

3

˙

´
C

R

˙

C
εγE

plogR ` γEq2
,

which amounts to, for R ě R0pεq,

ωz
UzB̄

pB̄q

R
ď C

εγE
plogR ` γEq2

.

By (9.42), for |z| “ R{4, we have

ωz
UzB̄pB̄q “

log 2

logpR{2q ` γB̄
“

log 2

logpR{2q ` p1 ` εqγE ` log 2
ď

2

logR ` γE
.

Then, for R ě R0pεq, we get

ωz
UzB̄

pB̄q

R
ď

2

RplogR ` γEq
ď C

εγE
plogR ` γEq2

,

where the last inequality is equivalent to (9.44) again, and the claim follows.
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9.11.2 Proof of Lemma 9.24

Recall that Gpzq “ G8
Ω pzq stands for the Green function of the domain Ω with pole at

infinity and Γ “
N
Ť

j“1
Γj is a union of finitely many closed Jordan curves Γj enclosing

disjoint (bounded) Jordan domains Ωj , with Γ Ă D, Γ separating K “ C˚zΩ from infinity
and there are constants cj , j “ 1, . . . , N such that Γj Ă tGpzq “ cju, j “ 1, . . . , N .
We will use complex notation in order to keep ideas simple. Recall that a real-valued

function f has Laplacian ∆f “ 4B̄Bf “ 4BB̄f , gradient ∇f “ 2B̄f “ 2Bf , and its normal
(or any other directional) derivative is

Bνf “ x∇f, νy “ x2B̄f, νy “ 2Re pB̄fνq “ 2Re pBfνq.

Moreover, whenever γ is a curve oriented counterclockwise, the tangent vector is iν, so
νdH1 “ dz

i . Green’s formula in complex notation reads as

2

ż

Ω
pB̄g ´ Bfq dm “

ż

BΩ

ˆ

g
dz

i
` f

dz̄

i

˙

, (9.45)

for f, g P W 1,1pΩq X CpΩ̄q, see [AIM09, Theorem 2.9.1], for instance.
To study Lemma 9.24, we infer from the discussion above that
ż

Γ
´BνG log |∇G| dH1 “ ´2Re

ż

Γ
BG log |∇G| νdH1 “ 2Re

ż

Γ
BG logp2|BG|q

dz

i
.

Put in other words, we want to show that

2Re

ż

Γ
BG logp2|BG|q

dz

i
ą ´ log 4π. (9.46)

Note that, replacing K by tg ď εu for small ε ą 0, we can assume Ω is a finitely
connected domain with smooth boundary.
Now consider a disc BR so that Γ Ă BR, and write UR “ BRz

ŤN
j“1Ωj . By Green’s

formula we get
ż

Γ
BG logp2|BG|q

dz

i

(9.45)
“

ż

Γ
´GB̄ logp2|BG|q

dz̄

i

` 2

ż

UR

GBB̄ logp2|BG|q ´ B̄BG logp2|BG|q dm

`

ż

BBR

ˆ

BG logp2|BG|q
dz

i
`GB̄ logp2|BG|q

dz̄

i

˙

.

(9.47)

First note that the first term in the right-hand side of (9.47) is

ż

Γ
GB̄ logp2|BG|q

dz̄

i
“

N
ÿ

i“1

ci

ż

Γi

B̄ logp|BG|q
dz̄

i
.

Next we will use the following fact about level curves of harmonic functions:
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Lemma 9.26. Let γ be a smooth Jordan curve contained in a level set of a harmonic
function f without critical points. Then

1

2πi

ż

γ

BBf

Bf
dz “ ´1.

Proof. Indeed, ∆f “ 4B̄Bf , so Bf is holomorphic by the Cauchy-Riemann equations.
Then, writing rγ “ Bf ˝ γ, we get

1

2πi

ż

γ

BBf

Bf
dz “

1

2πi

ż

rγ

dζ

ζ
“ Indprγ, 0q “

Var arg Bf

2π
“ ´

Var arg∇f
2π

.

But the variation of the argument of the gradient along a smooth level curve is precisely
2π, so the lemma follows.

Note that

B logp|BG|q “
1

2
B logp|BG|2q “

BBGB̄G` BGBB̄G

2BGB̄G
“

BBG

2BG
, (9.48)

so
ż

Γi

B̄ logp|BG|q
dz̄

i
“ ´

ż

Γi

B logp|BG|q
dz

i
L.9.26

“ π.

Thus,
ż

Γ
GB̄ logp2|BG|q

dz̄

i
“

N
ÿ

i“1

ci

ż

Γi

B̄ logp|BG|q
dz̄

i
“ π

N
ÿ

i“1

ci. (9.49)

Now we deal with the second integral in the right-hand side of (9.47). Here, since
B̄BG “ 0, we only have to deal with

ş

UR
GBB̄ logp2|BG|q dm.

Lemma 9.27. Let Ω be an open set, and let f : Ω Ñ R a harmonic function. Then Bf
is a holomorphic function which has at most a countable number of zeroes tξiu

8
i“1 Ă Ω

without accumulation points in Ω, with multiplicities tmiu
8
i“1, and

B̄B log |Bf | “
π

2

8
ÿ

i“1

miδξi ,

i.e., for every φ P CcpΩq we have

xB̄B log |Bf |, φy “
π

2

8
ÿ

i“1

miφpξiq. (9.50)

Note that using real analysis notation, since ∆ log |∇f | “ ∆ log |12∇f | “ 4B̄B log |Bf |,
we are claiming that

∆ log |∇f | “ 2π
8
ÿ

i“1

miδξi .
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Proof. Note that ∆f “ 4B̄Bf , so Bf is holomorphic by the Cauchy-Riemann equations,
and the first assertion is just a compendium of Cauchy local theory basic results. To see
(9.50), consider a fixed critical point ξi. Note that for ε small enough, Bεpξiq contains no
other critical points, so we can apply the argument principle to obtain

ż

BBεpξiq

BBf

Bf
dz “ 2πimi.

Now,

2πmiφpξiq “

ż

BBεpξiq

BBfpzq

Bfpzq
φpξiq

dz

i

“

ż

BBεpξiq

BBfpzq

Bfpzq
φpzq

dz

i
` O

˜

ż

BBεpξiq

ˇ

ˇ

ˇ

ˇ

BBfpzq

Bfpzq

ˇ

ˇ

ˇ

ˇ

|φpξiq ´ φpzq| |dz|

¸

.

Since |φpξiq ´ φpzq| “ Opεq, and
ˇ

ˇ

ˇ

BBfpzq

Bfpzq

ˇ

ˇ

ˇ
“ O

`

1
ε

˘

by l’Hôpital’s rule, we conclude that

2πmiφpξiq “ lim
εÑ0

ż

BBεpξiq

BBf

Bf
φ
dz

i
.

As in (9.48) we have
BBf

Bf
“ 2B log |Bf |, (9.51)

so we obtain

2πmiφpξiq “ 2 lim
εÑ0

ż

BBεpξiq
φB log |Bf |

dz

i
.

On the other hand we have

log |Bf | “ OplogpCεmqq,

so

lim
εÑ0

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BBεpξiq
B̄φ log |Bf |

dz̄

i

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
εÑ0

mOpε logpεqq “ 0.

All in all, we get

2πmiφpξiq “ 2 lim
εÑ0

ż

BBεpξiq

ˆ

φB log |Bf |
dz

i
` B̄φ log |Bf |

dz̄

i

˙

.

Assume that there is an open set U Ă Ω so that suppφ Ă U and tξiu
8
i“1 X U “ tξiu

N
i“1.

We get

N
ÿ

i“1

2πmiφpξiq
(9.45)

“ ´4 lim
εÑ0

ż

Uz
ŤN

i“1 Bεpξiq
pφB̄B log |Bf | ´ BB̄φ log |Bf |q dm.
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In abscence of critical points, by (9.51) we get

B̄B log |Bf | “
B̄BBfBf ´ BBf B̄Bf

2pBfq2
“ 0,

so
N
ÿ

i“1

2πmiφpξiq
(9.45)

“ 4

ż

Ω
pBB̄φ log |Bf |q dm “ 4xB̄B log |Bf |, φy.

By the preceding lemma, in UR there is a finite number of critical points, say tξiu
L
i“1,

and the second integral on the right-hand side of (9.47) is

2

ż

UR

GBB̄ logp2|BG|q ´ B̄BG logp2|BG|q dm “ 2

ż

UR

GB̄B logp2|BG|q dm “ π
L
ÿ

i“1

miGpξiq.

(9.52)
Next we turn our attention to the last integral in (9.47). We will let R tend to infinity, so

we need to understand the asymptotic values of the relevant functions inside the integral.
Recall that we can write the Green function G as

2πGpzq “ γK `

ż

K
log |z ´ w| dµKpwq “ log |z| ` γK ` h0pzq, (9.53)

where

h0pzq “

ż

K
log

|z ´ w|

|z|
dµKpwq.

is harmonic and satisfies h0p8q “ 0. In fact for z R 2D, we get the bound

h0pzq “

ż

K
O
ˆ

1

|z|

˙

dµKpwq “ O
ˆ

1

|z|

˙

.

Differentiating, we obtain

Bh0pzq “
1

2z

ż

K

w

z ´ w
dµKpwq “ O

ˆ

1

|z|2

˙

.

and

B2h0pzq “
´1

2z2

ż

K

w

z ´ w
dµKpwq ´

1

z

ż

K

w

pz ´ wq2
dµKpwq “ O

ˆ

1

|z|3

˙

.

Also

BGpzq “
1

4πz
`

1

2π
Bh0pzq “

1

4πz
` O

ˆ

1

|z|2

˙

,

and its logarithm

logp2|BG|q “ log

ˇ

ˇ

ˇ

ˇ

1

2πz̄
`

1

π
Bh0pzq

ˇ

ˇ

ˇ

ˇ

“ log

ˇ

ˇ

ˇ

ˇ

1

2πz

ˇ

ˇ

ˇ

ˇ

` O
ˆ

1

|z|

˙

,
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and finally

B̄ logp2|BG|q “ pπz̄ ` Op1qq

ˆ

´1

2πz̄2
` O

ˆ

1

|z|3

˙˙

“
´1

2z̄
` O

ˆ

1

|z|2

˙

.

With all this estimates at hand, we get

IBBR
IBBR

:“

ż

BBR

ˆ

BG logp2|BG|q
dz

i
`GB̄ logp2|BG|q

dz̄

i

˙

“

ż

BBR

ˆ

1

4πz
` O

ˆ

1

R2

˙˙ˆ

log

ˇ

ˇ

ˇ

ˇ

1

2πz

ˇ

ˇ

ˇ

ˇ

` O
ˆ

1

R

˙˙

dz

i

`

ż

BBR

1

2π

ˆ

log |z| ` γK ` O
ˆ

1

R

˙˙ˆ

´1

2z̄
` O

ˆ

1

R2

˙˙

dz̄

i

“

ż

BBR

ˆ

1

4πz
log

ˇ

ˇ

ˇ

ˇ

1

2πz

ˇ

ˇ

ˇ

ˇ

` O
ˆ

1

R
3
2

˙˙

dz

i
`

ż

BBR

ˆ

´1

4πz̄
log |z| ´

γK
4πz̄

` O
ˆ

1

R
3
2

˙˙

dz̄

i
.

In BBR we have |dz|

R “ dz
iz “ dz̄

´iz̄ , so

IBBR
IBBR

“

ż

BBR

ˆ

1

4π
log

ˇ

ˇ

ˇ

ˇ

1

2π

ˇ

ˇ

ˇ

ˇ

`
γK
4π

` O
ˆ

1

R
1
2

˙˙

|dz|

R
RÑ8
ÝÝÝÑ

γK
2

´
logp2πq

2
. (9.54)

All in all, combining (9.47) with (9.49), (9.52) and (9.54) we have obtained

ż

Γ
BG logp2|BG|q

dz

i

(9.45)
“ ´π

N
ÿ

j“1

cj ` π
L
ÿ

i“1

miGpξiq `
γK
2

´
logp2πq

2
.

Note that

c1 “ Gpζq
(9.53)

“
γK
2π

`
1

2π

ż

K
log |z ´ w| dµKpwq ď

γK
2π

`
log 2

2π
.

Thus, estimate (9.46) follows immediately from the next claim.

Claim 9.28. Let Γ “
N
Ť

j“1
Γj be the union of finitely many closed Jordan curves Γj enclos-

ing disjoint (bounded) Jordan domains Ωj, with K Ă
Ť

j Ωj, and there are constants cj,
j “ 1, . . . , N such that Γj Ă tGpzq “ cju, j “ 1, . . . , N . Then

N
ÿ

j“1

cj ď

L
ÿ

i“1

miGpξiq ` cj0 , (9.55)

for every j0 ď N .

In order to show (9.55), we will simply associate to each critical point ξi of multiplicity
mi a total amount of mi curves Γj , such that cj ď Gpξiq, and we will do this by applying
the argument principle conveniently.
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9 Harmonic measure in the complex plane

Figure 9.5: Green function with K “
Ť

Γi. In this case, there are five simple critical
points, four of them sharing a common level set, but paired two by two in
connected components of their level curve.

Recall that we have N Jordan curves Γj which bound Jordan domains Ωj and such
that G|Γj ” cj . Let us define c0 :“ min1ďjďN cj . By Lemma 9.27 the derivative BG is
holomorphic, and it has a finite number of critical points in tG ą c0u. Thus, we can find
δ0 ą 0 small enough, so that for each ξi there is no critical point ξ with Gpξiq ă Gpξq ď

Gpξiq ` δ0. In particular, the level set tz : Gpzq “ Gpξiq ` δ0u is a finite union of smooth
Jordan curves, and there exists a component Γi of this level set enclosing a Jordan domain
Ωi so that ξi P Ωi. Note that we cannot grant that Γi Ă D.
Note that several ξi may give rise to the same domain Ωi (and the same level Jordan

curve Γi), but for this to happen it must be that Gpξi1q “ Gpξi2q. For this reason, we may
change our enumeration, so that we have a finite family of Jordan domains Ωi bounded by
Jordan curves Γi with i P t1, ¨ ¨ ¨ ,Mu (here M ď L) satisfying that G|Γi “ ci, and critical
points tξi,ku

Ni
k“1 with multiplicity tmi,ku

Ni
k“1 so that ξi,k P Ωi and Gpξi,kq “ ci ´ δ0.

With this enumeration, we have a family of Jordan domains

tΩju
N
j“1 Y tΩiuMi“1,

whose boundaries tΓju
N
j“1 Y tΓiuMi“1, are smooth Jordan curves included in level sets of

the Green function of levels
tcju

N
j“1 Y tciuMi“1.

Moreover, the domains are either disjoint or one is included in the other one.
Next we partition into a disjoint family of domains: let

rΩi :“ Ωiz

N
ď

j“1

Ωjz

M
ď

ℓ“1

Ωℓ.
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9 Harmonic measure in the complex plane

Figure 9.6: We pick level sets surrounding critical points, and then we rename the elements
to create the tree structure.

Each of this new domains is bounded by a finite number of Jordan level curves, it con-
tains the critical points tξi,ku

Ni
k“1 and no other critical point. For this reason and by the

maximum principle, one can infer that every Γj of level cj such that Γj Ă BrΩi, satisfies

that cj ď Gpξi,kq, and the same can be said about Γj Ă BrΩi whenever j ‰ i. By Lemma
9.26 and the argument principle, we get

#tcomponents of BrΩi different from Γiu ´ 1 “
1

2πi

ż

BrΩi

B2G

BG
dz “

Ni
ÿ

k“1

mi,k.

Thus, if we write mi :“
řNi

k“1mi,k, then

#tcomponents of BrΩi different from Γiu “ mi ` 1.

Next we can create a graph of inclusion: The graph has nodes Γi and leaves Γj . a node

or a leave is said to be a direct descendant of a node Γi if it is a component of BrΩi different
from Γi. Each node Γi has exactly mi ` 1 descendants, as we have discussed. Moreover
each descendant has level

cj ă Gpξi,1q ă ci or cℓ ă Gpξi,1q ă ci. (9.56)

Since the graph has no loops, it is a tree. Here we begin an inductive pruning process.
Assume first that there are no critical points. Then it must be N “ 1, and (9.55) holds

trivially.
Otherwise, since the number of nodes and leaves is finite, we can find a node Γ1 of

multiplicity m1 which only has leaves as direct descendants. Then, we can create a new
tree by cutting away all the leaves which are descendant to Γ1, say tΓju

m1`1
j“1 , and convert

Γ1 to a leave of the new tree corresponding to the family of curves rΓ “ trΓju
N´m1
j“1 , that is,

a smaller number of level Jordan curves satisfying the hypothesis of Claim 9.28:

rΓ1 “ Γ1 and rΓj “ Γj`m1 for 2 ď j ď N ´m1,
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9 Harmonic measure in the complex plane

Ñ Ñ

Figure 9.7: Inductive pruning process. In the first step we prune Γ1 to get a reduced tree
with four leaves and two nodes of multiplicities rm1 “ 2 and rm2 “ 1, then
pruning Γ2 we get two leaves and one simple node and finally pruning Γ3 we
are left with just one leave and no nodes, that is, without critical points.

with levels
rc1 “ c1 and rcj “ cj`m1 for 2 ď j ď N ´m1,

which satisfies (9.55) by induction hypothesis. The nodes of the new tree will be tΓiuLi“2,
with multiplicities tmiu

L
i“2 and (9.56) will be satisfied as well. Then in case j0 ď m1 ` 1

we can assume that j0 “ 1 and then

N
ÿ

j“1

cj
(9.56)

ď cj0 `m1Gpξ1q `

N
ÿ

j“m1`2

cj ď m1Gpξ1q `

N´m1
ÿ

j“1

rcj ` pcj0 ´ rc1q.

Applying the induction hypothesis (9.55) with j0 “ 1, we get

N
ÿ

j“1

cj ď m1Gpξ1q `

L
ÿ

i“2

miGpξiq ` rc1 ` pcj0 ´ rc1q.

If, instead, the singular index j0 ą m1 ` 1, then we just bound c1 ď c1 “ rc1 and apply
the induction hypothesis (9.55) with j0 “ j0 ´m1

N
ÿ

j“1

cj
(9.56)

ď m1Gpξ1q `

N´m1
ÿ

j“1

rcj ď m1Gpξ1q `

L
ÿ

i“2

miGpξiq ` cj0 .
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10 Ahlfors regular domains

10.1 Some types of domains

In this chapter we will study the connection between harmonic measure and surface mea-
sure for some types of domains Ω Ă Rd with finite surface Hd´1|BΩ.
For m ą 0, we say that a measure µ on Rd is m-Ahlfors regular if there exists some

constant C ą 0 such that

C´1rm ď µpBrpxqq ď C rm for all x P suppµ and 0 ă r ď diampsuppµq.

In the case m “ d´ 1, quite often we will just say that µ is Ahlfors regular. A set E Ă Rd

is a called m-Ahlfors regular if the measure Hm|E is m-Ahlfors regular.
For an easy notation, in this chapter we will set d “ n ` 1 and we will work in Rn`1.

A domain Ω Ă Rn`1 whose boundary is n-Ahlfors regular is called an Ahlfors regular
domain. Below we will consider C1`γ domains (with γ P p0, 1q), Lipschitz domains, and
chord-arc domains. For simplicity we will assume all to be bounded. All of them are
Ahlfors regular domains. In fact, it holds

C1,γ domains Ă Lipschitz domains Ă chord-arc domains Ă Ahlfors regular domains.

Next we will define C1,γ , Lipschitz, and chord-arc domains. First, a chord-arc domain is
an NTA Ahlfors regular domain. To introduce Lipschitz domains takes some more work.
We say that Z Ă Rn`1 is a pτ, ℓq-cylinder if there is an orthonormal coordinate system
x “ px̄, xn`1q P Rn ˆ R such that

Z “ tpx̄, xn`1q : |x̄| ď τ, |xn`1| ď 10ℓτu.

Also, for all s ą 0, we denote

sZ “ tpx̄, xn`1q : |x̄| ď sτ, |xn`1| ď 10sℓτu.

We say that Ω is a Lipschitz domain with Lipschitz character pℓ,N,C0q is there is r0 ą 0
and at most N pτ, ℓq-cylinders Zj , j “ 1, . . . , N , with C´1

0 r0 ď τ ď C0r0 such that

(i) 8Zj X BΩ is the graph of a Lipschitz function Aj with }∇Aj}8 ď ℓ, Ajp0q “ 0, in
the coordinate system associated with Zj ,

(ii) BΩ “
Ť

jpZj X BΩq,

(iii) and
8Zj X Ω “ tpx̄, xn`1q P 8Zj : xn`1 ą Ajpx̄qu, (10.1)

in the coordinate system associated with Zj .
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10 Ahlfors regular domains

We also say that Ω is a Lipschitz domain with Lipschitz constant ℓ.
On the other hand we say that Ω Ă Rn`1 is a special Lipschitz domain if there is a

coordinate system x “ px̄, xn`1q P Rn ˆ R and a Lipschitz function A : Rn Ñ R such that

Ω “ tpx̄, xn`1q : xn`1 ą Apx̄qu.

For 0 ă γ ď 1, Ω Ă Rn`1 is a C1,γ domain if it is a Lipschitz domain such the
Lipschitz functions Aj in (i), (ii), (iii) above are of class C1,γ , and their derivatives are
γ-Hölder uniformly on j. That is, there exists some constant C such that, for all j and all
x̄, ȳ P 8Zj X Rn (in the local coordinate system for Zj),

|∇Ajpx̄q ´ ∇Ajpȳq| ď C |x̄´ ȳ|γ .

Now we will prove a lemma which can be considered as a variant of Liouville’s theorem
for harmonic functions in a half-space. This lemma will play an important role in the
study of harmonic measure both in C1,γ and Lipschitz domains.

Lemma 10.1. Let u be a positive harmonic function in the upper half space H “ tx P

Rn`1 : xn`1 ą 0u and continuous in H which vanishes in BH. Then there exists some
constant λ ą 0 such that

upxq “ λxn`1 for all x P H.

Proof. Let x0 “ en`1. We choose λ “ upx0q and we let vpxq “ λxn`1 for x P H. Since
both u and v are positive and harmonic in H and vanish continuously in BH, by the
boundary Harnack principle applied to H X Brp0q (see Theorem 8.17) with arbitrarily
large r ą 0, we have that upxq « vpxq for all x P H. Thus, u grows at most linearly at 8.

Since u vanishes in BH, it can be extended by reflection to the lower half space. Next
we use the fact that that any harmonic function in Rn`1 satisfying |upxq| ď Cp1 ` |x|q in
Rn`1 is a polynomial of degree at most 1, by Proposition 2.13. From this fact one easily
gets that u “ λxn`1.

10.2 C1,γ domains

Our first result is the following.

Theorem 10.2. Let Ω Ă Rn`1 be a bounded C1,γ domain, with 0 ă γ ă 1. For all
x0 P Ω, the harmonic measure ωx0 for Ω and the surface measure σ “ Hn|BΩ are mutually
absolutely continuous, and moreover the density dωx0

dσ is bounded and bounded away from
0. That is, there exists some constant C ą 0 such that

C´1 ď
dωx0

dσ
pξq ď C for σ-a.e. ξ P BΩ. (10.2)

Further, the Green function for Ω satisfies

|∇Gx0pxq| ď C for all x P ΩzBpx0,
1
2dΩpx0qq. (10.3)

The constant C in both inequalities only depends on γ, the C1,γ character of Ω, diampΩq,
and dΩpx0q.
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10 Ahlfors regular domains

Before going into the proof of the theorem, we will introduce Jones’ β coefficients used
to measure the flatness of sets. Given a set E Ă Rn`1, a ball B :“ Brpxq Ă Rn`1, and a
hyperplane L Ă Rn`1, we let

β8,EpB,Lq “ β8,Epx, r, Lq “ sup
yPEXBrpxq

distpy, Lq

r
. (10.4)

We recall also the notion of Hausdorff distance: Given two sets E,F Ă Rn`1, we set

distHpE,F q “ max
´

sup
xPE

distpx, F q, sup
yPF

distpy,Eq

¯

.

This is the so-called Hausdorff distance between E and F .
We will use the following auxiliary fact:

Lemma 10.3. Let Ω Ă Rn`1 be a bounded C1,γ domain with 0 ă γ ă 1. Then there exist
constants γ1 ą 0 and r0 ą 0 such that, for all ξ P BΩ, if Lξ denotes the tangent hyperplane
to BΩ at ξ, we have

β8,BΩpξ, r, Lξq ď

´ r

r0

¯γ1

for 0 ă r ď r0. (10.5)

the constants γ1, r0 depend on γ and the C1,γ character of Ω.

The proof is standard and we leave this for the reader.

Proof of Theorem 10.2. Denote ω “ ωx0 and G “ Gx0 . We will show that there exists
some d0 ą 0 depending on γ, the C1,γ character of Ω, diampΩq, and dΩpx0q such that

Gpxq « dΩpxq for all x P Ω with dΩpxq ď d0, (10.6)

with the implicit constant depending also on γ, the C1,γ character of Ω, diampΩq, and
dΩpx0q. Since Ω is an NTA domain, this condition implies that, for any surface ball
∆ Ă BΩ with radius rp∆q ď d0,

ωp∆q « GpX∆q rp∆qn´1 « rp∆qn´1 dΩpX∆q « rp∆qn, (10.7)

where X∆ is a corkscrew point for ∆ such that rp∆q À dΩpX∆q ď rp∆q. So any small
enough surface ball ∆ satisfies ωp∆q « σp∆q. By the Radon-Nykodim-Lebesgue differenti-
ation theorem, this implies (10.2). Further, from (10.6) and interior Caccioppoli estimates,
(10.3) follows easily too.
Let r0 be as in (10.5). Below we will choose d0 ď minpr0{10, dΩpx0q{2q. To prove (10.6)

for a given x P Ω with dΩpxq ď d0, let ξ P BΩ be such |x´ ξ| “ dΩpxq and, for each k ě 1
such that 2kdΩpxq ď d0, denote Bk “ Bpξ, 2kdΩpxqq and ∆k “ Bk X BΩ. Also, let yk P Ω
be a corkscrew point for ∆k such that yk P Bk and dΩpykq « 2kdΩpxq. Without loss of
generality, suppose that ξ “ 0 and that the tangent hyperplane Lξ to BΩ in ξ is horizontal.
It is immediate to check that, for each k,

dΩpykq « rpBkq « yk,n`1,
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10 Ahlfors regular domains

where yk,n`1 is the vertical component of yk.
We wish to estimate

ˇ

ˇ

ˇ

ˇ

Gpykq

yk,n`1
´
Gpyk´1q

yk´1,n`1

ˇ

ˇ

ˇ

ˇ

for 1 ď k ď k0, where k0 will be fixed in a moment. To this end, consider the ball rBk

concentric with Bk and radius

rp rBkq “

´

rpBkq1`
γ1

2 r
γ1

2
0

¯
1

1`γ1

“ 2
k
1`

γ1

2
1`γ1

´

dΩpxq1`
γ1

2 r
γ1

2
0

¯
1

1`γ1

, (10.8)

with γ1 as in (10.5). Notice that Bk Ă rBk. Let k0 be the maximal integer such that
rp rBk0q ď d0, so that d0{2 ă rp rBk0q ď d0. Denote rβk “ β8,BΩpξ, rp rBkq, Lξq and (for fixed

k) let h : Ω X rBk Ñ R be the solution of the Dirichlet problem in Ω X rBk with boundary
data

hpζq “

#

0 if ζn`1 ď rβk rp rBkq,

ζn`1 ´ rβk rp rBkq if ζn`1 ą rβk rp rBkq,

for ζ P BpΩ X rBkq, where ζn`1 is the pn ` 1q component of ζ. Remark that the boundary
data is continuous and Ω X rBk is Wiener regular. Notice also that h vanishes in BΩ X rBk

and that
|hpzq ´ zn`1| ď rβk rp rBkq for all z P Ω X rBk, (10.9)

by the maximum principle, since this inequality holds in the boundary of Ω X rBk and the
function fpzq :“ hpzq ´ zn`1 is harmonic in that domain. Next, observe that

rβk rp rBkq ď r´γ1

0 rp rBkqγ
1`1 “ rpBkq

ˆ

rpBkq

r0

˙

γ1

2

ď rpBkq

ˆ

d0
r0

˙

γ1

2

! rpBkq (10.10)

if we assume d0 ! r0. Since yk,n`1 « yk´1,n`1 « rpBkq, from (10.9) we infer that

hpykq « yk,n`1 « yk´1,n`1 « hpyk´1q. (10.11)

We write
ˇ

ˇ

ˇ

ˇ

Gpykq

yk,n`1
´
Gpyk´1q

yk´1,n`1

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

Gpykq

hpykq
´
Gpyk´1q

hpyk´1q

ˇ

ˇ

ˇ

ˇ

`Gpykq

ˇ

ˇ

ˇ

ˇ

1

hpykq
´

1

yk,n`1

ˇ

ˇ

ˇ

ˇ

(10.12)

`Gpyk´1q

ˇ

ˇ

ˇ

ˇ

1

hpyk´1q
´

1

yk´1,n`1

ˇ

ˇ

ˇ

ˇ

.

By (10.9), (10.11), a Harnack chain estimate, and (10.10), the second and third term on
the right hand side of (10.12) satisfy

Gpykq

ˇ

ˇ

ˇ

ˇ

1

hpykq
´

1

yk,n`1

ˇ

ˇ

ˇ

ˇ

`Gpyk´1q

ˇ

ˇ

ˇ

ˇ

1

hpyk´1q
´

1

yk´1,n`1

ˇ

ˇ

ˇ

ˇ

À Gpykq
rβk rp rBkq

y2k,n`1

`Gpyk´1q
rβk rp rBkq

y2k,n`1

« Gpykq
rβk rp rBkq

y2k,n`1

ď Gpykq
rpBkq

y2k,n`1

ˆ

rpBkq

r0

˙

γ1

2

«
Gpykq

yk,n`1

ˆ

rpBkq

r0

˙

γ1

2
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10 Ahlfors regular domains

Finally, to deal with the first term on the right hand side of (10.12), we use Corollary
8.19:

ˇ

ˇ

ˇ

ˇ

Gpykq

hpykq
´
Gpyk´1q

hpyk´1q

ˇ

ˇ

ˇ

ˇ

À
Gpykq

hpykq

ˆ

|yk ´ yk´1|

rp rBkq

˙α

À
Gpykq

yk,n`1

ˆ

rpBkq

rp rBkq

˙α

,

where α P p0, 1q is some constant depending on the NTA character of Ω. Recalling the
choice of rp rBkq in (10.8), we get

ˇ

ˇ

ˇ

ˇ

Gpykq

hpykq
´
Gpyk´1q

hpyk´1q

ˇ

ˇ

ˇ

ˇ

À
Gpykq

yk,n`1

ˆ

rpBkq

r0

˙

αγ1

2γ1`2

Putting altogether, since γ2 :“ αγ1

2γ1`2 ă
γ1

2 , we derive

ˇ

ˇ

ˇ

ˇ

Gpykq

yk,n`1
´
Gpyk´1q

yk´1,n`1

ˇ

ˇ

ˇ

ˇ

À
Gpykq

yk,n`1

ˆ

rpBkq

r0

˙γ2

,

or equivalently,

Gpykq

yk,n`1

ˆ

1 ´

ˆ

rpBkq

r0

˙γ2˙

ď
Gpyk´1q

yk´1,n`1
ď
Gpykq

yk,n`1

ˆ

1 `

ˆ

rpBkq

r0

˙γ2˙

.

Since
k0
ÿ

k“1

ˆ

rpBkq

r0

˙γ2

ă 8,

we deduce that

Gpxq

xn`1
«
Gpy1q

y1,n`1
«
Gpyk0q

yk0,n`1
«

Gpyk0q

dΩpyk0,n`1q
«
ωpBpξ, d0qq

dn0
,

arguing as in (10.7) for the last estimate. As ωpBpξ,d0qq

dn0
« 1 (with constants depending on

dΩpx0q, d0, diampΩq, and the NTA character of Ω), the theorem follows.

Remark 10.4. By inspection of the proof above, one can check that the following holds.
If Ω Ă Rn`1 is an NTA domain, x0 P Ω, ξ P BΩ, and there exists a hyperplane Lξ Q ξ such
that, for some γ1 ą 0 and r0 ą 0,

β8,BΩpξ, r, Lxq ď

´ r

r0

¯γ1

for 0 ă r ď r0,

then

0 ă lim inf
rÑ0

ωx0pBpξ, rqq

p2rqn
ď lim sup

rÑ0

ωx0pBpξ, rqq

p2rqn
ă 8.

The lim inf and lim sup above are called the lower and upper n-dimensional densities of
ωx0 at ξ, respectively.
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10 Ahlfors regular domains

Our next goal is to prove that, for a C1,γ domain Ω Ă Rn`1, the density function dωx0

dσ
is γ-Hölder continuous:

Theorem 10.5. Let Ω Ă Rn`1 be a bounded C1,γ domain, with 0 ă γ ă 1. For all x0 P Ω,
the density dωx0

dσ belongs to Cγ. Further, Gx0 P C1,γpΩzBpx0,
1
2dΩpx0qqq.

Remark that if Gx0 P C1,γpΩzBpx0,
1
2dΩpx0qqq, then the derivatives of Gx0 extend con-

tinuously to BΩ, and thus Gx0 P C1pΩzB̄px0,
1
2dΩpx0qqq. Then, as shown in Proposition

7.7,
ωx0 “ ´pBνG

x0qσ,

where ν is the unit outer normal to BΩ. Therefore, for σ-a.e. ξ P BΩ,

dωx0

dσ
pξq “ ´pBνG

x0qpξq “ ´x∇Gx0pξq, νpξqy.

Using that both ∇Gx0 and ν are γ-Hölder continuous and bounded in BΩ, it follows
immediately that dωx0

dσ pξq is Hölder continuous. Hence, to prove Theorem 10.5 it suffices
to show that Gx0 P C1,γpΩzBpx0,

1
2dΩpx0qqq. To do so, we will use PDE techniques.

For a function f : E Ñ R (or a vector field f : E Ñ Rd) and γ ą 0, we consider the
seminorm

}f} 9CγpEq
“ sup

x,yPE,x‰y

|fpxq ´ fpyq|

|x´ y|γ
.

We will prove the following result:

Theorem 10.6. For γ P p0, 1q, let Ω Ă Rn`1 be a C1,γ bounded domain and let u : Ω Ñ R
be harmonic in Ω and continuous in Ω. Let f P C1,γpΩq be such that u “ f on BΩ and
suppose that u P C1,γpΩq. Then

}∇u} 9CγpΩq
À }∇u}

8,Ω ` }∇f} 9CγpBΩq
` }∇f}8,BΩ,

with the implicit constant depending on γ and the C1,γ character of Ω.

Remark 10.7. The a priori assumption that u P C1,γpΩq can be removed in Theorem
10.6, by an approximation argument and using suitable interpolation inequalities between
different norms. See for example [GT01, Chapter 6]. However, to study harmonic measure
in C1,γ domains we will only apply Theorem 10.6 in the particular case when u is the Green
function for Ω. This will allow to use somewhat simpler arguments in the proof of Theorem
10.5.

The main step to prove Theorem 10.6 is the following.

Lemma 10.8. For γ P p0, 1q, let Ω Ă Rn`1 be a bounded C1,γ domain with diampΩq ą 1.
Let B1 be a ball of radius 1 centered in BΩ and let B1{2 be a concentric ball with radius
1{2. For all δ ą 0, there exists some positive constant Cpδq such that for all functions
u, f P C1,γpΩ XB1q, with u harmonic in Ω XB1 and u “ f in BΩ XB1, it holds

}∇u} 9CγpB1{2XΩq
ď δ }∇u} 9CγpB1XΩq

`Cpδq
`

}∇u}8,B1XΩ ` }∇f} 9CγpB1XBΩq
` }∇f}8,B1XBΩ

˘

.
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10 Ahlfors regular domains

Proof. Assume that the lemma does not hold. Then there exists some δ ą 0 such that
for every k ą 1 there are C1,α domains Ωk Ă Rn`1 (with a uniform C1,α character) with
diampΩkq ą 1 and functions uk, fk P C1,γpΩ XB1q, with uk harmonic in Ω X B1 and
uk “ fk in BΩk XB1, so that

}∇uk} 9CγpB1{2XΩkq
ą δ }∇uk} 9CγpB1XΩkq

(10.13)

` k
`

}∇uk}8,B1XΩk
` }∇fk} 9CγpB1XBΩkq

` }∇fk}8,B1XBΩk

˘

.

Claim 10.9. There are points xk, yk P B3{4 X Ωk such that

|xk ´ yk| « dΩk
pxkq « dΩk

pykq (10.14)

and
|∇ukpxkq ´ ∇ukpykq|

|xk ´ yk|γ
Á }∇uk} 9CγpB1{2XΩkq

. (10.15)

Further, |xk ´ yk| À k´1{γ.

Assume for the moment the claim to hold and denote ρk “ |xk ´ yk|. Notice that
ρk Ñ 0 as k Ñ 8. Consider the domain rΩk “ ρ´1

k pΩk ´ xkq. Clearly, 0 P rΩk for each k.
Further, the fact that dΩk

pxkq « ρk (by (10.14)), implies that d
rΩk

p0q « 1. Equivalently,

there is some fixed constant R ą 0 such that BrΩk X BRp0q ‰ ∅ for all k ě 1. Then, up

to a subsequence we can assume that rΩk and BrΩk converge locally in Hausdorff distance,
respectively, to a domain H and a closed set F “ BH. By Lemma 10.3, it follows that F
is hyperplane and so H is a half-space containing the origin.
Consider the polynomial

pkpzq “ ukpxkq ` ρk∇ukpxkq ¨ z,

and, for rΩk “ ρ´1
k pΩk ´ xkq, let ruk : rΩk Ñ R be defined by

rukpzq “
ukpxk ` ρkzq ´ pkpzq

ρ1`γ
k }∇uk} 9CγpB1XΩkq

.

Observe that
ukp0q “ ∇ukp0q “ 0,

and for all z P rΩk and k big enough so that xk ` ρkz P B1,

|∇rukpzq| “
|∇ukpxk ` ρkzq ´ ∇ukpxkq|

ργk }∇uk} 9CγpB1XΩkq

ď
}∇uk} 9CγpB1XΩkq

|ρkz|γ

ργk }∇uk} 9CγpB1XΩkq

“ |z|γ . (10.16)

Also, for all x, y P rΩk and k big enough so that both xk ` ρky and xk ` ρky are in B1,

|∇rukpxq ´ ∇rukpyq| “
|∇ukpxk ` ρkxq ´ ∇ukpxk ` ρkyq|

ργk }∇uk} 9CγpB1XΩkq

(10.17)

ď
}∇uk} 9CγpB1XΩkq

|ρkx´ ρky|γ

ργk }∇uk} 9CγpB1XΩkq

“ |x´ y|γ .
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From the above conditions it follows that ruk is a locally bounded equicontinuous family of
harmonic functions, and by the Ascoli-Arzelà theorem, up to a subsequence, the functions
uk converge to another harmonic function ru : H Ñ R locally in C1,γ norm in compact
subsets of H. From the above estimates, we infer that

rup0q “ ∇rup0q “ 0, (10.18)

for all z P H,
|∇rupzq| ď |z|γ , (10.19)

and for all x, y P H,
|∇rupxq ´ ∇rupyq| ď |x´ y|γ . (10.20)

On the other hand, by (10.15) and (10.13), the point ξk “ ρ´1
k pyk ´ xkq satisfies

|∇rukpξkq| “
|∇ukpykq ´ ∇ukpxkq|

ργk }∇uk} 9CγpB1XΩkq

Á
}∇uk} 9CγpB1{2XΩkq

}∇uk} 9CγpB1XΩkq

ě δ.

Notice also that |ξk| “ 1 and d
rΩk

pξkq « 1, by (10.14). Hence, up to a subsequence, ξk
converges to some point ξ P H such that

|ξ| “ 1, |∇rupξq| Á δ. (10.21)

From the conditions (10.18), (10.19), and (10.20), it follows that ru and ∇ru can be
extended continuously to the whole H. We intend to show that ∇ru is constant in BH,

which will lead to a contradiction. To this end, let rfk : rΩk Ñ R be defined by

rfkpzq “
fkpxk ` ρkzq ´ pkpzq

ρ1`γ
k }∇uk} 9CγpB1XΩkq

,

so that ruk|
BrΩk

“ rfk|
BrΩk

. Denote by ∇Tk
and ∇T the respective tangential gradients in BrΩk

and BH. That is, ∇Tk
gpzq “ ∇gpzq ´ νkpzq pνkpzq ¨∇gpzqq for any function g and z P BrΩk,

where νk is the outer unit normal of rΩk. We define ∇T gpzq for z P BH analogously. From
the definitions of ruk and rfk, we deduce that ∇Tk

ruk “ ∇Tk
rfk.

Remark that since BH is a hyperplane, the outer unit normal is constant. Then, for

any z P rΩk, it makes sense to consider the “tangential gradient” ∇T rukpzq “ ∇rukpzq ´

νpzq pνpzq ¨ ∇rukpzqq, where ν is the outer unit normal of H. Next we intend to estimate
|∇T rukpxq ´ ∇T rukpyq| for x, y P BH:

|∇T rukpxq ´ ∇T rukpyq| (10.22)

ď |∇T rukpxq ´ ∇Tk
rukpxq| ` |∇Tk

rfkpxq ´ ∇Tk
rfkpyq| ` |∇Tk

rukpyq ´ ∇T rukpyq|.

We estimate the first and third terms on the right hand side using (10.16):

|∇T rukpxq ´ ∇Tk
rukpxq| ` |∇Tk

rukpyq ´ ∇T rukpyq| ď p|νkpxq ´ ν| ` |νkpyq ´ ν|q }∇ruk}
8,rΩk

ď |νkpxq ´ ν| ` |νkpyq ´ ν|.
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Regarding the middle term on the right hand side of (10.22), by the definition of rfk we
have

|∇Tk
rfkpxq ´ ∇Tk

rfkpyq|

ď
|ρk∇Tk

fkpxk ` ρkxq ´ ρk∇Tk
fkpxk ` ρkyq| ` |∇Tk

pkpxq ´ ∇Tk
pkpyq|

ρ1`γ
k }∇uk} 9CγpB1XΩkq

“
|∇Tk

fkpxk ` ρkxq ´ ∇Tk
fkpxk ` ρkyq|

ργk }∇uk} 9CγpB1XΩkq

`
|∇Tkpxqukpxkq ´ ∇Tkpyqukpxkq|

ργk }∇uk} 9CγpB1XΩkq

“: S1 ` S2.

To we deal with S1 we write, using (10.13), for k big enough,

S1 ď
|∇fkpxk ` ρkxq ´ ∇fkpxk ` ρkyq| ` |νkpxq ´ νkpyq| |∇fkpyq|

ργk }∇uk} 9CγpB1XΩkq

ď
}∇fk} 9CγpB1XBΩkq

|x´ y|γ

}∇uk} 9CγpB1XΩkq

`
|νkpxq ´ νkpyq| }∇fk}8,B1XBΩk

ργk }∇uk} 9CγpB1XΩkq

ď
|x´ y|γ

k
`

|νkpxq ´ νkpyq|

k ργk
.

Denoting by νΩk
the outer unit normal to Ωk and using that Ωk is C1,γ with a uniform

character, we deduce that

|νkpxq ´ νkpyq| “ |νΩk
pxk ` ρkxq ´ νΩk

pxk ` ρkyq| À ργk |x´ y|γ . (10.23)

So we get

S1 À
|x´ y|γ

k
.

To estimate S2 we use again (10.23) and (10.13) assuming k big enough:

S2 ď
|νkpxq ´ νkpyq| }∇uk}8,B1XΩk

ργk }∇uk} 9CγpB1XΩkq

À
|x´ y|γ

k
.

Putting altogether, we obtain

|∇T rukpxq ´ ∇T rukpyq| ď |νkpxq ´ ν| ` |νkpyq ´ ν| ` C
|x´ y|γ

k
.

Suppose now that x, y P BM p0q, for some fixed M ą 10. Using the fact that the domains
Ωk are C1,γ , it is easy to check that then, up to a subsequence,

|νkpxq ´ ν| ` |νkpyq ´ ν| ď εk,

where εk Ñ 0 as k Ñ 8. Hence,

|∇T rukpxq ´ ∇T rukpyq| À εk `
Mγ

k
for all x, y P BrΩk XBM p0q. (10.24)
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For a fixed M ą 10 and any small τ ą 0, let us consider the neighborhood Vτ “

Uτ pBHq X BM p0q and let us estimate |∇T rukpxq ´ ∇T rukpyq| for x, y P Vτ X rΩk. Assume k
to be large enough so that BrΩk XBp0,Mq Ă Vτ and BH XBM p0q Ă Uτ pBrΩkq. Then, there
exist x1, y1 P BrΩk such that

|x´ x1| ď 2τ and |y ´ y1| ď 2τ.

We split

|∇T rukpxq ´ ∇T rukpyq|

ď |∇T rukpxq ´ ∇T rukpx1q| ` |∇T rukpx1q ´ ∇T rukpy1q| ` |∇T rukpy1q ´ ∇T rukpyq|.

By (10.24), the middle term on the right hand side is bounded above by Cεk `CMγ

k . On
the other hand, we can bound the first term using (10.17):

|∇T rukpxq ´ ∇T rukpx1q| ď |∇rukpxq ´ ∇T rukpx1q| ď |x´ x1|γ À τγ .

The third term is estimated in the same way. So we have

|∇T rukpxq ´ ∇T rukpyq| À τγ ` εk `
Mγ

k
.

Letting k Ñ 8, we deduce that

|∇T rupxq ´ ∇T rupyq| À τγ for all x, y P H X Vτ ..

By continuity, the same estimate holds for all x, y P BH X BM p0q. Since τ can be taken
arbitrarily small andM arbitrarily large, we deduce that∇T ru is constant in BH, as wished.
Since ∇T ru is constant in the hyperplane BH, there exists a first degree polynomial

ppzq such that ru ´ p vanishes identically on BH. Now we can argue as in the proof of
Lemma 10.1: we can extend the function w :“ ru´ p by reflection to the whole Rn`1. The
extension, which we still denote by w, is harmonic and by (10.19), |∇wpzq| ď Cp1 ` |z|qγ

in Rn`1. By the mean value theorem, it follows that |wpzq| ď Cp1 ` |z|q1`γ , and then by
Proposition 2.13 we deduce that w is a polynomial of degree at most 1. This implies that
the gradient of ru ´ p, and so the one of ru, is constant in H, which contradicts the fact
that ∇rup0q “ 0 and |∇rupξq| Á δ, by (10.18) and (10.21).

To conclude the proof of Lemma 10.8 it remains to prove Claim 10.9.

Proof of Claim 10.9. Let ak, bk P B1{2 X Ωk be such that

|∇ukpakq ´ ∇ukpbkq|

|ak ´ bk|γ
ě

1

2
}∇uk} 9CγpB1{2XΩkq

.

Denote ℓk “ |ak ´ bk|. From (10.13) it easily follows that ℓk Ñ 0 as k Ñ 8. Indeed, this
implies

}∇uk} 9CγpB1{2XΩkq
ď 2

|ukpakq ´ ukpbkq|

|ak ´ bk|γ
ď

4 }∇uk}8,B1XΩk

ℓγk
ď

4 }∇uk} 9CγpB1{2XΩkq

k ℓγk
,

(10.25)
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and so ℓk À k´1{γ Ñ 0 as k Ñ 8.
Observe now that if B is some ball such that 2B Ă Ωk with center xB, from the

harmonicity of uk and the subharmonicity of |∇uk ´∇ukpxBq| in 2B, we deduce that, for
all x, y P B,

|∇ukpxq ´ ∇ukpyq|

|x´ y|γ
À

|∇ukpxq ´ ∇ukpyq| rpBq1´γ

|x´ y|
ď }∇2uk}8,B rpBq1´γ (10.26)

À }∇uk ´ ∇ukpxBq}8,1.1B rpBq´γ À max
zPB1.2B

|∇ukpzq ´ ∇ukpxBq|

rpBqγ
.

Suppose first that |ak ´ bk| ě 1
10 dΩk

pakq. Consider a non-tangential path Γ joining ak
and bk. We cover Γ by a family of ball Bj “ Brj pzjq, j P J , so that the balls 1

5Bj are
pairwise disjoint, with rj “ 1

10dΩk
pzjq. Notice that, for every j P J ,

rj “
1

10
dΩk

pzjq ď
1

10
pdΩk

pakq ` |ak ´ zj |q ď
1

10
pdΩk

pakq ` H1pΓqq ď 2H1pΓq. (10.27)

By the triangle inequality we have

|∇ukpakq ´ ∇ukpbkq| ď
ÿ

jPJ

sup
x,yPBj

|∇ukpxq ´ ∇ukpyq|.

We claim that there exists some j such that

sup
x,yPBj

|∇ukpxq ´ ∇ukpyq| Á }∇uk} 9CγpB1{2XΩkq
rγj . (10.28)

Indeed, suppose that for each j the supremum above is bounded by λ }∇uk} 9CγpB1{2XΩkq
rγj ,

for some small λ ą 0 to be fixed below. For i ě 0, let tBjujPJi be the family of the balls
Bj such that 2´iH1pΓq ă rpBjq ď 2´i`1H1pΓq. It is easy to check that #Ji À 1, with the
implicit constant depending on the NTA character of Ωk (see, for example, the proof of
Lemma 8.6). Then we have

}∇uk}
´1
9CγpB1{2XΩkq

|∇ukpakq ´ ∇ukpbkq| ď λ
ÿ

jPJ

rγj ď λ
ÿ

iě1

#Ji p2´i`1H1pΓqqγ

À λ
ÿ

iě0

ÿ

jPJi

p2´i`1H1pΓqqγ « λH1pΓqqγ « λ |ak ´ bk|γ ,

which leads to a contradiction if λ is small enough.
Let j P J be such that (10.28) holds. From (10.26) we deduce that

max
zPB1.5Bj

|∇ukpzq ´ ∇ukpzjq|

rpBjq
γ

Á }∇uk} 9CγpB1{2XΩkq
.

We choose xk “ zj and we let yk be the point in B1.5Bj which attains the maximum
above. Since

maxp|xk ´ ak|, |yk ´ ak|q À H1pΓq À |ak ´ bk| “ ℓk Ñ 0 as k Ñ 8,
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it follows that ak, bk P B3{4 for k large enough. Also, by (10.27), |xk ´ yk| “ rpBjq ď

2H1pΓq À ℓk À k´1{γ . It is easy to check that xk and yk satisfy the other properties
required in the claim, too.

Consider now the case when |ak ´ bk| ă 1
10 dΩk

pakq “: da. From (10.26) applied to the
ball Bda{10pakq we obtain

|∇ukpakq ´ ∇ukpbkq|

|ak ´ bk|γ
À max

zPBBda{8pakq

|∇ukpzq ´ ∇ukpakq|

dγa
.

We take xk “ ak and we choose yk P BBda{8pakq to be a point where the maximum on the
right hand side is attained, so that (10.15) holds. Notice that, since da ď 1{2 and ak P B1{2,

we have yk P B3{4. The same argument as in (10.25) shows that |xk ´ yk| À k´1{γ . The
property (10.14) is also easily checked.

Proof of Theorem 10.6. Let τ be the constant in the definition of Lipschitz and C1,γ do-
mains. Consider two points x, y P Ω and suppose first that |x ´ y| ě τ{10. Then we
write

|∇upxq ´ ∇upyq| ď 2 }∇u}
8,Ω À }∇u}

8,Ω

|x´ y|γ

τγ
.

Suppose now that |x ´ y| ă τ{10 and dΩpxq ě τ{5. In this case, y P Bx :“ Bτ{10pxq and
2Bx Ă Ω. So by interior Caccioppoli estimates, since ∇u is harmonic in 2Bx,

|∇upxq ´ ∇upyq| ď }∇2u}8,Bx |x´ y| À }∇u}8,2Bx

|x´ y|

τ
ď }∇u}

8,Ω

|x´ y|γ

τγ
.

In the case |x´y| ă τ{10 and dΩpxq ă τ{5, we apply Lemma 10.8 to the ball B “ Bτ pξxq,
where ξx P BΩ satisfies |x´ ξx| “ dΩpxq. Since x, y P 1

2B, we derive

|∇upxq ´ ∇upyq| ď }∇u} 9Cγp 1
2
BXΩq

|x´ y|γ

ď

”

δ }∇u} 9CγpΩq
` Cpδq

`

}∇u}
8,Ω ` }∇f} 9CγpBΩq

` }∇f}8,BΩ

˘

ı

|x´ y|γ .

Gathering the estimates for the different cases, we infer that

}∇u} 9CγpΩq
À δ }∇u} 9CγpΩq

` Cpδ, τq
`

}∇u}
8,Ω ` }∇f} 9CγpBΩq

` }∇f}8,BΩ

˘

.

Thus, choosing δ small enough and using the fact that }∇u} 9CγpΩq
ă 8 by assumption, we

get
}∇u} 9CγpΩq

À Cpδ, τq
`

}∇u}
8,Ω ` }∇f} 9CγpBΩq

` }∇f}8,BΩ

˘

.

Proof of Theorem 10.5. We let B0 “ B 1
2
dΩpx0q. As explained above, it suffices to show that

Gx0 P C1,γpΩzB0q. To this end we will apply Theorem 10.6 and a suitable approximation
argument.
We consider a sequence of domains Ωj , j ě 1, satisfying the following:
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• Ωj Ă Ωj`1 Ă Ω for every j, and Ω “
Ť

j Ωj .

• Each Ωj is a C8 domain.

• The domains Ωj have a uniform C1,γ character.

We leave for the reader to check that one can construct such sequence of domains Ωj .
Denote by Gx0

j the Green function of Ωj (assuming j large enough so that x0 P Ωj) and

let rΩ “ ΩzB0 and rΩj “ ΩjzB0. It is immediate to check that rΩ and rΩj are also C1,γ

domains, uniformly on j for j big enough. Notice that Gx0
j vanishes identically on BΩj

and satisfyes

|∇iGx0
j | Ài

1

dΩpx0qn´1`i
in BB0, for all i ě 0.

In particular, Gx0
j is a harmonic function in rΩj with C8 boundary data. Then it follows

that Gx0
j P C8pΩjq (i.e., Gx0

j P CmpΩjq for all m ě 1). See for example [GM12, Theorem
4.14] or [Fol95, Chapter 7]. Then, by Theorem 10.6, choosing fj to be a C8 function in
Rn`1 that vanishes in a neighborhood of BΩj and equals Gx0

j on BB0, and applying also
Theorem 10.2, we deduce that

}∇Gx0
j } 9CγprΩjq

À }∇Gx0
j }

8,rΩj
` }∇fj} 9CγpBrΩjq

` }fj}8,BrΩj
À }∇Gx0

j }
8,rΩj

`CpdΩpx0qq ď M,

where M is some constant that depends on dΩpx0q and the C1,γ character of rΩj , so that
M is uniform on j. In other words,

|∇Gx0
j pxq ´ ∇Gx0

j pyq| ď M |x´ y|γ for all j and x, y P rΩj . (10.29)

We assume that Gx0 and Gx0
j vanish identically in Ωc and Ωc

j , respectively. Notice that
Gx0 ´Gx0

j is harmonic in Ωj . Further, by the Hölder continuity of Gx0 in a neighborhood
of BΩ, it holds that

|Gx0pyq ´Gx0
j pyq| “ Gx0pyq À dΩpyqα for all y P BΩj ,

for some α ą 0 and some implicit constant depending on the CDC character of Ωj . By
the maximum principle, it follows that

}Gx0 ´Gx0
j }8,Ω ď }Gx0 ´Gx0

j }8,BΩj À distHpBΩ, BΩjq
α Ñ 0,

as j Ñ 8, where distH stands for the Hausdorff distance. Hence, ∇Gx0
j converges locally

uniformly in compact subsets of Ω to ∇Gx0 . So letting j Ñ 8 in (10.29), we deduce that

|∇Gx0pxq ´ ∇Gx0pyq| ď M |x´ y|γ for all x, y P rΩ,

which proves that Gx0 P C1,γprΩq and completes the proof of the theorem.
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10.3 Dahlberg’s theorem for Lipschitz domains

10.3.1 Introduction

Our objective in this section is to prove the following fundamental theorem of Dahlberg
[Dah77]:

Theorem 10.10. Let Ω Ă Rn`1 be either a bounded Lipschitz domain or a special Lips-
chitz domain and denote by σ the surface measure in BΩ. Let B be a ball centered in BΩ
and x0 P Ω such that distpx0, 2B X BΩq ě C´1

1 rpBq. Then the following holds:

(a) The harmonic measure ωx0 and σ are mutually absolutely continuous.

(b) We have

˜

´

ż

BXBΩ

ˆ

dωx0

dσ

˙2

dσ

¸1{2

ď C ´

ż

BXBΩ

dωx0

dσ
dσ “ C

ωx0pBq

σpBq
, (10.30)

where C depends only on n, the Lipschitz character of Ω, and C1.

(c) ωx0 P A8pσq, with the A8 constants depending only on n, the Lipschitz character of
Ω, C1, and distpx0, BΩq.

Next we will describe the strategy for the proof of Dahlberg’s theorem. First, notice
that a Lipschitz domain is NTA, and thus its associated harmonic measure is doubling.
Using this doubling property it is immediate to check that it suffices to prove the theorem
for a ball B small enough such that x0 R 4B and 4B is contained in 2Zj , where Zj is one
of the cylinders in the definition of Lipschitz domain.
We will follow the notation in Definition 8.1. Namely, given B centered in BΩ we will

write
∆B :“ B X BΩ

whenever BΩ is clear from the context.
Suppose that the boundary of Ω is smooth and that the Green function belongs to

C2pΩq, so that Green’s formula can be applied to G :“ Gx0 and to its partial derivatives
(away from x0). In this case ωx0 and σ are mutually absolutely continuous and

dωx0

dσ
“ ´BνG,

where BνG is the normal derivative of G in BΩ (we assume that ν is the outer unit normal
for Ω). Since G is constantly equal to 0 in BΩ, the tangential derivative of G vanishes in
BΩ, and moreover

´BνG “ |BνG| « Bn`1G in 8Zj X BΩ,

in the coordinate system for Zj . Therefore,

ż

∆B

ˆ

dωx0

dσ

˙2

dσ « ´

ż

∆B

BνG Bn`1Gdσ.
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Let φ : Rn`1 Ñ R be a bump function which equals 1 in B and vanishes away from 2B.
Since G vanishes at the boundary and both G and Bn`1G are harmonic in 2B, by Green’s
formula,

ż

∆B

ˆ

dωx0

dσ

˙2

dσ À ´

ż

BΩ
φ BνG Bn`1Gdσ “ ´

ż

BΩ
BνpφGq Bn`1Gdσ

“

ż

Ω

`

´ ∆pφGq Bn`1G` φG∆pBn`1Gq
˘

dm “ ´

ż

Ω
∆pφGq Bn`1Gdm

“ ´

ż

Ω

`

∆φG Bn`1G` 2Bn`1G∇φ ¨ ∇G
˘

dm.

By the definition of φ, Theorem 8.13, and Caccioppoli’s inequality, we obtain
ż

Ω

ˇ

ˇ∆φG Bn`1G` 2Bn`1G∇φ ¨ ∇G
ˇ

ˇ dm (10.31)

À
1

rpBq2

ˆ
ż

ΩX2B
G2 dm

˙1{2ˆż

ΩX2B
|Bn`1G|2 dm

˙1{2

`
1

rpBq

ż

ΩX2B

ˇ

ˇ∇G|2 dm

À
1

rpBq3

ż

ΩX3B
G2 dm À

1

rpBq3

ˆ

ωx0pBq

rpBqn´1

˙2

mpBq «
ωx0pBq2

σpBq
,

which yields (10.30). The fact that ωx0 is an A8pσq weight follows then easily from this
reverse Hölder property.

For arbitrary Lipschitz domains the argument above does not work because we cannot
assume a priori that BνG and Bn`1G are defined in BΩ and that the Green formula applied
above holds. To prove Dahlberg’s theorem with full rigor, first we will consider the case
when the boundary BΩ is of class C1 and we will prove a discrete version of (10.30)
following an approach based on the arguments above. Later we will deduce the full result
by an approximation argument

10.3.2 An auxiliary lemma

Lemma 10.11. Let Ω Ă Rn`1 be an NTA domain, let B a ball centered in BΩ, and let
H “ ty : yn`1 ą 0u and L “ BH. For any ε ą 0 there exists some δ “ δpεq ą 0 (depending
on ε, the NTA character of Ω and the function β) such that the following holds. Suppose
that Ω X δ´1B Ă H and that

distHpBΩ X δ´1B,LX δ´1Bq ď δ rpBq. (10.32)

Let u : Ω X δ´1B Ñ R be a continuous function vanishing identically in BΩ X δ´1B and
positive and harmonic in ΩX δ´1B. Then there exists some constant λ ą 0, depending on
u, such that

|upyq ´ λ yn`1| ď ε }u}8,B for all y P Ω XB, (10.33)

Further, if y P Ω XB satisfies distpy, BΩq ě 1
4 rpBq and ε is small enough, then we have

|∇upyq| « Bn`1upyq « rpBq´1 upyq (10.34)
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and
rpBq |∇2upyq| ` |∇Lupyq| ď ε |∇upyq| ! |∇upyq|, (10.35)

where ∇L denotes the tangential derivative in L.

Remark that, for δ small enough, the condition (10.32), the fact that Ω X δ´1B Ă H,
and the interior and exterior corkscrew properties of Ω, imply that the upper component
of δ´1B zUδrpBqpLq is contained in Ω, and the lower component in Ωc.

Proof. Consider an arbitrary point y0 P B X Ω such that distpy0, BΩq ě rpBq{4. Then we
will prove (10.33) with

λ “
upy0q

y0,n`1
.

Denote vpyq “ λ yn`1. For the sake of contradiction, suppose that there exists some
ε ą 0 such that for any δ “ 1{k there is an NTA domain Ωk (with some bounded NTA
character independent of k), a ball Bk centered in BΩk such that Ωk X pkBkq Ă H and
distHpBΩk XpkBkq, LXpkBkqq ď k´1 rpBkq, and a continuous function uk : Ωk X kBk Ñ R
vanishing identically in BΩk X kBk Ñ R, positive and harmonic in Ωk X kBk, such that

}uk ´ vk}8,BkXΩk
ą ε }uk}8,Bk

, (10.36)

with vkpyq “
ukpy0q

y0,n`1
yn`1. By translating and dilating Bk and Ωk if necessary, we may

assume that Bk “ B1p0q.
Since the domains Ωk are NTA (with constants uniform in k), we infer that for any

1 ď M ď k{2,

}uk}8,MB

L.8.10
ÀM ukpy0q.

Hence, the sequence of functions ukpy0q´1 uk is uniformly locally bounded in compact
subset of Rn`1 (we assume these functions to be extended by zero in Ωc

k). These functions
are also uniformly Hölder continuous in k

2Bk (by Lemma 7.28). Also, since

distHpBΩ X pkBkq, LX pkBkqq Ñ 0,

by the Arzelà-Ascoli Theorem we infer that there is a subsequence ukj py0q´1 ukj that
convergences uniformly to some function ru which is positive and harmonic in H and
vanishes continuously in L “ BH. Clearly we have rupy0q “ 1 and so ru does not vanish
identically in H. Thus, by Lemma 10.1 we know that rupyq “ 1

y0,n`1
yn`1 in H.

On the other hand, notice also that vkpyq

ukpy0q
“ 1

y0,n`1
yn`1 for all k, and thus by (10.36)

we get the contradiction

0 “ }ru´ ru}8,B “ lim
jÑ8

}ukj ´ vkj}8,B

ukj py0q
Á lim sup

jÑ8

}ukj ´ vkj}8,B

}ukj}8,B
ě ε,

which proves (10.33) with λ “
upy0q

y0,n`1
.

Our next objective is to derive (10.34) and (10.35) from (10.33) with the preceding choice
of λ, and with B replaced by 2B (it is clear that this estimate also holds in this case, by
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modifying suitably δ). By the mean value property and the usual interior Caccioppoli
estimates for harmonic functions, we deduce that for all y P ΩXB satisfying distpy, BΩq ě
1
4 rpBq, we have

|Bn`1upyq ´ λ| ` |∇Lupyq| ď 2 |∇upyq ´ λen`1| À
1

rpBq
}u´ v}8,ΩX2B ď

ε

rpBq
}u}8,B

(10.37)
and

|∇2upyq ´ 0| À
1

rpBq2
}u´ v}8,ΩX2B ď

ε

rpBq2
}u}8,B. (10.38)

Notice now that

λ “
upy0q

y0,n`1
«
upyq

rpBq
«

1

rpBq
}u}8,B,

and so from (10.37) we deduce that, for ε small enough,

|Bn`1upyq ´ λ| ď |∇upyq ´ λen`1| ď
λ

2
,

and so Bn`1upyq « |∇upyq| « λ, which yields (10.34). On the other hand, from (10.37)
and (10.34) we derive

|∇Lupyq|
(10.37)

À
ε

rpBq
}u}8,B

L.8.10
« ε

upyq

rpBq

(10.34)
« ε |∇upyq|.

Finally, the estimate rpBq |∇2upyq| À ε |∇upyq| in (10.35) follows from (10.38) in an anal-
ogous way.

10.3.3 A key lemma for the smooth case

As in Section 10.3.1, to prove Dahlberg’s theorem, we will assume that the ball B is small
enough, so that x0 R 4B and 4B is contained in 2Z, where Z is one of the cylinders Zj

defined above. We denote by DpBΩ, Zq the family of the following “dyadic cubes” of BΩ
obtained as follows. Let DpRnq the usual dyadic lattice of Rn. Let ΠZ be the orthogonal
projection from 8Z to Rn ” Rn ˆ t0u, in the coordinate system associated with Z. Then
we let

DpBΩ, Zq “ tΠ´1
Z pQq X BΩ : Q P DpRnq, Q Ă 8Z X Rnu.

Here again we are identifying Rn with Rn ˆ t0u. Observe that the cubes from this family
are contained in BΩ X 8Z. We also denote ℓpΠ´1

Z pQq X BΩq :“ ℓpQq and we call this the
side length of Π´1

Z pQq X BΩ. Its center is the point whose projection by ΠZ coincides with
the center of Q. We let DkpBΩ, Zq be subfamily of the cubes from DpBΩ, Zq with side
length 2´k, and given a cube R P DpBΩ, Zq, we let DkpBΩ, Z,Rq be the subfamily of the
cubes from DpBΩ, Zq which are contained in R and have side length 2´kℓpRq.
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Lemma 10.12. Let Ω Ă Rn`1 be a (bounded) Lipschitz domain. Let Z Ă Rn`1 be one
of the cylinders in the definition of the Lipschitz character of Ω. Let R P DpBΩ, Zq such
that 4R Ă 4Z and x0 P Ω such that distpx0, 4Rq ě 4 diampRq. Suppose that BΩ is C1 in a
neighborhood of 4R. Then, for any k ě 1, we have

ÿ

QPDkpBΩ,Z,Rq

ˆ

ωx0pQq

σpQq

˙2

σpQq ď C

ˆ

ωx0pRq

σpRq

˙2

σpRq, (10.39)

with C depending only on the Lipschitz character of Ω.

Notice that (10.39) can be considered as a discrete version of (10.30).

Proof. Suppose that BΩXZ coincides with the graph of the Lipschitz function yn`1 “ Apyq

in Z. For t ą 0, let Atpyq “ Apyq ` t and let Ωt “ ty P Ω : yn`1 ą Atpyqu (the definition
of the function A away from 4Z does not matter).
For every Q P DkpBΩ, Z,Rq consider a C8 bump function φQ which equals 1 on 3

2Q
and vanishes in Rn`1zBdiampQqpxQq and in Π´1

Z p2Qq (here xQ is the center of Q), with

ℓpQq|∇φQ| ` ℓpQq2|∇2φQ| À 1. Since the function G :“ Gx0 belongs to W 1,2pΩzBrpxqq

for any r ą 0, we infer that

ωx0pQq
L.7.6
ď ´

ż

Ω
∇G∇φQ dm “ ´ lim

tÑ0

ż

Ωt

∇G∇φQ dm “ ´ lim
tÑ0

ż

BΩt

BνtGφQ dσt,

where νt and σt denote the outer unit normal and the surface measure for BΩt, respectively.
Consequently, denoting 2Qt “ Π´1

Z p2Qq X BΩt,

ÿ

QPDkpBΩ,Z,Rq

ˆ

ωx0pQq

σpQq

˙2

σpQq ď lim sup
tÑ0

ÿ

QPDkpBΩ,Z,Rq

ˆ
ż

2Qt

BνtGφQ dσt

˙2

σpQq´1

(10.40)

À lim sup
tÑ0

ÿ

QPDkpBΩ,Z,Rq

ż

2Qt

|BνtG|2 φ2
Q dσt

À lim sup
tÑ0

ż

2Rt

|BνtG|2 φ2
R dσt.

Since A P C1pUq where U Ą ΠZp4Rq, by a compactness argument we get

sup
|x´y|ďt

|∇Apx̄q ´ ∇Apȳq| ď ωptq for x P 3R

and t small enough, with limtÑ0 ωptq “ 0. In particular, for every δ ą 0 there exists tδ
such that ωp4δ´1tδq ď δ2. This implies that the tangent n-plane Ly “ tx P Rn`1 : xn`1 “

Apyq ` ∇Apȳq ¨ px̄´ ȳqu satisfies

β8,BΩpδ´1B4tδpyq, Lyq ď sup
|x̄´ȳ|ďδ´1t

|Apx̄q ´Apȳq ´ ∇Apȳq ¨ px̄´ ȳq|

4δ´1tδ
ď ωp4δ´1tδq ď δ2.
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by the mean value theorem applied to A.
Now, for every ε ą 0 we can apply Lemma 10.11 to find δ “ δpεq so that fixing t “ tδpεq as

in the previous paragraph, for every y P 2Rt we can infer (taking in the lemma B “ B4tpyq,
and with L being a suitable n-plane Ty orthogonal to νtpyq so that Bn`1 in Lemma 10.11
is precisely Bνt here) after applying perhaps Harnack’s inequality, that for ε small enough
and all y P 2Rt,

|∇Gpyq| « |BνtGpyq| “ ´BνtGpyq « t´1
δpεq

Gpyq (10.41)

and
tδpεq |∇2Gpyq| ` |∇LyGpyq| ď ε |∇Gpyq| ! |∇Gpyq|, (10.42)

where ∇Ly denotes the tangential derivative in BΩt. Let v⃗y be the orthogonal projection
of the vertical unit vector en`1 (in the local coordinates of Z) on the tangent n-plane Ly.
Note that

Bn`1Gpyq “ en`1 ¨ ∇Gpyq “ xen`1, νtpyqy BνtGpyq ` xen`1, |v⃗y|´1v⃗yy B|v⃗y |´1v⃗yGpyq,

with the convention xen`1, |v⃗y|´1v⃗yy B|v⃗y |´1v⃗yGpyq “ 0 whenever v⃗y “ 0. Since A is Lips-
chitz, the scalar product xen`1, νtpyqy is bounded below, and taking into account (10.41)
and (10.42), we derive

´BνtGpyq “ |BνtGpyq| « Bn`1Gpyq for all y P 2Rt.

Thus, for ε small enough, and t “ tδpεq we have

Iε :“

ż

2Rtδpεq

|Bνtδpεq
G|2 φ2

R dσtδpεq
« ´

ż

2Rt

BνtG Bn`1Gφ
2
R dσt (10.43)

“ ´

ż

2Rt

BνtpGφ
2
Rq Bn`1Gdσt ` 2

ż

2Rt

GφR BνtφR Bn`1Gdσt.

We estimate the last integral on the right hand side above using Cauchy-Schwarz, the
Hölder continuity of G in a neigborhood of BdiampRqpxRq, (10.41), and the connection
between ωx0 and G:

ż

2Rt

|GφR BνtφR Bn`1G| dσt À
1

ℓpRq
sup
2Rt

Gpyq

ˆ
ż

2Rt

|φR Bn`1G|2 dσt

˙1{2

σpRq1{2

L.7.28
À

1

ℓpRq

ˆ

tδpεq

ℓpRq

˙α

sup
yPB3diampRqpxRq

Gpyq I1{2
ε σpRq1{2

(7.13)/(7.15)

À

ˆ

tδpεq

ℓpRq

˙α ωx0pRq

σpRq1{2
I1{2
ε .

To estimate the first integral on the right hand side of (10.43) we use Green’s formula
again and we take into account that Bn`1G is harmonic away from x0 in Ω:

ż

2Rt

BνtpGφ
2
Rq Bn`1Gdσt “

ż

Ωt

∆pGφ2
Rq Bn`1Gdm`

ż

2Rt

Gφ2
R BνtBn`1Gdσt (10.44)
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The first integral on the right hand side is estimated exactly as in (10.31). Indeed, denoting
by BR some ball centered in BΩ that contains suppφR and such that diampBRq « ℓpRq,
we get

ż

Ωt

|∆pGφ2
Rq Bn`1G| dm ď

ż

Ω

ˇ

ˇ∆φ2
RG Bn`1G` 2Bn`1G∇φ2

R ¨ ∇G
ˇ

ˇ dm

À
1

rpBRq2

ˆ
ż

ΩXBR

G2 dm

˙1{2ˆż

ΩXBR

|Bn`1G|2 dm

˙1{2

`
1

rpBRq

ż

ΩXBR

ˇ

ˇ∇G|2 dm

À
1

rpBRq3

ż

ΩX2BR

G2 dm À
1

rpBRq3

ˆ

ωx0pRq

rpBRqn´1

˙2

mpBRq «
ωx0pRq2

σpRq
.

To deal with the last integral on the right hand side of (10.44) we apply (10.41) and
(10.42):

ż

2Rt

|Gφ2
R BνtBn`1G| dσt ď

ż

2Rt

Gφ2
R |∇2G| dσt

À

ż

2Rt

pt|BνtG|qφ2
R pεt´1|BνtG|q dσt

“ ε

ż

2Rt

|BνtG|2 φ2
R dσt “ εIε.

Altogether, we obtain

Iε À

ˆ

tδpεq

ℓpRq

˙α ωx0pRq

σpRq1{2
I1{2
ε `

ωx0pRq2

σpRq
` εIε.

For ε small enough, this yields

Iε À
ωx0pRq2

σpRq
.

Plugging this estimate into (10.40) for any sequence tδpεjq with εj Ñ 0, the lemma follows.

10.3.4 Proof of Theorem 10.10

We assume that B is small enough so that x0 R 4B and 4B is contained in 2Z, where Z
is one of the cylinders in the definition of Lipschitz domain.
By reducing B and translating the dyadic lattice DpBΩ, Zq if necessary, taking into

account that ωx0 is doubling, we may assume that B X BΩ is contained in some cube
R P DpZ, BΩq like the one in the statement of Lemma 10.12, so that moreover ℓpRq « rpBq.
We claim that for any k ě 1 we have

ÿ

QPDkpBΩ,Z,Rq

ˆ

ωx0pQq

σpQq

˙2

σpQq ď C

ˆ

ωx0pRq

σpRq

˙2

σpRq, (10.45)
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whith C depending only on the Lipschitz character of Ω.
To prove the claim we approximate Ω by a domain Ωδ whose boundary is C1 in 2Z. To

this end, we consider a smooth approximation of the identity tϕδuδą0 in Rn, we take a
bump function η : Rn Ñ 0 which equals 1 in a neighborhood of 3Z X Rn and vanishes in
Rnz3.1Z, and for z P Rn we denote

Aδpzq “ A ˚ ϕηpzqδpzq,

where δ ! ℓpRq and we understand that A ˚ ϕ0pzq “ Apzq. It is easy to check that Aδ

is Lipschitz (uniformly in δ), with }∇Aδ}8 À }∇A}8 (see Exercise 10.3.1 below), and
that Aδ is C8 in a neighborhood of 3R. We let Ωδ be the domain whose boundary is the
graph of Aδ in 4Z and coincides with BΩ in Rn`1z4Z. We denote by ωx0

δ the harmonic
measure in Ωδ with pole x0, and we let Qδ “ Π´1

Z pQq X BΩδ for Q P DpZ, BΩq, so that
Qδ P DpZ, BΩδq.
For every ε ą 0 and every δ ă δ0pεq small enough (possibly depending on k) we have

ωx0p12Qq ď ωx0
δ pQδq ` εσpQq for every Q P DkpBΩ, Z,Rq. (10.46)

Indeed, ω
p¨q

δ pQδq is a function harmonic in Ωδ, which extends continuously to 1 in 1
2Qδ,

with a Hölder modulus of continuity uniform in δ. This can be derived by applying Lemma

7.28 to the function 1 ´ ω
p¨q

δ pQδq. Then, writing

vδpxq :“

#

ωx
δ pQδq, for x P Ω

1, for x P Ωc,

from Lemma 2.14 it easily follows that for ever sequence δj Ñ 0 there exists a subsequence
tjkuk and a function v harmonic in Ω and Hölder continuous in a suitable ball B with
1
2Q Ă B (and 1

2Qδ Ă B for every δ) with v|BzΩ ” 1, such that vδj Ñ v uniformly in
compact subsets of Ω and vδj Ñ v in CαpBq. Note that v extends continuously to 1 in a

neighborhood of 1
2Q and thus

lim
kÑ8

ωx0
δjk

pQδjk
q “ vpx0q ě ωx0p12Qq

by the maximum principle. Therefore,

lim inf
δÑ0

ωx0
δ pQδq ě ωx0p12Qq for all Q P DkpBΩ, Z,Rq,

which proves (10.46) because the number of cubes is finite. By a similar argument, we
infer that for δ small enough we have

ωx0pRq ě ωx0
δ p12Rδq ´ εσpRq. (10.47)
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From (10.46), Lemma 10.12, (10.47), and the doubling properties of ω and ωδ, we get

ÿ

QPDkpBΩ,Z,Rq

ˆ

ωx0pQq

σpQq

˙2

σpQq À
ÿ

QδPDkpBΩδ,Z,Rq

«

ˆ

ωx0
δ pQδq

σδpQδq

˙2

σδpQδq ` ε2σpQδq

ff

À

ˆ

ωx0
δ pRδq

σδpRδq

˙2

σδpRδq ` ε2σpRδq

À

«

ˆ

ωx0pRq

σpRq

˙2

` ε2

ff

σpRq.

Now the claim (10.45) follows immediately by letting ε Ñ 0.
The theorem follows easily from (10.45). First we show that ωx0 P A8pσq, with the

A8 constants depending on the Lipschitz character of Ω and distpx0, BΩq. To this end, it
suffices to prove that there are δ0, ε0 P p0, 1q such that for any compact set E Ă R,

σpEq ď δ0 σpRq ñ ωx0pEq ď ε0 ω
x0pRq. (10.48)

Indeed, from the regularity of σ, we infer that for any δ0 P p0, 1q there exists some k large
enough and some family Ik Ă DkpBΩ, Z,Rq such that the set rE “

Ť

QPIk
Q satisfies

E Ă rE, σp rEq ď σpEq ` δ0 σpRq ď 2δ0 σpRq.

By Cauchy-Schwarz and (10.45), we get

ωx0pEq ď ωx0p rEq ď
ÿ

QPIk

ωx0pQq

σpQq
σpQq ď

ˆ

ÿ

QPIk

ˆ

ωx0pQq

σpQq

˙2

σpQq

˙1{2

σp rEq1{2

ď C

ˆˆ

ωx0pRq

σpRq

˙2

σpRq

˙1{2

δ
1{2
0 σpRq1{2 “ Cδ

1{2
0 ωx0pRq.

So (10.48) holds if we choose δ0 small enough. In particular, this implies that ωx0 is
absolutely continuous with respect to σ.

Finally we turn our attention to the estimate (10.30). Given any η ą 0, by the Lebesgue
differentiation theorem, for σ-a.e. y P R there exists some ky ě 1 such that

ˇ

ˇ

ˇ

ˇ

dωx0

dσ
pyq ´

ωx0pQq

σpQq

ˇ

ˇ

ˇ

ˇ

ď η if x P Q P DpBΩ, Zq and ℓpQq ď 2´kyℓpRq.

Denote Rpk0q “ ty P R : ky ď k0u for k0 P N. Then, using again (10.45) we obtain

ż

Rpk0q

ˆ

dωx0

dσ

˙2

dσ ď 2
ÿ

QPDk0
pBΩ,Z,Rq

ż

Rpk0qXQ

ˆ

dωx0

dσ
´
ωx0pQq

σpQq

˙2

dσ

` 2
ÿ

QPDk0
pBΩ,Z,Rq

ˆ

ωx0pQq

σpQq

˙2

σpQq

ď 2η2σpRq ` C

ˆ

ωx0pRq

σpRq

˙2

σpRq.
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Since R coincides with
Ť

k0ě1Rpk0q up to a set of zero σ measure, by the monotone
converge theorem we derive

ż

B

ˆ

dωx0

dσ

˙2

dσ ď

ż

R

ˆ

dωx0

dσ

˙2

dσ ď 2η2σpRq ` C

ˆ

ωx0pRq

σpRq

˙2

σpRq.

Since η is arbitrarily small and ωx0pRq « ωx0pBq, clearly this yields (10.30).

Exercise 10.3.1. Show that, in the proof above, Aδ is uniformly Lipschitz as claimed.
Hint: show first that if fypzq “ ϕηpzqδpz ´ yq, then |∇fypzq| ď C

pηpzqδqn`1 , and |Aδpzq ´

Apzq| ď ηpzqδ}∇A}8. Then treat separately the cases 0 ă ηpz1q ď ηpzq with Bηpz1qδpz1q Ă

3Bηpzqδpzq, 0 ă ηpz1q ď ηpzq with Bηpz1qδpz1q X Bηpzqδpzq “ ∅, and 0 “ ηpz1q ă ηpzq,
referring to the previous estimates.

10.4 Harmonic measure in chord-arc domains

Recall that a chord-arc domain in Rn`1 is an NTA domain whose boundary is n-Ahlfors
regular. A chord-arc domain in Rn`1 is an NTA domain whose boundary is n-Ahlfors
regular. Here we say that a domain Ω Ă Rn`1 satisfies the corkscrew condition if it
satisfies the interior corkscrew condition from Definition 8.5 with r0 “ diampΩq, that is,
for all ξ P BΩ and 0 ă r ď diampBΩq there exists some ball B Ă Brpξq X Ω with rpBq « r.
We say that Ω is a two-sided corkscrew domain if both Ω and Rn`1zΩ satisfy the corkscrew
condition. It is clear that any chord-arc domain is also a two-sided corkscrew domain.
We will need the following geometric result, proved independently by David and Jerison

[DJ90] and Semmes [Sem90]:

Theorem 10.13. Let Ω Ă Rn`1 be an Ahlfors regular and two-sided corkscrew domain.
Then, for all ξ P BΩ and all r P p0,diampBΩqq there exists a Lipschitz domain Uξ,r Ă

Ω XBrpξq such that
Hnp∆r,ξ X BUξ,rq Á rn,

where ∆r,ξ “ BΩ X Brpξq. The Lipschitz character of the domains Uξ,r and the implicit
constant above only depend on n and the parameters involved in the n-Ahlfors regularity
of BΩ and the two-sided corkscrew condition for Ω.

Remark that, for the theorem above to hold, the two-sided corkscrew condition can be
weakened, for example, by replacing the corkscrew balls by suitable discs of codimension
one not intersecting BΩ, see [Sem90]. An immediate corollary of the above result is that the
boundary of an Ahlfors regular two-sided corkscrew domain is uniformly n-rectifiable (see
[DS93] for the definition of uniform n-rectifiability). Another consequence is the following.

Theorem 10.14. Let Ω Ă Rn`1 be a chord-arc domain. The harmonic measure for Ω
is an A8 weight with respect to the surface measure σ. In particular, there are constants
δ, ε P p0, 1q such that for any ball B centered in BΩ, any x0 P Ωz2B, and any Borel set
E Ă ∆B “ BΩ XB, the following holds:

σpEq ą δ σpBq ñ ωx0pEq ě ε ωx0pBq.
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10 Ahlfors regular domains

Proof. By Theorem 10.13, for a ball B as above there is a Lipschitz domain U Ă Ω X 1
2B

such that
σp∆B X BUq ě η σp∆Bq,

where η ą 0 depends on the parameters of the chord-arc domain character of Ω. We claim
that if δ is close enough to 1 and σpEq ě δ σp∆Bq (for E Ă B X BΩ), then

HnpE X BUq Áδ,η HnpBUq. (10.49)

Indeed,

σpE X BUq “ σpEq ´ σpEzBUq ě σpEq ´ σp∆BzBUq

“ σpEq ´ σp∆Bq ` σp∆B X BUq ě δ σp∆Bq ´ p1 ´ ηqσp∆Bq

« pδ ` η ´ 1q rpBqn «δ,η HnpBUq.

Consider a corkscrew point xB P U such that distpxB, BUq « rpBqn. By Dahlberg’s
theorem, ωxB

U is an A8pHn|BU q weight, so (10.49) implies

ωxB
U pE X BUq Áδ,η ω

xB
U pBUq.

By the maximum principle for the harmonic measure of nested domains (see Lemma 5.32),
we obtain

ωxB
Ω pEq ě ωxB

Ω pE X BUq
L.5.32

ě ωxB
U pE X BUq Áδ,η ω

xB
U pBUq “ 1.

All in all,
ωxB
Ω pEq Áδ,η 1.

Then, by the change of pole formula for NTA domains we deduce

ωx0
Ω pEq

L.8.21
Á δ,η ω

x0
Ω p∆Bq,

which proves the last claim in the theorem, see Remark 4.51.

10.5 Lp-solvability of the Dirichlet problem in terms of harmonic
measure

Let Ω Ă Rn`1 be an open set and set σ :“ Hn|BΩ to be its surface measure. In Definition
8.30 we define the cone with vertex ξ P BΩ and aperture α ą 0 by

Γαpξq “
␣

y P Ω : |ξ ´ y| ă p1 ` αqdistpy, BΩq
(

(10.50)

and the non-tangential maximal function operator of a measurable function u : Ω Ñ R by

Nαpuqpξq :“ sup
yPΓαpξq

|upyq|, ξ P BΩ. (10.51)
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10 Ahlfors regular domains

Theorem 10.15. Let Ω Ă Rn`1 be an open set with such that BΩ is n-Ahlfors regular.
For α, β ą 0 and any function u : Ω Ñ R, we have

}Nαpuq}Lppσq «α,β }Nβpuq}Lppσq.

For the proof, see [HMT10, Proposition 2.2], for example.

Because of the preceding result, when estimating }Nαpuq}Lppσq, quite often we will not
just write N puq in place of Nαpuq. For definiteness, we can think that α “ 1, although
the relevant value of α will not be important for us.
For 1 ď p ď 8, we say that the Dirichlet problem is solvable in Lp for the Laplacian

(writing pDpq is solvable) if there exists some constant Cp ą 0 such that, for any f P

CcpBΩq, the solution u : Ω Ñ R of the continuous Dirichlet problem for the Laplacian in
Ω with boundary data f satisfies

}N puq}Lppσq ď Cp }f}Lppσq.

By the maximum principle, it is clear that pD8q is solvable. Consequently, by interpola-
tion, if pDpq is solvable, then pDqq is solvable for q ą p.

The objective of this section is to characterize the solvability of pDpq for 1 ă p ă 8 in
terms of the analytic properties of harmonic measure. We need the following result.

Lemma 10.16. Let Ω Ă Rn`1 be a domain with bounded n-Ahlfors regular boundary.
Given x P Ω, denote by ωx the harmonic measure for Ω with pole at x. Suppose that ωx

is absolutely continuous with respect to surface measure for every x. Let p P p1,8q and
Λ ą 1 and suppose that, for every ball B centered at BΩ with diampBq ď 2diampΩq and
all x P ΛB X Ω such that distpx, BΩq ě Λ´1rpBq, it holds

ˆ

´

ż

ΛB

ˆ

dωx

dσ

˙p

dσ

˙1{p

ď κσpBq´1, (10.52)

for some κ ą 0. Then, if Λ is big enough, the Dirichlet problem is solvable in Ls, for
s ą p1. Further, for all f P Lp1

pσq X CpBΩq, its harmonic extension u to Ω satisfies

}N puq}Lp1,8pσq
À κ }f}Lp1

pσq
. (10.53)

Proof. Let f P CpBΩq and let u the solution of the Dirichlet problem in Ω with boundary
data f . Suppose that f ě 0. Consider a point ξ P BΩ and a non-tangential cone Γpξq Ă Ω,
with vertex ξ and with a fixed aperture. Fix a point x P Γpξq and denote dΩpxq “

distpx, BΩq. We intend to estimate upxq, first assuming dΩpxq ď 2 diampBΩq.
To this end, we pick a smooth function φ which equals 1 in B1p0q and vanishes in

Rn`1zB2p0q. For some M ą 4 to be chosen later, we denote

φM pyq “ φ
´ y

MdΩpxq

¯

.

We set
f0pyq “ fpyqφM py ´ ξq, f1pyq “ fpyq ´ f0pyq,
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10 Ahlfors regular domains

and we denote by u0 and u1 the corresponding solutions of the associated Dirichlet prob-
lems so that u “ u0 ` u1.
In the following computations, to shorten notation we denote dx “ dΩpxq. To estimate

u0pxq we use (10.52) to show that

u0pxq “

ż

f0 dω
x ď

ż

B2Mdx pξq

f
dωx

dσ
dσ

ď

˜

ż

B2Mdx pξq

|f |p
1

dσ

¸1{p1 ˜
ż

B2Mdx pξq

ˆ

dωx

dσ

˙p

dσ

¸1{p

ď κCpMqMσ,p1fpξq
σpB2Mdxpξqq1{p1

σpBdxpξqq1{p1 À κCpMqMσ,p1fpξq,

for p1 “ p{pp´ 1q, assuming Λ ě 2M , where we wrote Mσ,p1f :“
´

Mσp|f |p
1

q

¯1{p1

.

Next we deal with u1pxq, which we extende by 0 outside Ω. Note that u1 ‰ 0 implies
that Bc

MdΩpxq
X BΩ ‰ ∅, so MdΩpxq ď diampBΩq. First we estimate ´

ş

BMdx pξq
u1 dm by

the integral of its non-tangential maximal function. To do so, we use a classical trick of
relating Whitney cubes W :“ WpΩq in Ω (see Section 8.3.2) to a certain dyadic structure
in BΩ: denote by IB Ă W the family of those cubes that intersect B :“ BMdxpξq. By
the properties of W, the cubes P P IB are contained in CB :“ BCMdxpξq, for some C
depending just on n and the parameters in the construction of W. For every cube P P IB
we define bpP q to be a Whitney cube of the same side-length intersecting BΩ such that for
every ξ P bpP q X BΩ we have P Ă Γpξq. This is well defined as long as α is big enough,
and the number of cubes Q P W such that bpQq “ bpP q is bounded by a dimensional
constant (depending also on α). Again we have bpP q Ă C 1B. Then, taking into account
that u1 ď u, we have

ż

BMdx pξq

u1 dm ď
ÿ

PPIB

ż

P
u dm ď

ÿ

PPIB

inf
yPbpP qXBΩ

Nupyq ℓpP qn`1 (10.54)

À
ÿ

QPW:QĂC1B

inf
QXBΩ

Nu
ÿ

PPIB :Q“bpP q

ℓpP qn`1

À
ÿ

QPW:QĂC1B

ℓpQq

ż

3QXBΩ
Nu dσ À Mdx

ż

C1B
Nu dσ.

So we deduce

´

ż

BMdx pξq

u1 dm À ´

ż

C1B
Nu dσ À MσpNuqpξq.

Now, taking into account that f1 vanishes in BMdxpξq, from the Hölder continuity of u1
in Ω X BMdx{2pξq (see Lemma 7.27) and the fact that u1 is subharmonic in BMdxpξq (see
Lemma 5.7), we infer that

u1pxq À
1

Mα
´

ż

BMdx pξq

u1 dm À
1

Mα
MσpNuqpξq,
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10 Ahlfors regular domains

for some α ą 0 depending just on the Ahlfors regularity constant of BΩ.
Altogether, for all x P Γpξq with dΩpxq ď 2diampBΩq we have

upxq ď κCpMqMσ,p1fpξq `
C

Mα
MσpNuqpξq. (10.55)

In case that Ω is unbounded, it turns out that the closure of A :“ tx P Ω : dΩpxq ď

2diampBΩq ą 2diampBΩqu is contained in the cone Γpξq if the aperture of Γpξq is assumed
to be big enough. Thus, by the maximum principle, since (10.55) holds for x P BA and
u vanishes at 8, it follows that the same estimate is also valid for x P Γpξq X A. Hence
(10.55) holds for all x P Γpξq in any case. So we obtain

Nupξq ď κCpMqMσ,p1fpξq `
C

Mα
MσpNuqpξq for all ξ P BΩ. (10.56)

Thus, for s ą p1,

}Nu}Lspσq ď κCpMq }Mσ,p1f}Lspσq `
C

Mα
}MσpNuq}Lspσq

ď κC 1pMq }f}Lspσq `
C 1

Mα
}Nu}Lspσq.

Since f is continuous and BΩ is bounded, }Nu}Lspσq ă 8, and hence, choosing M (and
thus Λ) big enough, we get

}Nu}Lspσq ď κC 1pMq }f}Lspσq.

Regarding the last statement of the lemma, recall that Mσ,p1 is bounded from Lp1

pσq

to Lp1,8pσq and that Mσ is bounded in Lp1,8pσq. Then, from (10.56) we infer that

}Nu}Lp1,8pσq
ď κCpMq }Mσ,p1f}Lp1,8pσq

`
C

Mα
}MσpNuq}Lp1,8pσq

À κCpMq }f}Lp1
pσq

`
C

Mα
}Nu}Lp1,8pσq

.

Since }Nu}Lp1,8pσq
ă 8, the latter gives (10.53) for M and Λ big enough.

Theorem 10.17. Let Ω Ă Rn`1 be a domain with bounded n-Ahlfors regular boundary.
Given x P Ω, denote by ωx the harmonic measure for Ω with pole at x. For p P p1,8q, the
following are equivalent:

(a) pDp1q is solvable for Ω.

(b) The harmonic measure ω is absolutely continuous with respect to σ and for every
ball B centered in BΩ and for all x P Ω X 3Bz2B with diampBq ď 2diampBΩq, it
holds

ˆ

´

ż

B

ˆ

dωx

dσ

˙p

dσ

˙1{p

À σpBq´1. (10.57)
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10 Ahlfors regular domains

(c) The harmonic measure ω is absolutely continuous with respect to σ and there is
some Λ ą 1 big enough such that, for every ball B centered in BΩ with diampBq ď

2diampBΩq and all x P ΛB X Ω such that distpx, BΩq ě Λ´1rpBq, it holds

ˆ

´

ż

ΛB

ˆ

dωx

dσ

˙p

dσ

˙1{p

ÀΛ σpBq´1.

By duality, (10.57) is equivalent to the following: for every ball B centered in BΩ, for
all x P Ω X 3Bz2B, and all f P CcpBΩ XBq,

ˇ

ˇ

ˇ

ˇ

ż

B
f dωx

ˇ

ˇ

ˇ

ˇ

À }f}Lp1
pσq
σpBq´1{p1

.

Denoting by u the harmonic extension of f to Ω, it can be rewritten as

|upxq| À }f}Lp1
pσq
σpBq´1{p1

. (10.58)

Proof of Theorem 10.17. (a) ñ (b). To prove (10.58), by standard arguments (as in
(10.54), say) and the Lp1

solvability of the Dirichlet problem, it follows that

´

ż

4B
|u| dm À ´

ż

CBXBΩ
|N puq| dσ ď

ˆ

´

ż

CBXBΩ
|N puq|p

1

dσ

˙1{p1

À }f}Lp1
pσq
σpBq´1{p1

.

By the subharmonicity of |u| (extended by 0 in Ωc, see Lemma 5.7) in 4BzB, we have

|upxq| À ´

ż

4B
|u| dm for all x P Ω X 3Bz2B.

Together with the previous estimate, this implies (b).

(a) ñ (c). The arguments are almost the same as the ones in the proof of (a) ñ (b),
just replacing the condition x P Ω X 3Bz2B by x P Ω X ΛB, distpx, BΩq ě Λ´1 rpBq. We
leave the details for the reader.

(b) ñ (a). First we will show that there exists some ε ą 0 such that for any ball B
centered in BΩ with diampBq ď 2diampBΩq and for all x P Ωz6B,

˜

´

ż

B

ˆ

dωx

dσ

˙p`ε

dσ

¸1{pp`εq

À σpBq´1, (10.59)

To this end, notice first that, for all x P Ω X Bp2Bq, by (7.20)

ωxp8Bq Á 1.

Then, for any function f P CcpBX BΩq, the assumption in (b) and the preceding estimate
give

|upxq| ď C }f}Lp1
pσq
σpBq´1{p1

ď C }f}Lp1
pσq

ωxp8Bq

σpBq1{p1 for all x P Ω X Bp2Bq,
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10 Ahlfors regular domains

where, as above, u is the harmonic extension of f to Ω. By the maximum principle we
infer that the above inequality also holds for all y P Ωz2B. By duality it follows that

ˆ

´

ż

B

ˆ

dωy

dσ

˙p

dσ

˙1{p

À
ωyp8Bq

σpBq
for all y P Ωz2B.

So for any given ball B0 centered in BΩ with diampB0q ď 2diampBΩq and y P Ωz6B0 and
any ball B1 centered at 1.1B0 X BΩ with rpB1q ď 2rpB0q, we have

ˆ

´

ż

B1

ˆ

dωy

dσ

˙p

dσ

˙1{p

À
ωyp8B1q

σpB1q
.

By Gehring’s lemma (see [GM12, Theorem 6.38], for example) adapted to n-Ahlfors regular
sets, there exists some ε ą 0 such that

ˆ

´

ż

B0

ˆ

dωy

dσ

˙p`ε

dσ

˙1{pp`εq

À
ωyp8B0q

σpB0q
,

which yields (10.59).
Next we intend to apply Lemma 10.16 with p`ε in place of p. To this end, given Λ ą 1,

a ball B centered in BΩ with diampBq ď 2diampBΩq, and x P ΛB with distpx, BΩq ě

Λ´1rpBq, we cover B X BΩ with a family of balls Bi, i P IB, with rpBiq “ p100Λq´1rpBq,
so that the balls Bi are centered at B X BΩ, x R 6Bi for any i P IB, and #IB ď CpΛq.
Applying (10.59) to each of the balls Bi and summing over i P IB, we infer that

˜

´

ż

ΛB

ˆ

dωx

dσ

˙p`ε

dσ

¸1{pp`εq

ď CpΛqσpBq´1.

From Lemma 10.16 we deduce that pDsq is solvable for s ą pp` εq1, and thus in particular
for s “ p1.

(c) ñ (b). We will argue in the same way as in the proof of (a) ñ (b), using the
estimate (10.53) instead of the solvability of pDp1q. Again by duality, it suffices to show
that for every ball B centered in BΩ with diampBq ď 2diampBΩq, for all x P Ω X 3Bz2B
and all f P CcpBΩ XBq, the harmonic extension u of f to Ω satisfies

|upxq| À }f}Lp1
pσq
σpBq´1{p1

. (10.60)

By standard arguments, the Kolmogorov inequality, and Lemma 10.16, we have

´

ż

4B
|u| dm À ´

ż

CB
N puq dσ

L.4.10
À }N puq}Lp1,8pσq

σpBq´1{p1
(10.53)

À }f}Lp1
pσq
σpBq´1{p1

.

Since f vanishes in BΩzB, by the subharmonicity of |u| (extended by 0 to Ωc) in 4BzB
we have

|upxq| À ´

ż

4B
|u| dm for all x P Ω X 3Bz2B,

which, together with the previous estimate, implies (10.60).
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Remark 10.18. The arguments in the above proof of (b) ñ (a) show that solvability of
pDp1q for some p1 P p1,8q implies solvability of pDp1´εq for some ε ą 0.

Remark 10.19. The above theorem also holds if BΩ is unbounded. Indeed, the only place
where the boundedness of BΩ is used is in Lemma 10.16, to ensure that }Nu}Lspµq ă 8

and }Nu}Lp1,8pσq
ă 8. A way of circumventing this technical problem is the following.

For r ą 0, consider the open set Ωr :“ ΩXBrp0q. It is easy to check that BΩr is n-Ahlfors
regular and that an estimate such as (10.52) also holds for the harmonic measure ωΩr , with
bounds uniform on r, so that pDsq is solvable for Ωr, with s ą p1, and (10.53) also holds.
Given f P CpBΩq with compact support, let r ą 0 be big enough so that suppf Ă Brp0q,
and let fr : BΩr Ñ R be such that fr “ f in BΩ X Brp0q and fr “ 0 in BΩr X Ω. The
we apply Lemma 10.16 to the solution ur of the Dirichlet problem with data fr in Ωr.
Letting r Ñ 8, then one easily deduces that }Nu}Lspσq À κ}f}Lspσq, as well as the related
estimate (10.53). We leave the details for the reader.

Theorem 10.20. Let Ω Ă Rn`1 be a bounded domain. Then we have:

(a) If Ω is a Lipschitz domain, then there exists some ε0 ą 0 depending just on the
Lipschitz character of Ω such that pDpq is solvable for p ě 2 ´ ε0.

(b) If Ω is chord-arc domain, then there exists some p0 ą 1 depending just on the chord-
arc character of Ω such that pDpq is solvable for p ě p0.

Proof. Suppose that Ω is a Lipschitz domain. Let x0 P Ω such that dΩpx0q :“ distpx0, BΩq «

diampBΩq. By Dahlberg’s theorem, the density function dωx0

dσ satisfies the reverse Hölder
inequality (10.30) with exponent 2. By Gehring’s lemma (see Lemma 4.53) we deduce
that an analogous reverse Hölder inequality holds for some exponent q0 ą 2. That is, for
any ball B centered in BΩ, with ∆B “ B X Ω, we get

ˆ

´

ż

∆B

ˆ

dωx0

dσ

˙q0

dσ

˙1{q0

ď C ´

ż

∆B

dωx0

dσ
dσ “ C

ωx0p∆Bq

σp∆Bq
, (10.61)

Note that the change of pole formula readily implies that for x P ΩX3Bz2B with dΩpxq «

rpBq, we obtain ωx-a.e.

dωx

dσ
“

dωx

dωx0

dωx0

dσ

L.8.21
« ωx0p∆Bq´1dω

x0

dσ
.

In case dΩpxq ď A´1rpBq, then using Lemma 8.10 we get dωx

dσ À ωx0p∆Bq´1 dωx0

dσ . Conse-
quently, the condition (b) in Theorem 10.17 is satisfied, with exponent q0, which implies
that pDq1

0
q is solvable, where q1

0 is the conjugate exponent of q0. By interpolation, pDpq is
solvable for p ě q1

0, with q
1
0 ă 2.

In case that Ω is assumed to be just a chord-arc domain, by Theorem 10.14 we know
that dωx0

dσ is an A8pσq weight, and thus there exists some q0 ą 1 such that a reverse Hölder
inequality such as (10.61) holds. As above, by the change of pole formula and by Theorem
10.17 we infer that pDq1

0
q is solvable, and by interpolation, pDpq is solvable for p ě q1

0,
with q1

0 P p1,8q.
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11 Rectifiability of harmonic measure

A set E Ă Rn`1 is called n-rectifiable if there are Lipschitz maps fi : Rn Ñ Rn`1,
i “ 1, 2, . . ., such that

Hn
´

Ez
ď

i

fipRnq

¯

“ 0. (11.1)

A set F Ă Rn`1 is called purely n-unrectifiable if HnpF XEq “ 0 for every n-rectifiable set
E. As for sets, one can define a notion of rectifiability also for measures: a measure µ is
said to be n-rectifiable if it vanishes outside an n-rectifiable set E Ă Rn`1 and, moreover,
it is absolutely continuous with respect to Hn|E .
In this chapter we will investigate the connection between rectifiability and harmonic

measure. First, under suitable assumptions on a domain Ω Ă Rn`1, we will show that
harmonic measure for Ω and the Hausdorff measureHn are mutually absolutely continuous
on the set of cone points of BΩ, which is a rectifiable set. Afterwards, in the converse
direction, we will see that if the harmonic measure ω for Ω and that the Hausdorff measure
Hn are mutually absolutely continuous on some subset E Ă BΩ, then E is n-rectifiable, or
equivalently, ω|E is n-rectifiable.

11.1 Harmonic measure in the set of cone points

Definition 11.1. Let Ω Ă Rn`1 be open. A point x P BΩ is called a cone point (for Ω) if
there exist a unit vector v P Rn`1, α P p0, 1q, and r ą 0 such that

Cpx, v, α, rq :“
␣

y P Brpxq : py ´ xq ¨ v ą α |y ´ x|
(

Ă Ω.

Remark that Cpx, v, α, rq is a one sided truncated open cone with vertex x and axis
parallel to v.

First we will show that the set of cone points for an open set Ω is n-rectifiable. We will
prove this using the following basic lemma.

Lemma 11.2. Let 0 ă r ď 8 and let v P Rn`1 be a unit vector and V the orthogonal
vector space to v. Let E Ă Rn`1 be such that diampEq ă r and

E X Cpx, v, α, rq “ ∅ for all x P E. (11.2)

Then E is contained in the graph of a Lipschitz function A : V Ñ V K.

Proof. Denote by ΠV the orthogonal projection onto V . Consider x, y P E. Since y R

Cpx, v, α, rq, then py´xq¨v ď α |y´x|; and since x R Cpy, v, α, rq, then px´yq¨v ď α |y´x|.
Therefore,

|py ´ xq ¨ v| ď α |y ´ x|.
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11 Rectifiability of harmonic measure

Consequently,

|ΠV pyq ´ ΠV pxq|2 “ |x´ y|2 ´ |py ´ xq ¨ v|2 ě p1 ´ α2q |x´ y|2.

So ΠV |E is one to one with Lipschitz inverse, with LipppΠV |Eq´1q ď p1 ´ α2q´1{2.

Proposition 11.3. Let Ω Ă Rn`1 be open. Let K Ă BΩ the subset of all cone points. Then
K can be covered by a countable collection of Lipschitz graphs and thus it is n-rectifiable.
In particular, Hn|K is σ-finite.

Notice that the proposition ensures something stronger than the n-rectifiability of K:
this is contained in a countable union of Lipschitz graphs, without leaving any subset of
zero measure Hn.

Proof. Let tviuiPI be a countable and dense family of unit vectors in the sphere Sn. For
i P I and m ě 1, let Ki,m the subset of the cone points x P K such that

Cpx, vi, 1{m, 1{mq Ă Ω.

It follows easily that
K “

ď

iPI

ď

mě1

Ki,m.

For each i,m, consider a covering of Ki,m with a finite or countable family of open balls
Bj , j P Ji,m, centered in Ki,m with radii 1{p2mq. For each i,m, j, the set Ki,m X Bj

satisfies the assumption (11.2), with v “ vi, α “ r “ 1{m. So Ki,m XBj is contained in a
Lipschitz graph.

Our main objective in this section is to prove the following result.

Theorem 11.4. Let Ω Ă Rn`1 be a bounded domain, let p P Ω, and let K Ă BΩ be the
subset of cone points for Ω. Then Hn|K ! ωp

Ω|K , that is, Hn is absolutely continuous with
respect to ωp

Ω on K.
Suppose moreover that the following holds: there exists some c ą 0 such that

Hn
8pBrpξqzΩq ě c rn for all ξ P BΩ and r ą 0. (11.3)

Then ωp
Ω|K ! Hn|K , that is, ωp

Ω is absolutely continuous with respect to Hn on K.

For simply connected domains in the plane, this result is a well-known theorem of
McMillan [McM69]. The extension to higher dimensions announced above is due to Ak-
man, Azzam, and Mourgoglou [AAM19].
If Ω Ă Rn`1 is an open set satisfying (11.3) for some c ą 0, we say that Ω has large

n-dimensional complement, or just large complement, for short. Notice that if Ω has
large complement, then it is Wiener regular and satisfies the CDC. The assumption of
having large complement cannot be eliminated in the second statement in the theorem.
For example, let E Ă r0, 1s Ă C be the usual ternary Cantor set, and consider the planar

246



11 Rectifiability of harmonic measure

domain Ω “ B2p0qzE. It is immediate to check that all the points from BΩ (and, in
particular the ones from E) are cone points. However, ωpEq ą 0, while HnpEq “ 0. On
the other hand, remark that all planar simply connected domains have large complement,
taking into account that BΩ is connected.
We will first prove the absolute continuity of surface measure with respect to harmonic

measure on the set K of cone points for Ω. We will derive this from Dahlberg’s theorem
and the maximum principle.

Proof of Hn|K ! ωp|K in Theorem 11.4. As in the proof of Proposition 11.3, let tviuiPI
be a countable and dense family of unit vectors in the sphere Sn. For i P I and m ě 1, let
Ki,m the subset of the cone points x P K such that

Cpx, vi, 1{m, 1{mq Ă Ω,

so that
K “

ď

iPI

ď

mě1

Ki,m.

For each i,m, consider a covering of Ki,m with a finite family of open balls Bj , j P Ji,m,
centered in Ki,m with radii 1{p5mq. Observe that

Ωi,m,j :“ 2Bj X
ď

xPKi,mXBj

Cpx, vi, 1{m, 1{mq Ă Ω.

Further, using Lemma 11.2, it is easy to check that each Ωi,m,j is a Lipschitz domain, and
that

Ki,m Ă
ď

jPJi,m

BΩi,m,j .

By Dahlberg’s theorem and Lemma 5.32, it follows that

Hn|BΩi,m,jXKi,m ! ωΩi,m,j |Ki,m ! ωΩ|Ki,m .

Since this holds for all i,m, j, we deduce that Hn|K ! ωΩ.

The proof of the fact that ωp|K ! Hn|K when Ω has large complement is more compli-
cated. We will need the following auxiliary lemma.

Lemma 11.5. Let Ω Ă Rn`1 be a Wiener regular bounded domain, let p P Ω, and let
E Ă BΩ be a Borel set. Then ωp

ΩpEq “ 0 if and only if

sup
xPΩ

ωx
ΩpEq ă 1. (11.4)

Proof. We write ω “ ωΩ. We only have to show that the condition (11.4) implies that
ωppEq “ 0, since the converse implication is trivial. To this end, assume first that E is
closed and denote

λ “ sup
xPΩ

ωxpEq.
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11 Rectifiability of harmonic measure

Since E is closed, by Corollary 5.36, for every ξ P BΩzE,

lim
xÑξ

ωxpEq “ 0.

For any ε ą 0, let fε P CpBΩq be a function which equals λ on E and vanishes away from
an ε-neighborhood of E. From the above conditions, it follows that the function defined
by upxq “ ωxpEq belongs to the Perron class Lfε for Ω, and thus

ωxpEq “ upxq ď Hfεpxq “

ż

fε dω
x for all x P Ω.

On the other hand, by the outer regularity of harmonic measure and the definition of fε,
we have

lim
εÑ0

ż

fε dω
x “ λωxpEq.

Hence,
ωxpEq ď λωxpEq.

Since λ ă 1, this implies that ωxpEq “ 0.

In the case when E is an arbitrary Borel set, the condition (11.4) implies that for any
closed subset F Ă E it also holds supxPΩ ω

x
ΩpF q ă 1. Hence ωppF q “ 0 and thus, by the

inner regularity of harmonic measure, we infer that ωppEq “ 0.

The main tool to prove the second statement in Theorem 11.4 is the following:

Theorem 11.6. Let Ω Ă Rn`1 be a bounded domain with large complement and let p P Ω.
Let Γ be a Lipschitz graph and denote by V1 and V2 the two connected components of
Rn`1zΓ. Let E Ă BΩXΓ be a Borel set with ωppEq ą 0. Then there are points xi P Vi XΩ,
for i “ 1, 2, such that

ωx1
ΩXV1

pEq ` ωx2
ΩXV2

pEq ą 0.

For x “ px̄, xn`1q P Rn`1 and h, r ą 0 we will use the following notation for an open
cylinder centered at x with height 2h and radius r:

Cypx, r, hq “
␣

x P Rn`1 : |x̄| ă r, |xn`1| ă h
(

.

For each i “ 1, 2, we define

rVi “ Cypp, 4 diampBΩq, 4 diampBΩqq X Vi,

in a coordinate system such that Γ is a Lipschitz graph with respect to a horizontal
hyperplane. Notice that each set rVi is a bounded Lipschitz domain such that Ω X Vi Ă
rVi Ă Vi.
Theorem 11.6 is proven in [AAM19] in the more general situation where Γ is the bound-

ary of a two sided chord-arc domain (i.e., the sets V1, V2 above are assumed to be chord-arc
domains). In turn, the results in [AAM19] are inspired by the ones of Wu [Wu86], where
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11 Rectifiability of harmonic measure

a similar result is proved for domains Ω satisfying an exterior corkscrew condition. The
assumption that Γ is a Lipschitz graph in Theorem 11.6 simplifies some technical points
in the arguments in [AAM19] and it suffices to complete the proof of Theorem 11.4.

To deduce the second statement in Theorem 11.4, recall that K can be covered by a
countable collection of Lipschitz graphs Γj , j ě 1. If ωppEq ą 0 for some Borel set E Ă K,
then there exists some j such that ωppEXΓjq ą 0. Let V1, V2 the connected components of

Rn`1zΓj , and let rV1, rV2 be associated bounded Lipschitz domains as above. By Theorem
11.6, ωxi

ΩXrVi
pE X Γjq ą 0 either for i “ 1 or 2. Since ωxi

rVi
pE X Γjq ě ωxi

ΩXrVi
pE X Γjq, either

ωx1

rV1
pE X Γjq ą 0 or ωx2

rV2
pE X Γjq ą 0.

By Dahlberg’s theorem for Lipschitz domains, this implies that HnpEq ě HnpEXΓjq ą 0.
This shows that ωp

Ω|K ! Hn|K .

To prove Theorem 11.6 we need the following auxiliary result.

Lemma 11.7. Let Ω, Γ, rV1, rV2, x1, and x2 be as in Theorem 11.6. Let x P Γ X Ω and
denote r “ δΩpxq and Ui “ rVi X Ω. For i “ 1, 2 and some c ą 0, consider balls

Bcrpyiq Ă rVi XBrpxq.

Let E Ă BΩ X Γ be a Borel set such that

ωx1
U1

pEq “ ωx2
U2

pEq “ 0

and suppose that

ωyi
Ui

pBUizpΓ X Ωqq Á 1 either for i “ 1 or i “ 2. (11.5)

Then there exists some γ P p0, 1q such that ωx
ΩpEq ă γ, with γ depending on the above

implicit constant and c.

Proof. Let Bi “ Bpyi,
1
2crq. By (11.5), there exists some η P p0, 1q such that

min
i“1,2

ωyi
Ui

pΓ X Ωq ď η.

Suppose the minimum is attained for i “ 1, for example. Then, by the Markov property
for harmonic measure in Theorem 5.54,

ωy1
Ω pEq “ ωy1

U1
pEq `

ż

ΓXΩ
ωz
ΩpEq dωy1

U1
pzq ď 0 ` η “ η.

Therefore, ωy1pEcq ě 1 ´ η, and then, by Harnack’s inequality in the ball BδΩpxqpxq,
ωxpEcq ą t for some t ą 0 depending on η. Hence,

ωxpEq ă 1 ´ t.
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11 Rectifiability of harmonic measure

Proof of Theorem 11.6. Let E Ă BΩ X Γ be a Borel set and let Vi, and rVi be as in the
theorem. Suppose that

ωx1

ΩXrV1
pEq “ ωx2

ΩXrV2
pEq “ 0 for all x1 P Ω X rV1, x2 P Ω X rV2.

We intend to show that this implies that ωp
ΩpEq “ 0, which will prove the theorem. To

this end, we claim that it suffices to show that there exists some γ ą 0 such that

ωx
ΩpEq ă γ for all x P Γ X Ω. (11.6)

Indeed, if this holds, then, by the Markov property in Theorem 5.54, for i “ 1, 2 and for
all x P Ω X rVi we have

ωx
ΩpEq “ ωx

ΩXrVi
pEq `

ż

ΓXΩ
ωy
ΩpEq dωx

ΩXrVi
pyq ď 0 ` γ “ γ.

Together with (11.6), this implies that ωx
ΩpEq ď γ ă 1 for all x P Ω and so, by Lemma

11.5, ωp
ΩpEq “ 0, which proves our claim.

Denote Ui “ rVi X Ω. By Lemma 11.7, to prove (11.6) it suffices to show that

ωyi
Ui

pBUizpΓ X Ωqq Á 1 either for i “ 1 or i “ 2, (11.7)

for yi P Ui as in that lemma. We distinguish three cases. For a large M0 ą 2 and
a small ε0 P p0, 1{2q both to be fixed below, suppose first that there exists some z0 P

BΩXBM0rpxq X rV1 such that distpz0,Γq ě ε0r (recall that r “ δΩpxq). Since rV1 is an NTA
domain, there exists a Harnack chain of balls tBju1ďjďN such that y1 P B1 and z0 P BN ,

with 10Bj Ă rV1 for each j, and such that N ď Cpε0,M0q. Notice that BN X BU1 ‰ ∅
because z0 P BU1. Let j0 ě 1 be the smallest integer such that 2Bj0 X BΩ ‰ ∅ (notice
that j0 ď N). Since U1 satisfies the CDC, for all y P 2Bj0 X U1 we have

ωy
U1

pBU1zpΓ X Ωqq ě ωy
U1

pBU1 X 10Bj0zpΓ X Ωqq “ ωy
U1

pBU1 X 10Bj0q Á 1. (11.8)

Then, by the Harnack inequality,

inf
yPB1

ωy
U1

pBU1zpΓ X Ωqq « inf
yPB2

ωy
U1

pBU1zpΓ X Ωqq « . . . « inf
yPBj0´1

ωy
U1

pBU1zpΓ X Ωqq

(11.9)

Á inf
yPBj0

ωy
U1

pBU1zpΓ X Ωqq Á 1.

So in this case (11.7) holds, with the implicit constant depending on N . Analogously, we
also deduce that (11.7) is satisfied if there exists some z0 P BΩ X BM0rpxq X rV2 such that
distpz0,Γq ě ε0r.

It remains to deal with the case when

distpz,Γq ď ε0 r for all z P BΩ XBM0,rpxq X prV1 Y rV2q. (11.10)
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11 Rectifiability of harmonic measure

Since BBrpxq X BΩ ‰ ∅, from the fact that Ω has large complement it follows that
Hn

8pB2rpxqzΩq Á rn. Thus, Hn
8

`

pB2rpxq X ViqzΩ
˘

Á rn either for i “ 1 or i “ 2. Without
loss of generality, we suppose that

Hn
8

`

pB2rpxq X V1qzΩ
˘

Á rn. (11.11)

Of course, this is equivalent to saying that Hn
8

`

pB2rpxq X rV1qzΩ
˘

Á rn.

Claim 11.8. There exists a Lipschitz domain W Ă U1 satisfying the following:

(a) diampW q ď Cr, y1 P W , and δW py1q « r.

(b) Either HnpBW X Γ X BΩq ě c rn for some fixed c ą 0, or there exists a Borel set
G Ă BW zBU1 such that HnpGq Á rn and

ωz
U1

pBU1zpΓ X Ωqq Á 1 for all z P G.

The Lipschitz character of W only depends on the Lipschitz constant of Γ.

The construction of the domain W requires a delicate stopping time argument and will
be carried out later. First we will show how the theorem follows from the properties of W
stated in the claim.
Suppose first that HnpBW X Γ X BΩq ě c rn for some c ą 0. In particular, this implies

that HnpBW X Γ X BΩq « HnpBW q. Since W Ă U1 and

BW X Γ X BΩ Ă BU1zpΓ X Ωq,

we deduce that

ωy1
U1

pBU1zpΓ X Ωqq ě ωy1
U1

pBW X Γ X BΩq ě ωy1
W pBW X Γ X BΩq. (11.12)

From the fact that ωy1
W is an A8 weight with respect to Hn|BW (by Dahlberg’s theorem),

using that HnpBW X Γ X BΩq « HnpBW q, we infer that

ωy1
W pBW X Γ X BΩq « ωy1

W pBW q « 1.

Together with (11.12), this gives (11.7), for i “ 1.
Assume now that there exists a Borel set G as in the statement (b) in Claim 11.8. By

the Markov property in Theorem 5.54, we have

ωy1
U1

pBU1zpΓ X Ωqq “ ωy1
W pBU1zpΓ X Ωqq `

ż

BW zBU1

ωz
U1

pBU1zpΓ X Ωqq dωy1
W pzq

ě

ż

G
ωz
U1

pBU1zpΓ X Ωqq dωy1
W pzq Á ωy1

W pGq.

As above, using that ωy1
W is an A8 weight with respect to Hn|BW and that HnpGq «

HnpBW q, we get ωy1
W pGq « ωy1

W pBW q « 1. Thus,

ωy1
U1

pBU1zpΓ X Ωqq Á 1.

This concludes the proof of the theorem, modulo Claim 11.8.
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11 Rectifiability of harmonic measure

Proof of Claim 11.8. Without loss of generality, we assume that BBpx, rq intersects BΩ
at the origin and that Γ is a Lipschitz graph with respect to the horizontal hyperplane
tpȳ, yn`1q : yn`1 “ 0u. Abusing notation, we identify Rn with Rnˆt0u. We let A : Rn Ñ R
be the Lipschitz function whose graph coincides with Γ. Recall that, by the choice of x
and y1,

c r ď |x´ y1| ď r and c r ď distpy1,Γq ď 2r.

Denote λ “ }∇A}8 and Λ “ 10 ` 10λ. Notice that

Γ X Cyp0, 10r,8q Ă Cyp0, 10r, 10λrq.

We choose M0 large enough so that

Cyp0, 10r,Λrq Ă Bpx,M0r{2q.

Also, we assume that y1 is contained in the upper component of Cyp0, 10r,ΛrqzΓ.

Construction of W . To construct W , first we consider the function h : Rn Ñ R defined
by

hpȳq “ sup
␣

pt´Apȳqq` : pȳ, tq P Cyp0, 10r,Λrq zΩ
(

,

where psq` “ maxps, 0q. In case the set on the right hand is empty, we set hpȳq “ 0. Recall
that distpz,Γq ď ε0 r for all z P BΩXCyp0, 10r,Λrq, by (11.10). That is, BΩXCyp0, 10r,Λrq

is contained in an pε0 rq-neighborhood of Γ. By connectivity, since y1 does not belong to
this neighborhood and belongs to the upper component of Cyp0, 10r,ΛrqzΓ, and moreover
y1 P Ω, it follows that the upper component of Cyp0, 10r,Λrq zUε0rpΓq is contained in Ω.
Consequently,

hpȳq ď Cε0r for all ȳ P Rn. (11.13)

Next we consider the following function d : Rn Ñ R:

dpȳq “ sup
z̄PRn

`

4hpz̄q ´ θ|ȳ ´ z̄|
˘

,

for some large constant θ ą 2 to be fixed below. Notice that this is a θ-Lipschitz function,
since the supremum of a family of θ-Lipschitz functions is θ-Lipschitz. Observe also that

dpȳq ě 4hpȳq ě 0 for all ȳ P Rn.

Also, by (11.13),
dpȳq ď Cε0r for all ȳ P Rn. (11.14)

We let AW : Rn Ñ R be the Lipschitz function

AW pȳq “ Apȳq ` dpȳq,

we denote by ΓW its graph, and we define

W “ tpȳ, yn`1q P Cyp0, 5r,Λrq : yn`1 ą AW pȳqu.
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11 Rectifiability of harmonic measure

Clearly, this is a Lipschitz domain with diampW q «Λ r. Further, from (11.14) it follows
that

ΓW X Cyp0, 10r,Λrq Ă UCε0rpΓq X Cyp0, 10r,Λrq.

This implies that y1 P W , since y1 is in the upper component of Cyp0, 5r,ΛrqzΓ and
distpy,Γq « r. Together with the fact that |y1 ´ x| ď r, this gives δW pyq « r. Remark
that W X Ω ‰ ∅ (because y1 P W ), and BΩ XW “ ∅, by the definition of h and the fact
that d ď h. Hence, using also that W is connected,

W Ă Ω X rV1 “ U1.

Proof of (b). We introduce a lattice DpΓq of “dyadic cubes” of Γ as follows. Let DpRnq be
the usual dyadic lattice of Rn. Let Π be the orthogonal projection from Γ to Rn ” Rnˆt0u.
Then we set

DpΓq “ tΠ´1pQq X Γ : Q P DpRnqu.

Here again we are identifying Rn with Rn ˆ t0u. We also denote ℓpΠ´1pQq X Γq :“ ℓpQq

and we call this the side length of Π´1pQq XΓ. Its center is the point whose projection by
Π coincides with the center of Q.
Also, for a given a ą 1, if P P DpΓq is such that P “ ΠpQq, for some Q P DpRnq, we set

aP “ ΠpaQq (for definiteness, we assume aQ to be half open-closed, in the same way as
Q). We denote by zP the center of P and we let BP “ BpzP , ℓpP qq.

Now we consider the family M of the maximal cubes Q P DpΓq such that there exists
some y P 3Q such that hpΠpyqq ą ℓpQq. From (11.13), it follows that ℓpQq À ε0r for all
Q P M. By the definition of h and the family M, one easily deduces that there exists
some constant C1 ą 2, possibly depending on Λ, such that

V1 X Cyp0, 10r,Λrq zΩ Ă
ď

QPM
C1BQ.

So we can write

V1 X Cyp0, 5r,Λrq zΩ Ă
ď

QPM
C1BQ Y

”´

Γz
ď

QPM
Q
¯

X
`

Cyp0, 5r,Λrq zΩ
˘

ı

. (11.15)

Next we claim that
”´

Γz
ď

QPM
Q
¯

X
`

Cyp0, 5r,Λrq zΩ
˘

ı

Ă ΓW . (11.16)

By the definition of ΓW , this is equivalent to showing that any point y belonging to the
set on the left hand side satisfies dpȳq “ 0 (with ȳ “ Πpyq). That is, hpz̄q ´ θ |ȳ ´ z̄| ď 0
for any z̄ P Rn. This is clear if ȳ “ z̄ (since hpȳq “ 0). Otherwise, let P P DpRnq be such
that y P P and z̄ P 3 pP z3P (where pP stands for the parent of P ), so that |ȳ ´ z̄| « ℓpP q.
If |z̄| ď 10r, then hpz̄q À ℓpP q, since pP R M and thus, if θ is chosen large enough,

4hpz̄q ´ θ|ȳ ´ z̄| ď CℓpP q ´ c θℓpP q ď 0.
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11 Rectifiability of harmonic measure

In case that 10r ă |z̄|, then |ȳ´z̄| ě 5r and from (11.13) it also follows that hpz̄q´θ|ȳ´z̄| ď

0. So (11.16) holds.
By (11.11) we know that Hn

8

`

V1 X Cyp0, 3r, 12Λrq zΩ
˘

Á rn. Then, from (11.15) and
(11.16) we infer that either

Hn
8

´

ď

QPM

`

C1BQ X Cyp0, 3r, 12Λrq zΩ
˘

¯

Á rn, (11.17)

or

Hn
8

´

ΓW X Cyp0, 3r,Λrq zΩ
¯

ě Hn
8

´´

Γz
ď

QPM
Q
¯

X
`

Cyp0, 3r,Λrq zΩ
˘

¯

Á rn. (11.18)

Since W Ă Ω, it is clear that ΓW X Cyp0, 5r,Λrq zΩ Ă BΩ. So in the last case we deduce
that

HnpBW X Γ X BΩq Á rn,

which gives (b), under the assumption (11.18).
To complete the proof of Claim 11.8 we will show that if (11.17) holds, then there

exists a subset set G Ă BW zBU1 such that HnpGq Á rn and ωz
U1

pBU1zpΓ X Ωqq Á 1 for

all z P G. Observe first that if Q P M is such that C1BQ X Cyp0, 3r, 12Λrq ‰ ∅, then
4QX Γ Ă Cyp0, 5r, 12Λrq for ε0 small enough, because ℓpQq À ε0r. Then, by by (11.17),

rn À Hn
8

´

ď

QPM

`

C1BQ X Cyp0, 3r, 12Λrq zΩ
˘

¯

À
ÿ

QPM:
4QXΓĂCyp0,5r, 1

2
Λrq

ℓpQqn. (11.19)

By the definition of M, for each Q P M, there exists some yQ P 3Q such that

dpȳQq ě 4hpȳQq ě 4 ℓpQq.

Let us check that the converse estimate dpȳQq À ℓpQq holds. Indeed, given z̄ P Rn, let

P P DpΓq be the minimal cube such that P Ą pQ (where pQ is the parent of Q) and
z̄ P 3ΠpP q. If P “ pQ, then

4hpz̄q ´ θ |ȳ ´ z̄| ď 4hpz̄q ď 4 ℓp pQq “ 8 ℓpQq

by the maximality of M. If P ‰ pQ, then |ȳQ ´ z̄| « ℓpP q and so, again by the definition
of M,

hpz̄q ´ θ |ȳ ´ z̄| ď ℓpP q ´ C θ ℓpP q ď 0,

assuming θ large enough. Taking the supremum over all z̄ P Rn, we deduce that dpȳQq ď

8ℓpQq.
Consider the points

yQ,BΩ :“ pȳQ, ApȳQq ` hpȳQqq, yQ,BW :“ pȳQ, ApȳQq ` dpȳQqq.

Notice that
yQ,BΩ P BΩ and yQ,BW P BW,
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11 Rectifiability of harmonic measure

by the definitions of h and d. Further,

distpyQ,BΩ,Γq « |yQ,BΩ ´ yQ| “ hpȳQq « ℓpQq,

and
distpyQ,BW ,Γq « |yQ,BW ´ yQ| “ dpȳQq « ℓpQq. (11.20)

Moreover,
|yQ,BΩ ´ yQ,BW | “ dpȳQq ´ hpȳQq ď 8ℓpQq. (11.21)

This estimate implies that distpyQ,BW , BΩq À ℓpQq. The converse estimate also holds.

Indeed, by the definition of h and M, for all z P Cyp0, 10r,Λrq X BΩ such that z̄ P Πp3 pQq,

|yQ,BW ´ z| ě 4hpȳQq ´ hpz̄q ě 4 ℓpQq ´ ℓp pQq “ 2ℓpQq.

Obviously, |yQ,BW ´ z| Á ℓpQq if z R Cyp0, 10r,Λrq, and so

distpyQ,BW , BΩq Á ℓpQq. (11.22)

From (11.20), (11.21), and (11.22) we infer that there exists some constant η P p0, 1{4q

such that

|z´yQ,BΩ| « distpz, BΩq « distpz,Γq « ℓpQq for all z P BpyQ,BW , ηℓpQqq X BW. (11.23)

So for such points z, since rV1 is an NTA domain, there exists a Harnack chain of balls
tBju1ďjďN such that z P B1 and yQ,BΩ in BN , with 10Bj Ă rV1 for each j, and such that
N À 1. Notice that BN X BU1 ‰ ∅ because yQ,BΩ P BU1. Taking the smallest integer
j0 ě 1 such that 2Bj0 X BΩ ‰ ∅ and arguing as in (11.8) and (11.9), we derive that

ωz
U1

pBU1zpΓ X Ωqq Á 1 for all z P BpyQ,BW , ηℓpQqq X BW. (11.24)

To define G, let M0 Ă M be a subfamily of cubes such that the cubes 4Q, with Q P M0,
are pairwise disjoint, 4QX Γ Ă Cyp0, 5r, 12Λrq, and

ď

QPM:
4QXΓĂCyp0,5r, 1

2
Λrq

4Q Ă
ď

QPM0

20Q.

Then we set
G “

ď

QPM0

BpyQ,BW , ηℓpQqq X BW.

Notice that G Ă BW zBU1, by (11.23) and the above definition. Also, by (11.24), we have
ωz
U1

pBU1zpΓ X Ωqq Á 1 for all z P G, and by (11.19),

HnpGq «η

ÿ

QPM0

HnpQq Á
ÿ

QPM:
4QXΓĂCyp0,5r, 1

2
Λrq

HnpQq Á rn.

So G satisfies all the required properties in (b). This completes the proof of Claim 11.8,
and thus of Theorem 11.6.
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11 Rectifiability of harmonic measure

11.2 Rectifiability of harmonic measure when it is absolutely
continuous with respect to surface measure

In this section we will prove the following result.

Theorem 11.9. Let Ω Ă Rn`1 be a bounded open set and let p P Ω. Suppose that there
exists a set E Ă BΩ such that 0 ă HnpEq ă 8 and that the harmonic measure ωp

Ω|E is
mutually absolutely continuous with respect to Hn|E. Then E is n-rectifiable.

Of course, in the theorem above, saying that E is n-rectifiable is equivalent to saying
that ωp

Ω|E is n-rectifiable. Remark that the theorem also holds for unbounded open sets
with compact boundary. In fact, the theorem for this type of domains can be easily be
derived from the case when Ω is bounded. We leave the details for the reader.

The proof of Theorem 11.9 relies on the solution of David-Semmes problem from [NTV14b]
and [NTV14c] about the connection between the L2 boundedness of the Riesz transform
and rectifiability. Given a measure µ in Rn`1, its (n-dimensional) Riesz transform equals

Rµpxq “

ż

x´ y

|x´ y|n`1
dµpyq,

whenever the integral makes sense (notice that this a vectorial integral). For ε ą 0, we
also consider the ε-truncared version, defined by

Rεµpxq “

ż

|x´y|ąε

x´ y

|x´ y|n`1
dµpyq.

The maximal Riesz transform of µ is defined by

R˚µpxq “ sup
εą0

|Rεµpxq|.

We also consider the maximal radial operator Mn, defined by

Mnµpxq “ sup
rą0

µpBrpxqq

rn
.

For a given function f P L1
locpµq, we denote

Rµfpxq “ Rpf µqpxq, Rε,µfpxq “ Rεpf µqpxq, R˚,µfpxq “ R˚pf µqpxq.

We say that Rµ is bounded in L2pµq if the operators Rε,µ are bounded in L2pµq uniformly
on ε ą 0.
The connection between the Riesz transform and harmonic measure stems from the

fact that the Riesz kernel K equals the gradient of the fundamental solution E modulo a
constant factor. That is,

Kpxq “
x

|x|n`1
“ cn∇Epxq.
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11 Rectifiability of harmonic measure

Consequently, from the identity (7.2), we deduce

cn∇yGpx, yq “ Kpy ´ xq ´

ż

BΩ
Kpy ´ zq dωxpzq “ Kpy ´ xq ´ Rωxpyq for y R suppωx.

Next we show that it suffices to prove Theorem 11.9 for Wiener regular domains.

Lemma 11.10. To prove Theorem 11.9 we can assume that Ω is Wiener regular.

Proof. Let E Ă BΩ be as in Theorem 11.9. By the Borel regularity of Hn and ω, we
can assume that E is in fact Borel. By an exhaustion argument, it suffices to show that
there exists a subset F Ă E with HnpF q ą 0 which is n-rectifiable (see for example the
argument below near (11.25)).
For any ε ą 0, let rΩε Ă Ω be theWiener regular open set constructed in Proposition 6.37.

For E as above, let Eε “ E X BrΩε, so that by Lemma 6.38,

lim
εÑ0

ωp
rΩε

pEεq “ lim
εÑ0

ωp
rΩε

pEq “ ωp
ΩpEq.

Let ε ą 0 be small enough so that ωp
rΩε

pEεq ą 0. By Lemma 5.32, we have

ωp
rΩε

pAq ď ωp
ΩpAq for any Borel set A Ă BΩ X BrΩε.

So ωp
rΩε

is absolutely continuous with respect to ωp
Ω in BΩ X BrΩε. Consequently, there

exists a subset F Ă Eε where ωp
rΩε

and ωp
Ω are mutually absolutely continuous and both

ωp
rΩε

pF q ą 0, ωp
ΩpF q ą 0 (see exercise 4.3.1). Since F is a subset of E, ωp

rΩε
is also mutually

absolutely continuous with Hn|F and HnpF q ą 0. By Theorem 11.9 applied to the Wiener
regular domain rΩε, then we deduce that F is n-rectifiable, and so we are done.

To prove Theorem 11.9 we will use the following result.

Theorem 11.11. Let µ be a Radon measure in Rn`1 and E Ă suppµ such that 0 ă

HnpEq ă 8 and µ|E is mutually absolutely continuous with respect to Hn|E. If R˚µpxq ă

8 for µ-a.e. x P E, then µ|E is n-rectifiable.

This theorem follows from the following deep result from [NTV14c], which can be con-
sidered a non-quantitative version of the David-Semmes problem.

Theorem 11.12. Let E Ă Rn`1 be such that 0 ă HnpEq ă 8. Suppose that RHn|E
is

bounded in L2pHn|Eq. Then E is n-rectifiable.

The next result can be proved using a sophisticated Tb theorem of Nazarov, Treil, and
Volberg [NTV14a], [Vol03] in combination with the methods in [Tol00]. For the detailed
proof in the case of the Cauchy transform, see [Tol14, Theorem 8.13].

Theorem 11.13. Let µ be a Radon measure with compact support in Rn`1 and consider
a µ-measurable set G with µpGq ą 0 such that

G Ă tx P Rn`1 : Mnµpxq ă 8 and R˚µpxq ă 8u.

Then there exists a Borel subset G0 Ă G with µpG0q ą 0 such that supxPG0
Mnµ|G0pxq ă 8

and Rµ|G0
is bounded in L2pµ|G0q.
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11 Rectifiability of harmonic measure

We will prove neither Theorem 11.13 nor Theorem 11.12, since both results are out of
the scope of these notes. Instead, we will outline how one can deduce Theorem 11.11 from
Theorems 11.12 and 11.13.

Proof of Theorem 11.11 using Theorems 11.12 and 11.13. This follows by a standard ex-
haustion argument. Indeed, let µ and E satisfy the assumptions in Theorem 11.11. We
can assume E to be bounded, so that µpEq ă 8. Let

β “ suptµpF q : F Ă E is Borel n-rectifiableu. (11.25)

It is is immediate to check that the supremum is attained, that is, there exists a Borel
n-rectifiable set F Ă E such that µpF q “ β.

We have to check that β “ µpEq. Suppose that this is not the case, and let G “ EzF .
By assumption, we have R˚µpxq ă 8 for µ-a.e. x P G. Also, for x P G, we have

lim sup
rÑ0

µpBrpxqq

rn
ď lim sup

rÑ0

µpBrpxqq

HnpBrpxq X Eq
lim sup

rÑ0

HnpBrpxq X Eq

rn
. (11.26)

The first lim sup on the right hand side is finite Hn-a.e. in G by Theorem 4.12 and thus
µ-a.e. in G because of the absolute continuity of µ with respect to Hn in E, while the last
one is also finite by the classical density bounds for Hausdorff measure (see for instance
[Mat95, Theorem 6.2]). Hence the left hand side is also finite µ-a.e. in G, or equivalently,

Mnµpxq ă 8 for µ-a.e. x P G.

Then, by Theorem 11.13, there exists a Borel subset G0 Ă G with µpG0q ą 0 such that
Rµ|G0

is bounded in L2pµ|G0q. Denote by ρ the density of µ|G0 with respect to Hn|G0 , so
that µ|G0 “ ρHn|G0 , and let τ ą 0 be such that the set

G0,τ “ tx P G0 : ρpxq ą τu

has postive measure µ. It is immediate to check that RHn|G0,τ
is bounded in L2pHn|G0,τ q,

and thus G0,τ is n-rectifiable, by Theorem 11.12. As a consequence, the set F 1 “ F YG0,τ

is n-rectifiable and µpF 1q ą µpF q “ β, which contradicts the definition of F and β.

To prove Theorem 11.9, recall that Lemma 6.20 asserts the following: If E Ă Rn`1 is
compact and n´ 1 ă s ď n` 1, in the case n ą 1, we have

CappEq Ás,n Hs
8pEq

n´1
s .

In the case n “ 1,

CapLpEq Ás Hs
8pEq

1
s .
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11 Rectifiability of harmonic measure

Proof of Theorem 11.9. Let Ω, E, and p be as in Theorem 11.9, with Ω Wiener regular,
and write ω instead of ωΩ. By the regularity of Hn|E and of ω, we can assume that E is
compact. We will show that

R˚ω
ppxq ă 8 for ωp-a.e. x P E,

which implies that ωp|E is n-rectifiable, by Theorem 11.11. For simplicity, in this proof we
will work with closed balls B̄spξq (this is not essential, but it will ease some calculations
because many lemmas in the preceding sections about the relationship between harmonic
measure and the Green function are stated in terms of closed balls).
By the same argument as in (11.26), it follows that Mnω

ppxq ă 8 for ωp-a.e. x P E.
For k ě 1, let

Ek “ tx P E : Mnω
ppxq ď ku,

so that E “
Ť

kě1Ek, up to a set of ωp-measure zero. For a fixed k ě 1, let x P Ek be a
density point of Ek, and let r0 be small enough so that

ωppB̄rpxq X Ekq

ωppB̄rpxqq
ě

1

2
for 0 ă r ď r0,

with r0 ď |x ´ p|{100. Observe that, since ωppB̄ρpzq X Ekq ď kρn for all z P Ek and all
ρ ą 0, by Frostman’s Lemma we have

Hn
8pB̄rpxq X BΩq ě Hn

8pB̄rpxq X Ekq ě cpkqωppB̄rpxq X Ekq ě
cpkq

2
ωppB̄rpxqq, (11.27)

for 0 ă r ď r0.
To show that R˚ω

ppxq ă 8 for x P Ek as above, clearly it suffices to show that

sup
0ărďr0

|Rrω
ppxq| ă 8. (11.28)

To estimate Rrω
ppxq for 0 ă r ď r0, first we assume that

ωppB̄40rpxqq ď 50nωppB̄rpxqq. (11.29)

We consider a radial C8 function φ : Rn`1 Ñ r0, 1s which vanishes in B̄1p0q and equals 1
on Rn`1zB2p0q, and for r ą 0 and z P Rn`1 we denote φrpzq “ φ

`

z
r

˘

and ψr “ 1 ´ φr.
We set

rRrω
ppxq “

ż

Kpx´ yqφrpx´ yq dωppyq.

Note that

|Rrω
ppxq| ď

ˇ

ˇ

ˇ

ˇ

ż

φrpx´ yqKpx´ yq dωppyq

ˇ

ˇ

ˇ

ˇ

`

ż

ˇ

ˇχ|x´y|ąr ´ φrpx´ yq
ˇ

ˇ

ˇ

ˇKpx´ yq
ˇ

ˇ dωppyq

(11.30)

ď | rRrω
ppxq| ` CMnω

ppxq.
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11 Rectifiability of harmonic measure

For a fixed x P Ek and z P Rn`1z
“

supppφrpx´ ¨qωpq Y tpu
‰

, consider the function

urpzq “ Eppzq ´

ż

Eypzqφrpx´ yq dωppyq, (11.31)

so that, by Lemma 7.4,

Gzppq “ urpzq ´

ż

Ezpyqψrpx´ yq dωppyq for m-a.e. z P Rn`1. (11.32)

Differentiating (11.31) with respect to z, we obtain

∇urpzq “ ∇Eppzq ´

ż

∇Eypzqφrpx´ yq dωppyq.

In the particular case z “ x we get

cn∇urpxq “ Kpx´ pq ´ rRrω
ppxq,

and thus

| rRrω
ppxq| À

1

distpp, BΩqn
` |∇urpxq|. (11.33)

Since ur is harmonic in Rn`1z
“

supppφrpx´ ¨qωpq Y tpu
‰

(and so in Brpxq), we have

|∇urpxq| À
1

r
´

ż

Brpxq

|urpzq ´ α| dz, (11.34)

for any constant α P R, possibly depending on x and r. From the identity (11.32) we
deduce that

|∇urpxq| À
1

r
´

ż

Brpxq

Gzppq dz `
1

r
´

ż

Brpxq

ˇ

ˇ

ˇ

ˇ

ż

`

Eypzq ´ α1
˘

ψrpx´ yq dωppyq

ˇ

ˇ

ˇ

ˇ

dz

“: I ` II,

for any constant α1 P R, possibly depending on x and r. To estimate the term II we use
Fubini and the fact that suppψr Ă B2rp0q:

II À
1

rn`2

ż

yPB2rpxq

ż

zPBrpxq

|Eypzq ´ α1| dz dωppyq.

In the case n ě 2 we choose α1 “ 0, and we get

II À
1

rn`2

ż

yPB2rpxq

ż

zPBrpxq

1

|z ´ y|n´1
dz dωppyq À

ωppB2rpxqq

rn
À Mnω

ppxq.

In the case n “ 1 we take α1 “ 1
2π log 1

4r , and then we obtain

II À
1

r3

ż

yPB2rpxq

ż

zPBrpxq

log
4r

|z ´ y|
dz dωppyq

ď
1

r3

ż

yPB2rpxq

ż

zPB3rpyq

log
4r

|z ´ y|
dz dωppyq À

1

r3

ż

yPB2rpxq

r2 dωppyq À M1ω
ppxq.
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11 Rectifiability of harmonic measure

Next we want to show that I Àk 1. Clearly it is enough to prove that

1

r
|Gppyq| Àk 1 for all y P Brpxq X Ω (11.35)

(now under the assumptions x P Ek, 0 ă r ď r0{2, and (11.29)). To prove this, observe
that, in the case n ě 2, by Lemma 7.19,

Gppyq À
ωppB̄8rpxqq

CappB̄rpxqzΩq
for all y P B̄rpxq X Ω.

Notice now that, by Lemma 6.20 and (11.27), we have

CappB̄rpxqzΩq Á Hn
8pB̄rpxq X BΩq

n´1
n Ák ω

ppB̄rpxqq
n´1
n .

Thus, by (11.29) and the fact that Mnω
ppxq Àk 1,

1

r
Gppyq Àk

ωppB̄8rpxqq

r ωppB̄rpxqq
n´1
n

“

ˆ

ωppB̄8rpxqq

rn

˙

1
n
ˆ

ωppB̄8rpxqq

ωppB̄rpxqq

˙

n´1
n (11.29)

Àk 1,

which proves (11.35). Almost the same arguments work in the case n “ 1. Indeed, by
Lemma 7.23,

Gppyq À ωppB̄40rpxqq

ˆ

log
r

CapLpB̄rpxqzΩq

˙2

À ωppB̄40rpxqq
r

CapLpB̄rpxqzΩq
for all y P B̄rpxq X Ω.

By Lemma 6.20 and (11.27), we have

CapLpB̄rpxqzΩq Á H1
8pB̄rpxq X BΩq Ák ω

ppB̄rpxqq,

and thus, by (11.29),
1

r
Gppyq Àk

ωppB̄40rpxqq

ωppB̄rpxqq
Àk 1,

which proves again (11.35). So in any case we deduce that

|Rrω
ppxq| ď | rRrω

ppxq| ` CMnω
ppxq Àk

1

distpp, BΩqn
` 1 (11.36)

for x P Ek and 0 ă r ď r0{2 satisfying (11.29).

In the case when (11.29) does not hold, we consider the smallest r1 ą r of the form
r1 “ 40jr, j ą 0, such that either r1 ą r0 or (11.29) holds with r1 replacing r. Let j0 ě 1
be such that r1 “ 40j0r and write

|Rrω
ppxq| ď |Rr1ωppxq| `

ż

ră|x´y|ďr1

|Kpx´ yq| dµpyq ď |Rr1ωppxq| ` C

j0
ÿ

j“1

ωppB̄40jrpxqq

p40jrqn
.
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11 Rectifiability of harmonic measure

To estimate the last sum, notice that, for all 1 ď j ď j0 ´ 1,

ωppB̄40jrpxqq ă 50´nωppB̄40j`1rpxqq,

and thus, by iterating this estimate,

j0
ÿ

j“1

ωppB̄40jrpxqq

p40jrqn
ď

j0
ÿ

j“1

50´npj0´jqωppB̄40j0rpxqq

40pj´j0qn p40j0rqn
À
ωppB̄r1pxqq

pr1qn
ď Mnω

ppxq.

On the other hand, in case that r1 ă r0, then (11.36) holds (with r replaced by r1), and in
case that r1 ě r0, then we have r1 « r0 and we write

|Rr1ωppxq| À
ωppBΩq

pr1qn
À

1

rn0
.

So in any case we deduce that

|Rrω
ppxq| Àk

1

rn0
`

1

distpp, BΩqn
` 1,

which yields (11.28).

11.3 The maximal Riesz transform of harmonic measure under
the CDC

In the previous section, to prove Theorem 11.9 we have estimated the maximal Riesz
transform R˚ω

p in terms of the maximal radial function Mnω
p. For domains satisfying

the CDC, a quite precise bound holds, as shown below.

Theorem 11.14. Let Ω Ă Rn`1 be an open set with compact boundary satisfying the CDC
and let p P Ω. Then, for every x P BΩ,

R˚ω
ppxq ď CMnω

ppxq,

where the constant C depends only on n and the CDC.

We remark that in the case when Ω is unbounded with compact boundary, in the
theorem we ask the CDC to hold with r0 “ diampBΩq in the definition in Subsection 7.5.1.
That is, for some c ą 0, we require that for all ξ P BΩ and all r P p0, diamBΩq,

CappB̄rpξqzΩq ě c rd´2 in the case d ě 3, (11.37)

and
CapLpB̄rpξqzΩq ě c r in the case d “ 2. (11.38)
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11 Rectifiability of harmonic measure

Proof of Theorem 11.14. The arguments are quite similar (but somewhat simpler) to the
ones used in the proof of Theorem 11.9. However, for the sake of completeness we will
show the full details of the proof, repeating some of the estimates.
We have to show that, for all x P BΩ and r ą 0,

|Rrω
ppxq| ď CMnω

ppxq,

where the constant C depends only on n and the CDC. We can assume that r ď diamBΩ,
because otherwise Rrω

ppxq “ 0. We will consider first the cases n “ 1 with Ω bounded,
and n ě 2 with Ω bounded or unbounded with compact boundary. We will deal with the
remaining case n “ 1 with Ω unbounded with compact boundary at the end of the proof.

We consider a radial C8 function φ : Rn`1 Ñ r0, 1s which vanishes in B̄1p0q and equals
1 on Rn`1zB̄2p0q, and for r ą 0 and z P Rn`1 we denote φrpzq “ φ

`

z
r

˘

and ψr “ 1 ´ φr.
We set

rRrω
ppxq “

ż

Kpx´ yqφrpx´ yq dωppyq.

Note that

|Rrω
ppxq| ď

ˇ

ˇ

ˇ

ˇ

ż

φrpx´ yqKpx´ yq dωppyq

ˇ

ˇ

ˇ

ˇ

`

ż

ˇ

ˇχ|x´y|ąr ´ φrpx´ yq
ˇ

ˇ

ˇ

ˇKpx´ yq
ˇ

ˇ dωppyq

(11.39)

ď | rRrω
ppxq| ` CMnω

ppxq.

For a fixed x P BΩ and z P Rn`1z
“

supppφrpx´ ¨qωpq Y tpu
‰

, consider the function

urpzq “ Eppzq ´

ż

Eypzqφrpx´ yq dωppyq, (11.40)

so that, by Lemma 7.41,

Gzppq “ urpzq ´

ż

Eypzqψrpx´ yq dωppyq for m-a.e. z P Rn`1. (11.41)

Differentiating (11.40) with respect to z, we obtain

∇urpzq “ ∇Eppzq ´

ż

∇Eypzqφrpx´ yq dωppyq.

In the particular case z “ x we get

cn∇urpxq “ Kpx´ pq ´ rRrω
ppxq,

and thus

| rRrω
ppxq| À

1

|x´ p|n
` |∇urpxq|. (11.42)

1It is easy to check that the proof of this lemma extends easily to the case n ě 2 with Ω unbounded with
compact boundary
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11 Rectifiability of harmonic measure

Since ur is harmonic in Rn`1z
“

supppφrpx´ ¨qωpq Y tpu
‰

(and so in Brpxq), we have

|∇urpxq| À
1

r
´

ż

Brpxq

|urpzq ´ α| dz, (11.43)

for any constant α P R, possibly depending on x and r. From the identity (11.41) we
deduce that

|∇urpxq| À
1

r
´

ż

Brpxq

Gzppq dz `
1

r
´

ż

Brpxq

ˇ

ˇ

ˇ

ˇ

ż

`

Eypzq ´ α1
˘

ψrpx´ yq dωppyq

ˇ

ˇ

ˇ

ˇ

dz

“: I ` II,

for any constant α1 P R, possibly depending on x and r. To estimate the term II we use
Fubini and the fact that suppψr Ă B2rp0q:

II À
1

rn`2

ż

yPB2rpxq

ż

zPBrpxq

|Eypzq ´ α1| dz dωppyq.

In the case n ě 2 we choose α1 “ 0, and we get

II À
1

rn`2

ż

yPB2rpxq

ż

zPBrpxq

1

|z ´ y|n´1
dz dωppyq À

ωppB2rpxqq

rn
À Mnω

ppxq.

In the case n “ 1 we take α1 “ 1
2π log 1

4r , and then we obtain

II À
1

r3

ż

yPB2rpxq

ż

zPBrpxq

log
4r

|z ´ y|
dz dωppyq

ď
1

r3

ż

yPB2rpxq

ż

zPB3rpyq

log
4r

|z ´ y|
dz dωppyq À

1

r3

ż

yPB2rpxq

r2 dωppyq À M1ω
ppxq.

Next we want to show that I À Mnω
ppxq. To this end, it is enough to prove that

1

r
|Gppyq| À Mnω

ppxq for all y P B̄rpxq X Ω. (11.44)

In the case n ě 2, this is an immediate consequence of Lemma 7.19 and the CDC. Indeed,

1

r
Gppyq À

ωppB̄8rpxqq

r CappB̄rpxqzΩq
À
ωppB̄8rpxqq

r rn´1
À Mnω

ppxq for all y P B̄rpxq X Ω.

In the case n “ 1, we use Lemma 7.23 instead of Lemma 7.19, and we deduce

1

r
Gppyq À

ωppB̄40rpxqq

r

ˆ

log
r

CapLpB̄rpxqzΩq

˙2

À
ωppB̄40rpxqq

r
À M1ω

ppxq for all y P B̄rpxq X Ω.

So in any case (11.44) holds.
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11 Rectifiability of harmonic measure

Combining (11.39), (11.42), and the estimates obtained for the terms I and II, we get

|Rrω
ppxq| À | rRrω

ppxq| ` Mnω
ppxq À Mnω

ppxq `
1

|x´ p|n
. (11.45)

To complete the proof of the theorem, we will show that 1
|x´p|n

À Mnω
ppxq. Suppose first

that |p ´ x| ď 2 diampBΩq. Then we use the fact that, by Lemmas 7.16 and 7.20 and the
CDC, we have ωppB̄4|p´x|pxqq Á 1, and thus

1

|x´ p|n
À
ωppB̄4|p´x|pxqq

|x´ p|n
À Mnω

ppxq. (11.46)

Consider now the case |p ´ x| ą 2 diampBΩq (so Ω is unbounded in this case and n ě 2).
By Theorem 7.33 (d)

ωppBΩq “ E ˚ ω8ppq “

ż

Eppξq dω8pξq «
}ω8}

distpp, BΩqn´1
“

CappBΩq

distpp, BΩqn´1
.

Using the CDC, we have

ωppBΩq «
CappBΩq

distpp, BΩqn´1
«

diampBΩqn´1

|x´ p|n´1

Thus,
1

|x´ p|n
ď

1

|x´ p|n´1 diampBΩq
À

ωppBΩq

diampBΩqn
À Mnω

ppxq.

So (11.46) also holds, and the proof of the theorem is concluded in the cases n “ 1 with
Ω bounded and n ě 2 with Ω having compact boundary.

Suppose now that n “ 1 and Ω is unbounded with compact boundary. We will reduce
this case to the case when Ω is bounded. To this end, consider R ą 0 large enough so that
BΩ Ă BR{2p0q and let ΩR “ Ω XBRp0q. Arguing as above, we deduce that, for all x P BΩ
and all 0 ă r ď diampBΩq, denoting by ωR the harmonic measure for ΩR,

| rRrω
p
Rpxq| À M1ω

p
Rpxq `

1

|x´ p|
(11.47)

uniformly on R (notice that, to obtain this estimate, the CDC (11.38) for ΩR is only
required for r À diampBΩq, and this clearly holds).

Recall that for every f P CpBΩq, and every p P Ω, we have

ż

BΩ
fdωp “ lim

RÑ8

ż

BΩ
fdωp

ΩR
,

by Remark 5.44. On the other hand, by Proposition 6.36 (b), ωppBΩq “ 1. So we deduce
that

lim
RÑ8

ωRpBBRp0qq “ 0.
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11 Rectifiability of harmonic measure

Consequently,

lim
RÑ8

| rRrω
p
Rpxq| “ | rRrω

ppxq| and lim sup
RÑ8

M1ω
p
Rpxq À M1ω

ppxq.

So using (11.39) and letting R Ñ 8 in (11.47), we derive

|Rrω
ppxq| À | rRrω

ppxq| ` M1ω
ppxq À M1ω

ppxq `
1

|x´ p|
. (11.48)

As above, in the case |p ´ x| ď 2 diampBΩq, by Lemma 7.20 and the CDC, we have
ωppB̄4|p´x|pxqq Á 1, and so (11.46) holds. For |p´ x| ą 2 diampBΩq, we write

1

|x´ p|
ď

1

diampBΩq
“

ωppBΩq

diampBΩq
À M1ω

ppxq.

Thus, |Rrω
ppxq| À M1ω

ppxq in any case.

Recall that the upper n-dimensional density of a Borel measure µ at x P Rn`1 is defined
by

Θn,˚pµ, xq “ lim sup
tÑ0

µpBpx, rqq

p2rqn
.

In the case when Ω is unbounded with compact boundary (satisfying the CDC, as above),
we have the following result for harmonic measure with pole at 8.

Theorem 11.15. Let Ω Ă Rn`1 be an unbounded open set with compact boundary satis-
fying the CDC. Then, for any x P BΩ,

R˚ω
8pxq ď CMnω

8pxq (11.49)

and
lim sup

εÑ0
|Rεω

8pxq| ď C Θn,˚pω8, xq. (11.50)

where the constant C depends only on n and the CDC.

Proof. The first estimate follows from Theorem 11.14 by taking a sequence of poles pk P Ω
tending to 8, and and dividing by Eppkq in the case n ě 2.

To prove (11.50), by a quick inspection of the proof of Theorem 11.14, one can check
that the following sharper version of (11.45) and (11.48) holds:

|Rrω
ppxq| À sup

tącr

ωppBpx, tqq

tn
`

1

|x´ p|n
,

for some fixed constant c ą 0 depending on n. By taking again a sequence of poles pk P Ω
tending to 8, and dividing by Eppkq in the case n ě 2, and then letting k Ñ 8, we get

|Rrω
8pxq| À sup

tącr

ω8pBpx, tqq

tn
.

Letting r Ñ 0, (11.50) follows.

266



12 The dimension of harmonic measure

Recall that the dimension of a Borel measure µ in Rd is defined as follows:

dimHpµq “ inftdimHpEq : E Ă Rd Borel , µpEcq “ 0u.

In Chapter 9 we showed that for planar domains, the dimension of harmonic measure is
at most 1. In this chapter we will study the dimension of harmonic measure for domains
in arbitrary dimensions. For d ě 3, one might expect that the dimension of harmonic
measure for domains in Rd is at most d ´ 1, as in the complex plane. However, this is
not the case. Indeed, Wolff in [Wol95] constructed a domain Ω Ă R3 whose associated
harmonic measure has dimension larger than 2. This example is easily extended to higher
dimensions.
The main result that we will prove in this chapter is a theorem due to Bourgain [Bou87],

which asserts that for any open set Ω Ă Rd, the dimension of ωΩ is at most d ´ εpdq, for
some positive constant εpdq. The sharp constant εpdq (which is smaller than 1, because of
Wolff’s example) is not known. We will also study the so-called dimension drop, i.e., the
fact that dimHpωΩq ă dimHpBΩq, which occurs typically in fractional dimensions.

Before turning to Bourgain’s theorem, we show a basic (but sharp) lower bound for the
dimension of harmonic measure.

Proposition 12.1. Let Ω Ă Rd be an open set with compact boundary which is not polar.
Then, for any x0 P Ω,

dimHpωx0
Ω q ě d´ 2.

The fact that BΩ is not polar ensures that ωx0 is a non-trivial measure, by Proposition
6.36.

Proof. Remark first that the proposition is only meaningful for d ě 3. We have to check
that ωx0

Ω pEq “ 0 for any Borel set E Ă BΩ such that dimHpEq ă d´2. To this end, notice
that by Lemma 6.20 and the subsequent corollary, if dimHpEq ă d´ 2, then CappEq “ 0.
In case that Ω is bounded, by Theorem 6.33 this implies that ωx0

Ω pEq “ 0, as wished.
In case that Ω is unbounded with compact boundary, let r ą 0 be such that tx0uYBΩ Ă

Brp0q and denote Ωr “ Ω XBrp0q. Then we have ωx0
Ωr

pEq “ 0, and so by Lemma 5.45, we
deduce

ωx0
Ω pEq “ lim

rÑ8
ωx0
Ωr

pEq “ 0.

To check that the lower bound d ´ 2 is sharp, one just has to consider a compact set
E Ă Rd with dimHpEq “ d´ 2 and with CappEq ą 0. Then, setting Ω “ RdzE, it follows
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12 The dimension of harmonic measure

that BΩ is not polar and ωx0pBΩq ą 0 if x0 belongs to the unbounded component of Ω, by
Proposition 6.36. Obviously, we have dimH ω

x0 ď dimH BΩ “ d´ 2.

Exercise 12.0.1. For d ě 3, construct a compact set E Ă Rd such that dimHpEq “ d´ 2
and CappEq ą 0.

12.1 Bourgain’s theorem on the dimension of harmonic measure

In this section we will prove the following result:

Theorem 12.2. For d ě 3 there exists some constant εpdq ą 0 such that for every open
set Ω Ă Rd with compact boundary and every x0 P Ω we have

dimHpωx0
Ω q ď d´ εpdq.

Lemma 12.3. To prove Theorem 12.2, we can assume that Ω is Wiener regular.

The proof of this lemma is almost the same as the one of Lemma 9.18 and so we skip
it.

From now on, in this section we assume that Ω Ă Rd is an open Wiener regular set with
compact boundary and we denote E “ BΩ.
Recall that the s-dimensional Hausdorff content of F Ă Rd equals

Hs
8pF q “ inf

!

ÿ

i

diampAiq
s : F Ă

ď

i

Ai

)

.

Lemma 12.4. Assume d ě 3. Let s ě d ´ 1, let Q Ă Rd be an open cube, and let
Q˚ “ 1

8 d1{2Q. Then, for any δ P p0, 1q, one of the following alternatives holds:

ωx
ΩpE XQq ě cpdqδ for all x P Q˚ X Ω,

or
Hs

8pE XQ˚q ď δ ℓpQqs,

with cpdq ą 0.

Proof. Let B̄ be a ball concentric with Q with radius

rpB̄q “
d1{2

2
ℓpQ˚q “

1

16
ℓpQq.

Notice that Q˚ Ă B̄ Ă 4B̄ Ă 1
2Q̄ Ă Q. Therefore, 4B̄XBΩ Ă EXQ, and then , by Lemma

7.16 and Remark 7.17, for all x P B̄ X Ω we have

ωx
ΩpE XQq ě ωx

Ωp4B̄q ě cpdq
CappB̄zΩq

rpB̄qd´2
“ cpdq

CappB̄ X Eq

rpB̄qd´2
.
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12 The dimension of harmonic measure

Of course, this holds for all x P Q˚ X Ω because Q˚ Ă B̄.
Now, by Lemma 6.20, it holds that

CappB̄ X Eq ě CappE XQ˚q Ád Hs
8pE XQ˚q

d´2
s .

Actually, in Lemma 6.20 it is shown that this holds for s P pd ´ 2, ds with the implicit
constant depending both on d and s. However, it is immediate to check that when s ě d´1,
the proof in that lemma yields an estimate depending only on d. Gathering the estimates
above, we obtain

ωx
ΩpE XQq ě c1pdq

Hs
8pE XQ˚q

d´2
s

rpB̄qd´2
«d

ˆHs
8pE XQ˚q

ℓpQqs

˙
d´2
s

for all x P Q˚.

If Hs
8pE X Q˚q ą δ ℓpQqs, this implies that ωx

ΩpE X Qq Ád δ
d´2
s ě δ, which proves the

lemma.

We introduce now two additional Hausdorff contents. For s P rd ´ 1, dq, F Ă Rd, and
ε ą 0, we set

Hs
εpF q “ inf

!

ÿ

i

diampAiq
s : F Ă

ď

i

Ai, diampAiq ď ε
)

, (12.1)

and
Ms

εpF q “ inf
!

ÿ

i

ℓpQiq
s : Qi P D, F Ă

ď

i

Qi, ℓpQiq ď ε
)

, (12.2)

where D stands for the family of the usual dyadic cubes in Rd and ℓpQiq denotes the side
length of Qi. It is immediate to check that Hs

εpF q «d Ms
εpF q.

Below we will the following notation. Given a cube Q P D and m ě 0, DmpQq is the
family of the cubes P P D such that P Ă Q and ℓpP q “ 2´mℓpQq.
In the rest of the section we assume that we are under the assumptions of Theorem 12.2

(and that Ω is Wiener regular). Recall that E “ BΩ. Also, we denote ω “ ωx0
Ω . The proof

of Theorem 12.2 is based on the following lemma.

Lemma 12.5. There is some s0 ă d and some m0 ą 1, both depending on d, such that
for all s P rs0, dq and every Q0 P D such that x0 R Q0, one of the following alternatives
holds:

(a) Ms
2´m0ℓpQ0q

pE XQ0q ă ℓpQ0qs, or

(b)
ř

PPDm0 pQ0q ωpP q1{2 ℓpP qd{2 ď 1
4 ωpQ0q1{2 ℓpQ0qd{2.

Remark that Ms
ℓpQ0q

pQ0q “ ℓpQ0qs.
In the proof of the preceding lemma we will use Theorem 5.54. Given two Wiener

regular open sets V, rV Ă Rd with compact boundary such that rV Ă V , that theorem
asserts that, for every x P rV and every Borel set A Ă BV , it holds

ωx
V pAq “ ωx

rV
pAq `

ż

B rV zBV
ωy
V pAq dωx

rV
pyq. (12.3)
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12 The dimension of harmonic measure

Proof of Lemma 12.5. We will fix the constants s0 and m0 along the proof of the lemma.
We denote ℓ0 “ ℓpQ0q.
Let kd be the smallest natural number such that kd ą 8 d1{2. Let Q P Dm0pQ0q and

Q˚ “ p2kd ` 1qQ. By Lemma 12.4, choosing some positive absolute constant δ depending
only on d, either

(i) Ms
2´m0ℓ0

pE XQq ď 1
2 ℓpQqs, or

(ii) ωx
ΩpE XQ˚q ě c1pdq for all x P Q̄X Ω and some fixed c1pdq ą 0.

We distinguish two cases:

Case 1. There exists some Q P Dm0pQ0q satisfying (i). Since Q0zQ is covered by 2dm0 ´1
cubes from Dm0pQ0q, we have

Ms
2´m0ℓ0

pE XQ0q ď Ms
2´m0ℓ0

pQ0zQq ` Ms
2´m0ℓ0

pE XQq

ď p2dm0 ´ 1q 2´sm0ℓs0 `
1

2
ℓpQqs

“ 2pd´sqm0ℓs0 ´
1

2
2´m0s ℓs0 “ p2pd´sqm0 ´ 2´m0s´1qℓs0

Observe that, for any given m0, by continuity, if s ă d is close enough to d,

2pd´sqm0 ´ 2´m0s´1 ă 1,

and then the alternative (a) of the lemma holds. Below we will choose m0 large enough
independently of s.

Case 2. All the cubes Q P Dm0pQ0q satisfy (ii). In this case we will prove that the
alternative (b) of the lemma holds. To prove this we will show that the inner part of Q0

has very small harmonic measure. To this end, denote F0 “ Q0 and let I0 be family of
the cubes Q P Dm0pQ0q whose boundaries intersect BF0. Then we let

F1 “ F0z
ď

QPI0

Q.

Inductively, let Ij be family of the cubes Q P Dm0pQ0q whose boundaries intersect BFj ,
for j ě 1. Then we let

Fj`1 “ Fjz
ď

QPIj

Q.

So Fj`1 is the half open-closed cube obtained by eliminating the interior of the union of
the “outer” cubes from Dm0pQ0q in Fj .
Observe that

Gj :“
ď

QPIj

Q˚ Ă Fj´2kdzFj`2kd ,

for j ě 2kd. Since ω
x
ΩpE XQ˚q ě c1pdq for all Q P Ij , with j ě 2kd, and all x P Q̄X Ω, we

deduce that

ωx
ΩpE X pFj´2kdzFj`2kdqq ě ωx

ΩpE XGjq ě c1pdq for all x P BFj X Ω.

270



12 The dimension of harmonic measure

Consequently,

ωx
ΩpE X Fj`2kdq “ ωx

ΩpE X Fj´2kdq ´ ωx
ΩpE X pFj´2kdzFj`2kdqq

ď ωx
ΩpE X Fj´2kdq ´ c1pdq

ď p1 ´ c1pdqqωx
ΩpE X Fj´2kdq for all x P BFj X Ω. (12.4)

We claim that (12.4) also holds with x0 in place of x. This would follow from the
maximum principle if ωx

ΩpE XFj´2kdq and ωx
ΩpE XFj`2kdq were continuous functions of x

in the closure of ΩzFj . Since this may fail, we need to be a bit more careful. Instead, we
apply the Markov property (12.3) to the open sets Ω and ΩzFj . Then we deduce that, for
every Borel set A Ă BΩ,

ωx0
Ω pAq “ ωx0

ΩzFj
pAq `

ż

BFjXΩ
ωy
ΩpAq dωx0

ΩzFj
pyq.

In particular, choosing first A “ E X Fj`2kd and later A “ E X Fj´2kd , from (12.4) we
infer that

ωx0
Ω pE X Fj`2kdq “ ωx0

ΩzFj
pE X Fj`2kdq `

ż

BFjXΩ
ωy
ΩpE X Fj`2kdq dωx0

ΩzFj
pyq

ď 0 ` p1 ´ c1pdqq

ż

BFjXΩ
ωy
ΩpE X Fj´2kdq dωx0

ΩzFj
pyq

ď p1 ´ c1pdqqωx0
Ω pE X Fj´2kdq,

which proves our claim.
Iterating, it follows that

ωx0
Ω pE X F4jkdq ď p1 ´ c1pdqqqj ωx0

Ω pE XQ0q for all j ě 0 such that 4jkd ă 2m0´1.

Hence, for n0 ě 1 being a multiple of 4kd such that n0 ă 2m0´1,

ωx0
Ω pE X Fn0q ď p1 ´ c1pdqqq

n0
4kd ωx0

Ω pE XQ0q. (12.5)

Next we estimate the sum in (b). By Cauchy-Schwarz,

ÿ

PPDm0 pQ0q

ωpP q1{2 ℓpP qd{2

“
ÿ

PPDm0 pQ0q:PĂFn0

ωpP q1{2 LdpP q1{2 `
ÿ

PPDm0 pQ0q:PĂQ0zFn0

ωpP q1{2 LdpP q1{2

ď ωpFn0q1{2 LdpFn0q1{2 ` ωpQ0zFn0q1{2 LdpQ0zFn0q1{2

ď p1 ´ c1pdqqq
n0
8kd ωpQ0q1{2 LdpQ0q1{2 ` ωpQ0q1{2 LdpQ0zFn0q1{2.

Since Q0zFn0 is made up of at most Cpdqn0 2
m0pd´1q cubes Q P Dm0pQq, we have

LdpQ0zFn0q ď Cpdqn0 2
m0pd´1q 2´m0d LdpQ0q “ Cpdqn0 2

´m0 ℓpQ0qd.
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Therefore,
ÿ

PPDm0 pQ0q

ωpP q1{2 ℓpP qd{2 ď
`

p1 ´ c1pdqqqn0{p8kdq ` Cpdqn0 2
´m0

˘

ωpQ0q1{2 ℓpQ0qd{2.

Choosing first n0 large enough and later m0 large enough too (depending on n0), the
statement (b) in the lemma follows.

Proof of Theorem 12.2. As shown in Lemma 12.3, we can assume that Ω is Wiener regular.
Denote E “ BΩ and ω “ ωx0

Ω . We will show that for every dyadic cube R0 P D such that
x0 R R0, dimHpω|R0q ď d ´ εpdq, with εpdq ą 0. This suffices to prove theorem. To this
end, we will prove that there exists a some t “ tpdq P pd´ 1, dq such that, for every τ ą 0,
there exists a subset Eτ Ă E XR0 satisfying

Ht
8pEτ q ď τ and ωpE XR0zEτ q ď τ. (12.6)

It is immediate to check that this implies that dimHpω|R0q ď t.

The tree T and the stopping cubes.
To prove the existence of the aforementioned set Eτ we will construct a suitable tree of

dyadic cubes from DpR0q which we proceed to define. First we need some terminology.
We say that a cube Q P DpR0q is of type H (Hausdorff content estimate) if the alternative
(a) in Lemma 12.5 holds for Q0 “ Q. Otherwise it satisfies (b) we say that this is of type
W (harmonic measure estimate). We write Q P H and Q P W respectively. Now, for any
Q P DpR0q of type H, we let NextpQq Ă DpQq be a subfamily of cubes which cover EXQ,
with ℓpP q ď 2´m0ℓpQq, and so that, for s0 ď s ă d,

ÿ

PPNextpQq

ℓpP qs ď ℓpQqs.

In case that Q P DpR0q is of type W , we let NextpQq be the subfamily of the cubes from
Dm0pQq that intersect E. Now we define inductive the following layers of cubes from
DpR0q. We set T0 “ tR0u, and for j ě 1, we set

Tj “
ď

QPTj´1

NextpQq.

We also set T “
Ť

jě0 Tj . One can think of T as a tree whose root is R0 and whose
branches join the every cube Q P T with the descendants belonging to NextpQq. For
Q P T ztR0u, we denote by ppQq the “parent” of Q in T , that is, ppQq is the cube from T
such that Q P NextpppQqq. We also set ppR0q “ R0.
We fix some small number δ P p0, 1q. We let T ˚ be the subfamily of the cubes Q P T

such that ℓpppQqq ě δ ℓpR0q and we let Stopδ be the family of minimal cubes from T ˚, so
that any Q P Stopδ belongs to T ˚ but no cube from NextpQq belongs to T ˚ (which means
that ℓpQq ă δ ℓpR0q). By construction, we have

E XR0 Ă
ď

QPStopδ

Q
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12 The dimension of harmonic measure

and
ℓpQq ă δ ℓpR0q for all Q P Stopδ.

Next we enumerate the cubes from T ˚ X W as follows. We denote by W0 the family
of the cubes from T ˚ X W which are maximal. Inductively, for j ě 1, we let Wj be the
family of the cubes from T ˚ XW which are contained in some cube from Wj´1 and which
are maximal. Of course, for j large, enough Wj will be empty.

We split Stopδ into two subfamilies: for some natural number n0 to be fixed later, we
let

StopH “ tQ P Stopδ : Q is not contained in any cube from Wn0u

and
StopW “ StopδzStopH .

That is, StopH is the family of cubes from Stopδ which is contained in less than n0 cubes
from T ˚ X W , while the cubes from StopW are contained in more that n0 cubes from
T ˚ XW .

Estimates to prove (12.6).
Recall that if Q P H, then

ÿ

PPNextpQq

ℓpP qs ď ℓpQqs

for s0 ď s ă d. On the other hand, if Q P W ,

ÿ

PPNextpQq

ωpP q1{2 ℓpP qd{2 ď
1

4
ωpQ0q1{2 ℓpQ0qd{2. (12.7)

Further since all the cubes from NextpQq have side lengths 2´m0ℓpQq, we have
ÿ

PPNextpQq

ℓpP qs ď 2 ℓpQqs

assuming s to be close enough to d (so s depends on d and m0).
We claim that

ÿ

PPWj

ℓpP qs ď 2
ÿ

PPWj´1

ℓpP qs. (12.8)

Indeed, let Q P Wj´1, with Q P Tk for some k ě 0. Denote by rT j
i the cubes from Ti which

are contained in some cube from Wj´1 and that are not contained in any cube from Wj .
Then, using that there are no cubes of type W between the layers Wj´1 and Wj , we get

1

2
ℓpQqs ě

ÿ

PPTk`1:PĂQ

ℓpP qs “
ÿ

PPTk`1XWj :PĂQ

ℓpP qs `
ÿ

PP rT j
k`1:PĂQ

ℓpP qs

ě
ÿ

PPTk`1XWj :PĂQ

ℓpP qs `
ÿ

PP rT j
k`1:PĂQ

ÿ

P 1PTk`2:P 1ĂP

ℓpP 1qs

“
ÿ

PPTk`1XWj :PĂQ

ℓpP qs `
ÿ

P 1P rT j
k`2:P

1ĂQ

ℓpP 1qs.
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Iterating, we obtain

1

2
ℓpQqs ě

ÿ

iěk`1

ÿ

PPTiXWj :PĂQ

ℓpP qs “
ÿ

PPWj :PĂQ

ℓpP qs.

Summing over all the cubes Q P Wj´1, (12.8) follows.
Iterating the estimate (12.8), we deduce that

ÿ

PPWj

ℓpP qs ď 2jℓpR0qs.

Therefore,

ÿ

PPStopH

ℓpP qs ď

n0´1
ÿ

j“0

ÿ

PPWj

ℓpP qs ď

n0´1
ÿ

j“0

2jℓpR0qs ď 2n0 ℓpR0qs.

Choosing s1 “ ps` dq{2, we get

ÿ

PPStopH

ℓpP qs
1

ď
ÿ

PPStopH

ℓpP qs pδ ℓpR0qqs
1´s ď 2n0 δpd´sq{2 ℓpR0qs

1

.

Hence, choosing
n0 “ tlog2 δ

ps´dq{2u,

it follows that
ÿ

PPStopH

ℓpP qs
1

ď ℓpR0qs
1

. (12.9)

It remains to deal with the family of cubes from StopW . By Hölder’s inequality and
(12.7), for each j ě 1, we have

ÿ

PPWj

ωpP q1{2 ℓpP qd{2 “
ÿ

RPWj´1

ÿ

QPNextpRq

ÿ

PPWj´1:PĂQ

ωpP q1{2 ℓpP qd{2

ď
ÿ

RPWj´1

ÿ

QPNextpRq

ωpQq1{2 ℓpQqd{2

ď
1

4

ÿ

RPWj´1

ωpRq1{2 ℓpRqd{2.

Iterating and using Hölder again, we obtain

ÿ

PPWn0´1

ωpP q1{2 ℓpP qd{2 ď
1

4n0´1

ÿ

RPW1

ωpRq1{2 ℓpRqd{2 ď
1

4n0´1
ωpR0q1{2 ℓpR0qd{2.

Assume that δ is a dyadic number. That is, δ “ 2´h for some natural number h. Denote
by SW the family of cubes Q P DhpR0q that contain some cube from StopW . Then, by
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12 The dimension of harmonic measure

construction, the cubes from SW are contained in cubes from Wn0´1,. So once more by
Hölder, and using that n0 ě log2 δ

ps´dq{2 ´ 1, we get
ÿ

QPSW

ωpQq1{2 ℓpQqd{2 “
ÿ

PPWn0´1

ÿ

QPSW :QĂP

ωpQq1{2 ℓpQqd{2

ď
ÿ

PPWn0´1

ωpP q1{2 ℓpP qd{2

ď
1

4n0´1
ωpR0q1{2 ℓpR0qd{2 ď 16 δd´s ωpR0q1{2 ℓpR0qd{2. (12.10)

Consider the families

S1
W “

"

Q P SW : ωpQq ě

ˆ

ℓpQq

ℓpR0q

˙s

ωpR0q

*

, S2
W “ SW zS1

W .

We have

ℓpQqs ď
ωpQq

ωpR0q
ℓpR0qs for each Q P S1

W ,

and thus
ÿ

QPS1
W

ℓpQqs ď
ÿ

QPS1
W

ωpQq

ωpR0q
ℓpR0qs ď ℓpR0qs. (12.11)

On the other hand, the cubes Q P S2
W satisfy

ωpQq ă

ˆ

ℓpQq

ℓpR0q

˙s

ωpR0q “ δs´d

ˆ

ℓpQq

ℓpR0q

˙d

ωpR0q.

and so, by (12.10),

ÿ

QPS2
W

ωpQq ď δps´dq{2
ÿ

QPStopW

ωpQq1{2

ˆ

ℓpQq

ℓpR0q

˙d{2

ωpR0q1{2 ď 16 δpd´sq{2 ωpR0q. (12.12)

Let t “ ps1 ` dq{2 “ ps` 3dq{4 and denote

Eτ “
ď

QPStopH

QY
ď

QPS1
W

Q.

Since the cubes Q in the unions above satisfy ℓpQq ď δ ℓpR0q, by (12.9) and (12.11), we
have

Ht
8pEτ q À pδ ℓpR0qqt´s1 Ms1

δℓpR0q

´

ď

QPStopH

Q
¯

` pδ ℓpR0qqt´sMs
δℓpR0q

´

ď

QPS1
W

Q
¯

À
`

δt´s1

` δt´sq ℓpR0qt À δpd´sq{4 ℓpR0qt.

On the other hand, notice that

E XR0 Ă Eτ Y
ď

QPS2
W

Q.
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Then, by (12.12),

ωpE XR0zEτ q ď ω
´

ď

QPS2
W

Q
¯

ď 16 δpd´sq{2 ωpR0q.

So (12.6) holds with τ “ minpCδpd´sq{4, 16 δpd´sq{2q.

12.2 Dimension drop

For a domain Ω Ă Rd, when the (Hausdorff) codimension of BΩ is not 1 or BΩ is of fractal
type, many examples show that we may have dimω ă dim BΩ. This is the so-called
“dimension drop” for harmonic measure, which seems to be a frequent phenomenon. This
was first observed by Carleson [Car85] for some domains defined as complements of suitable
Cantor type sets in the plane.
In this section we will show that if BΩ is s-Ahlfors regular for some s P pd ´ 1, dq, then

the harmonic measure has a dimension drop. We will prove that the same holds in the
planar case if BΩ is contained in a line and s P r1{2, 1q. The first result is due to Azzam
[Azz20] and the second one to Tolsa [Tol24].
Recall that, for s ą 0, a measure µ on Rd is called s-Ahlfors regular if there exists some

constant C0 ą 0 such that

C´1
0 rs ď µpBrpxqq ď C0 r

s for all x P suppµ and 0 ă r ď diampsuppµq.

A set E Ă Rd is a called s-Ahlfors regular if the measure Hs|E is s-Ahlfors regular. If we
want to specify the constant C0 involved in the Ahlfors regularity, we may say that that
µ or E are ps, C0q-Ahlfors regular.

12.2.1 A general result about dimension drop on Ahlfors regular sets

Our proof of the dimension drop for harmonic measure is based on the following result,
which has an independent interest.

Theorem 12.6. For d ě 1, s ą 0, C0 ą 1, there exists an M “ Mpd, s, C0q ą 1
(sufficiently big) such that the following holds. Let E Ă Rd be an ps, C0q-Ahlfors regular
set. Let ν be a measure supported on E and c1 P p0, 1q such that, for all x P E, 0 ă r ď

diampEq, there exists a ball Bρpyq with y P Brpxq X E, c1 r ď ρ ď r, satisfying either

νpBρpyqq

ρs
ě M

νpBrpxqq

rs
or

νpBρpyqq

ρs
ď M´1 νpBrpxqq

rs
. (12.13)

Then dim ν ă s´ ε, with ε depending on c1, d,M .

The arguments to prove this theorem stem from the techniques developed by Bourgain
in Theorem 12.2, and later used by Batakis [Bat96], and more recently by Azzam [Azz20].
First we will prove the following.
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12 The dimension of harmonic measure

Lemma 12.7. Under the assumptions of Proposition 12.6, let µ “ Hs|E and let Dµ be a
dyadic lattice associated with µ as in Definition 4.23 and Theorem 4.26. Then there exist
some m0 ě 1 depending on c1 and some γ P p0, 1q depending on c1 and M such that

ÿ

PPDµ,m0 pQq

νpP q1{2µpP q1{2 ď γ νpQq1{2µpQq1{2. (12.14)

In the lemma, Dµ,m0pQq stands for the family of cubes P P Dµ contained in Q with side
length ℓpP q “ ℓ´m0

0 , that is, if Q P Dµ,k, then P P Dm0`k.
1

Proof. By Theorem 4.26, there exists a dyadic lattice associated with µ, which we denote
by Dµ. For Q P Dµ, we denote

θνpQq “
νpQq

ℓpQqs
.

We claim that the assumptions of the theorem imply that there exists some constant
a P p0, 1q such that for any Q P Dµ there exists another cube P0 P Dµ contained Q
satisfying:

(a) either θνpP0q ě C´1M1{2θνpQq or θνpP0q ď CM´1{2θνpQq (for some constant C
depending on s and the parameters involved in Dµ), and

(b) ℓpP0q ě a ℓpQq.

Indeed, let zQ be the center of Q and let BQ be a ball centered at zQ as in the Definition
4.23, so that BQ X suppµ Ă Q, with radius rpBQq « ℓpQq. By the assumptions of the
theorem applied to 1

2BQ, there exists a ball Bρpyq with y P 1
2BQ, c

1
1 rpBQq ď ρ ď 1

2rpBQq,
satisfying either

νpBρpyqq

ρs
ě C´1M

νp12BQq

ℓpQqs
or

νpBρpyqq

ρs
ď CM´1 νp12BQq

ℓpQqs
. (12.15)

Observe that in any case Bρpyq X supppµq Ă Q. If the second option in (12.15) holds, then
we take a cube P0 P Dµ contained in Bρpyq with ℓpP0q « ρ, and then we have

θνpP0q À
νpBρpyqq

ρs
À M´1 νp12BQq

ℓpQqs
À M´1θνpQq.

So P0 satisfies both (a) and (b).

If the first option in (12.15) holds, then we can assume that
νp 1

2
BQq

ℓpQqs
ě M´1{2θνpQq,

because otherwise we can take a cube P0 P Dµ contained in 1
2BQ with ℓpP0q « ℓpQq and

then, arguing as above we deduce that θνpP0q À M´1{2θνpQq, and thus P0 does the job.

1It is easy to check that we can take the constant r0 “ 1{2 in Definition 4.23 just eliminating or repeating
intermediate generations if necessary, allowing for example cubes Q to have a unique child.
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So suppose that
νp 1

2
BQq

ℓpQqs
ě M´1{2θνpQq and that the first option in (12.15) holds. Then

there exists Bρpyq with y P 1
2BQ, c

1
1 rpBQq ď ρ ď 1

2rpBQq, such that

νpBρpyqq

ρs
Á M

νp12BQq

ℓpQqs
Á M1{2θνpQq.

Since Bρpyq X supppµq is contained in Q, it can be covered by a finite number of cubes
P P Dµ contained in Q with ℓpP q « ρ. The cube P “ P0 with maximal ν measure satisfies
νpP0q Á νpBρpyqq and so

θνpP0q Á
νpBρpyqq

ρs
Á M1{2θνpQq.

This completes the proof of the claim.

Assume that the constant a ą 0 in (b) is of the form a “ ℓ´m0
0 , for some natural

number m0 and let n0, with 1 ď n0 ď m0, be such that P0 P Dµ,n0pQq. Suppose that
θνpP0q ď CM´1{2θνpQq. By Cauchy-Schwarz, we have

ÿ

PPDµ,n0 pQq:P‰P0

νpP q1{2µpP q1{2 ď νpQzP0q1{2µpQzP0q1{2 ď νpQq1{2
`

µpQq ´ µpP0qq1{2.

On the other hand, we have

νpP0q1{2µpP0q1{2 “
νpP0q1{2

µpP0q1{2
µpP0q « θνpP0q1{2µpP0q

À M´1{4θνpQq1{2 µpP0q « M´1{4νpQq1{2µpQq1{2 µpP0q

µpQq
.

Gathering the two previous estimates and using the inequality p1 ´ xq1{2 ď 1 ´ 1
2x for

0 ď x ď 1, we obtain

ÿ

PPDµ,n0 pQq

νpP q1{2µpP q1{2 ď νpQq1{2
`

µpQq ´ µpP0qq1{2 ` CM´1{4νpQq1{2µpQq1{2 µpP0q

µpQq

“ νpQq1{2µpQq1{2

ˆˆ

1 ´
µpP0q

µpQq

˙1{2

` CM´1{4µpP0q

µpQq

˙

ď νpQq1{2µpQq1{2

ˆ

1 ´
1

4

µpP0q

µpQq

˙

,

assuming CM´1{4 ď 1
4 for the last inequality. Taking into account the s-Ahlfors regularity

of µ, we have
µpP0q

µpQq
«
ℓpP0qs

ℓpQqs
ď ℓ´m0s

0 .

Hence, taking γ “ 1 ´ cℓ´m0s
0 , we have
ÿ

PPDµ,n0 pQq

νpP q1{2µpP q1{2 ď γ νpQq1{2µpQq1{2.
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On the other hand, by Cauchy-Schwarz, splitting each P P Dµ,n0pQq into its descendants
from Dµ,m0pQq, we get

ÿ

PPDµ,n0 pQq

νpP q1{2µpP q1{2 ď
ÿ

PPDµ,m0 pQq

νpP q1{2µpP q1{2, (12.16)

and thus the Proposition follows in this case.
Suppose now that θνpP0q ě CM´1{2θνpQq. The arguments are quite similar to the

previous ones, interchanging the roles of µ and ν. Indeed, By Cauchy-Schwarz,

ÿ

PPDµ,n0 pQq:P‰P0

νpP q1{2µpP q1{2 ď
`

νpQq ´ νpP0q
˘1{2

µpQq1{2.

Also, we have

νpP0q1{2µpP0q1{2 “ νpP0q
µpP0q1{2

νpP0q1{2
« νpP0q θνpP0q´1{2

À M´1{4νpP0q θνpQq´1{2 « M´1{4 νpP0q

νpQq
νpQq1{2µpQq1{2.

From two previous estimates and using again the inequality p1 ´ xq1{2 ď 1 ´ 1
2x for

0 ď x ď 1, we obtain

ÿ

PPDµ,n0 pQq

νpP q1{2µpP q1{2 ď
`

νpQq ´ νpP0q
˘1{2

µpQq1{2 ` CM´1{4 νpP0q

νpQq
νpQq1{2µpQq1{2

“ νpQq1{2µpQq1{2

ˆˆ

1 ´
νpP0q

νpQq

˙1{2

` CM´1{4 νpP0q

νpQq

˙

ď νpQq1{2µpQq1{2

ˆ

1 ´
1

4

νpP0q

νpQq

˙

,

since we are assuming that CM´1{4 ď 1
4 . Observe now that

νpP0q

νpQq
“
θνpP0q

θνpQq

ℓpP0qs

ℓpQqs
ě M1{2 ℓ´m0s

0 ě C γ,

where as before, γ “ 1 ´ ℓ´m0s
0 . Therefore,

ÿ

PPDµ,n0 pQq

νpP q1{2µpP q1{2 ď γ νpQq1{2µpQq1{2.

Finally, the same estimate as in (12.16) completes the proof of the lemma.

Proof of Theorem 12.6. The arguments to prove the theorem are quite similar to the ones
used in the proof of Bourgain’s Theorem 12.2. Indeed, notice that the estimate (12.14)
in Lemma 12.7 is similar to (b) in Lemma 12.5. We will use a construction analogous to
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the tree type construction in the proof of Theorem 12.2, but a bit simpler due to the fact
that now we do not have to distinguish between two options such as (a) and (b) in Lemma
12.5. For the convenience of the reader, we will show the full details.

We introduce now a dyadic Hausdorff content for subsets of E :“ supppµq analogous to
the one in (12.2). For F Ă E and t, ε ą 0, we denote

Mt
µ,εpF q “ inf

!

ÿ

i

ℓpQiq
t : Qi P Dµ, F Ă

ď

i

Qi, ℓpQiq ď ε
)

. (12.17)

By the properties of Dµ, it is immediate to check that that Ht
εpF q « Mt

µ,εpF q with the
implicit constant depending on the parameters in the definition of Dµ.
We will show that for every cube R0 P Dµ , dimHpν|R0q ď t for some t ă s depending

on γ in Lemma 12.7, which suffices to prove theorem. To this end, we will prove that, for
every τ ą 0, there exists a subset Eτ Ă E XR0 satisfying

Ht
8pEτ q ď τ and νpE XR0zEτ q ď τ. (12.18)

It is immediate to check that this implies that dimHpν|R0q ď t.

For m0 as in Lemma 12.7, for every k ě 1 we have
ÿ

QPDµ,km0
pR0q

νpQq1{2µpQq1{2 “
ÿ

PPDµ,pk´1qm0
pR0q

ÿ

QPDµ,m0 pP q

νpQq1{2µpQq1{Q

ď γ
ÿ

PPDµ,pk´1qm0
pR0q

νpP q1{2µpP q1{2.

Iterating, we deduce that
ÿ

QPDµ,km0
pR0q

νpQq1{2µpQq1{2 ď γk νpR0q1{2µpR0q1{2 for all k ě 1. (12.19)

For any fixed k ě 1, denote δk “ ℓ´km0
0 , so that ℓpQq “ δk ℓpR0q for Q P Dµ,km0pR0q.

For some t1 P p0, sq to be fixed below, consider the families

S1
k “

"

Q P Dµ,km0pR0q : νpQq ě

ˆ

ℓpQq

ℓpR0q

˙t1

νpR0q

*

, S2
k “ Dµ,km0pR0qzS1

k .

We have

ℓpQqt
1

ď
νpQq

νpR0q
ℓpR0qt

1

for each Q P S1
k ,

and thus
ÿ

QPS1
k

ℓpQqt
1

ď
ÿ

QPS1

νpQq

νpR0q
ℓpR0qt

1

ď ℓpR0qt
1

. (12.20)

On the other hand, the cubes Q P S2
k satisfy

νpQq ă

ˆ

ℓpQq

ℓpR0q

˙t1

νpR0q “ δt
1´s
k

ˆ

ℓpQq

ℓpR0q

˙s

νpR0q.
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12 The dimension of harmonic measure

and so, by (12.19),

ÿ

QPS2
k

νpQq ď δ
pt1´sq{2
k

ÿ

QPDµ,km0
pR0q

νpQq1{2

ˆ

ℓpQq

ℓpR0q

˙s{2

νpR0q1{2

« δ
pt1´sq{2
k

ÿ

QPDµ,km0
pR0q

νpQq1{2 µpQq1{2

ˆ

νpR0q

µpR0q

˙1{2

ď δ
pt1´sq{2
k γk νpR0q.

Recalling that δk “ ℓ´km0
0 , for t1 is close enough to s we have

δ
pt1´sq{2
k γk “ ℓ

´km0pt1´sq{2
0 γk ď γk{2,

and thus
ÿ

QPS2
k

νpQq À γk{2 νpR0q. (12.21)

Let t “ pt1 ` sq{2 and denote

Eτ “
ď

QPS1
k

Q.

Since the cubes Q in the union above satisfy ℓpQq ď δk ℓpR0q, by (12.20), we have

Ht
8pEτ q À pδk ℓpR0qqt´t1 Mt1

δkℓpR0q

´

ď

QPS1
k

Q
¯

À δt´t1

k ℓpR0qt “ δs´t ℓpR0qt.

On the other hand, notice that

E XR0 Ă Eτ Y
ď

QPS2
k

Q.

Then, by (12.21), νpE X R0zEτ q À γk{2 νpR0q. Hence, for k large enough (12.18) follows.

12.2.2 Dimension drop in the case of codimension smaller than one

Theorem 12.8. Let Ω Ă Rd be an open set with compact ps, C0q-Ahlfors regular boundary,
for some s P pd ´ 1, dq and C0 ě 1. Then, for any p P Ω, dimH ω

x0
Ω ă s ´ ε, for some

ε ą 0 depending on s and C0.

Remark that in the plane this theorem is a consequence of the Jones-Wolff Theorem
9.16 about the the dimension of harmonic measure in the plane. Indeed, this implies that
dimH ω

x0
Ω ď 1 ă s.
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Proof. Notice first that the s-Ahlfors regularity of BΩ for some s ą d ´ 1 implies that Ω
satisfies the CDC.
By Theorem 12.6, it suffices to prove that for every x P BΩ and 0 ă r ď δΩppq{4, there

exists a ball Bρpyq with y P Brpxq X E, c1 r ď ρ ď r, satisfying (12.13). For a fixed p P Ω
and a big constant M to be chosen below, we may assume that

ωp
ΩpBrpxqq ď 4sM ωppBr{4pxqq,

because otherwise the second option in (12.13) holds. We claim that the above estimate
implies that there exists some point q0 P Br{2pxq X Ω such that

Gpp, q0q Á
ωppBrpxqq

rd´2
and δΩpq0q ÁM r. (12.22)

To prove this, consider a C8 function φ such that χBr{4pxq ď φ ď χB3r{8pxq and }∇φ}8 À

r´1. For some small λ P p0, 1{50q to be chosen, denote

Uλ “
␣

x P Ω XB3r{8pxq : δΩpxq ď λr
(

We write

ωppBr{4pxqq ď

ż

φdωp “ ´

ż

∇Gppyq∇φpyq dy (12.23)

ď

ż

Uλ

|∇Gppyq∇φpyq| dy `

ż

ΩzUλ

|∇Gppyq∇φpyq| dy “: I1 ` I2.

Next we intend to show that I1 ď 1
2ω

ppBr{4pxqq if λ is taken small enough. To this end, by
Vitali’s covering theorem we can cover Uλ with a family of balls tBiuiPI :“ tBpxi, 6λrquiPI ,
with xi P Uλ, so that the balls 1

5Bi, for i P I, are disjoint. From the fact that the balls
1
5Bi are disjoint and they have the same radius, it is immediate to check that the larger
balls 30Bi have finite superposition, that is,

ÿ

iPI

χ30Bi ď C.

We also assume λ small enough so that the balls 30Bi are contained in Brpxq. Then, using
Caccioppoli and Lemma 7.19, together with CDC for Ω, we deduce that

I1 ď
ÿ

iPI

ż

Bi

|∇Gppyq∇φpyq| dy À
1

r

ÿ

iPI

ˆ
ż

Bi

|∇Gppyq|2 dy

˙1{2

mpBiq
1{2

À
1

rpλrq

ÿ

iPI

ˆ
ż

Bi

|Gppyq|2 dy

˙1{2

mpBiq
1{2 À

pλrqd

λr2

ÿ

iPI

sup
yP2Bi

|Gppyq|

À λd´1rd´2
ÿ

iPI

ωpp30Biq

pλrqd´2
À λωp

´

ď

iPI

30Bi

¯

ď λωppBrpxqq À MλωppBr{4pxqq.

Hence, taking λ “ c{M with c sufficiently small, we derive I1 ď ωppBr{4pxqq{2, as wished.
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From (12.23) and the last estimate obtained for I1, we infer that

ωppBr{4pxqq ď 2

ż

ΩzUλ

|∇Gppyq∇φpyq| dy À
1

r

ż

B3r{8pxqzUλ

|∇Gppyq| dy

À rd´1 sup
yPB3r{8pxqzUλ

|∇Gppyq| Àλ r
d´2 sup

yPBr{2pxqXΩzUλ{2

Gppyq.

Thus, there exists some q0 P Br{2pxq X ΩzUλ{2 such that

Gppq0q Áλ
1

rd´2
ωppBr{4pxqq «M

1

rd´2
ωppBrpxqq,

which proves our claim (12.22).
Consider the ball B0 “ BδΩpq0qpq0q, so that B0 Ă Ω and BB0XBΩ ‰ ∅. Let ξ P BB0XBΩ

and take q1 “
q0`ξ
2 , so that q1 P B0. Then we have |ξ ´ q1| “ δΩpq1q, and letting

B1 “ B|ξ´q1|pq1q, it holds

B1 Ă B0 Ă Ω and tξu “ BB1 X BΩ.

Notice also that |ξ ´ q0| ď |x´ q0| ă r{2 and so ξ P Brpxq.
Assume that q1 is the origin in Rd and that ξ “ p0, . . . , 0,´|ξ|q. Let Γ be the upper

half of the sphere BB1. Notice that distpΓ, BB0q « rpB0q « r. Then, by a Harnack chain
argument, since Gp is harmonic in B0, it follows that

Gppyq « Gppq0q for all y P Γ. (12.24)

Denote by r1 the radius of B1. That is, r1 “ |ξ ´ q1|. Let us check that

Gppzq Á
distpz, BB1q

r
Gppq0q for all z P B1 XBr1{4pξq. (12.25)

Indeed, by (12.24) and the maximum principle,

Gppzq Á ωz
B1

pΓqGppq0q in B1. (12.26)

By the explicit formula for ωz
B1

pΓq in Example 5.27, we have

ωz
B1

pΓq “

ż

yPΓ

r21 ´ |z|2

κd r1 |y ´ z|
d
dσpzq Á

distpz, BB1q

r
for all z P B1 XBr1{4pξq,

which, together with (12.26), gives (12.25).
Now, by Lemma 7.19, (12.25) and (12.22), one easily deduces that the first option in

(12.13) holds. Indeed, for 0 ă ρ ď r1{4, we have

ωppBρpξqq Á ρd´2 sup
zPBρ{8pξq

Gppzq Á
ρd´1

r
Gppq0q ÁM

ρd´1

rd´1
ωppBrpxqq.

Equivalently,

ωppBρpξqq

ρs
ÁM

ωppBrpxqq

rs

ˆ

r

ρ

˙s´pd´1q

,

and so, taking ρ small enough, the first estimate in (12.13) follows.
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12.2.3 Dimension drop for subsets of lines in the plane

Theorem 12.9. Let Ω Ă R2 be an open set with compact ps, C0q-Ahlfors regular boundary
contained in a line, for some s P r1{2, 1q and C0 ě 1. Then, for any p P Ω, dimH ω

p
Ω ă

s´ ε, for some ε ą 0 depending on s and C0.

To prove this theorem, we will use the following result due to David, Feneuil, and
Mayboroda [DFM21], which has its own interest.

Lemma 12.10. Let Ω Ă Rd be an open set with ps, C0q-Ahlfors regular boundary, for
some s P p0, d´ 1q. Then Ω is a uniform domain.

Proof. The fact that s ă d´ 1 implies that RdzBΩ is connected and so Ω “ RdzBΩ. Then,
the corkscrew condition follows easily from the Ahlfors regularity of BΩ.
To prove the Harnack chain condition, let x1, x2 P Ω and r,Λ ą 0 be such that

distpxi, BΩq ě r and |x1 ´ x2} ď Λr. We claim that there are points yi P Br{3pxiq
such that the segment S :“ ry1, y2s satisfies distpS, BΩq ě δ r, with δ “ δpΛ, d, sq ą 0.
That is, there is a thick tube contained in Ω that connects Br{3px1q and Br{3px2q.
To prove our claim, denote by L a hyperplane through the origin orthogonal to S. Let

δ P p0, 1q be a small constant to be chosen soon. We can find N ě C´1δ1´d points
zj P L X Br{3p0q such that |zi ´ zj | ě 4δr for i ‰ j. For each j, let Sj be the translated
segment Sj “ zj ` S. Suppose that distpSj , BΩq ď δr. Then we can find points wj P BΩ
such that distpwj , Sjq ď δr. The balls Bj “ Bδrpwjq are disjoint because distpSi, Sjq ě 4δr.
Then, from the ps, C0q-Ahlfors regularity of BΩ and the fact that all the balls Bj are
contained in B2r`|x1´x2|pwkq (for any wk), we deduce that

NC´1
0 pδrqs ď σpBj X BΩq “ σ

´

ď

j

Bj X BΩ
¯

ď σpB2r`|x1´x2|pwkqq ď C0p2 ` Λqsrs.

Thus,
C´1C´1

0 δ1´dδs ď C0p2 ` Λqs,

which gives a contradicition if δ is chosen small enough, depending on C0, d, s. So there
exists a segment Sj such that distpSj , BΩq ě δr, and taking y1 “ x1 ` zj and y2 “ x2 ` zj
the claim follows.
To construct a Harnack chain between x1 and x2, we can choose Br{3px1q and Br{3px2q

as the first and last balls of the chain, respectively. To choose the other balls of the chain,
we consider a family of points a1, . . . , am P S such that |ak ´ ak`1| ď δr{4, m ď CΛδ´1,
and we take balls Bδr{2pakq, for 1 ď k ď m. It is immediate to check that this chain of
balls satisfies the required properties in Definition 8.5.

Proof of Theorem 12.9. Notice that Ω is a uniform domain satisfying the CDC.
First we will show that, for E “ BΩ, Brpxq, and x0 as above, there exists y P Brpxq XE

such that
ωp0pBρpyqq

ωp0pBrpxqq
ě cps, C0q

´ρ

r

¯
1
2

(12.27)
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for all ρ P p0, c1 rq, for some c1 P p0, 1q depending only on s, C0, and n. Clearly, this implies
the first estimate in (12.13) for s P p12 , 1q and ρ small enough. For the cases s “ 1

2 we
will need more careful estimates. Notice also that, modulo a constant factor, the estimate
(12.27) is independent of the pole p0 as soon as p0 is far enough from Brpxq, since Ω is a
uniform domain.

The arguments for the case s P r12 , 1q.
Without loss of generality, we assume that E Ă R ” R ˆ t0u. Let x P E and 0 ă r ď

diamE. Taking into account that s ă 1, by a pigeon-hole argument, there is an open
interval I “ pa, bq Ă rx ´ r, xs which does not intersect E and satisfies ℓ :“ H1pIq «s r.
By enlarging I if necessary, we can assume that b P E. Notice that b is contained in
rx´ p1 ´ cqr, xs because x P E, for some c ą 0 depending on s.
We choose y “ b. Again by the s-Ahlfors regularity of E and the pigeon-hole principle,

there exist radii r1, r2 with ℓ{2 ď r1 ă r2 ď ℓ, r2 ´ r1 «s ℓ « r such that

Ar1,r2pyq X E “ ∅.

Here Ar1,r2pyq stands for the open annulus centered in x with inner radius r1 and outer
radius r2. Observe that the left component of Ar1,r2pyq X R is contained in I.

Next we apply a “localization argument”. We denote E1 “ E X B̄r1pyq, Ω1 “ Ec
1,

r1 “ pr1 ` r2q{2. It is immediate to check that E1 is still s-Ahlfors regular and thus Ω1 is
a uniform domain too. We claim that for any subset F Ă E1 and any p P BBr1pyq,

ωp
1pF q «s ω

ppF q, (12.28)

where ω1 stands for the harmonic measure for Ω1. To prove the claim, consider first
p P BBr1pyq such that

ωp
1pF q “ max

qPBBr1 pyq
ωq
1pF q.

Using that ωz
1pF q is harmonic in Ω and vanishes in E1zF and the maximum principle, we

get

ωp
1pF q “

ż

E
ωz
1pF q dωppzq “ ωppF q `

ż

EzE1

ωz
1pF q dωppzq

ď ωppF q ` sup
zPEzE1

ωz
1pF q ωppEzE1q.

Observe that, by Lemma 7.20, Lemma 6.20, the CDC, and a Harnack chain argument,
ωppE1q ě δ0, for some δ0 ą 0 depending just on s. Hence, ωppEzE1q ď 1 ´ δ0. Also, since
ωz
1pF q is harmonic in C8zBr1pyq and EzE1 Ă C8zBr1pyq, by the maximum principle we

have
sup

zPEzE1

ωz
1pF q ď max

qPBBr1 pyq
ωq
1pF q “ ωp

1pF q.

Therefore,
ωp
1pF q ď ωppF q ` ωp

1pF q p1 ´ δ0q,

285
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or equivalently, ωp
1pF q ď δ´1

0 ωppF q. By the definition of r1 and Harnack’s inequality, we
infer

ωp
1pF q À ωppF q

for all p P BBr1pyq. On the other hand, by the maximum principle, we have trivially that
ωp
1pF q ě ωppF q, which concludes the proof of the claimed estimate (12.28).
Next we will perform another modification of the domain Ω1. For a fixed ρ P p0, r1{4q,

consider the intervals J “ ry, y ` ρ{2s, J 1 “ ry, y ` ρs and define E2 “ E1 Y J and
Ω2 “ Ec

2 “ Ω1zJ . By the CDC and the uniformity of Ω1, we infer that, for all q P BBρ{2pyq,

ωq
1pJ 1 X E1q Á 1 ě ωq

2pJq.

We also have ωq
1pJ 1 X E1q ě ωq

2pJq “ 0 for all q P Jc X E1. Then, by the maximum
principle, since both ωz

1pJ 1 XE1q and ωz
2pJq are harmonic in Ω1zB̄ρ{2pyq “ Ω2zB̄ρ{2pyq we

deduce that
ωq
1pJ 1 X E1q Á ωq

2pJq

for all q P Ω2zB̄ρ{2pyq, and in particular for all p P BBr1pyq.
Finally we let E3 “ ry, y ` r1s and Ω3 “ Ec

3, so that E2 Ă E3. By the maximum
principle, we have

ωp
2pJq ě ωp

3pJq

for all p P BBr1pyq. Hence, gathering the above estimates, we infer that, for all p P BBr1pyq,

ωppJ 1 X Eq «s ω
p
1pJ 1 X Eq Á ωp

2pJq ě ωp
3pJq. (12.29)

Now it just remains to estimate ωp
3pJq. We can do this by means of a conformal trans-

formation. Indeed, observe first that, by a Harnack chain argument and the maximum
principle, ωp

3pJq « ω8
3 pJq for all p P BBr1pyq. Next, suppose for simplicity that y “ ´r1{2,

so that E3 “ r´r1{2, r1{2s. The map f : B̄1p0q Ñ Ω3 defined by

fpzq “

´

z `
1

z

¯r1
4

(12.30)

is a conformal transformation from B1p0q to Ω3 such that fp0q “ 8, with fpBB1p0qq “

BΩ3 “ E3. Thus,

ω8
3 pJq “

1

2π
H1pf´1pJqq.

An easy computation shows that

f´1pJq “ teiα : π ´ θ ď α ď π ` θu,

with

θ “ arccos

ˆ

1 ´
2H1pJq

r1

˙

“ arccos
´

1 ´
ρ

r1

¯

«

´ ρ

r1

¯1{2
. (12.31)

Thus,

ω8
3 pJq “

θ

π
«

´ ρ

r1

¯1{2
«

´ρ

r

¯1{2
. (12.32)
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Consequently, by the change of pole formula for uniform CDC domains and (12.29), we
deduce that, for p P BBr1pyq,

ωp0pBρpyqq

ωp0pBrpxqq
« ωppB̄ρpyqq “ ωppJ 1 X Eq Á ωp

3pJq «

´ρ

r

¯1{2
, (12.33)

which completes the proof of (12.27).

The case s “ 1{2.
In this case the inequality (12.27) does not suffice to prove (12.13) and we need a better
estimate. We consider the preceding domains Ω1,Ω2,Ω3, so that, for all p P BBr1pyq,
(12.29) holds. However, the estimate ωp

2pJq ě ωp
3pJq is too coarse for our purposes.

Instead, we write

ωp
2pJq « ω8

2 pJq “

ż

E3

ωz
2pJq dω8

3 pzq.

The density
dω8

3
dH1|E3

can be computed explicitly by means of the conformal transformation

in (12.30). Using the identity ω8
3 pJq “ π´1 arccos

´

1 ´
2H1pJq

r1

¯

and differentiating, it

follows that
dω8

3

dH1|E3

ptq “
1

π
a

p r12 ´ tqp r12 ` tq
.

Thus,
dω8

3

dH1|E3

ptq «
1

a

r1pt` r1
2 q

for t P r´r1{2, 0s, (12.34)

and so

ωp
2pJq Á

ż 0

´r1
2

ωt
2pJq

dt
a

r1pt` r1
2 q

(12.35)

(recall that we are identifying R ” R ˆ t0uq.
To estimate the integral in (12.35) from below, consider the annuli Ak “ A2kρ,2k`1ρpyq

for k ě 1, and let N “ rlog2
r1
ρ s. By the s-Ahlfors regularity of E and pigeonholing, for

every k P r1, N s there exists an interval Ik Ă Ak X E3 (recall E3 is an interval) such that
H1pIkq « 2kρ and Ik X E “ Ik X E2 “ ∅. Let Îk be another interval concentric with Ik
and half length. Then we write

ż 0

´r1
2

ωt
2pJq

dt
a

r1pt` r1
2 q

ě

N
ÿ

k“1

ż

Îk

ωt
2pJq

dt
a

r1pt` r1
2 q
. (12.36)

We claim that

ωt
2pJq Á

ˆ

ρ

|t´ y|

˙1{2

for all t P
ŤN

k“1 Îk. (12.37)
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Assuming this for the moment, we obtain

ωp
2pJq Á

N
ÿ

k“1

ż

Îk

ˆ

ρ

|t´ y|

˙1{2 dt
a

r1pt` r1
2 q

«

N
ÿ

k“1

ż

Îk

ˆ

ρ

H1pÎkq

˙1{2 dt

r
1{2
1 H1pÎkq1{2

“ N
´ ρ

r1

¯1{2
« log

r

ρ

´ρ

r

¯1{2
.

By (12.29) and the change of pole formula, arguing as in the preceding subsection, we
obtain

ωp0pBρpyqq

ωp0pBrpxqq
« ωppB̄ρpyqq “ ωppJ 1 X Eq Á ωp

2pJq « log
r

ρ

´ρ

r

¯1{2
, (12.38)

which implies (12.13) for ρ small enough.
It remains to prove (12.37). To this end, for each t P Îk, let t

1 P R be the point symmetric
to t with respect to y. That is, t1 “ ´r1 ´ t. Notice that t1 is on the left side of the interval
E3 (recall that the leftmost point of E3 is y “ ´r1{2). By a Harnack chain argument and
the maximum principle, we have

ωt
2pJq « ωt1

2 pJq ě ωt1

3 pJq.

Now we can compute explicitly ωt1

3 pJq by means of the conformal transformation in (12.30).
Indeed, consider the change of variable t1 “ y ´ r1

2 h. Then, it follows easily that

f´1pt1q “
´1

1 ` h`
a

hp2 ` hq
“ ´p1 ` hq `

a

hp2 ` hq.

So f´1pt1q is a point in the unit disk belonging to the segment p´1, 0q such that

| ´ 1 ´ f´1pt1q| “ ´h`
a

hp2 ` hq « h1{2 “

ˆ

2|t1 ´ y|

r1

˙1{2

.

Recall that f´1pJq “ rπ´ θ, π` θs, with θ «
`

ρ
r1

˘1{2
, by (12.31). Hence, | ´ 1´ f´1pt1q| Á

H1pf´1pJqq. Taking into account that, for any point q P B1p0q and η :“ 10 distpq, BB1p0qq,
ωq
B1p0q

|Bηpqq is comparable to η´1H1|BB1p0qXBηpqq, we deduce that

ωt1

3 pJq “ ω
f´1pt1q

B1p0q
pf´1pJqq «

θ

| ´ 1 ´ f´1pt1q|
«

`

ρ
r1

˘1{2

´

2|t1´y|

r1

¯1{2
«

ρ1{2

|t1 ´ y|1{2
“

ρ1{2

|t´ y|1{2
,

which yields (12.37).

Theorem 12.9 does not hold for 0 ă s ă 0.249. Indeed, for such values of s, David,
Jeznach, and Julia [DJJ23] have constructed an s-Ahlfors regular compact subset E Ă

R ˆ t0u for which Hs|E and harmonic measure for Ω “ R2zE are mutually absolutely
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continuous. An interesting open problem consists in finding the sharp threshold s0 such
that for all s-AD regular sets with s P ps0, 1q contained in a line in the plane, the dimension
drop for harmonic measure occurs. Clearly, by Theorem 12.9 and [DJJ23], we have 0.249 ă

s0 ă 1{2. Also, for s-Ahlfors regular sets E in the plane not contained in a line, it is an
open question if there exists some s1

0 ă 1 such that the dimension drop for ωR2zE occurs
whenever s1

0 ă s ă 1.

Exercise 12.2.1. Let E Ă R2 be the 1{4 planar Cantor set, defined inductively by
setting Q0

1 “ r0, 1s2, and then choosing the squares Qm`1
k of the pm ` 1q-th generation

by replacing each square Qm
j from the m-th generation by four closed sub-squares in the

corners with side length equal to 1
4ℓpQ

m
j q, so that the the cubes Qm`1

k have side length

4´m´1. Then we set Em “
Ť4m

j“1Q
m
j and E “

Ş8
m“0Em. One can check that this set

satisfies 0 ă H1pEq ă 8. See [Mat95, Section 4.12]. Also, from the fact that it has
orthogonal projections of zero length both on the horizontal and vertical axis, it follows
that E is purely 1-unrectifiable.

Prove that, for Ω “ CzE, dimH ω
8
Ω ă 1. To do so, you could first check that if Q

is a given closed square and ΩQ “ R2zQ, for a point ξ in a corner of Q, it holds that
ω8pBrpξqq « r2{3, via a suitable conformal transformation. Then, try to argue as in the
proof of Theorem 12.9.
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