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ABSTRACT. We prove that, for p > 2, the p-variation and oscillation for the Cauchy trans-
form on Lipschitz graphs with slope smaller than 1 is bounded in L? for 1 < p < co. The
analogous result holds for the n-dimensional Riesz transform on n-dimensional Lipschitz
graphs with slope smaller than 1, as well as for other singular integral operators with odd
kernel. The restriction on the slope of the Lipschitz graph can be removed by using smooth
truncations of singular integrals. In particular, our results strengthen the classical theorem
on the L? boundedness of the Cauchy transform on Lipschitz graphs by Coifman, McIntosh,
and Meyer.

1. INTRODUCTION

The p-variation and oscillation for martingales and some families of operators have been
studied in many recent papers on probability, ergodic theory, and harmonic analysis (see [Lé],
[Bo], [JKRW], [CJRW1], and [JSW], for example). The purpose of this paper is to establish
some new results concerning the p-variation and oscillation for families of singular integral
operators defined on Lipschitz graphs. In particular, our results include the LP boundedness
of the p-variation and the oscillation for the Cauchy transform and the n-dimensional Riesz
transform on Lipschitz graphs (with slope smaller than 1 if we consider truncations given by
characteristic functions of balls), for 1 < p < co and p > 2.

Given a Borel measure p in R?, one defines the n-dimensional Riesz transform of a function
f € LY(p) by R*f(x) = limeo RY f(z) (whenever the limit exists), where

R = [ S S, e

When d = 2 (i.e., yt is a Borel measure in C), one defines the Cauchy transform of f € L!(p)
by C* f(z) = limeo C¥ f(z) (whenever the limit exists), where

criw=[ g, sec
l[z—y|>e ¥ — Y
To avoid the problem of existence of the preceding limits, it is useful to consider the maximal
operators R f(z) = sup.g |RE f(x)| and C¥ f(x) = supeg |CH f(x)].

The Cauchy and Riesz transforms are two very important examples of singular integral
operators with a Calderén-Zygmund kernel. The kernels K : R?\ {0} — R that we consider
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in this paper satisfy
c c ¢
(1.1) K@< o 0eK@) < s and 1050, K(2)] < s

forall1 <i,j <dandz = (2!,...,2%) € R\ {0}, where 0 < n < d is some integer and C' > 0
is some constant; and moreover K(—z) = —K(z) for all x # 0 (i.e. K is odd). Notice that
the n-dimensional Riesz transform corresponds to the vector kernel (z!, ..., 29)/|z|"*1, and
the Cauchy transform to (z!, —22)/|z|? (so, we may consider K to be any scalar component
of these vector kernels).

Given an odd kernel K satisfying (1.1) and a finite Borel measure p in RY, for each € > 0,
we consider the e-truncated operator

Tou(z) = / K@y, R

and then we set T'u(x) = lime o Tep(x) whenever the limit makes sense, and Tiu(x) =
SUp,sq |Tep(w)|. Finally, given f € L'(p), we define TV f(z) = T.(fu)(z), THf(z) =
T(fp)(x) and T f(x) := Tu(fp)(xz). Thus, for a suitable choice of K, the operator T*
coincides with the Cauchy or Riesz transforms.

Besides the operator T, defined above, one can consider other e-truncated variants that
we proceed to define. First we need some additional notation. Given x = (z!,...,z2%) € R,
we use the notation 7 := (x!,...,2") € R™. Let g : [0,00) — [0,00) be a non decreasing
C? function such that X[3y/,00) < PR < X[2.1/m,00) (the numbers 3/n and 2.1y/n are chosen
just for definiteness and they are not important). Given ¢ > 0 and = € R?, we denote

Pe(x) = er(|z|/e) and  @c(x) == er(|7]/€),
Xe(®) = X(1,00)([2]/€) and  Xe(x) := X(1,00) (|Z] /).
Definition 1.1 (family of truncations). We consider the following families of functions

Y= {906}6>0> Q= {4-56}6>07 X = {XE}€>07 X = {%e}e>0~
We say that a family of functions w := {w,}e>0 s a family of truncations if w € {¢, @, x, X}

Let w := {we}eso be a family of truncations. Given a kernel K as above, x € R?, 0 < e,
and a finite Borel measure u, we consider

(Kwe * p)(z) = /we(ﬂ: —y)K(z —y)du(y).

We also denote (Kw * p)(z) := {(Kwe * u)(z)}eso. Finally, given f € L'(u), we define
Th f(z) = (Kwe * (fu))(x), TS f(z) = limeo T4, f(x) (whenever the limit makes sense),
TS, f(x) :=supesq |Th. f(z)], and T f(x) := {TL. f(z) }es0. For the particular case of w = ¥,
notice that T%. f = T/ f, thus we obtain the truncated Cauchy and Riesz transforms taking
a suitable kernel K.

Definition 1.2 (p-variation and oscillation). Let Z be a subset of R (in this paper, we will
always have T = (0,00) or I =7), and let F := {F.}cez be a family of functions defined on
RZ. Given p > 0, the p-variation of F at x € R? is defined by

1/p
Vo(F)(&) = sup (Z oy () — Fem<x>|p) ,

{em} meZ
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where the pointwise supremum is taken over all decreasing sequences {€mtmez C Z. Fiz a
decreasing sequence {Tm}mez C L. The oscillation of F at x € R? is defined by

1/2

0@ = swp (X IFnle) - B @F)
{em}{0m} meZ

where the pointwise supremum is taken over all sequences {€m}mez C I and {0m}tmez CZ

such that Tma1 < € < 0 < 1y for allm € Z.

In this paper we are interested in studying the p-variation and oscillation of the families
T4 f, for the truncations w introduced above. That is, we will deal with

(Voo T f (@) := V(T f) (@) = Vy(Kw * (fp))(z)  and
(O T f(z) = O(TS f)(x) = O(Kw  (fu))(x),

for a Borel measure p and f € L'(u). Although it is not clear from the definitions, these
operators are p-measurable (see [CJRW1], [JSW]).
Given E C R?, we denote by ‘H’% the n-dimensional Hausdorff measure restricted to E.
Let I':= {z € R? : o = (, A(Z))} be the graph of a Lipschitz function A : R* — R4~"
with Lipschitz constant Lip(A). Let H'(H}) and BMO(H}) be the (atomic) Hardy space
and the space of functions with bounded mean oscillation, respectively, with respect to the
measure Hp. The following is our main result.

Main Theorem 1.1. Let p > 2, let K be a kernel satisfying (1.1), let w be a family of
truncations, and set p = HE. If w € {p, @, X}, the operators V, o T4 and O o T are
bounded

e in LP(u) for 1 < p < oo,

e from L'(p) to LY*°(p), and

e from L™ (u) to BMO(u).
The same holds if w = x and Lip(A) < 1. Furthermore, if w € {¢, @}, the operators V, o T
and Oo T} are also bounded from H () to L'(u). In all the cases above, the norm of Oo T}
1s bounded independently of the sequence that defines O.

As remarked above, the theorem applies to the particular cases of the Cauchy transform
(with d = 2, n = 1) and the n-dimensional Riesz transforms on n-dimensional Lipschitz
graphs in R%.

We think that the Main Theorem 1.1 also holds without the assumption Lip(A) < 1 in
the case w = x. However, we have not been able to prove this (see Remark 8.3).

Let us recall that the L?(H{].) boundedness of the Cauchy transform on Lipschitz graphs
I' ¢ C with slope small enough was proved by A. P. Calderé6n in his celebrated paper [Ca].
The L? boundedness on Lipschitz graphs in full generality was proved later on by R. Coifman,
A. McIntosh, and Y. Meyer [CMM].

Consider the Cauchy kernel K(z) = 1/z (2 € C), and set u := H}, so C!' = T¥.. By
standard Calderén-Zygmund theory (namely, Cotlar’s inequality), the L?(u) boundedness of
the Cauchy transform C* is equivalent to the L?(u) boundedness of the maximal operator
CY. Let M* denote the Hardy-Littlewood maximal operator with respect to the measure
. It is easy to check that, for f € L'(u) with compact support, there exists some constant
Cy > 0 such that

Clf(x) < TL f(x) + CoM* f(2) < (V, 0 T) (x) + CoM¥ f (x)

for all € > 0, thus (V, o ’7;2”) + CoM* controls the maximal operator C4' and, in this sense,
Theorem 1.1 (together with the known LP(u) boundedness of M*) strengthens the results
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of [Ca] and [CMM]. Analogous conclusions hold for the n-dimensional Riesz transform and
the maximal operator RY.

Concerning the background on the p-variation and oscillation, a fundamental result is
Lépingle’s inequality [Lé], from which the LP boundedness of the p-variation and oscillation
for martingales follows, for p > 2 and 1 < p < 0o (see Theorem 2.4 below for more details).
From this result on martingales, one deduces that the p-variation and oscillation are also
bounded in L? for the averaging operators (also called differentiation operators, see [JKRW]):

1.2 D, , R.
(1.2) f(@) |B“|/“ Dy,  we

As far as we know, the first work dealing with the p-variation and oscillation for singular in-
tegral operators is the one of J. Campbell, R. L. Jones, K. Reinhold and M. Wierdl [CJRW1],
where the LP and weak L! boundedness of the p-variation (for p > 2) and oscillation for the
Hilbert transform was proved. Recall that, for f € LP(R) and = € R,

Hi@=_ [ s
xr—y|>€

r—=y
and then the Hilbert transform of f is defined by Hf(z) = lim.o Hcf(z), whenever the
limit exists. Later on, there appeared other papers showing the LP boundedness of the p-
variation and oscillation for singular integrals in R? ([CJRW2]), with weights ([GT]), or for
other operators such as the spherical averaging operator or singular integral operators on
parabolas ([JSW]). Finally, we remark that, very recently, the case of the Carleson operator
has been considered too ([LT], [OSTTW]).

Notice that the Hilbert transform is one of the simplest examples where Theorem 1.1
applies (one sets I' = R, i.e. A =0), and so one obtains a new proof of the L? boundedness
of the p-variation and oscillation for the Hilbert transform. In the original proof in [CJRW1],
a key ingredient was the following classical identity, which follows via the Fourier transform:

(1.3) Q.=P.«H,

where P, is the Poisson kernel and Q). is the conjugated Poisson kernel. Using this identity
and the close relationship between the operators Q). and H., Campbell et al. derived the
LP boundedness of the p-variation and oscillation for the Hilbert transform from the one of
the family {D¢(H f)}e>0, where D, is the averaging operator in (1.2) (notice that P. can be
written as a convex combination of operators Ds, 6 > 0).

In most of the previous results concerning p-variation and oscillation of families of oper-
ators from harmonic analysis, the Fourier transform is a fundamental tool. However, this is
not useful in order to prove Theorem 1.1, since the graph I' is not invariant under translations
in general. Moreover, even for the Cauchy transform, there is no formula like (1.3), which
relates the truncations of a singular integral operator with an averaging operator applied to
a singular integral operator, when I' is a general Lipschitz graph.

The main ingredients of our proof of Theorem 1.1 are the known results on the p-variation
and oscillation for martingales (Lépingle’s inequality [Lé]) and a multiscale analysis which
stems from the geometric proof of the L? boundedness of the Cauchy transform on Lipschitz
graphs by P. W. Jones [Jnl] and his celebrated work [Jn2] on quantitative rectifiability in
the plane, using the so called 8 coefficients. Some of the techniques in these papers were
further developed in higher dimensions by David and Semmes [DS1] for Ahlfors-David regular
sets. More recently, in [To] some coefficients denoted by «, in the spirit of the Jones’ §’s,
were introduced, and they were shown to be useful for the study of the LP-boundedness of
Calderén-Zygmund operators on Lipschitz graphs and on uniformly rectifiable sets (see the



VARIATION FOR SINGULAR INTEGRALS ON LIPSCHITZ GRAPHS 5

definition below Theorem 1.3). In our paper, the a and S coefficients play a fundamental
role.

Let us remark that Lépingle’s inequality, which asserts the LP boundedness of the p-
variation of martingales, fails if one assumes p < 2 (see [Qi] and [JW], for example). More-
over, this fact can be brought to the p-variation of averaging operators and singular integral
operators, thus it is essential to assume p > 2 in Theorem 1.1. Analogous conclusions hold
if one replaces the 2.-norm by and ¢*-norm with p < 2 in the definition of O. See [CJRW1],
or [AJS] for the case of martingales.

Concerning the applications of Theorem 1.1, it is easily seen that the ILP” boundedness of
V, o T2 yields a new proof of the existence of the principal values T f(z) = lime_,o T, f ()
for all f € LP(u) and almost all z € T', without using a dense class of functions in LP(u) (as
in the classical proof). Moreover, from Theorem 1.1 one also gets some information on the
speed of convergence. In fact, a classical result derived from variational inequalities is the
boundedness of the A-jump operator Ny o T} and the (a,b)-upcrossings operator Ng o TH.
Given A > 0, f € L} (u) and = € R%, one defines (Ny o T}')f(z) as the supremmum of all

loc

integers N for which there exists 0 < €1 < d; < €3 < dp < --- < ey < Iy so that
T5., (@) = T f(2)] > A

for eachi = 1,..., N. Similarly, given a < b, one defines (NoT#) f(x) to be the supremmum
of all integers N for which there exists 0 < ¢ < §; < €3 < 0y < -+ < ey < Iy so that
T, f(x) < a and ijélf(x) > b for each i = 1,..., N. Using Theorem 1.1 one obtains (by

the same arguments as in [CJRW1, Theorem 1.3 and Corollary 7.1]) the following:

Theorem 1.3. Letp > 2, A > 0, and let K, w, and p be as in Theorem 1.1. For 1 < p < oo,

there exist constants C1 and Cy depending on p, n, d, K, and Lip(A) (and on p for the case
of C1) such that

C
(N o TN oy < 5 1 gy and
C
p{z €T (NxoTH)f(w) > m}) < | Fllor oy

Trivially, (Nfl’ o TH)f < (Np_q o TH)f, thus Theorem 1.3 also holds replacing A by b — a
and Ny by N°. In [JSW] it is shown that the results of Theorem 1.3 still hold when p = 2
for the particular case of the Hilbert transform. In our paper we do not pursue this endpoint
result.

On the other hand, V, o T4 is related to an important open problem posed by G. David
and S. Semmes. We need some definitions to state it.

Recall that p is said to be n-dimensional Ahlfors-David regular, or simply AD regular, if
there exists some constant C such that C~1r" < p(B(x,7)) < Cr™ for all € suppu and
0 < r < diam(suppp). It is not difficult to see that such a measure p must be of the form
t = hHepp,, Where h is some positive function bounded above and away from zero. A Borel
set £ C R?is called AD regular if the measure H% is AD regular.

One says that p is n-uniformly rectifiable, or simply uniformly rectifiable, if there exist
0, M > 0 so that, for each € suppu and R > 0, there is a Lipschitz mapping g from the
n-dimensional ball B"(0, R) C R" into R such that Lip(g) < M and

u(B(x, R) N g(B"(0, R))) > 6R",

where Lip(g) stands for the Lipschitz constant of g. In the language of [DS2], this means that
suppy has big pieces of Lipschitz images of R™. A Borel set E C R? is called n-uniformly
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rectifiable if H% is n-uniformly rectifiable. Of course, the n-dimensional graph of a Lipschitz
function is n-uniformly rectifiable.

G. David and S. Semmes asked the following question, which is still open (see, for example,
[Pa, Chapter 7]):

Problem 1.4. Is it true that an n-dimensional AD regular measure p is n-uniformly recti-
fiable if and only if RY is bounded in L*(u)?

It is proved in [DS1] that if u is uniformly rectifiable, then RY is bounded in L?(u).
However, the converse implication has been proved only in the case n = 1 and d = 2, by
P. Mattila, M. Melnikov and J. Verdera [MMV], using the notion of curvature of measures
(which seems to be useful only in this case).

Let K (x) denote the n-dimensional Riesz kernel z/|z|"*! (z € RY), so R¥ = T¥.. Combin-
ing some techniques from [DS2] and [To], one can show that the L? boundedness of V, o T}
implies that p is uniformly rectifiable (see [MT] for more details). Thus, if one proved
that V, o T} is bounded in L?(u) when p is AD regular and uniformly rectifiable, then we
would have: An n-dimensional AD reqular measure p is n-uniformly rectifiable if and only if
V, 0T is a bounded operator in L*(y). This statement can be considered as a weak version
of Problem 1.4.

This paper is organized as follows. In section 2 we state some notation, definitions and
preliminary results. In section 3 we sketch the proof of our Main Theorem 1.1, and in the
subsequent sections we give the detailed proof.

2. PRELIMINARIES

As we said in the introduction, throughout all the paper, n and d are two fixed integers
such that 0 < n < d. Given a point z = (z!,...,2%) € R? we use the notation Z :=
(x!,...,2") € R™. Given a function f : R™ — R, we denote by Vf its gradient (when it
makes sense), and by V?f the matrix of second derivatives of f. If f depends on different
points z1, z2,... € R™, then V,, f denotes the gradient of f with respect to the z; variable,
and analogously for V%i I

For two sets Fy, F» C R? we denote by disty (F1, F3) the Hausdorff distance between Fj
and F,. We denote by L™ the Lebesgue measure on R", and for the sake of simplicity, we
set || - |lp == Il - l|zp(cny for 1 < p < oo, and dy := dL"(y) for y € R™.

In the paper, when we refer to the angle between two affine n-planes in R%, we mean the
angle between the n-dimensional subspaces associated to the n-planes. As usual, the letter
‘C" stands for some constant which may change its value at different occurrences, and which
quite often only depends on n and d. The notation A < B (A 2 B) means that there is some
fixed constant C' such that A < CB (A > CB), with C as above. Also, A ~ B is equivalent
to A< B <A

2.1. More about the families of truncations w. Given z € R% 0 < € < ¢, and a finite
Borel measure p, we set w?(z) := we(r) — ws(z) and we define

(Kwd % ) (z) == / Wiz — 9K (z - y) du(y),

thus (Kw? * p)(z) = (Kwe * p)(z) — (Kws * p)(z).

For m € N, z € R™, and R > r > 0, we denote by B™(x,r) the closed ball of R™ with
center x and radius r, and by A™(z,r, R) the closed annulus of R™ centered at z with inner
radius r and outer radius R. We also use the notation B(z,r) and A(z,r, R) when there is
no possible confusion about m.
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If we take w = ¢, each function ¢? = ¢, — ps is non negative, and
suppe? € A%(0,2.1ey/n, 36v/n).

Moreover, >z <p22:jj_1(x) = 1 for z # 0, and there are at most two terms that do not

vanish in the previous sum for a given € R? For the case of w = ¢, one also has
supp@® C A™(0,2.1ey/n, 36y/n) x R4 ¢ RY and djen @2 1 (x) =1for T #0.

2.2. The a and S coefficients. Special dyadic lattice. Given m € N; A > 0, and a cube
Q CR™ (ie. @ :=10,b)"+ a with a € R™ and b > 0), £(Q) denotes the side length of Q,
zq denotes the center of @) and M@ denotes the cube with center zg and side length A\(Q).
Throughout the paper, we will only use cubes with sides parallel to the axes.

Let 11 be a locally finite Borel measure on R%. Given 1 < p < oo and a cube Q C R?, one
sets (see [DS2])

(2.1) Bpu@) = i%f{%:?)n /2Q (W)pdﬂ(y)}l/p7

where the infimum is taken over all n-planes L in R?. For p = oo one replaces the LP norm
by the supremum norm:

dist(y, L)
2.2 Boou(Q) = inf { sup @ ————2 5,
( ) oo,,u( ) L yEsuppuN2Q E(Q)
where the infimum is taken over all n-planes L in R? again. These coefficients were introduced
by P. W. Jones in [Jnl] for p = oo and by G. David and S. Semmes in [DS1] for 1 < p < oo.
Let F' C R? be the closure of an open set. Given two finite Borel measures o, v on R,
one sets

(2.3) distp(o,v) := sup{’ffda — ffdy‘ : Lip(f) < 1, suppf C F}

It is easy to check that this is a distance in the space of finite Borel measures o such that
suppo C F and o(0F) = 0. Moreover, it turns out that this distance is a variant of the well
known Wasserstein distance W from optimal transportation (see [Vi, Chapter 1]). See [Ma,
Chapter 14] for other properties of distp.

Given a cube @ which intersects supppy, consider the closed ball By := B(zq,6¢(Q)).
Then one defines (see [To)

1 : .
(2.4) o (Q) == me dist, (11, cHT),

K(Q)n-‘rl >0
where the infimum is taken over all constants ¢ > 0 and all n-planes L in R¢. For convenience,
if @ does not intersect suppu, we set az(Q) = 0. To simplify notation, sometimes we will
write a,(Q) or a(Q) instead of aj;(Q) (and analogously for the 3’s).

The following result characterizes uniform rectifiability in terms of the o and 5 coefficients.
Theorem 2.1. Let p be an n-dimensional AD regular measure on R%, and consider any
p € [1,2]. Then, the following are equivalent:

(a) p is n-uniformly rectifiable.
(b) For any cube R C RY,

(2.5 Z ﬁp,u(Q)%(Q)n < CUR)"

QEDRa(R)
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with C independent of R, where Dga(R) stands for the collection of cubes of RY
contained in R which are obtained by splitting R dyadically.
(c) There exists C > 0 such that, for any cube R C RY,

(2.6) Y aul@PUQ)" < CUR)™

QeD]Rd (R)

The equivalence (a)<=>(b) in Theorem 2.1 was proved by G. David and S. Semmes in
[DS1], and the equivalence (a)<=>(c) was proved by X. Tolsa in [To].

In this paper we will use a slightly different definition of the o and (3 coefficients adapted
to the n-uniformly rectifiable measure p = fHP?, where I' := {z € R? : 2 = (7, A(7))} is
the n-dimensional graph of a given Lipschitz function A : R® — R4~ and f € L®(HR)
satisfies f(z) = 1 for almost all z € T'. To this end, we need to introduce a special dyadic
lattice of sets related to I'. Given a cube Q C R" (ie. Q := [0,b)" 4+ a with a € R"
and b > 0), we define Q := Cj x R4™, This type of set will be called v-cube (“vertical”
cube). We denote by ¢(Q) and Zg the side length and center of Q, respectively, and given
A > 0 we set \Q = )\@ x R4, Let D denote the standard dyadic lattice of R™, and set
D ={Q: @ € ﬁ} It is easy to check that the v-cubes of D intersected with I' provide a
dyadic lattice associated to the graph I' in the sense of [Da, Appendix 1]. Finally, for m € Z,
set Dy, :={Q €D : {(Q) =2"T}.

Fix a constant Ct > 10y/n(1+ Lip(A4)) (the precise value of Cp will not be relevant in the
proofs given in the paper). Given 1 < p < oo and a v-cube @ C R?, we define the coefficient
Bp,u(Q) asin (2.1) and (2.2) but replacing 2Q) by CrQ. We also define a,(Q) as in (2.4) but
taking Bg = B(Zg,Crl(Q)) x R¥™" c R%. This new definition of the a and J coefficients
(adapted to the graph I') is the one that we will use in the whole paper.

Remark 2.2. It is an exercise to check that, with this new definition of the «’s and s,
inequalities (2.5) and (2.6) of Theorem 2.1 still hold. Moreover, the following is an easy
consequence of (2.5) and (2.6): Let I' be an n-dimensional Lipschitz graph, f € L>®(H})
such that f(xz) = 1 for almost allx € ', and p = fHp. Let 1 < p < 2. Given C1,C2,C3 > 1,
there exists a constant Cyq > 0 such that, for any R € D,

Z (5}),#(02@)2 + au(CBQ)Q ) U(Q) < C4M(R)7

QEeD: QCC1R
and the dependence of Cy with respect to I is only on Lip(A).

Remark 2.3. Tt is shown in [To, Lemma 3.2|, that £ ,(Q) S au(Q) for all @ € D. Given
Q € D, let Lg be a minimizing n-plane for o, (Q). In general, 8 ,(Q) can not be controlled
by £1,.(Q), so given x € suppp N Cr@Q, we can not control dist(x, Lg) by means of o, (Q).
But it is shown in [To, Lemma 5.2] that

dist(z,Lo) S Y au(R)(R),
ReD:zeRCQ

and in particular, if P € D is such that P C @ and z € suppu N CrP, and Lp denotes a
minimizing n-plane for o, (P), one has (see [To, Remark 5.3])

@7) dist(z, Lg) S dist(z, Lp)+ > au(R)U(R).
ReD: PCRCQ
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2.3. Martingales. First of all, let us recall a particular case of Lépingle’s inequality (see
[JSW], or [Lé] and [JKRW, Theorem 6.4] for martingales in a probability space):

Theorem 2.4. Let (X,3,\) be a o-finite measure space and p > 2. Then, there exist
constants C1,Cy > 0 such that, for every martingale G := {Gumymez € L*(N),

IVo(G)llz20ny < CillGllr2y  and  [[O(G) |2y < CallGll 20

where ||G||r2(x) = SUPpez |GmllL2(n)- The constants Cy and Cz do not depend on the mea-
sure A, and Co neither depends on the fixed sequence that defines O.

To prove Theorem 1.1, we need to introduce a particular martingale, and to review some
known results.

Lemma 2.5. Fiz a cube P C R" (not necessarily dyadic) and a Lipschitz graph T' .= {x €
Re : z = (%, A(Z))} such that suppA C P. Consider the measure ji = fHE, where f(z) =1
for allx € P and Cgl < flx) < Cp forallx € ﬁ, for some fixed constant Cy > 0. Also set
P:=P xRI™, Then, the following hold:

(2.8) Topp € Lio(1),  Tulxpp) € Lio(1) for every compact set E C RY, and

(2.9) 1Tl 2 S (P2,
Remark 2.6. To avoid the problem of non-integrability near infinity, for this type of measures
p we redefine T.u(z) = limps oo (K XM % p)(x), which exists because u is flat outside a

compact set and K is odd. All the results in this paper remain valid with this new definition
and the adjustments that have to be done in the proofs are minimal.

Another way to avoid this problem consists in introducing kernels of the type Ky,
where K is as before and ¢ is a smooth function such that x i@ < ¥m < Xpa(o2m)
and |V (z)] < M~! for all z € RY, and then obtaining estimates independent of 1y;.

In this paper, we will deal with other integrals which concern the kernel K and the measure
i near infinity. The non-integrability problem can be avoided in the same manner.

Proof of Lemma 2.5. It is known that the operator T is bounded in L?(1), because T* is the
maximal operator associated to a Calderén-Zygmund singular integral and p is an uniformly
rectifiable measure (see [DS1]). Thus, Ti(xpu) = TL'(xE) € L}, (u) for every compact set
E CR%

We are going to check that | Typ|lz2(,) < u(P)Y2 This will imply that Ty € L} (1)
and, since Ty exists (because p is uniformly rectifiable) and |Tu| < Tip, we will also obtain
ITll 2y < 1(P)%; s0 the lemma will be proved.

Using that T is bounded in L?(y), we have

1Tl L2y < 1 Tx(xspi)llz2eu) + 1T (X 3Pye i) | L2 ()

(2.10)
S (P2 + 1T (xapye )l 22

Set L :=R" x {0}4=" C R?; obviously xpeu = Hi\p- Since L is an n-plane and K is odd,
T, H} (x) = 0 for all x € L. Thus,

(2.11) ITH\spllL2ny) S NITHE L2y + 1 TeHE nspll 2y S pu(P)Y2.
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Set zp := (3p,0,...,0) € L (recall that Zp denotes the center of P). It is obvious that
[ Xe(zp —y)K(zp — y) d’Hz\SP(y) = 0 for all € > 0. Thus, given x € suppu N P,

|(Bxe * Hzp) ()] < /xe(w*y)IK(w*y) — K(zp —y)|dH]\3p(y)

+ / xe@ = 1) = xe(zp = DIIK (20 — )| dH 4 pl0).

Since T is a Lipschitz graph, |z — zp| < ¢(P). So, the first term on right hand side of the
previous inequality is easily bounded by an absolute constant independent of €, by standard
arguments. For the second term, notice that supp(xe(z — ) — xe(zp —+)) N (L \ 3P) = 0 for
all € < £(P), and H?({y € R™ : xc(z —y) — xe(zp — y) # 0}) S L(P)e" ! for all € > {(P).
Therefore, since |zp — y| ~ € for all y € supp(xc(z — ) — xe(zp — +)) N (L \ 3P), the second
term can also be estimated by an absolute constant. Thus, we conclude T.H7 I\3 plr) =
SUPsq | (K xe * ’HZ\BP)(IH < 1 for all z € suppu N P.

Using the previous observations and (2.11), we have

1T (x( )HL?(H) = T.H], \3P||L2 ey 11T H2\3P||L2(XPLH)
< | TWHT \3P||L2 (xpu) T 1T Hz\JPHL?(Hn) S w(P),
which, combined with (2.10), gives ||Tkp|r2(,y S p(P Y1/2 ) as desired. O

We are ready to define the martingale. Let P and p be as in Lemma 2.5. Given m € Z
and a € R", we set
D :=a+[0,27™)" CR" and DZ:=Dg xR™cR?

Set DY := {D&F2""k c R? . k € Z"} (notice that D coincides with Dy, translated by
a parameter a € R™ and, for a fixed a, |J,,cz Dy, is a translation of the standard dyadic
lattice). Notice that p(D%) ~ 27™" for all m € Z, a € R". For D € D% and x € D, we set

Epu(s / [ K- v)dutw) du(2)

(take into account Remark 2 6 for the meaning of [,,. K(z —y)du(y)). Finally, for z € RY,
we define the martingale Efpu(z) := > pepe Xp(@)Epp(z), m € Z.

Let us make some comments to understand better the nature of Ef . First of all notice
that, since u(0D) = 0, for any D € D)% and p-almost all z € D we have

(2.12) . K(z —y)du(y) = 25]% xe(z —y)K(z —y)du(y),

and for any € > 0, we have

(2.13) /D /D xelz = 9)K (= — ) dp(y) du(z) = 0

because of the antisymmetry of K. Therefore, by (2.12), (2.13), (2.8), and the dominated
convergence theorem, [, UDC K(z—1y) du(y)‘ du(z) < oo (in particular, we have seen that
Efpis well defined) and [, T'(xpp) dp = 0. Using this and (2.12), we finally have that

1 1
2.14 Egp(z) = 7/ T(Xpep) dp = 7/ Tpdp
(2.14) " u(D) Jp u(D) Jp
forx € D € D, thus E% () is the average of the function T’y on the v-cube D € D)%, which
contains z. So, it is completely clear that, for a fixed a € R™, {E2 pu}mez is a martingale. In
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[MV] it is shown that { E\ 1} mez is well defined and it is a martingale without the assumption
of the existence of Ty (i.e., for more general measures p).

Now, we can use (2.14), the L? boundedness of the dyadic maximal operator and (2.9) to
deduce that

(2.15) IEgull 2y S ITpllp2gy S w(P)?

for all @ € R™ and m € Z, where the constants that appear in the previous inequalities only
depend on Cjy, n, d and Lip(A).

Set E%u = {E2u}mez. Then, the martingale E%u belongs to L?(u) by (2.15); thus by
Theorem 2.4, for all a € R",

IVo(E W) r200) S NE“pillp2 S n(P)Y? for p> 2,

(2.16) . ) »
NOE“ )20 S 1B pllp2n < u(P)7,

where the constants in the previous inequalities only depend on Cy, n, d, and Lip(A4) (and
on p, in the case of V,).
Finally, for z € R?, we define

Emp(x) :=2"" / Eq (@) da
{a:zeDg}
(notice that L™({a : = € D2}) = 2=™"). Thus, E,,u is an average (of the m’th term) of
some martingales depending on a parameter a € R™.

Set Ep = {Empt}mez. We want to obtain estimates like (2.16) for V,(Eu) and O(Ep).
We will only show the details for V,(Eu), because the case of O(Eu) follows by similar
arguments.

One can easily check that E,,u(z) = 2Mn f[0,2*M]n Efp(x)da for all m, M € Z with
M < m. Therefore, for all M,r,s € Z with M <r < s, we have

(2.17) Eoi(z) — Egu(a) = 27 /[ s o (B ) = B () de.

Given M € Z, we consider the auxiliary transformation

/e
Vot (Ep)(z) = sup (Z (v il) — Ermu<:c>|ﬂ) 7

{rm} meZ

where the pointwise supremum is taken over all decreasing sequences of integers {r, }mez
such that r,, > M for all m € Z. With this definition it is obvious that the sequence
{Vom(Ep)(x)}amez is non increasing and V,(Ep)(x) = limy——oo Vo m (Ep)(z) for all z €
R?. Minkowski’s integral inequality and (2.17) yield the pointwise estimate

1/p
Vour(E)(@) = sup (Z|Erm+lu<x>Ermu<x>|P)
{rm}:rm>M meZ,
o 1/p
<o [ s (1B o) - B p@)l) da
02 () \ 2%

= oMn /[0 oy Vo(E 1) () da.
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Therefore, by the previous estimate, Minkowski’s integral inequality and (2.16),

Wt (B2 < 2M7 /

(0,27M]

VB W)l 12 da < Cp(P),

where C' > 0 only depends on Cy, n, d, Lip(A4), and p. By the monotone convergence
theorem, we conclude that [|[V,(Ew)| 2 S p(P)/2. Thus we have proved the following
theorem (which can be considered the starting point to prove Main Theorem 1.1):

Theorem 2.7. Fiz a cube P C R". SetT := {x € R : z = (%, A(Z))}, where A : R" —
R is a Lipschitz function supported in 13, and set P := P x RT™". Set w= fHE, where
f@)=1 forallzx e P¢ and C’al < flz) < Cp forallz € P, for some constant Cy > 0.

Let p > 2. Then, there exist constants C1,Cy > 0 such that ||[V,(Ep)l| 2, < Crp(P)Y/?
and [|O(Ep)| 2w < Cop(P)Y?, where Cy and Cy only depend on Co, n, d, and Lip(A) (and
on p in the case of C1).

We need to introduce additional notation in order to express E,,i in a more convenient
way for our purposes. Let 1, ..., ug be a finite collection of positive Borel measures such that
(D)) >0foralla e R", me Zandl=1,...,k. Givenm € Z and x1,...,%;,y1,...,Y; €
R?, we define

da
A”ml"“’“’“(xl,...,xi;yl,...,yj) = 2nm/ Tk hav
{a:1,zi€Dg,yr,y 808} [Ty (D)

Then, by Fubini’s theorem,

2mn
Epp() = /{ I / ) /( K~y duty) (=) da
d

(2.18) :// <2mn /{a:x’ze%’y@%} @)K(z—y) du(z) dp(y)
= // AL (2,25 y) K (2 —y) dp(z) dp(y).

3. SKETCH OF THE PROOF OF MAIN THEOREM 1.1

The proof relies on two basic facts: the known L? boundedness of the p-variation and
oscillation of martingales explained in the previous section and the good geometric properties
of Lipschitz graphs from a measure-theoretic point of view.

As we said above, the starting point of the proof is Theorem 2.7, where the L? boundedness
of the p-variation and oscillation (of a convex combination) of some particular martingales
is stated. So, the first step consists in relating the results on martingales in Theorem 2.7
with the p-variation and oscillation of singular integrals on Lipschitz graphs, and this is the
aim of the following two theorems:

Theorem 3.1. Let I' and pu be as in Theorem 2.7. For each x € T, define

(3.1) Wi(z)? i= Y [(KGy-m * p)(x) = Eppal) .
meZ

Then, ”W”H%Q(u) < C1 Y gep (u(CaQ)? + B2,,(Q)% ) (Q), where C1,Cy > 0 depend only
on Cp, n, d, K, and Lip(A).
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Theorem 3.2. Let ' and p be as in Theorem 2.7. For each x € I, define

(3:2) Sp(x)? = sup Y > (K@, w)(@) ],
{em} JEZ MEL: €m,em+1€1;

where I = [27971 279) and the supremum is taken over all decreasing sequences of positive

numbers {€m tmez. Then, ||Su||%2(ﬂ) < C)gep (au(Q)? + B2,,(Q)? ) (Q), where C > 0
only depends on Cy, n, d, K, and Lip(A).

Two fundamental tools to study Wy and Su are the o and B coefficients, which will be
used to measure the flatness of I' at different scales, in order to estimate the terms which
appear in the sums in (3.1) and (3.2). This will be done in sections 4 and 5. To use the «
coefficients to relate the p-variation of martingales with the p-variation of singular integrals,
it is a key fact that we are considering a family of smooth truncations like ¢, instead of Y,
because the a’s are defined in terms of Lipschitz functions. Moreover, for the moment, we are
taking a truncation only on the first n-coordinates (i.e., ¢ instead of @) because the average
of martingales that we are using is taken over the parameter a € R", using the v-cubes D,
(see subsection 2.3).

Combining Theorem 3.1 and Theorem 3.2 with the L? estimates of the p-variation and
oscillation on the average of martingales EFu in Theorem 2.7, we are able to obtain local

L? estimates of V0 7';{? and O o 7?? when T' is any Lipschitz graph. More precisely, we
separate the sum in the definition of V, o 7?? into two parts, which are classically called

short and long variation (and analogously for O o 7';?). The short variation corresponds to
the sum Sy in Theorem 3.2 (here p is a suitable modification of Hpt), where the indices run
over m € Z such that both ¢, and €,,11 lie in the same dyadic interval, and can be handled
using the a’s and (’s. The long variation corresponds to the sum over the indices m € Z
such that €, and €,,41 lie in different dyadic intervals, so one may assume that the €,,’s are
dyadic numbers. It is handled by comparing K @g—m * u with E,,u, and then using Theorem
3.1 and the fact the p-variation and oscillation of Ey are bounded in L?(i), by Theorem 2.7.
This will be done in section 6 (see Theorem 6.1).

Using the local L? estimates of Theorem 6.1, combined with rather standard techniques
in Calderén-Zygmund theory, in section 7 we obtain the H(H}) — L'(H}) and L>®(H}) —
BMO(HM) boundedness of V, o 7';? and O o Tg[?. Then, by interpolation, we obtain the
LP boundedness of these operators in the whole range 1 < p < oo, and in particular the L?
boundedness (see Theorem 7.1).

The next step is to replace the family of smooth truncations @ by the other families of
truncations w. We focus our interest on the case w = x, because we think that it is the most
important one and the other (easier) cases follow using similar arguments. We obtain the

L? boundedness of V, o EHF and O o 7;(HF by comparing these operators with V, o T@HF and

Oo 7';1?, and by estimating the difference in terms of the o and (3 coefficients, decomposing
a function f € L?(H}) using a suitable wavelet basis. It is in this step where we need the
assumption Lip(A) < 1 for w = x, if w € {p, X} then Lip(A) < oo suffices. This is done in
section 8 (see Theorem 8.1).

Finally, in section 9 (see Theorem 9.1) we show that the L? boundedness of V, o 7;<HF
and O o T yields the L1(H2) — LY(H}) and L®(H2) — BMO(H}) boundedness of
these operators, and then we obtain the L? boundedness in the whole range 1 < p < oo by
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interpolation again. The same holds for the other families of truncations w. This finishes
the proof of the Main Theorem 1.1.

Let us stress that almost all the estimates in the proof of Main Theorem 1.1 (in particular,
the constants involved in the relationships <, 2 and =) depend either on n, d, K or Lip(A),

and possibly on other variables such as p or p.

4. PROOF OF THEOREM 3.1

In order to study the difference (K @g—m %) () — Emypu(z), we are going to split E,,p(z) into
two parts, the one we will compare with (K@g-m * p)(2) (which corresponds to integrate, in
the definition of E,,u(z), over the points y € R? such that 27 < | —7]|), and the remaining
part. Then, we will estimate each part of (K@y-m * p)(x) — Epp(x) separately, using the
cancelation properties of the kernel K and the uniform rectifiability of pu.

Recall from (2.18) that E,,u(z) = [[ Ah(z, z; y)K(z — y) du(z) du(y). Given € > 0, we
set ¥e := 1 — @.. Then,

r) = / / Goom(z — YA (2, 2 ) K (2 — ) dp() dpu(y)
+ // Yo-m(x — y)Ah (2,25 y) K (2 — y) du(z) du(y).

The first term in the previous sum is the one that we will compare with (K @y—m*u)(z). For
all a € R™ such that € D}, we have supp @o-—m (x —-)ND2 = (), and thus (K @g—m *u)(z) =
(K@g-m * (X(pg)ei))(x). Hence, using Fubini’s theorem and the definition of Af,(z, z; y),

(KGpwsn)@) =2 [ (KGynx (\pgyeh)) (@) da
{a:2zeDg%}

_ gmn /{ oy MR / (K Brn x (X3 e0)(2) du(z)da

— [ Frnt@ - Ao K @ ) i) duty)
We can decompose (K @g—m * p)(x) — Enu(z) as
(K @g-m * p)(x) — Emp(z)

- / / Goom(z — YA (2,2 ) (K (& — y) — K (2 — ) du(z) du(y)

(4.1) - // Yo-m(x — y)Ah (z, 25 y) K (2 — y) du(z) du(y)
=Y F'x)-) GP'()
j<m JEZ
where
(4.2) / / 2w — g A (2 ) (K (2 — ) — K (=2 — ) du(z) duly),
(4.3) / / G212 — y)raem (@ — YA (2, 2 y)K (2 — y) dplz) dpy).

Fix a v-cube D € D,,, for some m € Z. In subsection 4.1 (4.18)) we will prove that

(see
m dlst(m Lp) (D)
(4.4) ];nu? S =D +Q€Z§CQ ) a(Q)
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for all x € DNT, where Lp denotes an n-plane that minimizes a(D), and in subsection 4.2
(see (4.37)) we will prove that there exists a constant Cj, > 1 such that

(15) A R R DR are)
JEL QeD:QCCyD E(D)TH_

for all x € DNT. Assuming that these estimates hold, by (4.1),

Willsn = 3 3 [ 106B0n +0)(@) = Bua) 2 du(o)

mMEZ DEDy,

dist(z, LD (D) 2

dp( D

~Dz@/< ) e+ 5 (3 fgier@) o
(46) DcQ
n+1 2
+ 3 a@DruD)+ 3 (3 fpjma(@) uo
DeD DeD QEeD:
QCCyD

=: Wip + Wap + Wap + Wy

If L}, and L%, denote a minimizing n-plane for 1 (D) and S2(D), respectively, one can show
that disty (LpNCrD, LhNCrD) < a(D)¢(D) and disty(LLNCrD, L2NCrD) < Bo(D)U(D).
This easily implies that, for € D N T, dist(z, Lp) < dist(z, L%) + B2(D)4(D) + a(D){(D),
0 Wipt S ¥ pep(a(D)? + Ba( D))u(D).

By Cauchy-Schwarz inequality,

Wap < ZM(D>< > %;MQV)( 2 igg;)

DeD QeED: DCQ QeD: DCQ
(D) 2 2
DI no “Q’~ > al@)?u(Q),
DeD QeD: DCQ QeD

and also

f g n+1
Wap < Zu(@( > g((g))nﬂ (Q)2>< 2 a(g))w)

DeD QeD:QCCyD QeD:QCCyD

14
~Y Y uQrgpe@?s Y al

DeD QeD:QCCyD QeD

Therefore, using (4.6) and that a(Q) < a(CyQ), we conclude that

W all72) S D (@(ChQ)* + B2(Q))u(Q),

QeD

and the theorem follows. It only remains to prove (4.4) and (4.5).

4.1. Estimate of >, F;"(z) when x € DNT for some D € Dy,. Assume that z €
DNT for some D € Dy, and j < m. Let Lp be an n-plane that minimizes «(D) and let
op = cpH] be a minimizing measure of a(D). Let L7, be the n-plane parallel to Lp that

contains x and set o7, := cpHFs .
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Notice that, because of x € L7, the antisymmetry of @g:j,lK , and since j < m (so, if
rxeDS andszuppgoQJ 1(z =), then y ¢ D%), we have

0= /agjj_l(x — y)K(w —y)dop(y)

wn = / / / 527 (@ — ) K (x — y) dob (y) dod(z) da
{a:z€DY }UD K3 8¢
— / / G2 (x — g AP (2, 25 y) K (2 — y) do(2) do (y).
Given a € R", let b := a + {2771} € R be the center of D. For u € R" we denote

|u]|oo := max;—1,_,|u?|. Then, given t € R it is clear that ¢t € D2 if and only if || — b||oe <
2™, Using that o7, is a Hausdorff measure on an n-plane, that K is antisymmetric and

that @3:;,1 is symmetric, one can show that

= / / / PL i (x — y)K (2 — y) dod(y) dob(z) db.
F-blloe <2 J 5=t <2 Jg-blloc>2-m

By the change of variable b = a + {27m=117 it is easy to see that this triple integral is equal

to f{a:reD,‘}L} fD#L f(D#L)C 2] (x —y)K(z — y) do},(y) dof(z) da. Thus, since of)(D,2%) does
not depend on a € R™ because 0% is flat,

0= [ Lo L B WG =) dobiy) doh(z) da
— [[ e - AP 25 K - ) dop(2) dop (o).
By (4.7) and (4.8), we conclude that

(49) 0= / / G2 — AP (e 2 ) (K (z — y) — K(2 — ) doy(2) dob (y).

(4.8)

By definition, it is clear that Afn% (z,z;y) = A%P(z, z; y). Therefore, using (4.9), we can
decompose

(4.10) F"(x) = F17"(x) + F27'(x) + F37'(x) + F4T'(x),

where

(4.11) F17(x //902 i@ =y (z,25y)
(K(z —y) — K(z —y))d(p — op)(2) du(y),

(4.12) F27'(x //902 Tz — ) A (2,25 y)
(K(z —y) = K(z —y))dop(z) d(n — op)(y),

(4.13) F3"(x //902 T —y) (A (2,25 y) — AP (3,25 y))

(K(z —y) — K(z —y)) dop(z) dop(y),

(4.14) F4™(x //902 L@ - AP (2,23 y)
(K(z —y) — K(z —y))d(op x op — o x 0D)(2,y).
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In the next subsections we will prove the following estimates:

(4.15) |1 ()] + |F37 (2)| S 27 ™ a(D),
(4.16) |2 ()| < 27 > a(Q),
QeD: DCQ, 6(Q)<2-
. dist(x, Lp)
m < gj—m 22\ ZD)
(4.17) |F47 (x)] < 2 )

Then, using (4.10), we will ﬁnally get that, for all D € D), and x € DNT,

dYOIE @) S D) +y 2 > a(Q)

(4.18) j<m Jj<m QED: DCQ,4(Q)<2~7

Lp
)
< dibt(:r,)LD) i Z éEDi a(Q),

QeD:DCQ
which gives (4.4).

4.1.1. Estimate of F'17"(z). Notice that, if |z — 2] > 27\/n, there is no a € R" such that
x,z € D%, and this means that A}, (z, z; y) = 0. Thus, we can assume that |[7—2| < 27" /n.
Therefore, if the constant Cp (see the definition of the «’s in subsection 2.2) is big enough,
SuppAH ( Ty y) C Bp.

Fory,z € I"such that y € suppcp2 p ’ (z—-),j <mand|T—Z] < 27™/n (so, in particular,
|z — z| < |z — y|), we have the following estimates:

K(z —y) — K(z —y)| S |o — z[|Jz —y| " g 20HD-m
VK (z—y) — K(z—y))| = |V.K(z —y)| < 27041,
Claim 4.1. We have [Afi(z,2; y)| S 2™ and |V Al(2, 25 9)| S 270D for allz,y, » € RY,

Claim 4.1 and the subsequent ones 4.2,...,4.7 will be proved in subsection 4.3 below.
Putting all these estimates together we obtain that

Ve (M5 ) (K (2 —y) = K (2~ y)) )| 5 2000,
and, since suppAh,(z,-; y) C Bp, recalling the definition of distp,, in (2.3),
[ Aoz ) = 9) - K =) dla = o0)(2)
We can use this last estimate in (4.11) to obtain
FI (@) £ 20V st (n.00) [ 52 (@ - ) duty)

< 2t distp, (u,0p) & 227 4(D) " istg,, (1, 0p) < 277 "a(D),
which, together with the estimate of [F3]*(x)| in subsection 4.1.3, gives (4.15).

< PFFM N Gistp (o).

4.1.2. Estimate of F27"'(z). Arguing as in subsection 4.1.1, we can obtain the following
estimates for x,y, z as above:

(4.19) P2 (@ —y)| <1 and [VypZ, i(z —y)| S 2,
(4.20) K (2 —y) = K(z =) S o —2lje —y| 771 g 22007
(4.21) Vy(K(z —y) = K(z = 9))| S VK (z — y)l]z — 2| S 22
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(by |VEK (z —y)| S 27("+2) we mean that all the components of the matrix V2K (z —y) are
bounded in absolute value by C'27("+2)),

Claim 4.2. For j <m, y € supp@fjjj,l(w — ), and |7 — Z| < 27™\/n, the following hold:
|An(z, 25 y)| S 2™ and VyAh(z,z; y) = 0.

Notice that the first estimate in Claim 4.2 is the same as the first one in Claim 4.1.
Let D; € D; be the unique dyadic v-cube with ¢(D;) = 27/ which contains D. Then,

suppaﬁg:;,l(x — ) C Bp, for Cr big enough. Therefore, we can use the previous estimates
to see that the gradient of the term inside the integral with respect to y in (4.12) is bounded
by 2/(n+2)+m(n—=1) and is supported in Bp,, and then by (2.3) we derive that

P (s |</\/¢2J1 AL (2,2 1)

(K(x —y) — K(z —y))d(p— op)(y)| dop(2)
(4.22)

<[ 2D em N dist (1, 71) dorp(2)
[z—z]<2—™/n ’
< (”+2)_mdistBDj (1,0p).

We shall estimate distp,, (i,0p) in terms of the « coeficients. Consider the unique se-
J
quence of dyadic v-cubes D =: D,,, C ... C D;11 C D; C ... C D; such that each D; belongs

to D;, for i = j,...,m. Let Lp, be an n-plane that gives the minimum in the definition of
a(D;) and let op, := cp, d’H%D be a minimizing measure. We will prove that
m—1
(4.23) distp,, (1, 0p) <277 > " a(D;
J . .
i=j

Combining (4.23) with (4.22), we will finally obtain that [F27'(z)| < 2i—m Zﬁgl a(D;),
which gives (4.16).
Let us prove (4.23). By the triangle inequality,

distp, (,0p) < dist g, (1sop;) + 2055 dlstBD (0D;,0D;41)
< 27t (D)) + Zi:jl distp,, (0D,,0D,41)s
so we are reduced to prove that, for all i =j,...,m — 1,
(4.24) distBDj (0D;,0Di4) S 27D (D).

By definition, distBDj (0p;»0D,4,) = sup | [g d(CDinDi _CDH—IH%DH&)}’ where the supre-

mum is taken over all Lipschitz functions g supported in Bp, such that Lip(g) < 1. Fix one
of such Lipschitz functions g. Then,

[odten s, ~eo i, )= e ~en) [aams,

+ CDi+1 /gd(HTLLDZ - H?/DH,1 )

It is shown in [To, Lemma 3.4] that |cp, —cp, .| < a(D;), so the first term on the right hand
side of (4.25) is bounded in absolute value by €277t q(D;).

(4.25)
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In order to estimate the second term of the right hand side of (4.25), set Lp, , =
{(t,a(t)) € R? : t € R"} (where a : R* — R4 is an appropriate affine map), and let
p: Lp, = Lp,,, be the projection defined by p(t) := (t,a(t)). Since I is a Lipschitz graph,
a is well defined and p is a homeomorphism. Let piHT be the image measure of My, by

p. It is easy to check that ’HnD = Tpﬁ”H"D , where 7 is some positive constant such that
i+1 i
|7 — 1] < a(D;) and 7 < 1. Therefore,

[z, nz, )

(4.26) < ’/(1—7) (t)dHy, (¢ ‘ ’/ p(t))) dHE, (t)
290 a(Dy) + [ I(9le) - gp(e)] aH,, (0.

_ ‘ [0 - rao0) dH%D,@)\

Since g and g o p are supported in Bp, and g is 1-Lipschitz, by [To, Lemma 3.4],

/| —gop |d7‘[LD N/B diSt’H(LDimBDjaLDHImBD]-)d,HZDi
Dj

2_jndiStH(LDi N BD]., LDi+1
2_jn2i_jdisty (LDi N Bp,,Lp

OBDJ,)

<
S NBp,) S 277" a(Dy).

41

This last estimate together with (4.26) and the fact that |cp,,,| < 1 implies that the second

term on the right hand side of (4.25) is also bounded in absolute value by €277+ q(D;).
Therefore, to obtain (4.24) we only have to take the supremum in (4.25) over all admissible
functions g.

4.1.3. Estimate of I'3]"(z). Notice that, by Fubini’s theorem,

1 1
Moz ) = AP s ) =2 | (sm5 - ) da
{a:z,26D2,y¢D2} M(DT?L) O.D(DT%)
_ 2mn/ GD(Dm) - M(Dm) da
{a:z,2€6D%,y¢D2} M(DT%)O-D(D#Z)

—am | ([ don—n)u) ap(ng) da
{a:z,26D%,y¢D25} teDg
— [ Mer (et g dion - n)o).

Since ALP (x, z,t; y) = 0 if |Z — t] > 27\/n, we may assume that suppAs?(x, z,-; y) C
Bp (by taking Cr big enough).

Claim 4.3. We have |[A%7P (z, 2z, t; y)| < 22 and |V ARP (z, 2,t; y)| < 2D for all
z,y, 2zt € RY
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Using Claim 4.3, we deduce that |Al(z,2; y) — A%P(z, 25 y)| < 27t distg, (4, 0p),
and then,

Fam(@)] < / 527 () / ) dist s (1, o)
F—2|<2-m /m

& 2lle — y| ™" dop (=) dop(y)

< 22D dist g (, o) dop(z)dop(y)

[Z-g1<2773v/n
[F-z]<2™™yn

< 2" distp,, (p,0p) S 27 "a(D),

which, together with the estimate of |F'1}(z)| (see subsection 4.1.1), gives (4.15).

4.1.4. Estimate of F'47'(x). Set Lp = {(y,a(y)) € RY : 5 € R"}, where a : R — R is
an appropriate affine map, and let p : L, — Lp be the projection defined by p(y) := (¥, a(y)).
Since I' is a Lipschitz graph, a is well defined and p is a homeomorphism. If pyo?, is the
image measure of o7, under p, we obviously have op = pyo?, because Lp and L7, differ from

a translation. Therefore, since p(y) = vy, (4.14) becomes

FA™(x) = / / (K(x — p(y)) — K(p(z) — py)) — (K(z —y) — K(z — 1))
G2 1w — YA (2, 25 y) dot(2) dob ().

For y, z € L}, such that @22:;,1(1'*3;)/&21% (z,z;y) #0, we have K(p(z)—p(y))—K(z—y) =0,
so we can estimate

|K(z —p(y)) — K(p(2) —p(y) — (K(z —y) — K(z —y))| = |[K(z — p(y)) — K(z — y)|

T o
SWSW(” Ny — p(y)| ~ 20V dist(x, Lp).

By the same arguments as in the proof of Claim 4.1, one can easily see that |AZ§5 (z,z;9)| <
2™ Therefore,

|FA7 ()] S 2/ dist(x, Lp)2™" / & gi<a-r3ym 90D (2) dop(y)
[z—2[<2~™/n
< 2 dist(z, Lp) ~ 2™ dist(x, Lp)/4(D),

which gives (4.17).

4.2. Estimate of ., G'(z) when z € DNT for some D € Dy,. Assume that € D
for some D € D,,. Recall from (4.3) that

G () = / / G201 (2 = e (& — y)AE (2 25 9K (2 — y) da(=) dia(y),

where 0 < yo-m(z —y) < 1, [Vyyp-m(z —y)| S 2™ for all 2,y € RY, and yo-m(z —y) =0
whenever |Z — g| > 27™3,/n. Notice that Ah,(z,z; y) = 0if | — z| > 27™/n, thus we can
assume that |7 — 2| < 27™/n and |Z — y| < 27™+2,/n in the integral that defines G (x).

Hence, if j <m—2, &g:j,l(z—y)A“m(x, z;y) =0forall z,y € R?, because §2 ] ,(z—y) =0
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if Z—g| <277712.1y/n, and 277712.1y/n > 272 /n when j < m—2. Therefore, G*(x) = 0
for j < m — 2, and then
(4.27) Y G =Y GF(x)
JEZ jzm—1

so, from now on, we assume that j > m — 1.

Let Lp be an n-plane that minimizes a(D) and let op := CDHZD be a minimizing measure
of a(D). As we did in the beginning of subsection 4.1, given a € R", let b := a+ {27 1}" ¢
R™ be the center of D%. Recall that, for t € R?, ¢ € D if and only if || —bl|oc < 27™. Using

that op is a Hausdorff measure on an n-plane, that K is antisymmetric and that 622:37_1 and
Y9—m are symmetric, one can show that

0= / / / G2 (2 —y)
[Z=b]l oo <27™ J[|Z=b|loo <27 ™ J [|F=b[co>27T
Noem (& — ) K (2 — y) dop(y) dop(z) db.

By the change of variable b = a +{27™71}" it is easy to see that this triple integral is equal

to f{a:zeD;}L} fDﬂl f(D&)C 4}522:]7,1(2 — Y)yg-m(z — y)K (2 — y)dop(y) dop(z) da. Thus, since
op(D/:) does not depend on a € R™ because op is flat,

0=/ / / Fria(z—y)
{a .’leDa a, a)c

(4.28) g (& — ) K (2 — ) dop(y) dop(z) da
- / / G2 (2 — g (& — y)ATP (2, 23 y)K (2 — y) dop(2) dop(y).

Let {ng}oep, be a partition of the unity with respect to the v-cubes Q € Dj, i.e. 7g : RY —
R are C* functions such that: xo.0q < 1@ < X110, [Vigl SUQ)™ =2/, Ypep, no = 1
and 1o (y) = ng(y,0) for all y € R%. It is easy to check that, if j > m — 1, Q € D;, and
supprg N suppys-m(z — -) # 0, then Q C C.D for some absolute constant C, > 1.

Given @ € Dj, let L and 0q := coH},, be a minimizing n-plane and measure for o(Q),
respectively, and consider the measure

A= Z NQo0Q-
Q€eD;:QCCeD

By (4.28) and the properties of the partition of the unity {ng}qep,, for j > m — 1 we can
decompose G7'(x) as

(4.29) G (x) = G17'(x) + G2 (x) + G37*(z) + GAT'(z) + G5} (2),
where
(4.30) G17(z) = 1—00)(2) du(y),
! QED%CCE // ¢ e
(4.31) G2 (z) = . do w—00)(y),
QGD%CCE // Q o
(4.32) G3(z) = > / / ... d(og x 0g —op X op)(2,Y),

Q€eD;:QCCeD
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[ 2

where stands for &S:Jg,l(z — y)ye-m(z —y)no(y) K (z — y)Am(z, z; y), and

(4.33) G4™(x // G311z = yya-m(z —y)K(z —y)
(A (2,25 y) = Ay (2, 25 ) dop(2) dop(y),

(434) G5"(z / / G2 (2 — yhram(z — ) K (z — )
(Ap (2,25 y) — A% (2,25 y)) dop(z) dop(y).

In the next subsections we will prove the following estimates:
(4.35) G1 () + |G2) (@) + |G4T ()| S ) 2m (),
Q€eD;:QCCeD

(4.36) |G37'(x)| + G5 (x)| < > 2(mj><”+1>(a(o,,D)+ > a(R)),

QE'D]' :QCCeD ReD:QCRCCyD

where Cj, is some absolute constant bigger than C.. Then, using (4.27) and (4.29), we will
finally obtain that, for all D € D), and x € DNT,

Siermis Y Q(m—j)(n+1)<a(CbD)+ 3 a(R))

JEZ j=>m—1 QED;: QCC.D ReD:QCRCCyD

e n+1
> O (a@n Y am)

QED:QCCeD ReD:QCRCCyD

n+1
aGoy+ Y T ),

g(D)n—l—l
ReD: RCCyD

N

(4.37)

which gives (4.5).

4.2.1. Estimate of G17'(z). If o2 JJ (z—y) #0then 279712.1/n < |7 — 7| < 2773y/n, so
if we also have that y € suppnq, then z € 8,/nQ because @ € D;. Therefore, we can assume
that suppﬁg:f_l(- —y)ng(y) C Bg if Cr is big enough.

Claim 4.4. For z € suppﬁg:jj_l(~ — ), the following hold: |Ab(z,z;y)| < 2m(ntD—i
VoA (2,25 9)| S 270D, and [Vy Az, 25 y)| S 2700

We have that |K(z — y)| < 2" and |V, K (z — y)| < 270D for all 2z € supp{522:f,1(- —y).
Using (4.19) and the first two estimates in Claim 4.4, we get

V(321 (2 — y)K (2 — y) A (x, 25 y))| S 2D+,
Therefore, for y € suppng,

[ B - 0K = )N 25 ) dlo - 00)(2)

5 2m(n+1)+jndiStBQ (Mv O'Q)

< 2 a(Q),
and then,

G177 (2)| S Z / 2m D= 0(Q) du(y) < Z 2(m=)n+1) o ().
supprQ

QGDJ' :QCCeD QED]‘ :QCCeD
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4.2.2. Estimate of G2;-n(33). It can be estimated using the arguments of subsection 4.2.1,

but now we also have to take into account that |Vyyp-m(z — y)| < 2™ < 27, because we are
assuming j > m — 1, and we have to use the last estimate in Claim 4.4.

4.2.3. Estimate of G37'(z). Given z € DN and @ € Dj, denote

Hq(y, 2) == 3351 (2 = y)ya-m (@ — y)nQu)K (2 — y) My (, 25 y).
Then, (4.32) becomes
G37'(z) = / Ho(y,z)d(og x 0g —op X op)(z,y)
QED;: QCCe

- / Hoy, 2) d(cy 13, x Hiy, — b HE, x Hi,)(2,)

QEeD;: QCCP
4.38
(4.38) - / Holy, 2)(c — c3) Ay, () dH} ()
QeD;:QCCD
¥ & [ [ Hotw.2) diiy, x Wy~ iy, x ) (e00)
QEeD;: QcCe

=: G3AT"(x) + G3BJ"(z).

We are going to estimate the terms G3AT'(z) and G3B]'(z) separately. Recall that
(D) = 27™. Given a v-cube @ € D; such that Q C C.D, let Q =: Q; C ... C Qit1 C
Q; C ... C Q1 be the sequence of v-cubes such that @); belongs to D; fori =m—1,...,7.
Evidently, @mn—1 C CpD for some constant Cj, big enough, because ¢(Q,—1) = 2¢(D) and
Q C Qm-1NCeD. Let Ly, be an n-plane that minimizes a(Q;) and let og, := chHEQ be
a minimizing measure of a(Q;). Also, let Lc,p and o¢,p = CCbDHzc,,D be a minimizing
n-plane and measure of a(CyD), respectively.

In order to estimate G3AY"(z), notice that, by [To, Lemma 3.4] and the triangle inequality,
lcg,| S1foralli=m—1,...,7, and

|ty — cpl = |eq + epl e — ep| S leg, — cpl

j—1
S le@u-r — ccypl + [co,p — ep| + Z |CQi+1 = cq,
(4.39) i=m—1
Jj—1
aCGD)+ > a(@)SaGD)+ > aR)
i=m—1 ReD: QCRCCyD

(in the case that j = m — 1, there are no intermediate scales between j and m — 1, so one
just obtains |¢3) — ¢p| S a(CyD)).

Claim 4.5. For z € supp@ZQ:jj,l( —y), we have [Ny (z, z; y)| < 2 +D—i,

Notice that this last estimate is the same as the first one in Claim 4.4. Using Claim
4.5 and that |[K(z —y)| < 29" for all z € supp@2 (- — y), we easily obtain [Hg(y,z)| <
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gm(n+D+i(n=1) " Therefore, using (4.39),

GAr@) s S G- // (Hoy, 2)| dH} () dH, (1)

QED; : QCC.D

< ¥ z(mj><”+1)(a(CbD)+ T am)).

QEDj :QCCeD ReD:QCRCCyD

(4.40)

To estimate G3BJ"(z) in (4.38), we set

(4.41) G3B'(x)= Y chG3BQ)}(x),

Q€eD; :QCC.D

where G3B(Q)T'(z) = [[ Hgd( Lo X Mi, — M, x Hi,). Given Q € D; such that
Q C CeD, we split G3B(Q)}'(z) as follows:

7j—1
G3B(Q = > / / Hgd( <M, —Hi, xHi,)

i=m—1

4.42 n n n n
(442) +/ Hq d(HLme1 X HLme1 - HLCbD X HLCbD)

+/ HQd(’H’LleD XHle,p = Hip X H )

(as before, in the case j = m — 1 the first term on the right hand side of (4.42) does not
exist).

Fix i € Z such that m — 1 < i < j. Set Lg,,, = {(,a(¥)) € R? : § € R"}, where
a: R" — R%" is an appropriate affine map, and let p : Lo, — Lg,., be the map defined by
p(y) == (¥,a(y)). Let pﬁH" be the image measure of H" by p. It is easy to check that

Lo = Tpﬁ’HL , where 7 is some positive constant such that |7 — 1| S a(Q;) and 7 < 1.
it
Therefore,

[[ mawzyacus, | x#ig,, ~Hiy < Hi, )e)
— [[ (P Holwlo).p:)) - Holy. ) d, () d, ()
= [[ 7 (Holp).s:)) ~ Holy. ) d,, () d, ()
+ [[ @ = DHow. ) g, ) arty, )

(4.43)

Since |72 — 1| < a(Q;) and we have seen that |Hg(y,z)| < 2 H1D+i(=1) after Claim 4.5,
the second term on the right side of the last equality is bounded by CQ(mfj)(”H)a(Q ).

In order to estimate the first term on the right hand side of (4.43), notice that ¢2°)_, (z —
Y), Yo-m(z—y),no(y) and Al (z, 2 ; y) only depend on the first n coordinates of y and z (i.e
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on y and E) thus their values coincide on (y, z) and (p(y), p(z)). Then,
J[ 7 (Howw) ) - Holw.2)) ity () atty,
—r / / BT (2 = (o = YN )

(K(p(=) = py) = K (= =) dH,, (2) M}, (v):

Let 0; be the angle between Lg, and Lg,,,. One can easily see that, for y,z € Lg,, |(p(z) —
p(y) = (z = y)| S sin(0:)]z — y| < a(Qq)|z — yl. Thus, if also 2 € supp . (- —y),

1K (p(2) = p(y) = K(z = )| S 2D |(p(z) = p(y)) = (z = )| £ 2" a(Q))-
Together with Claim 4.5 and the fact that 72 < 1, this gives

/[ 7 (tatot o) - Hot)) i, (), (1)

[ 35 = wmotwn O DaQ g, () d, ()
< 2=+ o ().

N

From the last estimates and (4.43), we get

] / HQU(Hy, | x Hi, |~ Hi, xHi,)| S 279 a(Q)
for i = ..,j — 1. With similar arguments, one also obtains
‘ / Hgd( XHig | —Higp X ’HTLICbD)’ < om=Dn ) (0, D),
| // Hod(M3,, , x i, = i, x Hi,)| S 2" Da(G,D).

These last three inequalities together with (4.42), (4.41) and the fact that |cp| < 1 yield

7—1
G3B" ()| S > 2<m-f><"+1( (CD)+ Y o )
=m—1

(444) QGDJ' :QCCeD 7
S I CCOR ().
QED;:QCCeD ReD:QCRCCyD

Finally, (4.40) and (4.44) applied to (4.38) give half of (4.36).

4.2.4. Estimate of G47'(z). By Fubini’s theorem and the definitions of A, Al and A},

ADg) — w(Dy)
A (2,25 y) — A (2,25 y :2m”/ m 2 da
( ) {a:z,z€D%,y¢D2} M(D%)A(Drgz)
o [ (/ nalt)dlog = W0)) o o
= g —
{a:z,2€D2,y¢D2} teDg QED; :QCC.D N “ /’L(D#@)/\(D%)

= > /UQ AN, 2,5 y) d(og — p)(2).

QeD;:QCCeD
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We also used in the second equality that 1 = > ocp n0(t) = 2 gep,:gcc.p MQ(t) for all
t € DY if C, is big enough, and this is because j > m — 1 and | —t| <27 for all t € D2,

Claim 4.6. Forz € D, j>m—1, |[x —y| <27™, and z € supp@ZQ:jj,l( — ), the following
hold: [N (@, 2,5 )| S 27CHD and (VoM @, 2,5 )] S 2mCr D),

Using Claim 4.6 and the properties of 7¢g, we obtain

A,z y) = A,z )| S0 Y 2 distp, (p,00)
QeD;:QCCD

< Z Qm(QnH)*j(nH)a(Q)'
QGDj :QCCeD

Plugging this estimate into the definition of G47'(x) in (4.33), we get

G4 ()] < / / B2 (2 — yhram (@ — 9K (2 — )

9m(nt1)=i(nt1) o (Q) dop (2) dop(y)
QGD] :QCCeD

< Z Q(m*j)(nJFl)a(Q)’

QED]' :QCCe.D

which, together with the estimates of |G17*(z)| and |G27*(x)| in subsections 4.2.1 and 4.2.2,
gives (4.35).

4.2.5. Estimate of G5]'(z). Arguing as in subsection 4.2.4, we have

M@z 9) — AP (w2 g) = Y / o (AN (2,2t ) d(op — 00)(8)
(4.45) QED; : QCC.D

- Y [Howden - o)t

QEDj :QCC.D
where we have set Hg(t) := ng(t)Am”” (z, 2, t; y).

We are going to estimate the right hand side of (4.45) using the techniques of subsection
4.2.3. We have

(4.46) /HQ d(UD — UQ) = (CD — CQ)/HQ deD -I-CQ/HQ d('HzD - ?zQ)
We introduce the intermediate v-cubes between Q € D; and D € D, to obtain
(4.47) lep — col < a(CyD) + > a(R).

ReD:QCRCCyD

Claim 4.7. Forz e D,j>m—1, |z —y| <27, and z € suppafo'g:jj,l(- — ), the following
holds: [ANP (z, 2,3 y)| < 2m@ntD =3,

Combining Claim 4.7 with (4.47), we derive that

(4.48) lep — g / |Hg| My, < 2m@nt=iltd) <a(CbD) + a(R)).

ReD:QCRCCyD
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For the second term on the right side of (4.46), one can also use the arguments in subsection
4.2.3 (see (4.42) and following) to show that

< gmint)—i(ntl) (a(C’bD) + > a(R))

(4.49) ‘ / Ho d(H}, — H},)
RED:QCRCCyD

(now it is easier because the function Hg(t) only depends on the first n coordinates of the

points involved, i.e., it depends only on Z, ¥, z and ¢, so when we project vertically to deal
with the image measure, the function Hg is not affected). Therefore, by (4.48), (4.49),
(4.46), and (4.45), we obtain

AN 23 y) — AP zig)] S S 2m<2"+1>-ﬂ‘<”+1>(a<cbp> . a(R)).
QEeD;: ReD:
QCCe.D QCRCCyD

From the definition of G57*(z) in (4.34), we conclude that

Gpls Y weme(agps Y am)

QeD;:QCCeD ReD:QCRCCyD

] #54G = pne = K = ] do(z) don)
< Z 9(m—j)(n+1) <a(CbD) + Z Oé(R))’

QG'D]' :QCCeD ReD:QCRCCyD

which, together with the estimate of [G3](z)| in subsection 4.2.3, gives (4.36).

4.3. Proof of Claims 4.1,..., 4.7. We have to prove:

e Claim 4.1: We have [Ah(z,z; y)| < 2™ and |V.Ah(z,z; y)| < 27+ for all
z,y,z € R4

e Claim 4.2: For j <m, y € suppﬁg:j_l(m — ), and |Z — Z| < 27"™/n, the following
hold: |Af(z, z; y)| S 2™ and VAL (z,2; y) = 0.

e Claim 4.3: We have |[AR (x,2,t; y)| < 22" and |V AP (x, 2, t; y)| < 2m3ntD)
for all z,y, z,t € RY. _

e Claim 4.4: For z € supp@2 ; (- —y), the following hold: [Af,(z, z; y)| < 2m+D=7,
VoA (2,25 y)| S 270D Dand |V, Ab(z, 25 y)| S 2mHD),

e Claim 4.5: For z € suppp2 (- — y), [Aln(z, 23 y)| S 2m+D—,

e Claim 4.6: Forz € D, j>m—1, |z —y| <27, and z € suppﬁg:jj_l(- —y), the
following hold: [Al(z, 2, t; y)| S 2mC@HD=0 and |V,ARN (2, 2,85 y)| < 2m @D,

e Claim 4.7: Forx € D, j>m—1, |z —y| <27™, and z € Supp&%:jj,l(- —y), the
following holds: [Ay7? (z, 2, t; y)| < 2m@nt1)=i,

To prove the claims, we need to express the function A at the end of subsection 2.3 in a
more convenient way. Notice that we can replace D}, by D2 in the definition of A because
p and the n-dimensional Hausdorff measure vanish on 0DJ,.

For u € R™ and r > 0, we denote |u|oo = max;—1, _n|u'|, Boo(u,r) == {v € R"
|t — Voo <7}, and BT (u) := Boo(u,27™ 1), Given a € R, let b:=a + {27™71}" € R" be
the center of 57‘}1 Then, given ¢ € RY,

qEDS < |G—bloo <27™ < be BZ(Q.
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Let 1, ..., pug be positive Borel measures such that p;(D,%) > 0 and p; (D)%) = 0 for all
acR"meZandl=1,...,k. Given m € Z and x1,...,2;,¥y1,..-,Y; € R? we have, by
the change of variable b = a + {27™1}" € R,

2" da
A!Ll,m,“k(xla"'axi;y17"'7yj):/ =k o~
m {ae]R” T, T€DG, ylv-‘)ngDir%} H;C:1 :“l(Dr?m)
_ onm / XBg @)n.nBg @0 @) n-nan @) ®)

(0 &)

(4.50)

Proof of Claim 4.1. By (4.50), we have
nm _fo—-m—11n\ —1
(4.51) A (z,z5y) =2 /M(Dfn Y T B 3B (3nBm )< (b) db

Since (DY) > 27™ for all b € R",
Af (2,25 y)| S 2L (BL(T) N BR(Z) N BL(G)°) < 22" L (B (T)) < 2"
To deal with the second inequality in Claim 4.1, we will estimate
(A (@, 215 y) — A (2, 225 )| /|21 — 22

for z1 close enough to zo. Recall that, given two sets Fy, Fy C R™, F1AFy := (Fy\ Fo) U(Fy\
F1) denotes their symmetric difference. Using (4.51), we get

|AR (2,215 y) — AR (2, 22 y)|

< 22nm/|XB FNBm (5B (5)° (b) — XBm (Z)NBm (5)NB( ( )| db

(4.52)

— 222" ((BL(3) 0 B (31) N BL(5)°) A(BL(E) 0 B (%) N BL()) )

< 22nm£n(BOng(2~1)ABgno(%)) S 22nm|2?i _ 2'2|2—m (n—1) < 2m(n+1)|21 _ Z2|,
and the claim follows. O

Proof of Claim 4.2. The first estimate has been already proved in Claim 4.1. Let us deal
with the second one. Notice that if y € supppl;_,(x — ) then |Z —g| > 277712.1/n. Thus,
if also j < m and |7 — 2| < 27™/n, then |7 —y| > 27™/n and \3— y| > 27™/n. Therefore,
BT (Z)NBZ(Z)NBR(y)¢ = B2(Z)NBL(Z) for all y € suppp2 ), (x—-), if [T—Z] < 27™/n.
This means, using (4.51), that Al (z, z; y) does not depend on y, so V AL (z,z; y) =0 for
all y € supp@ZQ:jj,1 (z — ), and the claim is proved. O

Proof of Claim 4.5. This claim follows by arguments very similar to the ones in the proof of
Claim 4.1. Just notice that u(D2)op(DL) = 272m for all b € R™. O

Proof of Claim 4.4. Using (4.51), we have that
Af (2, 25 y)| S 22" L"(BR(F) N BY(2) N BR(Y)°) < 22" L™(BL(2) N BL(5)°).
Notice that £"(B2() N B(F)7) < 270~V [ — 3. Since = € supp2 (- = 9), |7 — 2| <
2793y/n. Thus, £™(B2(2) N BZ(7)¢) < 27 D=7 and then |Ah(z, z; y)| < 2m( D=7,
In Claim 4.1 we already proved that |V, A (z,z; y)| < 27D, Finally, to prove that

|V A (2, 25 )| < 27D one can repeat the computations done in (4.52) but applied to
the y coordinate and use that BZ(y1)°ABYZ (y2)¢ = B2 (y1)ABZ(y2). O

Proof of Claim 4.5. This claim is included in the previous one. O
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Proof of Claim 4.6. Recall that A\ = Zerj .0cc,p MQoQ, where C is some fixed constant
big enough (see the beginning of subsection 4.2). Using the properties of 1g and that C. is

big enough, it is not difficult to show that /\(Df{{Q_m_l}n) 2 27" for all b € R™ such that
b € B7(7) (recall that x € D and j > m — 1). Therefore, by (4.50),

AN, 2,85 )| S 2°L (BR(E) N BL(2) N BR(E) N B (5)°)
< 2L (BR(Z) N BR(G)°).
As in the proof of Claim 4.4, we have £"(BZ(2) N B2(y)) < 2-m(n=1=i for all z €

supp@fjjj,l( — ). Thus, |42, 2, t; y)| < 2mCrHD=3 | a5 wished.
For the second estimate in Claim 4.6, we argue as in (4.52). For ¢; and 9 close enough,

|A#>\((L‘,Z,t1 ; y) - Afr{)\(x»zatQ; y)|

< 28mm / \Xng(g)mng(z)nt(ﬂ)mng@c(b) - XBg”o(E)mBg(E)nt(tE)mBg@c(b)| db

< 23nm£n (Bong(ﬂ)ABon;(g)) S 23nm|ﬂ _ 7E;|2—m(n—1) < 2m(2n+1)|t1 _ t2|,
and the claim follows by letting t; — to. O

Proof of Claim 4.7. This claim is proved as the first estimate in Claim 4.6, replacing u by
op (we only used that u(D?2) > 27™" for all b € R™, which also holds for op). O

5. PROOF OF THEOREM 3.2
Given z € T, let {em}mez be a decreasing sequence of positive numbers such that
(5.1) Su(x)* <2 > (K@, w)(@)],
JEZ MEL: €m,em+1€1;

80 {€m }mez depends on z.

Fix j € Z and assume that € D, for some D € D;. Let Lp be an n-plane that minimizes
a(D) and let op := cpH}  be a minimizing measure for a(D). Let L}, be the n-plane
parallel to Lp which contains z, and set o7, := cpHTx .

By the antisymmetry of the function @:;:HK , and since o7, is a Hausdorff measure on the
n-plane LY, and x € LT, we have

(K3, s o)) = [ 3o, (o - K @ - ) dop(y) =0
for all m € Z. Therefore, we can decompose

(5.2) (Kol xp)(x) = (Kgqr,, + (u—op))(x) + (Kgr,, * (op — op))(x).

For every m € Z such that €,, €m41 € I; we will prove the following inequalities:

(5.3) (K&, * (1 —op))(@)| S 2 lem — ems1]a(D),
(5.4) (K@, * (op — 0h))(@)] 2% |em — emer [dist(z, Lp).

Assume for a moment that these estimates hold. Then, by (5.2),

(K, * m)(@)] £ 2 lem — ems| (a(D) + 2 dist(z, Lp)) -
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Then, using (5.1), we conclude that

1Suag <237 30 / S K, ) @) du(z)

JEZ DED; MEZL: €m,e€m+1€1;
dlst(x, Lp)\? lem — €ma1] )
S ( s Otntol)t 5 (s tmaly g
J€EZ DED; meZ:

€m,€m+1€1;

< Z )+ Z/ <dlstx ,Lp) > ().
DeD DeD
The second term on the right hand side of the last inequality coincides with Wi (see (4.6)),
thus it is bounded (modulo constants) by 3 pep ((D)? + B2(D)?) (D), and Theorem 3.2
is proved.
It only remains to verify (5.3) and (5.4) for x € D € D; and m € Z such that €y, €41 € ;.
First of all, notice that ¢Sm, = satisfies

[z -yl _[z-9l

i i
Fem (2 —y)| = @R(' ') —@R<' ')\ < hll e
(5.5) €mt1 € emt1  m
~ € 1 :
~ Ihllel? — 71 2 S D, — e
m m

for all y € supp g™, (z —-). Fori=1,...,d,

€Em+1

O Bonlz— ) = g (EZT) F 22
i €m R €m m "L\L’/ — g‘ [1,n] .

Hence,
~ 7 — ) 1 / <I5—§I> 1
0, em (o — < - J0)y = o dJry -
|0,i (g, (x —y))| < ¢R< o o o ) e
Ty 1 Ty T—y
o <| |> N wk(' I) wk(' >
€m €m+1

6m €m+1
|Z =Y\ em — €m+1
(anmn@ e m — Eml,
€Em+1

1

€Em+1

Emem+1
Since €m, ém+1 € I, we deduce from the previous estimate that, for x —y € supp pcm, |,
~ €m — € 1 .
(5.6) 19y (Per, (= 1)) | S 2~ 9% e — €.
Em€Em+1
We are going to use (5.5) and (5.6) to prove (5.3) and (5.4). Let us start with (5.3). Since

€m, €m+1 € 1, we can assume that supp S (z — ) C Bp, by taking Cr big enough.
By (5.5) and (5.6), for all y € supp g™ (z — ),

9, (357, 0 — K@ = )| £ 20 le — e,
hence
(K@ o+ (n—op))(@)] S 27" |en, — e |dists,, (1, 0D) S 2lem — ems|a(D),
m—+1

which gives (5.3).
In order to prove (5.4), set L% = {(t,a(t)) € R? : t € R"}, where a : R® — R%™" is an
appropriate affine map, and let p : Lp — L% be the map defined by p(t) := (£,a(t)). Since
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I" is a Lipschitz graph, a is well defined and p is a homeomorphism. Let pyH} = be the image
measure of H} = by p. It is easy to see that, |y — p(y)| ~ dist(z, Lp) for all y € Lp. Notice

also that the image measure pyH} = coincides with H’,—}B . Therefore, since 5 | (z —y) only

depends on T — 7,

- (K3o o+ (on — o5)) () = cp / Fen (o — ) Kz — y) MY, —pHY ) (y)
5.7
—ep / Fen (@ —y)(K(z —y) — K(x — p(y) dH2 (y).

For y € supp o™ (x — ) N Lp, we have
K (z —y) = K(z = p(y)| S 2 V]y — ply)| ~ 27+ Vdist(z, Lp).
Plugging this estimate and (5.5) into (5.7), we conclude that
(K@, * (op — 0p))(@)] £ 2% |em — emerdist(z, Lp),

which gives (5.4); and the theorem follows.

2 HE HE
6. L* LOCALIZATION OF V, o 7'5 AND Qo 7:,5

From here till the end of the paper, I' := {z € R? : x = (¥, A(%))} will be the graph of a
Lipschitz function A : R® — R4, without any assumption on the support of A.

Theorem 6.1. Let p > 2. There ezist Cy,Cy > 0 such that, for every f € L>(H}) supported
in TN D (where D := D x R™ and D is a cube of R"),

(6.1) [ @ae T @t < Gy HD) and

HE 2
(6.2) [ (©@oTI ) amty < Call (D).
The constant Co does not depend on the fired sequence that defines O.

We will only give the proof of (6.1), because the proof of (6.2) follows by very similar
arguments and computations.

We claim that it is enough to prove (6.1) for all functions f such that f(z) ~ 1 for all
x € 'N D. Otherwise, we consider g(x) := ”f”ZiO(H?)f(m) + 2xp(x), which clearly satisfies

g(z) ~1forallz € 'ND. Since f = |[f|lLenp) (9 — 2xD),

(Vo o L) F(@) < Il gy (Vo 0 TL D )g(@) + 20V 0 T2 )x ().

Applying (6.1) to the functions g and xp, we finally get

[ (o T2 @t < 11 (D).

Given f and D as in Theorem 6.1, from now on, we assume that f ~ 1 in I' N D. Let
Zp be the center of D and set zp := (Zp, A(Zp)). One can easily construct a Lipschitz
function Ap : R" — R such that Lip(Ap) < Lip(A), Ap(F) = A(Zp) for all & € (3D)°,
and Ap(Z) = A(Z) for all ¥ € D. Let I'p be the graph of Ap and define the measure
W= H}‘D\D + fHt,p- Notice that x(3p)e is supported in the n-plane L := R" x {A(zp)}
and xpu = fHP.
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Since f ~ 1in ' D and xpp = (1 — x3p)c — X3D\D)H, We can decompose
| (o 20 g [ 0,005 5 (o)

< /D (VoK B * 1) + VoK G % (xamyert)) + Vol * (xapom))? dp.

In the next subsections, we will see that [, V(K@ * pu)?dp, [;, V(K@ * (x3p)en))? dp,
and [, V(K@ * (XSD\DH)) dy are bounded by C’u( ), and (6.1) W111 follow.

6.1. Proof of [, V(K@ pu)*du < p(D). Fix o € suppy, and let {en }mez be a decreasing
sequence of posmve numbers (which depends on z) such that

(6.3) VoK@ p)(2))” <2 (K@, * p)(x)]P.
meZ
For j € Z we set I; := [277=1 277). We decompose Z = S U L, where
S = U Sj, Sji={meZ: en, emt1 €1},
(6.4) JEL
L:={meZ: em€cleny €I fori<j}.

Then, >,z [(Ko&r  # 1)(2)17 =3 es (K@, ) (@) + 300 (K@, * ) ()7
Notice that, since the £°(Z)-norm is smaller than the ¢?(Z)-norm for p > 2,

(6.5) STIEES, W@ < Su),
meS
where Spu(x) has been defined in Theorem 3.2.

Let us now estimate the sum over the indices m € L. For m € Z we define j(e,,) as the
integer such that €, € Ij,,). Since {€m }mez is decreasing, given j € Z, there is at most one
index m € £ such that €,, € I;. Thus, if k,m € £ and k < m, one has j(e;) < j(em)-

With this notation, we have

DNESE + @) =D (Ko * 1)(2) = (K e, + ) (@)

meL meL
5 Z ‘(K¢6m+1 * /1,)(.73) - (K¢2*7(6m+1)*1 * N)(x”ﬂ
meL
+ Z ’(K()Acigfi(émﬁ»l)*l * M)(ZL’) - Ej(em+1)+1ﬂ(37)|p
meL
(6'6) + Z I j(e€m+1) +1,u ) Ej(em)-i-lﬂ(x”p
meL

+ Z 1Ej(em)+100(2) = (KPgjtem)—1 * p)(2)|”
meL

+ Y BBy * 1) (@) — (K e, * ) ()]
meL
S Su(@)f + Wp(x)? + Vo(Ep)(z)”,

where Sp(x) and Wp(z) have been defined in Theorems 3.2 and 3.1, respectively, and V,(Eu)
is the p-variation of the average of martingales {F,,p}mez from subsection 2.3. Therefore,
by (6.5), (6.6), and (6.3), we deduce that

Vo(K@ * p)(x) S Sp(x) + Wp(z) + Vo(Ep) ()
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for all € suppu, and so

(6.7) /D VoK@ ) dp S 1Spl 720 + Wl 200 + V(B 172,)-

Clearly, Theorem 2.7, Theorem 3.1, and Theorem 3.2 can be applied to the measure p,
because suppy is a translation of the graph of a Lipschitz function with compact support.
These theorems in combination with (6.7) yield

(6.8) /D V(K% u)dp < Cy <M(3D) + 3 (an(CQ)* + 52,#(@)2)11(@)),

QeD

where C1,Cy > 0 only depend on n, d, K, Lip(A4), and p (the condition p > 2 is used
to ensure the L? boundedness of V,(Eu)). Obviously, u(3D) ~ u(D) and, since X(3D)e 1t
coincides with the n-dimensional Hausdorff measure on an n-plane, using Remark 2.2 it is
easy to check that » ncp (u(C2Q)? + B2, (Q)*)(Q) < w(3D). Hence, we conclude that

Jp VoK@ p)? du < (D) by (6.8).

6.2. Proof of [, V,(K¢* (x(3p)ei))?dp S p(D). Fix x € suppu N D, and let {em }mez be
a decreasing sequence of positive numbers (which depends on x) such that

(6.9) (VoK@ * (xapyem) (@)’ <2 3 (EGT,, * (xpyer)) ()]
meZ
Recall that Zp is the center of D, zp = (zp,A(Zp)) and L := R™ x {A(Zp)}. Since
X(3D)eht = ”HZ\SD and zp is the center of LN D, (K@° x (x3p)yeit))(zp) = 0 for all 0 < e < 6.

Thus, [(K@Sm , * (X@ap)em) (@) = [(Kogm , * (x@pyem) () — (K@em, | * (x@pyek))(2p)] <
01,, + ©2,,, where

o1, := / Gem (& — )| K(x — ) — K(zp — 9)| du(w),
(6.10) (8D)
02, = /( oy 1P =) = B o0~ IR e — ) ),

Since z € suppu N D and A is a Lipschitz function, we have |x — zp| < ¢(D), and then
|K(x —y) — K(2p — y)| < |z —zpllzp =yl S UD)|zp —y| 7" for all y € (3D)".

Therefore, using that >, ., ¢S <1 and that p > 1,
1/p
o (Ten) <X oms [ ablko-u " du £ 1
meL mez (3D)e

To deal with ©2,,, we decompose Z = SUL as in (6.4). As before, given m € Z, let j(en,)
be the integer such that €p, € Ij,,). Observe that

supp @, (v —+) C A(E,2.1\/52_j(6m+1)_1,3\/772_j(6m)) x R¥™ =: A, ().

Notice also that the sets Ay, (z) have finite overlap for m € £, and the same is true for the
sets A'j(z) = A(%, 2.1y/n27771,3/n277) x R¥" for j € Z. The same observations hold if
we replace z by zp (and & by Zp). Obviously, Ay, (z) C Aj(2) (and A (2p) C Aj(2p)) for
m e Sj.
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Assume that m € S. With the same computations as those carried out in (5.6), one can
easily prove that, for all z — y € suppp ™ "

~ =9\ em — ém+1 l€m — €m+1]
V Em z — 5 < oo + oo | > < 2](67‘/1)77
Vo (@em (2 =) S | Nkl oo ) + 0R N oo ® ) e e

because |2 — J| & € ~ €my1 ~ 20(m) for all z — y € suppp™ ., and m € S. In particular, if
zeDandye (3D), V(g (2 —v)| S 29(m)|e,, — emi1||Zp — §|~*. Hence,

02, < / g(p)g](em)m du(y),
(A () U A (2p))\3D |z

Zp — y|n+1

and then,
(Z 92p) <2 / ﬁ(D)wMﬂ% du(y)
mesS mes Y (Am(z) U Am(2p))\3D |ZD y\
|€m - 6m+1|
6.12 = / dp(y)
(012 ]GZZ ! (@) U A’ (2p))\3D |ZD y|”+1 n;
{(D)
/(3D)c Zp — |+ @)

Assume now that m € £. It is easy to check that |V, (63:“(2 —y)| S |Z—y7 for all
z,y € R So, if also z € D and y € (3D)¢, |V, (@:T’n"+1(z — )| S 12p — §| . Therefore,

( 3 @251>W <> / D) uty)

(6.13) mel ot (Am@) U Am(zp)\3D 12D = Y[

5/(3 %du(y)s L.

pye |Zp — yIn L

Finally combining (6.11), (6.12), and (6.13), with (6.9) and the fact that (K¢cm, |
(x@3p)ei)) ()| < Olyy, + ©2y, we conclude that

Vo(K* (X(3p)h (Z@1P> +<Z@2§1)1/p+<292g1>1/p51

meZ meS meL

for all x € suppy N D. Therefore, [, V,(K@ * (X@3D)e )2 du < u(D).

6.3. Proof of [, V,(K¢ « (X3D\DM)) dp < (D). Fix a € suppp N D. Since p > 1,

p> 1/p

<sup Y /D\Dﬁfxﬂ(w—y)lff(ﬂf—y)ldu(y) < /3 oy [0 ).

{em} meZ 3

VG o)) = s (3

{em} meZ

/ Gem (& — u)K(x — y) du(y)
D\D

By a standard computation, one can show that

/D </D\D K (z —y) du(y))Qdu(x) < (D),

hence we conclude that [, V,(K@ * (xap\p))2dp S pu(D).
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M My
7. LP AND ENDPOINT ESTIMATES FOR V, 075" AND O o 7"

We denote by H!(H%) and BMO(H}) the (atomic) Hardy space and the space of functions
with bounded mean oscillation, respectively, with respect to the measure Hi:. These spaces
are defined as the classical H'(R?) and BMO(R?) (see [Du, Chapter 6], for example), but
by replacing the true cubes of R? by our special v-cubes.

Theorem 7.1. Let p > 2. The operators V, o ’7';? and O o 7';{? are bounded

o in LP(H}) for 1 <p < oo,
o from H'(H}) to LY (M), and
o from L>®(H}) to BMO(HE),

and the norm of O o 7';[? in the cases above is bounded independently of the sequence that

defines O.

We will only give the proof of Theorem 7.1 in the case of the p-variation, because the
proof for the oscillation follows by analogous arguments.

7.1. The operator V, o 7';”5 . HY(H}) — LY(Hp) is bounded. Fix a cube D C R” and
set D:= D x R¥". Let f be an atom, i.e., a function defined on I" and such that

(7.1) suppf € D, [1fllp=(p < and [ fang=o

1
Hp (D)’

We have to prove that [(V, o ;{F)f dHp < C, for some constant C' > 0 which does not
depend on f or D.
First of all, by Holder’s inequality, Theorem 6.1, and (7.1),

Hn

" , 1/2
| wpo sy <m0 ([ (,072%0) anp)
3D 3

3D
1/2
SHEGBD)Y? (11w HRBD)) T S 1,

Thus, it remains to prove that [p).(V, 0 T )y dHp < C.

Given z € T\ 3D, let {en}mez be a decreasmg sequence of positive numbers (which
depends on ) such that

(7.2) (Voo T2 F(@) <23 (K@, + (FHY) (),

meJ

where J := {m € Z : supp p¢™, (x — ) N suppf # 0}, thus {€m }mez depends on z.

Set zp := (3p, A(2p)) € DNT, where Zp is the center of D. By (7.1), we have [ &z —
zp)K(x — zp) f(y) dH}(y) = 0 for all 0 < € < 4. Thus, given m € J, we can decompose

(Kar,, * (fHr) () = /@5;;;1(1‘ —y) (K(z —y) — K(z — 2p)) f(y) dHr(y)

+ / (Fem (& —y) — B (¢ — =) K — 2p) () dH(w),
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and we obtain [(KpSm |+ (fHE))(@)| < [[fl Lo p) (O1m + ©2y,), where

01,,: = /D@:T?H(gc —y)|K(x —y) — K(z — zp)| dH{(y),
02 : = /D |G (@ —y) = 8, (= 2p) || K (2 — zp) [ dHE (y).

The term ©1,, can be easily handled. For x € T"\ 3D, we have

(7.3) oL, < (D) dist(z, D) " /D e (x— ) dHR).

Let us estimate ©2,,. Decompose J = SU L, where S and L are as in (6.4) but replacing
m € Z by m € J, and as before, let j(e,) be the integer such that e, € Ij,). Using that
x € T'\3D and suppf C D, one can easily check that £ contains a finite number of elements,
and this number only depends on n and d. Similarly, S; = @ for all j € Z except on a finite
number which only depends on n and d.

Assume that m € §. With the same computations as those in (5.6), one can prove that,
for all y € supppr, (z — ), [Vy(gim, (z —y))| < 2y, — emi||T — F|71, because
1T —J| = em ~ emy1 = 277() for all y € suppps m (x—-). Thus,

(7.4) 02,, < (D)™ dist(z, D)™ 12|, — €1l

Assume now that m € L. It is easy to verify that |Vy($§;:’+l(x — y))\ <1z -9 so
02, < (D) dist(z, D)L
Combining this last estimate with (7.3), (7.4), the fact that [(K@gm | * (fHR))(z)] <

||f||Loo(HrFL)(®1m+®2m), the remark on S and £ made just after (7.3), (7.2), and that p > 1,
we have that, for all € I'\ 3D,

Voo TEI@) S Iy (0 O1m+ X 620+ Y- 02,

meJ meS meL

||f||L<><>(H")€(D)n—~_1 om lem — € |

< T an—l m m—+1

~ o dist(z, D)t (Z/ dHF )+mz: C2ilem) > >
(
)

meL
n+1
< 11| oo (g ¢ D) +
dist(z, D

Then, using (7.1) and standard estimates, we conclude that

n+1
Hp n( < £ 1l oo (g (D) iy <
L e Thi@ a5 [ Sl i) <1

7.2. The operator Vpo’]:,;{? : L®(HE) = BMO(H}) is bounded. We have to prove that

there exists a constant C' > 0 such that, for any f € L>(H}) and any cube DcC R™, there
exists some constant ¢ depending on f and D such that

’H'”. n n
1000 T2 =l < Cll gy (D)
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Let f and D be as above, and set fi := fxsp and fo := f — f1. First of all, by Holder’s
inequality and Theorem 6.1, we have

" n 1/2
[ oo Tnang <2 ( [ (0 20y any)
D 3D

SHED) (il HEGBD)) S 1l oo oy HE (D).

Notice that [(V, o 7:’,EHF)(JCI + f2) = (Vpo 7}5%?)&\ < V,0 %H?)fl, because V, o 7:,5%? is

sublinear and positive. Then, for any ¢ € R,
HTL ’HTL ’HTL H’ﬂ
(Voo T5 1) (f1+ fo) = el S|V 0 T3 M) (f1 + f2) = (Voo T M) fal + (Vo0 T5 ) f2 — ¢
<o TE A+, 0 TE) 2 —d,

hence we are reduced to prove that, for some constant ¢ € R,
’H" n n
(75) [ 10000 T2 12 = el a1 < I e o (D)

Set zp := (2p, A(Zp)), where zp is the center of D, and take ¢ := (Vo %H?)fg(,z[)). We
may assume that ¢ < oo (this is the case if, for example, f has compact support). By the
triangle inequality,

HE n
(Voo Ty fala) —c|” < sup (K@, # (fH)) (@) — (KB, * (faHit) (2p) .
{em ™0} ez
Given x € I'ND, let {€m }mez be a decreasing sequence of positive numbers (which depends
on z) such that

(V0 T2V o) — e <2 3 (K@, » (U (@) — (KB, + (M) (2D
meEZ
Notice that |(K@e,, * (f2H)(@) — (KGer,, * (FH) )] < 1]l uoe gy (O + ©2,),
where ©1,, and ©2,, are as in (6.10) but replacing p by Hp. It is straightforward to check

that the arguments and computations given in subsection 6.2 to estimate the two terms in
(6.10) (see (6.11), (6.12), and (6.13)) still hold if we replace p by Hp. Therefore, we have

> (O, +02,) 1,
meZ=SUL

which impies that |(V, o T )fg( —c| S [ fll o3z and, by integrating in D, gives (7.5).

7.3. The operator V, o 7:5 t LP(H}) — LP(HE) is bounded for all 1 < p < co. Since

Vo T@HF is sublinear, the LP boundedness follows by applying the results of subsection 7.1
and subsection 7.2, and the interpolation theorem between the pairs (H'(H}), L} (H})) and
(L*(Hp), BMO(HE)) in [Ju, page 43].

Given a v-cube @ C RY, set mg(f) = HPE(Q)™? fodH?, and let M be the Hardy-
Littlewood maximal operator, i.e. for x € I', M(f)(x) := supmg(|f|), where the supremum
is taken over all v-cubes Q C R containing = € I'. Let M?¥ be the sharp maximal operator
defined by M*(f)(z) := supmq(|f — mq(f)|), where the supremum is also taken over all
v-cubes Q C R? containing x € T.

One comment about the interpolation theorem in [Ju, page 43] is in order. Given an
operator F bounded form H' to L' and from L> to BMO, in the proof of the interpolation
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theorem applied to F', one uses that M* o F is sublinear (i.e. (M%o F)(f+g) < (Mo F)f+

n

(M*®o F)g for all functions f, g). This is the case when F is linear. However, 7 07;2-[F is not
linear, and then it is not clear if M?%o V, 0 77;[? is sublinear. Nevertheless, this problem can

be fixed easily using that V, o 7';{? is sublinear and positive (that is (V, o ’7';9) f(z) >0 for
all f and z), as the following lemma shows.

Lemma 7.2. Let F : L} (H}) — L} .(H}) be a positive and sublinear operator. Then

(Mo F)(f4+9) S(MoF)f+ (Mo F)g for all functions f,g.

Proof. If F is sublinear and positive, one has that |F(f)(z) — F(g)(z)| < F(f — g)(z) for all
functions f,g € Li, (HP®). Then, for 7,y € QNT,

loc

|E(f +9)(y) —mq(Fg)| < |F(f+9)(y) — Fg(y)| + | Fg(y) — mq(Fg)|
< |Ff(y)l + |Fg(y) — mq(Fg)l

Hence, mg|F(f+9)~mq(Fg)| < mo|Ff|+mq|Fg—mq(Fg)| < (MoF)f(x)+(MioF)g(z)
and, by taking the supremum over all possible v-cubes @) > x, we conclude (Mu o F)(f +
9)(@) S (Mo F)f(x) + (M*o F)g(x). O

By using Lemma 7.2 and the fact that || M f||rszp) S HMﬁfHLP(H;) for f € LPO(HE) N
LP(Hp) and 1 < py < p < o0, one can reprove Journé’s interpolation theorem applied to

V, 0 %HF with minor modifications in the original proof.

My My
8. L? ESTIMATES FOR V,0 7, " AND Oo T, "

Recall that T':= {x € R? : = (T, A(Z))}. Let Ap : R® — R? be the parametrization of
I, ie. Ar(y) := (y,A(y)) for y € R". We may and will assume that the Lipschitz function A
has compact support, and our estimates will not depend on the support of A. By a limiting
argument, one easily obtains the same estimates for the case of a general Lipschitz graph.

Abusing notation, throughout this section we will identify the cubes D C R™ with the
v-cubes D x R¥™ C R? so we will use the same symbol D to denote both objects. In
particular, D will denote the dyadic lattice of cubes in R™ and the dyadic lattice of v-cubes
in R?. Tt will be clear from the context to which object we are referring to in each particular
circumstance.

Recall that we have set || - ||, := || - ||pp(zn) for 1 < p < oo, and dy := dL"(y) for y € R™.

Theorem 8.1. Let p > 2, and assume Lip(A) < 1. The operators VPO’EHF and OO'EHF are
bounded in L? (H}), and the norm ofOOﬂHf is bounded above independently of the sequence
that defines O.

As in the previous sections, we will only prove Theorem 8.1 in the case of the p-variation,
because the proof for the oscillation follows by very similar arguments.
We will use the following lemma, which is proved in subsection 8.6 (see Lemma 8.9).

Lemma 8.2. IfLip(A) < 1, then
(8.1) HE(AYz,a,0)) S (b—a)b™ ! forall0<a<bandz€T.

Remark 8.3. Without the assumption Lip(A) < 1, the lemma fails (see Remark 8.11 below).
The estimate (8.1) is essential for some of the arguments below. This is the reason why we
have been able to prove Theorem 8.1 only under the assumption Lip(A) < 1.
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This lemma is only required to study the p-variation and oscillation for singular integrals
when the family of truncations is x. If we considered the family X instead of y, we would
have to estimate H}(A"(z, a,b) x R¥™"), which is easily seen to be bounded by C'(b—a)b™~*
in any case, i.e. without the extra assumption Lip(A4) < 1. On the other hand, if we worked
with ¢, we would not need to estimate the size of any annulus in our computations. Instead,
we would use the regularity of the functions ¢, for € > 0, as we did with @, in the preceding
sections. For more details, see Remark 8.7.

8.1. Beginning of the proof of Theorem 8.1. Let f € L*(H}). Givenz € T, let {€ }mez
be a decreasing sequence of positive numbers (which depends on z) such that

(8.2) (Vo H P2y |(Kxgr, « (FHD) ()]

meZ
Given j € Z, we denote I; := [27771,277). Let j(en) be the integer such that e, € Ij,.).
As before, we set S := ;7 Sj, Sj = {m €Z : em,€em1 € I;}, and L:={m €L : €y €
IZ', €Em+1 € Ij for i < ]}
For € > 0, we define k¢ := xc — @.. Then, by (8.2) and the triangle inequality,

(Voo TRV F(@)” < ST 1, * (FHIN @) + 3 (K ke, * (FHE) ()]

(8.3) meS meL
) (K, x (FHE) @)+ D> I(KSEm,, * (fFHE) ()]
meL meL

Notice that 3, [(K@&n,, + (FHR) (@) < ((V,0 T2 f(2))”.

We will prove the following estimate in subsections 8.3, 8.4 and 8.5:

S [X g, P

JEZ DED; meS;

(8.4) 230 Dl D SRR

JEZ DED; meL:em€l;

XS S R s CHE MRS gy

JEZ DED; meL: emi1€l;

Using (8.4), (8.3), Theorem 7.1 for p = 2, and that p > 2, we finally get

. 2/p
100 T sy S 100 T2 gy + [ (3 10z, = i) an

meS
2/p 2/p
[ (3 e (5007 ) ok [ (X (K (1Y)
meLl meL

S+ X [ 30 IRz, = ()P

JEZ DED; mesS;

Y / S (e * (FHR) 2 M

JEZ DED; meL:em€l;

XS Y IR PHRDP A S 1

j€Z DeD; ' P meLl emy1€l;
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It only remains to prove (8.4).

8.2. Estimate of ), s [(KxJr,, * (fHY)(x)]* for x € TN D, for D € D;. Using the
parametrization Ar of I', we have

(Kxir, * (fHD))(z) = . K(z — Ar(y))xr,, (x — Ar(y) f(Ar(v))|J (Ar)(y)| dy
(8.5) "

=/ K(z — Ar(y))x&r,, (x — Ar(y))g(y) dy,

where J(Ar) stands for the n-dimensional Jacobian of the map Ar := y — (y, A(y)), and
we have set g(y) := f(Ar(y))|J(Ar)(y)| for y € R™ (notice that z € R? but y € R", we have
not used the notation y here to make it simpler). Since I' is a Lipschitz graph |J(Ar)| = 1,
so g€ L2(Lm).

Definition 8.4. Let {7#5}@61)7 k=1,..2n—1 be an orthonormal basis of Cl wavelets on R™ in
the following manner (see [Da, Part 1] ):

(a) wg:R" — R is a C function for all Q €D and k =1,...,2" — 1.

(b) There exists C > 1 and g : [0,C]" — R with ||[¢oll2 = 1, |[Yollee S 1, and such
that, for any Q € D and k = 1,...,2" — 1, there exists | € Z"™ such that wg(y) =
Yo(y/UQ) = DUQ) ™2 for ally € R™.

(©) lvgllz = 1, [o§dL™ = 0 and [$hyRdL™ = 0, for all QR € D and k,| =
1,...,2" — 1 such that (Q, k) # (R,1).

(d) supp@b(]f? C Cuw@ for all Q € D and k = 1,...,2" — 1, where C,, > 1 is some
fized constant (which depends on n). In particular, the supports of the functions in
{1[)8}@697 k=1,..2n—1 have finite overlap.

(@) [vllo SUQ)™? and VYoo S Q)™ forallQ €D, k=1,...,2" — 1.

(f) If h e L*(L™), then h =Y gep 1. an_1 Abh, where Ajh = ([ hapf dL™) g,

In order to reduce the notation, we may think that a cube of D is not only a subset of R™,
but a couple (@, k), where @ is a subset of R™ and k = 1,...,2" — 1. In particular, there
exist 2" — 1 cubes in D such that the subsets that they represent in R™ coincide. We make
this abuse of notation to avoid using the superscript k in the previous definition. Then, we
can rewrite the wavelet basis as {1)g}gep, with the evident adjustments of the properties
(a),...,(f) in Definition 8.4.

Remark 8.5. Since T' is Lipschitz graph, |J(Ar)(y)| = 1 for all y € R™. Then, using Definition
8.4(c) and Definition 8.4(f), one easily obtains

1F 11720 = 913 = > 11Agl13-
QeD

Given z € DNI, if m € S; and suppygNsuppx ™, (x—Ar(+)) # 0, then either D C CpQ or

€m-+1

Q C CyD, where C}, is some big fixed constant. Set J:={Q € D : D C (,Q and Q € C,D}
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and Wpg := > ;s Agg. Using (8.5) and Definition 8.4(f), we have

(Kxer = (fHP)(z) = - K(z — Ar(y))xr,  (x — Ar(y))g(y) dy
= | K(z— Ar(y)xr., (. — Ar(y)(Ypg(y) — ¥pg(x)) dy
(8.6) + Vpg(x) K(w = Ar(y))xén (@ — Ar(y)) dy
+ Y / Ko = Ar(o)xz,, (o = Ar(0) Bog(y) dy
QeD:
QCCyD

=:Ulp(z) + U2p(z) + U3 ().

8.2.1. Estimate of ), s [Uln(2)|*. Notice that, by Definition 8.4(e), [[V(Agg)|l <
1Aqgll26(Q)~"/2"". Then,

Ul(@)] < Y / K — Ar(p)Ixe,, (2 — Ar(v))| Dog(y) — Aog(a)] dy

QeJ

<Y [ 1K@ = A @~ A V(g0 xle — vl dy

QeJ

S 30 UD) " Agult @ [ i e = An() .
QeJ

thus, by Cauchy-Schwarz inequality and the fact that ) s, Jrn xem (@ — Ar(y)) dy <
(o),

sy D Wm@rs (X 1@ D jag) s ¥ 0 gk

meS; QeD: QeD:
DCC,Q DcCy,Q

8.2.2. Estimate of Emesj |U3,(x)|?. To estimate U3,,(x), we denote

U3 (2,Q) = / X (o — Ar(w)K(x — Ar(y))Agg(y) dy,

80 U3 (7) = > gep.gcc,p Um(x, Q). Notice that, if C,,Q NT' N A(z, €my1,€m) = 0, then
U3, (x,Q) = 0. So, if we set

J={QeD:Qc D, CoQNT NA(, €mi1,em) # 0, 100v/nCHQ) > € — €myt},
J2:={Q €D : QCCyD, C QNT N A(Z, €mmi1, €m) # 0, 100v/NCLUQ) < €m — €mit )},

we have

(8.8) = > Usu(z,Q)+ Y Ulu(z,Q).

QeJ}, QeJ2,
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Form € Sjand Q € Jy,, wehave [ xm (2= Ar(y))|A9(y)| dy < lem—em+114(Q) [ Aqg]:-
This follows from the smoothness of the wavelet ¢, Definition 8.4(b), and Lemma 8.2. Then,

n €m — €m
U3 QS [ 2, (o Ar)A(D) |AQg<y>|dysMH Aoyl

((D)™(Q)
- Q(Q)n/Qfl

m — tm A .
S oy lem — emiallBaglz

Therefore, by Cauchy-Schwarz,

>(x |U3m<m,c2>|)25 > (x %km—emmm@gnzf

(8.9) meS; ~QeJl, mesS; Qe
’ 1 n— €m — €m+1 2
<o 2 (2wt )( X sl jaglz).
meS; "~ QeJL, QeJ},
From the definition of J1, it is not difficult to check that
(8.10) Y UQ)™ S UD)Y  logy (U(D)/lem — emeal)-
QeJt,

To check this, recall that €,,, €1 € I;, D € Dj, and Q € JL. Then, split the sum according
to the different scales of the v-cubes and use that, given i € Z such that \/ﬁCwZ_i >
lém — €m1], the number of v-cubes @ € D such that £(Q) =27¢, Q C C,D, and C,Q NT N
A(x, €1, €m) # 0 is bounded by C¢(D)*~12{»=1) gince for all these v-cubes, C,,Q NT C
Az, ems1 — C27% €y +C279)NT, and by Lemma 8.2, HE(A(z, €mi1 — C27% € + C27%)) <
{(D)vt27t,

Then, by (8.9) and since t'/2logy(1/t) <1 for all 0 <t <1,

D ( > |U3m<m,Q)|)25£ =0 10g2< “D) )

l€m — €m+1]

lem — €mg1|? 2
g — T ||A

meS; N QeJL meS; QeJk,
‘ﬁm 6m—i—1|
meS QeJk,
lem — em+1| Q)Y
N Z Z 0Q)  UDy+1/2 12qgll3-

QED: mEeS; :100/nCuwl(Q)>em—€m+1,
QCCyD Cu,QﬂFﬂA(x Em1,6m )0

Since 3 nes; : 1003/ACw Q) Zem—emi1, |€m — Em+1]/L(Q) S 1, we finally obtain
CwQNINA(Z,€m+1,6m ) £D

2
(8.11) > (T wneal) s ¥ MMQM

mGSj QEJ}n QeD:QCCyD
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Assume now that Q € J?2,. Let zg be the center of @ C R™. Since [Agg(y)dy = 0 (see
Definition 8.4(c)), we decompose

U3 (z,Q) = /XSJ,?H (z — Ar(y)) (K (z — Ar(y)) — K(z — Ar(2q))) Aqy(y) dy

(8.12) + / (xm, (z = Ar(y)) — x&m (z — Ar(2q))) K (z — Ar(29))Aqy(y) dy
= U32(2,Q) + U3B(z,Q).

The first term of the previous sum can be easily handled:

S (T o) £ (S X 0D [, - Arw)dasldr)

meS; “QeJZ meS; QeJ2,
Q) 2 0Q)/*+! 2
< ( > IAQ9|1> < > o 1Agall2 ) -
n+1 ~ n+1
QED:QCCyD (D) QED:QCCyD (D)

Then, using Cauchy-Schwarz and that Y cp. occ,p Q)" S €(D)™!, we conclude

> (T wsteal) s(( L @) X m2 jsai)

meS; ~QeJZ, QeD: QeD:
(8.13) QCCyD QCCyD
(@) ()"
S Z (D) ||AQ9||% S Z WD) +1/2 ||AQ9||2
QeD:QCCyD QeD: QCCyD ( )

To deal with U353 (x, Q), notice that, if C,Q N T N AA(z, €my1,€m) = 0, then X€m+1(
Ar(y)) — x&m (x — Ar(2q)) = 0 for all y € C,Q C R™. So, ZQGJ?nlU3 (0] =
>_Qess, \U3B (z,Q)|, where

J2={QeD:QcCCD,Co@Q@NTNIA, €mit1,€m) # 0, 100v/NC Wl Q) < €m — €mi1}

We use the easy estimate |U3E (z, Q)| < 4(D)™"[|Aggll1 < €(Q)™2¢(D)~™||Aggl|2 for all
Q € J2,, and then, by Cauchy-Schwarz inequality,

s (3 |U3fi<x,cz>|) sy (30 w2 ) (S Q) aal).

QeJ3, QeJ3, QeJ3,

It is not difficult to show that > o ja £(Q)" /2 < £(D)" e — €nya|/2. To check this,
split the sum according to the different scales of the v-cubes and use that, given ¢ € Z such
that 100/7Cw27% < €, — €mt1, the number of v-cubes € D such that £(Q) = 27 and
CwQNTNIB(x, €my1) # 0 or C,@QNT NIB(z,€y) # 0 is bounded by C¢(D)"12/"=1) due
to Lemma 8.2, arguing as below (8.10). Further, for a fixed @ € D such that Q C CyD,

Z |€m - €7n—}—1|1/2 < 17
¢(D)1/? ~

meS; : 100y/nCuwl(Q)<eém—€m+1,
CmeFmaA(a:,fm,+l 7€m)7é®

because |€,, — €mr1] < £(D) and the sum contains finitely many terms, depending only on d,
n and Lip(A). Applying these remarks in (8.14) and interchanging the order of summation,
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we obtain

> (X wstee ) S D) e — en a2 €Q)Y 1 Aqull}

meS; N QeJ3, meS; QeJ3,
1) |e ems1]'? 0(Q) °Q)"
m m+1 2 2
=> > 1293 S Y. s 1Ayl
1 2 n+1/2 ~ n+1/2
meS; QeJ3, / K(D) / QeD: QCCyD K(D) /
Finally, combining (8.8), (8.11), (8.12), (8.13), and (8.15), we conclude
UQ)'?
2
(8.16) SN UBa@P S Y WD) 1Aqgll3.
meS; QeD: QCCyD

8.2.3. Estimate of Zmesj |U2,,,(2)|?. Let Lp be a minimizing n-plane for o, (D) and let
L7} be the n-plane parallel to Lp which contains z. Let A, : R® — L7, be the parametrization
of the n-plane L% given by A, (%) := (Z,a,(%)) where a, : R® — R?~" is some affine map,
and let |J(A,)| denote its n-dimensional Jacobian (notice that |J(A,)| is bounded by some
constant depending only on Lip(A)). Given z € R%, let p¥ denote the orthogonal projection
onto L%, and for z € R?\ (p&)~!(x), consider the angular projection given by

|z — |
(8.17) P2 = 3+ B(2) — 1)
’ PG (2) — |
If 2 € R\ (p%)~Y(x), then |[pE(z) — x| # 0, so p* is well defined and |z — x| = |p*(2) — z|.

Since T is a Lipschitz graph with slope strictly less than 1, we have (pg)~!(z) N T = {z},
because the slope of the n-plane L7, is also smaller than 1 and then the (d —n)-plane passing
through z and orthogonal to L7, does not intersect the cone

WeR!: |(y—7) - (- < |-},
so it cannot contain any other point of I' different from z. Thus, we can extend p® to the
whole graph T' by setting p”(x) = x. Notice that p®|r is a Lipschitz function (with Lipschitz
constant depending on Lip(A)).
For y € T, set du(y) = |J(Ar)(@)| "' dH}(y) and v, = pip. Then, by the definition of
U2y, in (8.6),

U2 (2) = Upg(2) / Kz — y)xem., (« — y) duly)
(.18) — Upg(e / Kz —y)xer,, (@ —y) d( — v) (1)

T Upg(a) / Kz — g)xem (& — y) dva(y) = Udn(z) + Ubp(a).

Notice that ¢ +1( —y) = x&m, (x — p®(y)). This is the main reason why we use the
angular projection p® instead of p§ or a “vertical” one. Since |y — p*(y)| < dist(y, L},) <
dist(y, Lp) + dist(x, Lp) for all y € T,

Ud(2)] < |¥pg(a) / K(z —y) - Kz — " @) Ix&m,, (& - v) du(y)
(8.19) < [Wpg() (D) ! /F v — @)X, (= — v) du(y)

< W pg(a)|((D) ™! / (dist(y, Lp) + dist(z, Lp)x<. (z — ) du(y).
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If L}, denotes a minimizing n-plane for 8;(D), one can show that disty(Lp N CrD, LL, N
CrD) < a(D)U(D), so dist(y, Lp) < dist(y, L) + a,(D)¢(D) for y € CrD NT. Therefore,

ZmGSj | U4y, (CL') |2

2
< [¥pg(a)? (aD)’“ > [ (isly. L) + dist(a, Loz, (o = ) du(y)>

meS;

2
< [Wpg(o)? (am’“ [ (aist Lo) + disae, L) du(y))

< [Wng(a)? (51,M(D>2 +au(D) + (Wf)

(8.20)

Let us consider Ub5,,(z) now. We can assume that v, is absolutely continuous with re-
spect to Hﬁ% , because the set of points z € I" for which this statement does not hold has
countable many elements, thus it has p-measure zero. Let h, be the corresponding den-
sity, so vy = haHj, . Finally, set ugp(y) = he(Az(y))|J(Az)| for y € R™. Then, since

Jrn K (@ — Az(y))xm, (¢ — Az(y)) dy = 0 because L, is an n-plane containing z,

Ubm(x) = Upg(z) /F K(z = y)xer,, (v — y) dvaly)

(8.21) = Upg(z) . K(z — Ag(y))xr (z — Au(y))ua(y) dy

= Upg(z) - K(x = Az(y))xey,, (¢ = Ae(y) (ua(y) — [J(Az)]) dy.

Since A has compact support, we may assume that h, —1 € L?( ZB ). Therefore, u,(y) —
|J(Az)| € L2(L™). Consider the decomposition of this function with respect to the wavelet
basis, i.e., uz — [J(Az)] = Ygep AUz — [J(A2)]) = X gep Aqus (notice that, for any
Q €D, [|J(Az)lhgdL™ =0). ,

Set J := {Q € D : supp¥g Nsuppxs; (z — Az(-)) # 0}. Recall that D € D; and
m € ;. Since x € D and (D) = 277, if Q € J, then D C CpQ or Q C C,D for Cj, big
enough. In particular, if 100/nC,¢(Q) > ¢(D) then D C C,@, and if 100,/nC,,¢(Q) < £(D)
then @ C CpD and dist(z, Cy,Q) 2 ¢(D).

We define J; := {Q € J : 100y/nCl(Q) < {(D)} c {Q € D: Q C CpD} and Jy :=
J\NJ1 C{Q € D: D C GpQ}, thus dist(z, Q) Z ¢(D) for all @ € Jy . Then, since
suppx ™, | (€ — Az(+)) C suppxy—;—i (& — Az(+)) for all m € S,

Ubm(z) = Vpg(x) . K(z = Au(y)xr,, (x — Ax(y) Y Aqua(y) dy
Qe

(8.22) +Upg() | K(w—Am)x,, (@ — Ac) Y Aqualy)dy

R QEJ2
=:Ubp(z) + Uy ().
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The sum 3, s |U 6.m ()] can be estimated using almost the same arguments as the ones
for Zmesj |U3,(x)|? in subsection 8.2.2 (see (8.16)), and then one obtains

1/2
(8.23) > 06 S Wps) 3 7 I8qusli

mGSj QeJy

For the case of UT,,(2), recall that [p, K(x — A (y))x&m,, (v — Az(y)) dy = 0 because of
the antisymmetry of K and the flatness of Lf,. Therefore,

Ul(2) = Upg(a) 3 / K — Aa(0)x e, (& — () (Agua(y) — Aqua(x)) dy.
QeJs

and then, since |Aguy(y) — Agus ()| < [|[Aguz26(Q) ™2~ x — y| by Definition 8.4(e),

UTm(z)] S [Wpg(a)] > 4D "+1||AQUz|2€(Q)_”/2_1/Rn Xémr (2 = Ax(y)) dy.
Qe J2

Finally, by Cauchy-Schwarz inequality,

2
D UTw@)P < ¥ (90)|2< > i((g))f( )" ”/QIAQ%Hz)

meS; QEJ2
D) , n
S |Wpg@)* > mg(Q) 1AQua 13-
QcJz
Lemma 8.6. Given Q € D, one has ||Aquallz < aw, (Q)U(Q)™2. Moreover, there exist
absolute constants C1,Cy > 1 such that, given Q € D,

(a) if D C CpQ, then

(8.24)

a,(Q) S Z a,(CiR) + diSt;(a;)LD), and

ReD: DCRCC1Q

(b) if Q@ C CpD and dist(xz,C,Q) = £(D), there exists a v-cube Qo = Qo(z,Q) € D
depending on x and Q such that Qo C CaD, £(Qo) ~ £(Q), T'NQoN(p®) "1 (QNLE) # 0
and

dist(zx, L
@5 Y aucr) s B
(D)
ReD: QoCRCC2D
Proof. Given @ € D, define the function ¢g : R? — R by ¢ (y) = ¥o(¥) (see Definition 8.4
for 1g). Then supppg C C,Q and [ ¢gdH} = 0 for all n-planes L C R? which are not
perpendicular to R™ x {0}4~™. Notice also that |Vg| < £(Q)~/?71. Let Ag be a minimizing
measure for a,, (Q). Then,

I8qurll = Il v} balls = e va)l =| [ vohe(As )l (An) dy
:‘ ¢Q(y) dvz(y)) = ’/sﬁcz(y) d(vz = AQ)(y)
173

SUQ) A M dist g, (Va, Ao) S UQ)"u, (Q),

which proves the first statement of the lemma.
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Assume now that D C C,Q. Let Lg be a minimizing n-plane for a,(C1Q), where Cy > 1is
some big constant to be fixed below, and let Lg be the n-plane parallel to Ly which contains
z. Let oq = cQH], be a minimizing measure for o, (C1Q) and define o7, := CQ"H%Q&. Finally,
set 0 1= CQ’H”%.

Similarly to what we said below (8.17), one can verify that p® is well defined on L. Since
o is a flat measure,

a, (Q)

(5.25) < 0(Q) " Mdistp, (ve, 0)
</

(Q)™"Hdistpgy (v, po) + U(Q) ™" distp, (pf o, 0)-
To deal with the first term on the right hand side of (8.25), let h be a Lipschitz function
such that supph C Bg and Lip(h) < 1. Then, the function h o p® restricted to I' U L§, can

be extended to a Lipschitz function supported in Be, g (if Cy is big enough) with Lip(h o p®)
bounded by a constant which only depends on n, d, and Lip(A). Therefore,

‘ / hd(ve — piog)| = ‘ / hop®d(pn—0g)| < distpg, (1, 00)
Bq Beiq

< distpg, (1, 0Q) + dist. o (0@, 00)
S au(CL)UQ)™ + dist(w, Lo)A(Q)"-
By Remark 2.3 (see (2.7)), since z € TN D and D C C1Q (if C1 > C}),

(8.27) dist(z,Lg) S Y. au(R)(R)+dist(x, Lp).
ReD: DCRCC1Q

(8.26)

Taking the supremum over all possible Lipschitz functions h in (8.26) and using that
(D) < 4(R) < Cpl(Q) in the sum above, we get

(8.28) 0Q) " Mdistp,, (v, p§08) < > a,(C1R) + dist(x, Lp)e(D)~".
RED: DCRCC1Q
To estimate the second term on the right hand side of (8.25), notice that pjo = o because
p®|rz, = Id. Hence, as in (8.26),
distp, (Pfog, o) = distp, (pfog, pio) < distpe o (06, 0)
< diStBCIQ(JZCQ, UQ) + diSthlQ(('fQ7 U)
< distpg, (Hﬁé, Lo) T distee, o (M1, HE,) + distpe o (HE,, HEs )
S dist(z, Lo)l(Q)" + distpe, o (HE,,, HE ) + dist(z, Lp)l(Q)".
The term distgle( 2@, H7 ) can be estimated using the intermediate v-cubes between
D and C1Q as we did in subsection 4.1.2 (see (4.24) for example), and we obtain

distpe, o(Hi  HE) S D>, au(CIR)UQ)™.
ReD: DCRCC1Q
Thus, by (8.27) and since (D) < 4(Q),
distp, (Pfog.0) S Y au(CiR)Q)"™ + dist(x, Lp)U(D)~0(Q)"*".
ReD: DCRCC1Q

Then, Lemma 8.6(a) follows by plugging this last inequality and (8.28) in (8.25).

Let us turn our attention to Lemma 8.6(b), so assume that Q C CyD. Let Cy be some
constant bigger than Cp, and let Q9 € D be a minimal v-cube such that CyQ)¢ contains
LN (®) 1 QN L%). We can assume Qo C C2D if Cy is big enough. We may also suppose
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that >°pep. ocrecyp @u(C2R) is small enough, otherwise the estimate that we want to
prove would be trivial; indeed, if Co < > e p. g,c rccyp @n(C2R) for some absolute constant

Co >0, then o, (Q) S 1< Cq" Y pep: o recyp Wu(CaR).
One can show that, if 3 pp. o, recyp @u(C2RR) < Co with Cp small enough, then

(8.29) diam(I' N (p") "H(Q N L)) S UQ).

Indeed, since ay,(CeD) is small by our assumption, then S ,(C2D) is also small. Take
21,22 € TN (p*)~HQ N L%) such that |z; — 29| = diam(I' N (*)~1(Q N L%)), and set
y1 := p®(z1) and y2 := p®(22). We claim that |23 — 22| < |y1 — y2|. Otherwise, the angle
between L, , and L,, ,, would be big, where L, , denotes the line passing through the
points u,v € R?. Since Boo,u(CaD) is small by hypothesis, the angle between L., , and L7,
is also small. Therefore, the angle between L., ., and L}, would be big. Since a,(C2Qo)
is small by hypothesis (and the same holds for S ,(C2Qo)), the angle between L., ., and
Lg, is also small, where Lq, is a minimizing n-plane for f ,,(C2Qo). Therefore, the angle
between Lg, and LT, would be big, but this can not happen because that angle is bounded
by > reb: QoCRCCyD a,(C2R), which is small by hypothesis. Hence, |21 — 22| < |y1 — v2l,
and this easily implies (8.29). By hypothesis, T' N (p®)~1(Q N L%) C C2Qo and, by (8.29),
£(Qo) =~ £(Q) if Cy is small enough.

Let Lo, and 0@, = CQOHgQO be a minimizing n-plane and measure for o, (C2Qo), respec-
tively. Fix zg, € Lg, N Bc,q, and let L, be an n-plane parallel to L}, which contains zg,.

1 — n /. n
Finally, define the measures o, := cq,H7 and o’ := cq, Lo -

Notice that p” is well defined on (Lg, U L) N Be,g, because dist(z, Q) 2 (D) (we may
assume that £(Q) is small enough). Since ¢’ is a flat measure, by the triangle inequality,

(8.30) a, (Q)U(Q)" < dist, (va, o)
’ < distp, (Ve, Pf0Q,) + dist B, (PY o, PYor) + dist, (pfor, o).

Arguing as in (8.26), if Cs is big enough, we have
(8.31) distp, (v, Pf0Q,) = distp, (Pf 1, PF0Q,) S au(C’QQO)E(Q)"‘H,
and
dist g, (pf 0@y, Pior) < distpe,q, (0Qo, 0r) S dista (Lo, N Beyqo: Lr N Beygo ) Q)™

Let « be the angle between L, and Lg, (which is the same as the one between Lp and Lg,,).
Since zg, € Lg, N Ly N Be,q,, we have disty (Lo, N Beyos Lr N Beyg,) S sin(y)4(Q), and
it is not difficult to show that sin(v) < >°pep. goc recp u(C2RR). Thus,

(832) diStBQ (ng—QovpﬁmO—r) 5 Z OZM(CQR)E(Q)TL+1
ReD: QoCRCC2D

Let us estimate the last term on the right hand side of (8.30). Since cg, < 1, we have
dist g, (pg”ar,o’ ) S distg, (pﬁ” T gzD) Let h be a 1-Lipschitz function supported in Bg
and such that

(8.33) dist g (pFHE,  His ) ~ ’ / hd(pEHE, —Hi )|

Set d := dist(zg,, LT)). Without loss of generality, we may assume that z = 0 and that

L% = R" x {0}97", so L, = 2g, + R" x {0}, Then, if we set 20, = (zggl, . 7Zg20>’
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we have that d = [2q | and p” restricted to L, can be written in the following manner:
Pty =(y,.. .,y”,zbo) — (F(y',...,y"),0), where F': R™\ {0}" — R is defined by

/12,12 +d2 d2
Fy) = g e,

14—
|y |y|?

Therefore, [hd(pjH}, )= [hop”dH} = [pn(hop®)(y,25,)dy = [g. M(F(y),0)dy, and we
also have fhd’}-{,z% = Jga M((1,0)) dy = [pa R(F(y),0)J(F)(y) dy by a change of variables,
where J(F) denotes the Jacobian of F' (we may assume dist(0,supph(F(-),0)) = £(D),
because dist(z, Q) 2 ¢(D) and we can assume that £(Q) is small enough). Hence, by (8.33),

distg (51, i) S [ (P 0)1 = J(F)w)l do

Notice that, because of the assumptions on supph(F(-),0) and since zg, € Bc,g, and
Qo C C3D, we have d < |y| for all y € supph(F(-),0). If F; denotes the i’th coordinate of
F, it is straightforward to check that ., Fy(y) = —d?y'y |y|~3(jy|* + d*) /2 if i # j and
Oy Filty) = (L+d?/|y[) 2 =d*(y')* |yl - 3(|y\2+d2) /2. Thus, we easily obtain [1—J (F)(y)| <
d/lyl < d/e(D) for all y € supph(F (), 0).

Since diam(supph(F(-),0)) < £(Q) and h((F'(-),0)) is Lipschitz, using the previous com-
ments we have distp, (pf H] Z%) < 4(Q)"*1d/¢(D). Finally, by Remark 2.3 (see (2.7))

and since zg, € Lq,,

d < dist(20,, Lp) + dist(Lp, L%) < > au(CoR)(R) + dist(z, Lp),
RED: QoCRCCoD

and thus

dist(z, Lp)

e(D) K(Q)HJA.

(834) distea(fHT HE2) S Y. au(CeRUQ)™M +
ReD: QoCRCCoD

Lemma 8.6(b) follows by applying (8.31), (8.32), and (8.34) to (8.30). O

8.3. Estimate of 3 .., 3 pep, > mes; 1EXET, * * (fHR)|?dH}E in (8.4). From (8.6),
(8.18), and (8.22), we have

D IEXE, * (FHE) ()]

meS;
835 °

S Y (U@ P +U3n(@)]? + (U (@)]* + [U6m(2)* + [UTin () ),

meS;
First of all, by (8.7) we have

n+1
DN D SIS DU DR YR

JEZL DeD; meS; DeD QeD:DCCyQ

D)+
=S agelz S KEQ;M <3 lAaggll? = gl

QED DeD:DCCQ QeD
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and by (8.16),

1/2
)3 S IS SIENREED DU DI - R

JEZ DED; meS; DeD QeD:QCCyD Z( )
UQ)V? _
— 2
= lagdlls (D)~ S D 18gli3 = llgll3-
QeD DeD:QCCyD QeD

For the case of U4,,(x), it is known that [¥pg(z)| < |g|c,p for x € D (see [Da, Part IJ),
where C, > 0 is some constant dependlng on C} (see the definition of ¥ pg just after Remark
8.5) and |g|c,p := L"(C,D)~ fC pl9(y)|dy. If L} and L% denote a minimizing n-plane
for 81 ,(D) and Ba,(D), respectively, one can show that disty(Lp N CrD, L}, N CrD)
au(D)U(D) and disty (L}, N CrD, L%, N CrD) < B2,(D)U(D), so we have dist(z, Lp)
dist(z, L) + B2,u(D)¢(D) + o, (D)¢(D) for x € DNT. Then, by (8.20),

S
S

3 2/ S U ? dH]

JEZ DeD; meS;
dist(x, L 2 "
< S lofun(rulDP + (D)D) + 3 loln [ (W) ()
DeD DeD
< o120 (Buu(D)? + Ban(DY + (D)D) < g1,
DeD

where we used in the last inequality that the o, 81, and B2, coefficients satisfy a Carleson
packing condition, and so we can apply the Carleson’s embedding theorem.
For U6,,(x), by (8.23) and Lemma 8.6(b), we have the estimate

3 Z/ S (U6,[2 dHp

JEZ DeD; meS;

<Z\Q|Ca/ 3 (%)Wﬂ(dm )L)) M)

DeD QEeD:QCCyD
0°Q n+1/2 2 .
+ > lglé.n / <£(D;> ( > aﬂ(CgR)> dHE ().
DeD D qep: QchD RED: Qo(2,Q)CRCC2D

Since ZQGD:QccbD(Z(Q)é(D)_l)"+1/2 < 1 and dist(z, Lp) < dist(z, L%) + B2,,(D)E(D) +
au,(D)U(D) for x € DNT, the first term on the right hand side of the last inequality is
bounded by Y pep 9]E, p(B2u(D)? + au(D)?)E(D)", and hence by C|lg[|3, by Carleson’s
embedding theorem on Carleson measures. For the second term on the right side, since

Q) =~ £(Qo(x,Q)) (recall the definition of Qy = Qo(x, Q) in Lemma 8.6(b)), Qo(z,Q) C
CyD, and every Qg € D intersects I'N (p®)~1(Q N L%) for finitely many v-cubes Q € D (with
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a bound for the number of such v-cubes ) independent of x and @), we have

2l (™)

QeD:QCCy,D RED: Qo(x,Q)CRCC2D

ST S (Pt

SeD:SCcC2D QED: ReD: SCRCC2D
QCCyD,Qo(x,Q)=S

. SeD%cch <§((15;))> o <ReD: SCZRCCQD %(CQR)> 2'

By Cauchy-Schwarz inequality,

S n+1/2 2
> <D> (n 2, e2)
SeD:SCcCaD ReD: SCRCCQD

5) >n+1/2 logy (i((ls)))> Y auGR)?

ReD: SCRCC2D

n+1/4
i) 2, (CR)

ReD: SCRCC2D

n+1/4
Ty e 3 (5)

N

SGD SCCQD <

@

SED SCCQD <

RED: RCC2D SeD:SCR
E(R) n+1/4
2 _.
S > aulGR) <£(D)) —: \(D).
ReD: RCC2D

Therefore,

> lgléun / (Z((DD ( > a“(CgR)> dH(x)

DeD DQeD QCcCyD RED: Qo(,Q)CRCCaD

S D gl (D)D),

DeD

Let us check that the coefficients Aj(D) satisfy a Carleson packing condition, so they
originate a Carleson measure. For all S € D,

n+1/4
> wopor- XY aenp(yn)  aor

DeD:DCS DeD: DCS ReD: RCCaD
1/4
< ou(CoRU(R)" )
ReD: RCCsyS DeD: RCC2D ( )
S au(@RPUR) S US)
ReD: RCCyS

Then, > ez ZDGDJ_ In Zmesj |U6,,|? dHE < ||gl13, by the Carleson embedding theorem.
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For U7, (x), using (8.24) and Lemma 8.6(a), we have

Sy /DZ U2 a2

JEL DGD]' mESj

(D) (dist(z,Lp)\> ..,
SYlbo [ X G (TErY) e

D

DeD QED: DCCyQ
2 n e(D) 2
2 ol > G S auCiR))
DeD QeD:DCCyQ ReD: DCRCC1Q

Since dist(z, Lp) < dist(z, L)+ B2,,(D)¢(D)+a,(D)¢(D) for z € DT, by Cauchy-Schwarz
and Carleson’s embedding theorem for the 3 ,’s and a,’s,

. 2
S5 [ S wnapag £ Y oo [ (T awe

j€Z DeD; V' P mes; DeD
n 4D 0Q
s ooy Y e (fF) X e
DeD QeD: DCCyHQ ReD: DCRCC1Q

< 2 2 n E(D) 1/2 2
Sllgls+ > lglg, peD)" Y- 1Q) Y aulCiR)

DeD QeD:DCCyQ ReD: DCRCC1Q

2 2 n 2 (D)

<llgllz + Z |91, pt(D) Z au(C1R) Z @)

DeD ReD:DCR QeD: RCC1Q

. (D) /2

Slolp+ ¥ loitot0r 3 aucan?(G0))

DeD ReD:DCR

We are going to check that the coefficients A\2(D)? := " pep. per a#(C&R)Q% satisfy

a Carleson packing condition, so they provide a Carleson measure; and then we will conclude
that }2;c7 > pep, In > omes, (U7 |? dHE < |lg]|3. For all S € D, we have

1/2
> nmopoy = S agenrr(Gg)) (o

DeD:DCS DeD: DCS RED:DCR

n+1/2
= Y > aH(ClR)2<iEg) ((R)"

DeD:DCS ReED:DCRCS
) E(D) n+1/2
DeD: DCS RED:SCR

Concerning I, since the o,’s satisfy a Carleson packing condition, we get

n+1/2
I= > auCiRAR)" Y (iillg)

ReD: RCS DeD:DCR

S Y au(GRPUR)" SU(S)",
ReD: RCS
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as wished. For the case of II we use the estimate o, (C1R) S 1 for all R € D, thus

/(D n+1/2 .
ns ¥ 2 (iw)

ReD:SCR DeD:DCS

) o 3 ()

ReD:SCR DeD:DcCS
e(s) 1/2
susr X (i) suer
ReD:SCR E(R)

Therefore, - pep. peg A2(D)* (D)™ < £(S)™, as claimed.
Finally, plugging all these estimates in (8.35), we conclude that

S [ R P a5 gl ~ 1 B,
D

j€z DeD; V¥ mes;

as desired.

8.4. Estimate of >, EDeDj I Zmeczemelj | K ke, * (fH})|? dHE in (8.4). Recall that,
for € > 0, we have set k¢ := x — @¢ (see the line before (8.3)).

The arguments to estimate ZDepj I Zmeﬁ:emdj |K ke, * (fH})|2dHE are very
similar to the ones in the previous subsections. Basically, we have to replace the function
Xerm by ke, in all the proofs in subsections 8.2 and 8.3, because, in most of the estimates,
we only used the properties of the support and the symmetry of the function Xem and
Ke,, satisfies analogous properties (k. is supported in the closure of (B™(0,3,/ne) x R4~")\
B4(0,¢) ¢ R?). Notice that the sum > (Kke,, * (fH}))(x)|? only has one term
(or none) for each z € I" and j € Z.

There are only two details that have to be pointed. The first one is in equation (8.12).
Instead, now we have

meL:em€l; |

U @) = [ 0, (&= Ar() (K (@ = Ar() ~ K2 Ar(z0)) Sasly) dy
[ (@ = 400)) = o = Ar(2))) K @ = Ar(z0)) Bag(u) dy
= [ o= A0 (K @ = Ar(y) = K (2 = Ar(:0))) Aoa(y) dy
# [ (Xeulo = Ar(®) = X (&~ Ar(a0)) ) Ko — Ar(:0)) By (y) dy
# [ (el = An(e0) = oo = Ar(w)) Kz~ Ar(20))Aagv) dy

= U3j,(2,Q) + U3} (2,Q) + UG (2, Q).

The terms U324 (x, Q) and U352 (x,Q) can be handled as above, at the end of subsection
8.2.2, and the term U3% (z,Q) can be easily estimated using the smoothness of @, . In-
deed, notice that |V@,,,| < ¢(D)~! for €, € I; and D € D;. Therefore, |U3S (z,Q)| <
0Q)U(D)™™ 1| Aggll1, and then one can continue with the same arguments as when we
estimated U324 (z, Q) (see the equation before (8.13)).
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The other point that has to be mentioned is in (8.18). Instead, now we have
U2la) = ¥og(a) [ K@ =) (o =) dHE()
= Wpgla) [ K@ =)k, (@ =) d(HE = v2)(0)

+ Upg(e) / K (& — 9)fe, (2 — ) dva(y) = Ulpn() + Ubp(a).

The term U5,,(x) can be handled as we did previously, in the case of the function xm " (see
(8.21) and the subsequent arguments). To deal with U4,,(x), using that x., (z — p*(y)) =
Xe,. (z —y), we obtain

Ui(a) = ¥pg(a) [ K@ = e o = 9) dlu=v2)(0)
= Upg(x) /F (K(w — Yk (€ —y) = K(z = p*(y)) e, (2 — pz(l/))) du(y)
= Upg(z) /F (K(x —y) - K(z - px(y)))xem (z —y) dp(y)
+ ¥pg(z) /

r

= Wpge) [ (K@ =) = Klz =57 (0) e o = ) o)
+0pg(o) [ Ko=) (Fenlo — 0" 0) = Fon o~ 1) (),

The first term on the right hand side of the last equality can be handled as we did for
the case of the function xS  (see (8.19)). The second term can be easily estimated by
|V pg(x)|(B1,,(D) +dist(x, Lp)¢(D)~1), using the smoothness of @,, and that |y — p”(y)| <
dist(y, LY)) < dist(y, Lp) + dist(x, Lp) for all y € I'. Therefore, (8.20) still holds replacing

€
Xe;:Jrl by Rem -

(K@ =" W) (@ = 9" W) = K (@ = 1)e,, (z — y)) dpu(y)

8.5. Estimate of Y>>, > pep, [p Xmer:enaier, Khenin * (fHR)|? dH}. One argues ex-
actly as in subsection 8.4 and obtains the same estimates.

Remark 8.7. By easier arguments one can also show that the operators VPOT;? and (907';{?

are bounded in L? (’H”) To estimate these operators, one does not need to introduce the
angular projection p* that we used i m the previous subsections. It is enough to use vertical
projections, as in the case of V, o T ™ in sections 4 and 5. These projections behave well
with respect to the truncations Y. Furthermore, as we remarked at the beginning of section
8, the use of Lemma 8.2 is not necessary and the L? boundedness holds for any Lipschitz
graph I" (i.e. for any Lip(A) < 00).

The L? boundedness of the operators V, o0 7;7{? and O o 7:3{? is easier to obtain than in
the case w € {x, X} (using similar arguments), because now the difficult parts (which were
the ones involving differences of characteristic functions) are estimated using the regularity
of the functions . for € >0, as in sectlon 7 with the truncations @.. Once we know the L?
boundedness of V, o 7:0 and Oo 7; , we can argue as in subsection 7.1 to prove that these
operators are also bounded from H 1(7—[?) to L'(HE), because the L? boundedness implies
the local L? estimates of section 6.
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8.6. Proof of Lemma 8.2. We need the followng auxiliary result:
Lemma 8.8. Let 0 < n < d. For x:= (x1,...,24) € R? we denote
zg = (x1,...,2n,0,...,0) €RY and zyv :=(0,...,0,Zns1,...,2q) € R
Given z,y € R\ {0}, if there exists 0 < s < 1 such that |zv| < slzg|, lyv| < slyml|, and
lxy —yv| < slzg — yu|, then there exists C > 0 depending only on s such that

(8.36) v —yv| < Cllzllen| ™ en — lyllyn| " ym|.

Proof. We set ®(z,y) = ||z||zg| " 'zg — [y|lyn| 'yu|. Since ® is symmetric in z and y, we
can assume that |zz| < |yg|. If (-,) denotes the scalar product in R?, using the polarization
identity,

O(z,y)? = o’ + |y = 2lallza] " yllyal " (@m, ym)
= [ + 1> + |zllzu|yllye |7 (g — yul® = leal® = lyal?)
= |z* + |y* — 2Jz|ly]
+lzllzalyllye |~ (Jea —yul® = leal® = lya|® + 2lew||ya))

2 _ —
= (2] = ly))” + lzllzal " yllyu| ™ (2 — yul? = (l2ul = lyu))?).

Since |2y — yul* — (|em| — lynl)* > 0, lzx| < ||, and |yg| < |y|, we have

(8.37) o(z,y)? > (|z| — |y))* + lem — yul* — (za] — lynl)®

Assume that 2|z| < |y|. Then, using (8.37),

3 1
v — vl < Jol + Iyl < 51yl = 3(Iyl = 5 lol) < 301yl — [a]) < 30 (. y),

and we obtain (8.36). By the same arguments, if 2|y| < |z|, then |zy — yy| < 3®(z,y) and
(8.36) holds. Thus, from now on we assume %|JZ| < |y| < 2|z|.

Let 0 < 0 < 1 be a small number that will be fixed below. Assume that (1—0)|zg —ym| >
|lyr| — lom||. Then, by (8.37),

®(z,9)* > ey —yul* — (za| — lyul)® = lzg —yul> — (1= 8)*|zg — yul®
=02 = 0)|zy —yul®> = 62— 8)s 2|lav —yv [,

and then (8.36) holds with C' = s/1/d(2 — 9).

Therefore, we can suppose that (1 —9)|zg — yi| < HyH| —|zu|| = lyu| — |zul, since we
are also assuming |zg| < |yg|. If we set z =y — x, we have (1 — 8)|zy| < |zg + 21| — |zH],
so (1 =68)|zg| + |zg| < |zg + zg|. Hence,

2
(1=0)?|zul® + leu* + 2(1 = 8)|zullza| = (1 — 6)|2u| + |zul)
<l|ew+zu* = lzul* + |20l + 2(zm, 2u)

and we obtain

1
(8.38) (xm,zH) > —55(2—5)|2H|2+(1—5)|ZH||$H|.
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Using (8.38), that (zy,zy) > —|zy||zv|, and that |zy| < s|zgy| and |zv| < s|zg|, we get

(v,2) = (xg +av,2m +2v) = (rnH, z) + (2Vv, 2v)

Y

(8.39) =502 = 0)lzul* + (1 = )lznllen| - lov|zv]

1
> —5 52— (5)|2H|2 +(1-96- 82)|ZH||.’L'H|

Notice that, if § > 0 is small enough depending on s, then —% (1 —s?)(1+s?)"! < =3 §(2 -
§)<0and 1—0—s*> 1 (1—s%). Let y(z, 2) be the angle between z and z (by definition,
0 < 7y(z,z) < m). Using that (z,2) = |z||z| cos(y(z, 2)), that |z| < V1 + s?|zg| and |2]| <
V1 + s2|zy|, and that |z| < |z] + |y| < 3|z|, we finally obtain from (8.39) that

1
cos(y(z,2)) 2 —5 (2 - )zr el T2l ™ + (1= 6 = 5*)|2ml|zm a7 2]
1

2-%5(2—5)+(1—5—s?)(1+32) (1-s)(1+5)" =a

=~

Notice that a > 0, because 0 < s < 1 by hypothesis. Hence, since cos(y(—z,y — z)) =

cos(y(—z,2)) = —cos(vy(x, 2)) (because z = y — x and (—z,2) = —(x,2)), we have ¢y :=
cos(y(—z,y — x)) < —a < 0 (notice that ¢y < 0 implies that |z| < |y|). By the cosinus
theorem, |y|? = |z|? — |y — 2|? — 2|z|ly — x|co. Since ¢y < 0, we solve the second degree
equation in |y — z| and obtain
12 — 2?1 — &) — |2|*c
ly —al = /Iyl — 221 — &) — [allcol = 0

VIl =221 = ) + [z]]col
Uyl — =Dyl + =) (ul = |=DCyl + =) Iyl — |22
~ VI = [P = @) + |leol [/lcol B a’
where we also used that |y| < 2|x| in the last mequality. Therefore, by (8.37),

3
2y —yv| <o —y[ <~ (|y| l]) < — @(,y),

and (8.36) follows with C' = 3/a, where a > 0 only depends on s. This completes the proof
of the lemma. 0

Let us recall Lemma 8.2 and let us prove it:

Lemma 8.9. Let T' := {z € R? : z = (Z, A(T))} be the graph of a Lipschitz function
A:R™ — RT™ such that Lip(A) < 1. Then, HE(A%(z,a,b)) < (b—a)b" ! forall0<a<b
and z € I

Proof. We keep the notation introduced in Lemma 8.8. Fix z € I'. We can assume that
z = 0, by taking a translation of T" if it is necessary.

For z € RY with xy # 0, consider the map Y (z) = |z||zg|  zy + zy. It is not difficult
to show that Y is a bilipschitz mapping from (a neighborhood of) the cone

L:={z e R\ {0} : |zy| < Lip(A)|zy|}

to itself, whose inverse equals T~ !(z) = |ap||z| " 2z + zy. Moreover, Lip(T) and Lip(T~)
only depend on n, d, and Lip(A). Notice that, given 0 < a < b, Y(L N A%(0,a,b)) C
A™(0,a,b) x R4, Therefore, H}(A(0,a,b)) = ’H"(FﬁAd(O,a,b)) HM(T(T'N A0, a,b)))
for all 0 < a < b, because I' C L U {0}.

Consider the set T(T'). Since I" has slope smaller than 1, by Lemma 8.8 there exists a
constant C' > 0 depending only on n, d, and Lip(A) such that for any two points x,y € Y(T')
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one has |y — yy| < Clxg — yg|- Then, it is known that Y(T') is contained in the n-
dimensional graph I"” of some Lipschitz function (see for example the proof of [Ma, Lemma
15.13]). Therefore,

HE(AY0,a,b)) = H*(T(T' N A40,a,b))) < H(T' N (A™(0,a,b) x RE™)) < (b —a)b 1,
and the lemma is proved. O
Remark 8.10. With a little more of efford, one can show that Y(T') is a Lipschitz graph.

Remark 8.11. Lemma 8.2 is sharp in the sense that the estimate fails if Lip(4) > 1 (notice
that the constant C' in Lemma 8.8 is bigger than (1 + Lip(4)?)/(1 — Lip(A)?)). Given € > 0,
one can easily construct a Lipschitz graph I' such that 1 < Lip(A) < 1+ € and such that,
for some z € I' and r > 0, I' contains a set P C 0B(z,r) with HE(P) > 0. Then, if Lemma
8.2 were true for I', we would have 0 < HR(P) < H}(A(z,r — 6,7+ 6)) S 26(r + 6)"1, and
we would have a contradiction by making § — 0. By a similar argument, one can also show
that the lemma fails in the limiting case Lip(A) = 1.

MY HR
9. LP AND ENDPOINT ESTIMATES FOR V,0 7T, " AND Oo T, "

Theorem 9.1. Let p > 2 and assume Lip(A) < 1. The operators V, o 7;3-['? and O o 733-[F
are bounded

o in LP(H}) for 1 <p < oo,
o from LY(HR) to LV*°(H}), and
o from L>®(H}) to BMO(HE),

and the norm of O o 7;(7-[F in the cases above is bounded independently of the sequence that
defines O.

We will only give the proof of Theorem 9.1 in the case of the p-variation, because the
proof for the oscillation follows by very close arguments.

9.1. The operator V, o 7;3-[? : LY(H}) — LY°(HR) is bounded. By Theorem 8.1, we

know that V, o 7;(?{? : L2(HR) — L%*(HZR) is bounded. In Theorem B of [CJRW2] it is
proved that, if the variation for a singular integral in R™ with respect to the measure L£"
is a bounded operator in L? and the kernel satisfies standard estimates, then the variation
is also bounded from L' to L. Because of the AD regularity of the measure HE, it is
not difficult to adapt Theorem B of [CJRW2] to our setting (i.e., when the space is not R™
but an n-dimensional Lipschitz graph) by using Lemma 8.2, and then the weak-L! estimate
follows.

9.2. The operator V, o 733{? : L>®(H{) - BMO(HE) is bounded. The arguments are
very similar to the ones in subsection 7.2, and we will use analogous techniques and notation
(replacing ¢ by x). We set f1 := fxsp and fy := f — f1. The case of f; is handled as in
subsection 7.2, but replacing Theorem 6.1 by Theorem 8.1. In the case of fs, for x € I'N D,
we decompose

”Ll’n/
(Vo TR o) — | S 1 lmpy D (O +O2,)",

meZ
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HTL
where ¢ := (V,0 T,y ") f2(2p), and

Ol : = /(w) X (@ =) |K (3 — 9) — K (2p — 9)| dHR(y),

02, : = /(w) X (@ =) = X, (2p — )| K (2p — )] dHE(y).

Arguing as in subsection 7.2, we have

1/p
( 3 61&) <Y 0L £UD) [ ey M) S 1.
(3D)e

meZ meZ
The case of ©2,, is more delicate. Since I is a Lipschitz graph, there exists an integer M >
10 depending only on Lip(A) such that any = € T'N D satisfies |z — zp| < 2M¢(D). Without
loss of generality, we can assume that there exists mg € Z such that e,, = 2M+2¢(D), just
by adding the term 2M+2¢(D) to the fixed sequence {€,, }mez.
We set Jo:={m €Z : ey, <2MT20(D)} ={m € Z : m > mo} and, for j > M + 2,
le ={meZ: 2j_1€( )< emr1 <em < 2j€(D) and €, — €pr1 > 2M€(D)},
Jj2 ={meZ: 2 UD)<eni1 < en <24(D) and €, — ey < 2MU(D)},
JJ:-5 ={meZ: 27 UD) <ens1 <20(D) < e}

Then Z = JoU ( Uj>M+2(le UJQUJ3)). For the case of m € Jy, we have the easy estimate

1/p
(Z @251) <y /3 (xm (@ — ) + X (2 — ) D) " dHE(Y)

meJy meJo

</ O | )
e—yl<em+2epy UD)"  Jjop—y<arrv2gpy L(D)"

Assume that m € le. Notice that supp(x§$+l(x =) =xm  (z2p— ) C Ap(z,2p), where
Ap(z,zp) denotes the symmetric difference between A(x, €m41,€m) and A(zp, €mit1, €m)-
Notice also that, since m € le and z € DNT, the set Ay, (x,zp) is contained in the union
of annuli Ay := A(z, €yt — 2MU(D), emy1 + 2ME(D)) and Ay := A(z, €, — 2MU(D), € +
2MY(D)). For z € T and 0 < a < b, we have H2(A(2,a,b)) < (b —a)b" ! by Lemma 8.2.
Hence, since m € J»l,

HE({y e R : X, (w —y) — X, (20 — y)| # 0}) < HE(A1 U Ag)
(9.1) < 9M+Ly(p) (em n 2M4(D))"_1 + 2M+1y(D) <6m+1 + 2M€(D))
< 27=Dy(D)ym.

Using that |K(zp — y)| < (274(D))™ for all y € An(z,2p) N (3D)¢, we get ©2, <
(274(D))~2i=D¢(D)™ = 277 and, since J} contains at most 27—~ indices and p > 2, we
have Y, -1 ©20, <277

J

n—1

~

Assume now that m € J-2. Then, using Lemma 8.2, we obtain

HE({y € R+ xS, (x—y) — x& (20 — y)| # 0})
<HE{y eRY : xim (z—y) =1} +HE{y e R : x (2p —y) =1})

S (6m — €mt1) Z:la
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and, as above, |K(zp —y)| < (274(D))™" for all y € Ay, (2, zp) N (3D)°. Since m € sz,
020, < (PUD)) ™" ((em — em+1)en, )"
S (2UD)) " (em — ems1) @M UD))PTHZU(D)) P < 279PU(D) T e — €ma)
and then, since p > 2 and j > M +2 > 12,

Z 020 < 9—ip Z % < 270P9i=1 ny 9=ilP—1) < 93,

2 2
mEJj mEJj

Finally, assume that m € J;’. Obviously, the set J;’ contains at most one term. If
€m — €mr1 < 2M{(D), arguing as in the case m € JjQ7 we have

HE({y € R+ [x (x—y) — x& (2D — y)| # 0}) S (m — €my1)en |
< 2MuDy(270(D) + 2M (D))"t < 27Dy,

and then ©2,, < 2/("=D¢(D)*(27-1¢(D))™" < 2779. On the contrary, if €, — €,,11 > 2M (D),
arguing as in the case m € Jj, we have supp(xm, (¢ —-) = x&m, (2p —-)) C Am(z, 2p) C
A1 U Ag. Similarly to (9.1), we have

Hit (A1) S 2YFH(D) (emr +2Y D))" S en hU(D) < 270 Ve(D)",

and |K(zp — y)| < (274(D))™" for all y € A1 N (3D)°. If we denote by j(ey,) the positive
integer such that 2/(m)=1¢(D) < ¢, < 2/(m)¢(D) (obviously, j(ey) > j), we have H(Az) <
=1(D) < 20em)=D (DY and |K (zp—y)| < (20/(m)¢(D)) =™ for all y € AsN(3D)°. Hence,
02, < 20=Dp(D)(214(D))~" 4 2i(em)n=D)p(Dyr(20(em)g(D))" < 277 4 27ilem) < 27,
Therefore, since J;’ contains at most one term, Zmeﬂ o2, < 2-JP < 977,

We put all these estimates together and conclude tflat

n 1/p
1V, 0 T2 o) — | < 1F Lo rae ( S (01, + @2m>p)

meZ

1/p 1/p
< ||f||Loo(Hg)<Z @1&) n |f|Lm<H;>( T @2&)

mEeZ meJo
1/p
+||f||Loo<Hg)( T ( S eyt Y ext Y @2@2))
J>M+42 merl meJJ? meJJ?’
A\ e

< ||f||Lm(H;>(1 f1g ( 3 2—7) ) <y

j>12

and so the boundedness of V, o 7;<HF : L®(HE) = BMO(Hp) follows, as in subsection 7.2.

9.3. The operator V, o 7;?[17} : LP(HE) — LP(Hp) is bounded for 1 < p < oco. We
deduce the LP boundedness of the positive sublinear operator V, o 7;3-[? by interpolation
between the pairs (L(HR), L2*°(HR)) and (L*(H}), L2(HE)) for 1 < p < 2, and between
(L2(HR), L2(HP)) and (L*®(H®), BMO(HR})) for 2 < p < .

Let us remark that, in the latter case, the classical interpolation theorem (see [Du, Theo-
rem 2.4], for instance) would require the operator V, o 7;3{% to be linear. Clearly, this fails in
our case. However, an easy modification of the arguments in [Du] using Lemma 7.2 shows
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that the interpolation theorem between (L2, L?) and (L>°, BMO) is also valid for positive
sublinear operators.

Remark 9.2. From Remark 8.7, we know that the operators V, o 7'-;{? and V, o 723{? are

also bounded in L?(H}). The endpoint estimates and the interpolation theorem can also be
obtained for these operators by very similar arguments: for the family of truncations x one
argues as for x (but now Lemma 8.2 is not necessary), and for ¢ one uses the regularity of
the functions ¢, as we pointed out in Remark 8.7 (for example, the proof of the boundedness

of V, 0 7;,7{? : L°(H{) — BMO(H}) is analogous to the one in subsection 7.2). The same
holds for the operators O o T;F and O o EHF.

For the case of V, o ’T;? and Qo 7';{?, the weak L' estimate can be obtained similarly to
the case of the family of truncations ¢, that is, by adapting Theorem B of [CJRW2] to our
specific setting.

We want to emphasize that the assumption Lip(A) < 1 is not necessary when we deal
with any of the families of truncations ¥, ¢ or @ (see the comment that follows Lemma 8.2).
Therefore, Main Theorem 1.1 is finally proven.
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