AUTOMORPHISMS OF FUSION SYSTEMS OF FINITE SIMPLE
GROUPS OF LIE TYPE

CARLES BROTO, JESPER M. MOLLER, AND BOB OLIVER

ABSTRACT. For a finite group G of Lie type and a prime p, we compare the automorphism
groups of the fusion and linking systems of G at p with the automorphism group of G itself.
When p is the defining characteristic of G, they are all isomorphic, with a very short list
of exceptions. When p is different from the defining characteristic, the situation is much
more complex, but can always be reduced to a case where the natural map from Out(G)
to outer automorphisms of the fusion or linking system is split surjective. This work is
motivated in part by questions involving extending the local structure of a group by a group
of automorphisms, and in part by wanting to describe self homotopy equivalences of BG;,\
in terms of Out(G).

When p is a prime, G is a finite group, and S € Syl,(G), the fusion system of G at S is
the category Fg(G) whose objects are the subgroups of S, and whose morphisms are those
homomorphisms between subgroups induced by conjugation in G. In this paper, we are
interested in comparing automorphisms of G, when G is a simple group of Lie type, with
those of the fusion system of G at a Sylow p-subgroup of G (for different primes p).

Rather than work with automorphisms of Fg(G) itself, it turns out to be more natural
in many situations to study the group Outyy,(L5(G)) of outer automorphisms of the centric
linking system of G. We refer to Section 1 for the definition of £L§(G), and to Definition 1.2
for precise definitions of Out(S, Fg(G)) and Outyy,(L£5(G)). These are defined in such a way
that there are natural homomorphisms

Out(G) —"%— Outyy,(L£4(G)) —2%— Out(S, Fs(G))  and kg = pg o ke -

For example, if S controls fusion in G (i.e., if S has a normal complement), then Out(S, Fs(G)) =
Out(S), and k¢ is induced by projection to S. The fusion system Fg(G) is tamely realized by

G if k¢ is split surjective, and is tame if it is tamely realized by some finite group G* where

S € Syl,(G*) and Fs(G) = Fs(G*). Tameness plays an important role in Aschbacher’s
program for shortening parts of the proof of the classification of finite simple groups by
classifying simple fusion systems over finite 2-groups. We say more about this later in the
introduction, just before the statement of Theorem C.

By [BLO1, Theorem B], Outy,(L5(G)) = Out(BG)): the group of homotopy classes
of self homotopy equivalences of the p-completed classifying space of G. Thus one of the
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motivations for this paper is to compute Out(BG]) when G is a finite simple group of Lie
type (in characteristic p or in characteristic different from p), and compare it with Out(G).

Following the notation used in [GLS3], for each prime p, we let Lie(p) denote the class of
finite groups of Lie type in characteristic p, and let £ie denote the union of the classes L£ie(p)
for all primes p. (See Definition 2.1 for the precise definition.) We say that G € L£ie(p) is of
adjoint type if Z(G) = 1, and is of wuniversal type if it has no nontrivial central extensions
which are in £ie(p). For example, for n > 2 and ¢ a power of p, PSL,(q) is of adjoint type
and SL,(q) of universal type.

Our results can be most simply stated in the “equi-characteristic case”: when working
with p-fusion of G € Lie(p).

Theorem A. Let p be a prime. Assume that G € L£ie(p) and is of universal or adjoint type,
and also that (G, p) % (Sz(2),2). Fiz S € Syl (G). Then the composite homomorphism

f: Out(G) —=C— Outyyp (L4(G)) —LS—s Out(S, Fs(G))

is an isomorphism, and kg and pe are isomorphisms except when G = PSL3(2).

Proof. Assume G is of adjoint type. When G % GL3(2), pg is an isomorphism by [O1,
Proposition 4.3]' or [02, Theorems C & 6.2]. The injectivity of kg = g o k¢ (in all cases)
is shown in Lemma 4.3. The surjectivity of k¢ is shown in Proposition 4.5 when G has Lie
rank at least three, and in Proposition 4.8 when G has Lie rank 1 and G % Sz(2). When G
has Lie rank 2, k¢ is onto (when G' 2 SL3(2)) by Proposition 4.12, 4.14, 4.15, 4.16, or 4.17.
(See Notation 4.1(H) for the definition of Lie rank used here.)

If G is of universal type, then by Proposition 3.8, G/Z(G) € Lie(p) is of adjoint type
where Z(G) has order prime to p. Also, Out(G) = Out(G/Z(G)) by [GLS3, Theorem
2.5.14(d)]. Hence Fs(G) = Fs(G/Z(Q)) and LE(G) = LL(G/Z(G)); and kg and/or ke is
an isomorphism if kg/z(q) and /or Ka/z(q), respectively, is an isomorphism.

O

When G = PSL3(2) and p = 2, Out(G) = Out(S, Fs(G)) = Cy, while Outyy, (LE(G))
C3. When G = Sz(2) = Cs x Cy and p = 2, Out(G) = 1, while Outyy, (L4 (G)) = Aut(Cy)
(5. Thus these groups are exceptions to Theorem A.

1R

To simplify the statement of the next theorem, for finite groups G and H, we write G' ~, H
to mean that there are Sylow subgroups S € Syl (G) and T' € Syl,(H), together with an

isomorphism ¢: § —— T which induces an isomorphism of categorics Fs(G) = Fp(H)
(i.e., o is fusion preserving in the sense of Definition 1.2).

Theorem B. Fiz a pair of distinct primes p and qo, and a group G € Lie(qy) of universal
or adjoint type. Assume that the Sylow p-subgroups of G are nonabelian. Then there is a
prime ¢4 # p, and a group G* € Lie(ql) of universal or adjoint type, respectively, such that
G* ~, G and kg~ 18 split surjective. If, furthermore, p is odd or G* has universal type, then
fa 1S an isomorphism, and hence kg 1S also split surjective.

Proof. Case 1: Assume p is odd and G is of universal type. Since ug is an isomorphism
by [O1, Theorem C], k¢ or kg is (split) surjective if and only if kg or kg« is.

ISteve Smith recently pointed out to the third author an error in the proof of this proposition. One can
get around this problem either via a more direct case-by-case argument (see the remark in the middle of
page 345 in [O1]), or by applying [O4, Theorem C]. The proof of the latter result uses the classification of
finite simple groups, but as described by Glauberman and Lynd [GLn, §3], the proof in [O4] (for odd p)
can be modified to use an earlier result of Glauberman [G12, Theorem A1l.4], and through that avoiding the
classification.
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By Proposition 6.8, we can choose a prime ¢ and a group G* € Lie(g;) such that either

(1.a) G* = G(q*) or 2G(q*), for some G with Weyl group W and ¢* a power of ¢, and has
a o-setup which satisfies the conditions in Hypotheses 5.1 and 5.10, and

(L.a.1) —Id ¢ W and G* is a Chevalley group, or
(1.a.2) —Id € W and ¢* has even order in F), or
(1.a.3) p =3 (mod p) and p|(¢* — 1); or

(1.b) p =3, ¢ = 2, G = 3D,(q) or *Fy(q) for q some power of gy, and G* = 3D,(q*) or
’Fy(q*) for ¢* some power of 2.

Also (by the same proposition), if p = 3 and G* = Fy(¢*), then we can assume ¢} = 2.

In case (1.b), kg~ is split surjective by Proposition 6.9. In case (1.a), it is surjective by
Proposition 5.14. In case (1.a.1), kg« is split by Proposition 5.15(b,c). In case (1.a.3), kg~
is split by Proposition 5.15(b). In case (1.a.2), if G* is a Chevalley group, then K¢« is split
by Proposition 5.15(c).

This leaves only case (1.a.2) when G* is a twisted group. The only irreducible root systems
which have nontrivial graph automorphisms and for which —Id € W are those of type D,, for
even n. Hence G* = Spin,, (¢*) for some even n > 4. By the last statement in Proposition
6.8, G* is one of the groups listed in Proposition 1.10, and so ¢" = —1 (mod p). Hence K¢~
is split surjective by Example 6.6(a), and we are done also in this case.

Case 2: Now assume p = 2 and G is of universal type. By Proposition 6.2, there is an odd
prime g3, a group G* € £ie(qy), and S* € Syl (G*), such that Fg(G) = Fs-(G*) and G* has
a o-setup which satisfies Hypotheses 5.1 and 5.10. By the same proposition, if G* = Gs(q*),
then we can arrange that ¢* = 5 or ¢f = 3. If G* = G4(5), then by Propositions 6.3 and
A12, G* ~y Go(3), Kay(s) is split surjective, and pg,) is injective.

In all remaining cases (i.e., G* 2 G5(q*) or ¢ = 3), Kg- is split surjective by Proposition
5.15(a). By Proposition A.3 or A.12, ug- is injective, and hence kg« is also split surjective.

Case 3: Now assume G is of adjoint type. Then G = G, /Z for some G, € Lie(qo) of
universal type and Z < Z(G,). By Proposition 3.8, Z = Z(G,,) and has order prime to go.

By Case 1 or 2, there is a prime ¢ # p and a group G}, € Lie(qy) of universal type such
that G ~, G, and kg is split surjective. Also, G is p-perfect by definition of Lie(q;)
(and since ¢ # p), and H?(G%;Z/p) = 0 by Proposition 3.8. Set G* = G*/Z(G?). By
Proposition 1.7, with G /O, (G%) in the role of G, k- is also split surjective.

It remains to check that G ~, G*. Assume first that G, and G} have o-setups which
satisfy Hypotheses 5.1. Fix S € Syl,(G,) and S* € Syl (G}), and a fusion preserving iso-
morphism ¢: § —— S§* (Definition 1.2(a)). By Corollary 5.9, Z(Fs(G,)) = O,(Z(G,))
and Z(Fs«(G:)) = O,(Z(G})). Since ¢ is fusion preserving, it sends Z(Fg(G,)) onto
Z(Fs+(GY)), and thus sends O,(Z(G,)) onto O,(Z(G})). Hence ¢ induces a fusion pre-
serving isomorphism between Sylow subgroups of G = G, /Z(G,,) and G* = G /Z(GY).

The only cases we considered where GG or G* does not satisfy Hypotheses 5.1 were those in
case (1.b) above. In those cases, G = ?F,(q) or D,(q) and G* = ?F(q*) or *D4(q*) for some
q and ¢*, hence G and G* are also of universal type (d = 1 in the notation of [Ca, Lemma
14.1.2(iii)]), and so there is nothing more to prove. O

The last statement in Theorem B is not true in general when G* is of adjoint type. For
example, if G* = PSLy(9), p = 2, and S* € Syl,(G*), then Out(G*) = Outyy, (L (GY)) =
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C2, while Out(S*, Fs+(G*)) = Cy. By comparison, if G = SL5(9) is the universal group,
then Out(S*, Fz.(G*)) = C3, and kg. and pg. are isomorphisms.

As noted briefly above, a fusion system Fg(G) is called tame if there is a finite group
G* such that G* ~, G and kg~ is split surjective. In this situation, we say that G* tamely
realizes the fusion system Fg(G). By [AOV, Theorem B, if F¢(G) is not tame, then some
extension of it is an “exotic” fusion system; i.e., an abstract fusion system not induced by
any finite group. (See Section 1 for more details.) The original goal of this paper was to
determine whether all fusion systems of simple groups of Lie type (at all primes) are tame,
and this follows as an immediate consequence of Theorems A and B. Hence this approach
cannot be used to construct new, exotic fusion systems.

Determining which simple fusion systems over finite 2-groups are tame, and tamely realiz-
able by finite simple groups, plays an important role in Aschbacher’s program for classifying
simple fusion systems over 2-groups (see [AKO, Part II] or [A2]). Given such a fusion sys-
tem JF over a 2-group S, and an involution x € S, assume that the centralizer fusion system
Crz(x) contains a normal quasisimple subsystem & < Cx(z). If £ is tamely realized by a
finite simple group K, then under certain additional assumptions, one can show that the
entire centralizer C'x(x) is the fusion system of some finite extension of K. This is part of
our motivation for looking at this question, and is also part of the reason why we try to give
as much information as possible as to which groups tamely realize which fusion systems.

Theorem C. For any prime p and any G € Lie of universal or adjoint type, the p-fusion
system of G is tame. If the Sylow p-subgroups of G are nonabelian, or if p is the defining
characteristic and G % Sz(2), then its fusion system is tamely realized by some other group
in Lie.

Proof. 1f S € Syl,(G) is abelian, then the p-fusion in G is controlled by Ng(S), and Fg(G)
is tame by Proposition 1.6. If p = 2 and G = SL3(2), then the fusion system of G is tamely
realized by PSLy(9). In all other cases, the claims follow from Theorems A and B. O

We have stated the above three theorems only for groups of Lie type, but in fact, we
proved at the same time the corresponding results for the Tits group:

Theorem D. Set G = ?Fy(2)" (the Tits group). Then for each prime p, the p-fusion system
of G is tame. If p =2 or p =3, then kg is an isomorphism.

Proof. The second statement is shown in Proposition 4.17 when p = 2, and in Proposition
6.9 when p = 3. When p > 3, the Sylow p-subgroups of G are abelian (|G| = 2!*-33.5%.13),
so G is tame by Proposition 1.6(b). O

As one example, if p = 2 and G = PSLy(17), then k¢ is not surjective, but G* = PSLy(81)
(of adjoint type) has the same 2-fusion system and k¢« is an isomorphism [BLO1, Proposition
7.9]. Also, kg« is non-split surjective with kernel generated by the field automorphism of
order two by [BLO1, Lemma 7.8]. However, if we consider the universal group G* = SLy(81),
then kg, and kg, are both isomorphisms by [BL, Proposition 5.5] (note that Out(S,F) =
Out(S) in this situation).

As another, more complicated example, consider the case where p = 41 and G = Spin,, (9).
By [St1, (3.2)—(3.6)], Outdiag(G) = Cy, and Out(G) = Cy x C} is generated by a diagonal
element of order 2 and a field automorphism of order 4 (whose square is a graph automor-
phism of order 2). Also, pu¢ is an isomorphism by Proposition A.3, so k¢ is surjective, or
split surjective, if and only if kg is. We refer to the proof of Lemma 6.5, and to Table 6.1 in
that proof, for details of a o-setup for GG in which the normalizer of a maximal torus contains
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a Sylow p-subgroup S. In particular, S is nonabelian if £ > 41. By Proposition 5.15(d) and
Example 6.6(a,b), when k > 41, k¢ is surjective, k¢ is split (with Ker(kg) = Outdiag(G))
when k is odd, and k¢ is not split (Ker(kg) = Cy x C) when k is even. By Proposition
1.9(c), when k is even, G ~4 G* for G* = Spiny,_,(9), and kg~ is split surjective (with
Ker(kg+) = Outdiag(G*)) by Proposition 5.15(c). Thus Fs(G) is tame in all cases: tamely
realized by G itself when k is odd and by Sping,_;(9) when £ is even. Note that when £ is
odd, since the graph automorphism does not act trivially on any Sylow p-subgroup, the p-
fusion system of G (equivalently, of SO,,(9)) is not isomorphic to that of the full orthogonal
group O, (9), so by [BMO, Proposition A.3(b)], it is not isomorphic to that of Spiny;,,(9)
either (nor to that of Spin,,_,(9) since its Sylow p-subgroups are smaller).

Other examples are given in Examples 5.16 and 6.6. For more details, in the situation of
Theorem B, about for which groups GG the homomorphism k¢ is surjective or split surjective,
see Propositions 5.14 and 5.15.

The following theorem was shown while proving Theorem B, and could be of independent
interest. The case where p is odd was handled by Gorenstein and Lyons [GL, 10-2(1,2)].

Theorem E. Assume G € Lie(qo) is of universal type for some odd prime qo. Fiz S €
Syly(G). Then S contains a unique abelian subgroup of maximal order, except when G =
Spa,(q) for some n > 1 and some ¢ = +3 (mod 8).

Proof. Assume S is nonabelian; otherwise there is nothing to prove. Since qq is odd, and since
the Sylow 2-subgroups of 2G5 (3%**1) are abelian for all k¥ > 1 [Ree, Theorem 8.5], G must be
a Chevalley or Steinberg group. If G = 3Dy(q), then (up to isomorphism) S € Syl,(Ga(q))
by [BMO, Example 4.5]. So we can assume that G = "G(q) for some odd prime power ¢,
some G, and r =1 or 2.

If ¢ =3 (mod 4), then choose another prime power ¢* = 1 (mod 4) such that ve(¢* —1) =

va(q + 1) (where vo(m) = k if 28|n and 281 ¥ n). Then (¢*) = ( —¢) and ( — ¢*) = (¢) as
closed subgroups of (Z2)*. By [BMO, Theorem A] (see also Theorem 1.8), there is a group
G* 2 'G(q*) (where t < 2) whose 2-fusion system is equivalent to that of G. We can thus
assume that ¢ = 1 (mod 4). So by Lemma 6.1, G has a o-setup which satisfies Hypotheses
5.2. By Proposition 5.12(a), S contains a unique abelian subgroup of maximal order, unless
¢ =5 (mod 8) and G = Sp,,(q) for some n > 1. O

In fact, when G = Sp,,(q) for ¢ = £3 (mod 8), then S € Syl,(G) is isomorphic to
(Qg)" x P for P € Syl,(3,), S contains 3" abelian subgroups of maximal order 2", and all
of them are conjugate to each other in Ng(.5).

The main definitions and results about tame and reduced fusion systems are given in
Section 1. We then set up our general notation for finite groups of Lie type in Sections 2 and
3, deal with the equicharacteristic case in Section 4, and with the cross characteristic case
in Sections 5 and 6. The kernel of ug, and thus the relation between automorphism groups
of the fusion and linking systems, is handled in an appendix.

Notation: In general, when C is a category and € Ob(C), we let Aute(z) denote the
group of automorphisms of x in C. When F is a fusion system and P € Ob(F), we set
Outz(P) = Autz(P)/Inn(P).

For any group G and g € G, ¢, € Aut(G) denotes the automorphism ¢,(h) = ghg™'. Thus
for H < G, %H = c,(H) and H? = c;l(H). When G, H, K are all subgroups of a group T,
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we define
To(H,K) ={g9 € G|'H < K}
Homg(H, K) = {c, € Hom(H,K) |g € Tc(H,K)} .

We let Autg(H) be the group Autg(H) = Homg(H, H). When H < G (so Autg(H) >
Inn(H)), we also write Outg(H) = Autg(H)/Inn(H).
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1. TAME AND REDUCED FUSION SYSTEMS

Throughout this section, p always denotes a fixed prime. Before defining tameness of
fusion systems more precisely, we first recall the definitions of fusion and linking systems of
finite groups, and of automorphism groups of fusion and linking systems.

Definition 1.1. Fiz a finite group G and a Sylow p-subgroup S < G.

(a) The fusion system of G is the category Fs(G) whose objects are the subgroups of S, and
where Morzy ey (P, Q) = Homg (P, Q) for each P,Q < S.

(b) A subgroup P < S is p-centric in G if Z(P) € Syl,(Ca(P)); equivalently, if Cq(P) =
Z(P) x CL(P) for a (unique) subgroup CL(P) of order prime to p.

(¢) The centric linking system of G is the category LL(G) whose objects are the p-centric
subgroups of G, and where Morge ) (P, Q) = Ta(P, Q)/Ct(P) for each pair of objects
P,Q. Let m: LY G) —— Fs(G) denote the natural functor: m is the inclusion on
objects, and sends the class of g € Ta(P, Q) to ¢y € Morzy ) (P, Q).

(d) For P,@Q < S p-centric in G and g € Ta(P,Q), we let [g]pq € Morce ) (P, Q) denote
the class of g, and set [g]p = [g]pp if g € Na(P). For each subgroup H < N¢g(P),
[H]p denotes the image of H in Autz(P) = Ng(P)/CL(P).

The following definitions of automorphism groups are taken from [AOV, Definition 1.13
& Lemma 1.14], where they are formulated more generally for abstract fusion and linking
systems.

Definition 1.2. Let G be a finite group with S € Syl,(G), and set F = Fs(G) and L =
L5(G).

(a) If H is another finite group with T € Syl,(H), then an isomorphism ¢: S — =T is
called fusion preserving (with respect to G and H ) if for each P,Q < S,

Homy (o(P), 9(Q)) = ¢ o Homg(P, Q) o o

(Composition is from right to left.) Equivalently, ¢ is fusion preserving if it induces an
isomorphism of categories Fs(G) —— Fr(H).

(b) Let Aut(S,F) < Aut(S) be the group of fusion preserving automorphisms of S. Set
Out(S, F) = Aut(S, F)/Autz(S).

(c) For each pair of objects P < Q in L, set tpg = [1]pg € M ( Q), which we call the
inclusion in L of P in Q. For each P, we call [P] = [P]p tz(P) the distinguished
subgroup of Aut.(P).

(d) Let Autt[yp(ﬁ) be the group of automorphisms « of the category L such that o sends

inclusions to inclusions and distinguished subgroups to distinguished subgroups. For
v € Autp(S), let ¢, € Autfyp(ﬁ) be the automorphism which sends an object P to
7(v)(P), and sends ¢ € Morg(P,Q) to v (y")~" where v/ and ~" are appropriate

restrictions of v. Set

Outyyp (L) = Autfyp )/{c7 |v € Autz(S)}.

(e) Let kg: Out(G) —— Outyy, (L) be the homomorphism which sends the class [, for
a € Aut(G) such that a(S) = S, to the class of the induced automorphism of L =
L5(G).



8 CARLES BROTO, JESPER M. M@LLER, AND BOB OLIVER

(f) Define g : Outyy, (L) —— Out(S, F) by setting uc([8]) = [Bs|s] for B € At (LL(G)),
where Bs is the induced automorphism of Aut,(S), and Sg|s € Aut(S) is its restriction

to S when we identify S with its image in Autz(S) = Ng(5)/Cq(S).

(g) Set kg = pa o kg: Out(G) —— Out(S, F): the homomorphism which sends the class
of a € Naw(c)(S) to the class of a|s.

By [AOV, Lemma 1.14], the above definition of Outy, (L) is equivalent to that in [BLOZ2],
and by [BLO2, Lemma 8.2], both are equivalent to that in [BLO1]. So by [BLO1, Theo-
rem 4.5(a)], Outyy,(L5(G)) = Out(BG)): the group of homotopy classes of self homotopy
equivalences of the space BG).

We refer to [AOV, §2.2] and [AOV, §1.3] for more details about the definitions of k¢ and
ie and the proofs that they are well defined. Note that p is defined there for an arbitrary
linking system, not necessarily one realized by a group.

We are now ready to define tameness. Again, we restrict attention to fusion systems of
finite groups, and refer to [AOV, §2.2] for the definition in the more abstract setting.

Definition 1.3. For a finite group G and S € Syl (G), the fusion system Fs(G) is tame if
there is a finite group G* which satisfies:

e there is a fusion preserving isomorphism S =, 5 for some S* € Syl,(G*); and
e the homomorphism kg-: Out(G*) — Outyy,(L5(G*)) = Out(BG*)) is split surjective.

In this situation, we say that G* tamely realizes the fusion system Fs(G).

The above definition is complicated by the fact that two finite groups can have isomorphic
fusion systems but different outer automorphism groups. For example, set G = PSLy(9) =
Ag and H = PSLy(7) = GL3(2). The Sylow subgroups of both groups are dihedral of
order 8, and it is not hard to see that any isomorphism between Sylow subgroups is fusion
preserving. But Out(G) = C% while Out(H) = Cy (see Theorem 3.4 below). Also, kg is
an isomorphism, while ry fails to be onto (see [BLO1, Proposition 7.9]). In conclusion, the

2-fusion system of both groups is tame, even though kg is not split surjective.

This definition of tameness was motivated in part in [AOV] by an attempt to construct
new, “exotic” fusion systems (abstract fusion systems not realized by any finite group) as ex-
tensions of a known fusion system by an automorphism. Very roughly, if o € Autfyp(ﬁg(G))
is not in the image of kg, and not in the image of kg« for any other finite group G* which
has the same fusion and linking systems, then one can construct and extension of Fg(G) by
« which is not isomorphic to the fusion system of any finite group. This shows why we are

interested in the surjectivity of kg; to see the importance of its being split, we refer to the
proof of [AOV, Theorem B].

It is usually simpler to work with automorphisms of a p-group which preserve fusion than
with automorphisms of a linking system. So in most cases, we prove tameness for the fusion
system of a group G by first showing that kg = g o k¢ is split surjective, and then showing
that p¢ is injective. The following elementary lemma will be useful.

Lemma 1.4. Fiz a finite group G and S € Syl (G), and set F = Fs(G). Then

(a) kg is surjective if and only if each ¢ € Aut(S,F) extends to some p € Aut(G), and
(b) Ker(ka) = Caurc) (5)/Autegs)(G)-
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Proof. This follows from the following diagram

0 —— Autn,(5)(G) —— Nauw)(S) —— Out(G) —— 0

0 —— Autn,(s)(S) —— Aut(S, F) —— Out(S,F) —— 0

with exact rows. O

The next lemma can be useful when kg or K¢ is surjective but not split.
Lemma 1.5. Fiz a prime p, a finite group G, and S € Syl (G).
(a) Assume G > G is such that G < G, p t \@/G!, and Outg(G) < Ker(kg). Then

Fs(G) = Fs(G) and L5(C) = L5(G).
(b) If ke is surjective and Ker(kg) has order prime to p, then there is G > G as in (a)
such that kg is split surjective. In particular, Fs(G) is tame, and is tamely realized by

~

G.

Proof. (a) Since Outsz(G) < Ker(kg), each coset of G in G contains an element which
centralizes S. (Recall that ¢ is induced by the restriction homomorphism from Ny (S)

to Aut(S, F).) Thus Fs(G) = Fs(G) and L4(G) = L%(G).

(b) Since G and G/O,(Z(G)) have isomorphic fusion systems at p, we can assume that
Z (@) is a p-group. Set K = Ker(rg) < Out(G). Since H(K; Z(G)) = 0 for i = 2,3, by the
obstruction theory for group extensions [McL, Theorems IV.8.7-8], there is an extension G

of G by K such that G < @, a/G = K, and Outg(G) = K. Since K = Ker(kg) < Ker(kg),
Fs(G) = Fs(G), and L5(G) = L5(G) by (a).

By [OV, Lemma 1.2], and since K < Out(G) and HY(K; Z(G)) = 0 for i = 1,2, each
automorphism of G extends to an automorphism of G which is unique modulo inner au-

~

tomorphisms. Thus Out(G) contains a subgroup isomorphic to Out(G)/K, and kg sends

~

this subgroup isomorphically onto Outey,(£L5(G)). So kg is split surjective, and Fg(G) is
tame. O

The next proposition is really a result about constrained fusion systems (cf. [AKO, Def-
inition 1.4.8]): it says that every constrained fusion system is tame. Since we are dealing
here only with fusion systems of finite groups, we state it instead in terms of p-constrained
groups.

Proposition 1.6. Fiz a finite group G and a Sylow subgroup S € Syl,(G).
(a) If Ca(O,(Q)) < O,(G), then kg and pe are both isomorphisms:
Out(G) —"%— Outyy,(LL(G)) —L5— Out(S, Fs(@)).

(b) If S is abelian, or more generally if Ng(S) controls p-fusion in G, then Fs(G) is tame,
and is tamely realized by Ng(S)/Op(Ca(S5)).

Proof. (a) Set Q = 0,(G), F = Fs(G), and L = LL(G). Then Aut,(Q) = G, so (a — ag)
defines a homomorphism ®: Auttlyp(ﬁ) — Aut(G, S). For each o € Ker(®), ag = Idg
and hence o = Id,. (Here, it is important that « sends inclusions to inclusions.) Thus ® is an

isomorphism. Also, a = ¢, for some v € Aut,(S) if and only if ag = ¢, for some g € Ng(S),
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so @ factors through an isomorphism from Out, (L) to Aut(G, S)/Auts(S) = Out(G), and
this is an inverse to xKg. Thus k¢ is an isomorphism.

In the terminology in [AKO, §1.4], G is a model for F = Fg(G). By the uniqueness of
models (cf. [AKO, Theorem II1.5.10(c)]), each 8 € Aut(S, F) extends to some y € Aut(G),
and x is unique modulo Autyz(g)(G). Hence k¢ is an isomorphism, and so is piq.

(b) If Ng(S) controls p-fusion in G, then Ng(S) ~, G. Also, Ng(S) ~, G* where G* =
Na(5)/0,(Cq(S)), G* satisfies the hypotheses of (a), and hence tamely realizes Fg(G). In
particular, this holds whenever S is abelian by Burnside’s theorem. 0

When working with groups of Lie type when p is not the defining characteristic, it is easier
to work with the universal groups rather than those in adjoint form (ue is better behaved
in such cases). The next proposition is needed to show that tameness for fusion systems of
groups of universal type implies the corresponding result for groups of adjoint type.

Proposition 1.7. Let G be a finite p-perfect group such that Oy (G) =1 and Hy(G;Z/p) =0
(i.e., such that each central extension of G by a finite p-group splits). Choose S € Syl (G),
and set Z = Z(G) < S. If Fs(G) is tamely realized by G, then Fg/7(G/Z) is tamely realized
by G/Z.

Proof. Let H be the set of all P < S such that P > Z and P/Z is p-centric in G/Z, and let
LE(G) C LL(G) be the full subcategory with object set H. By [AOV, Lemma 2.17], L¥(G)
is a linking system associated to Fg(G) in the sense of [AOV, Definition 1.9]. Hence the
homomorphism

R: Outyy,(L£5(G)) — Outeyp (LE(G))
induced by restriction is an isomorphism by [AOV, Lemma 1.17].

Set F = Fs(G), £L=LYG), G=G[Z,5=5/Z, F = F5(G), and L = L5(G) for short.
Consider the following square:

Out(G) —<— Outyyp (L) 22 Outyyy (£5(G))

P 1_1] , (1)

Out(G) —2— Outyyy(L) -

Here, pi sends the class of an automorphism of G to the class of the induced automorphism
of G =G/Z(G).
Assume that v has been defined so that (1) commutes and v is injective. If k¢ is onto, then

v is onto and hence an isomorphism, so kg is also onto. Similarly, if x¢ is split surjective,

then r is also split surjective. Thus F is tamely realized by G if F is tamely realized by
(G, which is what we needed to show.

It thus remains to construct the monomorphism v, by sending the class of o € Auttfyp (Z)

to the class of a lifting of a to £. So in the rest of the proof, we show the existence and
uniqueness of such a lifting.

Let pr: £ —— L denote the projection. Let End,{yp(ﬁ) be the monoid of functors from £
to itself which send inclusions to inclusions and distinguished subgroups into distinguished
subgroups. (Thus Auty, (L) is the group of elements of Endfyp(ﬁ) which are invertible.) We
will prove the following two statements:

(L), there is a functor @ € End!,

I
(2) For each o € Aut typ

typ (L) such that proa = aopr.
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(3) If B € End!, (L) is such that pro 3 = pr, then g = Id,.

typ

Assume that (2) and (3) hold; we call & a “lifting” of « in the situation of (2). For each
aC Aut{yp

to each other by (3). Hence a € Aut{yp

(L), there are liftings @ of a and @* of a~' in Endl, (L), and these are inverses

typ
(L), and is the unique such lifting of « by (3) again.

Define v: Outyy, (L) —— Outyy,(£) by setting v([a]) = [a] when « is the unique lifting
I
typ

of the lifting; and it factors through Outyy,(£) since conjugation by 7 € Autz(S5) lifts to
conjugation by v € Aut.(9) for any v € prg' (7).

of a. This is well defined as a homomorphism on Aut;, (L) by the existence and uniqueness

Thus v is a well defined homomorphism, and is clearly injective. The square (1) commutes
since for each 8 € Aut(G) such that 3(S) = S, rg([f]) and vkgzu([B]) are the classes of

liftings of the same automorphism of L.

[t remains to prove (2) and (3).

Proof of (2): For each o € Aut!, (L), consider the pullback diagram

typ

p1

L — L
w2 ()
L= c

prZ a

Each functor in (4) is bijective on objects, and the diagram restricts to a pullback square of
morphism sets for each pair of objects in £ (and their inverse images in £ and L).

Since the natural projection G — G is a central extension with kernel Z, the projection
functor pr: £L — £ is also a central extension of linking systems in the sense of [ba2,
Definition 6.9] with kernel Z. Since ps is the pullback of a central extension, it is also a
central extension of linking systems by [5a2, Proposition 6.10], applied with w = pr*a*(wg) €
Z%(L: Z), where wy is a 2-cocycle on £ which determines the extension pr. By [BLOL,
Proposition 1.1], H*(|£|; F,) & H?*(G;TF,), where the last group is zero by assumption. Hence
H*(|L|; Z) = 0, so w is a coboundary, and py is the product extension by [5a2, Theorem
6.13]. In other words, £ L5 (Z) x L, where L5 (Z) has one object and automorphism group
7, and there is a subcategory Ly C L (with the same objects) which is sent isomorphically
to £ by pa. Set & = py o (pa|g,)

We first check that a sends distinguished subgroups to distinguished subgroups. Let
prg: S —— S = S/Z be the projection. Fix an object P in £, and set Q = @(P). Then
Q/Z = a(P/Z), and ap,([P/Z]) = [Q/Z], so ap([P]) < pr5'([Q/Z]) = [Q].

For each subgroup P € Ob(L), there is a unique element zp € Z such that a(tpg) =
ta(py,solzp]a(p). Note that zg = 1. Define a new functor 3: £ — L by setting 5(P) = a(P)
on objects and for each ¢ € Mor.(P,Q), 5(¢) = [20]aw) o @(y) o [[zp]]g(lp). Then 3 is still a
lifting of «, and for each P:

Beps) = [2s]s 0 aleps) o [2pl5(p) = tatr).s o [zplap) o [2P]5(p) = tatr).s

For arbitrary P < @, since t5(p)a() is the unique morphism whose composite with t5(0),s
is ta(p),s (see [BLO2, Lemma 1.10(a)]), 8 sends tpg to ta(p)a(0)-

Thus, upon replacing a by 3, we can assume that a sends inclusions to inclusions. This
finishes the proof of (2).
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Proof of (3): Assume that § € End/, (£) is a lift of the identity on £. Let B(Z) be the

category with one object x and with nFly(frphism group Z. Define a functor x: L —— B(Z)
by sending all objects in £ to *, and by sending a morphism [g] € Morz(P, Q) to the unique
element z € Z such that Spg([g]) = [92] = [29]. (Recall that Z < Z(G).)

Now,

H'(|L];F,) = H'(IL5(G)|;F,) = H'(BG;F,) = H'(G:F,) = 0,

where the first isomorphism holds by [5al, Theorem B| and the second by [BLO1, Proposition
1.1]. Hence Hom(m(|£|),F,) = Hom(H:(|£|),F,) = HY(|L|;F,) = 0, where the second
isomorphism holds by the universal coefficient theorem (cf. [McL, Theorem II1.4.1}), and
so Hom(m(|£]), Z) = 0. In particular, the homomorphism x: m(|£]|) —— m(|B(Z)|) = Z
induced by Y is trivial.

Thus for each ¢ € Mor,(P, @), the loop in |£| formed by ¢ and the inclusions tpg and

Lg.s s sent to 1 € Z. Since f sends inclusions to inclusions, this proves that xpg(¢) = 1,
and hence that pg(v) = ¢. Thus = Id,.

By Proposition 1.7, when proving tameness for fusion systems of simple groups of Lie type,
it suffices to look at the universal groups (such as SL,(q), SU,(q)) rather than the simple
groups (PSL,(q), PSU,(q)). However, it is important to note that the proposition is false if
we replace automorphisms of the linking systems by those of the fusion system. For example,
set G = SLy(3*) and G = PSLy(3%). Then S = Q35 and S = Dy, Out(S, Fs(G)) =
Out(S) = Out(G) = Cy x Cy (and K¢ is an isomorphism), while Out(G) = Cy x Cy and
Out(S, fg(G)) = Out(S) = 02 X Cg.

We already gave one example of two groups which have the same fusion system but different
outer automorphism groups. That is a special case of the main theorem in our earlier paper,
where we construct many examples of different groups of Lie type with isomorphic fusion
systems. Since this plays a crucial role in Section 6, where we handle the cross characteristic
case, we restate the theorem here.

As in the introduction, we write G ~, H to mean that there is a fusion preserving
isomorphism from a Sylow p-subgroup of GG to one of H.

Theorem 1.8 ([BMO, Theorem Al). Fiz a prime p, a connected reductive group scheme G
over Z, and a pair of prime powers q and ¢’ both prime to p. Then the following hold.

(a) Glq) ~p G(¢) if (@) = (¢} as subgroups of Z,;.

(b) If G is of type A, Dy, or Eg, and T is a graph automorphism of G, then "G(q) ~, "G(¢')
if @ = @ as subgroups of Z, .

(c) If the Weyl group of G contains an element which acts on the mazimal torus by inverting
all elements, then G(q) ~, G(¢') (or 'G(q) ~p "G(¢') for 7 as in (b)) if (—1,q) =
(—=1,¢") as subgroups of Z; .

(d) If G is of type A,, D, forn odd, or&, and T is a graph automorphism of G of order
two, then "G(q) ~, G(q') if ( —q) = (¢') as subgroups of 7.

The next proposition is of similar type, but much more elementary.

Proposition 1.9. Fiz an odd prime p, a prime power q prime to p, n > 2, and ¢ € {£1}.
Then

(@) SPan(q) ~p SLan(q) if ord,(q) is even,
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(b) San(q) ~p Spin2n+1 (Q), and
(¢) Spins,(q) ~p Sping,_(q) if ¢ is odd and ¢" # & (mod p).

Proof. If we replace Spin(¢q) by SOE(q) in (b) and (c), then these three points are shown
in [BMO, Proposition A.3] as points (d), (a), and (c), respectively. When ¢ is a power of
2, (b) holds because the groups are isomorphic (see [Ta, Theorem 11.9]). So it remains to
show that
Sping, (4) ~p 2%,(a) ~p S0,,(0)

for all m > 3 (even or odd) and ¢ odd. The first equivalence holds since p is odd and Q¢ (¢) =
Spin;, (¢)/ K where | K| = 2. The second holds by Lemma 1.5(a), and since Outgsoe (¢)(€25,(q))
is generated by the class of a diagonal automorphism of order 2 (see, e.g., [GLS3, §2.7]) and
hence can be chosen to commute with a Sylow p-subgroup. This last statement is shown in
Lemma 5.8 below, and holds since for appropriate choices of algebraic group G containing
the given group G, and of maximal torus 7' < G, a Sylow p-subgroup of GG is contained in
N=(T) (see [GLS3, Theorem 4.10.2]) and the diagonal automorphisms of G are induced by

G
conjugation by elements in N (G) (see Proposition 3.5(c)). O

Theorem 1.8 and Proposition 1.9, together with some other, similar relations in [BMO],
lead to the following proposition, which when p is odd provides a relatively short list of
“p-local equivalence class representatives” for groups of Lie type in characteristic different
from p.

Proposition 1.10. Fiz an odd prime p, and assume G € Lie(qy) is of universal type for
some prime qy # p. Assume also that the Sylow p-subgroups of G are nonabelian. Then
there is a group G* € £ie(qp) of universal type for some g # p, such that G* ~, G and G*
1s one of the groups in the following list:

(a) SLn(q") for somen > p; or
) Spins, (¢'), where n > p, e = 1, (¢)" =€ (mod p), and € = +1 if n is odd; or

) G(¢'), where G = Gy, Fy, Es, E;, or Eg, p’ [W(G)|, and ¢ =1 (mod p); or

(b
(c) 3D4(q") or ?Fy(q'), where p =3 and ¢’ is a power of 2; or
(d
(e) Es(q'), where p=1>5 and ¢ = £2 (mod 5).

Furthermore, in all cases except (c), we can take g to be any given prime whose class
generates (Z/p?)*, and choose G* so that ¢' = (q})® where b|(p — 1)p* for some k.

Proof. Let q be such that G = "G(q) for some 7 and some G. Thus ¢ is a power of ¢y. Fix a
prime ¢} as specified above. By Lemma 1.11(a), there are positive integers b, ¢, and powers

q = (¢))? and ¢" = (g})° such that (¢) = (¢'), { — ¢) = (¢"), and b, c|(p—1)p* for some ¢ > 0.

(i) Assume G = Sz(q), °G2(q), *Fa(q), or G = *Dy(q). Since p # qo, and since S € Syl (G)
is nonabelian, p divides the order of the Weyl group W of G by [GL, 10-1]. The Weyl
group of By is a 2-group, and 2 and 3 are the only primes which divide the orders of
the Weyl groups of Gy, Fy, and Dy. Hence p = 3, G % 2G4(q) since that is defined
only in characteristic 3, and so G = ?Fy(q) or ®D4(q). Set G* = 2Fy(q') or *D4(¢),
respectively, where ¢ = 2. Then G* ~, G, and we are in case (c).

(i) If G = SU,(q) or *Fg(q), then by Theorem 1.8(d), G ~, G* where G* = SL,(¢") or
FEs(q"), respectively. So we can replace G by a Chevalley group in these cases.
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(i) Assume G = Sp,,(q) for some n and ¢. If ord,(q) is even, then by Proposition 1.9(a),
G ~p SLa,(q). If ord,(q) is odd, then ord,(¢") is even (recall that ¢¥ = —¢ (mod p)),
and G ~, Sp,,(¢") by Theorem 1.8(c). So G is always p-locally equivalent to a linear
group in this case.

(iv) Assume G = Spin,,,(q) for some n and gq. Then G ~, Sp,,(q) by Proposition 1.9(b).
So G is p-locally equivalent to a linear group by (iii).

(v) If G=SL,(q),set G* = SL,(¢'). Then G* ~, G by Theorem 1.8(a), n > p since the
Sylow p-subgroups of G are nonabelian, and we are in the situation of (a).

(vi) Assume G = Spinj,(q) for some n and ¢, and ¢ = +1. If ¢ is a power of 2, then by
using point (a) or (b) of Theorem 1.8, we can arrange that ¢ be odd. If ¢ # ¢ (mod p),
then G ~,, Spin,,,_;(q) by Proposition 1.9(c), and this is p-equivalent to a linear group
by (iv). So we are left with the case where ¢" = ¢ (mod p). If n is odd and ¢ = —1,
set G* = Sping, (¢) ~, G (Theorem 1.8(d)). Otherwise, set G* = Spin,(¢') ~, G
(Theorem 1.8(a,b)). In either case, we are in the situation of (b).

We are left with the cases where G = G(q) for some exceptional Lie group G. By [GL, 10-
1(2)] and since the Sylow p-subgroups of G are nonabelian, p } |[W(G)|. If ord,(q) = 1, then
G* = G(q¢') ~, G by Theorem 1.8(a). If ord,(¢) = 2 and G # Es, then G* = G(¢") ~, G by
Theorem 1.8(c), where ¢¥ = 1 (mod p). In either case, we are in the situation of (d).

If ord,(q) = 2 and G = FEg(q), then (q) = (—¢°) as closed subgroups of Z* (note
that v,(¢* — 1) = v,((—¢*)* — 1)). So by Theorem 1.8(d) and Example 4.4 in [BMO],
G = Fg(q) ~p *Es(q*) ~p Fu(q®). So we can choose G* satisfying (d) as in the last paragraph.

Assume ord,(q) > 2. By [GL, 10-1(3)], for S € Syl,(G) to be nonabelian, there must be
some n > 1 such that p-ord,(q) | n, and such that ¢" — 1 appears as a factor in the formula
for |G(q)| (see, e.g., [GL, Table 4-2] or [Ca, Theorem 9.4.10 & Proposition 10.2.5]). Since
ord,(¢)|(p — 1), this shows that the case ord,(¢q) > 2 appears only for the group Es(g), and
only when p = 5 and m = 4. In particular, ¢,¢’ = £2 (mod 5). Set G* = Eg(q'); then
G* ~, G by Theorem 1.8(a), and we are in the situation of (e). O

The following lemma was needed in the proof of Proposition 1.10 to reduce still further
the prime powers under consideration.

Lemma 1.11. Fix a prime p, and an integer ¢ > 1 prime to p.

(a) If p is odd, then for any prime ro whose class generates (Z/p*)*, there is b > 1 such
that {q) = ((r0)®), and b|(p — 1)p*® for some ¢.

(b) If p = 2, then either (q) = (3), or (q) = (b), or there are ¢ = £1 and k > 1 such that

e=q (mod8) and (q) = (e - 3%").

Proof. Since ¢ € Z and g > 1, (q) is infinite.

(a) If pisodd, then for each n > 1, (Z/p")* = (Z/p)* x (Z/p"~') is cyclic and generated
by the class of ro. Hence ZX = (Z/p)* X (Zp,+), and (ro) = Z;. Also, (q) > 1+ p'Z, for
some ¢ > 1, since each infinite, closed subgroup of (Z,, +) contains p*Z, for some k.

Set b= [Z; : (q)] = [(Z/p")* : (a+p'Z)]|(p — 1)p'~". Then (q) = ((r0)").
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(b) If p = 2, then ZF = {+1} x (3), where (3) = (Z,,+). Hence the only infinite closed

subgroups of (3) are those of the form (32°) for some & > 0. So () = (e - 3%") for some k > 0
and some £ = £1, and the result follows since (5) = ( — 3). O

We also note, for use in Section 4, the following more technical result.

Lemma 1.12. Let G be a finite group, fir S € Syl (G), and set F = Fs(G). Let P < S be
such that Co(P) < P and Ng(P) € Syl (Ng(P)). Then for each ¢ € Aut(S, F) such that
©(P) = P, ¢|ng(p) extends to an automorphism ¢ of Ng(P).

Proof. Since Cg(P) < P and Ng(P) € Syl,(Ng(P)), Ng(P) is a model for the fusion system
€ = Fnyp)(Ng(P)) in the sense of [AKO, Definition 1.4.8]. By the strong uniqueness
property for models [AKO, Theorem 1.4.9(b)], and since ¢|y(p) preserves fusion in &, ¢|ny(p)
extends to an automorphism of the model. 0]

The following elementary lemma will be useful in Sections 5 and 6; for example, when
computing orders of Sylow subgroups of groups of Lie type.

Lemma 1.13. Fiz a prime p. Assume ¢ =1 (mod p), and ¢ =1 (mod 4) if p = 2. Then
for eachn>1, v,(¢" — 1) = v,(qg — 1) + v,(n).

Proof. Set r = v,(q¢ — 1), and let k be such that ¢ = 14+ p"k. Then ¢" = 1+ np"k + &, where
vy(np'k) = vy(n) + r, and where each term in & has strictly larger valuation. O
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2. BACKGROUND ON FINITE GROUPS OF LIE TYPE

In this section and the next, we fix the notation to be used for finite groups of Lie type,
and list some of the (mostly standard) results which will be needed later. We begin by
recalling the following concepts used in [GLS3]. We do not repeat the definitions of maximal
tori and Borel subgroups in algebraic groups, but refer instead to [GLS3, §§1.4-1.6].

Definition 2.1 ([GLS3, Definitions 1.7.1, 1.15.1, 2.2.1]). Fiz a prime qq.

(a) A connected algebmig group G over IF‘qO I8 simpJe if [é, é] # 1, and all proper closed
normal subgroups of G are finite and central. If G is simple, then it is of universal type
if it is simply connected, and of adjoint type if Z(G) = 1.

(b) A Steinberg endomorphism of a connected simple algebraic group G is a surjective al-

gebraic endomorphism o € End(G) whose fized subgroup is finite.

(¢) A o-setup for a finite group G is a pair (G, o), where G is a simple algebraic group over
F,,, and where o is a Steinberg endomorphism of G such that G' = OqOI(C@(U)).

(d) Let Lie(qo) denote the class of finite groups with o-setup (G, o) where G is simple and is
defined in characteristic qo, and let £ie be the union of the classes Lie(qo) for all primes

qo. We say that G is of universal (adjoint) type if G is of uniersal (adjoint) type.

If G is universal, then C5(0) is generated by elements of go-power order (see [St3, Theorem
12.4]), and hence G = Cg(0) in (c) above. In general, Cz(0) = G - Cz(o) (cf. [GLSS3,
Theorem 2.2.6]).

A root group in a connected algebraic group G over I?qo with a given maximal torus T
is a one-parameter closed subgroup (thus isomorphic to F, ) which is normalized by T

The roots of G are the characters for the T-actions on the root groups, and lie in the Z-
lattice X(T') = Hom(T',Fy ) of characters of T'. (Note that this is the group of algebraic

X
q0°

vector space V = R®,T*. We refer to [GLS3, §1.9] for details about roots and root subgroups
of algebraic groups, and to [Brb, Chapitre VI| for a detailed survey of root systems.

homomorphisms, and that Hom(F IF‘;O) = 7Z.) The roots are regarded as lying in the R-

The following notation and hypotheses will be used throughout this paper, when working
with a finite group of Lie type defined via a o-setup.

Notation 2.2. Let (é, o) be a o-setup for the finite group G, where G is a connected, simple

algebraic group over I[E’qo for a prime qo. When convenient, we also write G = G(IFQO), where
G s a group scheme over Z.

(A) The maximal torus and Weyl group of G. Fix a_mazimal torus T in G such
that o(T) =T. Let W = Ng(T)/T be the Weyl group of G (and of G).

(B) The root system of G. Let 3 be the set of all roots of G with respect to T, and let
Xo < G denote the root group for the root a € ¥. Thus X, = {z.(u)|u € Fy,} with
respect to some fized Chevalley parametrization of G. Set V. =R ®z T*: a real vector
space with inner product (—,—) upon which the Weyl group W acts orthogonally. Let
IT C X be a fundamental system of roots, and let >, C X be the set of positive roots
with respect to I1. For each a € ¥, let ht(«) denote the height of a: the number of
summands in the decomposition of o as a sum of fundamental roots.
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For each o € X3, let w, € W be the reflection in the hyperplane a*+ C V.
For a € ¥ and A € FX, let no(\) € (Xo, X_o) and ho(\) € TN <)7(a,)7(_a)

q0’
be as defined in [Ca, §6.4] or [GLS3, Theorem 1.12.1]: the images of (_y-1 ) and
(é /\91 ), respectively, under the homomorphism SLQ( ) —— G which sends (1 “) to

2o(u) and (19) to x_o(v). Equivalently, no(\) = xa()\)x,a( A Dxo(N) and ho(X) =
Na(N)ng(1)7L

(C) The maximal torus, root system and Weyl group of G. Set T = TNG.
Let 7 € Aut(V) and p € Aut(X) be the orthogonal automorphism and permutation,
respectively, such that for each o € %, U(X ) = Xp (a) and p(a) is a positive multiple
of T(a). Set Wy = Cw (7).
If p(IT) = I, then set Vo = Cy(7), and let pry; be the orthogonal projection of V' onto

Vo. Let S be the set of equivalence classes in Y determined by T, where a, f € ¥ are
equivalent if pry; (@) is a positive scalar multiple of prVO( ) (see [GLS3, Definition 2.3.1]

or [Ca, §13.2]). Let 1 C 5. denote the images in & of I C ...
For each @ € &, set Xa = (Xo|a €q) and Xz = Cx (a). When a € ¥ is of minimal

height in its class G € 3, and ¢’ = | X2P|, then foru € IF , let To(u) € Xg be an element
whose image under projection to X, is x,(u) (unzquely determz’ned modulo [ Xz, Xz]).
For a € Il and \ € IF;O, let /fza()\) € T be an element in G N (hg(ﬁ'go) |5 € @) whose

component in ha(IF‘qXO) is ho(X) (if there is such an element).

To see that 7 and p exist as defined in point (C), recall that the root groups X, foraey

are the unique closed subgroups of G which are isomorphic to (F,,,+) and normalized by T
(see, e.g., [GLS3, Theorem 1.9.5(a,b)]). Since o is algebraic (hence continuous) and bijective,
o~ ! sends root subgroups to root subgroups, and ¢ permutes the root subgroups (hence the
roots) since there are only finitely many of them. Using Chevalley’s commutator formula,
one sees that this permutation p of ¥ preserves angles between roots, and hence (up to
positive scalar multiple) extends to an orthogonal automorphism of V.

These definitions of 7, (u) € X5 and /ﬁa()\) € T are slightly different from the definitions
in [GLS3, §2.4] of elements x5(u) and haz(A). We choose this notation to emphasize that

these elements depend on the choice of o € ¥, not only on its class a € 5. This will be
important in some of the relations we need to use in Section 4.

Lemma 2.3. Under the assumptions of Notation 2.2, the action of W on T restricts to an
action of Wo on T, and the natural isomorphism Ng(T)/T = W restricts to an isomorphism

(Ne(T) N N&(T)) /T = Cw (1) = W .

Proof. For each a € 3, no(1) = z4(1)z_o(—1)x4(1) represents the reflection w, € W, and
hence 0 (nq) € (Xya); X_p@)) N Ng(T') represents the reflection w,@) = "(w,). Since W is
generated by the w, for a € ¥, we conclude that ¢ and 7 have the same action on W.

Thus the identification N~ (T)/ T = W restricts to the following inclusions:
(Ne(T) N )/T<C’ 7(0)/Cz(0 )SCNi(T)/T(U)gOW(T):Wg.

If w € W represents the coset 2T C N@(T) then 2~ 'o(z) € T. By the Lang-Steinberg

theorem, each element of T has the form t~'o(t) for some ¢t € T, and hence we can choose
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x such that o(z) = z. Then z € Cx(0), and hence z normalizes G = O%(Cz(0)) and
T = GNT. Since Cz(o) = GCz(0) (see [GLS3, Theorem 2.2.6(g)] or [St3, Corollary

12.3(a)]), some element of 2T lies in Ng(T'). So the above inclusions are equalities. O

The roots in G are defined formally as characters of its maximal torus 7. But it will be
useful to distinguish the (abstract) root v € ¥ from the character ¢, € Hom(7T,Fy) C V.

For each root @ € ¥ C V, let ¥ € V* be the corresponding co-root (dual root): the
unique element such that (o", «) = 2 and w,, is reflection in the hyperplane Ker(a"). Since
we identify V = V* via a W-invariant inner product, o = 2a/(«, ). Point (c¢) of the next
lemma says that a" = h,, when we regard h, € Hom(F},T') as an element in V*.

Lemma 2.4. Assume we are in the situation of (A) and (B) in Notation 2.2.

(a) We have C@(T) = T. In particular, Z(G) < T, and is finite of order prime to the
defining characteristic qq.

(b) The mazimal torus T in G is generated by the elements ho(\) for a € II and \ € IF;O.
If G is universal, and \, € qu are such that [],cq ha(Aa) = 1, then Ao = 1 for each

a € lIl. Thus B ~
T =] ha(Fy),

a€ll
and h,, 1s injective for each o.

(c) For each B € %, let 3 € X(T) = Hom(T, IF‘QXO) be the character such that
wp(u) = z5(05(t)-u)
forteT andu e quo- Then
O5(ha(N) = A" for Ba e X, AeFy.

Thiproduct homomorphism 0 = [[05: T —— [sen IF‘QXO is surjective, and Ker(0y) =
Z(@G).

(d) Ifo, Br,.... B € X and ma, ..., ny, € Z are such that oy =nfY + ...+, then for
each A € F, ho(X) = hg, (A™) - - - hg, (A™).

q0”

(e) For each w € W, a € 3, and A € IFQXO, and each n € Né(T) such that nT = w €
Né(f)/T =W, (Xa) = Xua) and "(ho(N) = hy@)(N). For each o, 8 € ¥ and each
ANeFX,

wa(hg(N) = hua(s)(X) = ha(Mha(A75).
Hence wo(t) =t - ho(0a(t)) " for each t € T.

Proof. (a) By [Hu, Proposition 24.1.A], the maximal torus T is regular (i.e., contained in only
finitely many Borel subgroups). So Cg(T') = T by [Hu, Corollary 26.2.A]. Hence Z(G) < T,
it is finite since G is assumed simple, and so it has order prime to the defining characteristic
do-

We claim that it suffices to prove the relations in (c)—(e) in the adjoint group G/Z(G),
and hence that we can use the results in [Ca, §§7.1-2]. For relations in 7', this holds since
T is infinitely divisible and Z(G) is finite (thus each homomorphism to 7'/Z(G) has at most
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one lifting to T'). For relations in a root group X 4, this holds since each element of X ,Z(G)
of order g lies in X, since |Z(G)| is prime to gy by (a).
(b) This is stated without proof in [GLS3, Theorem 1.12.5(b)], and with a brief sketch of

a proof in [St4, p. 122]. We show here how it follows from the classification of reductive
algebraic groups in terms of root data (see, e.g., [Sp, §10]).

Consider the homomorphism

=~ def

hn: T [[Fr —— 7T

a€ell

which sends (Ao )aer t0 [ [, ha(Aa). Then Ay is surjective with finite kernel (see [Ca, §7.1]).
It remains to show that it is an isomorphism when G is of universal type.

We recall some of the notation used in [Sp, §7]. To G is associated the root datum

(X(T),%, X¥(T),xV), where
X(T) =Hom(T,F)), XY(T)=Hom(F),T), X¥={a"=h.|ae}CX"T).

As noted before, X(T) and XV(T) are groups of algebraic homomorphisms, and are free

abelian groups of finite rank dual to each other. Recall that ¥ C X (T), since we identify a
root « with the character 6,,.

Set YV = Z¥Y C XV(T), and let Y D X(T) be its dual. Then (V,%,YY,%Y) is still
a root datum as defined in [Sp, §7.4]. By [Sp, Proposition 10.1.3] and its proof, it is
realized by a connected algebraic group G with maximal torus T which lies in a central

extension f: G —— G which extends hy. Since G is of universal type, f and hence hy are
isomorphisms.

(c) Let ZX < V be the additive subgroup generated by Y. In the notation of [Ca, pp.
97-98], for each o € ¥ and A € F | ho(\) = h(Xa,x) Where

Xax € Hom(ZY, IF;O) is defined by xan(v) = A2@W)/ (@) — \(@"w),

Also, by [Ca, p. 100], for each x € Hom(ZX, I[:‘X) B €% and u € F, "Nry(u) =
25(x(6)-u). Thus there are homomorphisms 65 € Hom(T, FX) for each 8 € ¥, such that
rg(u) = x5(05(t)-u), and O5(h(x)) = x(5) for each x. For each aw € ¥ and A € qu,

05(ha(N) = O5(h(Xan)) = Xan(8) = A7) . (1)

Assume t € Ker(0yy). Thus ¢t € Ker(6,) for all o € 11, and hence for all o € ¥ C ZII. So
[t, X, = 1 for all @ € 3, these root subgroups generate G (see [Sp, Corollary 8.2.10]), and

this proves that t € Z(G). The converse is clear: t € Z(G) implies t € T by (a), and hence
05(t) =1 for all § € II by definition of 6.

It remains to show that Ay sends T onto [] el qu. Consider the homomorphisms

7 def H quo hn H qu , (2)

a€cll Bell

where hyp was defined in the proof of (b). We just saw that 70y has matrix ((av, 5))a fer

which has nonzero determinant since II C V and IIY C V* are bases. Since IFqXO is divisible
and its finite subgroups are cyclic, this implies that 6y o hyy is onto, and hence 67 is onto.
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(d) This follows immediately from (c), where we showed, for a € X, that o can be identified
with hq in Hom(Fy ,T) C V*.

(e) The first statement ((X,) = Xy and (ha(X)) = huw@)(N)) is shown in [Ca, Lemma
7.2.1(ii)) & Theorem 7.2.2]. By the usual formula for an orthogonal reflection, w,(8) =
8- 2(,f)

(@)
wy(B) and [ have the same norm,

v 2w.(B8) 28 _2(04,6)‘ 20 B (8 o). o
walP) =5 T BE (BB (e D e)an

a =B —(aY, B)a. Here, we regard w, as an automorphism of V (not of T'). Since

and by (d),
Wa(hs(N) = () (X) = ha(WNha(A"7D) = hs(Mha(Ba(hs (X))

where the last equality follows from (c). Since T is generated by the hg()\) by (b), this
implies that wy (t) =t - he(0a(t)) " for all t € T. O

For any algebraic group H, H° denotes its identity connected component. The following
proposition holds for any connected, reductive group, but we state it only in the context of
Notation 2.2. Recall the homomorphisms 65 € Hom(T',Fy ), defined for 8 € ¥ in Lemma
2.4(c).

Proposition 2.5. Assume Notation 2.2. For any subgroup H < T, Cz(H) is an algebraic
group, Cx(H )0 is reductive, and

Co(H) =(T,X,|a €%, H<Ker(6,)) )
Co(H) = C5z(H)"-{g € N&(T) |9, H] = 1} .

If, furthermore, G is of universal type, then Z(G) = Cz(W).

Proof. The description of C(H)? is shown in [Ca2, Theorem 3.5.3] when H is finite and
cyclic, and the proof given there also applies in the more general case. For each g € C’é(H )

¢g(T) is another maximal torus in Cz(H)?, so gh € CNE;(T)(H> for some h € Cx(T)°, and

Assume G is of universal type. Since Z(G) < T by Lemma 2.4(a), we have Z(G) < Cz(W).
Conversely, by Lemma 2.4(b), for each t € T and each a € ¥, {zq(u)) = 2o(fa(t)u), and
0_o(t) = 0,(t)~L. Hence also (ny(1)) = na(0.(t)) (see the formula for n,()\) in Notation
2.2(B)). If t € Cz(W), then [t,n.(1)] = 1 for each «, and since G is of universal type,
(X0, X o) = SLy(F,,). Thus 6,(t) =1 for all a € ¥, ¢ acts trivially on all root subgroups,
and so t € Z(G). O

We now look more closely at the lattice ZX" generated by the dual roots.

Lemma 2.6. Assume Notation 2.2(A,B), and also that G (and hence G) is of universal
type.

(a) There is an isomorphism
®: 2% @z Ff ——— T
with the property that ®(a” @ \) = h(\) for each o € ¥ and each \ € ]F;O.
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Fiz some A € FX | and set m = |\|. Set &y = ®(—,\): Z8Y —— T.

do7
(b) The map ®y is Z]W]-linear, Ker(®y) = mZ¥Y, and Im(®y) = {t € T |t™ = 1}.
(¢) Fizrt € T and x € ZX" such that ®y(x) =t, and also such that
|z]] < $m - min{[|a"|| | a € I1}.
Then Cy (t) = Cy (z).
(d) If m = |A| > 4, then for each o € 3, Cyy(ha(N)) = Cw ().

Proof. (a,b) Identify ZX as a subgroup of Hom(F*, T), and let

qo0’
®: ZYY x Fyf ——— T
be the evaluation pairing. This is bilinear, hence induces a homomorphism on the tensor
product, and ®(a”,\) = hy(\) by Lemma 2.4(c). Since {a" |« € 11} is a Z-basis for Z%Y

(since ¥V is a root system by [Brb, § VI.1, Proposition 2]), and since G is of universal type,
® is an isomorphism by Lemma 2.4(b).

In particular, for fixed A € I@;O of order m, ®(—, ) induces an isomorphism from the

quotient group ZXY /mZ%." onto the m-torsion subgroup of T'.

(c) Clearly, Cyw(z) < Cw(t); it remains to prove the opposite inclusion. Fix w € Cy(t).
By (a), w(z) =z (mod mZX").

Set r = min{||a”|||a € II}. For each o € %, [|a"|| = Vk -7 for some k = 1,2,3, and
hence (¥,a") € r?Z. For each o, € %, 2(a¥,8Y)/(aY,a") € Z (cf. [Ca, Definition
2.1.1]), and hence (o, 8¥) € 3r*Z. Thus (z,z) € r*Z for each z € ZX", and in particular,
min{||z[| |0 £z € ZXV} =r.

By assumption, ||w(x)|| = ||z| < mr/2, so ||w(x) — x| < mr. Since each nonzero element
in mZX" has norm at least mr, this proves that w(z) — z = 0, and hence that w € Cy (z).

(d) This is the special case of (b), where z = @ and ¢t = hy (). O

Lemma 2.7. Assume Notation 2.2, and assume also that G is of universal type. Let I' <
Aut(V') be any finite group of isometries of (V,X). Then there is an action of I on T, where
g(ha(u)) = hy(a)(u) for each g €T, a € B, and uw € Fyx. Fiz m > 3 such that qo { m, and

set T, = {t € T|t™ = 1}. Then T acts faithfully on T,,. If1 # g € T and ¢ € Z are such
that g(t) = t* for each t € T,, then £ = —1 (mod m).

Proof. The action of T on T is well defined by the relations in Lemma 2.4(d,b).

Now fix m > 3 prime to ¢, and let T}, < T be the m-torsion subgroup. It suffices to
prove the rest of the lemma when m = p is an odd prime, or when m = 4 and p = 2. Fix
A€ ]?;0 of order m, and let ®y: ZX¥ —— T be the homomorphism of Lemma 2.6(a). By
definition of ®,, it commutes with the actions of I' on ZXY < V and on T,,.

Assume 1 # g € I' and ¢ € Z are such that g(t) = t* for each t € T;,. Set r = dim(V), and
let B € GL,(Z) be the matrix for the action of g on ZX", with respect to some Z-basis of
ZyY. Then |g| = |B|, and B = ¢I (mod mM,(Z)). If p=2 (m = 4), let u € {1} be such
that £ = p (mod 4). If p is odd (so m = p), then let u € (Z,)* be such that y = ¢ (mod p)
and pP~' = 1. Set B = u~'B € GL.(Z,). Thus B’ also has finite order, and B’ = I (mod
M, (Z,)).
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The logarithm and exponential maps define inverse bijections

In
I +mM,.(Z,) —— mM,(Z,).

exp

They are not homomorphisms, but they do have the property that In(M*) = kIn(M) for
each M € I + mM,(Z,) and each k > 1. In particular, the only element of finite order in
I +mM,(Z,) is the identity. Thus B’ = I, so B = ul. Since 1 € Z and B # I, we have
p=—1and B =—1I. ([l

The following lemma about the lattice zEV will also be useful when working with the
Weyl group action on certain subgroups of 7T'.

Lemma 2.8. Assume Notation 2.2(A,B). Set A = ZY.": the lattice in V generated by the
dual roots. Assume that there are b € W of order 2, and a splitting A = A, X A_, such that
A, A #0 and b acts on Ay via £1d. Then G = C,, (= Spy,,) for some n > 2.

Proof. Fix b € w and a splitting A = A, x A_ as above. When considering individual cases,
we use the notation of Bourbaki [Brb, Planches I-IX] to describe the (dual) roots, lattice,
and Weyl group.

e IfG=A, (n>2), then A = {(ao,...,an) c 7"+l ‘ao +...+a, = O}, and b exchanges
certain coordinates pairwise. Choose v € A with coordinates 1, —1, and otherwise 0;
where the two nonzero entries are in separate orbits of b of which at least one is nonfixed.
Then v ¢ A, x A_, a contradiction.

e If G = (G, then as described in [Brb, Planche IX], A is generated by the dual fundamental

roots (1,—1,0) and (%, —%, —%), and does not have an orthogonal basis.

e IfG=DB, (n>3), D, (n>4), or Fy, then A < Z" is the sublattice of n-tuples the sum
of whose coordinates is even. Also, b acts by permuting the coordinates and changing
sign (or we can assume it acts this way in the Fj case). Choose v with two 1’s and the
rest 0, where the 1’s are in separate b-orbits, of which either at least one is nonfixed, or
both are fixed and exactly one is negated. Then v ¢ A, x A_, a contradiction.

o If G = Es, then A = A(Es) < R® is generated by £(1,1,...,1) and the n-tuples of
integers whose sum is even. We can assume (up to conjugation) that b acts as a signed
permutation. Choose v as in the last case.

e If G = FE7, then A < R® is the lattice of all x = (z1,...,x5) € A(Fg) such that 7 = —zg.
Up to conjugation, b can be again be assumed to act on A via a signed permutation
(permuting only the first six coordinates), and v can be chosen as in the last case.

o If G = FEg, then A < R® is the lattice of all x = (z1,...,25) € A(Fg) such that g = 27 =
—xg. Also, W contains a subgroup isomorphic to 2* : S5 with odd index which acts on
the remaining five coordinates via signed permutations. So b and v can be taken as in the
last three cases. 0

We finish the section with a very elementary lemma.

It will be useful to know, in certain situations, that each coset of T' in Né(T) contains
clements of G.

Lemma 2.9. Assume that we are in the situation of Notation 2.2(A,B). Assume also that
o acts on T wia (t — t™) for some 1 # m € Z. Then for each g € Ng(T), gT NCx(0) # @.
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Proof. Since oz € Z(Aut(T)), we have g~'o(g) € C@(T) — T, the last equality by Lemma
2.4(a). So for each t € T, o(gt) = gt if and only if g~'o(g) = ¢'™™. Since T = (FX)" for

some r, and I@‘qo is algebraically complete (and 1 —m # 0), this always has solutions. 0
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3. AUTOMORPHISMS OF GROUPS OF LIE TYPE

Since automorphisms of GG play a central role in this paper, we need to fix our notation
(mostly taken from [GLS3]) for certain subgroups and elements of Aut(G). We begin with

automorphisms of the algebraic group G.
Definition 3.1. Let G and its root system X be as in Notation 2.2(A,B).

(a) When q is any power of qo (the defining characteristic of G), let Y, € End(G) be the
field endomorphism defined by 1y(x4(u)) = zo(u?) for each a € ¥ and each u € Fy.
Set @z = {1bg | b > 1} the monoid of all field endomorphisms of G.

(b) Let I'z be the group or set of graph automorphisms of G as defined in [GLS3, Definition
1.15.5(e)]. Thus when (G,qo) # (B2,2), (Go,3), nor (Fy,2), g is the group of all
v € Aut(G) of the form y(z4(u)) = Ty (u) (all @ € £I1 and u € F,) for some
isometry p of ¥ such that p(Il) = II. If (G,q) = (Bs,2), (G2,3), or (Fy,2), then
[z = {1,¢}, where for the angle-preserving permutation p of ¥ which exchanges long
and short roots and sends 11 to itself, 1 (xa(u)) = p@)(u) when a is a long root and
Y(xa(u)) = xp)(u®) when o is short.

(c) A Steinberg endomorphism o of G is “standard” if ¢ = Yy oy = 7oy, where q is a
power of qo and v € I'z. A o-setup (G,0) for a finite subgroup G < G is standard if &
15 standard.

By [GLS3, Theorem 2.2.3|, for any G with o-setup (G, o) as in Notation 2.2, G is G-
conjugate to a subgroup G* which has a standard o-setup. This will be made more precise
in Proposition 3.6(a).

Most of the time in this paper, we will be working with standard o-setups. But there are
a few cases where we will need to work with setups which are not standard, which is why
this condition is not included in Notation 2.2.

Following the usual terminology, we call G a “Chevalley group” if it has a standard o-
setup where v = Id in the notation of Definition 3.1; i.e., if G = G(q) where ¢ is some power
of go. In this case, the root groups X5 are all abelian and isomorphic to F,. When G has a
standard o-setup with v # Id, we refer to G as a “twisted group”, and the different possible
structures of its root groups are described in [GLS3, Table 2.4]. We also refer to G as a

“Steinberg group” if v # Id and is an algebraic automorphism of G; i.e., if G is a twisted
group and not a Suzuki or Ree group.

The following lemma will be useful in Sections 5 and 6.

Lemma 3.2. Assume G is as in Notation 2.2(A,B). Then for each algebraic automorphism

v of G which normalizes T, there is an orthogonal automorphism T of V' such that T(X) =13,
and

Y Xa) =Xr@)  and  (ha(N) = hrey(A)

for each a € ¥ and each N € Fy . In particular,

Vel = I7| < oo. If, in addition, ~
normalizes each of the root groups X, (i.e., 7=1d), then v € Autf(é),

Proof. By [GLS3, Theorem 1.15.2(b)], and since v is an algebraic automorphism of G, v =
cgoo for some g € G and some g € T'5. Furthermore, g has the form: yo(zo(u)) = Zy(a)(u)
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for all « € ¥ and u € F,,, and some isometry xy € Aut(V) such that y(IT) = II. Since v and
Yo both normalize T', we have g € Ng(T').

Thus by Lemma 2.4(e), there is 7 € Aut(V) such that 7(¥) = %, and 7(X,) = )?T(a) and
Y(ha(A)) = hra)(A) for each o € ¥ and A € IF‘QXO. In particular, |7|T| =|7|.

If 7 = Id, then 7 = Id and g € T. Thus v € Autf(é). O
We next fix notation for automorphisms of G.

Definition 3.3. Let G and G be as in Notation 2.2(A,B,C), where in addition, we assume
the o-setup is standard.
(a) Set
Inndiag(G) = Autz(G)Inn(G) and Outdiag(G) = Inndiag(G)/Inn(G) .
(b) Set ¢ = {1/),1|G } q=q3 b> 1}, the group of field automorphisms of G.

(¢) If G is a Chevalley group, set I'¢ = {’Y|G ‘ v e F@}, the group of graph automorphisms
of G. Set T'g =1 if G is a twisted group (a Steinberg, Suzuki, or Ree group).

Note that in [GLS3, Definition 2.5.13], when G has a standard o-setup (G, o), Inndiag(G)

is defined to be the group of automorphisms induced by conjugation by elements of Cz 12(@) (o)

(lifted to G). By [GLS3, Lemma 2.5.8], this is equal to Inndiag(G) as defined above when

G is of adjoint form, and hence also in the general case (since Z(G) < T).

Steinberg’s theorem on automorphisms of groups of Lie type can now be stated.

Theorem 3.4 ([Stl, §3]). Let G be a finite group of Lie type. Assume that (G,o) is

a standard o-setup for G, where G is in adjoint or universal form. Then Aut(G) =
Inndiag(G)®eT'¢, where Inndiag(G) < Aut(G) and Inndiag(G) N (Pelg) = 1.

Proof. See, e.g., |[GLS3, Theorem 2.5.12(a)] (together with [GLS3, Theorem 2.5.14(d)]).
Most of this follows from the main result in [St1], and from [St2, Theorems 30 & 36]. O

We also need the following characterizations of Inndiag(G) which are independent of the
choice of o-setup.

Proposition 3.5. Assume the hypotheses and notation in 2.2. Then

(a) Cz(G) = Z(G);
(b) N@(G) = GN%(G);

(¢) Inndiag(G) = Aut;(G)Inn(G) = Aut;(G), and hence Outdiag(G) = Outz(G).
In fact, (b) and (c) hold if we replace T by any o-invariant mazimal torus in G.

Proof. (a) Since the statement is independent of the choice of o-setup, we can assume that
o is standard. Set U =[] Xqand U* =[] X

OZGZ+ CXEE+ —Qr

Fix g € Cgz(G). Since G has a BN-pair (see [Ca, Proposition 8.2.1]), it has a Bruhat
decomposition G = BNB = UNU [Ca, Proposition 8.2.2(i)], where B = TU and N =
NG(T). Write g = unv, where u,v € U and n € N. For each z € UNG, % = (") € U
implies that "z = "("z) € U.
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Since n € N. @(T), conjugation by n permutes the root groups of G, in a way determined by

the class w =nT € W = N. é(T )/T. Thus w sends each (positive) root in the decomposition
of “r to a positive root. For each o € ¥, Z,(1) € G, YZ4(1)) has « in its decomposition,
and hence w(a) € X

Thus w sends all positive roots to positive roots, so w(II) = II, and w = 1 by [Ca, Corollary
2.2.3]. Son €T, and g =unv € TU.
By the same argument applied to the negative root groups, g € TU*. Hence g € T.

For each o € ¥, g € T commutes with Z,(1) € G, and hence ¢ centralizes X 3 for each
p € @ (Lemma 2.4(c)). Thus g centralizes all root groups in G, so g € Z(G).

(b) Let T* be any o-invariant maximal torus in G. Fix g € Nz(G). Then g7'-0o(g) €

Cx(G) = Z(G) < T* by (a). By Lang’s theorem [GLS3, Theorem 2.1.1], there is t € T* such

that g~ - o(g) =t~ - o(t). Hence gt—" € Cz(0) = G - Cz,(0), where the last equality holds
by [GLS3, Theorem 2.2.6(g)]. So g € GT*, and g € G N3 (G) since g normalizes G.

(c) By (b), Autz(G) = Auts, (G)Inn(G) for each o-invariant maximal torus T*. By defi-
nition, Inndiag(G) = Autz, (G)Inn(G) when T* is the maximal torus in a standard o-setup
for G. Hence Inndiag(G) = Autg(G) = Auts, (G)Inn(G) for all such T O

We refer to [GLS3, Definitions 1.15.5(a,e) & 2.5.10] for more details about the definitions
of &5 and I'. The next proposition describes how to identify these subgroups when working
in a nonstandard setup.

Proposition 3.6. Assume G, T, and the root system of G, are as in Notation 2.2(A,B).
Let o be any Steinberg endomorphism of G, and set G = Oq()(C@(U)).

(a) Thereis a standard Steinberg endomorphism o* of G such that if we set G* = Q% (Cz(0)),
then there is © € G such that G = %(G*).

Fiz G*, 0*, and x as in (a). Let Inndiag(G*), @+, and L'g+ be as in Definition 3.3 (with
respect to the o-setup (G,0*)). Set Inndiag(G) = c,Inndiag(G*)c; !, ®¢ = ¢, Pg-c; ', and
T = c,Lac,t, all as subgroups of Aut(G). Then the following hold.

x

(b) Inndiag(G) = Autg(G).

c) For each a € ®-I'~ such that a|g- € PgI'g+, and each f € a - Inn(G) such that
GG
B(G) =G, Blg = c(@)c;! (mod Inndiag(G) ).

(d) If ¢y, normalizes G, then Inndiag(G)®¢ = Inndiag(G) (g, |a)-

Thus the subgroups ®¢ and I'g are well defined modulo Inndiag(G), independently of the
choice of standard o-setup for G.

Proof. (a) See, e.g., [GLS3, Theorem 2.2.3|: for any given choice of maximal torus, posi-
tive roots, and parametrizations of the root groups, each Steinberg automorphism of G is

conjugate, by an element of Inn(G), to a Steinberg automorphism of standard type.

(b) This follows immediately from Proposition 3.5(c).

(c) By assumption, § = a = c,ac; ' (mod Inn(G)). Since 8 and c,ac; ! both normalize G,
Bla = czac;t modulo Autg(G) = Inndiag(G).
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(d) If ¢, normalizes G, then (c), applied with a = g = 1),,, implies that as elements of
Aut(G)/Inndiag(G), [Vglc] = [cz(tg)a+)cy '] generates the image of ®g. O

Lemma 3.7. Assume G, T, o, G = Oq()(C’é(a)), and the root system of G, are as in

Notation 2.2(A,B). Assume that ¢ € Aut(T) is the restriction of an algebraic automorphism
of G such that [p,c|z] = 1. Then there is an algebraic automorphism o € Aut(G) such that

Plz=¢, [p.0] =1, and p(G) = G.

Proof. By assumption, there is € Aut(G) such that @lz = o. Also, [, 0] is an algebraic
automorphism of G by [GLS3, Theorem 1.15.7(a)], it is the identity on 7', and hence [, o] =
¢, for some t € T by Lemma 3.2. Using the Lang-Steinberg theorem, upon replacing @ by
cu'p for appropriate u € T, we can arrange that [p,0] = 1. In particular, (G) = G. U

The following proposition is well known, but it seems to be difficult to find references
where it is proven.

Proposition 3.8. Fiz a prime qy, and a group G € £ie(qo) of universal type. Then Z(Q)
has order prime to qy, G/Z(G) € Lie(qo) and is of adjoint type, and Z(G/Z(G)) = 1. If
G/Z(G) is simple, then each central extension of G by a group of order prime to qo splits
(equivalently, H*(G;Z/p) = 0 for all primes p # qo).

Proof. Let (é, o) be a g-setup for GG, and choose a maximal torus and positive roots in G.
We can thus assume Notation 2.2. By Lemma 2.4(a), Z(G) is finite of order prime to go.
Since Z(G) < Cg(G) = Z(G) by Proposition 3.5(a), Z(G) also has order prime to go.

Set Gy = G/Z(G) and let G, < G, be the image of G under projection. Thus G, is an
algebraic group of adjoint type, and G, = OqOI(C’éa(Ja)) € Lie(qo) where o, € End(G,) is
induced by 0. Also, Z(G,) < Z(G,) = 1 by Proposition 3.5(a) again.

It remains to prove the statement about central extensions. When G is a Chevalley group,
this was shown in [St4, Théoreme 4.5]. It was shown in [St6, Corollary 6.2] when G =2 24,,(q)

for n even, and in [AG] when G = 2Gy(q) or Sz(q). The remaining cases follow by similar
arguments (see [St5, 9.4 & 12.4]). (See also [Cu, §1].) O

The next proposition shows that in most cases, Cé(T) = T. In the next section, we will

see some conditions which imply that C(O,(T)) = T when p is a prime different from the
defining characteristic.

Proposition 3.9. Let (é,a) be a o-setup for G, where G and G are of universal type.

Assume Notation 2.2, and in particular, that we have fixed a maximal torus T and a root

system X in G.

(a) Assume that Cz(T)° Z T, where (—)° denotes the connected component of the identity.
Then there is o € X4 such that 8 o(T) = 1. Also, there is § € Hom(T, IF;O) such that
o = B710%(B); i.e., Oa(t) = B(t o (t)) for each t € T.

(b) If the o-setup is standard, then Cx(T)° = T except possibly when G = "G(2) for some

G and some r < 3, or when G = A1(3), Cn(3) forn > 2, or 2Go(3).

(c) If C5(T)° =T, then Ng(T)/T = W,
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Proof. (a) Since G is of universal type, G = Cg(0) and T' = Cz(0). Hence there is a short
exact sequence
=ttt lo(t)

1 s T T s T,

where the last map is onto by the Lang-Steinberg theorem. Upon dualizing, and regarding

Hom(T,Fx) additively, we get an exact sequence

T o*—Id el restr =
0 — Hom(7T',F; ) ——— Hom(T,F, ) ——— Hom(T,F, )
(see also [Ca2, Proposition 3.2.3]), where Hom(T, IF;O) is the group of algebraic homomor-
phisms. Since 6, is in the kernel of the restriction map, by assumption, it has the form

~1o*(B) for some f3 € Hom(T,IF?O).

(b) Let P(X) and Q(X) be as in [Brb, § VI.1.9] (but with ¥ in place of R to denote the
root system). Thus Q(X) = ZX, the integral lattice generated by ¥, and

PXE)={veV](v,aY)eZforalla € T} > Q).

For each v € P(X), define 6, € X(T) = Hom(T, IF‘(IXO) by setting 6,(ha())) = A®") for
aell and ) € ]qu. Since G is of universal type, this is a well defined homomorphism by

Lemma 2.4(b), and the same formula holds for all & € ¥ by Lemma 2.4(d). By Lemma
2.4(c), this extends our definition of 65 for § € ¥ C P(X).

Recall that Hom(F* IF;O) > 7. For each # € X(T) and each a € %, let ng, € Z be such

90’
that 0(hq(A)) = A" for all A € Fx. For given 0, there is v € P(X) such that (v,a”) = ngq
for all @ € I1, and hence (by Lemma 2.4(d)) for all « € 3. Then 6 = 0, as defined above. In
this way, we identify P(X) with the lattice X (7") of characters for T', while identifying Q(X)
with Z3..

From the appendix to Chapter VI in [Brb] (Planches I-I1X), we obtain the following table:

root system X A, C, B,, D, Gy | Fy Es | E; | Eg
min{|[v|| [v € P(2)} || /n/(n+1) | 1 |min{\/n/4,1}|v2] 1 4/3 V2| V2
max{||a| |a € X} V2 2 V2 V6 V2] V2 [ V2]V2
Here, the norms are given with respect to the descriptions of these lattices in [Brb] as

subgroups of Euclidean spaces.

Assume C(T)° = T. By (a), there are a € ¥, and 8 € Hom(T, IF;O) such that o =
B71o*(B). If we regard a and 8 as elements in the normed vector space V, then ||| =
le*(B)=8] = |le*(B)||—I8Il- If G = "G(q) (and o is a standard setup), then ||o*(8)|| = q|| 4]l
except when G is a Suzuki or Ree group in which case [|o*(3)| = /q||5]|. Thus

el
1>
11l

By the above table, this is possible only if ¢ = 2, or if G is isomorphic to one of the groups
A1(3), Ba(3), Ci(3) (n > 3), 2G2(3), or ?Ba(8).

Assume G = ?B,(8) = Sz(8). It is most convenient to use the root system for Cy con-
structed in [Brb]: P(X) = Z? and ¥ = {(£2,0), (0, £2), (+1,£1)}. Then « and 3 satisfy
the above inequality only if || = 2, ||8]| = 1, and |la + || = V/8. So (a, 8) = 2, which is
impossible for «, 3 € Z2. Hence C5(T)° = T in this case.

q if G is a Chevalley or Steinberg group
V4 if G is a Suzuki or Ree group.
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(c) If Co(T)° =T, then N4 (T) < Ng(T), and so Ng(T)/T = Wy by Lemma 2.3. O

The following, more technical lemma will be needed in Section 6.

Lemma 3.10. Assume the hypotheses and notation in 2.2, and also that the o-setup (G, o)
1s standard. Then under the action of Wy on X, each orbit contains elements of II.

Proof. When p = Id, this is [Ca, Proposition 2.1.8]. When p # Id, it follows from the
descriptions of Wy and ¥ in [Ca, §§13.2-13.3]. O
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4. THE EQUICHARACTERISTIC CASE

The following notation will be used in this section.

Notation 4.1. Assume the notation in 2.2, and also that p(I1) =11, qo = p, and Z(G) = 1.
Thus G = G(F,) is a connected, simple group over F, in adjoint form, o is a Steinberg
endomorphism of G of standard form, and G = Op/(C’é(a)).

(D) Set U = <)?a | € 54) and BY N@(ﬁ) — UT (the Borel subgroup of G). Set

U=Cgy0)=(XaladeS,), B=NgU), and T=TnG.

Thus U = []zes, Xa € Syl,(G), and B = UT'. (See, e.g., [GLS3, Theorems 2.3.4(d)
& 2.3.7], or [Ca, Theorems 5.3.3(ii) & 9.4.10] in the case of Chevalley groups.) When
J ; IT is the image in X, of a T-invariant subset J ; II, let U3 < U be the subgroup
generated by root groups for positive roots in X~ (J) (the unipotent radical subgroup
associated to J), and set B; = Ng(Uz) = B{X_z|a € (J)) (the parabolic subgroup
associated to j) Thus U = Ug and B =Pg. We also write Uz = Ugay and Pz = Pay
for each a € 11.

(E) The height of a positive root a = 3°__ynyy € Xy (ny, > 0) is defined by ht(a) =
Z’yeﬂ n.. The height ht(@) of a class of roots & € X is the minimum of the heights of
roots in the class .

(F) Set F = Fuy(G) and L = LH(G).

(G) Set Uy = (Xz|a € Sy, anll = @) = (Xa|ht(@) > 2).

(H) The Lie rank of G is equal to |ﬁ], equivalently, to the number of maximal parabolic
subgroups containing B.

For example, assume o = 1), o 7, where v € Aut(G) is a graph automorphism which
induces p € Aut(X,), and ¢, is the field automorphism induced by ¢ — t9. Then for & € 5,
a = F, when @ = {a} contains only one root, Xz = F if @ = {p’(«)} is the p-orbit of «
with length a, and X5 is nonabelian if & contains a root o and sums of roots in its p-orbit.

We need the following, stronger version of Theorem 3.4.

Theorem 4.2 ([Stl, §3]). Assume G is as in Notation 2.2 and 4.1. If « € Aut(G) is such
that a(U) = U, then o = ¢, df g for unique automorphisms ¢, € Auty(G), d € Inndiag(G) =
Aut(G), f € ®g, and g € T'g.

Proof. Let Naut(e)(U) < Aut(G) and Nindiag(c)(U) < Inndiag(G) be the subgroups of those
automorphisms which send U to itself. Since @¢I'¢ < Nauyq)(U) by definition, Theorem 3.4
implies that Naut(c)(U) = Nindiag@)(U) - (PcL¢), a semidirect product. Since ®¢NIlg =1,
it remains to show that Nindgiaga)(U) = Auty(G)Auts:(G) and Auty(G) N Autz(G) = 1.
The first is immediate: since Autz(G) < Nawye)(U) and Ng(U) = TU,

NInndiag(G)(U) = (IHH(G)AUT@(G}) N NAut(G)(U)
— Aubg (@) Auty(G) = Auty (G)Auty(G)

Finally, if ¢, = ¢, € Aut(G) where u € U and t € T, then ¢, = Idg, since u has p-power
order and t has order prime to p. ([l
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Lemma 4.3. Assume G € Lie(p). Then for U € Syl (G), ke sends Out(G) injectively into
Out(U, F).

Proof. Assume that K¢ z(q) is injective. Since Z(G) is a p'-group (since Z(G) < T), and
since O” (G) = G by definition of Lie(p), Aut(G) injects into Aut(G/Z(G)), and hence k¢
is injective. It thus suffices to prove the lemma when G is in adjoint form.

We can thus assume Notation 4.1. By Lemma, 1.4, it will suffice to prove that Cayuye)(U) <
Inn(G). Fix § € Aut(G) such that 8|y = Idy. By Theorem 4.2, there are unique automor-
phisms ¢, € Auty(G), d € Autz(G), f € @, and g € I'g such that 3 = c,df g.

If g # Id, then it permutes the fundamental root groups nontrivially, while ¢,df|; sends
each such group to itself modulo higher root groups and commutators. Hence g = Id.
Similarly, f = Id, since otherwise 5 would act on the fundamental root groups (modulo
higher root groups) via some automorphism other than a translation.

Thus 8 = ¢,d, where d = ¢; for some t € NT(G). Then u has p-power order while ¢ has

order prime to p, so d|y = ¢;|y = Id. By Lemma 2.4(c), ¢ sends each root group in U to
itself via zo(u) > 24(0a(t)-u) for some character 6, € Hom(7',F)’) which is linear in a. For

cach @ € 3, ¢t|x, = Id implies that 6,(t) = 1 for all @ € @. Thus 0,(t) =1 for all « € ¥,
so ¢; = Idg, and 3 = ¢, € Inn(G). O

It now remains, when proving Theorem A, to show the surjectivity of kg. This will be
done case-by-case. We first handle groups of Lie rank at least three, then those of rank one,
and finally those of rank two.

For simplicity, we state the next two propositions only for groups of adjoint type, but they
also hold without this restriction. The first implies that each element of Aut(U, F) permutes
the subgroups U; (as defined in Notation 4.1), and that each element of Auttlyp(ﬁg(G))

induces an automorphism of the amalgam of parabolics ‘B ;7 for J ; 1.

Proposition 4.4. Assume Notation 4.1. For 1 # P < U, the following are equivalent:
(i) P =U;j for some j; I1;

(i) P < B, Cy(P) <P, and O,(Outx(P)) =1; and

(ii) P <9 B, Cg(P) < P, and O,(Ng(P)) = P.

Hence for each ¢ € Aut(U, F), ¢ permutes the subgroups Uz, and in particular permutes the
subgroups Uy for a € II.

Proof. (i) = (iii): For each :7\; I, Ca(Us) = Z(U3) by [GLS3, Theorem 2.6.5(e)] (recall
that G is of adjoint type). Also, O,(Na(Us)) = Op(B;) = Uz, and U; is normal in B since
Ne(Uy) =87 = B.

(iiif) = (ii): This holds since Outz(P) = Ng(P)/PCq(P).

(ii) = (i) In this case, P < B, so Ng(P) > B, and Ng(P) = ‘B; for some
J G 1II (cf. [Ca, Theorem 8.3.2]). Then P < O,(P3) = U;s. Also, U;Cq(P)/PCq(P) <
Op(Ng(P)/PCq(P)) = 1, so Uy < PCq(P). Since U; < U, this implies that U; <
PCy(P) = P;ie., that P = Uj;. So (i) holds.

The last statement follows from the equivalence of (i) and (ii). O

When G has large Lie rank, Theorem A now follows from properties of Tits buildings.
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Proposition 4.5. Assume G € Lie(p) is of adjoint type and has Lie rank at least 3. Fix
U € Syl (G). Then kg is split surjective.
Proof. Set £ = L§,(G). By Proposition 4.4, for each a € Aut! (L), a permutes the sub-

typ
groups U5 for J - II. For each such J, Ca(Us) = Z(U3z), so Aut(Usz) = Ne(Uz) = B
Thus o induces an automorphism of the amalgam of parabolic subgroups B;. Since G is
the amalgamated sum of these subgroups by a theorem of Tits (see [Ti, Theorem 13.5] or
[Se, p. 95, Corollary 3]), a extends to a unique automorphism & of G.

Thus « — & defines a homomorphism s: Auttfyp(ﬁ) —— Aut(G). If a = ¢, for vy €
Aut;(U) = Ng(U), then & is conjugation by v € G and hence lies in Inn(G). Hence s factors

through s: Outyy,(£) —— Out(G), kg o 8 = Idout,,(c), and thus k¢ is split surjective. [

Before we can handle the rank 1 case, two elementary lemmas are needed.

Lemma 4.6. Let G be a finite group with normal Sylow p-subgroup S < G. Fix subgroups
1=5y< 851 << 8= 5 normal in G such that the following hold:

(i)  Sk-1 < Fr(S);
(i) Cg(S)<S; and

(iii) for each 1 <i <k —1, S; is characteristic in G, [S,S;] < Si_1, S;/Si—1 has exponent
p, and Homg, jc/s1(S/Fr(S),5;/Si—1) = 0 (i.e., no irreducible F,|G/S]-submodule of
Si/Si—1 appears as a submodule of S/Fr(S)).

Let o € Aut(G) be such that [o, S| < Sg—1. Then a € Autg(G).

Proof. For 1 # g € GG of order prime to p, the conjugation action of g on S is nontrivial since
Ce(S) < S, and hence the conjugation action on S/Fr(S) is also nontrivial (see [G, Theorem
5.3.5]). Thus G/S acts faithfully on S/Fr(S). Since a induces the identity on S/Fr(S), «
also induces the identity on G/S.

Assume first that a|s = Id. Since S is a p-group and G/S has order prime to p,
HY(G/S;Z(S)) = 0. So by [OV, Lemma 1.2], @ € Inn(G). If g € G is such that a = ¢,
then [g,S] = 1 since a|s = Id, and g € S since G/S acts faithfully on S/Fr(S). Thus
a € Autg(G) in this case.

In particular, this proves the lemma when k£ = 1. So assume k£ > 2. We can assume
inductively that the lemma holds for G/S;, and hence can arrange (after composing by an
appropriate element of Autg(G)) that « induces the identity on G/S;.

Let ¢ € Hom(S, S;) be such that a(x) = xzp(z) for each x € S (a homomorphism since
S1 < Z(S)). Then ¢ factors through ¢ € Hom(S/Fr(S), S1) since S; is elementary abelian,
and ¢ is a homomorphism of F,[G/S]-modules since a(g) = g (mod 5;) for each g € G
(and Sy < Z(S)). Thus ¢ = 1 since Homg,5(Sk/Sk—1,51) = 0 by (iii), so a|s = Id, and we
already showed that this implies a € Autg(G). O

The next lemma will be useful when checking the hypotheses of Lemma 4.6.

Lemma 4.7. Fiz a prime p and e > 1, and set ¢ = p® and I' = F;. For each a € Z, set
Vo, =F,, regarded as an F,I'-module with action A(x) = Az for A € I and x € F,.

(a) For each a, V, is F,U-irreducible if and only if a/ ged(a,q — 1) does not divide p* —1 for
any tle, t <e.

(b) For each a,b € Z, V, =2 V; as F,I'-modules if and only if a = bp' (mod ¢ — 1) for some
1€ 7.
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Proof. (a) Set d = ged(a,q — 1), and let ¢ be the order of p in (Z/%1)*. Thus t|e since
%er —1). Ift < e, then \* € Fy for each A € Fy, so 0 # Fpe &V, is a proper

F,I'-submodule, and Vj, is reducible.

Conversely, if V, is reducible, then it contains a proper submodule 0 # W ; V, of
dimension 7, some 0 < ¢ < e. All I'-orbits in V,\0, hence in W0, have length %, SO

CL(p'— 1), and t <i <e.

(b) For each a € Z, let V, = F, be the F,[-module where T acts via A(z) = A%z. Then
Fo®p, Vo 2 Va® Ve @ @ Viyper as FI-modules. Since Vi, =V, if and only if b = a
(mod g — 1), V;, @V, if and only if b = ap’ (mod ¢ — 1) for some 1. O

In principle, we don’t need to look at the fusion systems of the simple groups of Lie rank 1
if we only want to prove tameness. Their fusion is controlled by the Borel subgroup, so their
fusion systems are tame by Proposition 1.6. But the following proposition is needed when
proving Theorem A in its stronger form, and will also be used when working with groups of
larger Lie rank.

Proposition 4.8. Fix a prime p, and a group G € Lie(p) of Lie rank 1. Assume (G,p) %
(Sz(2),2). Then each ¢ € Aut(U,F) extends to an automorphism of G. Also, if [p, U] <
U, U], then ¢ € Inn(U).

Proof. If G is of universal form, then Z(G) is cyclic of order prime to p by Proposi-
tion 3.8. For each Z < Z(G), Out(G/Z) = Out(G) by [GLS3, Theorem 2.5.14(d)], and
Out(U, Fy(G/Z)) = Out(U, Fy(G)) since G and G/Z have the same p-fusion systems. It
thus suffices to prove the proposition when G has adjoint form.

Assume first G = PSLy(q). Thus U = F, (as an additive group), T" = C(4-1y/. where

e =ged(g—1,2), and T &of Autr(U) is the subgroup of index € in F)X. If ¢ € Aut(U) is
fusion preserving, then under these identifications, there is a € Aut(I") such that a(u)p(v) =
¢(uv) for each u € I' < F and v € F,. After composing with an appropriate diagonal
automorphism (conjugation by a diagonal element of PG Ly(q)), we can assume that ¢(1) =
1. Hence the above formula (with v = 1) implies that & = ¢|p, and thus that ¢(uv) =
o(u)p(v) for each u,v € F, with u € I". If ¢ = 1, then ¢ acts as a field automorphism on
U, hence is the restriction of a field automorphism of G, and we are done. Otherwise, there
is u € I" such that F, = F,(u), u and ¢(u) have the same minimal polynomial over F,, and
there is ¢ € Aut(F,) (a field automorphism) such that ¢(u) = @(u). Thus ¥(u’) = ¢(u’)
for each i, so ¥ = ¢ since both are additive homomorphisms, and hence ¢ extends to a field
automorphism of G. (Note that this argument also holds when ¢ =3 and I' = 1.)

Next assume G' = PSUs(q). Following the conventions in [H, Satz 11.10.12(b)], we identify
U:{[[a,b]Ha,beIqu, b—i—bq:—aq“} where [a,b] = ((1)‘11_2(;);

00 1

T={dN|)eF)} where d()\) = diag(A"7, X771 N).

Here, whenever we write a matrix, we mean its class in PSUs(q). Then B = UT = Ng(U) <
G (see [H, Satz 11.10.12(b)]), and

[a,b] - [e,d] = [a+ ¢, b+ d — ac] and Ma, b] = [\"2a, \"17%] .

Set € = ged(2g — 1,¢*> — 1) = ged(2g — 1,¢* — 2q) = ged(q + 1,3). Then d()\) = 1 exactly
when \* = 1, Cp(U) = 1, and hence |T| = |[Autg(U/Z(U))| = (¢* — 1)/e. If ¢ > 2, then
|T| does not divide p* — 1 for any power 1 < p' < ¢?, and by Lemma 4.7(a), U/Z(U) and
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Z(U) are both irreducible as F,[T]-modules. (Note, in particular, the cases ¢ = 5 and ¢ = 8,
where (U/Z(U),T) is isomorphic to (Fy5, Cys) and (Fey, Coy), respectively.)

Fix ¢ € Aut(U, F), and extend it to o € Aut(B) (Lemma 1.12). Via the same argument
as that used when G = PSLsy(q), we can arrange (without changing the class of ¢ modulo
Im(kg)) that ¢ = Id (mod [U,U]). If ¢ > 2, then the hypotheses of Lemma 4.6 hold (with
[U,U] < U < B in the role of S < S5 =8 < G), so a € Auty(B) and ¢ € Inn(U).

If G =~ PSU3(2) = C2 x Qg (cf. [Ta, p. 123-124]), then U = Qg and T = 1, so Out(U, F) =
Out(U) = 5. By Theorem 3.4 (or by direct computation), Out(G) = Outdiag(G)®P¢ has
order six, since |Outdiag(G)| = ged(3,¢+ 1) = 3 and |®¢| = 2. Thus k¢ is an isomorphism,
since it is injective by Lemma 4.3.

The proof when G = Sz(q) is similar. Set § = /2¢q. We follow the notation in [HB,
§ XI.3], and identify U as the group of all S(a,b) for a,b € F, and T < B = Ng(U) as the
group of all d(\) for A € F, with relations

S(a,b)-S(e,d) = S(a+c,b+d+a’c) and *™S(a,b) = S(A\a, \'*%).

As in the last case, we can arrange that ¢ € Aut(U, F) is the identity modulo [U, U]. Since
q > 8 (¢ # 2 by hypothesis), Z(U) and U/Z(U) are nonisomorphic, irreducible FyT-modules
by Lemma 4.7(a,b) (and since Z(U) = Vi49 and U/Z(U) = V; in the notation of that
lemma). We can thus apply Lemma 4.6 to show that ¢ € Inn(U).

It remains to handle the Ree groups 2Gs(q), where ¢ = 3™ for some odd m > 1. Set
6 = \/3q. We use the notation in [HB, Theorem XI.13.2], and identify U = (F,)* with
multiplication given by

(21, Y1, 21) (T2, Y2, 20) = (T1 + T2, Y1 + Yo + X179, 21 + 22 — T1Yo + Y1-To — T1-25-22) .
Note that 2% = 2®. Let T < B = Ng(U) be the set of all d()\) for X € Fx, acting on U via
a,y,2) = Az, Ay, AF22).

Again, we first reduce to the case where ¢ € Aut(U,F) is such that [p, U] < [U,U], and
extend ¢ to a € Aut(B). If ¢ > 3, then U/[U, U] = V3, [U,U]|/Z(U) = Vpi1, and Z(U) = Vjyyo
are irreducible and pairwise nonisomorphic as F3T-modules by Lemma 4.7 (for V, as defined
in that lemma), since neither # 4+ 1 nor 6 4 2 is a power of 3. So ¢ € Inn(U) by Lemma 4.6.

If ¢ = 3, then U = (a,b), where |a| = 9, |b] = 3, and [a,b] = a®. Set Q; = (ab’) = Cy
(i = 0,1,2): the three subgroups of U isomorphic to Cy. Let Aut®(U) < Aut(U) be the
group of those a € Aut(U) which send each Q; to itself. For each such «, the induced
action on U/Z(U) sends each subgroup of order three to itself, hence is the identity or
(g — g 1), and the latter is seen to be impossible using the relation [a,b] = a®. Thus each
a € Aut’(U) induces the identity on U/Z(U) and on Z(U), and has the form a(g) = gp(g)
for some ¢ € Hom(U/Z(U),Z(U)). So Aut’(U) = Inn(U) since they both have order 9
(and clearly Inn(U) < Aut’(U)). The action of Aut(U) on {Qq, Q1,Q2} thus defines an
embedding of Out(U) into X3, and the automorphisms (a,b) — (ab,b) and (a,b) — (a™',b)
show that Out(U) = 3. Since |Outz(U)| = 2 and Autx(U) < Aut(U, F), it follows that
Out(U, F) =1 = Out(G). (See also [BC, Theorem 2] for more discussion about Aut(U).) O

It remains to show that kg (at the prime p) is surjective when G € £ie(p) has Lie rank
2, with the one exception when G = SL3(2). Our proof is based on ideas taken from the
article of Delgado and Stellmacher [DS], even though in the end, we do not actually need to
refer to any of their results in our argument. The third author would like to thank Richard
Weiss for explaining many of the details of how to apply the results in [DS], and also to
Andy Chermak and Sergey Shpectorov for first pointing out the connection.
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Fix a prime p, and a finite group G € Lie(p) of Lie rank two. We assume Notation 2.2
and 4.1. In particular, (G, o) is a o-setup for G, T < G is a maximal torus, U € Syl,(G)
is generated by the positive root subgroups, and B = Ng(U) is a Borel subgroup. Set
Il = {@1,dy}, and set Py = Pa, = (B, X_5,) and Pa = Pa, = (B, X_a,): the two maximal
parabolic subgroups of G containing B. Our proofs are based on the following observation:

Lemma 4.9. Assume, for G € Lie(p) of rank 2 and its amalgam of parabolics as above, that

each automorphism of the amalgam (B, > B < By) extends to an automorphism (%)

of G.

Then kg is surjective.

Here, by an automorphism of the amalgam, we mean a pair (x1, x2), where either x; €
Aut(B;) for i = 1,2 or y; € Iso(B;,Ps_;) for i = 1,2, and also x1|p = x2|5.

Proof. Set L = L§;(G) and U; = O,(*B;). By Proposition 4.4, each x € Auttlyp(ﬁ) either
sends U; and U, to themselves or exchanges them. For each ¢ = 1,2, Cq(U;) < U, so
Aut,(U;) = Ng(U;) = B;. Thus x induces an automorphism of the amalgam (P, > B <
PBs). By assumption, this extends to an automorphism x of G, and k() = &. O

Set & = Py % pPo: the amalgamated free product over B. Let p: & —— G be the
natural surjective homomorphism. Since each automorphism of the amalgam induces an
automorphism of &, (%) holds if for each automorphism of (; > B < PBs), the induced
automorphism of & sends Ker(p) to itself.

Let ' be the tree corresponding to the amalgam (B; > B < P3). Thus I' has a vertex
[¢°B;] for each coset ¢B; (for all g € & and ¢ = 1,2), and an edge g(ep) connecting [¢F3;] to
[¢°B5] for each coset gB in &. Also, & acts on I' via its canonical action on the cosets, and
in particular, it acts on g(ep) with stabilizer subgroup 9B.

Similarly, let I'¢ be the graph of G with respect to the same amalgam: the graph with
vertex set (G/P1) U (G/P2) and edge set G/B. Equivalently, since i, PBo, and B are
self-normalizing, I'g is the graph whose vertices are the maximal parabolics in G and whose
edges are the Borel subgroups. Let p: ' —— I'g be the canonical map which sends a vertex
[¢°B;] in T to the vertex in I'¢ corresponding to the image of ¢3; in G.

Fix a subgroup N < G such that (B, N) is a BN-pair for GG, and such that BONN =T and
N/T = Wy (where T and W) are as defined in Notation 2.2). We refer to [Ca, §§8.2, 13.5]
for the definition of BN-pairs, and the proof that G has a BN-pair (B, N) which satisfies
these conditions. In order to stay close to the notation in [DS], we also set T": their notation
for the Cartan subgroup. For i = 1,2, choose t; € (N N*P;)~B = (N NP;)~\T'. Since
(NNP,)/T = Cy and N = (N NPy, N NPy), we have N = T'(ty,t5), consistent with the
notation in [DS]. Note that 7' can be the trivial subgroup. We also regard the ¢; € B; as
elements of &, and T' < B as a subgroup of &, when appropriate.

Let .7 be the union of the edges in the T'(¢, t2)-orbit of eg. Thus .7 is a path of infinite
length in I' of the following form:

tltztl(eB) . tltg(eB) . tl(eB) €B tz(eB) . tgtl(eB) . tgtltz(eB)

[t1t2%1] [tlv‘lb] [‘451] [‘152} [tzv‘ﬁl] [tat192]

Thus p(7) is an apartment in the building I'¢ under Tits’s definition and construction of
these structures in [T1i, 3.2.6].

A path in I' is always understood not to double back on itself.
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Lemma 4.10. Let G and I" be as above. Let n € {3,4,6,8} be such that Wy = Ds,. Then
each path in I' of length at most n+ 1 is contained in g(7) for some g € &.

Proof. A path of length 1 is an edge, and is in the &-orbit of eg which has stabilizer group
B. If ep is extended to a path of length 2 with the edge t;(ep) (i = 1 or 2), then this path
has stabilizer group

Bn'B= ] X&-T.
aes~{a;}
(Recall that X5 = X_5,, and X_5 N B = 1 by [Ca, Lemma 7.1.2].) Thus the stabilizer
subgroup has index p’ in B, where p’ = |X5,|. Furthermore, |B;/B| = 1 + p/, since by [Ca,
Proposition 8.2.2(ii)],

0, = BU(Bt;B) where |BtB|=|B|-|B/(BN"“B)|=|B| p.

Hence there are exactly p’ extensions of eg to a path of length 2 containing the vertex [3;]
in the interior, and these are permuted transitively by B.

Upon continuing this argument, we see inductively that for all 2 < k < n+1, the paths of
length k starting at ep with endpoint [B5_;| are permuted transitively by B, and of them,
the one contained in 7 has stabilizer subgroup the product of 7" with (n + 1 — k) root
subgroups in U. (Recall that B = TU, and U is the product of n root subgroups.) Since &
acts transitively on the set of edges in I', each path of length £ is in the &-orbit of one which
begins with ep (and with endpoint [J3;] or [Bs]), and hence in the &-orbit of a subpath of
. OJ

Proposition 4.11. Let G, &, and (T, t1,t3) be as above, and let n be such that Wy = Ds,,.
Assume that

for each (x1,x2) € Aut(‘l?l > B < ‘132), where x; € Aut(P;) or x; € )
Iso(Pi, Ps—i) fori=1,2, we have (x1(t1)x2(t2))" € x1(T).

Then (%) holds (each automorphism of (PB1 > B < Pa) extends to an automorphism of G),
and hence kg s onto.

Proof. Let = be the equivalence relation on the set of vertices in I' generated by setting x ~ y
if z and y are of distance 2n apart in some path in the &-orbit of 7. Since T'(t1,t5)/T = Dy,
as a subgroup of Ng(7T')/T, the natural map p: ' —— ' sends 7 to a loop of length 2n,
and hence sends all apartments in the &-orbit of .7 to loops of length 2n. Hence ' —— '
factors through I'/~.

We claim that

['¢ contains no loops of length strictly less than 2n; and (1)

each pair of points in '/~ is connected by a path of length at most n. (2)

Assume (1) does not hold: let L be a loop of minimal length 2k (k < n), and fix edges
o; = [z;,y;] in L (i = 1,2) such that the path from z; to y3_; in L has length k& — 1. Since
['g is a building whose apartments are loops of length 2n [Ti, 3.2.6], there is an apartment
¥ which contains ¢y and o9. By [Ti, Theorem 3.3] or [Br, p. 86], there is a retraction of '
onto X. Hence the path from z; to y3_; in X (for ¢ = 1,2) has length at most k — 1, these
two paths must be equal to the minimal paths in L since there are no loops of length less
than 2k, and this contradicts the assumption that L and X are loops of different lengths.
(See also [Br, §1V.3, Exercise 1]. Point (1) also follows since I'g is a generalized n-gon in
the sense of Tits [Br, p. 117], and hence any two vertices are joined by at most one path of
length less than n.)
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Now assume (2) does not hold: let z, y be vertices in I" such that the shortest path between
their classes in I'/~ has length & > n + 1. Upon replacing x and y by other vertices in their
equivalence classes, if needed, we can assume that the path [z, y] in I has length k. Let z*
be the vertex in the path [z, y] of distance n + 1 from x. By Lemma 4.10, [, z] is contained
in g(.7) for some g € &; let 2’ be the vertex in ¢g(.7) of distance 2n from = and distance
n —1 from z. Then 2’ ~ z, and [2/,y] has length at most (n — 1)+ (k—n—1) =k —2, a
contradiction. This proves (2).

Assume the map (I'/~) —— I' induced by p is not an isomorphism of graphs, and let
x and y be distinct vertices in I'/~ whose images are equal in I'¢. By (2), there is a path
from x to y of length at most n, and of even length since the graph is bipartite. This path
cannot have length 2 since p: I' —— I' preserves valence, so its image in I'g is a loop of
length at most n, and this contradicts (1). We conclude that I'¢ = T'/~.

Now let (x1, x2) be an automorphism of the amalgam (B; > B < PBsy). Let x € Aut(®)
be the induced automorphism of the amalgamated free product, and let ¥ € Aut(I') be
the automorphism which sends a vertex [¢8;] to [x(¢B:)]. Since (x1(t1)x2(t2))” = 1 in
G by assumption, p(x(7)) is a loop of length 2n in I';. Hence po J factors through
(I'/~) = T'¢, and by an argument similar to that used to show that I'¢ = I'/~, the induced
map I'¢ —— T is an automorphism of I'¢. So y sends Ker[&6 —— G] to itself, and thus
induces an automorphism of G. The last statement (k¢ is onto) now follows from Lemma
4.9. O

It remains to find conditions under which (}) holds. The following proposition handles all
but a small number of cases.

Proposition 4.12. Assume N = Ng(T) (and hence Ng(T)/T is dihedral of order 2n).
Then (t) holds, and hence each automorphism of the amalgam (PB1 > B < Ps) extends to
an automorphism of G. In particular, () and (%) hold, and hence kg is onto, whenever

G ="X,(q) € Lie(p) has Lie rank 2 for ¢ > 2 and G % Sp,(3).

Proof. Assume that Ng(T') = N = T(t;,t2). Then the choices of the t; are unique modulo
T. Also, any two choices of T" are B-conjugate, so each automorphism of the amalgam is B-

conjugate to one which sends .7 to itself. Thus (}) holds, and so (x) follows from Proposition
4.11.

The last statement now follows from Proposition 3.9. Note that if (f) holds for G of
universal type, then it also holds for G/Z(G) of adjoint type. O

What can go wrong, and what does go wrong when G = SL3(2), is that an automorphism
of the amalgam can send t1,¢s to another pair of elements whose product (modulo 7") has
order strictly greater than 2n. This happens when .7 is sent to another path not in the
B-orbit of .7: one whose image in ['g is a loop of a different length.

Example 4.13. Assume G = SL3(2). In particular, T = 1. Let B be the group of upper

triangular matrices, let t; and ty be the permutation matrices for (12) and (23), respectively,
and set B; = (B, ;).

Consider the automorphism a of the amalgam which is the identity on PB; (hence on B),
and which is conjugation by ez (the involution in Z(B)) on Py. Set t. = a(t;). Thus

10 111
t’1:< 00) and t’Q:(001).
01 010

o—O
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One checks that t\ty has order 4, so that (t},t,) = Dg while (t1,t2) = Dg. In other words, «
sends the lifting (from U'q to T") of a loop of length 6 to the lifting of a loop of length 8, hence
s mot compatible with the relation =, hence does not extend to an automorphism of G.

We are left with seven cases: four cases with n = 4, two with n = 6, and one with n = 8.
Those with n = 4 are relatively easy to handle.

Proposition 4.14. Assume G is one of the groups Sp,(2), PSp,(3), PSU4(2), or PSUs(2).
Then () holds, and hence (x) also holds and k¢ is onto.

Proof. In all cases, we work in the universal groups Sp,(q) and SU,(2), but the arguments
are unchanged if we replace the subgroups described below by their images in the adjoint
group. Recall that p is always the defining characteristic, so the second and third cases are
distinct, even though PSp,(3) = SU(2) (see [Wi, §3.12.4] or [Ta, Corollary 10.19]).

Let (x1, x2) be an automorphism of (P; > B < Ps). Since all subgroups of B isomorphic
to T are conjugate to T' by the Schur-Zassenhaus theorem, we can also assume that y;(7) =
T. Set xo = x1| = Xx2|s and tf = x;(t;) for short; we must show that |tjt;| = n = 4. Note
that ¢7t3 has order at least 4, since otherwise I'¢ would contain a loop of length strictly less
than 8 = 2n, which is impossible by point (1) in the proof of Proposition 4.11.

G = Sp,(2) = X6 : Set ' = [G,G]: the subgroup of index 2. The elements z,(1) for
v € ¥ are all Aut(G)-conjugate: the long roots and the short roots are all W-conjugate and
a graph automorphism exchanges them. Since these elements generate GG, none of them are
in G'. Hence for ¢ = 1,2, all involutions in

(1), (1)) 2 GLa(2) 2 3
lie in GNG’, and in particular, t; € GNG'.

Each automorphism of the amalgam sends the focal subgroup to itself (as a subgroup of
B), and hence also sends the intersections B; N G’ to themselves. So ti,t5 € GNG', and
tith € G' = Ag. It follows that [tit5] < 5, and |tjt5| = 4 since every dihedral subgroup of
order 10 in g is contained in Ag.

G = Sp,(3) : 1In this case, T = C%, and Ng(T) = SLy(3) 1 Cy. Hence Ng(T)/T = Ay Cy
contains elements of order 2, 3, 4, and 6, but no dihedral subgroups of order 12. Since ¢}t}
has order at least 4, |tjt5| = 4, and condition (f) holds.

G = SU,(2) for n =4 or 5: We regard these as matrix groups via

SUn(2> = {M € SLn<4) } Mt = Mﬁl} where (aij)t = (an+17j7n+177:) ;
and where 7 = 22 for x € F,. We can then take B to be the group of upper triangular

matrices in SU,(2), U the group of strict upper triangular matrices, and 7" the group of
diagonal matrices. We thus have

T = {diag(m,x’l,x’l,x)‘xem} =~ Oy ifn=4
T = {diag(x,y,xy,y,x)|x,y€IF4} =No if n =>.

~

Since N (T') must permute the eigenspaces of the action of T on F}, we have Ngy, 2)(T)
GUx(2)1C; (iftn=4) or (GUx(2)2Cs) x Fy (if n =5). So in both cases,
Nea(T)/T = PGUy(2) 1 Cy 2 Y30 C, 2 O3 x Dy
Set Q@ = Ng(T')/O3(Ng(T)) = Ds, and let ¢»: Ng(T) —— @ be the natural projection.

Set Qo = ¥(Cq(T)). Since Cq(T)/T = X3 x X3 (the subgroup of elements which send each
eigenspace to itself), Qo = C3 and Cq(T) = ¥ ~1(Qo).
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Choose the indexing of the parabolics such that 3, is the subgroup of elements which fix
an isotropic point and B, of those which fix an isotropic line. Thus

(5 an-1)| A€ SLy(4) ifn =4
ml:{(§§%>‘AEGUn_2(2)} R }(() 1>€AEGL2}(4)} ifn=>5

Then ¢ (Ng, (1)) < Qo: no matrix in P, can normalize 7" and exchange its eigenspaces. Also,
Np(T) contains Cy(T) = (e1,(1),e2,-1(1)), where e; ;j(u) denotes the elementary matrix
with unique off-diagonal entry  in position (i, j). Thus Qo > ¥(Ng, (T)) > »(Np(T)) = C3,
so these inclusions are all equalities. Also, Py contains the permutation matrix for the
permutation (12)(n—1n), this element exchanges the eigenspaces of rank 2 for 7, and so
(N, (T)) = Q.

Since T'(t1,t2) /T = Dy, (¢(t1),¢(t2)) = Q, and so ¢(t1) € Qo~Z(Q) and P(t2) € Q\Qo.
Since (x1, x2) induces an automorphism of the amalgam (Q > Qo = @), this implies that
P(t7) € QoZ(Q) and ¥(t5) € Q~Qo. But then (Y(t7),9(t5)) = Q since these elements
generate modulo Z(Q), so |tits| € 4Z, and |tit5| = 4 since Ng(T')/T = X3 Cy contains no
elements of order 12. OJ

It remains to handle the groups Go(2), 3D4(2), and ?Fy(2). In the first two cases, if ¢} is
an arbitrary involution in Ny, (T)\Np(T') for ¢ = 1,2, then t{t; can have order 6 or 8 (or
order 7 or 12 when G = (G3(2)), and there does not seem to be any way to prove condition
(1) short of analyzing automorphisms of the amalgam sufficiently to prove (x) directly.

Let {a, 8} be a fundamental system in the root system of G5 where « is the long root.
Let a, o/, a” be the three long positive roots, and 3, 3, 8" the three short positive roots, as
described in (3) below.

Let 9,71, 72,73 denote the four fundamental roots in the D, root system, where ~q is in
the center of the Dynkin diagram, and the other three are permuted cyclically by the triality
automorphism. Set v;; = v +7; (when it is a root), etc. We identify the six classes of
positive roots in 2D, with the roots in G5 by identifying the following two diagrams:

o 1

S G {172,738} (3)

700123

Y012,
Y023,
7013 Y0123

3D4 e

—a —70

The following list gives all nontrivial commutator relations among root subgroups of G(q)
or 3Dy(q) (see [GLS3, Theorems 1.12.1(b) & 2.4.5(b)]):

[2a(u), 25(v)] = 25 (Fuv)z g0 (Fuv'™9) (mod X, X o) (4)
[z (u), 25(v)] = zar (E(wv? + uv)) (mod Xo Xor) (5)
[Ta(u), T (v)] = zar (£uv) (6)
[z5(u), 257 ()] = Tar (£Tr(uv?)) (7)
[z (u), 25(v)] = zor (£Tr(uv)). (8)
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Again, Tr: F s —— F, denotes the trace. Note that when G = Gs(q), then u,v € F, in all
cases, and hence u? = u?" = u, w9t =42, and Tr(u) = 3u. When G = 3D,(q), the notation
xp(—), g (—), and zg/(—) is somewhat ambiguous (and formula (5) depends on making the
right choice), but this doesn’t affect the arguments given below.

Proposition 4.15. Assume p = 2 and G = G3(2). Then (%) holds: each automorphism
of the amalgam (P, > B < Pj) extends to an automorphism of G. (In fact, each au-
tomorphism of the amalgam is conjugation by some element of B.) In particular, kg is
onto.

Proof. In this case, T'=1, and
PBo = (CyxCy) x D1z and Py = (Qs X, Q) X 3.
Also, B = U has presentation U = A x (r,t), where
A={a,b) 2 Cyx Oy, (nt)=Cs: a=at,b=b""'Ta=b b=a.

In terms of the generators z, = z.,(1) for v € X, we have A = (zg s, xg5) and O (A) =
(o, T4 ), and we can take r = v, t = x,, and a = 25z (and then b = a). Note that (5)
takes the more precise form [zg, 15| = To o in this case. Also,

Ua = A<T> = (04 X 04) X CQ
UB = <CLb_1, a2t> ><<a2b2> <CLb, G,2Tt> = QS Xy Q8
UNG = Aty = C 1 Csy.

The last formula holds since G' = [G,G] = SUs(3) has index two in G (see [Wi, §4.4.4] or
[Di, pp. 146-150]), since Zq, Tor, Tor € G’ (n0te that z, = [x_g, z4]), and since zg, rg, and
xgr are all G-conjugate and hence none of them lies in G'.

Fix an automorphism (x4, x3) of the amalgam (B, > B < Pp), and set xo = Xa|B = X5|B-
Then o € Aut(U) sends each of the subgroups U,, Us, and U NG’ to itself. Hence it sends
each quaternion factor in Ug to itself, and sends U,NG" = (a, b) to itself. After composing by
an appropriate element of Auty (335), we can arrange that xo(ab) = ab and yo(ab™') = ab™".
In particular, xo induces the identity on €;(A) and hence also on A/Q;(A).

Let g € B, be an element of order 3, chosen so that 9a®) = b? and 9b*) = a®b?. The
image of (g) in P,/A = Dis is normal, so xa.(g9) € Ag. Let z € Q;(A) be such that
Xa(b) = x0(b) = az. Then % € (ab,b*) < Ca(x0), 50 b = Xo() = 9bx) implies that % = 1
and hence z = 1. Thus xo|a = Id. Also, x.({9)) € Syl;(B.) is conjugate to (g) by an
element of A, so we can arrange that x.((g9)) = (¢9) and hence that x,|aq) = Id. But then
Xa is the identity modulo Cy, (A(g)) = Z(A(g)) =1, s0 X = Idsp,.

Since xs|v, = Id, xp induces the identity modulo Cy,(Up) = Z(Ug) = Cs. It thus has the

form xz(z) = z(z) for some ¢ € Hom (P, Z(Up)). Hence xp = Id, since it is the identity
on U € Syl,(*Bpg). O

Proposition 4.16. Assume p =2 and G = 3Dy(2). Then (*) holds, and kg is onto.

Proof. In this case, T = Fg = C%, B, /U, = Cr x X3, and Ps/Us = SLy(8). Also, by (6)
and (7), Up is extraspecial with center X,~. Fix an automorphism (x,, x) of the amalgam
(Bo > B < Pp), and set xXo = Xalz = Xsl. We must show that x, and ys are the
restrictions of some automorphism of G.

By Theorem 3.4, and since Outdiag(SLy(8)) = 1 = Igr,s), Out(Ps/Us) = Out(SLy(8))
is generated by field automorphisms, and hence automorphisms which are restrictions of
field automorphisms of G. So we can compose xg and X, by restrictions of elements of
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Autp(G)Pg = NA‘“‘% @)(U)®¢, to arrange that xs induces the identity on PBs/Us. Then,
upon composing them by some element of Auty(G), we can also arrange that o(7) = 7.
Since X and Xz are dual to each other by (7) and hence nonisomorphic as Fy[T]-modules,
Xo sends each of them to itself.

Since xo(T) = T, xo sends Cy(T) = X X0 Xor = Dg to itself. It cannot exchange the
two subgroups X,X,» and X, X,» (the first is not contained in U, and the second is),
50 Xoloy )y € Inn(Cy(T')). Hence after composing by an element of Aute, r)(G), we can
arrange that yo is the identity on this subgroup. Also, by applying (4) with u = 1, and since
Xolx, = Id (mod Us) and [X,, Us] < X, we see that xo is the identity on Xz Xgr. We
conclude that xo is the identity on Ug.

Since xs induces the identity on Uz and on Psz/Up, it has the form yg(x) = xyp(x) (all
x € Pg) for some

¢ € Hom(Pp/Us; Z(Us)) = Hom(5Ly(8), Cz) =
So xp = Idsp,.
Now, Cyp, (T') = 24 X C’7, and Out(24) = 1. Hence xa|cy, () must be conjugation by some
element z € Z(Cy(T)) = Xo» = Z(*Pp). After composing x, and xz by restrictions of c,,

we can thus assume that x, is the identity on Cyp, (7') (and still x5 = Idy,). Since xa|v = Id
and P, = (U, Cy, (1)), we have x, = Idg, . O

It remains only to handle ?F4(2) and the Tits group.

Proposition 4.17. Assume G = ?Fy(2)' or ?F4(2). Then k¢ is an isomorphism.

Proof. By the pullback square in [AOV, Lemma 2.15] (and since Outyy, (L) is independent of
the choice of objects in £ by [AOV, Lemma 1.17]), k¢ is an isomorphism when G = %F(2)
if it is an isomorphism when G is the Tits group. So from now on, we assume G = *F,(2)’.

We adopt the notation for subgroups of G' used by Parrott [Pa]. Fix T' € Syl,(G), and
set Z = Z(T) = Cy, H=Cg(Z), and J = Os(H). Let z € Z be a generator. Then H
is the parabolic subgroup of order 2 -5, |J| = 2° and H/J = C5 x Cy. Set E = [J, J].
By [Pa, Lemma 1], E = Zy(J) = Fr(J) = C3, and by the proof of that lemma, the Sylow
5-subgroups of H act irreducibly on J/E = Cy and on E/Z = Cj. Since each element of
Auty, s (J/E) sends Cy/p(T/J) = Cs to itself,

Let N > T be the other parabolic, and set K = O9(N). Thus N/K = Y3, and [T : K| =

Fix P € Syl;(H) C Syl;(G) (so P = C5). By [Pa, p. 674], H/E = (J/E) - (N, ( )/Z)
where Ng(P)/Z = H/J = C5 x Cy. For each f € Aut(H) such that 3(T) = T, there is
p1 = B (mod Aut;(H)) such that 5;(P) = P. Since each automorphism of H/.J Which sends
T/J = Cy to itself is conjugation by an element of 7'/J, there is 5y = 1 (mod Auty,p)(H))
such that /35 induces the identity on H/J. By (9), B2 also induces the identity on J/FE, and
hence on H/E = (J/E) - (Ng(P)/Z). Thus

N (T) = Auty(H) - {8 € Aut(H) | B(P) = P, |3,H) < E}. (10)

Now set £ = L5(G) for short, and identify N = Aut,(K) and H = Aut.(J). For each
a € Auty,, (L), let ay € Aut(H) and ay € Aut(N) be the induced automorphisms, and set
ar = OéH|T = OéN’T Set

= {o € Aut],, (L) | o, H] < E and ag|p = 1dp} .

By (10), each class in Outtyp(ﬁ) contains at least one automorphism in Ay.
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Fix o € Ap. Since [y, H| must be normal in H, we have [ay,H| € {E,Z,1}. If
lay, H) = Z, then ay|;p = 1d, so [ag, K| = [ay, K] = Z, which is impossible since Z is not
normal in N by [Pa, Lemma 6] (or since z ¢ Z(G) and G = (H, N)). Thus either ay = Id,
or [ay, H| = E.

If ag = Idg, then ay|r = Id. In this case, a determines an element of H'(N/K; Z(K))
whose restriction to H(T/K; Z(K)) is trivial, and since this restriction map for H'(—; Z(K))
is injective (since T/K € Syl,(N/K)), any € Inn(N) (see, e.g., [OV, Lemma 1.2]). Hence
ay € Autz(N) since ay|r = Id (and Z = Z(T')). So a € Autz(L) in this case, and
[a] =1 € Outyyp(L).

Set H = H/Z, and similarly for subgroups of H. Let ay € Aut(H) and ar € Aut(7T)
be the automorphisms induced by ay and ar, and set 8 = ar|y. Then E = Z(J) since
E = Z5(J), so B(g) = gp(g) for some ¢ € Homy,;(J/E,E). If ¢ =1, so that [«, J] < Z,
then since a|p = Id, we have [ay, H] < E and so ay = Id.

We have now constructed a homomorphism from Ay to Homp,;(J/E, E) with kernel
Autz(L). Thus

|Outyy, (£)] < [Ao/Auty(L)] < [Hompy,;(J/E, E)| < 2.
where the last inequality holds by (9). Since |Out(G)| = 2 by [GrL, Theorem 2|, and since
k¢ is injective by Lemma 4.3, this proves that kg is an isomorphism.

Alternatively, this can be shown using results in [Fn]. Since T'/[T,T] = Cy x Cy by the
above description of T'/E (where E < [T',T]), Aut(T) and hence Outy, (L) are 2-groups. So
each automorphism of the amalgam H > T < N determines a larger amalgam. Since the
only extension of this amalgam is to that of ?#4(2) by [Fn, Theorem 1], [Outy,(£)] =2. O
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5. THE CROSS CHARACTERISTIC CASE: 1

Throughout this section, we will work with groups G' = C (o) which satisfy the conditions
in Hypotheses 5.1 below. In particular, 5.1(I) implies that G is not a Suzuki or Ree group.
We will see in Section 6 (Proposition 6.8) that while these hypotheses are far from including
all finite Chevalley and Steinberg groups, their fusion systems at the prime p do include
almost all of those we need to consider.

For any finite abelian group B, we denote its “scalar automorphisms” by
YP € Aut(B),  vP(g)=g"  for all k such that (k,|B|) =1
and define the group of its scalar automorphisms
Autee(B) = {4 | (h,|B]) = 1} < Z(Aut(B)) .
Hypotheses 5.1. Assume we are in the situation of Notation 2.2(A,B,C).
(I)  Let p be a prime distinct from qo such that pHW0|. Assume also that 0 = g0y =
v o1, € End(G), where
e ¢ is a power of the prime qo;

e Y, € Oy is the field automorphism (see Definition 3.1(a)); and

o v E Aut(é) is an algebraic automorphism of finite order which sends T to itself and
commutes with vy, (so that ¥, (G) = G).

Also, there is a free (T)-orbit of the form {ay,aq,...,as} or {£aq, Lay, ..., Lo} in
Y such that the set {ay,aq, ..., a5} is linearly independent in V.

(II) The algebraic group G is of universal type, and Ng(T) contains a Sylow p-subgroup of
G.

(III) Set A = O,(T). Assume one of the following holds: either
(IIL.1) ¢ =1 (mod p), ¢ =1 (mod 4) if p =2, |y| <2, and v € Uy (thus p(II) = 11); or
(I11.2) p is odd, ¢ = —1 (mod p), G is a Chevalley group (i.e., v € Inn(G)), and
y(t) =ttt for eacht € T; or
(II1.3) p is odd, |7| = ord,(q) > 2, Ca(Oy(Wy)) = 1, Cs(21(A)) = A, Autg(A) =
AutWO(A),
NAut(A) (AUtW() (A)) S AU‘tSC(A)AU‘tAUt(G) (A)

where Autuc)(A) = {0]a |0 € Aut(G), §(A) = A}, and

Autyy (4) 1 Autye(4) < 4 $7147 if 2[ord, (q) or —1d ¢ IV
" ) <7|A, 1> otherwise,

Since W, acts on T' by Lemma 2.3, it also acts on A = O,(T).

We will see in Lemma 5.3 that the conditions Cs(€21(A)) = A (or Cs(A) = A when p = 2)
and Autg(A) = Auty, (A), both assumed here in (II1.3), also hold in cases (II1.1) and (I11.2).

Recall, in the situation of (II1.3), that || = |y|7| by Lemma 3.2.

Note that the above hypotheses eliminate the possibility that G be a Suzuki or Ree group.
Since we always assume the Sylow p-subgroups are nonabelian, the only such case which
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needs to be considered here (when gy # p) is that of ?Fy(g) when p = 3, and this will be
handled separately.
By Lemma 3.2, whenever o0 = 1, o 7, and 7 is an algebraic automorphism of G which

normalizes T, there is 7 € Aut(V') such that 7(3) = ¥ and 0(X,) = X+(q) for each o € ¥. So
under Hypotheses 5.1, the condition at the beginning of Notation 2.2(C) holds automatically,
and with p = 7|g. To simplify the notation, throughout this section and the next, we write
T = p to denote this induced permutation of 3.

The following notation will be used throughout this section, in addition to that in Notation
2.2. Note that I and ¥ are defined in Notation 2.2(C) only when p(IT) = II, and hence only
in case (II.1) of Hypotheses 5.1. It will be convenient, in some of the proofs in this section,
to extend this definition to case (I11.2).

Recall (Notation 2.2) that for a € X, w, € W denotes the reflection in the hyperplane
at CV.

Notation 5.2. Assume we are in the situation of Notation 2.2 and Hypotheses 5.1.
(D) If (II1.2) holds, then set & =X, I =11, and Vo = V.. Note that Wo = W in this case.

(B) If (III.1) holds, then for each @ € £, let wg € Wy be the element in (wq | o € &) which
acts on Vy as the reflection across the hyperplane (&\)L, and which exchanges the positive

and negative roots in the set (@) N X. (Such an element exists and lies in Wy by [Ca,
Proposition 13.1.2].)

(F) If (II1.1) or (IIL.2) holds, then for each o € ¥ and each @ € &, set
Ko=(Xa, X_0) T, = ha(quXO)
Ra:<f?a|&€a> Ta:<7:a|()é€a>.
(G) Set N = Ng(T)/Op(T), and identify A = O,(T') with T/Oy(T) < N. If (III.1) or
(II1.2) holds, then for & € 3, set Az = ANTs.
(H) Fiz S € Syl (G) such that A < S < Ng(T'), and set F = Fs(G). (Recall that Na(T)
contains a Sylow p-subgroup of G by Hypotheses 5.1(I1).) Set
Aut(A, F) = {8 € Aut(A) | B = B|a, some B € Aut(S,F)}.

Set Autging (S, F) = Cawys,r)(4) = {5 € Aut(S, F) | Bla = Id}, and let Outgiag (S, F)
be the image of Autgiag(S, F) in Out(S,F).

Note that when (G, o) is a standard setup (i.e., in case (II1.1)), Wy acts faithfully on V
(see [Ca, Lemma 13.1.1]).

Recall that N = Ng(T)/Oy (T). We identify A = O,(T) with T/O,,(T) < N.
Lemma 5.3. Assume Hypotheses 5.1 and Notation 5.2.

(a) If condition (III.1) or (II1.2) holds, then Cy (A) = 1, C5(A) = Cx(T) = T,Cq(A) =T
and Cs(A) = A. If p is odd, then Cyw(Q1(A)) =1 and Cs(2,(A)) = A.

(b) If CQ(A)O = T (in particular, if (II1.1) or (II1.2) holds), then Ng(A) = Ng(T)

Ng(T), and the inclusion of Ng(T) in Ng(T) induces isomorphisms Wy = Ng(T')/T
N/A. Thus Autg(A) = Autyy, (A).

~

R IA

Proof. (a) Assume condition (III.1) or (III.2) holds. We first prove that Cy (A) = 1, and
also that Cy (€1(A)) = 1 when p is odd.
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If pis odd, set Ag = Q1(A) and p = p. If p =2, set Ay = Q(A) and p = 4. Thus in all
cases, Ay is the p-torsion subgroup of A. Set ¢ = 1 if we are in case (III.1), or ¢ = —1 in
case (HI.2). By assumption, p|(q —¢). Choose A € F (or A € F; if e = —1) of order p. Set
II={a,...,a}. Fix we Cy(Ay).

Assume first G = G(q), a Chevalley group. Then T' = {t eT ‘ 11 = 1}, and Ag contains
all elements of order pin 7. So w = 1 by Lemma 2.7.

Now assume that Id # v € T'z; i.e., G is one of the Steinberg groups *4,(q), *Dx(q), or
°E(q). Then Cx(v) is a simple algebraic group of type B,,, Cp,, or Fy (cf. [Ca, §13.1-3])

with oot system & C V, = Cy(7), and Ay contains all p-torsion in Cz (). By Lemma 2.7
again, wly, = Id. Since w and 7 are both orthogonal, w also sends the (—1)-eigenspace for
the action of 7 to itself, and thus w € Cy (1) = Wy. But Wy acts faithfully on V; (see, e.g.,
[Ca, 13.1.1]), so w = 1.

Thus Cw(Ag) = 1. Hence Cx(Ao) = T by Proposition 2.5, and the other statements
follow immediately.

(b) If C5(A)? = T, then Ng(T) < Ngz(A) < NG(T) (recall that A is the p-power torsion in
T). If g € Ng(T) and o(g) = g, then g also normalizes T' = Cz(c). Thus Ng(T') = Ng(A) <
N@(T), and hence Ng(T')/T = Wy by Lemma 2.3. The identification N/A = Ng(T)/T is
immediate from the definition of N. O

Recall (Notation 5.2(F)) that when case (III. 1) of Hypotheses 5.1 holds (in particular,
when p = 2), we set K5 = (K, | € @) for @ € 5, where Ko = (Xa, X_a). The conditions

in (II1.1) imply that each class in S is of the form {a}, {a,7(a)}, or {a, T(0),a + T(cx) } for
some «. This last case occurs only when G = SU,(q) for some odd n > 3 and some ¢ = 1
(mod p or mod 4).

Lemma 5.4. Assume Hypotheses 5.1, case (III.1), and Notation 5.2. For each a € ¥,
>~ SIy(F,,). For eacha € S, Ka ™ SLy(F,,), SLy(Fy) % SLy(F,,), or SLy(F,,) whenever

the class @ has order 1, 2, or 3, respectively. Also, GN K4 is isomorphic to SLy(q), SLy(q?),
or SUs(q), respectively, in these three cases.

Proof. By Lemma 3.10, each class in S is in the Wy-orbit of a class in H So it suffices to

prove the statements about K, and K5 when o € II, and when & € I is its equivalence
class.

By Lemma 2.4(b) (and since G is universal), K, = SLy(F,,) for each a € II. So when
a=7(a) (when |a| =1), Kz = K, = SLy(F,,).
When o # 7(« ) and they are not orthogonal, then G = SL2n+1(F ,) for some n, and the

inclusion of SLs(F,,) is clear. When o L 7(a), then [Ko, K, ()] = 1, and Ko N K,) = 1
by Lemma 2.4(b) and since G is universal, and since the intersection is contained in the
centers of the two factors and hence in the maximal tori. Hence K5z = (Xin, Xir() =

Ko X Kooy 2 SLa(Fyy) x SLa(Fy,).
In all cases, since G is universal, G N K5 = Czlo) N Ks= Cz (0). If @ = 7(a), then v

acts trivially on K5, and Cr (0) = SLy(q). If a L 7(a) then 7 exchanges the two factors
and Cr (0) = SLy(¢®). Finally, if @ # 7(«) and they are not orthogonal, then 7 is the

graph automorphism of SLs(F,,), so Cr (o) = SUs(q). O
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We also recall here the definition of the focal subgroup of a saturated fusion system F
over a finite p-group S:

foc(F) = (zy~ ' |z,y € S, x is F-conjugate to y).

By the focal subgroup theorem for groups (cf. [G, Theorem 7.3.4]), if F = Fg(G) for some
finite group G with S € Syl,(G), then foc(F) = SN [G, G].

Lemma 5.5. Assume Hypotheses 5.1, case (II1.1) or (III.2), and Notation 5.2. Assume
also that |I1| > 2. Then the following hold.

(a) If p is odd, then [wa, A] = Az for each a € S. Ifp = 2, then for each @ € S,
[wa, A] < As with index at most 2, and [wg, A] = A with the following exceptions:

e 7=1d, G=C, (or By), and & = {a} where « is a long root; or

o 7| =2, G=D, (or Az), and @ = {«a,7(a))} where a L 7().

o 7| =2, G= A, and |a| = 3.
(b) For each w € Wy of order 2, w = wg for some & € S if and only if [w, A] is cyclic.
(¢c) If p =2, then for each & € i,

TKa if |a] < 2

Ca(Ca(wa)) = {TKOH-T(Oé) if @ ={o,7(a),a+7(a)}.

If in addition, |a| < 2, then

Az = AN [Ca(Ca(wa)), Ca(Ca(wa))] = AN foe(Cr(Calws))).

Proof. (a) If we are in case (II1.1) of Hypotheses 5.1, then by Lemma 3.10, each orbit of
W, under its action on & contains an element of II. If we are in case (II1.2), then Wy =W
and & = 3], so the statement holds by the same lemma. So in either case, it suffices to prove
this when & € II.

Fix o € I, and let @ € II be its class. Since ws € (Way Wr(a)), [Wa, A] < ANTs = Ag
in all cases by Lemma 2.4(e). By the same lemma, wa(ha(A)) = ho(A71) for all A € ]F;O if
@] < 2: and wz(ha(N)) = ha(A79) for A € Fr if |a] = 3. So [wa, A] = Az if p is odd, and
[wa, A] has index at most 2 in Az if p = 2.

Assume now that p = 2, and hence that ¢ = 1 (mod 4). If 7 = Id (and hence a = {a}),
then for each 3 € IT and each A € F), Lemma 2.4(e) implies that

hs(\) if 81 «
wa(hs(N) = < hs(MNha(N) if B La, [|B] > |a
ha(Mha(N) if B Lo, o = VE- 18], k=1,2,3.

(Note that w,(8Y) = 8Y, BY + aV, or ¥ + ka", respectively, in these three cases.) Since T'
is generated by the hg(\) for g € H and \ € IFq ,, it follows that [w,, A] has index 2 in A,
exactly when there are roots with two lengths and ratio v/2, « is a long root, and orthogonal
to all other long roots in II. This happens only when G = C,, or Bs.

h
h
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Now assume |7| = 2. In particular, all roots in 3 have the same length. By Lemma 2.4(e)
again, for each § € II\a such that § / « and with class § € II, we have

hs(\ha(A)  if [5] =1 and \ € F)
wa(hs(\) =  ha(Mha(N)  if [B] > 2, & =2, and A € F,
ha(Mho(AY) if |B] > 2, |a] =1 or 3, and X € 2,
Thus [wgz, A] = Az exactly when |@| = 1, or |@| = 2 and there is some § € II such that

f L aand B # 7(5). The only cases where this does not happen are when G = D,, or Aj
and |a| = 2, and when G = A,, and |a| > 3.

(b) For cach @ € &, [wa, A] < Az by (a), and hence is cyclic. It remains to prove the
converse.

When we are in case (II1.2) (and hence the setup is not standard), it will be convenient to
define V5 = V. (Recall that V} is defined in Notation 2.2(C) only when (G, 0) is a standard
setup.) Note that by assumption, G is always a Chevalley group in this case.

Let w € Wy be an element of order 2 which is not equal to wg for any a. If G is a Chevalley
group (if Wy =W and V) = V'), then Cy(w) contains no points in the interior of any Weyl
chamber, since W permutes freely the Weyl chambers (see [Brb, §V.3.2, Théoreme 1(iii)]).
Since w is not the reflection in a root hyperplane, it follows that dim(V/Cy(w)) > 2. If G
is a Steinberg group (thus in case (III.1) with a standard setup), then Wy acts on V; as the
Weyl group of a certain root system on Vj (see [Ca, §13.3]), so dim(Vy/Cy,(w)) > 2 by a
similar argument.

Set ¢ = +1 if we are in case (III.1), or ¢ = —1 if we are in case (II1.2). Set m = v,(q —¢),
and choose A € (Fy2)* of order p™. Set A = ZXY, regarded as the lattice in V' with Z-basis
IIV = {a¥|a € IT}. Let

Oy: AJp"A ——— T
be the Z[W]-linear monomorphism of Lemma 2.6(a) with image the p™-torsion in T. Thus
Pyr(a¥) = ha(N) for each o € X. Also, 0(ha())) = hr@a)(A) for each o € ¥ (A = A by
assumption), and thus ®, commutes with the actions of 7 on A < V and of o on T.

Set Ag = Cp(7) in case (III.1), or Ag = A in case (II1.2). Then Cp/pma(T) = Ao/p™ Ao in
case (II1.1), since 7 permutes the basis ITV of A. We claim that ®, restricts to a Z[Wj]-linear
isomorphism

Dy : Ao/pmA() — Qm<A> s
where €,,,(A) is the p™-torsion subgroup of A and hence of T' = Cz(0). If G is a Chevalley
group (in either case (III.1) or (II.2)), then Ag = A, so Im(®g) is the p™-torsion subgroup
of T and equal to €,,(A). If G is a Steinberg group, then ¢ = +1, each element of order
dividing p™ in T is fixed by ¥?, and hence lies in €,,(A) if and only if it is fixed by v (thus
in q))\(CA/pmA(T))).

Thus [w, A] > [w, Qn(A)] = [w, Ag/p™Ao]. Set B = Ag/p™A¢ for short; we will show that
[w, B] is noncyclic. Set

r =rk(Ap) = dim(V}) and s = 1k(Ch,(w)) = dimg (Cy, (w)) <7 — 2.
For each b € Cp(w), and each v € Ay such that b = v + p™Ay, v + w(v) € Cp,(w) maps to
2b € Cp(w). Thus B = (Z/p™)", while {2b|b € Cp(w)} is contained in Cy,(w)/p™Ch,(w) =
(Z/p™)*. Since p™ > 2 by assumption (and r — s > 2), it follows that B/Cg(w) = [w, B] is
not cyclic.

(c) Fixace 52. We set up our notation as follows.
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Case (1): |a| = 1 or 3. Set a* = «a if @ = {a} (where 7(a) = ), or o = a + 7(a) if
a={a,7(a),a+7(a)}. Set wg = wy+, Wa = (wg), and A = {£a*} C 3.

Case (2): a = {a,7(«)} where o L 7(a). Set wsg = WaWra), Wa = (Wa, Wr()), and
A ={ta,£7(a)} C X.

In case (1), by Lemma 2.4(c,e),
Cz(wa) = Cz(wer) = Ker(0o-) = C (Xor) = Cr(X_g+) .

T T T
Hence Cz(Ca(wa)) > Cx(Ch(wa)) > T(X o, X o) = TK,-. In case (2), by the same
lemma,
Cr(wa) = Cp((Wa, wr(a)) = Ci((Xaw X0y Xr(a), X)) = C3(KaK ()

so that Cz(Ca(wa)) > TK . This proves one of the inclusions in the first statement in (c).
By Proposition 2.5, the opposite inclusion will follow once we show that

Cw (Ca(ws)) < Wa. (1)
Fix w € Cy (Ca(wg)).

e Let 8 € N AL be such that 3 = 7(8). Then hg(\) € Ca(wg) for A € IF‘;O of order 4, so
w(hg(N)) = hg(A), and g € Cy(w) by Lemma 2.6(c).

o Let B € ¥ N AL be such that 8 # 7(8), and set ' = 7(3) for short. Let r > 2 be such
that ¢ = 1+ 2" (mod 2"™!), and choose \ € IF';D of order 27!, Set a =1 — 2", so \* = \%.
Then

ha(A)hg (A*), hg(A*)hg(A) € Calwg) < Cq(w).
Also, 18+ af'll = laf + Bl < (1 — )|l = S| since a < 0 and & £ — (since
7(34) =X4). Thus S+ af,ap + B € Cy(w) by Lemma 2.6(b), so 3, 5" € Cy(w).

e Let 3 € ¥ besuch that B = 7(8) and 3 ¢ A+, and set n = B+wa(B). Since waT = Tw; in
Aut(V), 7(n) = n. Since 8 ¢ At = Cy(wz), we have ws(3) # 3, and hence ||n|| < 2||3]|.
For \ € IF‘;O of order 4, t = hg(\)hw,(5)(N) € Ca(wa), so w(t) =t, and n = f +wa(B) €
Cy(w) by Lemma 2.6(b).

Consider the set

= (BNAY) U{B+ws(B)|BET, T(B) =5, BLA}CV.
We have just shown that w(n) = n for each n € ¥*, and hence that w|;x+) = Id. From the

description of the root systems in [Brb, Planches I-1X], we see that ¥ N (¥*)* = A, except
when G = Ay and 7 # Id (i.e., when G = SU;(q)).

Thus when G % SUs(q), the only reflection hyperplanes which contain (X*) are those in
the set {5+ |3 € A}. Fix a “generic” element v € (X*); i.e., one which is not contained in any
of these hyperplanes. In case (1), v is contained in only the one reflection hyperplane a*+,
and hence is in the closure of exactly two Weyl chambers for (X, W): chambers which are
exchanged by wg. In case (2), v is contained in the two reflection hyperplanes ot and 7(a)*,
and hence in the closure of four Weyl chambers which are permuted freely and transitively
by W5 = (wa, Wr(a)). Since W permutes the Weyl chambers freely and transitively (see [Brb,
§ V.3.2, Théoreme 1(iii)]), and since (w, W5) permutes the chambers whose closures contain

v, we have w € Wj.
This proves (1) when G 2% SUs(q). If G = SUs(q), then hy(—1) € Cy(wgz). But no

element of order 2 in T < SLs(F,,) centralizes the full Weyl group W 2 %3, so (1) also holds
in this case.
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If |@| < 2, then
Ca(Calwz)) = GNCx(Ca(wa)) = T(GN Kz)
where by Lemma 5.4, GN Kz = SLy(q) or SLy(¢?). Hence C(C4(wz)) has commutator sub-
group GNK g, and focal subgroup Az. Since C'x(Cy(wg)) is the fusion system of Cq(Ca(wz))
(cf. [AKO, Proposition 1.5.4]), this proves the last statement. O

Lemma 5.6. Assume Hypotheses 5.1, case (II1.1), and Notation 5.2.

(a) Assume that all classes in & have order 1 or 2. (Equivalently, T(a) = a or 7(a) L «
for each a € ¥.) Then Cz(Wy) = C2(W) = Z(G), and Z(G) = Cr(Wy).

T
(b) Assume that S contains classes of order 3. Then G SLan_1(Fyy) and G = SUs,_1(q)
for some n > 2. Also, C(Wy) = ]FX , and o(t) =t79 for all t € Cz(Wh).

Proof. (a) Assume that 7(a) = a or 7(a) L «a for each o € X. We first show, for each
a = {a,7(a)} € 11, that Cz(wa) = Cz(Wa, Wr(a)). This is clear if o = 7(a). If o L 7(a),
then wg = War(), s0 if t € Cx(w ) then we(t) = wy)(t) and 7 wa(t) = t™ w(q)(t).
Also, t7 1w, (t) € T, and tTlwe)(t) € TT(a) by Lemma 2.4(e). Since T, N TT(a) =1 by
Lemma 2.4(b), t~'wq(t) = 1, and hence t € Cz(wa, wr(a))-

Since W = (wq |a € II), this proves that Cz(Wy) = Cz(W). Since G is universal,
Cz(W) = (G) by Proposition 2.5. In particular, Cp(Wp) < G N Z(G) < Z(G); while
Z(G) < Cr(W)

since C¢(T) =T by Lemma 5.3(a).
(b) Assume 3 contains a class of order 3. Then by [GLS3, (2.3.2)], v # Id, G = SLy,_1,
and G = SUsy,—1(q) (some n > 2). Also, if we identify

T = {diag(A1,. ., A1) [N € F, Mg Agpy = 1}

q0’
and identify W = 35, ; with its action on T permuting the coordinates, then

v(diag(Ar, . .., Aano1)) = diag(As_q, ..., AL,
and Wy = Cy 1 X, is generated by the permutations (i2n—i) and (ij)(2n—i2n—j) for
i,j < mn. So Cz(Wp) is the group of all matrices diag(A1, ..., A2,—1) such that A\; = A for

all i #n and A\, = )\1_(2”_2), and Cz(Wp) = IF;O. Also, v inverts Cz(Wo), so o(t) = ¢t~ for
t € Cz(Wo). O

Recall (Notation 5.2(H)) that Aut(A, F) is the group of automorphisms of A which extend
to elements of Aut(S, F). The next result describes the structure of Aut(A, F) for a group G
in the situation of case (III.1) or (II1.2) of Hypotheses 5.1. Recall that W, acts faithfully on
A by Lemma 5.3(a), and hence that Wy = Auty(A) = Auty,, ) (A) by Lemma 5.3(b). It will
be convenient to identify W, with this subgroup of Aut(A). Since each element of Aut(A, F)
is fusion preserving, this group normalizes and hence acts on Wy, and WyAut(A, F) is a
subgroup of Aut(A).

For convenience, we set Autauyc)(A) = {(5|A ‘ J € Aut(G), 0(A) = A}_

Lemma 5.7. Assume that G and (G,0) satisfy Hypotheses 5.1, case (IIL.1) or (II1.2).
Assume also Notation 5.2.

(a) Cwoaut(a,r)(Wo) < WoAute(A).
(b) Aut(A, F) < Auty.(A)Autawya)(A), with the exceptions
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i (G>p> = (2E6(Q),3), or
e (G,p) = (Ga(q),2) and qo # 3, or
e (G.p) =

(Fi(q),3) and qo # 2.
(c) In all cases, Aut(A, F) N Autg(A)Autaue)(A) has index at most 2 in Aut(A, F).

Proof. Recall that in Notation 2.2(C), Vp, &, and II are defined when _p(I) =11, and hence

in case (I11.1) of Hypotheses 5.1. In case (IIL.2), we defined Vo =V, £ =%, and II = IT in
Notation 5.2(D). So under the hypotheses of the lemma (and since G is always a Chevalley

group in case (II1.2)), we have Vy =V and Il = II if and only if G is a Chevalley group.
If « € Tand a+7(a) € X, then Ta+7(a) < TaTT(a) by Lemma 2.4(d). Hence T5 = TQTT(Q)

(the maximal torus in K3) for each o € II. So by Lemma 2.4(b), in all cases,

T = Cz(¥gy) = H Cs wqu and hence A= H Ag . (2)

aell actl
Set

_ {‘H if g=1 (mod p) (case (IIL.1))

d = —€).
—1 if g=—1 (mod p) and p is odd (case (II1.2)) o m=vplq—e)

By assumption, € = 1 if G is a Steinberg group or if p = 2, and m > 0 in all cases.

If G is a Chevalley group, then 7 = ¢ - Idy, so Wy = W. Also, 0 = y1, acts on T via

ot) =t soT = {t € T|t"* =1}, and A = {t € T|t*"" = 1}. Thus for each o € %,
T, = Cycand A, = Cp.

Now assume G is a Steinberg group (7 # Id). For each a € ﬁ, either

e aNIl = {a,7(a)} for some a € II such that a # 7(a), in which case o = 1),y acts on
Ta =Ts x Tra by sending (a,b) to (b%,a?), and so Cz (¢gy) = Cp_y;  or

e & = {a} for some a € TI such that a = 7(a), in which case 1,y acts on Ty = T, via
(a > a?), and Cz (¢g7) = Cf

Since v,(¢*> — 1) =m (p odd) or m + 1 (p = 2), we have now shown that in all cases,

Com ifp=2and |a] =1

Aang'f i dd, Aag R 3
pr BP0 {02m+1 if p=2and |a| > 2. 3)

Step 1: We first prove that
¢ € Cpamary(Wo) = @(Aa) = A forall @ € 3, (4)
If p is odd, then Az = [wg, A] by Lemma 5.5(a), so (4) is immediate.

Next assume that p = 2, and also that |a] < 2. Write ¢ = w o ¢y, where w € W,
and ¢ € Aut(A, F). Then ¢o(Ca(wa)) = w™ ' (Ca(wa)) = Ca(ws), where B =w'(a). By
definition of Aut(A, F) (Notation 5.2), ¢g = ©o| for some o, € Aut(S, F). Since @y is fusion
preserving, it sends foc(Cx(Ca(wa))) onto foc(Cr(Ca(wy))). Since these focal subgroups are
Ag and Ag, respectively, by Lemma 5.5(c), p(Az) = w(Ag) = Aw(ﬁ) = Ag also in this case
(the second equality by Lemma 2.4(e)).

It remains to consider the case where p = 2 and |a| = 3, and thus where G = SUs,11(q)
for some n > 1. There is a subgroup (H; x --- X H,) x %, < G of odd index, where
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H; = GUy(q). Fix S; € Syl,(H;); then S; = SDyx where k = vy(¢> — 1) +1 > 4. Let
A;, Q; < S; denote the cyclic and quaternion subgroups of index 2 in S;. Then we can take
A=A x - x A, = (Co—1)", N= (5 x---x85,) x%,, and S € Syl,(N).

There are exactly n classes ay,...,Q, € §]+ of order 3, which we label so that [wg,, A] < A;
([wa,, A] = ANQ;). Equivalently, these are chosen so that wg, acts on A via conjugation by
an element of S;\A;. Let af € X be the root in the class &; which is the sum of the other
two.

Write ¢ = w o g, where w € Wy and ¢y € Aut(A,F), and let py € Aut(S,F) be
such that ¢y = @ola. For each 1 <i <n, po(Ca(ws,)) = w™ ' (Ca(wa,)) = Calwa,,,), where
f € %, is such that @) = w™'(@;). Since @ is fusion preserving, it sends foc(Cx(Ca(ws,)))
onto foc(Cr(Ca(wa,,))). By Lemma 5.5(c), Co(Ca(wg,)) = G N (fl?a;), its commutator
subgroup is G N l?a; = SLy(q), and hence foc(Cr(Ca(ws,))) = Q. Thus @o(Q;) = Q-

For each i, set Qf = (Q;|j # i). Then Cg(Q}) is the product of G N Kg, = SLs(q)
(Lemma 5.4) with Z(Q7). Thus @y sends foc(Cr(Q])) = S; to foc(Cr(Q} ;) = Sy, and
hence po(A;) = Aguy. So p(A;) = w(Asu)) = A; for each i where A; = Ag,, and this finishes

the proof of (4).

Step 2: We next prove point (a): that Cyyaua,r)(Wo) < WoAute(A). Let ¢ €
WoAut(A, F) be an element which centralizes Auty(A) = N/A=W,. By (4), ¢(Az) = Aa
for each @ € ¥. Since Az is cyclic for each & € ¥4 by (3), ¢|a, is multiplication by some
unique ug € (Z/qs)*, where gz = |Az|. We must show that ug is independent of a.

Assume first that 7 = Id. By (3), |Aa| = p™ for each o € II. Fix oy, 0 € T and 5 € X
such that %ﬂ = %al + g, where either

e i =1 and all three roots have the same length; or
o ke {2,3} and ||B]| = [las]| = V& - [loz].

The relation between the three roots is chosen so that hg(A) = ha, (A)hay(A) for all X € IF’qXO
by Lemma 2.4(d). Hence u,, = ug = uqa, (mod p™) by (2). By the connectivity of the
Dynkin diagram, the u, for a € II are all equal, and ¢ € Aut.(A).

Now assume |7| = 2; the argument is similar but slightly more complicated. By assump-
tion, G is of type A, Dy, or E,; i.e., all roots have the same length. Set m’ = v,(¢*> — 1);

then m’ = m if p is odd, and m’ = m + 1 if p = 2. Fix ay, as € TI such that oy # 7(s) and

16 def a1+ as € Y. Choose A € IF‘qXO of order p™.

If oy # 7(q) and @y # T(w), then |Ag, | = |Aa,| = p™ by (3), and

Py (M hay () = By (M) (A hag (N sy (A1) = ha( N (A7) = ha(N) € Aj.

Hence
(Fos s (1)) = 0 (e Wy (V) = o (V)" - T (A)"52
and together with (2), this proves that uz, = ugz = ua, (mod ™).
If 7(a;) = a; for i = 1,2, then a similar argument shows that uz, = uz = ug, (mod p™).
It remains to handle the case where a; # 7(a;) and ay = 7(a). In this case, |As,| = p™

and |Ag,| = p™ by (3), and these groups are generated by g, (\) = Pa, (M) hr(ar) (A7) and
oy, (A1), respectively. Then

Py (N hay (N = hay (M Birar) (A g (A1) = hig(A\) ey (A1) = hs(N) € Az,
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SO

~

(s (Vg NT)) T = 0 (B, (W By (X)) = Py (A)'51 i (A7)
and ug, = ug = ug, (mod p™) by (2) again.
Since the Dynkin diagram is connected, and since the subdiagram of nodes in free orbits

in the quotient diagram is also connected, this shows that the ug are all congruent for a € 1
(modulo p™ or p™ , depending on where they are defined), and hence that ¢ € Autg.(A).

Step 3:  Consider the subset W5 = {wa|a € ﬁ} We need to study the subgroup
Nyoaut(a,r)(Wg): the group of elements of WyAut(A, F) which permute the set W5. Note

that Wy = (W5g) (see, e.g., [Ca, Proposition 13.1.2], and recall that W, = W and Il=1IIin
case (II1.2)). We first show that

Aut(A, .F) S WONWOAut(A,_F)(Wﬁ) . (5)

Write 11 = {ay,...,ax}, ordered so that for each 2 < i < k, @; is orthogonal to all but one
of the a; for j < 4. Here, &; L @; means orthogonal as vectors in V. Thus wgs, commutes
with all but one of the wg, for j < i. By inspection of the Dynkin diagram of G (or the
quotient of that diagram by ), this is always possible.

Fix ¢ € Aut(A,F). In particular, ¢ normalizes W, (recall that we identify W, =
Auty, (A)) since ¢ is fusion preserving. (Recall that Autg(A) = Auty,(A) by Lemma
5.3(b).) We must show that some element of ¢, normalizes the set Wg.

By definition of Aut(A, F) (Notation 5.2), ¢ = ¢|4 for some ¢ € Aut(S,F). Since p is
fusion preserving, ¢ normalizes Autz(A) = Autg(A), where Autg(A) = N/A = W, since
Cn(A) = A by Lemma 5.3(a). Thus there is a unique automorphism @ € Aut(W;) such that
P(w) = powo ™t for each w € W.

[a¥)

= 2 and [p(wg,), A] = [wa,, 4] is cyclic, P(wa,) = wa; for some

For each 1, since |p(wg;)

a! € S by Lemma 5.5(b), where @ is uniquely determined only up to sign. For i # 7,

a; La; <= [wa,wa] =1 <= [P(ws,),P(ws,)] =1 <= a; La.

So using the assumption about orthogonality, we can choose successively af,ay, ..., a) so
that p(wa,) = wa for each i, and (@}, ) < 0 for i # j.
For each i # j, since |wa wg,| = |wa;wa |, the angle (in V) between a; and a; is equal

to that between a; and a; (by assumptlon both angles are between 7/2 and 7). The roots

al for 1 < i < k thus generate S as a root system on V; with Weyl group. Wy, and hence

are the fundamental roots for another Weyl chamber for . (Recall that S=3%V, =V,
and Wy = W in case (II1.2).) Since Wy permutes the Weyl chambers transitively [Brb,
§VI 1.5, Theorem 2(i)], there is w € W, which sends the set {wg,} onto {$(wg,)}. Thus
w © ¢ € Nwyau(a,r) (Wg), so ¢ € WoNw,aua,r) (W), and this proves (5).

Step 4:  Set Auty,aua,r(Ws) = Nwoaua,r)(Wg) /OWOAut(A’_F)(Wﬁ>: the group of per-
mutations of the set Wx which are induced by elements of WyAut(A4, F). By (a) (Step 2)
and (5), and since Wy = (W), there is a surjection

onto WONWOAut(A,]-') (Wﬁ) _ W()Aut(A, .F) (6)
WOCWoAut(A,]:) (Wﬁ) WOAUtsc (A) ‘

Auty,auea,r) (W)

To finish the proof of the lemma, we must show that each element of Auty,aus(a,r) (Wsg) is
represented by an element of Autaue)(A) (i.e., the restriction of an automorphism of G),
with the exceptions listed in point (b).
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In the proof of Step 3, we saw that each element of Autyy,auea,7) (W) preserves angles

between the corresponding elements of ﬁ, and hence induces an automorphism of the Coxeter

~

diagram for (4, X) (i.e., the Dynkin diagram without orientation on the edges).

Case 1: Assume G = G(q) is a Chevalley group. The automorphisms of the Coxeter
diagram of G are well known, and we have

‘AutWOAut(Af)(Wﬁﬂ <2 ifG=A, (n>2),D, (n>5), Eg, By, Gy, or Fy  (7)

1 otherwise.

In case (III.1) (i.e., when the setup is standard), all of these automorphisms are realized
by restrictions of graph automorphisms in T'g (see [Ca, §§12.2-4]), except possibly when
G = By(q), Ga(q), or Fy(q). In case (II1.2), with the same three exceptions, each such
automorphism is realized by some graph automorphism ¢ € I's, and ¢|7 commutes with
olz € Z(Aut(T)). Hence by Lemma 3.7, ¢|r extends to an automorphism of G whose
restriction to A induces the given symmetry of the Coxeter diagram. Together with (6), this

proves the lemma for Chevalley groups, with the above exceptions.

If G = By(q) or Fy(q) and p # 2, then ‘AutWOAut(Af)(Wﬁ)’ = 2, and the nontrivial element
is represented by an element of Autr,(A) exactly when gy = 2. This proves the lemma in
these cases, and a similar argument holds when G = G5(q) and p # 3.

It remains to check the cases where (G, p) = (Ba(q),2), (G2(q),3), or (Fy(q),2). We claim
that Auty,aw(a,r) (Wg) = 1 in these three cases; then the three groups in (6) are trivial, and
so Aut(A, F) < WoAuts(A). If (G,p) = (B2,2) or (Ge,3), then with the help of Lemma
2.4(d,b), one shows that the subgroups €2;(A,) are all equal for a a short root, and are all
distinct for the distinct (positive) long roots. More precisely, of the p+ 1 subgroups of order
pin Q(A) = C’g, one is equal to A, when « is any of the short roots in X, , while each of the
other p is equal to A, for one distinct long root a.. Since Q4 (A,) = Q1 ([wa, A]) for each «, no

element of Nyy,auta,7) (W) can exchange the long and short roots, so Auty, auea,r)(Wsg) =
1.

Now assume (G, p) = (F}y,2). Let o, 8 € II be such that « is long, 3 is short, and o £ f3.
Then a and [ generate a root system of type By, and by the argument in the last paragraph,
no element of Nyaut(a,7) (Wg) can exchange them. Thus no element in Ny aue(a,r)(W5)
can exchange the long and short roots in G, so again Autyyaug(a, ;)(Wﬁ) = 1.

Case 2: Assume G is a Steinberg group. In particular, we are in case (II11.1). The Coxeter

-~

diagram for the root system (Vj,Y) has type B, C,, or F; (recall that we excluded the
triality groups ®D4(q) in Hypotheses 5.1), and hence has a nontrivial automorphism only
when it has type By or Fj. It thus suffices to consider the groups G = ?43(q), ?A4(q), and
*Es(q)

6\q)-

For these groups, the elements Ea()\) for A € F,
subgroups Ty for a € f@, have relations similar to those among the corresponding subgroups
of T'when G = By(q) or Fy(q). This follows from Lemma 2.6(a): if A € F) is a generator,
then @, restricts to an isomorphism from Czsv(7)/(¢ — 1) to the (¢ — 1)-torsion in T', and

the elements in II can be identified in a natural way with a basis for Czyv (7). Hence when

and hence the (¢ — 1)-torsion in the

= 2, certain subgroups ;(Az) are equal for distinct @ € ¥, proving that no element in
Nyoaut(a,r) (Wg) can exchange the two classes of roots. Thus the same argument as that
used in Case 1 when (G, p) = (B2(q), 2) or (F4(q), 2) applies to prove that Ny aue(a,r)(Wsg) =
Autg.(A) in these cases.
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Since p||WO| by Hypotheses 5.1(I), we are left only with the case where p = 3 and G =

~

’Fs(q) for some ¢ = 1 (mod 3). Then (Vp,X) is the root system of Fj, so Aut(A4,F) N
WoAuts.(A) has index at most 2 in Aut(A, F) by (6) and (7). Thus (c¢) holds in this case.
(In fact, the fusion system of G is isomorphic to that of Fy(q) by [BMO, Example 4.4], and
does have an “exotic” graph automorphism.) 0

We now look at groups which satisfy any of the cases (I1I.1), (IIL.2), or (IIL.3) in Hypothe-
ses 5.1. Recall that kg = pg o kg: Out(G) —— Out(S, F).

Lemma 5.8. Assume Hypotheses 5.1 and Notation 5.2. Then each ¢ € Autgiag(S, F) is the
restriction of a diagonal automorphism of G. More precisely, kg restricts to an epimorphism
from Outdiag(G) onto Outgiag (S, F) whose kernel is the p'-torsion subgroup. Also, Ca(Wy) =
0p(2(G)).

Proof. In general, whenever H is a group and B < H is a normal abelian subgroup, we let
Autgi,g(H, B) be the group of all ¢ € Aut(H) such that p|p = Idg and [p, H] < B, and
let Outgiag(H, B) be the image of Autgiag(H, B) in Out(H). There is a natural isomorphism

NH,B

Autging(H, B)/Autg(H) —— H'(H/B;B) (cf. [Sz1, 2.8.7]), and hence H'(H/B; B) sur-
jects onto Outgiag(H, B). If B is centric in H (if Cy(B) = B), then Outging(H, B) =
H'(H/B; B) since Autg(H) = Inn(H) N Autgiag(H, B).

In particular, Outging (S, A) is a p-group since H'(S/A; A) is a p-group. Also, Cs(A) = A
by Lemma 5.3(a) (or by assumption in case (II1.3)), and hence we have Outgiag(S, A) =
Autging (S, A)/Aut4(S). So Autgiag(S, A) is a p-group, and its subgroup Autgiag (S, F) is a
p-group. It follows that

Autgiag (S, F) N Aute(S) = Autging (S, F) N Inn(S) = Aut4(S),
and thus Outgiag (S, F) = Autgiag (S, F)/Aut4(5).

Since Outdiag(G) = Outz(G) by Proposition 3.5(c), rg(Outdiag(G)) < Outgiag(S, F),
and in particular, K¢ sends all torsion prime to p in Outdiag(G) to the identity. It remains
to show that it sends O,(Outdiag(G)) isomorphically to Outgiag(S, F).

Consider the following commutative diagram of automorphism groups and cohomology
groups:

Ot giag (S, F) =2 Attging (S, F)/Aut4(S) —— H'(Autg(A); A)

lmd Jm (8)

s

Outging (S, A) 2 Auttging (S, A)/Aut4(S) ——— H'(Autg(A); A) .

o)

Here, py is induced by restriction, and is injective by [CE, Theorem XII.10.1] and since
Autg(A) € Syl,(Autg(A)) (since A < S € Syl,(G)). For each w € Autgig(S,F), since
w is fusion preserving, nsa([w]) € H'(Autg(A); A) is stable with respect to Autg(A)-
fusion, and hence by [CE, Theorem XII.10.1] is the restriction of a unique element x([w]) €
H'(Autg(A); A).

The rest of the proof splits into two parts, depending on which of cases (II1.1), (I11.2), or
(II1.3) in Hypotheses 5.1 holds. Recall that Autz(A) = Autg(A) = Auty,(A): the second
equality by Lemma 5.3(b) in cases (II.1) or (IIL.2), or by assumption in case (II1.3).

Cases (II1.2) and (II1.3): We show that in these cases, Outdiag(G), Outaiag(S, F), Z(G),
and C4(Wp) all have order prime to p. Recall that p is odd in both cases. By hypothesis

in case (IIL.3), and since 7|z € Oy (Wp) inverts T in case (IT1.2), C4(Oy(Wy)) = 1. In
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particular, C4(Wy) = 1. Since Z(G) < Z(G) by Proposition 3.5(a), and Z(G) < T by
Lemma 2.4(a), Z(G) < GNCZ(W) < Cr(Wy), so O,(Z(G)) < Ca(Wy) = 1. This proves
the last statement.

Now, O,(Outdiag(G)) = 1 since Outdiag(G) = Z(G) (see [GLS3, Theorem 2.5.12(c)]) and
0,(Z(G)) = 1. Also,

H'(Autg(A); A) = H' (Auty, (A); A) = H' (Auty, (A)/Auto ,wy)(A); Ca(Op (Wh))) =0
since A is a p-group and Cy (O (Wp)) = 1. Hence Outgiag (S, F) = 1 by diagram (8).

Case (III.1): Since Cy(A) = 1 by Lemma 5.3(a) (and since Autg(A) = Auty,(A)), we
can identify H'(Autg(A); A) = H'(Wy; A). Consider the following commutative diagram of
automorphism groups and cohomology groups

NN(T), T

0,(Outdiag(G)) —— O, (Outging (N (T), T)) HY (Wo; T) )

RG Outdiag(N, A) _ H1<WO, A) (9>
/ lm po
Ot iag (S, F) incl Olitgiag (S, A) —— s H'(S/A; A)

where R is induced by restriction to Ng(7'). By Lemma 5.3(a), 7' is centric in Ng(7') and
A is centric in N, so the three n’s are well defined and isomorphisms (i.e., Outgiag(N, A) =
Autging (N, A)/Aut 4(N), etc.). The maps o; are induced by dividing out by O,/(T'), and are
isomorphisms since A = O,(T"). The maps p; are induced by restriction, and are injective

since S/A € Syl (W) (see [CE, Theorem XII.10.1]).
Consider the short exact sequence

1——T T—Y T 1,

where W(t) = t~1 - yaby(t) = t~1y(t9) for t € T. Let
1 —— Cp(Wp) —— Cq(Wo) —2—s Cp(Wo) —— H'(Wo; T) —2— H'(Wy; T) (10)

be the induced cohomology exact sequence for the Wy-action, and recall that H'(WWy; A) =
HY(Wo; T)p) by (9). We claim that

(11) |Op(Outdiag(G))| = [Im(d) )| = [Op(Z(G))] = [Ca(Wh)l;
(12) R is injective; and
(13) x(Outgiag(S, F)) < Ker(0).

These three points will be shown below. It then follows from the commutativity of dia-
gram (9) (and since Im(6) = Ker(#)) that kg sends O,(Outdiag(G)) isomorphically onto
Outdiag(S, .F)

Proof of (11) and (12): Assume first that v # Id and G = SLy,—; (some n > 1). Thus
G = SUsn-1(q). By [St1, 3.4], Outdiag(G) and Z(G) are cyclic of order (¢ + 1,2n — 1), and
hence have no p-torsion (recall p|(¢ —1)). By Lemma 5.6(b), C7(W;) = quo, and o(u) = u™?
for u € Cz(Wp). Thus W, (u) = u'o(u) = u ' for u € Cz(Wy), so ¥, is onto, and
Im(§) = 1 = O,(Outdiag(G)) in this case. Also, Cr(Wpy) = Ker(¥,) has order ¢ + 1, so
Ca(Wo) = Op(Cr(Wo)) = 1.
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Now assume v = Id or G # SLy, ;. By Lemma 5.6, in all such cases,
Cz(Wo) = C3(W) =Z(G) and  Cr(Wp) = Z(G) . (14)

In particular, these groups are all finite, and hence [Im(d)| = |Z(G)| by the exactness of (10).
By [GLS3, Theorem 2.5.12(c)], Outdiag(G) = Z(G) in all cases, and hence |Outdiag(G)| =
[T (0)].

If [p] € Ker(R), then we can assume that it is the class of ¢ € Autz(G). Thus ¢ = ¢,
for some z € N4(G), and @[y, ) = ¢, for some y € Ng(T') which centralizes A. Then
y € Ca(A) =T by Lemma 5.3(a), and upon replacing ¢ by ¢;' o ¢ and z by y~'z (without
changing the class [¢]), we can arrange that ¢|n ) = Id. Then x € Cz(W)) since it

centralizes Ng(T') (and since Ng(T')/T = Wy by Lemma 5.3(b)), so z € Z(G) by (14), and
hence ¢ = Idg. Thus R is injective.
Proof of (13): Fix ¢ € Autgiag(S, F). Choose ¢ € Autging (N, A) such that p|s = ¢ (i.e.,
such that [p] = xo([p]) in diagram (9)). Recall that W, = N/A by Lemma 5.3(b). Let
c: Wy = NJA —— A be such that ¢(g) = c(gA)-g for each g € N; thus ny a([¢]) = [c]. We
must show that 6([c]) = 1: that this is a consequence of ¢ being fusion preserving.

For each @ € II, set ug = c(wz). Thus for g € N, a(g) = uag if g € wa (as a coset of
Ain N). Since w% =1, ¢> = 2(¢*) = (uag)?, and hence wz(uz) = u;'. We claim that

~

uz € Az = AN K5 for each @ e II.

e If p is odd, then ug € Ag, since Az = {a € A|wz(a) = a '} by Lemma 2.4(e).

o If p =2 wy € S/A, and |a| < 2, choose gz € SN K4 such that ws; = gaA. (For
example, if we set g = [[,c47a(1) (see Notation 2.2(B)), then g € Ng(T') represents

the class wg € Wy, and is T-conjugate to an element of SN K5.) By Lemma 5.5(c),
Ca(Ca(wg)) = GNTKg, where G N Kz = SLy(q) or SLy(¢?) by Lemma 5.4. Hence
foc(Cr(Ca(wa))) = foc(Ca(Calws))) = SN[GNTKa, GNTKs = SN K;z
(see the remarks before Lemma 5.5), and gz lies in this subgroup. Since ¢ is fusion
preserving, ¢(ga) € foc(Cr(Ca(wz))). By Lemma 5.5(c) again,
ug = ¢(9a) - 95 € ANfoc(Cr(Ca(wa))) = Az

o If p=2 wz € S/A, and a = {«, 7(a),a*} where o* = a + 7(«), then wz = w,+. Choose
ga € SN K, such that gzA = wsz € N/A. (For example, t}lge is SUCEa ga which is T-
conjugate to ny«(1).) By Lemma 5.5(c), Cq(Ca(wg)) = GNTK oy, GNK o+ = SLy(q), and
hence ga € foc(Cr(Ca(wz))). So ¢(ga) € foc(Cr(Ca(wg))) since plg is fusion preserving.
By Lemma 5.5(c),

Uy = go(ga) . ga_l eAN fUC(C]:(CA(wa))) =AN f?a* < A;.

o If p=2and wyg ¢ S/A € Syl,(Wp), then it is Wy-conjugate to some other reflection
wz € S/A (for B € X ), c(wg) € Az by the above argument, and hence uz = c(wa) € Aa.

Consider the homomorphism

d = (Pg)aen: T — H T, where Do(t) =t wa(t) VteT, acll

a€ll
Since W = (w, | a € II), we have Ker(®) = C7(W) = Z(G) is finite (Proposition 2.5). Thus

® is (isomorphic to) a homomorphism from (]@‘;O)T to itself with finite kernel (where r = |I1]),

and any such homomorphism is surjective since Fy has no subgroups of finite index.
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Choose elements v, € T, for o € I as follows.

o If @ = {a} where 7(a) = «, we set v, = ug.

o If & = {a,7(0)}, where o L 7(«), then Ts=T, % TT(Q), and we let v, V7 () be such that
UQUT(Q) = Uugy-

o If & = {a, 7(r), 0"} where a* = a + 7(a), then ug = ha(X)hr(a)(A') for some A\, X' € IF;O,
wa(ha()‘)hf(a)()‘/)) = haO‘/_l)hT(a)()‘_l)

by Lemma 2.4(e), and A = X since wgz(uz) = uz'. Set vy, = ho(N) and v,(o) = 1. (This
depends on the choice of & € aN1IL.)

Let t € T be such that O(t) = (Va)aetr- We claim that ¢~ twg(t) = ug for each a € I1. This
is clear when |a| < 2. If @ = {a, 7(a),a*} and X are as above, then

wa(t) = War () = Wr(a)Wallr(a) () = Wr(a)(Wa(t)) = Wria) (- Pa(X))
=1- wT(a)(ha( )) =t he(N) =t-uz.

Thus c(wg) = dt(wg) for each a € II. Since Wy = (wg | € ﬁ> (and since ¢ and dt are

both cocycles), this implies that ¢ = dt, and hence that [c] = 0 in H*(W;T). O

As one consequence of Lemma 5.8, the Z*-theorem holds for these groups. This is known
to hold for all finite groups (see [GLS3, §7.8]), but its proof for odd p depends on the
classification of finite simple groups, which we prefer not to assume here.

Corollary 5.9. Assume that G € £ie(qo), p # qo, and S € Syl,(G) satisfy Hypotheses 5.1.
Then Z(Fs(G)) = O,(Z(G)).

Proof. By Lemma 5.8, O,(Z(G)) = C4(W,), where Cs(A) = A and Autg(A) = Auty, (A)
by Lemma 5.3(a,b) or by hypothesis (in Case 5.1(II1.3)). Hence Z(Fs(G)) < O,(Z(G)),

while the other inclusion is clear. O

We now need the following additional hypotheses, in order to be able to compare Autg.(A)
with the group of field automorphisms of G.

Hypotheses 5.10. Fiz a prime p and a prime power q. Assume that q = ¢} where qq is
pr’ime, b > 17 qo0 #p? and

(i)  qo==23 (mod8) if p=2;
(ii)  the class of qo generates (Z/p*)* if p is odd; and
(iii) b|(p — 1)p* for some £ > 0.

We will also say that “G satisfies Hypotheses 5.10” (for a given prime p) if G = 'G(q) for
some t and G, and some q which satisfies the above conditions.

By Hypothesis 5.1(I), ¢, (G) = G, and thus all field endomorphisms of G normalize G.
When G has a standard o-setup, &5 was defined to be the group of restrictions of such
endomorphisms ¢ € @ for a > 0. Under our Hypotheses 5.1, this applies only when we
are in case (IIL.1) (although Proposition 3.6 describes the relation between @ and ¢, in
the other cases). In what follows, it will be useful to set

B = (glc) < Aut(G).



58 CARLES BROTO, JESPER M. M@LLER, AND BOB OLIVER

By Proposition 3.6(d), Inndiag(G):ISG = Inndiag(G)®¢, although ® can be strictly larger
than ®¢ (P¢ N Inndiag(G) need not be trivial). Note that since each element of this group
acts on T via (t — t") for some r, &5 normalizes T and each of its subgroups.

Recall that 7 € Aut(V') is the automorphism induced by o, and also denotes the induced
permutation of .

Lemma 5.11. Assume Hypotheses 5.1 and 5.10 and Notation 5.2. Let
Xo: ¢ ——— Aut(A, F)

be the homomorphism induced by restriction from G to A. Set m = |7| = |y|z|. Then the
following hold.

(a) Either T has exponent ¢ — 1; or p is odd, m = ord,(q), m is even, and (¢™? +
1)[expt(T)] (g — 1).

(b) If p is odd, then xo(c) = Autsc(A). If p =2, then xo(®c) has index 2 in Autyc(A),
and Auty.(A) = Im(xo)(14,).

(c) If p =2, then xo is injective. If p is odd, then

Ker(yo) = (Yole) = (Vla) R in case (IIL.1)
’ (Ygla)™) = (7"|a) = Pe N Autz(G)  in cases (I11.2) and (II1.3).

Proof. We first recall some of the assumptions in cases (II11.1-3) of Hypotheses 5.1:

case (IIL.1) || ord,(¢) =1, m = |y|, and m <2
case (II1.2) || ord,(q) =m =2 p is odd (15)
case (IIL.3) | ord,(q) =m p is odd

(Recall that 7 is a graph automorphsm in case (III.1), so |y| = |7| = m.) In all of these
cases, p|(¢™ — 1) since ord,(q)|m.

m

(a) Foreacht e T = Cz(1g07), t9=1py(t) =71 (t). Hence t = y"(t) = ()™ (t) = 17",
and ¢9" ! = 1. Thus expt(T)|(¢™ — 1).

By Hypotheses 5.1(I), there is a linearly independent subset 2 = {a4,...,as} C X such
that either Q or £ = {£ay,...,+as} is a free (7)-orbit in 3. Assume Q is a free orbit
(this always happens in case (III.1)). In particular, m = |7| = s. For each 1 # X € IFqXO such
that A ~! = 1, the element

m—1
tN) = ] hrigan (A
=0

is fixed by o = 1)y 0y (recall o(hg(N)) = h-(5)(A9) for each § € ¥ by Lemma 3.2). Hence
t(\) € T, and ¢(\) # 1 when A # 1 by Lemma 2.4(d,b). Thus 7" contains the subgroup
{t(A\) | A9" 1 = 1} of order ¢ — 1, this subgroup is cyclic (isomorphic to a subgroup of F o)
and hence expt(7') = ¢™ — 1.

Assume now that +Q is a free (7)-orbit (thus m = |7| = 2s). In particular, we are not
in case (III.1), so p is odd and m = ord,(¢q). Then 7*(a;) = —ay for some 0 < i < 2s, and
i = s since 7%(a;) = ay. For each 1 # A € FX such that A1 =1,

s—1
t(\) = H Rrifayy (A7)
i=0



AUTOMORPHISMS OF FUSION SYSTEMS OF FINITE SIMPLE GROUPS OF LIE TYPE 59

is fixed by o = 1), oy by Lemma 3.2 and since hrs(q,)(A?) = h_n, (A7) = hq, (). Hence
t(\) € T, and t(\) # 1 when A # 1 by Lemma 2.4 again. Thus {t(\) AT =1} < Tis
cyclic of order ¢* + 1, and so (¢° + 1)|expt(T).

(b) By definition, Im(yo) = XO@G) is generated by x0(¢g,) = Vg |4, which acts on A via
(a — a®). If p is odd, then by Hypotheses 5.10(ii), the class of gy generates (Z/p?)*, and
hence generates (Z/p*)* for each k > 0. So Im(o) = Auts(A) in this case.

If p =2, then ¢y = £3 (mod 8) by Hypotheses 5.10(i). So for each k > 2, (go) has index
2 in (Z/2%)* = {qo, —1). Hence Im(xo) = (g, ]a) has index 2 in Aute.(A) = (¥bg] 4, 0%,).

(c) Set ¢o =1y, a generator of ®c. Then (60)" = Ygla = (7]e) ™! since G = Cz(1hg 0 7),
and so |@o|7| divides b|y|z| = bm. Also, (¢)"™ = (y|a)™ € Autz(G) by Lemma 3.2.

By (a), either expt(T) = ¢™ — 1; or m is even, p is odd, ord,(¢) = m, and (¢"™/% +
1)|expt(T)|(¢™ — 1). In the latter case, v,(¢™* + 1) = v,(¢"™ — 1) > 0 since p { (¢"/* — 1).
Thus

expt(A) = p° where e =v,(qg" —1) = v,(g"™ — 1) > 0. (16)

If p = 2, then we are in case (II1.1). In particular, ¢ = ¢} = 1 (mod 4), and m < 2. Also, b
(and hence bm) is a power of 2 by Hypotheses 5.10(iii). If bm = 1, then ¢ = go = 5 (mod 8),
soe = vy(q—1) = 2. If bm is even, then e = vo(gi™ —1) = vo(gE —1)+va(bm/2) = 3+vy(bm/2)
by Lemma 1.13. Thus in all cases, e = 2 + vy(bm). So Im(xo) < Auts.(A) = (Z/2°)° has
order 2°72 = bm. Since (Vy|c)™ = (Ygla)™ = (v )™ = Idg (recall m = || in case
(IT1.1)), xo is injective.

Now assume p is odd, and set mq = ord,(q). Then b|(p—1)p® for some ¢ > 0 by Hypotheses

5.10(iii), and ¢ = ¢} where the class of gy generates (Z/p*)* for each k > 1. For r € Z,

q" = ¢} =1 (mod p) if and only if (p — 1)|br. Hence bmo = b - ord,(q) = (p — 1)p* for some

¢ > 0. Since vp(qg_l — 1) =1, and since m = mq or 2my, Lemma 1.13 implies that
e=v,(q" = 1) = v(qg" — 1) = vp(gg™ — 1) = 1+ v,(p) =1 + .

Thus ¢ = e — 1, where p° = expt(A4) by (16), so |Auts.(A)] = (p — 1)p*~t = bmy.
Since yo sends the generator ¢ of ®¢ to the generator Xo(¢o) of Autg.(A), this proves
that Ker(xo) = (¥7°l¢) = (7"™|e). The descriptions in the different cases now follow
immediately. Note that in cases (IIL.2) and (IIL3) (where m = mq), ¢§™ = 7 "|¢ € Autz(G)

by Lemma 3.2. The converse is immediate: ¢ N Autz(G) < Ker(xo). O
Before applying these results to describe Out(S, F) and the homomorphism k¢, we need

to know in which cases the subgroup A is characteristic in S.

Proposition 5.12. Assume Hypotheses 5.1 and Notation 5.2.

(a) If p =2, then A is characteristic in S, and is the unique abelian subgroup of S of order
|Al, except when ¢ =5 (mod 8) and G = Sp,,(q) for some n > 1.

(b) If p is odd, then A is characteristic in S, and Q(A) is the unique elementary abelian
subgroup of S of maximal rank, except when p =3, ¢ =1 (mod 3), v3(¢ — 1) =1, and
G = SUs(q) or Go(q).

In all cases, each normal subgroup of S isomorphic to A is Ng(S)-conjugate to A.
Proof. 1If p is odd, then by [GL, 10-2(1,2)], there is a unique elementary p-subgroup £ < §

of rank equal to that of A (denoted r,,, in [GL]), except when p = 3 and G is isomorphic
to one of the groups SL3(q) (¢ = 1 (mod 3)), SUs(¢q) (¢ = —1 (mod 3)), or Ga(q), *Da(q),
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or ’Fy(q) (¢ = £1 (mod 3)). When there is a unique such subgroup E, then A = Cs(F) by
Lemma 5.3(a) (or by assumption in case (II1.3)), and hence A is characteristic in S.

Among the exceptions, SL;(q) and Gy(q) are the only ones which satisfy Hypotheses 5.1.
In both cases, S is an extension of A = (Cs)? by Cs, where ¢ = v3(q — 1), and where
Z(S) = Ca(S) has order 3. If £ > 1, then A is the unique abelian subgroup of index p in
S. If £ = 1, then S is extraspecial of order 3% and exponent 3. By Theorem 1.8(a), we can
assume ¢ = 4 without changing the isomorphism type of the fusion system, so G contains
SU;3(2). This is a semidirect product S x Qg (cf. [Ta, p. 123-124]), and hence the four
subgroups of S of order 9 are Ng(S)-conjugate.

It remains to prove the proposition when p = 2. We use [O4, §2| as a reference for
information about best offenders, since this contains what we need in a brief presentation.
Assume A is not the unique abelian subgroup of S of order |A|. Then there is an abelian
subgroup 1 # B < W, such that |B|-|C4(B)| > |A|. In other words, the action of the Weyl
group Wy on A has a nontrivial best offender [O4, Definition 2.1(b)]. Hence by Timmesfeld’s
replacement theorem [O4, Theorem 2.5], there is a quadratic best offender 1 # B < Wy: an
offender such that [B, [B, A]] = 1.

We consider three different cases.

Case 1: G = G(q) is a Chevalley group, where either ¢ = 1 (mod 8), or G 2
Spo,(q) for any n > 1.  Set n = rk(A) = rk(T'): the Lie rank of G (or of G). Set
{ = vy(q—1) > 2. Then A = (Cy)" is the group of all 2’-torsion elements in 7' (or in T)).
Since the result is clear when n = 1 (G = SLy(q) = Spy(q), A = Cye, and S = Qqer1), we
assume n > 2.

Let A = ZXY be the lattice in V' generated by the dual roots. By Lemma 2.6(a), there
are Z|W]-linear isomorphisms A = A/2°A and Q;(A) = A/2A.

Assume first that B acts faithfully on ;(A). Since B has quadratic action, it is elementary
abelian [O4, Lemma 2.4]. Set k = rk(B); thus B = C% and |A/Ca(B)| < 2*.

Since the B-action on V is faithful, the characters x € Hom(B,{£1}) which have non-
trivial eigenspace on V' generate the dual group B*. So we can choose a basis x1, ..., xx for
B* such that each x; has nontrivial eigenspace. Let b € B be the unique element such that
Xi(b) = —1 for each ¢ = 1,... k. Let V., V_ be the +1-eigenspaces for the b-action on V,
and set AL = AN V.. By construction, dim(V_) > k.

Let v € A be an element whose class modulo 2°A is fixed by b, and write v = v, + v_
where vy € Vi. Then 2v_ = v —0b(v) € 2°ANV_ =2A_ sov_ € 2 'A_and v, =v—v_ €
ANVy = A, Thus Cpjaea(b) = (A x 27PA) /2°A. Set r = rk(A_) = dim(V_) > k; then

2 > [A/Ca(B)| > [A/Ca(b)] = [A/(As x 27" AL) = 27D A /(A4 x A))
> MDA /Ay x AL)].

In particular, A = A, x A_. But then b acts trivially on A/2A, hence on Q;(A), which
contradicts our assumption.

Thus B does not act faithfully on ©Q;(A). Set By = Cp(21(A)) = Cp(A/2A) # 1. If
—Idy € By, then it inverts A, [B,Q1(A)] < [B,[Bo, 4]] = 1 since B acts quadratically, so
B = By, and |By| > |A/Cx(B)| > |A/Q(A)| = 2¢=D", If b € By is such that b> = —Idy,
then b defines a C-vector space structure on V', and hence does not induce the identity on
A/2A, a contradiction.

Thus there is b € By which does not act on V' via +Id. Let Vi # 0 be the £1-eigenspaces
for the b-action on V', and set AL = ANV,. For each v € A, v—b(v) € 2A since b acts trivially
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on (A) = A/2A. Set v =v; +v_, where vy € Vo, Then 2v_ =v—b(v) € 2ANV_ =2A_
implies that v_ € A_, and hence vy € A;. Thus V € A, x A_, so by Lemma 2.8, G = C,,.
By assumption, ¢ = 1 (mod 8), so ¢ > 3, and [b, [b, A/2°A]] > 4N J2PA_ £ 1, contradlctmg
the assumption that B acts quadratlcally on A.

Case 2: G = Sp,,(q) for some n > 1 and some ¢ = 5 (mod 8). Fix subgroups
H; <G (1 <i<n)and K < G such that H; = Sp,(q) for each i, K = %, is the group of
permutation matrices (in 2 x 2 blocks), and K normalizes H = H; X - - - X H,, and permutes
the factors in the obvious way. We can also fix isomorphisms y;: H; = Spy(q) such that
the action of K on the H; commutes with the y;.

Fix subgroups A< @ < Spy(q), where @ ~ Qs (a Sylow 2- subgroup) and A = Oy
is contained in the maximal torus. Set Q; = Xi_l(@) and A, 1(A), and set ) =
Q1Qs---Qp and A = AjAy---A,. Thus A = O(T) is as in Hypotheses 5.1(II1): the 2-
power torsion in the maximal torus of G. By [CF, §1], S = QR for some R € Syl,(K). Also,
W= QK/A=Cy Y, acts on A via signed permutations of the coordinates.

Let B be any nontrivial best offender in W on A. Consider the action of B on the set
{1,2,...,n},let Xy,..., Xi be the set of orbits, and set d; = | X;|. For 1 <i <k, let A; < A
be the subgroup of elements whose coordinates vanish except for those in positions in X;;
thus A; 2 (Cy)% and A = Ay x - -- x Ag. Set B; = B/Cp(A;); then |B| <[]~ |Bi|. Since B
is abelian, either | B;| = d; and B; permutes the coordinates freely, or | B;| = 2d; and there is
a unique involution in B; which inverts all coordinates in A;. In the first case, |Cy,(B;)| = 4,
and so |B;| - |Ca.(B;)| = d; - 4 < 4% = |A;] with equality only if d; = 1. In the second case,
|Ca,(B;)| = 2, and again |B;| - |Ca,(B;)| = 2d; - 2 < 4% = | A;| with equality only if d; = 1.
Since

IT14d = 141 < 151- o) = 11- TT1Ca (8] < TT05 - 1CatBa).

we conclude that d; = 1 for all 7, and hence that B acts only by changing signs in certain
coordinates.

For each 1 < i < n, let pr;: Q —— @, be the projection onto the i-th factor. If A* < §
is abelian of order 4", then A*A/A is a best offender in W on A, and hence A* < @ by the
last paragraph. Also, pr;(A*) is cyclic of order at most 4 for each i, and since |A*| = 4™,
pr;(A*) = C, for each i and A* =[]}, pr;(A*). Thus there are exactly 3" such subgroups.

Now assume A* < S, and set Af = pr;(A*) < @; for short. Since A* is normal, the
subgroups x;(A}) < @ < Sp,(q) are equal for all 7 lying in any R-orbit of the set {1,2,...,n}.
Hence we can choose elements xy, zo, ..., z,, where x; € Ng,(Q;) = SLy(3) and *(A;) = A?

for each i, and such that ;(z;) € Spy(q) is constant on each R-orbit. Set x = xyxg- - xy;
then *A = A* and x € Ng(9).

Case 3: G is a Steinberg group. Assume 7y € I'; is a graph automorphism of order 2,
and that G = Cz (o) where o = y1b,. Set Go = Cz(7,1,); thus Gy < G. Set £ = vy(q—1) > 2.
We must again show that the action of W on A has no nontrivial best offenders.

If G = 2Fg(q) or Sping,(q) (n > 4), then Gy = Fy(q) or Spiny,_,(q), respectively, and W,
is the Weyl group of Gg. If 1 # B < W, is a best offender in Wj on A, then it is also a best
offender on Q,(A) < Gy, which is impossible by Case 1.

If G = SUspyi1(q) = 2As,(q), then S = (SDyer2)™ x R for some R € Syl,(%,,) [CF, pp. 143-
144]. Thus A = (Coer)™, Wy = C0 5, X, < Wy acts on A by permuting the coordinates,
and the subgroup W; = (C3)™ in W, has a basis each element of which acts on one coordinate
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by (a — a* ). If B < W, is a nontrivial quadratic best offender on A, then it is also a best
offender on 24(A) [0O4, Lemma 2.2(a)], hence is contained in W; by the argument in Case 2,
which is impossible since no nontrivial element in this subgroup acts quadratically. Thus A
is characteristic in this case.

It remains to consider the case where G = SUs,(q) = %Ay, 1(q). Since the case SUy(q) =
Sp,(q) has already been handled, we can assume n > 2. Set G = GlU(q) > G, set
Go = GU(q) x - x GUs(q) < G, and set G, = Ng(Go) = GUs(q) 1 X,. Then Gy has
odd index in G [CF, pp. 143-144], so we can assume S < Gy N G. Fix Hy € Syl,(Go):
thus Hy = (SDye+2)". Since vy(q + 1) = 1, and since the Sylow 2-subgroups of SUx(q) are
quaternion,

G N Hy = Ker[Hy 2 (SDyesn)® —— Cp =25 ]
where y: SDyero —— C5 is the surjection with quaternion kernel. As in the last case,
Wy = C5 1 Y, with normal subgroup Wy = C%. If B < W, is a nontrivial quadratic best
offender on A, then it is also a best offender on ,(A) [O4, Lemma 2.2(a)], so B < W; by
the argument used in Case 2. Since no nontrivial element in W; acts quadratically on A, we
conclude that A is characteristic in this case. 0

The next lemma is needed to deal with the fact that not all fusion preserving automor-
phisms of A lie in Aut(A, F) (since they need not extend to automorphisms of .S).

Lemma 5.13. Let G be any finite group, fix S € Syl (G), and let Sy < S be a normal
subgroup. Let ¢ € Aut(G) be such that ¢(So) = So and ¢|s, € Nawysy)(Auts(So)). Then
there is @' € Aut(G) such that ¢'|s, = ¢ls,, ¢'(S) =S, and ¢ = ¢ (mod Inn(G) ).

Proof. Since ¢|s, normalizes Autg(Sp), and cy,) = @cgp ! for each g € G, we have
Auty(s)(So) = ¥Autg(Sy) = Auts(Sy). Hence p(S) < Cq(Sp)S. Since S normalizes C(Sy)
and S € Syl,(Ca(Sn)S), we have (S) = *S for some z € Cg(Sy). Set ¢' = ;' o € Aut(G);
then ¢'(S) = S and ¢'|g, = ¢|s,- O

In the next two propositions, we will be referring to the short exact sequence

1 —— Autging(S, F) ——— Nauw(s,7)(A4) —r Aut(A, F) — 1. (17)

Here, R is induced by restriction, and Aut(A, F) = Im(R) and Autging(S, F) = Ker(R) by
definition of these two groups (Notation 5.2(H)). By Proposition 5.12, in all cases, each class
in Out(9S, F) is representated by elements of Naygs,7)(A).

Proposition 5.14. Assume Hypotheses 5.1 and 5.10 and Notation 5.2. Then kg is surjec-
tive, except in the following cases:

b <G7p> = (QEG(Q)73)7 or
* (G,p) =(G2(q),2) and g # 3, or
 (G,p) = (Fu(q),3) and go # 2.

In the exceptional cases, |Coker(kg)| < 2.

Proof. We first claim that for ¢ € Aut(S, F),
p(A)=A and ¢[4 € Autg(A)Autaue)(A) — [¢] € Im(kg) . (18)

To see this, fix such a . By Lemma 5.11(b), each element of Auts.(A), or of Auty.(A)/(14,)

if p = 2, is the restriction of an element of &\Jg. If p = 2, then we are in case (III.1), the
o-setup is standard, and hence the inversion automorphism 1%, is the restriction of an inner
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automorphism of G (if —Idy € W) or an element of Inn(G)I'¢. Thus ¢|4 extends to an
automorphism of G.

Now, ¢|4 normalizes Autg(A) since p(S) = S. So by Lemma 5.13, |4 is the restriction
of an automorphism of G which normalizes S, and hence is the restriction of an element
Y € Aut(S,F) such that [¢)] € Im(kg). Then pyp=! € Ker(R) = Autging(S,F) by the
exactness of (17), and [p¢~!] € Im(k¢g) by Lemma 5.8. So [¢] € Im(kg), which proves (18).

By Proposition 5.12, each class in Out(.S, F) is represented by an element of Naygs,7)(A).
Hence by (18), |Coker(k¢g)| is at most the index of Aut(A,F) N Aute(A)Autawc)(A) in
Aut(A, F). So by Lemma 5.7, |Coker(kg)| < 2, and k¢ is surjective with the exceptions
listed above. 0J

We now want to refine Proposition 5.14, and finish the proof of Theorem B, by determining
Ker(kq) in each case where 5.1 and 5.10 hold and checking whether it is split. In particular,
we still want to show that each of these fusion systems is tamely realized by some finite
group of Lie type (and not just an extension of such a group by outer automorphisms).

Since Oy (Outdiag(G)) < Ker(kg) in all cases by Lemma 5.8, k¢ induces a quotient
homomorphism

ke Out(G)/0, (Outdiag(G)) ——— Out(S, F),

and it is simpler to describe Ker(k¢) than Ker(kg). The projection of Out(G) onto the
quotient Out(G)/0,y (Outdiag(G)) is split: by Steinberg’s theorem (Theorem 3.4), it splits

back to O,(Outdiag(G))®sI. Hence kg is split surjective if and only if & is split surjective.

Proposition 5.15. Assume Hypotheses 5.1 and 5.10 and Notation 5.2. Assume also that
none of the following hold: neither

b (G’p) = (QEG(q),S); nor
e (G,p) = (G2(q),2) and qo # 3, nor
G.p) = (Falq),3) and qo # 2.

If p =2, then kg is an isomorphism, and k¢ is split surjective.

(a
(b) Assume that p is odd, and that we are in the situation of case (II1.1) of Hypotheses 5.1.
Then \/q € N, and

(
(
)
)

<[w\/a]>%(72 ify=1I1d and —Id e W
Ker(kg) = S ([vothq]) 2 Co if vy =1Id and —1d ¢ W
<[¢\/§]> ~(Cy if v # 1d (G is a Steinberg group)
where in the second case, vy € U'¢ is a graph automorphism of order 2. Hence kg and
K are split surjective if and only if either v = 1d and —Id ¢ W, or p =3 (mod 4).

(c¢) Assume that p is odd, and that we are in the situation of case (I11.2) or (III.3) of

Hypotheses 5.1.  Assume also that G is a Chevalley group (y € Inn(G)), and that
ord,(q) is even or —Id ¢ Wy. Let ¢, I'c < Aut(G) be as in Proposition 3.6. Then

O NKer(kg) = 1, so |Ker(kg)| < |T¢|, and kg and kg are split surjective.

(d) Assume that p is odd, and that we are in the situation of case (111.8) of Hypotheses 5.1.
Assume also that G is a Steinberg group (v ¢ Inn(G)), and that ord,(q) is even. Then

(Wle]) = Co if y]4 € Autyy, (4)
1 otherwise.

Ker(kg) = {
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Hence kg and kg are split surjective if and only if q is an odd power of qo or Ker(kg) =
O, (Outdiag(G)). If kg is not split surjective, then its kernel contains a graph auto-
morphism of order 2 in Out(G)/Outdiag(G).

Proof. In all cases, k¢ is surjective by Proposition 5.14 (with the three exceptions listed
above).

By definition and Proposition 5.12,
OUt(S, F) = Aut(S, F)/AUTJ:( ) NAut S]-' /NAut]: S)(A)

Also, Outgiag(S,F) is the image in Out(S,F) of Autgiag(S,F). Since Naue,(s)(A) is the
group of automorphisms of S induced by conjugation by elements in Ng(S) N Ng(A), the
short exact sequence (17) induces a quotient exact sequence

1 —— Outtging (S, F) —— Out(S, F) — 2 Aut(A, F) /Auty,(s)(A) — 1. (19)

We claim that
Autn,(s)(A) = Aut(A, F) N Autg(A). (20)
That Auty,(s)(A) is contained in the two other groups is clear. Conversely, assume o €
Aut(A, F) N Autg(A). Then a = ¢4|a for some g € Ng(A), and o € Naypa)(Auts(A))
since it is the restriction of an element of Aut(S, F). Hence g normalizes SC¢(A), and since
S € Syl,(SCq(A)), there is h € Cg(A) such that hg € Ng(S). Thus o = ¢yla = cpgla €
Auty,(s)(A), and this finishes the proof of (20).

By Lemma 5.8, kg sends Outdiag(G) onto Outgiag(S, F) with kernel O,/ (Outdiag(G)).
Hence by the exactness of (19), restriction to A induces an isomorphism

Ker(fg) —2— Ker[Out(G)/Outdiag(G) —— Aut(4, F)/Auty,s)(A)]
= Ker[Out(G) /Outdiag(G) —— Naue(a)(Auta(A))/Aute(4)], (21)

where the equality holds by (20).
Recall that for each ¢ prime to p, ¥;' € Aute(A) denotes the automorphism (a + a*).

(a,b) Under either assumption (a) or (b), we are in case (III.1) of Hypotheses 5.1. In
particular, (G, o) is a standard o-setup for G. Set k = v,(¢ — 1); then £ > 1, and k > 2 if
p=2.

If p is odd, then by Hypotheses 5.10(b), the class of gy generates (Z/p)*. Since ¢ = ¢} = 1
(mod p), this implies that (p — 1)[b. In particular, b is even, and /g = q8/2 eN.

Since Out(G)/Outdiag(G) = ®4I'¢ by Theorem 3.4, where ®I'¢ normalizes 7" and hence
A, (21) takes the form

Ker(kg) = {p € el | la € Auty,(A)}. (22)

In fact, when Ker(¢) has order prime to p (which is the case for all examples considered
here), the isomorphism in (22) is an equality since Outdiag(G)/O,,(Outdiag(G)) is a p-group.
Assume first that G = G(q) is a Chevalley group. Thus ¢ = ), where ¢ = 1 (mod
p), and A = {t eT ’ " = 1}. By Lemma 2.7 (applied with m = p* > 3), the group
Auty (T )JAutr_ (T) acts faithfully on A, and its action intersects Autg.(A) only in (p4,). B
Lemma 5.11(b,c), restriction to A sends dg isomorphically onto Aut.(A) if p is odd, and
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with index 2 if p = 2. So when G is not one of the groups By, Fj, or Ga, then &4I'¢ acts
faithfully on A, and

1 if p=2
{0 € ®cTq|pla€Auty,(A)} =< (g  ifpisoddand —Id € W
(0¥ g) if pis odd and —Id ¢ W

where in the last case, 79 € ['g is a graph automorphism such that the coset W contains
—Id. (Note that b = (p — 1)p* for some ¢ > 0 by Hypotheses 5.10(b,c) and since p|(g — 1).
Hence /g = —1 modulo p* = expt(A), and v g4 = ¥4,

Thus by (22), ¢ is injective if p = 2, and |Ker(kg)| = 2 if p is odd. When p is odd, since
Ker(k¢) is normal of order prime to p in Out(G) (hence of order prime to |O,(Outdiag(G))|),
Ker(k¢) is generated by [1h 4] if —=Id € W (i.e., if there is an inner automorphism which
inverts T and hence A), or by [v0% 4] otherwise for 7y as above. In the latter case, ke 18
split since it sends O, (Outdiag(G))®¢Os(I'¢) isomorphically onto Out(.S, F) (recall I'¢ = Cy
or ¥3). When Ker(kg) = ([)q)), the map is split if and only if 4 { |®g| = b, and since
b= (p— 1)p™ for some m, this holds exactly when p =3 (mod 4).

It (G7p> = (BQ(q)az)v (F4(Q)72)7 or (GZ(Q)73)7 then since do 7é b, I'e =1 So similar
arguments show that Ker(kg) = 1, 1, or <[77/J \/,3]> = (y, respectively, and that k¢ is split in
all cases.

Next assume G = Gy(q), where p = 2, ¢ = 3%, and b is a power of 2. Then b > 2 since
g =1 (mod 4). The above argument shows that ®¢ injects into Out(.S, F). Since Out(G)

is cyclic of order 2b, generated by a graph automorphism whose square generates ® (and
since 2|b), Out(G) injects into Out(S, F).
If G = Fy(q), where p =3, ¢ =2° and b =2 - 3 for some ¢ > 0, then the same argument

shows that ®¢ injects into Out(S, F). Since Out(G) is cyclic of order 2b = 4 - 3¢, generated
by a graph automorphism whose square generates ®, Out(G) injects into Out(S, F).

It remains to handle the Steinberg groups. Let H be such that Cz(v) = H(F,,): a simple
algebraic group by [GLS3, Theorem 1.15.2(d)]. In particular, G > H = H(q). Also, Wy
is the Weyl group of H by [GLS3, Theorem 1.15.2(d)] (or by the proof of [St3, Theorem

8.2]). By Lemma 2.7 applied to H(F,, ), Wy acts faithfully on AN H = Q4(A), and intersects
Auty.(A) at most in (4,).

If p = 2, then by Lemma 5.11(b), ¢*, is not the restriction of an element in ®g. Also,
g =2 Cy is sent injectively into Auty.(A) by Lemma 5.11(c), so k¢ is injective by (22).

If p is odd, then t,|4 has order b in Auty(A) by Lemma 5.11(c). Since (¢,)"? = 1 5

where /g = —1 (mod p) (recall b|(p — 1)p* for some ¢ by Hypotheses 5.10(iii)), ¥4,|a has
order b/2 modulo Auty,(A). So by (22) and the remark afterwards, and since ® is cyclic of

order 2b, Ker(kg) = <[w \/5]> >~ (Cy. In particular, ¢ is split only if b/2 is odd; equivalently,
p =3 (mod 4).

(c,d) Inboth of these cases, p is odd, ord,(q) is even or —Id ¢ W, and we are in the situation
of case (IIL.2) or (IIL.3) in Hypothesis 5.1. Then v|q = (¢y|q) ™" since G < Cx(71h,). Also,

4 (G) = G by 5.1(I), and hence v(G) = G. Since ¢, and v both normalize T by assumption

or by construction, they also normalize T'= G N7T and A = O,(T). By Proposition 3.6(d),
[¥40] generates the image of ®¢ in Out(G)/Outdiag(G).
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We claim that in all cases,
Autg(A) = Auty, (A) and  Autg(A) NAute(A) < (7]a) . (23)
This holds by assumption in case (IIL.3), and since ord,(q) is even or —Id ¢ Wy. In case
(II1.2), the first statement holds by Lemma 5.3(b), and the second by Lemma 2.7 (and since
Wy =W and A contains all p*-torsion in T).

(c) Assume in addition that G is a Chevalley group. Thus 7 € Inn(G), so v|¢ €
Inndiag(G) = Inn(G)Aut:(G) by Proposition 3.6(b), and hence v|4 € Autg(A). Also,
Yla = (Wgla)™t = (Wg)a)™" since o = 1), centralizes G > A. Since 1),,|a has order
b-ordy(q) in Auts(A) by Lemma 5.11(c), its class in Nayga)(Autg(A))/Autg(A) has order
b by (23).

Thus by (21), ke sends O,(Outdiag(G))®¢ injectively into Out(S, F). Since ' is iso-
morphic to 1, Cy, or X3 (and since k¢ is onto by Proposition 5.14), ke and K¢ are split.

(d) Assume G is a Steinberg group and ord,(q) is even. In this case, v ¢ Inn(G), and
Out(G)/Outdiag(G) = O is cyclic of order 2b, generated by the class of ¥, |¢. Hence by
(21), Ker(k¢) is isomorphic to the subgroup of those 1) € ®¢ such that 9|4 € Autg(A). By
(23) and since ¢hg|a = 77|, Autg(A) N Autg(A) < (7). Thus [Ker(kg)| < 2, and

|Ker(/%g)\ =2 < 'Y‘A € Autg(A) = AutWO (A) .
When Ker(kg) # 1, kg is split if and only if 4 1 |®g| = 2b; i.e., when b is odd. O

In the situation of Proposition 5.15(c), if —Id ¢ W, then Ker(kg) = <[70¢\/q]> where 7,

is a nontrivial graph automorphism. If —Id € W (hence ord,(q) is even), then k¢ is always
injective: either because I'¢ = 1, or by the explicit descriptions in the next section of the
setups when ord,(¢) = 2 (Lemma 6.4), or when ord,(¢q) > 2 and G = D, (Lemma 6.5).

The following examples help to illustrate some of the complications in the statement of
Proposition 5.15.

Example 5.16. Set p=5. If G = Spiny, (3*), Spy,(3*), or SUL(3*) (k > 5), then by Propo-
sition 5.15(b), kg is surjective but not split. (These groups satisfy case (II1.1) of Hypotheses
5.1 by Lemma 6.1.) The fusion systems of the last two are tamely realized by Spy,(3?)
and SL,(3%), respectively (these groups satisfy case (II1.2) by Lemma 6.4, hence Proposition
5.15(c) applies). The fusion system of Spiny, (3*) is also realized by Spiny, (3%), but not tamely
(Example 6.6(b)). It is tamely realized by Spiny,_,(3%) (see Propositions 1.9(c) and 5.15(c)).
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6. THE CROSS CHARACTERISTIC CASE: II

In Section 5, we established certain conditions on a finite group G of Lie type in charac-
teristic qg, on a o-setup for G, and on a prime p # ¢o, and then proved that the p-fusion
system of GG is tame whenever those conditions hold. It remains to prove that for each G
of Lie type and each p different from the characteristic, there is another group G* whose
p-fusion system is tame by the results of Section 5, and is isomorphic to that of G.

We first list the groups which satisfy case (III.1) of Hypotheses 5.1.

Lemma 6.1. Fiz a prime p and a prime power ¢ = 1 (mod p), where ¢ =1 (mod 4) if p = 2.
Assume G = G(q) for some simple group scheme G over Z of universal type, or G = 2G(q)

for G = A, D,, or Eg of universal type. Then G has a o-setup (é, o) such that Hypotheses
5.1, case (111.1) holds.

Proof. Set G = G(E‘q), and let 1, € ® be the field automorphism. Set o = vy, € End(G),
where v = Id if G = G(q), and v € T' has order 2 if G = *G(q).

Ng(T) contains a Sylow p-subgroup of G. If v = Id, then by [Ca, Theorem 9.4.10]
(and since G is in universal form), |G| = ¢" [];_, (¢% — 1) for some integers N, dy,...,d, (r =
tk(G)), where dyds - - - d, = |W| by [Ca, Theorem 9.3.4]. Also, |T| = (¢—1)", Na(T)/T =W,
and so

T s

w(IG) = pla® = 1) =) (uplg = 1) +vp(d)) = 0,(|T]) + 0, (|W]) = 0, (Na(T)).

i=1 i=1
where the second equality holds by Lemma 1.13.

If |y| = 2, then by [Ca, §§14.2-3], for N and d; as above, there are ¢;,m; € {1} for
1 < i <rsuchthat |G| = ¢V []_,(¢% —¢:) and |T| = T],_,(g—n:). (More precisely, the n; are
the eigenvalues of the y-action on V, and polynomial generators Iy, ..., I, € Rlxy,...,z,]"
can be chosen such that deg(I;) = d; and 7(I;) = ¢;1;.) By [Ca, Proposition 14.2.1],

1 — gt 1<i<r|g=1}={1<i:<r|np =1
sy lusisria=yl=jusisrin=)
I nit and |W0| = H{dz | E; = +1}

Also, v,(¢% + 1) = vy(q + 1) for all d > 1: they are both 0 if p is odd, and both 1 if p = 2.
Hence

Wo| = lim (
t—

1
i=1

T T

w16 = (1T = 3 vo(L) = 37 wald) = 6(Wal) = e(INa(T)]) = (T

=1 q

by Lemma 1.13 again, and so Ng(T') contains a Sylow p-subgroup of G.

The free (v)-orbit {a} (if v =1d) or {a, 7(«)} (if |7| =2 and a # 7(«)), for any a € X,
satisfies the hypotheses of this condition.

[V, %q) = Id since v € T, 0
We are now ready to describe the reduction, when p = 2, to groups with o-setups satisfying

Hypotheses 5.1.

Proposition 6.2. Assume G € £ie(qo) is of universal type for some odd prime qo. Fizx
S € Syl,(G), and assume S is nonabelian. Then there is an odd prime qf, a group G* €
Lie(q)) of universal type, and S* € Syly(G*), such that Fs(G) = Fs«(G*), and G* has a
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o-setup which satisfies case (II1.1) of Hypotheses 5.1 and also Hypotheses 5.10. Moreover,
if G* = Go(q*) where q* is a power of ¢, then we can arrange that either ¢* =5 or qf = 3.

Proof. Since qq is odd, and since the Sylow 2-subgroups of 2Gy(3?**1) are abelian for all
k > 1 [Ree, Theorem 8.5], G must be a Chevalley or Steinberg group. If G = 3Dy(q), then F
is also the fusion system of Go(q) by [BMO, Example 4.5]. So we can assume that G = "G(q)
for some odd prime power ¢, some G, and some graph automorphism 7 of order 1 or 2.

Let € € {£1} be such that ¢ = ¢ (mod 4). By Lemma 1.11, there is a prime ¢§ and k£ > 0
such that (¢) = (e - (¢¢)%"), where cither ¢f =5 and k=0, or ¢f = 3 and k > 1.

If ¢ = 1, then set G* = "G((¢f)¥"), and fix S* € Syl,(G*). Then Fs-(G*) = Fg(G)
by Theorem 1.8(a), G* satisfies case (III.1) of Hypotheses 5.1 by Lemma 6.1 (and since
(¢£)2" =1 (mod 4)), and G* also satisfies Hypotheses 5.10.

Now assume ¢ = —1. If —Id is in the Weyl group of G, then set G* = "G((¢)?"). If —Id
is not in the Weyl group, then G = A,,, D,, for n odd, or Eg, and we set G* = G((qS)Qk) if
T #1d, and G* = 2G((¢})?") if G = G(q). In all cases, for S* € Syl,(G*), Fs-(G*) = Fs(G)
by Theorem 1.8(c,d), G* satisfies case (III.1) of Hypotheses 5.1 by Lemma 6.1 again, and
also satisfies Hypotheses 5.10.

By construction, if G = Gy, then either i = 3 or (¢})%" = 5. 0O

When G = G5(5) and p = 2, G satisfies Hypotheses 5.1 and 5.10, but k¢ is not shown to
be surjective in Proposition 5.14 (and in fact, it is not surjective). Hence this case must be
handled separately.

Proposition 6.3. Set G = G5(5) and G* = G2(3), and fix S € Syl,(G) and S* € Syl,(G*).
Then Fs«(G*) =2 Fs(G) as fusion systems, and kg = g+ o Kg+ @S an isomorphism from
Out(G*) = Cy onto Out(S*, Fs«(G*)).

Proof. The first statement follows from Theorem 1.8(c). Also, |Out(G)| = 2 and |Out(G*)| =
1 by Theorem 3.4, and since G and G* have no field automorphisms and all diagonal automor-
phisms are inner (cf. [Stl, 3.4]), and G = G2(3) has a nontrivial graph automorphism while
G* = G1(5) does not [St1, 3.6]. Since G satisfies Hypotheses 5.1 and 5.10, |Coker(kg)| < 2
by Proposition 5.14, so |Out(S, Fs(G))| < 2.

By [O6, Proposition 4.2], S* contains a unique subgroup @ = Qs X¢, Qg of index 2.
Let x € Z(Q) = Z(S5*) be the central involution. Set G = G5(F3) > G*. Then Cx(z) is

connected since G is of universal type [St3, Theorem 8.1], so Cz(z) = SLy(F3) x ¢, SLy(FF3)
by Proposition 2.5. Furthermore, any outer (graph) automorphism which centralizes = ex-
changes the two central factors SLy(F3). Hence for each o € Aut(G*)~\Inn(G*) which nor-
malizes S*, o exchanges the two factors (g, and in particular, does not centralize S*. Thus
Kg+ 1s injective, and hence an isomorphism since |Out(G*)| = 2 and |Out(S*, Fs«(G*))| =
|Out (S, Fs(G))| < 2.

We now turn to case (I11.2) of Hypotheses 5.1.

Lemma 6.4. Fix an odd prime p, and an odd prime power q prime to p such that ¢ = —1

(mod p). Let G be one of the groups Spy,(q), Sping,,1(q), Sping,(q) (n > 2), Ga(q), Fi(q),
E:(q), or Es(q) (i-e., G = G(q) for some G whose Weyl group contains —1d), and assume

that the Sylow p-subgroups of G are nonabelian. Then G has a o-setup (é, o) such that
Hypotheses 5.1, case (111.2), hold.
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Proof. Assume q = ¢ where qq is prime and b > 1. Set G = G(I?qo), and let T < G be a
maximal torus. Set r = rk(7) and k = v,(q¢ + 1).

In all of these cases, —Id € W, so there is a coset wy € NG(T)/T which inverts 7. Fix
9o € Né(T) such that goT = wo and 1y, (go) = go (Lemma 2.9). Set v = ¢, and o = 7 0 ¢},
We identify G = O%(C5(0)), T =GN T, and A = O,(T). Since o(t) =t~ for each t € T,
T = (Cyy1)" is the (g + 1)-torsion subgroup of T, and A = (C,)".

Ng(T) contains a Sylow p-subgroup of G. In all cases, by [Ca, Theorem 9.4.10]
(and since G is in universal form), |G| = ¢" []}_,(¢% — 1), where didy---d, = |W| by [Ca,

Theorem 9.3.4]. Also, the d; are all even in the cases considered here (see [St2, Theorem 25|
or [Ca, Corollary 10.2.4 & Proposition 10.2.5]). Hence by Lemma 1.13 and since p is odd,

r

v (|G]) va = va((qQ)d”2 —1) = (0p(® = 1) +0,(di/2))

i=1

=7r-v(g+1 +va = 0p(|T]) + v (IW1) = v, (INa(T))) -

['79 d)qo] = Id since v = Cgo and ¢QO (90) = Yo-
A free (v)-orbit in 3. For each a € 3, {£a} is a free (y)-orbit. O

We now consider case (II11.3) of Hypotheses 5.1. By [GL, 10-1,2], when p is odd, each
finite group of Lie type has a o-setup for which Ng(7T') contains a Sylow p-subgroup of G.
Here, we need to construct such setups explicitly enough to be able to check that the other
conditions in Hypotheses 5.1 hold.

When p is a prime, A is a finite abelian p-group, and Id # ¢ € Aut(A) has order prime
to p, we say that & is a reflection in A if [A,£] is cyclic. In this case, there is a direct
product decomposition A = [A,&] x C4(§), and we call [A,E] the reflection subgroup of €.
This terminology will be used in the proofs of the next two lemmas.

Lemma 6.5. Fiz an odd prime p, and an odd prime power q prime to p such that ¢ Z 1
(mod p). Let G be one of the classical groups SL,(q), Spsy(q), Sping,(q), or Spinj,(g),

and assume that the Sylow p-subgroups of G are nonabelian. Then G has a o-setup (é,o)
such that case (111.3) of Hypotheses 5.1 holds.

Proof. Set m = ord,(¢q); m > 1 by assumption. We follow Notation 2.2, except that we have
yet to fix the o-setup for G. Thus, for example, qq is the prime of which ¢ is a power.

When defining and working with the o-setups for the spinor groups, it is sometimes easier
to work with orthogonal groups than with their 2-fold covers. For this reason, throughout

the proof, we set G, = SO; when G = Spiny, set G, = SO,(F,,) when G = Spin,(F,,), and
let x: G — G, be the natural surjection. We then set G, = Cg (o) = SOf(q), once o
has been chosen so that G = C(0) = Spiny (¢), and set T.=x(T) and T, = Cz.(0). Also,
in order to prove the lemma without constantly considering these groups as a separate case,
we set G. = G, G, = G, x = Id, etc. when G is linear or symplectic. Thus G, and G, are
classical groups in all cases.

Regard G. as a subgroup of Aut(v b), where V is an I?qo vector space of dimension n, 2n,
or 2n + 1, and b is a bilinear form. Explicitly, b =0 if G = SL,,, and b has matrix ( el O)EBn
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if G = Spo, (98)" if G = Spiny,, or (93)°" @ (1) if G = Spiny,,. Let T. be the group

of diagonal matrices in G,, and set

diag( A1, -+ - M) if G = SL,
A1, A = K diag( AL ALY o A, AT if G = Sp,,, or Spin,,,
diag(A, A\TY - A A L 1) if G = Sping,,, .

In this way, we identify the maximal torus T. < G. with (IF’;O)” in the symplectic and
orthogonal cases, and with a subgroup of (IF;O)” in the linear case.

Set W* = W (the Weyl group of G and of G.), except when G = Spin,,,, in which
case we let W* < Aut(T.) be the group of all automorphisms which permute and invert
the coordinates. Thus in this last case, W* = {£1} %, while W is the group of signed
permutations which invert an even number of coordinates (so [W* : W] = 2). Since W*
induces a group of isometries of the root system for Spin,, and contains W with index 2, it

is generated by W and the restriction to 7', of a graph automorphism of order 2 (see, e.g.,
[Brb, § VI.1.5, Proposition 16]).

We next introduce some notation in order to identify certain elements in W*. For each r, s

such that rs < n, let 75 € Aut(T.) be the Weyl group element induced by the permutation
(L---r)(r+1---2r) - ((s=1)r +1---sr); ie.,

quﬂ([)\la SR 7/\n]) = [)\T7 /\17 R )\r—17 /\2r7 )\7’+17 B )\87"7 >\(371)T+1a SRR )\sr—b )\sr-i-la . ]

For 1 <i <mn,let § € Aut(7T") be the automorphism which inverts the i-th coordinate. Set
Tog="rand 7} =T77§.& - &, Thus for 0 = +1,

2o M) = I A A MDA AL Ayt s Asrets Asrgs )

ST

Recall that m = ord,(q). Define parameters pu, 0, k, and  as follows:

it m is odd : =m 0=1 k= |n/pul =n/m
it ’ ==l
if m is even : pw=m/2 0=-1 k= [n/u] =[2n/m].

We can now define our o-setups for G and G.. Recall that we assume m > 1. In Table
6.1, we define an element wy € W*, and then describe T, = CTC (wo otpy) and Wi = Cy«(wyp)

(where Wy = Cw (wp) has index at most 2 in W(). In all cases, we choose 7 € Aut(G,) as
follows. V\zrite Wy = Wy o ’ﬁ)’f’c for some wy € W and o € I'z; (possibly 7o = Id). Choose
9o € Ng (T¢) such that goT'c = w and 14, (go) = go (Lemma 2.9), and set v = ¢4, 070. Then
[V, %) = Idg , since g, and v both commute with v,,, and we set 0 = 701, = ¥, 0.

When G = Spin,, or Spin,,, , since G is a perfect group and Ker(y) < Z(G), v and ¢ lift to
unique endomorphisms of G' which we also denote v and ¢ (and still [y, 1] = 1 in Aut(G)).

Thus G = Cxz(o) and G. = Cg (0) in all cases, and we identify these groups. Set
T = Cs(0), Tc = C; (o), W5 = Cw+(7), and Wy = Cw (7). If G = Spiny,,; or Spin,,, then
x(T) is the kernel of the homomorphism T, — Ker(x) which sends x(t) to t"'o(t), and thus
has index at most 2 in T,.. Since p is odd, this proves the statement in the last line of Table

6.1.

In the description of W in Table 6.1, H always denotes a direct factor of order prime to
p. The first factor in the description of W acts on the first factor in that of 7', and H acts
on the other factors.
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G. conditions | wo = 7|7, T Wi
SLn(q) T (Cym_1)F x O™t (Co 1) x H
Spon(q)

S02,11(q) T (Cau_g)™ x C " (CoutEy) x H
e=0"

e# 0% pn | 7508, | (Cgug)” X C::{wil X Cgp1 | (CoulBe) x H
SO;n(q> e ;ﬁ 9’{’ M|n

09— _1 TZ,_OI (qu‘—g)ﬁil % 05—1
e # 0%, pln ) - (Cou1Xi-1) x H
0= ’+I1L Tio &n (Car0)™™" x Oy X Copa

In all cases, T % T, has kernel and cokernel of order < 2, and so A = O,(T) = Op(T).

TABLE 6.1.

When G, = SL,(q) and m|n, the second factor C, "} in the description of T' doesn’t make

sense. It should be interpreted to mean that 7' is “a subgroup of index ¢ — 1 in the first
factor (Cym_1)*”.

Recall that T, = Cz (7o t). When U = (F ), then

CU(TL,@ o 1hg) = {(X, A7, PU ,/\q”_l) ‘ pan 1 !
O \W -
This explains the description of T, in the symplectic and orthogonal cases: it is always the

direct product of (Cyu_g)" or (Cyu_g)"~* with a group of order prime to p. (Note that p|(g+1)
only when m = 2; i.e., when # = —1 and 1 = pn.)

Since the cyclic permutation (12 --- ;) generates its own centralizer in ¥, the centralizer
of 71 in {£1} 13, < Aut((F)") is generated by 7}, and ¢”,. If § = —1, then (), ))* =

¢ ., while if # = 1, then 7! .o has order p. Since m = p is odd in the latter case, the
centralizer is cyclic of order 2u in both cases. This is why, in the symplectic and orthogonal
cases, the first factor in Wy is always a wreath product of C, with a symmetric group.

We are now ready to check the conditions in case (II1.3) of Hypotheses 5.1.
Ng(T) contains a Sylow p-subgroup of G. Set

e = 0,(q" — 1) = (¢ — ).

The second equality holds since if 2|m, then p t (¢* — 1) and hence e = v,(¢* + 1). Recall
also that m|(p — 1), so v,(m) = 0. Consider the information listed in Table 6.2, where the
formulas for v,(|T|) = v,(|Te|) and v,(|Wp]|) follow from Table 6.1, and those for |G| are
shown in [St2, Theorems 25 & 35] and also in [Ca, Corollary 10.2.4, Proposition 10.2.5 &
Theorem 14.3.2].

For all ¢ > 0, we have
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G cond. v,(|G]) up(|T]) | vp(|Wol)
SL.(q) S up(gt — 1) ke v, (k)
SPan(q) Z?} v (q2i —1)

Spiny,,,1(q) ke vp(K!)
=", (¢" —¢)
Sping(a) |& A 0% pn| "oty
e £0%, pln i (k=D)e | v((r=1)}
TABLE 6.2.

The first case follows from Lemma 1.13, and the second case since m = ord,(q). Using this,
we check that v,(¢* — 1) = v,(¢" — 1) for all ¢ whenever m is odd, and that

n e+v,(2n/m) if m|2n and ¢ = (—1)>/m
(¢"—¢) = .
0 otherwise.

So in all cases, v,(|G|) = v,(|T|) + v, (|Ws]|) by the above relations and the formulas in Table
6.2. Since Ng(T')/T = Wy by Lemma 5.3(b), this proves that v,(|G|) = v,(|Na(T)|), and
hence that Ng(7T') contains a Sylow p-subgroup of G.

|7|T{ = |7| = ord,(q) > 2 and [v, ¥4,] = Id by construction. Note, when G is a spinor
group, that these relations hold in G if and only if they hold in G..

Cs(2:(A)) = A by Table 6.1 and since pt |H]|.

Ca(Op(Wy)) = 1. By Table 6.1, in all cases, there are r,t > 1 and 1 # s|(p — 1) such
that A = (Cy)", and Auty:(A) = C, 1 %, acts on A by acting on and permuting the cyclic
factors. In particular, Autop,(wo)(A) contains a subgroup of index at most 2 in (Cy)", this
subgroup acts nontrivially on each of the cyclic factors in A, and hence Cy(Oy(Wp)) =1

A free (y)-orbit in 3. This can be defined as described in Table 6.3. In each case, we
use the notation of Bourbaki [Brb, pp. 250-258] for the roots of G. Thus, for example, the
roots of SL, are the (¢; —¢;) for 1 <1i < j < n, and the roots of SO, the *¢; & ¢;. Note
that since S is assumed nonabelian, p| |Ws|, and hence n > pm in the linear case, and n > pu
in the other cases.

G =1 0=-1
SLy(q) {ei —empi|l <1 <m}
Sp2n(q) {2e:[1 <0< p} {£2e; |1 <i < p}
Sping,, ;1(q) {eill<i<p} {£ei|l<i<p}
Sping,(q) | {ei—eurill <i<p} | {£(ei — ) |1 <0 < py

TABLE 6.3.
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(v]a) if ord,(q) even or —Id ¢ W,

(v|a,¥A,) otherwise.

Set K* = Auty;:(A) N Autg(A4) and K = Autyy,(A4) N Autg(A) for short. By Table 6.1,
|K*| = m if G = SLy(q), and |K*| = 2p otherwise. Also, (y|4) = (¢;']4) has order ord,(q).
Thus K < K* = (y]4) except when G is symplectic or orthogonal and m = ord,(q) is odd.
In this last case, K = K* (so |K| = 2u = 2m) if W, contains an element which inverts A
(hence which inverts T'and T); and |K*/K| =2 (|K| = m) otherwise.

Auty,(A) N Auts.(A) <

Autg(A) = Auty,(A). Since A = O,(T) = O,(T,) by Table 6.1, it suffices to prove
this for G.. Fix g € Ng,(A). Since “T. is a maximal torus in the algebraic group Cg, (A)
(Proposition 2.5), there is b € Cf (A) such that T.,=9T. Seta=>b"gc¢€ NéC(TC); thus
Ca = ¢y € Aut(A). Set w=aT.€ W = N@C(TC)/TC; thus w € Ny (A), and w|a = ¢y|a.

By the descriptions in Table 6.1, we can factor T, =T, x T, where ~ and each element of
Nw (A) send each factor to itself, 7|7 =1d, A < T., and [Cy(A),Ty] = 1. Since o(g) = g,
o(a) = a (mod Cf (A)), and so 7(w) = w (mod Cw(A)). Thus 7(w)|7 = wlz since Cy(A)
acts trivially on this factor, 7(w)|;, = wl|z, since vl =1d, and so w € Wy = Cw (7).

Nauta)y(Auty, (A)) < Aute(A)Autawe) (A)- By Table 6.1, for some r,t > 1,
A=A x---xA,, where A; = Cy for each i. Also, for some 1 # s|(p—1), Auty:(A4) = Ca%,
acts on A via faithful actions of C on each A; and permutations of the A;.

Let Aut?,vg(A) < Autyy; (A) and Autpy, (4) < Auty,(A) be the subgroups of elements

which normalize each cyclic subgroup A;. Thus Aut) «(A) = (C)", and contains Autyy, (4)
with index at most 2.

Case 1:  Assume first that Aut?,VO(A) is characteristic in Auty,(A). Fix some a €
Naug(a)(Autyy, (A)). We first show that o € Autyys (A)Auts.(A).

Since o normalizes Auty,(A), it also normalizes Auty, (4). For each 8 € Aut}y, (A),
(8, A] is a product of A;’s. Hence the factors A; are characterized as the minimal nontrivial
intersections of such [3, A], and are permuted by «. So after composing with an appropriate
element of Auty:(A), we can assume that a(A;) = A; for each 4.

After composing « by an element of Autg.(A), we can assume that o], = Id. Fix i # 1
(2 <i <7), let u € Z be such that a|s, = ¥4 = (a — a*), and choose w € Autyy,(A)
such that w(A;) = A;. Then wlawa™ € Auty,(A) since a normalizes Autyy,(A), and
(w_IOzu)ofl)|A1 = ¢, Hence v®* = 1 (mod p' = |4,;]), and since this holds for each i,
a € Auty: (A).

Thus Naua)(Autw, (A)) < Autys (A)Aute(A). By Table 6.1, each element of Autyy;(A)

extends to some ¢ € Auty«(T) which commutes with o[z. So Auty:(A) < Autauye)(A) by
Lemma 3.7, and this finishes the proof of the claim.

Case 2: Now assume that Auty, (A) is not characteristic in Autyy,(A4). Then r < 4, and
since p < r, we have p = 3 and r = 3,4. Also, s = 2 since s|(p — 1) and s # 1. Thus r = 4,
since Aut(y, (A) = Oa(Autw,(A)) if r = 3. Thus Auty,(A) = C3 x Sy the Weyl group of
Dy. Also, m = 2 since p = 3, so (in the notation used in the tables) p =1, 6 = —1, and
k =n. By Table 6.1, G = SOg(q) for some ¢ =2 (mod 3) (and Wy = W).

Now, Oo(W) = Qs X, Qs, and so Out(Oy(W)) = ¥30C,. Under the action of W/Oy (W) =
Y3, the elements of order 3 act on both central factors and those of order 2 exchange
the factors. (This is seen by computing their centralizers in Oy(W).) It follows that
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Nowt(0,(wy) (Outy (O2(W)))/Outy (O2(W)) = X3 = I'g, and all classes in this quotient
extend to graph automorphisms of G' = Sping(q). So for each av € Naygay(Auty (A)), after
composing with a graph automorphism of G we can arrange that a commutes with Og(W),
and in particular, normalizes Aut%,(A). Hence by the same argument as used in Case 1,
a € Autg(A)Autaye(A).

This finishes the proof that this o-setup for G satisfies case (II11.3) of Hypotheses 5.1. [

Example 6.6. Fiz distinct odd primes p and qo, and a prime power q = g5 where b is even
and ord,q is even. Set G = Spiny,(q) for some k > 2. Let (G,0) be the setup for G of

Lemma 6.5, where o = 1,y for v € Aut(G). In the notation of Table 6.1, m = ord,(q),
p=m/2,0=—1=c¢e,n=2k, and k = [2k/p] = [4k/m]. There are three cases to consider:

(a) If ¢** = —1 (mod p); equivalently, if m|dk and k = 4k/m is odd, then ¢ = 0%, wy =
Yz, = The tk(A) = K, and W5 = Cr 2 B Then Wi acts faithfully on A while
wy € Wi~Wy, and so vy|a ¢ Autw,(A). Hence by Proposition 5.15(d), k¢ is split.

(b) If ¢** = 1 (mod p); equivalently, if m|4k and k = 4k/m is even, then & # 0%, Vg, =
T tk(A) =k — 1, and Wi = (Cou 0 k1) X H where H = (Cy1%,). Then H acts

w0 7
trivially on A and contains elements in Wi~\Wy, so v|a € Autw,(A). Hence k¢ is not

split.

(c) If ¢** £ 1 (mod p); equivalently, if m 1 4k, then in either case (k even or odd), the
factor H in the last column of Table 6.1 is nontrivial, acts trivially on A, and contains
elements in Wi~Wy. Hence v|a € Auty,(A) in this case, and k¢ is not split.

We also need the following lemma, which handles the only case of a Chevalley group of
exceptional type which we must show satisfies case (II1.3) of Hypotheses 5.1.

Lemma 6.7. Set p = 5, let ¢ be an odd prime power such that ¢ = +2 (mod 5), and set
G = Es(q). Then G has a o-setup which satisfies Hypotheses 5.1 (case (111.3)).

Proof. We use the notation in 2.2, where ¢ is a power of the odd prime ¢o, and G = Fj (]qu).

By [Brb, Planche VII], the of roots of Eg can be given the following form, where {e1, ..., s}
denotes the standard orthonormal basis of R®:

8
o 1 .
1§2<]§8}U{§Z;(—1) ,

1=

%= {tei ke

8
Zmi even} CRR®.
i=1

By the same reference, the Weyl group W is the group of all automorphisms of R® which
permute 3 (A(R) = W(R) in the notation of [Brb]). Give R® a complex structure by setting
t€ok—1 = €9 and i€gy, = —egk_1, and set € = g9 for 1 < k < 4. Multiplication by ¢
permutes X, and hence is the action of an element wy € W. Upon writing the elements of 3
with complex coordinates, we get the following equivalent subset ¥* C C*:

S = {(:I:l +i)el

1<k< 4} U {ims;w"e;

1<k<t<A4, m,nGZ}

E my even} .

Let ZY C R® be the lattice generated by 3. By Lemma 2.4(d) (and since (o, a) = 2 for
all a € ), we can identify 7" = ZY @7 F by sending hq(A) to a®@ A for a € ¥ and A € Fy;.

4

L+ s
U{ 5 Zz Fey

k=1




AUTOMORPHISMS OF FUSION SYSTEMS OF FINITE SIMPLE GROUPS OF LIE TYPE 75

Set Ag = ZX. N Z8, a lattice in R?® of index 2 in Z¥ and in Z8. The inclusions of lattices
induce homomorphisms

T 7Y ®y I[E‘;O — 2 Ay ®z IFZO —2 7% F;} = (F;})g

each of which is surjective with kernel of order 2 (since Tor}(Z/2, IF;O) = 7/2). We can thus

identify T' = (]F;O)S, modulo 2-power torsion, in a way so that
8 —
a=> kg €N, NeFy = ha(\) = (M1, 0.
i=1
Under this identification, by the formula in Lemma 2.4(c),
8
B=> lig; €S = Os(\,... ) = Al NS (1)
i=1

for Ai,..., A € FX. Also,
wO()\lu .. '7)\8) = (A517A17A217A37 e '7Ag17A7>

for each (A, ..., As).
Choose g € NG(T) such that goT = wy and Yy (90) = go (Lemma 2.9), and set v = ¢, €

Inn(G). Thus 0 = g0y = vyo1hy, G = Cz(0), and T = Cz(0). By the Lang-Steinberg
theorem [St3, Theorem 10.1], there is b € G such that g = hyy,(h~'); then o = ¢y1,c;, ' and

G = COg(1y) = Es(q). It remains to check that the setup (G, o) satisfies the list of conditions
in Hypotheses 5.1.

We identify Wy = Cyy(wg) with the group of C-linear automorphisms of C* which permute
¥*. The order of Wy is computed in [Ca3, Table 11] (the entry T' = Dy(a;)?), but since we
need to know more about its structure, we describe it more precisely here. Let Wy < GL4(C)
be the group of monomial matrices with nonzero entries 1 or 44, and with determinant +1.
Then Wy < Wy, |Ws| = %-44-4! = 219.3, and W acts on X* with three orbits corresponding
to the three subsets in the above description of ¥*. The (complex) reflection of order 2 in
the hyperplane orthogonal to 1 (et + ¢} + ¢} + &) sends (1 + 1)e} to (e — e — e} — &),

)
and it sends (e} + ie3) to (%} + ey — e} — €}). Thus Wy acts transitively on .

Let ¥ C P(C*) be the set of projective points representing elements of £*, and let [a] € ¥
denote the class of a € ¥*. To simplify notation, we also write [x] = [a] for z € C*

representing the same point, also when z ¢ ¥*. Let ~ denote the relation on X: [a] ~ [f] if

o=, orif a L § and the projective line ([a], [3]) C P(C*) contains four other points in X.
By inspection, [g}] ~ [e;] for all j,k € {1,2,3,4}, and these are the only elements [a] such
that [a] ~ [e]] for some j. Since this relation is preserved by Wy, and Wy acts transitively
on ¥, we see that ~ is an equivalence relation on ¥ with 15 classes of four elements each.
Set A = X/~ and let [a]a denote the class of [a] in A. Thus |X| = 1|Z| = 60 and |A| = 15.
Since W is the stabilizer subgroup of [e]]a under the transitive Wy-action on A, we have
|W0’ - ‘WQ’ . 15 - 210 . 32 . 5

Let W, < W, be the subgroup of elements which act trivially on A. By inspection,
Wy < Wy, |[Wy| = 2% and W, is generated by w, = diag(i,i,i,4), diag(1,1,—1,—1),
diag(1,—1, 1, —1), and the permutation matrices for the permutations (12)(34) and (13)(24).
Thus W1 = 04 Xy Dg Xy Dg.
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By the above computations, |Wy/W;| = 2*-32 -5 = |Sp,(2)|. There is a bijection from
A to the set of maximal isotropic subspaces in W;/Z(W;) which sends a class [a]a to the
subgroup of those elements in W; which send each of the four projective points in [a]a to
itself. Hence for each w € Cy,(W;), w acts via the identity on A, and so w € W; by
definition. Thus Wy /Wj injects into Out(W;) = ¢ x Cy, and injects into the first factor
since Z(Wy) = Z(Wy) (= Cy). So by counting, Wo/W; = X6, Also, Wy = Oq(W)).

Set a = v5(q* — 1) = v5(¢® + 1), and fix u € IF;O of order 5*. Let A be as in Notation
5.2(G): the subgroup of elements in 7" of 5-power order. Thus

A= {(ulau({au27ugvu3aug7u4auz> }Ul,U27U3,U4 € <U>} = (C5a)4 . (2)

By (2) and (1), there is no 3 € ¥ such that A < Ker(fg). Hence C(A)? = T by Proposition
2.5. So by Lemma 5.3(b),

No(A) = Ne(T) and  Ne(T)/T = Wy. (3)
We are now ready to check the conditions in Case (II1.3) of Hypotheses 5.1.

N¢g(T) contains a Sylow p-subgroup of G. Let S be a Sylow p-subgroup of Ng(T)
which contains A. Since Ng(T)/T = Wy by (3), A = (Cs)*, and Wy/O02(Wy) = g,
|S| = 5%t By [St2, Theorem 25] or [Ca, Corollary 10.2.4 & Proposition 10.2.5], and since
v5(q" — 1) = 0 when 4 1 k and v5(¢* — 1) = a + v5(¢) (Lemma 1.13),

us(|G]) = vs((¢* = )(¢* = 1)(¢" = 1)(¢" = 1)) =4a+1.
Thus S € Syl,(G).

7|7 = ord,(q) > 2 and [vy,%g,] = Id. The first is clear, and the second holds since
7 = ¢go Where y,(g0) = go-
Cs(2:(A)) = A by the above description of the action of W, on A.

Ca(Opy(Wp)) =1 since wy € O5 (W) and Ca(wo) = 1.
A free (v)-orbit in 3. The subset {4(e; + €3), £(e2 + £4)} C X is a free ()-orbit.

Autw, (A) N Auty(A) < (v]a). Recall that |y]z| =4 and [Auts(A)| = 4 - 5* for some
k, and W, acts faithfully on A. So if this is not true, then there is an element of order 5 in
Z(Wy), which is impossible by the above description of W.

Autg(A) = Autw, (A) by (3).

Nauta)y(Auty, (A)) < Autg.(A)Autw,(A). For j=1,2,3,4, let A; < A be the cyclic
subgroup of all elements as in (2) where u, = 1 for £ # j. The group W, contains as
subgroup C5 ¥4 the group which permutes pairs of coordinates up to sign. So each of the
four subgroups A; is the reflection subgroup of some reflection in W.

For each ¢ € Cauay(Auty,(A)), ¢(A;) = A, for each j, and ¢(a) = a™ for some
n; € (Z/5%)*. Also, ny = ny = n3 = ny since the A; are permuted transitively by elements
of Wy, and hence ¢ € Autg.(A).

Now assume ¢ € Nyca)(Autyy, (A)). Since ¢ centralizes Z(W1) = (wo) = (diag(i,1,7,17))
(since diag(,i,7,1) € Z(Aut(A))), colw, € Inn(W;), and we can assume (after composing
by an appropriate element of Wh) that [, Wi] = 1. So ¢, € Aut(W)) has the form c,(g) =
gx(g), where g € Wy /W7 = 3 is the class of g € Wy, and where x € Hom(W, /W1, Z(W;)) =
Hom(%g, Cy) = Cy is some homomorphism. Since (w0)2 inverts the torus 7', composition
with (wp)? does not send reflections (in A) to reflections, and so we must have ¢, = Idy,.
Thus ¢ € Cayea)(Autpy, (A)) = Aute(A) (modulo Autyy, (A)). O
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The following lemma now reduces the proof of Theorem B to the cases considered in
Section 5, together with certain small cases handled at the end of this section. As before,
when p is a prime and p { n, ord,(n) denotes the multiplicative order of n in IF\.

Proposition 6.8. Fizx an odd prime p, and assume G € £ie(qo) is of universal type for some
prime qo # p. Fiz S € Syl (G), and assume S is nonabelian. Then there is a prime ¢ # p,
a group G* € Lie(qy) of universal type, and S* € Syl,(G*), such that Fs(G) = Fs-(G*), and
one of the following holds: either

(a) G* has a o-setup which satisfies Hypotheses 5.1 and 5.10, G* =2 G(q*) or *G(q*) where

q* is a power of ¢, and

(a.l) —Id ¢ W and G* is a Chevalley group, or
(a.2) —Id € W and ord,(q*) is even, or

(a.3) p=3 (mod p) and ord,(¢*) =1

where W is the Weyl group of G;  or

(b) p=3, ¢4 =2, G=3Dy(q) or?Fy(q) for q some power of qo, and G* = 3D, (q*) or *Fy(q*)
for q* some power of 2.

Moreover, if p = 3 and G* = Fy(q*) where ¢* is a power of qf, then we can assume ¢ = 2.
In all cases, we can choose G* to be either one of the groups listed in Proposition 1.10(a—e),
or one of E;(q*) or Es(q*) for some ¢* = —1 (mod p).

Proof. We can assume that G = G(q) is one of the groups listed in one of the five cases
(a)—(e) of Proposition 1.10. In all cases except 1.10(c), we can also assume that G satisfies
Hypotheses 5.10, with ¢o = 2 if p = 3 and G = F}, and with ¢y odd in cases (a) and (b)
of 1.10. If G = SL,(q) or Spin,(¢) where p|(g — 1), or G is in case (d), then G satisfies
Hypotheses 5.1 by Lemma 6.1. If G = SL,(q) or Spini,(q) where p { (¢ — 1), then G
satisfies Hypotheses 5.1 by Lemma 6.5. This leaves only case (c) in Proposition 1.10, which
corresponds to case (b) here, and case (e) (p = 5, G = Es(q), ¢ = £2 (mod 5)) where G*
satisfies Hypotheses 5.1 by Lemma 6.7.

We next show, in cases (a,b,d,e) of Proposition 1.10, that we can arrange for one of the
conditions (a.l), (a.2), or (a.3) to hold. If —Id ¢ W, then G = A,,, D,, for n odd, or Eg,
and G is a Chevalley group by the assumptions in cases (a,b,d) of Proposition 1.10. So
(a.1) holds. If —Id € W and ord,(q) is even, then (a.2) holds, while if p = 3 (mod 4) and
ord,(¢) = 1, then (a.3) holds.

By inspection, we are left with the following two cases:
(') G = G(q), where G = Sping,, n > p is even, ord,(q) is odd, and ¢" = 1 (mod p); or
(d') G =G(q) where G = Gy, Fy, Eg, Er, or Es, p=1 (mod 4), p|(¢ — 1), and p | |[W(G)|.

In case (d'), the above conditions leave only the possibility p = 5 and G = E; or Eg (see
the computations of |[W| in, e.g., [Brb, § VI.4]). In either case, by Lemma 1.11(a), we can

choose a prime power ¢” which satisfies Hypotheses 5.10 and such that (¢") = ( —¢) in Z,
and set G¥ = G(¢"). Then GV ~, G by Theorem 1.8(c), ord,(¢") is even, so (a.2) holds,
and GV satisfies Hypotheses 5.1 by Lemma 6.4 or 6.5. O

We now consider the two families of groups which appear in Proposition 6.8(b): those not
covered by Hypotheses 5.1.

Proposition 6.9. Let G be one of the groups *D4(q) where q is a prime power prime to 3,
2Fy(22™) for m > 0, or 2Fy(2)'. Then the 3-fusion system of G is tame. If G = 3D,(2")
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(m > 1), 2Fy(2*™*) (m > 0), or ?F4(2), then kg is split surjective, and Ker(kg) is the
subgroup of field automorphisms of order prime to 3.

Proof. Fix S € Syl;(G), and set F = Fg(Q).

If G is the Tits group %Fy(2)’, then S is extraspecial of order 3% and exponent 3, so
Out(S) = GLy(3). Also, Outg(S) = Dg and Outaye(q)(S) = SDig, since the normalizer in
2F,(2) of an element of order 3 (the element t, in [Sh]) has the form SUs(2) : 2 = 3172 : SDy4
by [Sh, Table IV] or [Ma, Proposition 1.2]. Hence Out(S, F) < Nouwys)(Outa(S))/Oute(S)
has order at most 2, and kg sends Out(G) = Cy ([GrL, Theorem 2]) isomorphically to
Out(S, F). If G = 2F4( ), then Outg(S) = SDyg, so Out(S, F) = 1 by a similar argument,
and k¢ is an isomorphism between trivial groups.

Assume now that G = 2Fy(2") for odd n > 3 or G = 3D,(q) where 3 { ¢. In order to
describe the Sylow 3-subgroups of these groups, set ¢ = ¢>™/3 R = Z[(], and p = (1 — {)R.
Let Si be the semidirect product R/p* x Cs3, where the quotient acts via multiplication by
(. Explicitly, set

Sp = {(z,i) |z € R/p*, i € Z/3} and A = R/p* x {0},
where (z,1)(y,j) = (x + C'y,i + j). Thus |Sg| = 3% Set s = (0,1), so that s(z,0)s™t =
(Cx,0) for each z € R/p*.
Assume k > 3, so that A; is the unique abelian subgroup of index three in S;.. Set S = S

and A = A, for short. We want to describe Out(S). Define automorphisms &, (a € (R/p¥)*),
w, 1, and p by setting

fa(x7i) = (CL’CL, i)? n=~E&1, W( ) ( Z, ) p(ZL' Z) = (ZE + )‘(Z) Z) (4>
Here, z — Z means complex conjugation, and A(i) = 1+ +...+(""!. Note, when checking
that p is an automorphism, that A(z) + (*A(j) = )\(z 7). Note that p® € Inn(S): it is (left)
conjugation by (1 — ¢2,0).

Let Aut’(S) < Aut(S) be the subgroup of automorphisms which induce the identity on
S/[S, S] = S/[s, A], and set Out’(S) = Aut’(S)/Inn(S). Each element in s-[s, A] is conjugate
to s, and thus each class in Out”(S) is represented by an automorphism which sends s to
itself, which is unique modulo (c;). If ¢ € Aut(S) and ¢(s) = s, then |4 commutes with c;,
thus is R-linear under the identification A = R/p*, and hence ¢ = &, for some a € 1+ p/p*.
Moreover, since

(L+p/p") = (1 +p°/p") x () = (1 +3R/p") x ()
as multiplicative groups (just compare orders, noting that the groups on the right have trivial
intersection), each class in Out’(.S) is represented by &, for some unique a € 1+ 3R/p*.

Since the images of 7, w, and p generate Aut(S)/Aut”(S) (the group of automorphisms of
S/[s, A] = C2 which normalize A/[s, A] = C3), this shows that Out(S) is generated by the
classes of the automorphisms in (4). In fact, a straightforward check of the relations among
them shows that

Out(S) = (OutO(S) " [cw]Q) x Xy where Out’(S) = {[&] | a € (1+3R/p*)*}.

Also, wéw™! =&, for a € (1 + 3R/p*)*.

For each x € 1+ 3R such that z = (mod p*), we can write z = r + s¢ with r, s € Z, and
then s(¢ — () € p¥, s0 s € p*~1 and z € r + s + p* C 1 + 3Z + p*. This proves that

C’Out(S)<W) = {[ga] ‘ a € Z} X <[w]> X <[p]= [77]>
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For any group G with S € Syl;(G) and S = S, Outg(S) has order prime to 3, and hence
is a 2-group and conjugate to a subgroup of (w,n) € Syly(Out(S)). If |Outs(S)| = 4, then
we can identify S with S in a way so that Outg(S) = ([w], [#]). Then

Out(S, F) < Nows) ({[w], 0])) /{[w], [])
= Cours) ({[w], ) /{[w], [n]) = {[&] | @ € Z} = ([&])

where the first equality holds since O3(Out(.S)) has index four in Out(S5).

We are now ready to look at the individual groups. Assume G = ?Fj(q), where ¢ = 2"
and n > 3 is odd. By [Stl, 3.2-3.6], Out(G) is cyclic of order n, generated by the field
automorphism 1. By the main theorem in [Ma], there is a subgroup Ng(Ts) = (Cyy1)? X
GLy(3), the normalizer of a maximal torus, which contains a Sylow 3-subgroup. Hence if we
set k=w3(q+1) =v3(4" — 1) = 1 + v3(n) (Lemma 1.13), we have S = Sy, = (Cyx)? x Cs,
and Outg(S) = (w,n) up to conjugacy. So Out(S,F) is cyclic, generated by & = kg (19).
Since A = (Cyx)?, and since £_; € Outg(S), |Out(S, F)| = |[&]| = 357 where k — 1 = v3(n).
Thus k¢ is surjective, and is split since the Sylow 3-subgroup of Out(G) = C,, is sent
isomorphically to Out(S, F).

Next assume G = *Dy(q), where ¢ = 2" for n > 1. By [St1, 3.2-3.6], Out(G) is cyclic of
order 3n, generated by the field automorphism 1, (and where the field automorphism tgn
of order three is also a graph automorphism). Set k = v3(¢? — 1) = v3(2%" — 1) = 1 + v3(n)
(Lemma 1.13). Then S = Spiyq: this follows from the description of the Sylow structure
in G in [GL, 10-1(4)], and also from the description (based on [KIl]) of its fusion system in
[O5, Theorem 2.8] (case (a.ii) of the theorem). Also, Outg(S) = (w,n) up to conjugacy.
So Out (S, F) is cyclic, generated by & = kg (2). Since A = Cgqr X Csrt1, and since 4 €
Outg(S), |Out(S,F)| = |[&]| = 3F. Thus kg is surjective, and is split since the Sylow
3-subgroup of Out(G) = Cj, is sent isomorphically to Out(S, F).

By Theorem 1.8(b) and Lemma 1.11(a), for each prime power ¢ with 3 1 ¢, the 3-fusion

system of 2D,(q) is isomorphic to that of 3D4(2") for some n. By [O1, Theorem C], ug is
injective in all cases. Thus the 3-fusion systems of all of these groups are tame. 0
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APPENDIX A. INJECTIVITY OF ug
BoB OLIVER

Recall that for any finite group G and any S € Syl,(G),
pe: Outyy, (L5(G)) —— Out(S, Fs(G))

is the homomorphism which sends the class of § € Autfyp (L5(G)) to the class of Bg|g, where

Bs is the induced automorphism of Autre)(S) = Na(S)/Op(Ca(S)). We need to develop
tools for computing Ker(u¢), taking as starting point [AOV, Proposition 4.2].

As usual, for a finite group G and a prime p, a proper subgroup H < G is strongly p-
embedded in G if p}|H|, and p 1 |H N9H| for g € GNH. The following properties of groups
with strongly embedded subgroups will be needed.

Lemma A.1. Fix a prime p and a finite group G.

(a) If G contains a strongly p-embedded subgroup, then O,(G) = 1.

(b) If H < G 1is strongly p-embedded, and K < G is a normal subgroup of order prime to p
such that KH < G, then HK/K s strongly p-embedded in G/K.

Proof. (a) See, e.g., [AKO, Proposition A.7(c)].

(b) Assume otherwise. Thus there is ¢ € G\NHK such that p||(“HK/K) N (HK/K)|, and
hence © € YHK N HK of order p. Then H N K (x) and H N K(z) have order a multiple of
p, so there are elements y € H and z € 9H of order p such that y = x = z (mod K).

Since (y), (z) € Syl,(K(z)), there is k € K such that (y) = "z). Then y € H N"H,
and kg ¢ H since k € K and ¢ ¢ HK. But this is impossible, since H is strongly p-
embedded. U

For the sake of possible future applications, we state the next proposition in terms of
abstract fusion and linking systems. We refer to [AOV], and also to Chapters 1.2 and I11.4
in [AKO], for the basic definitions. Recall that if F is a fusion system over a finite p-group
S, and P < S, then

e Pis F-centric if Cs(Q) < @ for each @) which is F-conjugate to P;
o Pis fully normalized in F if |[Ng(P)| > |Ns(Q)| whenever @) is F-conjugate to P; and

o P is F-essential if P < S, P is F-centric and fully normalized in F, and if Outz(P)
contains a strongly p-embedded subgroup.

For any saturated fusion system JF over a finite p-group S, set

z (F)={E<S ‘ E elementary abelian, fully normalized in F,
E =0 (Z(Cs(E))), Autx(E) has a strongly p-embedded subgroup} .

The following proposition is our main tool for proving that u, is injective in certain cases.
Point (a) will be used to handle the groups Spin(g), point (c) the linear and symplectic
groups, and point (b) the exceptional Chevalley groups.

Proposition A.2. Fix a saturated fusz’on/\system F over a p-group SA and an associated
centric linking system L. Let Ey, ..., Ey € Z(F) be such that each E € Z(F) is F-conjugate
to E; for some unique i. For each i, set P, = Cs(E;) and Z; = Z(P;). Then the following
hold.

(a) If k =0 (Z(F) = @), then Ker(uz) = 1.
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(b) [fk = 1; El Sl S, and Aut]:(Ql(Z(S))) = 1’ then Ker(ﬂﬁ) =1.

(c) Assume, for each (g:)-, € I\, Cz (Auts(P)), that there is g € Czs)(Aut£(S)) such
that g; € g - Cz,(Autz(F;)) for each i. Then Ker(uz) = 1.

Proof. We first show that (a) and (b) are special cases of (c), and then prove (c¢). That (a)
follows from (c) is immediate.

(b) If k=1, E; <5, and Autx(2,(Z(S))) = 1, then the group Outx(S) of order prime
to p acts trivially on ©;(Z(S)), and hence acts trivially on Z(S) (cf. [G, Theorem 5.2.4]).
Also, Py = Cs(Ey) <8, so Cz, (Autg(Py)) = Z(S) = Cys)(Autx(S5)), and Ker(uz) = 1 by
(c).

(c) Fix a class [a] € Ker(ug). By [AOV, Proposition 4.2], there is an automorphism
o € Auttfyp(ﬁ) in the class [a] such that ag = Idau,(s).- By the same proposition, there
are elements gp € Cyp)(Autg(P)), defined for each P < S which is fully normalized and

F-centric, such that

(i)  ap € Aut(Aut,(P)) is conjugation by dp(gp);

(ii) ap=1Idif and only if gp € Czpy(Autz(P)); and

(iii) if @ < P are both fully normalized and F-centric, then

Jgp = 9¢ (mod CZ(Q)(NAut]:(P)(Q>>>'

Furthermore,

(iv) [of = 1 € Outyy(£L) if and only if there is g € Cys)(Autz(S)) such that gp €
g-Czpy(Autz(P)) for each P < S such that P is F-essential and P = Cg(2,(Z(P))).

Set g; = gp, (1 <i < k) for short.

By hypothesis, we can assume there is an element g € Cyg)(Autz(S)) such that g; €
9-Czp,y(Autz(F;)) for each 7. Upon replacing a by its composite with cgsl(g), we can assume
gi € Cz(p)(Autz(P;)), and hence ap, = Idau,.(p,) for each 7.

We claim that ap = Id for all P < S, and hence that [a] = 1 by (iv) and (ii). Assume
otherwise, and choose () < S which is fully normalized and of maximal order among all
subgroups such that ag # Id. Thus ap = Id for all R < S with |R| > |Q|. By Alperin’s
fusion theorem (cf. [AKO, Theorem 1.3.6]), @ is F-essential, and « is the identity on
Mor (P, P*) for all P, P* € Ob(L) such that |P|,|P*| > |Q|. Also, for each Q* € Q, there
is (by Alperin’s fusion theorem again) an isomorphism x € Isoz(Q, @*) which is a composite
of isomorphisms each of which extends to an isomorphism between strictly larger subgroups,
and hence ag g+(x) = x. Thus

Q" € @7, Q* fully normalized = ag- # 1d. (1)

Set £ =Q(Z(Q)). Let ¢ € Homz(Ng(E),S) be such that ¢(F) is fully normalized (cf.
[AKO, Lemma 1.2.6(c)]). Then Ng(Q) < Ng(E), so |[Ns(p(Q))| > |Ns(Q)|, and ¢(Q) is
fully normalized since @) is. Since ag+ # Id by (1), we can replace @ by Q* and E by E*,
and arrange that @) and E are both fully normalized in F (and @ is still F-essential).

Set I' = Aut#(Q), and set

Lo =Cr(E) = {p € Autx(Q) | ¢lz = 1dp}
I't = (¢ € Autz(Q) | ¢ = §|g for some ¢ € Homz(R,S), R> Q).
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Let mg: Autz(Q) —— Autz(Q) be the homomorphism induced by the functor 7. For each
e €' = Autx(Q), and each ¢ € 7@1(@), we have

vl9e) =90 =  [dolge)l =1d <= ag(y) =1 : (2)
the first by axiom (C) in the definition of a linking system (see, e.g., [AKO, Definition
I11.4.1]) and since dq is injective, and the second by point (i) above.

Now, Autg(Q) < T'y, since each element of Autg(Q) extends to Ng(Q) and Ng(Q) > @
(see [Sz1, Theorem 2.1.6]). Hence

ol < OP(Ty) - Auts(Q) - Ty = OP(Ty)Ty .
For each ¢ € I'y of order prime to p, ¢|z) = ldz) since ¢ is the identity on £ =
M (Z(Q)) (cf. [G, Theorem 5.2.4]). Thus ggo € Cz)(OP(I'y)). If ¢ € Autz(Q) extends
to @ € Homz(R,S) for some R > @, then by the maximality of Q, a(i)) = v for each
¢ € Morg(R,S) such that 7(¢)) = &, and since o commutes with restriction (it sends
inclusions to themselves), ag is the identity on 1|go € 75 (0). So by (2), ¢(90) = go-

Thus ¢(gq) = gg for all ¢ € T'y. Since o # Id by assumption, there is some ¢ € Autz(Q)
such that ¢(gg) # go (by (2) again), and we conclude that

gq € Cz(Q) (Forl) and F0F1 <I'= Aut;(Q) . (3)

Set Q* = Neg(p)(Q) > Q. Then Autg-(Q) = Iy N Auts(Q) € Syl,(To) since Autg(Q) €
Syl,(T'), and by the Frattini argument, I' = Np(Autg-(Q))To. If @* > Q, then for each ¢ €
Nr(Autg-(Q)), ¢ extends to ¢ € Autz(Q*) by the extension axiom. Thus Np(Autg-(Q)) <
I’y in this case, so ' = I'1 'y, contradicting (3). We conclude that Q* = Q.

The homomorphism I' = Autz(Q) —— Autz(FE) induced by restriction is surjective by
the extension axiom, so Autz(E) = I'/T,. By [AKO, Proposition 1.3.3(b)], I'y/Inn(Q) is
strongly p-embedded in I'/Inn(Q) = Outx(Q); and ['\I'; < ' by (3). Also, p 1 |T'o/Inn(Q)|,
since otherwise we would have I'y > Np(T') for some T' € Syl (T'g), in which case I')T'y >
Nr(T)T'y = T by the Frattini argument. Thus I'1Ty /Ty is strongly p-embedded in I'/Ty =
Autz(E) by Lemma A.1(b).

Now, Cs(E) = @ since Negy(p)(Q) = @ (cf. [Sz1, Theorem 2.1.6]). Thus Q,(Z(Cs(E))) =
01 (Z(Q)) = E, and we conclude that E € £(F). Then E € (E;)” for some unique 1 < i < k,
and Q € (P;)” by the extension axiom (and since E and F; are both fully centralized). But

then ap, # Id by (1), contradicting the original assumption about ap. We conclude that
a=Id. OJ

A.1. Classical groups of Lie type in odd characteristic.

Throughout this subsection, we fix an odd prime power ¢ and an integer n > 1. We want
to show Ker(ug) = 1 when G is one of the quasisimple classical groups of universal type
over IF,. By Theorem 1.8(d), we need not consider the unitary groups.

Proposition A.3. Fiz an odd prime power q. Let G be isomorphic to one of the quasisimple
groups SLy(q), Sp,(q) (n = 2m), or Spin(q) (n >3). Then Ker(ug) = 1.

Proof. Let V, b, and G = Aut(V, b) be such that G = [G, G] if G = Sp, (¢q) or G = SL,(q),
and G/(z) = [G,G] for some z € Z(G) if G = Spint(q) (where z € Z(G)). Thus V is a
vector space of dimension n over the field K = I, b is a trivial symplectic, or quadratic
form, and G is one of the groups GL,(q), Spy,(q), or O(q).
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Fix S € Syly(G), and set F = Fg(G). Set Z = Z(F) for short.

Case 1: Assume G = Spin(V, b), where b is nondegenerate and symmetric. Set Z = Z(G),

and let z € Z be such that G/(z) = Q(V,b). We claim that Z = & in this case, and hence
that Ker(ug) = 1 by Proposition A.2(a).

Fix an elementary abelian 2-subgroup F < G where E > Z. Let V = @Zl V. be the
decomposition as a sum of eigenspaces for the action of F on V. Fix indices j, k € {1,...,m}
such that either dim(V;) > 2, or the subspaces have the same discriminant (modulo squares).
(Since dim (V') > 3, this can always be done.) Then there is an involution v € SO(V, b) such
that v(V;) = V; for all 4, v|y, = Id for i # j, k, det(v[v;) = det(v]v;) = —1, and such that the
(—1)-eigenspace of v has discriminant a square. This last condition ensures that v € Q(V, b)
(cf. [LO, Lemma A.4(a)]), so we can lift it to g € G. Then for each x € E, ¢,(z) = z if
x has the same eigenvalues on V; and Vj, and ¢,(z) = zz otherwise (see, e.g., [LO, Lemma
A.4(c)]). Since z is fixed by all elements of Autz(E), ¢, € Oz2(Autz(E)), and hence Autz(E)

o~

has no strongly 2-embedded subgroups by Lemma A.1(a). Thus E ¢ Z.

Case 2: Now assume G is linear or symplectic, and fix S € Syl,(G). For each V =
{V1,...,Vi} such that V = @le V;, and such that V; LV} for i # j if G is symplectic, set

E(W) ={p € G|yl ==%Id for eachi}.

We claim that each subgroup in Z has this form. To see this, fix F € z ,and let V =
{Vi,...,Vk} be the eigenspaces for the nonzero characters of £. Then E < E(V), V =
@ | V;, and this is an orthogonal decomposition if G is symplectic. Also, Ca(E) is the
product of the groups Aut(V;, bly;). Since E = Q,(Z(P)) where P = Cg(F), E contains the
2-torsion in the center of Cy(E), and thus E = E(V). Furthermore, the action of S on each
V; must be irreducible (otherwise Q,(Z(Cs(E))) > E), so dim(V;) is a power of 2 for each i.

Again assume E = E(V) € Z for some V. Then Aut a(E) is a product of symmetric groups:

if V contains n; subspaces of dimension i for each i > 1, then Autz(E(V)) = [[;5; Xn,-

Each such permutation can be realized by a self map of determinant one (if G is linear), so
Autg(E) = Autg(E). Since Autg(E) contains a strongly 2-embedded subgroup by definition
of Z (and since a direct product of groups of even order contains no strongly 2-embedded
subgroup), Autg(F) = Autg(E) = 3.

Write n = dim(V) = 2k + 2k . 4 2Fn where 0 < kg < k; < -+ < ky,. There is an
(orthogonal) decomposition V' = @;", V;,, where S acts irreducibly on each V;, and where
dim(V;) = 2% (see [CF, Theorem 1]). For each 1 < i < m, fix an (orthogonal) decomposition
W, of V; whose components have dimensions 2Fi-1, 2ki-1 k-1 9ki=1 and set

Vi={Vi|lj#i}uW,

and E; = E(V;). Thus V; contains exactly three subspaces of dimension 2¥-1, and the dimen-
sions of the other subspaces are distinct. Hence Autg(E;) = X3, and E; € Z. Conversely, by
the above analysis (and since the conjugacy class of F € Z is determined by the dimensions
of its eigenspaces), each subgroup in Z is GG-conjugate to one of the E;.

For each 1 < i < m, set P, = Cg(E;) and Z; = Z(P,) (so E; = (Z;)). Since each
element of Ng(P;) = Ng(E;) permutes members of V; of equal dimension, and the elements



84 CARLES BROTO, JESPER M. M@LLER, AND BOB OLIVER

of Ng(P;) do so only within each of the V}, we have
= {2 € G|2lx = \PIdx for all X € V;, some A € O5(FX)}
Cr(Auts(P)) = {z € Z | \{) = 2{)} (4)
Cr(Auta(P)) = {z € Z; | \{) =25 = A7},
where X;, X!, and V;_; are the three members of the decomposition V; of dimension 2ki-1
(and XZ,X’ € W)

Fix ()7, € [I", Cz(Auts(Py)). Then g; € Oz (Autg(P)) if and only if A& = A,
Choose ¢ € G such that glv; = n; - 1d for each i, where the n; € O(F;) are chosen so
that n;/n;_1 = /\g?j)/)\g/’;i for each 1 < i < m. If G is linear, then det(g) = 62" for some
0 € Oy(F), and upon replacing g by go072°/1dy, (recall kg = va(n)) we can assume g € G.
Then g € Cyz(s)(Aute(S)) since it is a multiple of the identity on each V; and has 2-power

order. By construction and (4), g = ¢; (mod Cyz,(Aute(F;))) for each i; so Ker(ug) = 1 by
Proposition A.2(c). O

A.2. Exceptional groups of Lie type in odd characteristic.

Throughout this subsection, ¢qq is an odd prime, and ¢q is a power of ¢o. We show that
Ker(ug) = 1 when G is one of the groups Ga(q), Fi(q), E¢(q), E7(q), or Es(q) and is of
universal type.

The following proposition is a special case of [GLS3, Theorem 2.1.5], and is stated and
proven explicitly in [O2, Proposition 8.5]. It describes, in many cases, the relationship
between conjugacy classes and normalizers in a connected algebraic group and those in the
subgroup fixed by a Steinberg endomorphism.

Proposition A.4. Let G be a connected algebraic group over IFQO, let o be a Steinberg
endomorphism of G, and set G = Cz(0). Let H < G be any subgroup, and let H be the
set of G-conjugacy classes of subgroups G-conjugate to H. Let Ng(H) act on mo(Cx(H)) by
sending g to xgo(x)~" (for x € Nz(H)). Then there is a bijection

o

w: H ———— mo(Cg(H))/Ng(H),

defined by setting w(["H]) = [t o (z)] whenever *H < Cx(0). Also, for each x € G such that
*H < G, Autg(*H) is isomorphic to the stabilizer of [z7'o(x)] € m(Cz(H))/Cq(H) under
the action of Autg(H) on this set.

Since we always assume G is of universal type in this section, the group G = Cg(o) of
Proposition A.4 is equal to the group G = O%(Cx(0)) of Definition 2.1 and Notation 2.2.

The following definitions will be useful when applying Proposition A.4. For any finite
group G, set

SEG)={H <G ‘ H has a strongly 2-embedded subgroup }

~ Jmin{[G: H]|H € SE(G)} if SE(G) # @
oG) = {oo if SE(G) =

Thus by Proposition A.4, if H < G is such that [To(Cg(H))| > d(Outz(H)), then no
subgroup H* < Cx(0) which is G-conjugate to H has the property that Autc,_ (o) (H") has
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a strongly 2-embedded subgroup. The next lemma provides some tools for finding lower
bounds for §(G).

Lemma A.5. (a) For any finite group G, §(G) > |O(G)| - 6(G/O2(G)).
(b) If G = Gy x Gy is finite, and §(G;) < oo fori=1,2, then
0(G) = min{3(G1) - n(Gs) , 6(Ga) - 1(Gh)}
where n(G;) is the smallest index of any odd order subgroup of G;.
(c) If 6(G) < oo, and there is a faithful Fo[G)-module V' of rank n, then 22(GN=1"/2|5(G).

(d) More concretely, 6(GL3(2)) = 28, 6(GL4(2)) = 112, §(GL5(2)) = 2® - 7- 31, and
§(SOf(2)) =2 =05(50,(2)). Also, 2* < §(SOF(2)) < o0 and 25 < §(S0(2)) < .

Proof. (a) If H € SE(G), then HNOy(G) = 1 by Lemma A.1(a). Hence there is a subgroup
H* < G/0O5(G) isomorphic to H, and

(G- H] = [02(G)] - [G/Ox(G) - H'] 2 |02(G)| - 6(G/02(G)) -

(b) If a finite group H has a strongly 2-embedded subgroup, then so does its direct product
with any odd order group. Hence §(G) < 6(G;)n(Gs—;) for i =1,2.

Assume H < G has a strongly 2-embedded subgroup K < H. Set H; = H N G; for
i = 1,2. Since all involutions in H are H-conjugate (see [Sz2, 6.4.4]), H; and Hy cannot
both have even order. Assume |Hs| is odd. Let pr; be projection onto the first factor.
If pry(K) = pry(H), then there is x € (H~K) N Hy, and this commutes with all Sylow
2-subgroups of H since they lie in GG, contradicting the assumption that K is strongly 2-
embedded in H. Thus pr,(K) < pry(H). Then pry(H) has a strongly 2-embedded subgroup
by Lemma A.1(b), and hence

G- H] =[Gy pry(H)] - [Ga 2 Ho] > 0(Gh) - ().
So §(G) > 0(G;)n(Gs—;) for i =1 or 2.

(c) This follows from [OV, Lemma 1.7(a)]: if H < G has a strongly 2-embedded subgroup,
T € Syly(H), and |T| = 2%, then dim(V') > 2k.

(d) The formulas for §(SOF(2)) hold since SO (2) = ¥31C; contains a subgroup isomorphic
to C2 x Cy and SO; (2) = X5 a subgroup isomorphic to As. Since 4|6(GL3(2)) by (c), and
since 7|6(GL3(2)) (there are no subgroups of order 14 or 42), we have 28|0(GL3(2)), with
equality since >3 has index 28. The last two (very coarse) estimates follow from (c), and the
6- and 7-dimensional representations of these groups.

Fix n = 4,5, and set G,, = GL,(2). Assume H < G, has a strongly embedded subgroup,
where 7||H| or 31||H|. By (c), 2*|6(G4) and 2%/6(G5), and thus 8 { [H|. If H is almost simple,
then H = As by Bender’s theorem (see [Sz2, Theorem 6.4.2]), contradicting the assumption
about |H|. So by the main theorem in [A1l], H must be contained in a member of one of the
classes C; (1 < i < 8) defined in that paper. One quickly checks that since (7- 31, |H|) # 1,
H is contained in a member of C;. Thus H is reducible, and since O2(H) = 1, either H is
isomorphic to a subgroup of GL3(2) X GL,_3(2), or n = 5 and H < GL4(2). By (b) and
since 7[|6(GL3(2)), we must have H 2 3 x (C7 x Cj), in which case |H| < 180 = |GLy(4)|.
Thus 7|0(Gy) for n = 4,5, and 31|6(G5). Since GL4(2) contains a subgroup isomorphic to
GL2<4) = 03 X A5, we get (5(G4) =2%.7 and (5<G5) =28.7.31. 0

We illustrate the use of the above proposition and lemma by proving the injectivity of ug

when G = Ga(q).
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Proposition A.6. If G = G2(q) for some odd prime power q, then Ker(ug) = 1.

Proof. Assume ¢ is a power of the prime qq, set G = Gg(]qu), and fix a maximal torus 7.
We identify G = C5(t,), where 9, is the field automorphism, and acts via (¢ ~ t7) on T'.
Fix S € Syl,(G), and set Z = Z(Fs(G)).

Let E 2 C2 be the 2-torsion subgroup of 7. By Proposition 2.5, Ca(V) = T(6) where

0 € N(T') inverts the torus. Thus by Proposition A.4, there are two G-conjugacy classes of
subgroups G-conjugate to E, represented by E* (E+ = E), where Autg(E*) = Aut(E*) =
Y3 and Cg(E*) = (Cyz1)? x Ca. The subgroups in one of these classes have centralizer in S

isomorphic to C3, hence are not in z , while those in the other class do lie in Z. The latter
also have normalizer of order 12(¢ + 1)? and hence of odd index in G, and thus are normal
in some choice of Sylow 2-subgroup.

By [Gr, Table I], for each nontoral elementary abelian 2-subgroup E < G, rk(E) = 3,
Cz(E) = E, and Autg(E) = GL3(2). By Proposition A.4, and since d(Autg(E)) = 28 >
|C5(E)| by Lemma A.5, Autg(E) contains no strongly 2-embedded subgroup, and thus
E¢Z.

Thus Z is contained in a unique G-conjugacy class of subgroups of rank 2, and Ker(ug) = 1
by Proposition A.2(b). O

Throughout the rest of this section, fix an odd prime power ¢, and let G be one of the
groups F4, Eﬁ, E7, or Eg.

Hypotheses A.7. Assume G = G(qu) and G = G(q), where q is a power of the odd prime
qo, and where G = Fy, Eg, E;, or Eg and is of universal type. Fiz a mazximal torus T < G.

(I) Set Tgy = {t € T|t* = 1}. Let 2A and 2B denote the two G-conjugacy classes of
noncentral involutions in G, as defined in [Gr, Table V1], except that when G = E, they
denote the classes labelled 2B and 2C, respectively, in that table. For each elementary
abelian 2-subgroup E < G, define

quE%FQ

by setting q(z) =0 if v € 2BU {1}, and q(z) =1 if z € 2A U (Z(G)\1).
(IT) Assume G = Cg(1,), where b, is the field endomorphism with respect to some root

structure with mazimal torus T. Thus 1,(t) = t9 for allt € T. Fiz S € Syly(G), and
set Z = Z(Fs(Q)).

By [Gr, Lemma 2.16], qr,, is a quadratic form on T{) in all cases, and hence qp is
quadratic for each EZ < Ty). In general, gz need not be quadratic when E' is not contained
in a maximal torus. In fact, Griess showed in [Gr, Theorems 7.3, 8.2, & 9.2] that in many
(but not all) cases, E is contained in a torus if and only if qg is quadratic (cx(E£) < 2 in his
terminology).

With the above choices of notation for noncentral involutions, all of the inclusions F; <
FEs < E; < Ejg restrict to inclusions of the classes 2A and of the classes 2B. This follows
since the forms are quadratic, and also (for E7 < Eg) from [Gr, Lemma 2.16(iv)].
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Lemma A.8. Assume Hypotheses A.7, and let b be the bilinear form associated to q. Define
Vo= {v €T |b(v,T(z)) =0, q(v) =0}
Yo = (v v+ b(v,x)z) € Aut(T(2), q) for x € T(o) with q(z) =1, ¢ £ T(9
Then the following hold.

(a) Autz(Tiz) = Aut(Tiz), q).

(b) For each nonisotropic x € T(g)\T( 5y Yo 1S the restriction to Tioy of a Weyl reflection on
T. If a € ¥ is such that 7, = Wa |1y, , then O (v) = (—1)b@v) for each v € T(y).

(c) IfG=E, (r==6,7,8), then q is nondegenerate (Vo = 0), and the restriction to T(z) of
each Weyl reflection is equal to v, for some nonisotropic x € T, )\Té)

(d) If G = Fy, then dim(Vp) = 2, and q(v) =1 for all v € T5\Vp.

Proof. (a) Since Autg(T(2)) has to preserve G-conjugacy classes, it is contained in Aut(7y), q).
Equality will be shown while proving (c) and (d).

(c) f G = E, forr = 6,7,8, then q is nondegenerate by [Gr, Lemma 2.16]. Hence the
only orthogonal transvections are of the form =, for nonisotropic x, and each Weyl reflection
restricts to one of them. By a direct count (using the tables in [Brb]), the number of
pairs {£a} of roots in G (hence the number of Weyl reflections) is equal to 36, 63, or
120, respectively. This is equal to the number of nonisotropic elements in T{9) \ T(Q) =

Ti2y ~ Z(G) (see the formula in [Ta, Theorem 11.5] for the number of isotropic elements).
So all transvections are restrictions of Weyl reflections, and Autz(T{2)) = Aut(T(3), q).

(d) Assume G = Fj. Then dim(Vp) = 2 and q~'(1) = T{5)\V, by [Gr, Lemma 2.16]. Thus
|Aut(T{2), q)| = 4% - |GLy(2)]* = 2°- 3% = L|W| (see [Brb, Planche VIII]), so Autw (T{2)) =
Aut (T} ,q) since W also contains —Id.

There are three conjugacy classes of transvections v € Aut(7(9),q): one of order 36 con-
taining those where |y, # Id (and hence [y,T(9)] < V4), and two of order 12 containing
those where |y, = Id (one where [y, T(2)] < V; and one where [y, T(2)] £ Vp). Since there
are two W-orbits of roots (long and short), each containing 12 pairs ia the corresponding
Weyl reflections must restrict to the last two classes of transvections, of which one is the set
of all 7, for x € Ty \ V.

(b) We showed in the proofs of (c¢) and (d) that each orthogonal transvection -, is the
restriction of a Weyl reflection. If 7, = wa]T(Q) for some root o € ¥, then 0, € Hom(T', Fy)
(Lemma 2.4(c)), so [T(g) : Ker(ba|z,)] < 2. Also, Ker(d,) < Cz(wa) by Lemma 2.4(e),
so Ker(0al1,,) < O, (wa) = Cry (7.) = o, with equality since [T(y) : 2] = 2. Since
0a(Ti2)) < {£1}, it follows that 0, (v) = (—1)*@¥) for each v € T(y). O

We are now ready to list the subgroups in Z(G(q)) in all cases. The proof of the following

lemma will be given at the end of the section.

Lemma A.9. Let G = G(F,,) and G = G(q) be as in Hypotheses A.7. Assume E € Z(G).
Then either G # Er, tk(E) =2, and qz =0; or G = Fy, Z = Z(G) = C,, and E = Z x E,
where tk(Ey) = 2 and qg, = 0. In all cases, Autz(E) = X3,

Proof. This will be shown in Lemmas A.14 and A.15. O
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The next two lemmas will be needed to apply Proposition A.2(b) to these groups. The
first is very elementary.

Lemma A.10. Let V' be an Fy-vector space of dimension k, and let q: V —— Fy be a
quadratic form on'V. For m > 1 such that k > 2m, the number of totally isotropic subspaces
of dimension m in V is odd.

Proof. This will be shown by induction on m, starting with the case m = 1. Since k& > 3,
there is an orthogonal splitting V' = V; 1L V5 where Vi, V5 # 0. Let k; be the number of
isotropic elements in V; (including 0), and set n; = |V;|. The number of isotropic elements
in V is then kiks + (nqy — k1)(n2 — k2), and is even since the n; are even. The number of
1-dimensional isotropic subspaces is thus odd.

Now fix m > 1 (such that k£ > 2m), and assume the lemma holds for subspaces of
dimension m — 1. For each isotropic element x € V', a subspace £ < V of dimension m
containing z is totally isotropic if and only if £ < 2t and E/(z) is isotropic in a1 /(z) with
the induced quadratic form. By the induction hypothesis, and since

2. dim(E/(z)) = 2(m —1) < k — 2 < dim(z"/(z)),

the number of isotropic subspaces of dimension m which contain z is odd. Upon taking the
sum over all x, and noting that each subspace has been counted 2™ — 1 times, we see that
the number of isotropic subspaces of dimension m is odd. O

Lemma A.11. Assume Hypotheses A.7(I). Let o be a Steinberg endomorphism of G such
that for some ¢ = 1, o(t) = t° for each t € T. Set G = Cx(0). Fizr E < T(y) of rank

2 such that q(E) = 0. Then the set of subgroups of G which are G-conjugate to E, and
the set of subgroups which are G-conjugate to E, both have odd order and contain all totally
isotropic subgroups of rank 2 in T(y).

Proof. Let X O X be the sets of subgroups of G which are G-conjugate to F or G-conjugate
to I, respectively. Let X be the subset of all totally isotropic subgroups of T{s) of rank 2. If g
is nondegenerate, then by Witt’s theorem (see [Ta, Theorem 7.4]), Autw (T(2)) = Aut(T(9), q)
permutes X, transitively, and hence all elements in X, are G-conjugate to £ by Lemma 2.9.
If in addition, dim(7{s)) > 5, then [Xy| is odd by Lemma A.10. Otherwise, by Lemma
A.8(c,d), G = F, and Xy = {E}. Thus in all cases, Xy C X and |X]| is odd.

Assume G = Fg. Then Cg(T(z)) = T by Proposition 2.5. Consider the conjugation action

of Tipy on X, and let X; be its fixed point set. Since T{3) < G by the assumptions on o, this
action also normalizes X. For I' € X, either the action of T{) fixes I pointwise, in which
case ' € Xy, or there are z,y € F such that [x,T(9)] = 1 and [y, T(2)] = (z). In particular,
¢y € Auty(T(2)) = SO(T(2),q). For each v € T(y) such that [y,v] = z, q(v) = q(vr) and
q(x) = 0imply L v, so x L T{s since T{y) is generated by those elements. This is impossible
since q is nondegenerate by Lemma A.8(c), and thus X; = X,.

Now assume G = Fj, Er, or Eg. Then —Id € W, so there is § € Ng(T') which inverts
T. Then Ca(Tw)) = T(6). By the Lang-Steinberg theorem, there is ¢ € G such that
g lo(g) € 0T; then o(gtg™') = gtTig~! for t € T, and thus o acts on gTg~! via t — 79,
We can thus assume T was chosen so that G N T = Cz(0) contains the 4-torsion subgroup
f(4) < T. Let X; C X be the fixed point set of the conjugation action of f(4) on X.
For F' € Xy, either the action of T(4) fixes F' pointwise, in which case F' € X;, or there

are x,y € F such that [z,T 4] = 1 and [y, T4)] = (z). But then [F, Ta)] = 1 for some
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Ta) < f(4) of index two, [F, T(2)] = 1 implies F' < T(9)(0); and F' < T{9) since no element in
T 4)\T(2) commutes with any element of T(2)). So X; = X in this case.

Thus in both cases, X, is the fixed point set of an action of a 2-group on X which normalizes
X. Since |Xg| is odd, so are |X| and |X|. O

We are now ready to prove:

Proposition A.12. Fix an odd prime power q. Assume G is a quasisimple group of universal
type isomorphic to Ga(q), Fi(q), Es(q), Ez(q), or Es(q). Then Ker(ug) = 1.

Proof. This holds when G = G5(¢) by Proposition A.6, so we can assume Hypotheses A.7.
Let X be the set of all elementary abelian 2-subgroups £ < G such that either G # Fr,
tk(E) = 2, and qg = 0; or G = E;, 1k(F) = 3, and F = Z(G) x Ey where qg, = 0. By
Lemma A.11, |X| is odd. In all cases, by Lemma A.9, ZA(G) C X. By Proposition A.2(a,b),
to prove ug is injective, it remains to show that if Z (G) # @, then zZ (G) has odd order and
is contained in a single G-conjugacy class, and Autg(Z(95)) = 1.

Fix E' € X such that E < Tp). We first claim that if G = Fy, Eg, or By, then Cg(E)
is connected, and hence all elements in X are G-conjugate to E by Proposition A.4. If
G = Er, then Cg(FE) is connected by [Gr, Proposition 9.5(iii)(a)]. If G = F} or Es, then for
v € B, Cz(x) = Sping(Fy,) or Fg, X¢, Spinyo(Fy, ), respectively (see [Gr, Table VI]). Since

the centralizer of each element in the simply connected groups Sping(F,,) and Spin,,(F,,) is
connected [St3, Theorem 8.1], C5(FE) is connected in these cases.

Now assume G = Eg. We can assume G = C5(1),), where 1, is the field automorphism;

in particular, ,(t) = t4 for t € T. Fix 2,y € E such that F = (z,y). By [Gr, Lemma
2.16(ii)], (T(2),q) is of positive type (has a 4-dimensional totally isotropic subspace). Hence
E+ = E x V; x Vs, where dim(V;) = 2 and q(V;~1) = 1 for i = 1,2, and Vi L V5. Thus
(qp)~'(1) = U?Zl((Vi\l) x E), and by Lemma A.8(b,c), these are the restrictions to T»
of Weyl reflections w, for a € ¥ such that £ < Ker(f,). Also, Cy(E) = W(Dy4)1Cy. By
Proposition 2.5, Cz(E)? has type Dy x Dy and |mo(Cg(E))| = 2. More precisely, C(E) =
(H, xg H3){(6), where H; = Sping(F,,) and Z(H;) = E for i = 1,2, and conjugation by
o€ NG(T ) exchanges V; and V5 and hence exchanges H, and H,.

By Proposition A.4, the two connected components in the centralizer give rise to two
G-conjugacy classes of subgroups which are G-conjugate to E, represented by F and gEg !
where g~'o(g) lies in the nonidentity component of Cz(E). Then Cg(E) contains a subgroup
Sping () X ¢z Sping (¢) with index 8 (the extension by certain pairs of diagonal automorphisms
of the Sping (¢q)-factors, as well as an automorphism which switches the factors). So E =
Z(T) for T € Syl,(Ca(E)), and E € Z(G). Also, gyg~* € Cg(gEg™") if and only if
y € Cz(E) and 7(y) = y where T = ¢y-1,(g)00. Then 7 switches the central factors in Cx(E),
and the group OCé(E)<;) splits as a product of F times the group of elements which are

invariant after lifting 7 to the 4-fold cover Sping (I, )2C5. Since gEg~" intersects trivially with
the commutator subgroup of Cq(gEg™'), 0 (Z(T)) > gEg~! for any T € Syl,(Ca(gEg™))
(since Z(T) N [T, T] # 1); and thus gEg~' ¢ Z(G). Thus Z(G) is the G-conjugacy class of
E. and has odd order by Lemma A.11.

Thus, in all cases, if ZA(G) is nonempty, it has odd order and is contained in one G-
conjugacy class. Also, Z(S) < Cp(Auts(E)) < E for E € Z(G), so cither |Z(S)| = 2, or
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G = Er, Z(S) = €2, and the three involutions in Z(S) belong to three different G-conjugacy
classes. Hence Autg(Z(S)) = 1. O

It remains to prove Lemma A.9, which is split into the two Lemmas A.14 and A.15. The
next proposition will be used to show that certain elementary abelian subgroups are not in
Z.

Proposition A.13. Assume Hypotheses A.7. Let E < T(9) and x € Toy\E be such that
the orbit of x under the Cy (E)-action on T(9) has odd order. Then no subgroup of S which

-~

is G-conjugate to E is in Z. More generally, if E > E is also elementary abelian, and is
such that x is not C(E)-conjugate to any element of E, then for any L < G which contains

{gzg™'|g € é} NG, no subgroup of S which is G-conjugate to E is in Z.

Proof. In [02], an elementary abelian p-subgroup E < G is called pivotal if O,(Autg(E)) =
1, and £ = (Z(P)) for some P € Syl,(Cg(F)). In particular, by Lemma A.1(a), the

subgroups in Z are all pivotal. Note that Tis) < G by Hypotheses A.7. By [O2, Proposition
8.9], no subgroup satisfying the above conditions can be pivotal, and hence they cannot be

~

in Z. [l

In the next two lemmas, we show that in all cases, E € z implies rk(F) = 2 and qg = 0 if
G # Er, with a similar result when G = E7. We first handle those subgroups which are toral
(contained in a maximal torus in G, and then those which are not toral. By a 2A*-subgroup
or subgroup of type 2A* (2Bk—subgroup or subgroup of type 2Bk) is meant an elementary
abelian 2-subgroup of rank k all of whose nonidentity elements are in class 2A (class 2B).

Lemma A.14. Assume Hypotheses A.7. Fix some E € Z which is contained n a mazimal
torus of G. Then either G # Er, vk(E) =2, and qg = 0; or G = E;, Z = Z(G) = Cs, and
E =7 x Ey where tk(Ey) = 2 and qg, = 0. In all cases, Autg(E) = ¥s.

Proof. Set Z = O2(Z(G)) < T(9). Thus |Z| = 2if G = E7, and |Z| = 1 otherwise. Recall
that Autg(T{e)) = Auté(T(g)) = Aut(7(9),q) by Lemmas 2.9 and A.8(a).

The following notation will be used to denote isomorphism types of quadratic forms over
Fy. Let [n]* denote the isomorphism class of a nondegenerate form of rank n. When n
is even, [n]* denotes the hyperbolic form (with maximal Witt index), and [n]~ the form
with nonmaximal Witt index. Finally, a subscript “(k)” denotes sum with a k-dimensional
trivial form. By [Gr, Lemma 2.16], qr,, has type [2] 5y, [6]7, [7], or [8]T when G = F}, Ej,
E~, or Eg, respectively.

Fix E < T{); we want to determine whether E can be G-conjugate to an element of Z. Set
E; = EN E* (the orthogonal complement taken with respect to q), and set Ey = Ker(qg, ).
Note that £ > Ej if G = E; (E > Z)

Assume first that Ey = 1. If G = Fj, then Tp) N 2B is a Cy (E)-orbit of odd order. If
G = E, and E| = 1, then E x E*+, B+ is Cy (E)-invariant, and hence there is 1 # x € E*+
whose Cy (E)-orbit has odd order. If G = E, and rk(E;) = 1, then E N E+ = Ey, there
is an odd number of involutions in EL\ E; of each type (isotropic or not), and again there
is 1 # x € E+ whose Cy (E)-orbit has odd order. In all cases,  has the property that
Cw({E,z)) has odd index in Cy (FE). So by Proposition A.13, no subgroup of G which is

G-conjugate to F can be in Z.
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Thus Ey # 1. Set k = rk(Ep). Then
|7ro(Cé(E))‘ = [Cw(E)/{ws | a € B, E < Ker(f(w)))| (Proposition 2.5)
< ’C’W(T@))| . ‘CSO(T(2)7q)(E)/<% ’ vE2AN EL>’ (Lemma A.8(a,b))
< ‘CW(T(2))| ’ ‘CSO(T@),q)(Eol)‘ ’ |CSO(E§-,q)(E)/<7v ‘ ve2AN El>} : (5)
The first factor is easily described:

1 if —Id e W (if G = Fy, Ey, Ey)

0 if —Id ¢ W (if G = Ey). (6)

|Cw(T))| =2°  where &= {

We next claim that

k
|Csoam(Ed)| < 26), (7)
with equality except possibly when G = Fj. To see this, let F| < Ty be a subspace
complementary to Eg. Each o € Cawry,)(Ey) has the form a(z) = ai(z) for some

1 € Hom(F}, Ey), and « is orthogonal if and only if = L ¢(x) for each x. The space of such
homomorphisms has dimension at most (g) (corresponding to symmetric k X k matrices with
zeros on the diagonal); with dimension equal to (];) if dim(F7) = dim(Ey) (which occurs if g
is nondegenerate).

Write (Eg)t = E x Fy, where E+ = Ey x Fy and the form qg, is nondegenerate. By
[Ta, Theorem 11.41], SO(Fy, qr,) is generated by transvections unless qp, is of type [4]T,
in which case the reflections generate a subgroup of SO(Fy, qp,) = X3 Cy isomorphic to
Y3 x 3. Also, F; is generated by nonisotropic elements except when qg, is of type [2]T,
and when this is the case, all automorphisms of (Ey)t which induce the identity on E and
on (Ey)t/Ey are composites of transvections. (Look at the composites Y, o 7, for v € Fy
and = € Ey.) Hence

|Csogn(E)/ (e |ve2ANET)| <27

where 7 = 1 if qg. has type [4]?;), n = k if qg. has type [2]:;), and n = 0 otherwise.
Together with (5), (6), and (7), this proves that

Imo(C(E))| < 2(a)+=tn where ¢ < 1. (8)

Now, Ng(E) < Cz(E)°Ng(T) by the Frattini argument: each maximal torus which con-
tains E lies in C5(E)° and hence is C(E)%-conjugate to T. So each element of Aut(E) is

represented by a coset of T in N &(T), and can be chosen to lie in G by Lemma 2.9. Thus
the action described in Proposition A.4 which determines the automizers Autg(E*) for E*

G-conjugate to E is the conjugation action of Autg(E) on the set of conjugacy classes in

mo(Cx(F)). In particular, this action is not transitive, since the identity is fixed.

Set ¢ =rk(E/Ey) —1if G = E; and ¢ = rk(F/Ey) otherwise. Every automorphism of F
which induces the identity on EyZ and on E/Ej is orthogonal, and hence the restriction of
an element of Oy(Cyy(E)). Thus |Oo(Outy(E))| > 2%. If E* € Z is G-conjugate to E, then
since Autg(E*) has a strongly 2-embedded subgroup, 2% < 6(Autz(E)) < ‘WO(C’G(E)H
by Proposition A.4 and Lemma A.5(a), with strict inequality since the action of Ng(E)

on 7o(Cx(E)) is not transitive. Together with (8), and since e < 1, this implies that

kt < (g) +n< (’;) + k. Thus ¢ < %, and ¢ < % if n = 0. By definition, n = 0 whenever
rk(Ey/Ey) = 1, which is the case if G = E7 or ¢ is odd. Since 2k 4+ ¢ < 8, we are thus left
with the following possibilities.
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If (k,0) = (3,2), then G = Eg, F has form of type [2]2;), so E+ = Ej; has trivial form,
and n = 0. Thus k¢ £ (g) + 1, so this cannot occur.

If (k,¢) = (3,1), then G = Eg, E has form of type * 4+ 3, and rk(F) = rk(E;) = 4.
Then Autg(E) = CF x GL3(2), so §(Autg(E)) > 2% - 28 by Lemma A.5(a,d). Since

[To(Cz(E))| < 16, this case is also impossible.

If (k,¢) = (4,0), then G = Eg and E = Ej is isotropic of rank 4. By Proposition 2.5
and Lemma A.8(c), C5(E)? = T. By [CG, Proposition 3.8(ii)], mo(Cg(F)) is extraspecial
of order 2 and Autz(E) = GL4(2). (This is stated for subgroups of Eg(C), but the
same argument applies in our situation.) In particular, mo(Cx(E)) has just 65 conjugacy
classes. Since §( GL4(2)) = 112 by Lemma A.5(d), Proposition A.4 implies that Auts(E*)
cannot have a strongly 2-embedded subgroup.

If (k, £) = (3,0), then E = Z x Ey where dim(Ey) = 3, and Aut(E) = GLs(2). If G = Eg
or Er, then E+ = E, and |mo(Cx(E))| < 16 by (8).
If G = Eg, then (E*, qg.) has type [2]&). By the arguments used to prove (8),

Cw (B)] = |Cw(Ti)| - |0ty (B - |Csomg. ()] = 2 2% - 27 = 21,

Also, E*+ contains exactly 8 nonisotropic elements, they are pairwise orthogonal, and
hence determine 8 pairwise commuting transvections on T(). These extend to 8 Weyl
reflections which are pairwise commuting since no two can generate a dihedral subgroup
of order 8 (this would imply two roots of different lengths). Hence by Proposition 2.5,
C5(E)? has type (A;)° and |mo(Cx(E))| = 2'/2% = 2°. Since 6(GL3(2)) = 28 by Lemma
A.5(c), this case cannot occur.

If (k,¢) = (2,0), then E = Z x Ey where dim(FEy) = 2. Then F is as described in the
statement of the lemma. O

It remains to handle the nontoral elementary abelian subgroups.

Lemma A.15. Assume Hypotheses A.7. Let E < G be an elementary abelian 2-group which

18

not contained in a mazimal torus of G. Then E ¢ Z.

Proof. To simplify notation, we write K = F,,. Set Z = Os(Z(G)) < Ti). Thus |Z| = 2 if

G

= FE7, and |Z| = 1 otherwise. The maximal nontoral subgroups of G are described in all

cases by Griess [Gr].

(A) If G = F, or FEg, then by [Gr, Theorems 7.3 & 8.2], G contains a unique conjugacy

class of maximal nontoral elementary abelian 2-subgroups, represented by Wjs of rank
five. There is a subgroup Wy < Wj of rank two such that W5 N 2A = Wx~W,. Also,
Autg(Es) = Aut(Es, qg,): the group of all automorphisms of W5 which normalize W.
A subgroup E < Wjs is nontoral if and only if it contains a 2A*-subgroup.

When G = Fj, we can assume Wy = Ti2) (), where § € Ng(T) inverts the torus.

(B) If G = Ey, then by [Gr, Theorem 9.8(i)], G' contains a unique maximal nontoral elemen-

tary abelian 2-subgroup W, of rank six. For any choice of Eg(K) < G, W5 < Eg(K)

(as just described) has rank 5, is nontoral since it contains a 2A3-subgroup, and so we
can take Wg = Z x W.

Each coset of Z of involutions in GNZ contains one element of each class 2A and
2B. Together with the above description of Es, this shows that all 2A2-subgroups of
We are contained in W5. Hence for each nontoral subgroup E < Wy which contains
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Z, E N W5 is the subgroup generated by 2A%-subgroups of E, thus is normalized by
Autg(E), and so

AU_té(E) = Auté(E N W5) = Aut(E N W5, quWS) = Aut(E, qE)
Auté(Wﬁ) = Aut(W(;, qW@) = 026 A (23 X GL3(2))

For Z < E < W;, the subgroup E is nontoral exactly when it contains a 2A3-
subgroup. This is immediate from the analogous statement in (A) for Fg(K).

If G = FEg, then by [Gr, Theorem 2.17], G contains two maximal elementary abelian
subgroups Wy and Wy, neither of which is toral [Gr, Theorem 9.2]. An elementary
abelian 2-subgroup E < G is nontoral if and only if qg is not quadratic or E has type
2B° [Gr, Theorem 9.2].

We refer to [Gr, Theorem 2.17] for descriptions of Wy and Wy. There are subgroups
FQ S FI,FQ S Wg such that I‘k(F()) = 27 I‘k(Fl) = l"k(FQ) = 5, F1 N F2 = FQ, and
Ws N2A = (Fi\Fp) U (FoNFp). Also, Autg(Ws) is the group of those automorphisms
of Wy which leave Fj invariant, and either leave F} and F3 invariant or exchange them.

We can assume that Wy = T{9) (), where § € N@(T) inverts 7. Also, Wo~\T\s) C 2B.
Hence T(2) = (WyN2A) is Autg(Wy)-invariant. Each automorphism of Wy which is the

identity on T{9) is induced by conjugation by some element of order 4 in T, and thus
Autg (Wy) is the group of all automorphisms whose restriction to T{y) lies in Autz(7{2)).

We next list other properties of elementary abelian subgroups of G, and of their centralizers
and normalizers, which will be needed in the proof.

(D)

IfG=Es, E<G, E2Cy, and |[EN2A| =m, then dim(Cg(E)) = 287" +2°""m — 8.

This follows from character computations: if g denotes the Lie algebra of G = Eg(K),
then dim(Cy(E)) = dim(Cy(E)) = |E|™"' Y cpxg(z). By [Gr, Table VI, x4(1) =
dim(G) = 248, and y4(x) = 24 or —8 when 2 € 2A or 2B, respectively.

If G = Es, E < G is an elementary abelian 2-group, and E, < E has index 2 and is
such that EXEy C 2B, then there is g € G such that 9E < Wy = Ti9)(0) and 9E; < Tiy).

It suffices to prove this when E is maximal among such such pairs E; < E. We can
assume that F is contained in Wy or Wj.

If E < Wk, then in the notation of (C), Fy < F (since E is maximal), and either
tk(ENF;) = 3 fori = 1,2 and tk(E) = 6, or tk(E N F;) = 4 for i = 1,2 and
rk(E) = 7. These imply that |[E'N2A| = 8 or 24, respectively, and hence by (D)
that dim(Cx(E;)) = 8 (Cxz(E:)° = T) and dim(C5(E)) = 0. Hence in either case,
if g € G is such that 9, < T{9), then 9E\IE, C 0T, and there is t € T such that
th S T(Q) <9> = Wg.

If E<Wy, set By = (EN2A). Then Ey < ENTy and Ey < Ey, so there is nothing
to prove unless rk(E£/FEy) > 2. In this case, from the maximality of E, we see that
E, = B, x E,, where E, = C? has type 2ABB, E}, is a 2B*-group, and E, 1L E, with
respect to the form q. Thus rk(E) = 6, |[E N 2A| = 8, and the result follows by the
same argument as in the last paragraph.

IfG = Es, and E < G is a nontoral elementary abelian 2-group, then either E contains
a 2A%-subgroup, or E is G-conjugate to a subgroup of Wi.
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Assume E < W is nontoral and contains no 2A3-subgroup. We use the notation
Fy < [y, Fy < Wy of (C). Set E; = ENF; for i =0,1,2. Then qg, g, is quadratic: it
is the orthogonal direct sum of qg,, qg, /gy, and qg,/g,, each of which is quadratic since
rk(E;/Ey) < 2 for i = 1,2 (E has no 2A%-subgroup). Hence E > E\E, > (E N 2A)
since F is nontoral, so F is conjugate to a subgroup of Wy by (E).

Let E < G be an elementary abelian 2-subgroup, and let E, < E be mazimal among
toral subgroups of E. Assume that EyNE-N2B = &, and that either vk(T) —rk(E;) > 2
or EEkNEL=1. Then E ¢ Z.

To see this, choose F' > F; which is é—conjugate to £ > E; and such that F, =
F'NTp. By maximality, no element of F'\F; is Cz(F})-conjugate to an element of

T. If F;n Ff = 1, then some Cy (F})-orbit in F;*\1 has odd order. Otherwise,
since q is linear on F; N F;, we have F; N F;* = (y) for some y € 2A, in which case

4,2 (0)] = |F;*]/2 is even since rk(F{") > rk(T') — rk(F}) > 2. So again, some Cy (F})-

orbit in F*\1 has odd order in this case. Point (G) now follows from Proposition
A.13.

Assume G = Fs. Let 1 # Ey < E < G be elementary abelian 2-subgroups, where
rk(E) =3, and EN2A = Ey~\1. Then

E x Fy(K) if rk(Ep)
(E) =< E x PSpg(K) if rk(Ep)
E x PSOs(K)  if tk(Ep)

3
2
1.

To see this, fix 1 # y € Ey, and identify Cx(y) = SLa(K) x¢, E7(K). For each

z € Ex(y), since z and xy are G-conjugate, = # (1,b) for b € E;(K). Thus x = (a,b)
for some a € SLy(K) and b € E;(K) both of order 4, and (in the notation of [Gr, Table
VI]) b is in class 4A or 4H since b* € Z(FE(K)). By (D) and [Gr, Table VI],

dim(C'5

(B)) = {80 = dim(Cg,x)(4H)) + 1 if E has type 2AAA
G

64 =dim(Cp,x)(4A)) + 1 if E has type 2ABB,

and thus = € 2A if b € 4H and x € 2B if b € 4A. Thus if £ = (y,z1,xs), and
x; = (a;,b;), then (a1, as) < SLy(K) and (b1, by) < E7(K) are both quaternion of order
8. Point (H) now follows using the description in [Gr, Proposition 9.5(i1)] of centralizers
of certain quaternion subgroups of F7(K). When combined with the description in [Gr,

Table VI] of Cg,x)(4A), this also shows that
F = CF of type 2ABB = C5(F)" is of type A7T" (9)
(i.e., Cx(F)° = (SLs(K) x K*)/Z, for some finite subgroup Z < Z(SLs(K)) x K*).

IfU < G is a 2A3-subgroup, then Cx(U) =U x H, where H is as follows:

G F4 E6 E? E8
H || SO5(K) | SL3(K) | Sps(K) | Fa(K)

When G = FEg, this is a special case of (H). For z € 2A N Fy(K), Crx)(z) =
SLy(K) x¢, E7(K) by [Gr, 2.14]. Since Cp,k)(x) = SLy(K) x ¢, Spe(K), this shows that
CE7(K)<U) =Ux Sp6<K>
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Similarly, Cpx)(y) = SL3(K) x¢, Eg(K) by [Gr, 2.14] again (where y is in class
3B in his notation). There is only one class of element of order three in Fy(K) whose
centralizer contains a central factor SL3(K) — Cr,x)(y) = SL3(K) X ¢, SL3(K) for y of
type 3C in Fy(K) — and thus Cgyx)(U) = U x SL3(K).

If G = Fy, then by [Gr, 2.14], for y € 3C, Cx(y) = SL3(K) x¢, SL3(K). Also,
the involutions in one factor must all lie in the class 2A and those in the other in
2B. This, together with Proposition 2.5, shows that for Uy < U of rank 2, C5(Us) =
(T? x ¢, SL3(K))(#), where 6 inverts a maximal torus. Thus Cz(U) = U x Csp,x)(6),
where by [Gr, Proposition 2.18], Cgp,x)(0) = SOs(K). This finishes the proof of (I).

For the rest of the proof, we fix a nontoral elementary abelian 2-subgroup E < G. We
must show that £ ¢ Z. In almost all cases, we do this either by showing that the hypotheses
of (G) hold, or by showing that §(Autg(E)) > |m(Cz(E))| (where 6(—) is as in Lemma A.5),
in which case Autg(F) has no strongly 2-embedded subgroup by Proposition A.4, and hence
E¢Z

By (A), (B), and (F), either E contains a 2A*-subgroup of rank three, or G = Eg and £
is G-conjugate to a subgroup of Wy. These two cases will be handled separately.

Case 1: Assume first that F contains a 2A%-subgroup U < E. From the lists in (A,B,C)
of maximal nontoral subgroups, there are the following possibilities.

G = F,, Eg, or E;: By (AB), we can write £ = U X Ey X Z, where Ej is a 2B subgroup
(some k < 2) and UEy~Ey C 2A (and where Z = 1 unless G = E;). If £ = 0, then
E ¢ Z by (G), so assume k > 1. By (I), and since each elementary abelian 2-subgroup
of SL3(K) and of Sps(K) has connected centralizer, mo(Cz(E)) = U if G = Eg or Er. If
G = Fy, then by (I) again, and since the centralizer in SO3(K) = PSLy(K) of any C} has
2% components, |mo(Cx(E))| = 23,
By (A,B) again, Aut;(F) is the group of all automorphisms which normalize Ejy and
UE, and fix Z. Hence

02(Auty(E))| = 2% and  Autg(E)/Ox(Autz(E)) = GL3(2) X GLk(2) .
So 6(Autg(E)) > 253 > |mo(Cx(E))| by Lemma A.5, and E ¢ Z.

G = Ex: By (I), C5(U) = Ux H where H = Fy(K). Set Ey = ENH, and let Ey = (E,N2B).
Set k = I‘k(Eo) and ¢ = rk(EQ/Eo)

If £ = 0, then E, has type 2A¢, and E~(U U E;) C 2B. So each maximal toral

subgroup E; < FE has the form FE;, = U; x Uy, where rk(U;) = 2, rk(U3) < 2, and

o~

E;N2A = (U; UUy)\1. The hypotheses of (G) thus hold, and so E* ¢ Z.

Thus k = 1,2. If £ < 2, then E; is toral, and |mo(Cx(E))| = 8 - [mo(Cr(E,))| < 2°4F
by formula (8) in the proof of Lemma A.14. (Note that ¢ = 1 and n = 0 in the notation
of that formula.) If ¢ = 3, then |mo(Cx(E))| = 2°*% by the argument just given for
Fy(K). Also, Aut(E) contains all automorphisms of £ which normalize Ey, and either
normalize UE, and Fs or (if £ = 3) exchange them: since in the notation of (C), each
such automorphism extends to an automorphism of Ws which normalizes F; and F5. So
|Oa(Auty(E))| > 2kB+0 " and Autg(E)/Oz(Auty(E)) = GL3(2) x GLg(2) x GL(2) or (if
(= 3) (GL3(2) 1 Ca) x GLk(2). In all cases, 6(Auty(E)) > 2543 > | (C5(E))|, so
E¢2Z.

Case 2: Now assume that G = Es, and that E is G-conjugate to a subgroup of Wy. To
simplify the argument, we assume that £ < W, and then prove that no subgroup £* € Z
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can be G-conjugate to E. Recall that Wy = T(2)(0), where § € N, @(T) inverts the torus and
HT(Q) C 2B.

If EN2A = @, then tk(E) = 5. In this case, Aut;(E) = GL;(2) and |Cg(E)| = 2" [CG,
Proposition 3.8]. (Cohen and Griess work in Eg(C), but their argument also holds in our
situation.) Since 0(GLs(2)) > 2'° by Lemma A.5(d), no E* € Z can be G-conjugate to E.

Now assume £ has 2A-elements, and set £y = (£ N 2A). Then E, < Ty (hence qg, is
quadratic) by the above remarks. Set F; = Fy N Ey and Ey = Ker(qg,). If Fy = 1 and
rk(FEy) # 7, then by (G), no subgroup of S which is G-conjugate to E lies in Z.

It remains to consider the subgroups F for which Ey # 1 or rk(E;) = 7. Information

about |Oq(Autg(E))| and |mo(Cx(E))| for such E is summarized in Table A.1. By the “type
of qg” is meant the type of quadratic form, in the notation used in the proof of Lemma A.14.

Case nr. 1] 2 3 4 5 6 7 8 9 |10 | 11 | 12 | 13
rk(E/E,) 1111|111 ]1]1]1|2]|2]2
rk(E,/Ey) 716 5 |4 |4t |4 3 | 3 |27 |27] 1|11
rk(E)) o 1| 1|21 |1]|2|1]2|1]3]2]1
type of qg, (7] | 16185, | [51(a) | 141Gy |41, | 141Gy | (81 2y | 181y | 121y | 1210y | [ sy | [M)ay | L]a)

|7r0(C@(E*))| <[ 29] 29 | 210 | 210 | 98 | 97 | 26 | 95 | 95 | 94 | 912 | 98 | 95

|02(Auté(E*)) 9T | 913 | 9l1 | 9ld | 99 | 99 | 91l | 97 | 98 | 95 [ 9ll | 98 | 95

§(Auté(E*))Z 913 | 917 [3.913| 916 | 910 | 910 | 912 | 9T | 99 | 95 | 9ld | 99 | 95
TABLE A.1.

We first check that the table includes all cases. If rk(E/E;) = 1, then Ey = ENT{y), and
the table lists all types which the form qg, can have. Note that since E5 is generated by
nonisotropic vectors, qg, cannot have type [2]?;6). If rk(E/Ey) = 2, then qg, is linear, and
must be one of the three types listed. Since ¢ BT, is quadratic and qg is not, Es has index
at most 2 in £/ N T o).

We claim that

E F < Wy, a € Iso(E, F) such that a(ENTy) =F N Tiy and a(Efﬂ 2A) = (10)
FN2A = a=cy for some t € T and some g € Ng(T) = G N Ng(T).
By (C) and Witt’s theorem (see [Ta, Theorem 7.4]), there is g € NG(T) such that a|gnr, =
¢y, and we can assume g € G by Lemma 2.9. Then 9E~IYE N T(y)) < 0T since 0T €
Z(N@(T))/T, S0 a = ¢4, for some t € T. This proves (10). In particular, any two subgroups
of Wy which have the same data as listed in the first three rows of Table A.1 are G-conjugate.

By (10), together with (E) when rk(E/E;) = 2, we have Autz(E) = Aut(E, qg) in all
cases. Thus Autz(E) is the group of all automorphisms of E which normalize Ey and FEj
and preserve the induced quadratic form on FEy/FEy. This gives the value for [Oa(Autg (£))|
in the table, and the lower bounds for §(Autg(£)) then follow from Lemma A.5.

In cases 1-6, the upper bounds for |mo(Cg(E))| given in the table are proven in [O2, p.
78-79]. In all cases, |mo(Cx(Es))| is first computed, using Proposition 2.5 or the upper bound
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given in formula (8) in the proof of the last lemma, and then |02, Proposition 8.8] is used
to compute an upper bound for |7y (C%(E))| / |0 (C . There is in fact an error in the
table on [02, p. 79] (the group C’G(EO) in the thlrd to last column should be SLy x SLy up
to finite cover), but correcting this gives in fact a better estimate |mo(Cg(E))| < 2°.

Case nr. 11 can be handled in a similar way. Set £, = ENT{) < E, so that |E/E;| =2 =
|E,/E,|. The form qg, has type [2]5 (3)> While Ej" has type 2B®. Hence |mo(Cx(Ey))| < 2 by

(8). By [02, Proposition 8.8], |mo(Cg(E))| < 2**", where r = dim(T) = 8.

To handle the remaining cases, fix rank 2 subgroups Fi, Fy < Tig) < G with involutions
of type AAA and ABB, respectively, and consider the information in Table A.2. The

dim(Cg(F;)(0, g)) for g as follows:
—I4 D ]4 —]2 D I6 order 4 | 2A | 2B

1| Fi(0) x PSpg(K) 20 24 16 16 | 20
2 || F»(0) x PSOs(K) 12 16 16 16 | 12
TABLE A.2.

description of Cg(Fj(0)) follows from (H). The third through fifth columns give dimensions
of centralizers of F;(0)(g), for g as described after lifting to Spg(K) or SOs(K). (Here,
I,, denotes the m x m identity matrix.) The last two columns do this for g € 2A or 2B,
respectively, when g € T{y) is orthogonal to F; with respect to the form g, and the dimensions
follow from (D). Thus elements of class 2B lift to involutions in Spg(K) or SOs(K) with
4-dimensional (—1)-eigenspace, while for ¢ = 1 at least, elements of class 2A lift to elements
of order 4 in Spg(K).

Thus in all of the cases nr. 7-13 in Table A.1, we can identify £ = F;(f) x F*, where
i=1innr. 7-10 or ¢ = 2 in nr. 11-13, and where F™* lifts to an abelian subgroup of Spg(K)
or SOs(K) (elementary abelian except for nr. 7-8). This information, together with the
following;:

H agroup, Z < Z(H), |Z| =p, Z < P < H a p-subgroup
= [Chyz(P)/Cu(P)/Z| < |P/Fx(P)]

(applied with H = Spg(K) or SOs(K)), imply the remaining bounds in the last line of Table
Al

In all but the last case in Table A.1, d(Auts(E)) > |mo(Cg(E))], so no E* € Zis G-
conjugate to E by Proposmon A4, In the last case, by the same proposition, F can be
G-conjugate to some E* € Z only if Aut- z(E) acts transitively on mo(Cg(E)) = C3 with
point stabilizers isomorphic to ¥3. By (10), each class in Oy(Autg(F)) is represented by some
element tg € N (E), where g € N¢(T) and t € T. In particular, (tg)o(tg) ' =to(t) ' € T.
So each class in the Oy(Autg(FE))-orbit of 1 € mo(Cx(E)) has nonempty intersection with
T. But by (9), C4(F)° NOT = @, so 0C4(E)° NT = @. Thus the action is not transitive

on 7y(C=(FE)), and hence E* ¢ Z. O

G
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