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Abstract. In this work, the fluid limit approach methodology is applied
to find a sufficient and necessary stability condition for the Basic Colla-
boration (BC) system with feedback allowed, which is a generalization of
the so-called W -model. In this queueing system, some customer classes
need cooperation of a subset of (non-overlapping) servers. We assume
that each customer class arrives to the system following a renewal input
with general i.i.d. inter-arrival times, and general i.i.d. service times are
also assumed. Priority is given to customer classes that can not be served
by a single server but need a cooperation.

Keywords: stability; fluid limit approach; Skorokhod problem; work-
load; BC system; W -model

1 Introduction

In this paper, we study a generalization of the so-called queueing W -model
which, in the simplest setting, consists of two single-server stations, 1, 2, and
three infinite-capacity buffers, 1, 2, 3, with independent renewal inputs of class-
k customers, respectively, k = 1, 2, 3. Server i processes class-i costumers,
i = 1, 2, but both servers are required to process class-3 customers which have
preemptive-resume priority. (For more detailed description see [9, 14].)

We generalize the W -model, which is in turn a particular case of the so-called
sparsely connected model [14]. More exactly, we consider a Basic Collaboration
(BC) system with J infinite buffer servers and K ≥ J customer classes. Each
customer class needs cooperation of a subset of (non-overlapping) servers (it is
called concurrent service). At the same time, there may be customer classes that
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only need a server to be served. Overlapping customer classes on a server can
only occur between a class that needs its cooperation with another server(s), and
a class that only needs it to be served, without cooperation. In this setting, to
keep work-conserving service discipline, we assume the mentioned priority of the
customer requiring cooperation. We assume i.i.d. general inter-arrival and i.i.d.
service times. Such a system is also called joint service model [10], or concurrent
server release [2]. Queueing systems with concurrent service have been considered
in a number of works, and pioneering ones are [12, 2, 17, 8]. For the buffer-less
(loss) concurrent service systems, the performance analysis has been developed in
a number of works [1, 11, 17, 16, 15]. However, analysis of the buffered concurrent
service system is much more challenging.

A comprehensive study of the concurrent service system has been developed
in [12], where the author used the matrix analytic method to deduce a stability
condition. However, this condition requires to solve a matrix equation of a large
dimension, and moreover, the corresponding matrices are not explicitly defined.
The authors of [13] study a multi-server system in which each customer requires
a random number of servers simultaneously and a random but identical service
time at all occupied servers, which describes the dynamics of modern high perfor-
mance clusters. They assume exponential distributions and an arbitrary number
of servers. In [13], a modification of the matrix-analytic method is developed to
obtain stability criterion of the simultaneous service model in an explicit form.
(Also see [13] for a broad bibliographic review on the subject including previous
references.) Note that the paper [14] considers various sparsely connected models
assuming saturated regime, while, in the present research, we are seeking for the
stability conditions.

Motivation. BC systems model real situations in which different agents are
able to work together to solve complex problems. Consider the following scenario
introduced in [18]. A user wishes to determine the best package price for a ski
trip given the following criteria: a resort in the Alps, for a week in February, with
slope-side lodging, and the lowest price for all expenses. To solve this problem,
an agent obtains a list of appropriate ski resorts from a database before spawning
other agents to query travel databases, possibly in different formats, for package
prices at those resorts in February. Agents can perform this task more efficiently
when they can correlate their results and adjust their computations based on
the outcome of a collaboration. Suppose the agents visit local travel agencies
and then share their intermediate results and collaborate before migrating to
another travel agency. If an agent determines that a particular resort does not
have any available lodging meeting the user’s criteria, the agents may determine
to drop queries about trips to that destination. As more information is gathered,
agents may also make other decisions. As this example demonstrates, agents can
perform complex distributed computations more effectively if they based on the
combined results. To do it, they can divide a complex task into smaller pieces
and delegate them to agents that migrate throughout the network to accom-
plish them. These agents perform computations, synchronously share results,
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and collaboratively determine any changes to future actions, giving service to
the user.

Another example are medical centers and hospitals, in which different types
of patients have different requirements concerning technical equipment, facilities,
doctors and nurses, which can be considered as the servers.

We give a brief summary of the research. The main contribution of this
work is that, in contrast to previous works on W -models and concurrent service
systems in general, we obtain stability condition, following fluid stability analysis
developed in [3]. Indeed, our model is more general than the Generalized Jackson
network in [3] (Section 5) , in which there is only one class of customers served at
each single-server station. Instead, in our model each server can serve more than
one class: at most one customer class requires cooperation with other servers
(multiserver customers), but no limit on the number of customer classes that do
not need cooperation (single-server customers). Note that multi-class customers
but in a single-station network have been considered in [3] (Section 6), as well.
In Theorem 1 we first establish the stability of the fluid limit model associated
to the BC system under sufficient condition. The fluid limit model, which allows
to transform the initial stochastic problem into a (related) deterministic one, is
introduced in Proposition 1. The stability of the fluid limit model means that
the fluid limit of the queue-size process reaches zero in a finite time interval
and stays there. Then, using stability of the fluid limit model and Theorem 4.2
[3], we deduce positive Harris recurrence of the basic Markov process describing
the network. Similarly to [3], functional laws of large numbers for the renewal
processes or, in other words, the hydrodynamic scaling by the increasing value of
the initial state, are used to obtain the stability of the fluid limit model via the
solution of a Skorokhod problem. At that, the choice of an appropriate Lyapunov
function is the key point of analysis. By the same approach, we show that if the
necessary condition is violated, then the fluid limit model is weakly unstable. It
means that, if the process starts at zero, then there exists a time at which the
fluid limit of the queue-size process becomes positive. As a result, by Theorem
3.2 [4], the queueing network is unstable: the queue size grows infinitely with
probability (w.p.) 1 as time increases.

The paper is organized as follows. In section 2, we give notation and describe
the BC in more detail, introducing the associated queueing network equations.
Section 3 contains fluid stability analysis, at that, in section 3.1, the fluid limit
model is constructed, and the proof of stability condition is given in section 3.2
(Theorem 2).

2 Notation and description of the BC

We first give basic notation. Vector are column vectors and (in)equalities are
interpreted component-wise. vT denotes the transpose of a vector (or a matrix).
For any integer d ≥ 1, let Rd

+ = { v ∈ Rd : v ≥ 0 }, Zd
+ = { v = (v1, . . . , vd)

T ∈
Rd : vi ∈ Z+ } . For a vector v = (v1, . . . , vd)

T ∈ Rd, let |v| = ∑d
i=1 |vi| . We
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denote diag(v) the diagonal matrix with diagonal entries being the components
of vector v, and I is the d-dimensional identity matrix. We say that a sequence
of vectors {vn}n≥1 converges to a vector v as n → ∞ if |vn− v| → 0, and denote
it as lim

n→∞
vn = v . (This convergence is equivalent to the component-wise con-

vergence.) For n ≥ 1, let φn : [0, ∞) → Rd be right continuous functions having
limits on the left on (0, ∞), and let function φ : [0, ∞) → Rd be continuous. We
say that φn converges to φ as n → ∞ uniformly on compacts (u.o.c.) if for any
T ≥ 0,

||φn − φ||T := sup
t∈[0,T ]

|φn(t)− φ(t)| → 0 as n → ∞ ,

and write it as lim
n→∞

φn = φ . If function φ is differentiable at a point s ∈ (0, ∞)

then s is a regular point of φ, and we denote the derivative by φ̇(s).

Recall that we consider a BC system with J infinite buffer servers and K ≥ J
customer classes. In what follows, we use index k to denote the quantities related
to class-k customers, k ∈ {1, 2, . . . ,K}. Let s(k) ⊂ {1, . . . , J} be the set of servers
that need to work together to service a class-k customer. Note that the capacity
#s(k) ≥ 1 and that, if #s(k) = 1, then server collaboration is not required.
Evidently, ∪K

k=1s(k) = {1, . . . , J}, and we assume non-overlapping property: for
each two classes k 6= k′,

s(k) ∩ s(k′) = ∅ if min{s(k), s(k′)} > 1.

Define the customer classes C(j) = {k = 1, . . . ,K : j ∈ s(k)} served by server
j ∈ {1, . . . , J}, and assume that, for each j, the capacity

#{k ∈ C(j) : #s(k) > 1} ≤ 1.

In other words, at most one class may capture a given server for cooperation.
To obtain work-conserving (or non-idling) discipline, we assume that multiserver
customers have preemptive-resume priority.

Let ξk(i), i ≥ 2, be the independent identically distributed (i.i.d.) inter-
arrival times of the ith class-k customers arriving from outside the system after
instant 0, and let ηk(i), i ≥ 2, be the i.i.d. service times of the ith class-k
customers finishing service after instant 0 (this is time required by any server in
the set s(k)). All sequences are assumed to be mutually independent. We denote
the generic elements of these sequences by ξk and ηk, respectively. The residual
arrival time ξk(1) of the first class-k customer entering the network after instant
0 is independent of {ξk(i), i ≥ 2}. Also the residual service time ηk(1) of a class-
k customer initially being served, if any, is independent of {ηk(i), i ≥ 2}, and
ηk(1) =st ηk if class k is initially empty.

For each k = 1, . . . ,K, we impose the following standard conditions [3]:

E ηk < ∞ , (1)

E ξk < ∞ , (2)

P(ξk ≥ x) > 0 , for any x ∈ [0, ∞) . (3)
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Then, in particular, the arrival rate αk := 1/Eξk ∈ (0, ∞) and the service
rate µk := 1/Eηk > 0, and we denote α = (α1, . . . , αK)T and µ = (µ1, . . . , µK)T .
Also we assume that the inter-arrival times are spread out, that is, for some
integer r > 1 and functions fk ≥ 0 with

∫∞
0 fk(y) dy > 0,

P
(
a ≤

r∑

i=2

ξk(i) ≤ b
)
≥

∫ b

a

fk(y) dy, for any 0 ≤ a < b . (4)

A class-k customer, when finishes service, re-enters the system and becomes
class-ℓ customer with a probability Pkℓ ∈ [0, 1). Then, with probability 1 −∑K

ℓ=1 Pkℓ ≥ 0, class-k-customer leaves the system upon service. Thus, P :=
(Pkℓ)

K
k,ℓ=1 is the (sub-stochastic) routing (or flow) matrix of the network. It is

assumed that spectral radius of P is strictly less than 1, and hence, the inverse
matrix Q = (I −PT )−1 is well defined. Define vector λ = (λ1, . . . , λK)T as (the
unique) solution to the traffic equation

λ = α+ PT λ, equivalently, λ = Qα,

where λk can be interpreted as the potential long run arrival rate of class-k
customers into the system. Let ρj =

∑
k∈C(j)

λk/µk be the traffic intensity for

server j, and ρ := (ρ1, . . . , ρJ)
T .

Now we introduce the following primitive processes describing the dynamics
of the queueing network:

the exogenous arrival process E = {E(t) := (E1(t), . . . , EK(t))T , t ≥ 0},
where

Ek(t) = max {n ≥ 1 :
n∑

i=1

ξk(i) ≤ t}

is the total number of class-k arrivals from outside to the system in interval
[0, t]. We also introduce the process S = {S(t) := (S1(t), . . . , SK(t)), t ≥ 0},
where the renewal process

Sk(t) = max {n ≥ 1 :

n∑

i=1

ηk(i) ≤ t}

is the total number of class-k customers that would be served in interval [0, t],
provided all servers from s(k) devote all time to class-k customers. (By definition,
E(0) = S(0) = 0.) The routing process Φ = {Φ(n)}n∈N is defined as follows:

Φk(n) =

n∑

i=1

φk(i) ,

where, for each i ∈ N, K-dimensional vectors φk(i) = {φk
ℓ (i), ℓ = 1, . . . , K} are

i.i.d. (independent of the inter-arrival and service time processes), with at most
one component equals 1, and the rest components being equal 0. If φk

j (i) = 1 then
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the ith class-k customer becomes class-j, while φk(i) = 0 means the departure
from the network.

Now we introduce the descriptive processes to measure the performance of the
network. For any t ≥ 0 and k, let Ak(t) be the number of class-k arrivals (from
outside and by feedback) by time t, Dk(t) be the number of class-k departures
(to other classes or outside the system), and let Zk(t) be the number of class-k
customers being served at time t, so Zk(t) ∈ {0, 1} . Also let Tk(t) be the total
service time devoted to class-k customers in interval [0, t]. Denote Yj(t) the idle
time of server j in [0, t], and let Qj(t) be the number of customers in the buffer
of station j at time t, j ∈ {1, . . . , J}. In an evident notation, processes D, T and
Y are non-decreasing and satisfy initial conditions D(0) = T (0) = Y (0) = 0. We
note that A(0) = 0, and assume that Z(0) and Q(0) are mutually independent
and independent of all above given quantities.

For each t and k, we define the remaining time Uk(t) until the next exogenous
class-k arrival, and the remaining service time Vk(t) of class-k customer being
served at time t, if any. We introduce (in an evident notation) processes U and
V , assume that they are right-continuous, and define Vk(t) = 0 if Zk(t) = 0.
Note that Uk(0) = ξk(1), while Vk(0) = ηk(1) if Zk(0) = 1 . Now we define
the process X = {X(t), t ≥ 0} describing the dynamics of the network, where
X(t) := (Q(t), Z(t), U(t), V (t))T, with the state space X = ZK

+ ×{0, 1}K×RK
+ ×

RK
+ . The process X is a piecewise-deterministic Markov process which satisfies

Assumption 3.1 [5], and is a strong Markov process (p. 58, [3]).
We define the workload process W = {W (t) := (W1(t), . . . , WJ(t))

T , t ≥ 0},
where Wj(t) is the (workload) time needed to complete service of all class-k
customers present in the system at time t, for any k ∈ C(j). We introduce the
cumulative service time process

Υ = {Υ (n) := (Υ1(n1), . . . , ΥK(nK))T , n = (n1, . . . , nK) ∈ NK},
where Υk(nk) is the total amount of service time of the first nk class-k customers
(including the remaining service time at time 0 for the first one), by any of the
servers in the set s(k). Note that this time is the same for each server from s(k),
and that Υk(0) = 0.

The following queueing network equations, which are easy to verify, hold for
all t ≥ 0, k = 1, . . . ,K and j = 1, . . . , J :

A(t) = E(t) +

K∑

k=1

Φk(Dk(t)) , (5)

Dk(t) = Sk (Tk(t)) , (6)

Qk(t) = Qk(0) +Ak(t)−
(
Dk(t) + Zk(t)

)
, (7)

∑

k∈C(j)

Tk(t) + Yj(t) = t , (8)

∫ ∞

0

Wj(t) d Yj(t) = 0 , (9)

W (t) = C
(
Υ (Q(0) +A(t)) − T (t)

)
, (10)
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where e = (1, . . . , 1)T ∈ Rd and C is the J ×K matrix defined by:

Cjk =

{
1, if j ∈ s(k), equivalently, if and only if k ∈ C(j),

0, otherwise.

Note that equation (9) reflects the work-conserving property introduced above.
Also we note that equation (8) can be written as C T (t) + Y (t) = t e.

We assume that the service discipline is head-of-the-line (HL): only the oldest
customer of each class can receive service. It gives the additional equation:

Υ (D(t)) ≤ T (t) < Υ (D(t) + e) . (11)

3 Stability Analysis of the BC system

By definition, a queueing network is stable if its associated underlying Markov
process X is positive Harris recurrent, that is, it has a unique invariant probabi-
lity measure. To prove stability of the network it is enough to establish stability
of the associated fluid limit model [3].

3.1 The fluid limit model

Now we present, without proof, an analogue of Theorem 4.1 [3] (see also Propo-
sition 1 [7]). If X(0) = (Q(0), Z(0), U(0), V (0))T = x, then we denote X as Xx

(and analogously, for the processes E, S, D, T, Y, W ).

Proposition 1. Consider the BC system. Then, for almost all sample paths
and any sequence of initial states {xn}n≥1 ⊂ X with limn→∞ |xn| = ∞, there
exists a subsequence {xnr}r≥1 ⊆ {xn}n≥1 with limr→∞ |xnr | = ∞ such that the
following limit

lim
r→∞

1

|xnr |
Xxnr (0) := X̄(0) , (12)

exists, and moreover the following u.o.c. limit exists for each t ≥ 0,

lim
r→∞

1

|xnr |
(
Xxnr (|xnr |t), Dxnr (|xnr |t), T xnr (|xnr |t), Y xnr (|xnr |t), W xnr (|xnr |t)

)

:=
(
X̄(t), D̄(t), T̄ (t), Ȳ (t), W̄ (t)

)
, (13)

where (in evident notation)

X̄(t) :=
(
Q̄(t), Z̄(t), Ū(t), V̄ (t)

)
T ,

and the components of vectors Ū(t), V̄ (t) have, respectively, the form

Ūk(t) = (Ūk(0)− t)+ , V̄k(t) = (V̄k(0)− t)+, k = 1, . . . ,K . (14)
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Furthermore, the following equations are satisfied for any t ≥ 0, k = 1, . . . ,K
and j = 1, . . . , J :

Ā(t) = t α+ PT D̄(t) , (15)

D̄(t) = M−1 T̄ (t) , (16)

Z̄k(t) = 0 , (17)

Q̄(t) = Q̄(0) + Ā(t)− D̄(t) = Q̄(0) + t α− (I − PT ) D̄(t) , (18)

C T̄ (t) + Ȳ (t) = t e , (19)
∫ ∞

0

W̄j(t) d Ȳj(t) = 0 , (20)

W̄ (t) = C
(
M (Q̄(0) + Ā(t))− T̄ (t)

)
= CM Q̄(t) , (21)

where diagonal matrix M is defined as

M = diag
(
(
1

µ1
, . . . ,

1

µk
)T

)
.

We note that

ρ = CM λ. (22)

Any limit (X̄, D̄, T̄ , Ȳ , W̄ ) in (12), (13) is called a fluid limit associated with
the BC system, [3]. Thus, Proposition 1 states that any fluid limit associated
with the BC system satisfies the fluid model equations (15)-(21).

Remark 1. By Lemma 5.3 in [3], hereinafter we will assume without loss of
generality that Ū(0) = V̄ (0) = 0, which, by (14), implies Ū(t) = V̄ (t) = 0 for all
t > 0. We denote it Ū = V̄ = 0 and identify X̄ with Q̄.

Definition 1. The fluid limit (Q̄, D̄, T̄ , Ȳ , W̄ ) associated with a queueing net-
work is stable, if there exists t1 ≥ 0 (depending on the input and service rates
only) such that if |Q̄(0)| = 1, then

Q̄(t) = 0 for all t ≥ t1 . (23)

3.2 The stability criterion

Now we are ready to introduce and prove the stability criterion of the BC system,
following Theorem 5.1 [3]. As in [6], the crucial fact in the proof is that the fluid
limit W̄ turns out to be a part of a solution of a linear Skorokhod problem, while
the fluid limit process Q̄ is instead used in [3]. We note that in some settings,
the workload is better adapted to the use of the methodology of the Skorokhod
problems than the queue-size process. On the other hand, a key point in the
proof is the adequate choice of the Lyapunov function.

We prove the stability criterion under a technical Assumption (A) concerning

the routing matrix P . We first introduce the process W̃ as

W̃ (t) = CM QQ̄(t), t ≥ 0 .
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Assumption (A): The matrix P is such that for any t ≥ 0,

W̄j(t) = 0 if and only if W̃j(t) = 0, j = 1, . . . , J.

Remark 2. Assumption (A) is trivially accomplished if no feedback is allowed

since in this case P ≡ 0 and Q = I, implying W̃ = W̄ . For a non-trivial example
of W -model with J = 2 and K = 3 (see Introduction), we easily find that

P =




p11 0 0
0 p22 0
p31 p32 p33


 .

In other words, a feedback is allowed from class-j customers to class-j customers

(j = 1, 2), and from class-3 customers to any class. Since C =

(
1 0 1
0 1 1

)
for the

W -model, then we obtain

W̃1(t) =
1

µ1 (1 − p11)
Q̄1(t) +

( p31
µ1 (1− p11) (1 − p33)

+
1

µ3 (1− p33)

)
Q̄3(t) ,

W̃2(t) =
1

µ2 (1 − p22)
Q̄2(t) +

( p32
µ2 (1− p22) (1 − p33)

+
1

µ3 (1− p33)

)
Q̄3(t).

Because

W̄1(t) =
1

µ1
Q̄1(t) +

1

µ3
Q̄3(t) ,

W̄2(t) =
1

µ2
Q̄2(t) +

1

µ3
Q̄3(t) ,

and all coefficients are positive, then Assumption (A) holds.

Theorem 1. If the BC system with feedback given by fluid model equations (15)-
(21), satisfy conditions (1)-(4) and Assumption (A), then sufficient stability con-
dition is

max
j=1,...,J

ρj < 1, (24)

while maxj=1,...,J ρj ≤ 1 is the necessary stability condition.

Proof. Sufficiency: By the equations (15)-(21),

Ā(t) = t α+ PT
(
Q̄(0) + Ā(t)− Q̄(t)

)
,

implying

(
I − PT

)
Ā(t) = t α+ PT

(
Q̄(0)− Q̄(t)

)
.

It in turn implies

Ā(t) = t λ+QPT
(
Q̄(0)− Q̄(t)

)
. (25)
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By (25) we obtain

W̄ (t) = CM Q̄(0) + CM Ā(t)− C T̄ (t)

= CM Q̄(0) + CM
(
t λ+QPT

(
Q̄(0)− Q̄(t)

) )
− t e+ Ȳ (t)

= CM Q̄(0) + (ρ− e) t+ CM QPT
(
Q̄(0)− Q̄(t)

)
+ Ȳ (t)

= CM QQ̄(0) + (ρ− e) t− CM QPT Q̄(t) + Ȳ (t) . (26)

Since W̄ (t) = CM Q̄(t), it then follows from (26) that

CM QQ̄(t) = CM QQ̄(0) + (ρ− e) t+ Ȳ (t) ,

or, denoting X̃(t) = CM QQ̄(0) + (ρ− e) t,

W̃ (t) = X̃(t) + Ȳ (t).

It is easy to check that the following properties hold:

a) X̃(·) has continuous paths with X̃(0) ≥ 0,

b) W̃ (t) ≥ 0 for all t ≥ 0,
c) Ȳ (·) has nondecreasing paths, Ȳ (0) = 0, and Ȳj(·) increases only at times

t such that W̄j(t) = 0 for j = 1, 2 (see (20)). By Assumption (A), Ȳj(·)
increases only when W̃j(t) = 0, j = 1, 2.

It follows that the paths of processes (W̃ , Ȳ ) are solutions of the continuous

dynamic complementarity problem (DCP) for X̃ (see Definition 5.1 [3]), also
known as the deterministic Skorokhod problem. Moreover, it is easy to check
that condition (5.1) in [3],

W̃ (s) + X̃(t+ s)− X̃(s) ≥ θ t ∀t, s ≥ 0 ,

is satisfied with θ := ρ− e. Therefore, by Lemma 5.1 [3],

˙̄Y (s) ≤ (e− ρ), if s ≥ 0 is a regular point of Ȳ (·). (27)

Define function f as

f(t) = |W̃ (t)| = eT W̃ (t).

It follows that

f(t) = eT (X̃(t) + Ȳ (t)) = f(0) + eT ((ρ− e) t+ Ȳ (t))

= f(0) +

J∑

j=1

(
(ρj − 1) t+ Ȳj(t)

)
. (28)

Assume that t > 0 is a regular point for W̃ (equivalently, for Ȳ ).
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If f(t) > 0, then there exists j0 ∈ {1, . . . , J} such that W̃j0(t) > 0, implying
˙̄Yj0(t) = 0, by Assumption (A) and (20). Hence, by (28) and (27),

ḟ(t) =

J∑

j=1

(
(ρj − 1) + ˙̄Yj(t)

)
= (ρj0 − 1) +

∑

j 6=j0

(
(ρj − 1) + ˙̄Yj(t)

)

≤ ρj0 − 1 ≤ max
j=1,...,J

ρj − 1 = −κ,

where κ = 1−maxj=1,...,J ρj > 0 by assumption. As f is a nonnegative function

that is absolutely continuous and, for almost surely all regular points t, ḟ(t) ≤ −κ
whenever f(t) > 0, then, by Lemma 5.2 [3], f is non increasing and f(t) = 0 for
t ≥ f(0)/κ. That is,

W̃ (t) = 0, t ≥ δ :=
|W̄ (0)|

1−maxj=1,...,J ρj
.

Finally, by Assumption (A) and (21), W̃ = 0 if and only if Q̄ = 0. Moreover,
since

|W̃ (t)| = |CM QQ̄(t)| =
J∑

j=1

( ∑

k∈C(j)

akjQ̄k(t)
)
,

where akj depends on µ and matrix Q = (qkℓ)k,ℓ=1,...,K . More exactly, 0 ≤ akj ≤
MK , for any k = 1, . . . ,K and j = 1, . . . , J , where

MK =
(

max
k=1,...,K

max
ℓ=1,...,K

qkℓ
) (

max
k=1,...,K

1

µk

)
K > 0.

Then,
|W̃ (t)| ≤ J MK |Q̄(t)|,

and we obtain

Q̄(t) = 0, t ≥ J MK |Q̄(0)|
1−maxj=1...,J ρj

≥ 0.

It means that the fluid model is stable (by Definition 1), and Theorem 4.2 [3]
ensures the stability of the queueing network.

Necessity: To prove the necessity of condition maxj=1,...,J ρj ≤ 1, we assume
ρj0 > 1 for some j0 ∈ {1, . . . , J}. Consider the non-negative function

g(t) = W̃j0(t) = g(0) + (ρj0 − 1) t+ Ȳj0(t) ≥ (ρj0 − 1) t > 0, t > 0.

Then W̃j0(t) > 0, which is equivalent to W̄j0(t) > 0 by Assumption (A). By
(21),

W̄j0 (t) =
∑

k∈C(j0)

1

µk
Q̄k(t) ,

and hence Q̄(t) 6= 0, finishing the proof. �
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We note that in practice, condition (24) can be treated as stability criterion
which, for the W -model in Remark 2, becomes

max{ρ1, ρ2} < 1,

where

ρ1 = α1
1

µ1 (1 − p11)
+ α3

( p31
µ1 (1 − p11) (1− p33)

+
1

µ3 (1− p33)

)

ρ2 = α2
1

µ2 (1 − p22)
+ α3

( p32
µ2 (1 − p22) (1− p33)

+
1

µ3 (1− p33)

)
.

This can be easily seen since ρ = CM Qα,

CM =




1
µ1

0 1
µ3

0 1
µ2

1
µ3




and

Q = (I − PT )−1 =




1
1−p11

0 p31

(1−p11) (1−p33)

0 1
1−p22

p32

(1−p22) (1−p33)

0 0 1
1−p33




.

If the model does not allow feedback, then pij = 0 for all i, j = 1, 2, 3, and

ρ1 =
α1

µ1
+

α3

µ3
, ρ2 =

α2

µ2
+

α3

µ3
.

4 Conclusion

We consider a Basic Collaboration queueing system, which is a multiclass queue-
ing system with feedback, that generalizes the so-calledW -model [14]. In the sys-
tem, some customer classes cooperate to be served by a subset of non-overlapping
servers. We apply the fluid limit approach methodology [3] to find stability con-
dition of the system.
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