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Abstract

In this article we study the family of quadratic Riccati differential systems. This family

was studied before and phase portraits were given but the complete topological classifica-

tion was still missing. Our first goal in this work is to provide the complete topological

classification of this family of systems and we obtained a total of 119 phase portraits either

non-degenerate or degenerate. Furthermore we not only provide the complete topological

classification but we also give the full bifurcation diagram of this family in the 12 parameter

space of coefficients of the systems. This bifurcation diagram is given in terms of invariant

polynomials and it is thus completely independent of the normal forms in which the systems

may be presented. This bifurcation diagram provides an algorithm to decide for any given

quadratic system in any form it may be presented, whether it is a Riccati system or not,

and in case it is to specify its phase portrait. All this was made possible because the authors

exploited to the full the algebraic geometric properties of this class of systems, namely that

this is the family of quadratic systems that either have two parallel invariant straight lines

or are limit points within quadratic systems of this more generic subfamily. We also provide

a critical review of previous work on the quadratic Riccati family.

1 Introduction and the statement of the main theorem

We consider here polynomial differential systems

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where P,Q ∈ R[x, y] i.e. P,Q are polynomials in x, y with real coefficients. We call degree of

a system (1) the number m̃ = max(deg(P ),deg(Q)). Among the planar polynomial differential

systems the simplest are the quadratic ones, i.e. m̃ = 2 and they are of the form:

dx

dt
= a+ cx+ dy + gx2 + 2hxy + ky2,

dy

dt
= b+ ex+ fy + lx2 + 2mxy + ny2. (2)

We call cubic a system (1) with m̃ = 3.

Studies on some quadratic systems are old as it is the case with the Riccati systems. They

go back over 300 years (see [12] for their history).
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Definition 1.1. The quadratic Riccati systems are of the form:

dx

dt
= a+ cx+ gx2,

dy

dt
= b+ ex+ fy + lx2 + 2mxy + ny2. (3)

Notation 1.1. We denote the family of quadratic Riccati differential systems by the symbol

QSRic.

As indicated in [12] the first time that Riccati equations occurred in the literature was in

1694 in a paper of Johann I. Bernoulli. They are however called after Jacopo F. Riccati who

first mentioned them in 1718 in a letter to Giovanni Poleni, where the Riccati equations were not

necessarily quadratic. Apart from Johann I. Bernoulli, several members of the Bernoulli family

had contributions on this subject. Initially the problem was to solve the equations, at least in

some particular cases, using separation of variables. Seeing that for the higher degree equations

the generic case was hard to treat, Riccati proposed to consider the particular quadratic case.

This case proved to be useful in areas of applied mathematics, for example in control theory.

For more applications consult [13].

In [13] the authors say in their abstract that they “give the complete description of the phase

portraits in the Poincaré disk (i.e. in the compactification of R2 adding the circle S1 of the

infinity) modulo topological equivalence” of the Riccati systems with n(b2 + e2 + l2) ̸= 0. The

motivation for this exclusion was firstly that for n = 0 the systems are Liénard and secondly

that in case b = e = l = 0 the systems are Bernoulli equations. We point out however that any

Bernoulli system can be transformed by only using a translation y → y+α, α ̸= 0 into a Riccati

system with new coefficients a, c, g, b′, e′, f ′, l′,m′, n′ such that b′2 + c′2 + l′2 ̸= 0 and hence it is

useless to add this restriction.

The problem of classifying topologically any quadratic family of equations is global in the

parameter space as we want phase portraits on the Poincaré disk for all values of the parameters

of the equations. In particular the Riccati family depends on nine parameters (modulo rescaling

only eight) and clearly we expect to have many phase portraits. It is therefore convenient to split

the family into smaller ones where we have fewer phase portraits and hence we have a better

control not to miss any.

In [13] the authors’ starting point was to do exactly this, i.e. to split the Riccati family into

several smaller families which have far fewer phase portraits. They provided five normal forms

that cover the whole Riccati family, each one with fewer parameters. Their main theorem says

that they obtained 74 phase portraits. To prove their theorem the authors used the classical

method, i.e. firstly one calculates the finite singularities and their local phase portraits (topo-

logical types), then one passes to the calculation of the infinite singularities and their types and

afterwards one tries to complete the study by determining the separatrices, the connections and

the limit cycles if they exist. At the end however they still missed some portraits. In order

to avoid missing phase portraits or repeating them and also to obtain a truly global picture

allowing the gluing together of normal forms it is convenient to use algebraic invariants as the

ones introduced in Section 2. These are based on the algebraic invariant theory developed by

Sibirski and his school [24].

At the beginning of this century global geometric tools began to be used see for example

[14,16]. Furthermore using these tools together with polynomial invariants a number of families

of quadratic or cubic differential systems were topologically classified.

An interesting case is the study of all Lotka-Volterra differential systems, well known for

their many applications. We recall that a Lotka-Volterra differential system is defined to be

a quadratic system (1) with P (x, y) = x(ax + by + c) and Q(x, y) = y(dx + ey + f), with

a, . . . , f ∈ R.
As in the Riccati family the phase portraits of the Lotka-Volterra family were studied first

by using only the classical methods and three papers were written in this way, none of them
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complete and each of them with repeated phase portraits and some with errors.

These Lotka-Volterra systems have an algebraic geometric property, namely they possess

two distinct real invariant lines (x = 0, y = 0) intersecting in the finite plane (at (0, 0)). This

geometric property actually defines them as any quadratic system possessing two real invariant

lines intersecting at a finite point can be brought via an affine transformation to one of this form.

To obtain the global topological classification the authors of [22] used this algebraic geometric

property valid for all Lotka-Volterra systems and the notion of configuration of invariant lines

introduced by them in [16].

Definition 1.2. We call configuration of invariant lines (or simply configuration) of a system

(1) the set of all its invariant lines (real or complex), each endowed with its own multiplicity and

together with all the real singular points of the system located on these lines, each one endowed

with its own multiplicity.

The notion of multiplicity of an invariant line was introduced in [16].

Definition 1.3. We say that an invariant straight line L(x, y) = ux+vy+w = 0, (u, v) ̸= (0, 0),

(u, v, w) ∈ C3 for a real polynomial differential system (S) has multiplicity m if there exists a

sequence of real polynomial systems (Sk) k ≥ 1 converging to (S), such that each (Sk) has m

distinct (complex) invariant straight lines Lj
k = uj

kx+ vjky + wj
k = 0, j = 0, . . .m, converging to

L = 0 as k → ∞, i.e. [uj
k : vjk : wj

k] → [u : v : w] as k → ∞ in P2(C) and this does not occur for

m+ 1.

An analogous definition of multiplicity of the line at infinity was also introduced in [16].

Definition 1.4. We say that the line at infinity is an invariant line of multiplicity m for a system

(S) of the form (1) if and only if there exists a sequence of systems (Si) of the form (1) tending

to (S) when i → ∞ and (Si) have m− 1 distinct invariant affine lines Lj
i = uj

ix+ vji y +wj
i = 0

(uj
i , v

j
i ) ̸= (0, 0), (uj

i , v
j
i , w

j
i ) ∈ C3, (j = 1, . . . ,m−1) such that for every j, (uj

i , v
j
i , w

j
i ) → (0, 0, 1)

and they do not have m invariant such lines Li
j j = 1, ...,m satisfying the above mentioned

conditions.

Note that in the previous definition the multiplicity is m because apart from the m− 1 lines

we must also take into account the line at infinity that is invariant.

In the above definitions the convergence of the systems means convergence of the coefficients

of the systems in the (N − 1)-dimensional sphere SN−1 after time rescaling by the square root

of the sum of the squares of the N = (m+ 1)(m+ 2) coefficients of the systems involved where

m = deg(S).

Definition 1.5. We call total multiplicity of invariant lines of a polynomial system (1) the sum

of multiplicities of all its invariant lines including the multiplicity of the line at infinity.

A quadratic system (1) is non-degenerate if the polynomials P,Q have no common real factors

other than constants.

Proposition 1.1 (Corollary 5 [1]). A non-degenerate quadratic system could have invariant

lines, including the line at infinity, of total multiplicity at most six.

Notation 1.2. We denote by QSL≥n, the family of non-degenerate quadratic systems possessing

invariant lines of total multiplicity at least n, ( 1 ≤ n ≤ 6).

Like in the case of the Lotka-Volterra differential systems the quadratic Riccati systems

have invariant lines so we can use this geometric property in order to first find their possible

configurations of invariant lines and classify the whole family in subfamilies of systems according

to their configurations.
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We note that although in the topological equivalence relation the presence of an invariant line

in a system does not count as it can be deformed by a homeomorphism, the affine transformations

preserve the invariant lines and the finer affine equivalence relation was thus instrumental in

better controlling the process of getting information and proving the result. Any polynomial

system (1) has singularities, but the condition to possess invariant lines is a substantial restriction

that turns out to be valuable for handling the large number of phase portraits. Furthermore

although a configuration of invariant lines is not a phase portrait it is at least part of one and

occasionally this information even leads to a single phase portrait. The presence of an invariant

line or the topological type of a singularity are both affine invariants.

The above observations show that whenever the systems have some algebraic geometric prop-

erty, it is useful to pay attention and use it for the topological classifications. In particular, the

family QSL≥2 is an interesting object to study and this provides us with additional motivation

for this work as QSRic ⊂QSL≥3 ⊂QSL≥2.

Our topological classification of QSRic was the only piece so far lacking in the global topolog-

ical classification of QSL≥3. Indeed, the case when we have two affine invariant lines intersecting

in the finite space is solved (if the lines are real this is the Lotka-Volterra case and if they are

complex this problem was solved in [23]). The Riccati systems cover the case of two parallel

lines, real or complex that intersect at infinity and their limiting cases.

All that remains to do in order to obtain the topological classification of QSL≥2 is to con-

struct all phase portraits of quadratic systems having exactly two invariant lines, both simple,

i.e. a real simple affine line and the line at infinity simple, or no affine invariant line and the line

at infinity double.

Knowing the configuration of invariant lines of a system gives a part of the information on

the phase portrait that can then be completed by adding what else is missing, for example the

proof of absence of limit cycles as it is the case for the quadratic Riccati family, or the proof

of presence of limit cycles a fact occurring in other families such as for example the family of

quadratic systems possessing two complex invariant lines intersecting at a finite point (see [23]).

Our goal in this paper is to obtain the topological classification of the quadratic Riccati family

(that is the classification of the phase portraits of this family in the Poincaré disk according to

the topological equivalence relation) and for this we rely on the geometric classification of this

family, by this meaning the classification in terms of configurations of invariant lines of this

family. For this last classification we rely on [10] where at the beginning we have the following

lemma:

Lemma 1.1. If a quadratic system (1) possesses two distinct parallel invariant affine lines (real

or complex) this system could be brought via a real affine transformation to a quadratic Riccati

system (3).

We denote by QSL2p the class of non-degenerate quadratic systems which via an affine

transformation could be brought to the canonical form (3). The notation QSL2p brings into

focus the principal property of Riccati systems, i.e. that generically they have two parallel

invariant lines.

In [10] all the configurations of invariant lines (real or complex) were obtained for the family

QSL2p. Also, the bifurcation diagram of these configurations in the 12-dimensional space of

coefficients of systems in this family was obtained in terms of invariant polynomials. To reach

our goal of obtaining the topological classification all that remains to be done is to obtain the

phase portraits for each one of the configurations.

We have QSRic ⊂QSL2p and any system in QSL2p is affinely equivalent to one in QSRic.

Clearly the two families QSRic and QSL2p thus have the same set of phase portraits. Our goal

now is to find all phase portraits of QSL2p.
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When in the systems of the Lemma 1.1 we have c2−4ag ̸= 0 then a+cx+gx2 splits into two

distinct factors giving two invariant straight lines intersecting at infinity, parallel to the y-axis.

But the family QSL2p contains also the limit cases, i.e. when c2 − 4ag = 0. If g = 0 and c ̸= 0

(or g = c = 0), systems (3) possess only one (respectively do not possess any) invariant straight

line in the direction x = 0. If a = c = 0 the y-axis x = 0 is a double affine line.

Theorem 1.1 ([10]). Assume that a quadratic non-degenerate system (S) belongs to QSL2p,

then (S) possesses one of the 111 distinct configurations of invariant straight lines presented in

Figures 1–4.

In this theorem we mentioned that the 111 configuration are distinct. We need to specify

when two configurations are to be considered as distinct or equivalently. We first introduce some

notions.

Suppose we have an invariant straight line l = ax + by + c = 0, with a, b, c ∈ R. Let

L = aX + bY + cZ = 0 be its projective completion in the complex projective plane P2(C).

Definition 1.6. We call total curve F (X,Y, Z) = 0 of a configuration C of invariant straight

lines with projective invariant straight lines Li = 0, where F =
∏

Lmi
i

∏
Zm, mi is the multi-

plicity of Li = 0 and m is the multiplicity of Z = 0.

Definition 1.7. We say that two configurations C1 and C2 of invariant straight lines are equiv-

alent if the following conditions are satisfied:

1) we have a bijection f from the set of invariant straight lines of C1 to the set of invariant

straight lines of C2;

2) for each straight line L of C1 we have a bijection r of the set of real singularities (finite

and infinite) of L to the set of real singularities of f(L), sending a finite (respectively infinite)

singularity to a finite (respectively infinite) singularity and preserving their multiplicities;

3) each such map r conserves the multiplicity of the real singular points considered as simple or

multiple singular points of the total curve F = 0.

Our goals in this paper are:

� to find all phase portraits of the family QSL2p;

� this classification should be done in the twelve parameters space R12 independently of the

normal forms the systems may be presented;

� to determine the bifurcation diagram of the phase portraits in the same space R12 of the

coefficients of systems.

Our main result in this paper is the following theorem:

Main Theorem. The following statements hold:

(i) The family QSL2p (as well as the family QSRic) possesses a total of 119 topologically

distinct phase portraits given in Figures 5 and 6.

(ii) The topological classification is done using algebraic invariants and hence it is independent

of the normal forms in which the systems may be presented.

(iii) The bifurcation diagram of the phase portraits of systems in the family QSL2p is done

in the twelve-dimensional parameter space R12 and it is presented in Diagrams j for j ∈
{5, 6, 7, 8}. These diagrams give an algorithm to determine for any given system if it belongs

or not to the family QSL2p and in case it belongs to this family, it gives the specific phase

portrait.
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Remark 1.1. Phase portraits for the quadratic Riccati family were given before in [13]. However

this is the first time that a complete topological classification of this family was achieved. This

family has numerous phase portraits and to be able to obtain a complete list of them we not only

relied on the classical methods but also used modern ones, practically all methods for topologically

classifying large families of quadratic systems available to us today. We give in the Appendix a

critical review of [13] that also sums up all the methods we used in this work.

The main tool we used for obtaining the global topological classification of this family was

the geometry of the systems expressed in their 111 distinct configurations of invariant straight

lines. The presence of the invariant straight lines was instrumental for obtaining most of the

phase portraits. These configurations were obtained in [10] and are presented here in Figures i

with i ∈ {1, 2, 3, 4}. We point out that this classification of configurations of the family QSL2p

was done in [10] in terms of algebraic invariants and hence it is independent of the normal forms

in which the systems may be presented. In [10] we also have the bifurcation diagrams of these

configurations.

The main idea of the proof of our main theorem is first to pick a specific configuration and then

follow the bifurcation diagram calculating the invariants that lead to the chosen configuration,

and then calculating its resulting normal form. Once we have this normal form we calculate the

phase portraits for that specific configuration by the usual classical method. Doing this for each

one of the 111 configurations of invariant invariant straight lines we obtain all the phase portraits

of the family QSL2p. We note that the splitting of this family into smaller families leading to

normal forms for these subfamilies is done here according to the geometry of the systems and

not in an arbitrary way, a fact that eliminates repeating calculations.

We also provide the bifurcation diagram of the phase portraits in the twelve-dimensional

space R12. This diagram, done in terms of algebraic invariants is also an algorithm for deciding

for any system given in any normal form if it is or not a Riccati system, and if it is then to

provide with its phase portrait.

As we see both geometric and algebraic tools were used. But for some configurations more

tools were needed. In the cases where there exist several potential phase portraits we needed to

rely on papers (on structurally stable [2], codimension 1 systems [4] and a paper on codimension

2 systems [8]) that have studied the realizability of those potential phase portraits. We also had

to check if these phase portraits were compatible or not with the geometric property expressed

in the existence of invariant straight lines as in Riccati systems. This geometric property of the

Riccati systems was instrumental in eliminating some of the potential phase portraits.

This paper thus relies on most of the diverse available techniques (geometric, algebraic,

analytical and topological) in the global topological classifications of families of planar polynomial

vector fields.

Our article is organized as follows: In Section 2 we exhibit the main polynomial invariants

that intervene in this classification. In Section 3 we present some preliminary results involving

the use of polynomial invariants, in particular we present the bifurcation diagram in the 12-

dimensional space of the parameters, in terms of invariant polynomials of the configurations of

the family QSL2p obtained in [10]. The actual calculation of the phase portraits of the Riccati

systems is done in Section 4 which is split into 5 subsections.

2 The main invariant polynomials associated to the class

QSRic

Consider quadratic systems of the form (2). It is known that on the set QS acts the group

Aff (2,R) of affine transformations on the plane (cf. [17]). For every subgroup G ⊆ Aff (2,R)
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we have an induced action of G on QS. We can identify the set QS of systems (2) with a

subset of R12 via the map QS−→ R12 which associates to each system (2) the 12–tuple ã =

(a, c, d, g, h, k, b, e, f, l,m, n) of its coefficients. We associate to this group action polynomials

in x, y and parameters which behave well with respect to this action, the GL–comitants (GL–

invariants), the T–comitants (affine invariants) and the CT–comitants. For their definitions as

well as their detailed constructions we refer the reader to the paper [17] (see also [5]).

Next we define the following 40 invariant polynomials needed for the class QSRic :
{
µ0, . . . , µ4, D, R, U, η, B1, B2, B3, M̃ , C2, θ, θ3, θ5, K̃, Ñ ,

D̃, H1, H3, . . . ,H12, H15, H16, D1, N1, N2, N5, N6, G2,G3

}
.

(4)

According to [5] (see also [9]) we apply the differential operator L = x ·L2 − y ·L1 acting on

R[ã, x, y] with

L1 =2a
∂

∂c
+ c

∂

∂g
+

1

2
d
∂

∂h
+ 2b

∂

∂e
+ e

∂

∂l
+

1

2
f

∂

∂m
,

L2 =2a
∂

∂d
+ d

∂

∂k
+

1

2
c
∂

∂h
+ 2b

∂

∂f
+ f

∂

∂n
+

1

2
e

∂

∂m
,

to construct several invariant polynomials from the set (4). More precisely using this operator and

the affine invariant µ0 = Res x
(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct the following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4, where L(i)(µ0) = L(L(i−1)(µ0)).

Using these invariant polynomials we define some new ones, which according to [5] are responsible

for the number and multiplicities of the finite singular points of (2):

D =
[
3
(
(µ3, µ3)

(2), µ2

)(2) −
(
6µ0µ4 − 3µ1µ3 + µ2

2, µ4

)(4)]
/48,

P =12µ0µ4 − 3µ1µ3 + µ2
2,

R =3µ2
1 − 8µ0µ2,

S =R2 − 16µ2
0P,

T =18µ2
0(3µ

2
3 − 8µ2µ4) + 2µ0(2µ

3
2 − 9µ1µ2µ3 + 27µ2

1µ4)−PR,

U =µ2
3 − 4µ2µ4.

In what follows we also need the so-called transvectant of order k (see [11], [15]) of two

polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

In order to construct the remaining invariant polynomials contained in the set (4) we first

need to define some elemental bricks which help us to construct these elements of the set.

We remark that the following polynomials in R[ã, x, y] are the simplest invariant polynomials

of degree one with respect to the coefficients of the differential systems (2) which are GL-

comitants:
Ci(x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, 2;

Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y), i = 1, 2.

Apart from these simple invariant polynomials we shall also make use of the following nine

GL-invariant polynomials:

T1 = (C0, C1)
(1)

, T2 = (C0, C2)
(1)

, T3 = (C0, D2)
(1)

,

T4 = (C1, C1)
(2)

, T5 = (C1, C2)
(1)

, T6 = (C1, C2)
(2)

,

T7 = (C1, D2)
(1)

, T8 = (C2, C2)
(2)

, T9 = (C2, D2)
(1)

.
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These are of degree two with respect to the coefficients of systems (2).

We next define a list of T -comitants:

Â(ã) = (C1, T8 − 2T9 +D2
2)

(2)/144,

B̂(ã, x, y) =
{
16D1(D2, T8)

(1)(3C1D1 − 2C0D2 + 4T2) + 32C0(D2, T9)
(1)(3D1D2

− 5T6+ 9T7) + 2(D2, T9)
(1)

(
27C1T4− 18C1D

2
1−32D1T2+32(C0, T5)

(1)
)

+ 6(D2, T7)
(1)

[
8C0(T8 − 12T9)− 12C1(D1D2+T7) +D1(26C2D1+32T5)

+ C2(9T4 + 96T3)
]
+ 6(D2, T6)

(1)
[
32C0T9 − C1(12T7 + 52D1D2)

− 32C2D
2
1

]
+ 48D2(D2, T1)

(1)(2D2
2 − T8) + 6D1D2T4(T8 − 7D2

2 − 42T9)

− 32D1T8(D2, T2)
(1) + 9D2

2T4(T6 − 2T7)− 16D1(C2, T8)
(1)(D2

1 + 4T3)

+ 12D1(C1, T8)
(2)(C1D2 − 2C2D1) + 12D1(C1, T8)

(1)(T7 + 2D1D2)

+ 96D2
2

[
D1(C1, T6t)

(1) +D2(C0, T6)
(1)

]
− 4D3

1D2(D
2
2 + 3T8 + 6T9)

− 16D1D2T3(2D
2
2+3T8) + 6D2

1D
2
2(7T6+2T7)−252D1D2T4T9

}
/(2833),

D̂(ã, x, y) =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6)− (C1, T5)
(1) − 9D2

1C2

+ 6D1(C1D2 − T5)
]
/36,

Ê(ã, x, y) =
[
D1(2T9 − T8)− 3(C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̂ (ã, x, y) =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0(D2, T9)

(1) − 9D2
2T4

+ 288D1Ê − 24(C2, D̂)(2) + 120(D2, D̂)(1) − 36C1(D2, T7)
(1)

+ 8D1(D2, T5)
(1)

]
/144,

K̂(ã, x, y) = (T8 + 4T9 + 4D2
2)/72,

Ĥ(ã, x, y) = (−T8 + 8T9 + 2D2
2)/72,

as well as the needed bricks:

A2(ã) = (C2, D̂)(3)/12, A8(ã) =
(
(D̂, Ĥ)(2), D2

)(1)
/8,

A11(ã) = (F̂ , K̂)(2)/4, A20(ã) =
(
(C2, D̂)(2), F̂

)(2)
/16,

A21(ã) =
(
(D̂, D̂)(2), K̂

)(2)
/16, A39(ã) =

(
((D̂, D̂)(2), F̂

)(1)
, Ĥ

)(2)
/64,

A42(ã) =
(
((D̂, F̂ )(2), F̂

)(1)
, D2

)(1)
/16.

Now we can define the remaining invariant polynomials of the set (4):

K̃(ã, x, y) = 4K̂ ≡ Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
,

M̃(ã, x, y) = (C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
,

Ñ(ã, x, y) = K̃ − 4Ĥ,

η(ã) = (M̃, M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
,

θ(ã) = − (Ñ , Ñ)(2)/2 ≡ Discrim
(
Ñ(ã, x, y)

)
;

θ3(ã) =A8 +A11,

B1(ã) =Res x

(
C2, D̃

)
/y9 = −2−93−8 (B2, B3)

(4)
,

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, D̃)(3),

B3(ã, x, y) = (C2, D̃)(1) ≡ Jacob
(
C2, D̃

)
,
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H1(ã) =−
(
(C2, C2)

(2), C2)
(1), D

)(3)
,

H3(ã, x, y) =(C2, D)(2),

H4(ã) =
(
(C2, D)(2), (C2, D2)

(1)
)(2)

,

H5(ã) =
(
(C2, C2)

(2), (D,D)(2)
)(2)

+ 8
(
(C2, D)(2), (D,D2)

(1)
)(2)

,

H6(ã, x, y) =16N2(C2, D)(2) +H2
2 (C2, C2)

(2),

H7(ã) = (Ñ , C1)
(2),

H8(ã) =9
(
(C2, D)(2), (D,D2)

(1)
)(2)

+ 2
[
(C2, D)(3)

]2
,

H9(ã) = −
(((

D̃, D̃)(2), D̃,
)(1)

, D̃
)(3)

,

H10(ã) =
(
(Ñ , D̃)(2), D2

)(1)
,

H11(ã, x, y) = 8Ĥ
[
(C2, D̃)(2) + 8(D̃,D2)

(1)
]
+ 3

[
(C1, 2Ĥ − Ñ)(1) − 2D1Ñ

]2
,

H12(ã, x, y) = (D̃, D̃)(2) ≡ Hessian(D̃),

H15(ã) =
(
(D̃, D̃)(2), −4Ĥ

)(2)
,

H16(ã) =14A4
2 −A2

2(10A20 + 33A21)− 2A2(15A39 +A42),

G2(ã) =8H8 − 9H5,

G3(ã) =(µ0 − η)H1 − 6η(H4 + 12H10).

We remark that the above invariant polynomials were constructed and used in [7, 20,21].

3 Preliminary results involving the use of polynomial in-

variants

The following two lemmas reveal the geometrical meaning of the invariant polynomials B1, B2,

B3, θ and Ñ .

Lemma 3.1 ( [16]). For the existence of an invariant straight line in one (respectively 2; 3

distinct) directions in the affine plane it is necessary that B1 = 0 (respectively B2 = 0; B3 = 0).

Lemma 3.2 ( [16]). A necessary condition for the existence of one couple (respectively, two

couples) of parallel invariant straight lines of a system (2) corresponding to a ∈ R12 is the

condition θ(a) = 0 (respectively, Ñ(a, x, y) = 0).

We remark that the invariant polynomials µi(ã, x, y) (i = 0, 1, . . . , 4) defined earlier are

responsible for the total multiplicity of the finite singularities of quadratic systems (2). Moreover

they detect whether a quadratic system is degenerate or not. More exactly, according to [9] (see

also [5] we have the following lemma.

Lemma 3.3. Consider a quadratic system (S) with coefficients a ∈ R12. Then:

(i) The total multiplicity of the finite singularities of this system is 4 − k if and only if for

every i such that 0 ≤ i ≤ k − 1 we have µi(a, x, y) = 0 in R[x, y] and µk(a, x, y) ̸= 0.

(ii) The system (S) is degenerate (i.e. gcd(p, q) ̸= constant) if and only if µi(a, x, y) = 0 in

R[x, y] for every i = 0, 1, 2, 3, 4.

On the other hand the invariant polynomials η, M̃ and C2 govern the number of real and

complex infinite singularities. More precisely, according to [24] (see also [17]) we have the next

result.

Lemma 3.4. The number of infinite singularities (real and complex) of a quadratic system in

QS is determined by the following conditions:
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(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M̃ ̸= 0;

(iv) 1 real if η = M̃ = 0 and C2 ̸= 0;

(v) ∞ if η = M̃ = C2 = 0.

Moreover, the quadratic systems (2), for each one of these cases, can be brought via a linear

transformation to the corresponding case of the following canonical systems (SI)− (SV ):

{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SIV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

Now we define the affine comitants which are responsible for the existence of invariant lines

for a non-degenerate quadratic system (2).

Let us apply a translation x = x′+x0, y = y′+y0 to the polynomials p(ã, x, y) and q(ã, x, y).

We obtain p̂(â(ã, x0, y0), x
′, y′) = p(ã, x′ + x0, y

′ + y0), q̂(â(ã, x0, y0), x
′, y′) = q(ã, x′ + x0, y

′ +
y0). Let us construct the following polynomials

Γi(ã, x0, y0) ≡ Res x′

(
Ci

(
â(ã, x0, y0), x

′, y′
)
, C0

(
â(ã, x0, y0), x

′, y′
))

/(y′)i+1,

Γi(ã, x0, y0) ∈ R[ã, x0, y0], (i = 1, 2).

Notation 3.1.

Ẽi(ã, x, y) = Γi(ã, x0, y0)|{x0=x, y0=y} ∈ R[ã, x, y] (i = 1, 2). (5)

Observation 3.1. We note that the polynomials Ẽ1(ã, x, y) and Ẽ2(ã, x, y) thus constructed are

affine comitants of systems (2) and are homogeneous polynomials in the coefficients a, . . . , n and

non-homogeneous in x, y and

degã Ẽ1 = 3, deg (x,y) Ẽ1 = 5, degã Ẽ2 = 4, deg (x,y) Ẽ2 = 6.

Notation 3.2. Let Ei(ã, X, Y, Z) (i = 1, 2) be the homogenization of Ẽi(ã, x, y), i.e.

E1(ã, X, Y, Z) = Z5Ẽ1(ã, X/Z, Y/Z), E2(ã, X, Y, Z) = Z6Ẽ2(ã, X/Z, Y/Z)

and H(ã, X, Y, Z) = gcd
(
E1(ã, X, Y, Z), E2(ã, X, Y, Z)

)
in R[ã, X, Y, Z].

The geometrical meaning of these affine comitants is given by the two following lemmas

(see [16]):
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Lemma 3.5. The straight line L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an

invariant line for a quadratic system (2) if and only if the polynomial L(x, y) is a common factor

of the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) over C, i.e.

Ẽi(a, x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2),

where W̃i(x, y) ∈ C[x, y].

Lemma 3.6. 1) If L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an invariant

straight line of multiplicity k for a quadratic system (2) corresponding to a point a ∈ R12then

L(x, y)]k | gcd(Ẽ1, Ẽ2) in C[x, y], i.e. there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2) such that

Ẽi(a, x, y) = (ux+ vy + w)kWi(a, x, y), i = 1, 2. (6)

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(E1, E2), in other words we

have Zk−1 | H(a, X, Y, Z).

In [10] the classification of the family QSL2p of quadratic differential systems possessing

two parallel invariant affine lines according to their configurations of invariant lines is given.

Since the family QSRic of quadratic Riccati systems is a subfamily of QSL2p it is clear that this

classification is a very useful one in order to classify topologically the family QSRic .

We mention that in [10, see Theorem 5.1] the authors determined the necessary and sufficient

conditions for an arbitrary non-degenerate quadratic system to belong to the family QSL2p .

We have the following lemma.

Lemma 3.7. An arbitrary quadratic system (2) belongs to the class QSL2p if and only if θ =

B1 = H7 = 0 and one of the following conditions is satisfied:

(i) If η > 0 then either Ñ ̸= 0, or Ñ = 0, θ3 = 0.

(ii) If η < 0 then Ñ ̸= 0.

(iii) If η = 0, M̃ ̸= 0 then either Ñ ̸= 0, or Ñ = 0, K̃ ̸= 0, θ3 = 0, or

Ñ = K̃ = 0, B2 ̸= 0, θ5 = 0, or Ñ = K̃ = B2 = 0.

(iv) If η = M̃ = 0, C2 ̸= 0 then either Ñ ̸= 0, or Ñ = B2 = 0.

(v) If η = M̃ = C2 = 0.

Remark 3.1. We point out that in the statement (iv) of the above lemma (which is the same as

in [10, see Theorem 5.1]) it is claimed that in the case Ñ = 0 the condition B2 = 0 is necessary

for a quadratic system to be in the class QSL2p . However this condition was omitted in Diagram

4 of [10]. Here we presented Diagrams 1 to 4 given in [10] but with the correction to Diagram 4

by addition of the corresponding branch.

According to [10, see Theorem 6.1] the next theorem describes all the configurations which

could have systems in QSL2p as well as the corresponding invariant criteria for their realization.

Theorem 3.1. If a quadratic non-degenerate system (S) belongs to the class of systems QSL2p,

then this system possesses one of the configurations of invariant lines indicated below if and only

if the corresponding conditions are satisfied respectively:

(i) For η > 0 the system (S) possesses one of the configurations given in Figure1 if and only

if one of the sets of conditions given in the Diagram 1 is satisfied, correspondingly.

(ii) For η < 0 the system (S) possesses one of the configurations given in Figure 2 if and only

if the one of the sets of conditions given in the Diagram 2 is satisfied, correspondingly.
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(iii) For η = 0 and M̃ ̸= 0 the system (S) possesses one of the configurations given in Figure 3 if

and only if one of the sets of conditions given in the Diagram 3 is satisfied, correspondingly.

(iv) For η = M̃ = 0 the system (S) possesses one of the configurations given in Figure 4 if and

only if one of the sets of conditions given in the Diagram 4 is satisfied, correspondingly.

4 Phase portraits of the Riccati systems

Theorem 4.1. If a quadratic system (S) belongs to the class of Riccati systems QSRic , then sys-

tem (S) possesses one of the following phase portraits if and only if the corresponding conditions

are satisfied respectively:

(i) For η > 0 a non-degenerate (respectively, degenerate) system (S) possesses one of the

phase portraits Ric. 1–Ric. 27 (respectively, Ric.D1–Ric.D3 ) given in Figure 5 (respec-

tively, Figure 6) if and only if one of the sets of conditions given in Diagram 5 is satisfied,

correspondingly.

(ii) For η < 0 a non-degenerate (respectively, degenerate) system (S) possesses one of the

phase portraits Ric. 28–Ric. 35 (respectively, Ric.D4, Ric. 28d and Ric. 35d) if and only

if one of the sets of conditions given in Diagram 6 is satisfied, correspondingly. The

phase portraits Ric. 28–Ric. 35 (respectively, Ric.D4) are given in Figure 5 (respectively,

Figure 6), whereas Ric. 28d and Ric. 35d are topologically equivalent to Ric. 28 and Ric. 35,

correspondingly.

(iii) For η = 0 and M̃ ̸= 0 a non-degenerate (respectively, degenerate) system (S) possesses

one of the phase portraits Ric. 36–Ric. 76 (respectively, Ric.D5–Ric.D18 and Ric. 53d) if

and only if one of the sets of conditions given in Diagram 7 is satisfied, correspondingly.

The phase portraits Ric. 36–Ric. 76 (respectively, Ric.D5–Ric.D18) are given in Figure 5

(respectively, Figure 6), whereas Ric. 53d is topologically equivalent to Ric. 53.

(iv) For η = M̃ = 0 a non-degenerate (respectively, degenerate) system (S) possesses one of the

phase portraits Ric. 28 and Ric. 77–Ric. 93 (respectively, Ric.D19–Ric.D26 and Ric. 28d)

if and only if one of the sets of conditions given in Diagram 8 is satisfied, correspondingly.

The phase portraits Ric. 28 and Ric. 77–Ric. 93 (respectively, Ric.D19–Ric.D26) are given

in Figure 5 (respectively, Figure 6), whereas Ric. 28d is topologically equivalent to Ric. 28.

Proof of Theorem 4.1: First of all we prove the following lemma.

Lemma 4.1. Consider an arbitrary quadratic system (2) and assume that its phase portrait

possesses a separatrix connection between two singularities p1 and p2 at least one of them being

finite. Suppose that this connection is not part of an invariant straight line. Then inside the

region R bordered by this separatrix and the segment p1p2 there necessarily exists either one

singularity or at least one of the points p1 or p2 is a non-elemental singularity which is α− (or

ω−) limit for orbits that reach the singular point inside the region R.

Proof: According to [3, Lemma 3.4] (see also [26]) if a straight line in a quadratic system passes

through two finite singularities p1 and p2 then either this straight line is invariant or the trajec-

tories of the flow cross the segment p1p2 in opposite direction as they cross the half lines ∞p1
and p2∞.

On the other hand by Lemma [3, Lemma 3.5] (see also [26]) the straight line connecting

one finite singular point and a couple of infinite singular points in a quadratic system is either
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Figure 1: The configurations of quadratic systems in QSL2p (case η > 0)

formed by trajectories or it is a line with exactly one contact point. This contact point is the

finite singularity. For the latter case the flow goes in different directions on each half line.
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Figure 2: The configurations of quadratic systems in QSL2p (case η < 0)

An orbit passing through a point inside R can neither have its α− nor ω−limit inside the

closure R of R. Thus the orbits must come from outside R and proceed by going out of it,

forcing then the existence of at least one contact point on the segment p1p2 which contradicts

Lemma 3.4 (or Lemma 3.5) from [3].

Corollary 4.1. If the phase portrait of a quadratic system possesses a separatrix connection

between two singularities p1 and p2 at least one of them being finite and the region R is defined

like in previous lemma and does not contain the required elements imposed by Lemma 4.1 then

the region R is empty and the separatrix connection is part of an invariant straight line.

Remark 4.1. We point out that Section 4.5 is dedicated to degenerate Riccati systems. According

to Lemma 5.2 (iii) from [5] a quadratic system is degenerate if and only if the conditions µi = 0

for all i ∈ {0, 1, 2, 3, 4} are fulfilled. So in what follows up to Section 4.5 we consider that systems

in QSRic are non-degenerate, i.e. at least one of the polynomials µi, i ∈ {0, 1, 2, 3, 4} does not

vanish.

Following Theorem 3.1 we consider the cases given by the following three invariant polyno-

mials: η, M̃ and C2.
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Figure 3: The configurations of quadratic systems in QSL2p (case η = 0 ̸= M̃)

4.1 The case η > 0

According to the Diagram 1 we examine two subcases: Ñ ̸= 0 and Ñ = 0.
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Figure 3 (continued): The configurations of quadratic systems in QSL2p (case η = 0 ̸= M̃)

4.1.1 The subcase Ñ ̸= 0

Since η > 0, according to [24] (see also [17]) we consider the following canonical form:

ẋ =a+ cx+ dy + gx2 + (h− 1)xy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2,
(7)

for which by Lemma 3.7 the conditions θ = B1 = H7 = 0 have to be fulfilled. As it was shown

in [10] forcing these conditions we arrive at the family of systems (11) (from [10]), i.e. we obtain

the following family of a Riccati systems:

ẋ =a+ cx+ gx2,

ẏ =b+ ex+ fy + (g − 1)xy + y2.
(8)
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Figure 4: The configurations of quadratic systems in QSL2p (case η = M̃ = 0)

We observe that for these systems µ0 = g2 ≥ 0 and since η > 0 considering [7] (see Diagram 1

on the page 36) we have the next remark.

Remark 4.2. In the case µ0 ̸= 0 (then µ0 > 0) systems (8) possess at infinity one saddle and

two nodes, all elemental.

Since by Lemma 3.1 the condition B2 = 0 is necessary for the existence of invariant lines at

least in two directions, we consider two possibilities: B2 = 0 and B2 ̸= 0. Even if in the Diagram

1 the case B2 = 0 follows after B2 ̸= 0 we begin here with B2 = 0. Our motivation is because in

the case B2 = 0 the systems belong to a higher codimension subfamilies and these subfamilies

form an skeleton from which the systems with B2 ̸= 0 will bifurcate.

4.1.1.1 The possibility B2 = 0. According to Diagram 1 we examine two cases: B3 ̸= 0

and B3 = 0.

4.1.1.1.1 The case B3 ̸= 0. Then by Lemma 3.1 we could not have invariant lines in

three directions and we examine the corresponding cases provided by Diagram 1. Following this

diagram we consider each one of the configurations of invariant lines in order to determine how

many topological phase portraits could be obtained from each one of the configurations.
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Diagram 1: The invariant criteria for configurations of systems in QSL2p (case η > 0)

1: µ0 ̸= 0, ÑH10 < 0⇒ Config. 4.13. Since we are in the class of quadratic systems possessing

invariant lines of total multiplicity 4 we shall use the classification given in [21]. According to this

classification the configuration Config. 4.13 leads to the two phase portraits: Portrait 4.13(a)
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Diagram 1 (continued): The invariant criteria for configurations of systems in QSL2p (case

η > 0)

and Portrait 4.13(b). However we have detected an inexactitude concerning these two phase

portraits. More exactly we have the next remark.

Remark 4.3. In Table 2 [21, page 55] it is claimed that in the case Ñ ̸= 0 we have Portrait

4.13(a) if G2 < 0 and Portrait 4.13(b) if G2 > 0. On the other hand in the proof of the Main

Theorem (see page 68) we find an opposite affirmation, i.e. we have Portrait 4.13(a) if G2 > 0

and Portrait 4.13(b) if G2 < 0. This is correct and in Table 2 the conditions G2 < 0 and G2 > 0

from the 3rd column and 1st and 2nd lines, respectively, must be interchanged.

We denote the phase portraits Portrait 4.13(b) and Portrait 4.13(a) by Ric. 1 and Ric. 2 .

For each branch of the Diagrams 1 to 4 for the configurations of the family QSL2p leading

to a specific configuration we find the phase portraits of the systems having that configuration

of invariant lines and complete these diagrams by adding the branch of these various phase

portraits. Many of these phase portraits have been encountered before in the papers on QSL≥3.

Since this paper is the first one that has the complete topological classification of Riccati systems,

we denote a phase portrait of the Riccati family by Ric. i starting with the two phase portraits

Ric. 1 and Ric. 2 just introduced here above and of course taking care not to repeat anyone of

these phase portrait in this list.

Thus considering Remark 4.3 we get Ric. 1 if G2 < 0 and Ric. 2 if G2 > 0.

2: µ0 ̸= 0, ÑH10 > 0, H9 ̸= 0 and either (i) H16 < 0 ⇒ Config. 4.9a or (ii) H16 > 0

⇒ Config. 4.9. We examine these two cases together because in the paper [21] (as well as

in [18]) there is omitted the configuration Config. 4.9a. This mistake was corrected in [10] (see

Remark 6.2 and Lemma 6.1) where a new invariant polynomial H16 was defined. This invariant
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Diagram 2: The invariant criteria for configurations of systems in QSL2p (case η < 0)

distinguishes these two configurations as it is indicated above. To be more precise we present

here jointly one result from [10] (see Lemma 6.1) and one result from [21] (see Table 2).

Lemma 4.2. Assume that for an arbitrary quadratic system (2) the conditions η > 0, θ = H7 =

B2 = 0, µ0B3H4H9 ̸= 0 and ÑH10 > 0 are satisfied. Then the configuration of the invariant

lines of this system corresponds to Config. 4.9a if H16 < 0 and to Config. 4.9 if H16 > 0. Moreover

the phase portrait of this system corresponds to one of the portraits given below if and only if the

corresponding set of the conditions hold:

Portrait 4.9(a) ⇔ G2 > 0, H4 > 0, G3 < 0;

Portrait 4.9(b) ⇔ either G2 > 0, H4 < 0 or G2 < 0;

Portrait 4.9(c) ⇔ G2 > 0, H4 > 0, G3 > 0.

Next we would like to distinguish which of these three phase portraits is generated by the

configuration Config. 4.9a and which by Config. 4.9.

Assume that for an arbitrary quadratic system (2) the conditions provided by Lemma 4.2

are satisfied. Then as it was shown in [10] (see the proof of Lemma 6.1), this system could be

brought via an affine transformation and time rescaling to the 2-parameter family of systems

ẋ = x2 − 1, ẏ = y(y + ax+ b). (9)
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Diagram 3: The invariant criteria for configurations of systems in QSL2p (case η = 0 ̸= M̃)

For these systems we calculate

H4 = −48a
[
(a− 2)2 − b2

]
, H16 = 180(b2 − a2)

[
(a− 2)2 − b2

]2
,

G2 = 13824(a− 1)(b2 − a2), G3 = 288a(a− 1)
[
(a− 2)2 − b2

]
.

Considering these expressions it is not too difficult to prove the following implications:
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Diagram 3 (continued): The invariant criteria for configurations of systems in QSL2p (case

η = 0 ̸= M̃)

� The conditions H16 < 0, G2 > 0 and H4 > 0 imply G3 > 0.

� The conditions H16 > 0 and G2 > 0 imply H4 > 0 and G3 < 0.

Therefore taking into account Lemma 4.2 we can state the next remark.
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Diagram 3 (continued): The invariant criteria for configurations of systems in QSL2p (case

η = 0 ̸= M̃)

Diagram 4: The invariant criteria for configurations of systems in QSL2p (case η = 0 = M̃)

Remark 4.4. (i) The configuration Config. 4.9a (i.e. H16 < 0) leads to the phase portrait

Portrait 4.9(b) if and only if either G2 < 0, or G2 > 0 and H4 < 0; and it leads to the phase

portrait Portrait 4.9(c) if and only if G2 > 0 and H4 > 0.

(ii) The configuration Config. 4.9 (i.e. H16 > 0) leads to the phase portrait Portrait 4.9(b)

if and only if G2 < 0 and to the phase portrait Portrait 4.9(a) if and only if G2 > 0.

We denote Portrait 4.9(b), Portrait 4.9(c) and Portrait 4.9(a) by Ric. 3, Ric. 4 and Ric. 5,

respectively.

3: µ0 ̸= 0, ÑH10 > 0, H9 = 0 ⇒ Config. 4.10. Considering [21] (see Table 2) and taking

23



Figure 5: The phase portraits of Riccati quadratic systems

into account the condition Ñ ̸= 0 we obtain that Config. 4.10 leads to one of the three possible

phase portraits, determined by the invariant polynomials H4 and G3. More exactly we have the
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Figure 5 (continuation): The phase portraits of Riccati quadratic systems

following classification of the corresponding phase portraits:

Portrait 4.10(a) ⇔ H4 > 0, G3 > 0;

Portrait 4.10(b) ⇔ H4 < 0;

Portrait 4.10(c) ⇔ H4 > 0, G3 < 0.

We denote Portrait 4.10(b), Portrait 4.10(c) and Portrait 4.10(a) by Ric. 6, Ric. 7 and Ric. 8,

respectively.

4: µ0 ̸= 0, H10 = 0 ⇒ Config. 4.22. Since Ñ ̸= 0 according to [21] we get Portrait 4.22(a) if

H1 > 0 and Portrait 4.22(b) if H1 < 0. We denote here Portrait 4.22(b) by Ric. 9 and Portrait

4.22(a) by Ric. 10.
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Figure 6: The phase portraits of Riccati degenerate quadratic systems

5: µ0 = 0, µ2 ̸= 0, H9 ̸= 0 ⇒ Config. 4.16. By [21] we get Portrait 4.16(a) if G2 > 0 and

Portrait 4.16(b) if G2 < 0. We denote Portrait 4.16(b) and Portrait 4.16(a) by Ric. 11, and

Ric. 12, respectively.

6: µ0 = 0, µ2 ̸= 0, H9 = 0 ⇒ Config. 4.17. According to [21, Table 2] this configuration leads

to the unique phase portrait which we denote by Ric. 13.

7: µ0 = 0, µ2 = 0 ⇒ Config. 4.34. In this case according to [21] (see page 56, Table 2)

we could have only two phase portraits: Portrait 4.34(a) and Portrait 4.34(b). Moreover it is

claimed that first phase portrait is defined by the condition H4 < 0 and the second one by the

condition H4 > 0.

However we have detected an error in this paper. More precisely the next remark is valid.

Remark 4.5. In the article [21] in Table 3(a) on page 57 there appear the phase portraits

Portrait 4.34(a) with Portrait 4.34(b). In the proof for the invariant conditions for these two

phase portraits each one of them appeared with the correct conditions. However in the Table these

conditions were interchanged. More exactly, in the case H4 > 0 (respectively H4 < 0) we must

have a phase portrait with a separatrix connection (respectively without separatrix connection).

Considering this remark we deduce that in the case H4 < 0 the phase portrait corresponds to

Ric. 2 (which is equivalent to Portrait 4.34(b)), whereas in the case H4 > 0 the phase portrait

corresponds to Ric. 1 (which is equivalent to Portrait 4.34(a)).
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Diagram 5: The invariant criteria for phase portraits of systems in QSRic (case η > 0).
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Diagram5 (continuation): The invariant criteria for phase portraits of systems in QSRic (case

η > 0).

4.1.1.1.2 The case B3 = 0. Then by Lemma 3.1 we could have invariant lines in three

directions. Moreover according to Diagram 1 the systems in this class possess invariant lines of
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Diagram5 (continuation): The invariant criteria for phase portraits of systems in QSRic (case

η > 0).

total multiplicity five. So we shall apply the classification of this family of systems given in [16].

According to Diagram 1 we have to consider the next 3 possibilities.

1: µ0 ̸= 0, H1 ̸= 0 ⇒ Config. 5.1. According to [19] (see Diagram 3) this configuration leads

to the unique phase portrait given by Picture 5.1 which is topologically equivalent to Ric. 3.

2: µ0 ̸= 0, H1 = 0 ⇒ Config. 5.8 By [19] we arrive at the unique phase portrait given by

Picture 5.8 which we denote by Ric. 14.

3: µ0 = 0 ⇒ Config. 5.7. According to [19] we get the unique phase portrait given by Picture

5.7 (≃ Ric. 12 )

4.1.1.2 The possibility B2 ̸= 0. By Lemma 3.1 systems (8) could possess invariant lines

only in the direction x = 0 and we examine the corresponding cases provided by Diagram 1.

1: µ0 ̸= 0, ÑH10 < 0. According to Diagram 1 these conditions lead to Config. 3.14. We

observe that due to the condition µ0 ̸= 0 by Remark 4.2 at infinity there are one saddle and two

nodes.

On the other hand according to [25] for quadratic systems we have the next lemma.

Lemma 4.3. If two affine separatrices of a pair of opposite infinite saddles connect, then this

separatrix connection is an invariant straight line.

Therefore by B2 ̸= 0 we could not have a separatrix connection and this leads to the unique

phase portrait which is topological equivalent to the one given by Ric. 2.

Remark 4.6. We point out that some of the phase portraits that we will obtain for the systems

with B2 ̸= 0 are topologically equivalent to some already obtained for the case B2 = 0. This

happens even if the systems with B2 ̸= 0 belong to the class QSL3, whereas the systems with

B2 = 0 belong to the class QSL≥4. In drawing a phase portrait it is useful to use the invariant

algebraic curves a system may possess. We may have two phase portraits appearing in different

contexts drawn with the help of different configurations of algebraic invariant curves and these

two phase portraits may be topologically equivalent as this equivalence disregards the algebraic

properties of the systems.

29



Diagram 6: The invariant criteria for phase portraits of systems in QSRic (case η < 0).

2: µ0 ̸= 0, ÑH10 > 0,D < 0, H15 < 0 ⇒ Config. 3.15. We observe that the phase plane is

divided by two parallel real invariant lines in three regions. And for the affine separatrices of

the opposite infinite saddles there exists the unique possibility to go to the infinite node located

at the intersections of invariant lines (in the corresponding direction). As a result we arrive at

the unique phase portrait Ric. 2.

3: µ0 ̸= 0, ÑH10 > 0,D < 0, H15 > 0⇒ Config. 3.16. This family has four finite singularities:

two saddles and two nodes and three elemental infinite singularities: two nodes and one saddle

(see Remark 4.2). Similarly to the case of Config. 3.15 the phase plane of this family is divided

by two parallel real invariant lines in three regions. The finite singularities are located on these

lines, more exactly a saddle and a node on each line. Clearly the singular point at infinity

common to the two lines is a node. So in each one of the three regions there are two separatrices

which may either connect or not.

If there is no separatrix connection, then systems (8) belong to family 10 of the structurally

stable quadratic systems modulo limit cycles [2]. From the 16 possible phase portraits of this

family it is easy to see that only three of them are compatible with the existence of two real

parallel invariant lines. More exactly we have the phase portraits presented in Figure 7 as S210,14,
S210,15 and S210,16.

In case when they have a connection of separatrices then according to [3] they must be either

the phase portrait U1
D,44 or U1

D,60 (see Figure 7), which bifurcate in the previously mentioned
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Diagram 7: The invariant criteria for phase portraits of systems in QSRic (case η = 0 ̸= M̃).

structurally stable systems.

According to [3, Lemma 3.5] (see also [26]) these two phase portraits force (in this family)

the existence of another invariant line which contradicts the condition B2 ̸= 0 (see Lemma 3.1).
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Diagram7 (continuation): The invariant criteria for phase portraits of systems in QSRic (case

η = 0 ̸= M̃).
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Diagram7 (continuation): The invariant criteria for phase portraits of systems in QSRic (case

η = 0 ̸= M̃).

So Config. 3.16 leads to three topologically distinct phase portraits: two of them, corre-

sponding to S210,15 and S210,14 are new and we denote them by Ric. 15 and Ric. 16, respectively.
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Diagram7 (continuation): The invariant criteria for phase portraits of systems in QSRic (case

η = 0 ̸= M̃).

The remaining one which corresponds to S210,16 is topologically equivalent to Ric. 3.

In order to construct the affine invariant conditions for distinguishing each one of the de-

tected phase portraits we determine first the corresponding canonical form of the Riccati systems

possessing Config. 3.16.

As it was shown in [10] if for a system (8) the conditions

η > 0, Ñ ̸= 0, µ0 ̸= 0, ÑH10 > 0, D < 0, H15 > 0

hold then this system possess Config. 3.16 and via an affine transformation and time rescaling

it could be brought to the canonical form (37) from [10], i.e. it belongs to the family of systems

ẋ =g(x2 − 1), ẏ = b+ ex+ (g − 1)xy + y2. (10)
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Diagram 8: The invariant criteria for phase portraits of systems in QSRic (case η = 0 = M̃).

For these systems calculations yield

B2 = −648
[
e2 + b(g − 1)2

][
e2 + (b+ g)(1 + g)2

]
x4 ≡ −648x4Φ1Φ2,

D = −768g6
[
(g − 1)2 − 4(b+ e)

][
(g − 1)2 − 4(b− e)

]
≡ −768g6V1V2,

H15 = 256g4(1− 4b− 2g + g2) ≡ 128(V1 + V2), Ñ = (g2 − 1)x2, µ0 = g2

(11)

and we observe that the conditions D < 0 and H15 > 0 imply V1 > 0 and V2 > 0 which in

addition with µ0 ̸= 0 guarantee the existence of four finite real distinct singularities. We prove

the following lemma.
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Figure 7: Potential phase portraits generated by Config. 3.16

Lemma 4.4. For the 3-parameter family of systems (10) we may assume without loosing the

generality that the conditions g > 0 and e > 0 hold.

Proof: Applying the linear transformation x1 = −x, y1 = −x + y to systems (10) we arrive at

the systems

ẋ1 =g1(x
2
1 − 1), ẏ1 = b1 + e1x1 + (g1 − 1)x1y1 + y21 (12)

which have exactly the form (10) but with new parameters

g1 = −g, b1 = b+ g, e1 = −e.

Thus we may assume in systems (10) g > 0. Then keeping the sign of this parameter via the

rescaling (x, y, t) → (−x,−y,−t) we change the sign of the parameter e and this completes the

proof of Lemma 4.4.

Next we fix the parameter g = g0 obtaining a family of two parameters b and e. We point

out, that due to the conditions (11) the condition g0(g
2
0 − 1) ̸= 0 has to be satisfied. However

considering Lemma 4.4 it is clear that we could choose g0 ∈ (0, 1) ∪ (1,∞) and clearly these

two intervals are distinguished by the invariant polynomial Ñ . More exactly we could choose

g0 ∈ (0, 1) if Ñ < 0 and g0 ∈ (1,∞) if Ñ > 0.

In order to construct the bifurcation diagram for (10) with fixed g = g0, additionally to the

invariant polynomials D and B2 we consider here two other invariant polynomials: G2 and H16.

For systems (10) we calculate

G2 = 13824g2
[
2b(1 + g2) + 2e2 + g(g − 1)2

]
,

H16 = −180g6
[
4b+ (1 + g)2

][
16b2 + 16bg − 8e2 + (g2 − 1)2

]
.

In what follows we investigate the geometric locations in the plane (e, b) of the following

curves, depending on the parameter g0:
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V1(b, e, g0) = 0 ⇒ b = −e+ (g0 − 1)2/4; (V1)

V2(b, e, g0) = 0 ⇒ b = e+ (g0 − 1)2/4; (V2)

Φ1(b, e, g0) = 0 ⇒ b = − e2

(g0 − 1)2
; (F1)

Φ2(b, e, g0) = 0 ⇒ b = − e2

(g0 + 1)2
− g0; (F2)

G2(b, e, g0) = 0 ⇒ b = − e2

g20 + 1
− (g0 − 1)2g0

2 (g20 + 1)
; (G′)

H16(b, e, g0) = 0 ⇒
{

b = −(g0 + 1)2/4;

16b2 + 16bg0 − 8e2 + (g20 − 1)2 = 0.

(H′)

(H′′)

Remark 4.7. We observe that for any value of the parameter g0 ̸= 0,±1 the curves (V1), (V2)

and (H′) are lines; (F1) and (F2) are parabolas and the curve (H′′)) is a hyperbola.

It is not too difficult to determine that in the domain D̂ defined by the condition 0 < e ≤
−b + (g0 − 1)2/4 (where we have V1 ≥ 0 and V2 > 0) there are located only the following four

points of intersection of some of the above defined curves:

E1

(1
2
(g0 − 1)2, −1

4
(g0 − 1)2

)
: intersection of the curves (V1), (F1), (G′), (H′′);

E2

(1
2
(g0 + 1)2,

1

4
(1 + 6g0 + g20)

)
: intersection of the curves (V1), (F2), (G′), (H′′);

E3

(1
2
(g20 − 1), −1

4
(g0 + 1)2

)
: intersection of the curves (H′), (H′′), (F1), (F2);

E4

(1
2
(g20 + 1), −1

4
(g0 + 1)2

)
: intersection of the curves (V1), (H′).

We point out that the point E3 is located on the domain D̂ for g20−1 > 0 (i.e. Ñ > 0). In this case

the corresponding symmetric point with respect to the axis e = 0 is E′
3

(
− 1

2 (g
2
0−1), − 1

4 (g0+1)2
)
.

So in the case Ñ < 0 the point E′
3 is located on the domain D̂. However this does not affect the

number and the positions of the intersection points Ei depending on the parameter g0.

We point out several properties of the curves (V1), (F1), (F2), (H′) and (H′′) as well as of

their intersection points.

Lemma 4.5. For any value of the parameter g0 > 0, g0 ̸= 1 the following properties are valid:

(i) The four points Ej (j = 1, 2, 3, 4) are distinct, i.e. Ej ̸= Ek, j, k ∈ {1, 2, 3, 4}, j ̸= k.

(ii) The parabolas (F1) and (F2) are located entirely in the domain b − (g0 − 1)2/4 ≤ e ≤
−b+ (g0 − 1)2/4 and each one of them has a tangent point with the line (V1).

(iii) For g0 > 0 the hyperbola (H′′) is reducible into two intersecting straight lines for two

distinct values of g0: g′0 ∈ (0, 1) and g′′0 ∈ (1,∞).

Proof: The statement (i) follows directly from the comparison of the coordinates of the points

Ej(ej , bj) (j = 1, 2, 3, 4). We have

e1 − e2 = −2g0, e1 − e3 = 1− g0, e1 − e4 = −g0,

e2 − e3 = g0 + 1, e2 − e4 = g0, e3 − e4 = −1

and evidently due to the conditions µ0Ñ ̸= 0 (i.e. g0(g
2
0 − 1) ̸= 0) we have ej − ek ̸= 0,

j, k ∈ {1, 2, 3, 4}, j ̸= k. In other words all four mentioned points of intersections are distinct for

any value of the parameter g0 satisfying the condition g0(g
2
0 − 1) ̸= 0.
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(ii) Consider now the curves (F1) (i.e. b = −e2/(g0 − 1)2) and (F2) (i.e. b = −e2/(g0 + 1)2−
g0) and taking into account (11) we calculate:

V1,2(b, e, g0)
∣∣∣
(F1)

=
[
(g0 − 1)2 − 4(b± e)

]∣∣∣
(F1)

=

[
(g0 − 1)2 ∓ 2e

]2

(g0 − 1)2
;

V1,2(b, e, g0)
∣∣∣
(F2)

=
[
(g0 − 1)2 − 4(b± e)

]∣∣∣
(F2)

=

[
(g0 + 1)2 ∓ 2e

]2

(g0 + 1)2
.

So we obtain that on the parabolas (F1) and (F2) we have V1 ≥ 0 and V2 ≥ 0, i.e. these curves

are entirely located on the domain b − (g0 − 1)2/4 ≤ e ≤ −b + (g0 − 1)2/4. Moreover since the

curve (F1) (respectively (F2)) for e > 0 has the unique point of intersection E1 (respectively E2)

with the line (V1) we deduce that this point is a tangent point of the parabola (F1) (respectively

(F2)) with the line (V1). This completes the proof of the statement (ii) of the lemma.

(iii) Calculating the discriminant ∆̄ of the conic (H′′) (which is a hyperbola) we obtain:

∆̄ = −128
(
g20 − 2g0 − 1

) (
g20 + 2g0 − 1

)
.

Therefore for g0 > 0 we have two values g′0 =
√
2−1 and g′′0 =

√
2+1 of this parameter for which

∆̄ = 0 and hence the hyperbola (H′′) is reducible. We observe that g′0 ∈ (0, 1) and g′′0 ∈ (1,∞).

Lemma 4.5 is proved.

Remark 4.8. We point out that the values g0 = g′0, g0 = g′′0 for which the hyperbola (H′′)
becomes reducible are not bifurcation points for the phase portraits. Moreover we could have one

of the following possibilities:

� when (H′′) does not intersect the axis e = 0 then the same branch of the hyperbola passes

through both points E1 and E2 (as it is shown in Figure 8);

� when (H′′) intersects the axis e = 0 then one branch of the hyperbola passes through E1

and another one through E2 (as it is shown in Figure 9);

� when (H′′) is reducible then both its components (i.e. straight lines) intersect at the axis

e = 0, one line passing through E1 and another one through E2.

Considering the fact that the invariant polynomial H16 contains as components the line (H′) and
the hyperbola (H′′), it is clear that the sign of H16 is always negative (respectively positive) in

the domains (A) (respectively (B)) independently of the position of the branches of the hyperbola

(see Figures 8 and 9) or if it splits into two intersecting straight lines..

Taking into account Remarks 4.7 and 4.8 as well as Lemma 4.5 we conclude that in order to

detect the affine invariant conditions for the realization of each one of the phase portraits Ric. 3,

Ric. 15 and Ric. 16 it is sufficient to examine the bifurcation diagram in the space (e, b) of the

systems (10) with g = g0 > 0 taking only two values of the parameter g0: one from the interval

(0, 1) and another from (1,∞).

In Figure 8 we have the bifurcation diagram for g0 ∈ (1,∞). As it can be observed directly

from this diagram the next remark follows.

Remark 4.9. Assume that for a system (10) the conditions µ0 ̸= 0 and Ñ > 0 hold. Then under

one of the conditions listed below we have on its right side the corresponding phase portrait:
G2 ≤ 0 ⇒ Ric. 3;

G2 > 0, B2 > 0 ⇒ Ric. 3;

G2 > 0, B2 < 0, H16 < 0 ⇒ Ric. 3;

G2 > 0, B2 < 0, H16 > 0 ⇒ Ric. 16.
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Figure 8: Bifurcation diagram for systems (10) with g > 1

In the case Ñ < 0 we take a value of the parameter g0 ∈ (0, 1) and we arrive at the bifurcation

diagram represented in Figure 9. As it can be detected directly from this diagram the next remark

follows.

Remark 4.10. Assume that for a system (10) the conditions µ0 ̸= 0 and Ñ < 0 hold. Then the

phase portrait of this system corresponds to the one of the indicated below if the corresponding

conditions are satisfied, respectively:
G2 ≤ 0 ⇒ Ric. 3;

G2 > 0, B2 > 0 ⇒ Ric. 3;

G2 > 0, B2 < 0, H16 < 0 ⇒ Ric. 15;

G2 > 0, B2 < 0, H16 > 0 ⇒ Ric. 16.

We observe that the conditions provided by Remarks 4.9 and 4.10 could be joined and we

arrive at the next lemma.

Lemma 4.6. Assume that for a system (10) the condition µ0Ñ ̸= 0 holds. Then under the

conditions given below on the left we obtain the corresponding phase portrait on the right.
G2 ≤ 0 ⇒ Ric. 3;

G2 > 0, B2 > 0 ⇒ Ric. 3;

G2 > 0, B2 < 0, H16 < 0, Ñ < 0 ⇒ Ric. 15;

G2 > 0, B2 < 0, H16 < 0, Ñ > 0 ⇒ Ric. 3;

G2 > 0, B2 < 0, H16 > 0 ⇒ Ric. 16.

4: µ0 ̸= 0, ÑH10 > 0,D > 0 ⇒ Config. 3.17. Considering this configuration it is easy to

detect that it leads to the three potential topologically distinct phase portraits: S29,1, U1
I,18 and

I9,1 (see Figure 10).
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Figure 9: Bifurcation diagram for systems (10) with 0 < g < 1

Figure 10: Potential phase portraits generated by Config. 3.17

These phase portraits are given in [3, Figure 5.133] where it is shown that the last two are

not realizable. Thus there remains only the phase portrait S29,1 which we denote by Ric. 17.

5: µ0 ̸= 0, ÑH10 > 0,D = 0, H15 < 0 ⇒ Config. 3.18. We observe that this configuration

is obtained from Config. 3.17 by coalescing the two singularities (a node and a saddle) on the

invariant line. As a consequence by continuity we obtain the unique phase portrait which we

denote by Ric. 18.

6: µ0 ̸= 0, ÑH10 > 0,D = 0, H15 > 0 ⇒ Config. 3.19. It is evident that this configuration

could be obtained from Config. 3.16 by coalescing the two singularities (a node and a saddle)

on one of the invariant lines. We recall that Config. 3.16 leads to the phase portraits Ric. 3,

Ric. 15 and Ric. 16. From Ric. 3 as well as from Ric. 15 (due to the symmetry that they have)

only one phase portrait is possible to obtain from each of them and they are respectively Ric. 6

and a new phase portrait which we denote by Ric. 19.

However in Ric. 16 we have 2 possibilities to produce the coalescence, but from [3] if follows

that only one is realizable (U1
A,52) which is denoted here by Ric. 20.
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We point out that the conditions for distinguishing these three phase portraits can be obtained

from Lemma 4.6 and Figures 8 and 9 because the bifurcation surface D = 0 borders the generic

regions where Config. 3.16 is given.

On the other hand for systems (10) for D = 0 (we can take V1 = 0 due to e > 0) we have

b = 1
4

[
(g − 1)2 − 4e

]
and this gives us

B2 = −81

2

[
(g − 1)2 + 2e

]2[
(g − 1)2 − 2e

]2
x4 < 0.

Therefore considering Lemma 4.6 and Figures 8 and 9 the next lemma follows.

Lemma 4.7. Assume that for a system (10) the conditions µ0Ñ ̸= 0 and D = 0 hold. Then

under the conditions given below on the left we obtain the corresponding phase portrait on the

right.
G2 ≤ 0 ⇒ Ric. 6;

G2 > 0, H16 < 0, Ñ < 0 ⇒ Ric. 19;

G2 > 0, H16 < 0, Ñ > 0 ⇒ Ric. 6;

G2 > 0, H16 > 0 ⇒ Ric. 20.

7: µ0 ̸= 0, ÑH10 > 0,D = 0, H15 = 0 ⇒ Config. 3.20. We observe that this configuration

could be obtained from Config. 3.19 by coalescing the elemental singularities (a node and

a saddle). Then from Ric. 19 and Ric. 6 we produce new phase portraits which we denote

respectively by Ric. 21 and Ric. 22. These pictures are topologically equivalent to the phase

portraits given in Table 9 on page 37 in [8] under the names AAsnsn
19 and AAsnsn

20 (see Remark

4.11 below).

However it is not possible to do the same from Ric. 20 (as from Ric. 19 and Ric. 6 ) because

as we have shown earlier for Config. 3.19 only one of the couples of elemental singularities from

Ric. 16 can coalesce. As a result we arrive at two topologically distinct phase portraits in the

case of Config. 3.20.

We determine that the conditions D = H16 = 0 define the point of intersection of the lines V1

and V2 on both diagrams in Figures 8 and 9. We observe that in the interior of the region (A) in

Figure 8 corresponding to the condition Ñ > 0 we have Ric. 3 and on the line V1 (border of (A))

we have Ric. 6. Therefore as it was mentioned above we get Ric. 22 at the point of intersection

of the lines V1 and V2.

Similarly if Ñ < 0 considering Figure 9 we have respectively Ric. 15, Ric. 19 and Ric. 21.

Thus we get Ric. 21 for Ñ < 0 and Ric. 22 for Ñ > 0.

Remark 4.11. A final enumeration of phase portraits determined in the article [8] is given in

Table 9. However there exists a gap in this enumeration namely the notation U2
AA,32 is skip . So

in the last three cases from the Table 9 must be U2
AA,32, U2

AA,33 and U2
AA,34 instead of notations

U2
AA,33, U2

AA,34 and U2
AA,35, respectively.

8: µ0 ̸= 0, H10 = 0,R < 0 ⇒ Config. 3.21. Since we do not have real finite singularities and

there is an invariant (double) straight line it is clear that we get a unique phase portrait which

is topologically equivalent to Ric. 2.

9: µ0 ̸= 0, H10 = 0,R > 0 ⇒ Config. 3.22. We have two saddle-nodes on the double invariant

lines. It is clear that a perturbation of this configuration could lead to Config. 3.16 which has

saddles and nodes in a convex quadrilateral. Then when we pass from Config. 3.16 to Config.

3.22 the parabolic sectors of the saddle–nodes must be on the opposite sides of the semi-planes

defined by the double invariant line. Therefore there are two possibilities: (a) the separatrices

of the saddle-nodes in every semi-plane have the same stability as the separatrix of the infinite

saddle or (b) they have opposite stabilities (see Figure 11).
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In the first case both separatrices (finite and infinite) in every semi-plane must come/go

from/to the infinite node N3[0 : 1 : 0]. However this phase portrait (see Figure 11 (a1)) is

impossible because by a perturbation, it leads to the phase portrait I10,20 from [3] (see Figure

11 (a2)) which was proved to be impossible in [2].

Figure 11: Generic potential phase portraits generated by Config. 3.22

In the case (b) we have three generic potential phase portraits (b1)–(b3) given in Figure 11

and two that have a separatrix connection. The cases (b1) and (b2) are realizable whereas (b3)

is impossible because a perturbation of it may lead to the phase portrait (a2) (≃ I10,20 from [2])

which is impossible as it is mentioned above. Moreover the phase portrait (b1) is topologically

equivalent to Ric. 10 whereas (b2) is new and we denote it by Ric. 23.

Next we claim that if there is any separatrix connection then either this connection is part

of an invariant straight line or the phase portrait is impossible. Indeed there are two potential

ways to produce a separatrix connection. One leads to a phase portrait topologically equivalent

to Ric. 9 which by Lemma 3.5 of [3], this separatrix connection must be part of an invariant

straight line which contradicts B2 ̸= 0. We observe that Ric. 9 may bifurcate in Ric. 10 or

Ric. 23. The phase portrait with the second potential connection would bifurcate into Ric. 23 or

the phase portrait (b3) of Figure 11. Since the latter has already been proved to be impossible

we deduce that the connection is also impossible.

As it was shown in [10] if for a system (8) the conditions

η > 0, Ñ ̸= 0, µ0 ̸= 0, H10 = 0,R > 0

hold then this system possesses Config. 3.22 and via an affine transformation and time rescaling

it could be brought to the canonical form (39) from [10], i.e. it belongs to the family of systems

ẋ = gx2, ẏ = b+ ex+ (g − 1)xy + y2.

For these systems we have µ0 = g2, R = −16bg4x2 and due to µ0 ̸= 0 the conditionR > 0 implies

b < 0. Then we may assume b = −1 due to the rescaling (x, y, t) 7→ (
√
−b x,

√
−b y, t/

√
−b).

Then we arrive at the 2-parameter family of systems

ẋ =gx2, ẏ = −1 + ex+ (g − 1)xy + y2 (13)

for which we may assume g > 0 and e ≥ 0 because this can be achieved via the transformation

(x, y, t) → ξ(−x, y − x, t), where ξ = −sign (e) (see also the proof of Lemma 4.4).

Next we construct the bifurcation diagram in the space (e, g) of systems (13) (see Figure 12).

As it can be detected directly from this diagram we have the next remark.
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Figure 12: Bifurcation diagram of systems (13) for g ̸= 0

Remark 4.12. The phase portraits of systems (13) with µ0Ñ ̸= 0 correspond to the ones

indicated below if the corresponding conditions on the left are satisfied, respectively:
B2 > 0 ⇒ Ric. 10;

B2 < 0, H1 < 0 ⇒ Ric. 23;

B2 < 0, H1 > 0 ⇒ Ric. 10.

10: µ0 ̸= 0, H10 = 0,R = 0 ⇒ Config.3.23. It is not so difficult to determine that the unique

finite singularity of multiplicity four is a nilpotent saddle-node. More precisely two separatrices

of this singular point form the invariant line x = 0 and the third one lies on one of the semi-planes

divided by invariant line. As a result we arrive at the unique phase portrait which es equivalent

to Ric. 18.

11: µ0 = 0, µ2 ̸= 0,D < 0 ⇒ Config. 3.24. According to [10] a system (8) possessing this

configuration could be brought via an affine transformation and time rescaling to the canonical

form (41) from [10], i.e. we consider the family of systems

ẋ =a+ x, ẏ = b− xy + y2. (14)

We observe that for B2 = −648b(1− a+ b)x4 = 0 the above systems gain an invariant straight

line: y = 0 if b = 0 and y = x+ 1 if b = a− 1. In the case B2 = 0 we obtain Config. 4.16 and

as it was shown earlier (see page 26, p. 5:) this configuration generates two phase portraits:

Ric. 11 if G2 < 0 and Ric. 12 if G2 > 0.

Since Ric. 11 contains no separatrix connection it is clear that after breaking the non-vertical

invariant line then we get the same phase portrait Ric. 11.

On the other hand Ric. 12 contains a separatrix connection (which is part of the invariant

line) and after breaking this connection we get either Ric. 11 or Ric. 24. In order to determine

the conditions for distinguishing these two phase portraits we construct the bifurcation diagram

in the parameter space (a, b) of systems (14) (see Figure 13).

As it can be detected directly from this diagram we have the next remark.

Remark 4.13. A phase portrait of systems (14) with D < 0 under one of the conditions indicated

below on the left side is the portrait indicated on the right side.
G2 ≤ 0 ⇒ Ric. 11;

G2 > 0, B2 < 0 ⇒ Ric. 24;

G2 > 0, B2 > 0 ⇒ Ric. 11.
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Figure 13: Bifurcation diagram of systems (14).

12: µ0 = 0, µ2 ̸= 0,D > 0 ⇒ Config. 3.25. According to this configuration we do not

have real finite singularities and moreover at infinity we have the node N3[0 : 1 : 0] and two

double singularities which are saddle-nodes. We observe that we could not have the two finite

separatrices of the infinite saddle-nodes on the same semi-plane with respect to invariant line

because on the other semi-plane there would be two sources of orbits and two sinks without any

separatrix. However this contradicts Lemma 4.7 from [2]. As a result we arrive at a single phase

portrait which we denote by Ric. 25.

13: µ0 = 0, µ2 ̸= 0,D = 0 ⇒ Config. 3.26. This configuration is related with Config. 3.24

which generates two phase portraits Ric. 11 and Ric. 24. So if we force the coalescence of the

two elemental finite singular points along the invariant line in Ric. 11 we obtain a new phase

portrait which we denote by Ric. 26. If we do the the same for Ric. 24 we obtain again a new

phase portrait which we denote by Ric. 27.

We point out that this information can be obtained from the bifurcation diagram in Figure

13 consideing the parabola D = −48(a2 − 4b) = 0. So we observe that we get the phase portrait

Ric. 26 if G2 < 0 and Ric. 27 if G2 > 0.

14: µ0 = 0, µ2 = 0 ⇒ Config. 3.27. In this family we have no finite real singular points and

the line at infinity is triple. Moreover we have two triple semi-elemental singularities which are a

saddle and a node in the vicinity of which the behavior of the trajectories is the same as around

elemental singularities. Therefore as in the case of the configuration Config. 3.14 we arrive at

the same phase portrait Ric. 2.

4.1.2 The subcase Ñ = 0

According to Lemma 3.7 in this case a quadratic system with θ3 ̸= 0 could not belong to the

class QSL2p and hence, it could neither belong to the family QSRic .

On the other hand according to [10] for θ3 = 0 this system could be brought via an affine
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transformation and time rescaling to the form (14) (from [10]), i.e. we arrive at the subfamily

of the Riccati systems

ẋ = a+ x2, ẏ = b+ ex+ y2. (15)

We observe that for these systems µ0 = 1 > 0 and since η > 0 we conclude that Remark 4.2 also

is valid for the above systems. So systems (15) possess at infinity one saddle and two nodes, all

elemental.

According to Diagram 1 we examine again two possibilities: B2 = 0 and B2 ̸= 0.

4.1.2.1 The possibility B2 = 0. Following Diagram 1 we examine the next cases considering

the topological classifications of systems in the families QSL≥4 given in the articles [19] and [21].

1: H4 ̸= 0, H8 < 0 ⇒ Config. 4.13. Since the condition Ñ = 0 holds, according to [21] (see

Table 2) we get the unique phase portrait Portrait 4.13(b) which is topologically equivalent to

Ric. 1.

2: H4 ̸= 0, H8 > 0, H9 ̸= 0 and either (i) H16 < 0 ⇒ Config. 4.9a or (ii) H16 > 0 ⇒ Config.

4.9. We examine these two cases together due to the inexactitude in [21] (as well as in [18])

concerning the configuration Config. 4.9 (see Lemma 4.2). As it was shown earlier in the case

Ñ ̸= 0 (see Remark 4.4) we distinguished which of the phase portraits Portrait 4.9(a), Portrait

4.9(b) and Portrait 4.9(c) are generated by Config. 4.9a and which by Config. 4.9.

So we have to do the same in the case Ñ = 0. First of all we give here the next lemma which

is analog to Lemma 4.2 and the proof of which follows directly from [10] (see Lemma 6.2) and

from [21] (see Table 2).

Lemma 4.8. Assume that for an arbitrary quadratic system the conditions η > 0, θ = H7 =

B2 = 0, µ0B3H4H9 ̸= 0, Ñ = 0 and H8 > 0 are satisfied. Then the configuration of the invariant

lines of this system corresponds to Config. 4.9a if H16 < 0 and to Config. 4.9 if H16 > 0. Moreover

the phase portrait of this system corresponds to one of the portraits given below if and only if the

corresponding set of the conditions hold, respectively:

Portrait 4.9(a) ⇔ G2 > 0, H4 > 0, G3 < 0;

Portrait 4.9(b) ⇔ either G2 > 0, H4 < 0 or G2 < 0;

Portrait 4.9(c) ⇔ G2 > 0, H4 > 0, G3 > 0.

Next we would like to distinguish which of these three phase portraits is generated by the

configuration Config. 4.9a and which by Config. 4.9.

Assume that for an arbitrary quadratic system (2) the conditions provided by Lemma 4.8

are satisfied. Then as it was shown in [10] (see the proof of Lemma 6.2), this system could be

brought via an affine transformation and time rescaling to the 1-parameter family of systems

ẋ = x2 − 1, ẏ = −1− e2/4 + ex+ y2. (16)

For these systems we calculate

H4 = 96e2, H16 = 180(−2 + e)e4(2 + e), G2 = 13824(−2 + e)(2 + e), G3 = −576e2.

Since for the above systems the condition H4 ̸= 0 holds we obtain H4 > 0, G3 < 0 and sign (G2) =

sign (H16). Therefore considering Lemma 4.8 we evidently arrive at the next remark.

Remark 4.14. If for a quadratic system the conditions provided by Lemma 4.8 are satisfied

then this system possesses the phase portrait Portrait 4.9(b) (i.e. Ric. 3) if H16 < 0 and Portrait

4.9(a) (i.e. Ric. 5 ) if H16 > 0.
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Observation 4.1. According to the above remark we conclude that in the case Ñ = 0 the phase

portrait Portrait 4.9(c) is not realizable.

3: H4 ̸= 0, H8 > 0, H9 = 0 ⇒ Config. 4.10. According to [21] (see Table 2) due to the

condition Ñ = 0 we get the unique phase portrait Portrait 4.10(c) (≃ Ric. 7 ).

4: H4 ̸= 0, H8 = 0 ⇒ Config. 4.22. By [21, Table 2] ⇒ Portrait 4.22(b) (≃ Ric. 9 ).

5: H4 = 0, B3 ̸= 0, H5 < 0 ⇒ Config. 5.4. By [19, Diagram 3] ⇒ Picture 5.4 (≃ Ric. 2 ).

6: H4 = 0, B3 ̸= 0, H5 > 0, H1 < 0 ⇒ Config. 5.5. By [19, Diagram 3] ⇒ Picture 5.5 (≃
Ric. 2 ).

7: H4 = 0, B3 ̸= 0, H5 > 0, H1 > 0 ⇒ Config. 5.3. By [19, Diagram 3] ⇒ Picture 5.3 (≃
Ric. 3 ).

8: H4 = 0, B3 ̸= 0, H5 = 0, H1 < 0 ⇒ Config. 5.16. By [19, Diagram 3] ⇒ Picture 5.16 (≃
Ric. 2 ).

9: H4 = 0, B3 ̸= 0, H5 = 0, H1 > 0 ⇒ Config. 5.12. By [19, Diagram 3] ⇒ Picture 5.12 (≃
Ric. 10 ).

10: H4 = 0, B3 = 0, H1 < 0 ⇒ Config. 6.2. By [19, Diagram 1] ⇒ Picture 6.2 (≃ Ric. 1 ).

11: H4 = 0, B3 = 0, H1 > 0 ⇒ Config. 6.1. By [19, Diagram 1] ⇒ Picture 6.1 (≃ Ric. 3 ).

12: H4 = 0, B3 = 0, H1 = 0 ⇒ Config. 6.5. By [19, Diagram 1] ⇒ Picture 6.5 (≃ Ric. 14 ).

4.1.2.2 The possibility B2 ̸= 0. By Lemma 3.1 systems (15) could possess invariant lines

only in the direction x = 0.

In what follows we consider one by one all the configurations provided by Diagram 1 and we

determine the corresponding phase portraits.

1: H8 < 0 ⇒ Config. 3.14. As it was shown in the case Ñ ̸= 0 this configuration leads to the

unique phase portrait Ric. 2.

2: H8 > 0,D < 0, H15 < 0 ⇒ Config. 3.15. We have exactly the same situation as in the

previous case and so we arrive at the same phase portrait Ric. 2.

3: H8 > 0,D < 0, H15 > 0 ⇒ Config. 3.16. Since for systems (15) we have

H8 = −3456ae2, H15 = 1024ab, B2 = −648e2(−4a+ 4b+ e2)x4

the conditions B2 ̸= 0, H8 > 0 and H15 > 0 imply e ̸= 0, a < 0 and b < 0. Therefore via the

rescaling (x, y, t) 7→ (
√−a x,

√−a y, t/
√−a) we may assume a = −1 and we get the 2-parameter

family of systems

ẋ = x2 − 1, ẏ = b+ ex+ y2. (17)

For these systems we calculate

H15 = −1024b > 0, B2 = −648e2(4 + 4b+ e2)x4 ̸= 0,

D = −12288(b− e)(b+ e) < 0, G2 = 27648(2b+ e2).

Taking into account the curves defined by the equations B2 = 0, D = 0 and G2 = 0 we arrive at

the bifurcation diagram for the phase portraits of systems (17) with the conditions H15 > 0 and

D < 0 (see Figure 14).

From this diagram it follows that under the provided conditions we get the phase portrait

Ric. 3 if G2 ≤ 0. If G2 > 0 then we obtain Ric. 15 for B2 < 0 and Ric. 3 for B2 > 0.
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Figure 14: Bifurcation diagram for systems (17) with b < 0 and b2 − e2 > 0

4: H8 > 0,D > 0 ⇒ Config. 3.17. It was proved earlier (see page 39) that this configuration

leads to the unique phase portrait Ric. 17.

5: H8 > 0,D = 0, H15 < 0 ⇒ Config. 3.18. As it was shown earlier (see page 40) Config.

3.18 leads to the unique phase portrait Ric. 18.

6: H8 > 0,D = 0, H15 > 0 ⇒ Config. 3.19. We examined this configuration earlier (see page

40) and have shown that this configuration could only lead to the two phase porraits: Ric. 19

and Ric. 6. More exactly, by coalescing the two singularities (a node and a saddle) on one of the

invariant lines (i.e. when D → 0) from Ric. 15 we obtain Ric. 19, whereas from Ric. 3 we obtain

Ric. 6.

Therefore considering diagram in Figure 14 we conclude that the phase portrait corresponds

to Ric. 19 for G2 < 0 and Ric. 6 for G2 > 0.

7: H8 = 0,R < 0 ⇒ Config. 3.21. This configurations was investigated earlier in the case

Ñ ̸= 0 and it was shown the existence of the unique phase portrait Ric. 2 which also is realizable

for Ñ = 0.

8: H8 = 0,R > 0 ⇒ Config. 3.22. The condition H8 = −3456ae2 = 0 due to B2 ̸= 0 (i.e.

e ̸= 0) gives us a = 0 for systems (15) and then R = −16bx2 > 0 implies b < 0. Then we may

assume b = −1 due to the rescaling (x, y, t) 7→ (
√
−b x,

√
−b y, t/

√
−b) and we observe that in

this case we get a subfamily of systems (13) defined by the condition g = 1.

So from the bifurcation diagram of systems (13) given in Figure 12, for systems (15) we

obtain Ric. 23 if B2 < 0 and Ric. 10 if B2 > 0.

9: H8 = 0,R = 0 ⇒ Config. 3.23. As in the generic case Ñ ̸= 0 examined before we get the

unique phase portrait Ric. 18.

4.2 The case η < 0

Following Diagram 2 we consider each one of the configurations of invariant lines in order to

determine how many topological phase portraits could be obtained from each one of the config-

urations in the case when at infinity we have one real and two complex singularities.
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1: µ0 ̸= 0, H10 < 0 ⇒ Config. 3.28. Since we have only one real singularity at infinity which

is a node (more precisely, a star node) we arrive at the unique phase portrait which we denote

by Ric. 28.

2: µ0 ̸= 0, H10 > 0,D < 0, H15 < 0 ⇒ Config. 3.29. For the same arguments as in the

previous paragraph we get the same phase portrait Ric. 28.

3: µ0 ̸= 0, H10 > 0,D < 0, H15 > 0 ⇒ Config. 3.30. This family has four finite singularities:

two saddles and two nodes and one elemental infinite singularity which is a star node. Since

there is no separatrix connection, systems having this configuration belong to family 3 of the

structurally stable quadratic systems modulo limit cycles [2]. From the 5 possible phase portraits

of this family it is easy to see that two of them (S23,1 and S23,5) are incompatible with the existence

of two real parallel invariant lines. The other three, in the form they are presented in [2], seem to

be compatible with the existence of two parallel real invariant lines. However the pictures given

in [2] are topologically valid but not geometrically. The real pictures are much more twisted

than the presented ones (see Figure 15). Here we will prove that the phase portraits S23,2 and

S23,3 are impossible in the Riccati family.

Figure 15: Example of phase portrait (a): S23,2 as given in [2] versus (b): real one

Suppose that we have a system possessing the configuration Config. 3.30 and consider a

straight line L passing through two finite saddles, located on the vertical invariant lines. Then

by a time change we may assume that the flow on both unbounded segments of this line goes up.

According to [3, Lemma 3.4] in the bounded segment the flow goes down. Then the other two

points (which are nodes) are located on different parallel invariant lines and on different parts

with respect to L (see Figure 16).

Figure 16: Impossibility of the phase portraits S23,2 and S23,3 from [2] in Riccati systems

What we see in Figure 16 is that we cannot send the two separatrices of the same finite saddle

to the same infinite node. In the case (a) because one of the separatrices could not intersect the

line L and in the case (b) because the flow on the line L is in contradiction with the position of

the separatrices. This voids the possible existence of the phase portraits S23,2 and S23,3 from [2]

in Riccati systems.

From the scheme given in Figure 16 it easily can be seen that it is impossible to force the

two separatrices of one saddle to go to the same infinite singularity due to the direction of the

flow on the line L.
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Thus the configuration Config. 3.30 leads to a unique phase portrait S23,4 from [2] which we

denote by Ric. 29.

4: µ0 ̸= 0, H10 > 0,D > 0, B2 ̸= 0 ⇒ Config. 3.31. Since we have only one saddle and one

node located on the same vertical invariant straight line we arrive at the phase portrait which

we denote by Ric. 30.

5: µ0 ̸= 0, H10 > 0,D > 0, B2 = 0 ⇒ Config. 5.2. By [19, Diagram 3] we obtain Picture 5.2

(≃ Ric. 30 ).

6: µ0 ̸= 0, H10 > 0,D = 0, H15 < 0 ⇒ Config. 3.32. In this case the node and the saddle

coalesced and the only possible phase portrait is U1
A,1 from [3] which we denote here by Ric. 31.

7: µ0 ̸= 0, H10 > 0,D = 0, H15 > 0 ⇒ Config. 3.33. This configuration is obtained from

Config. 3.30 when a saddle and a node coalesced. Therefore we have to coalesce a saddle and a

node from Ric. 29 obtaining the phase portrait U1
A,7 from [3]. We denote here this phase portrait

by Ric. 32.

8: µ0 ̸= 0, H10 > 0,D = 0, H15 = 0 ⇒ Config. 3.34. This configuration could be obtained

from Config. 3.33 when the other couple of a saddle and a node coalesced. So we need to

coalesce the saddle and the node from Ric. 32 obtaining the phase portrait U2
AA,19 from [8]. We

denote here this phase portrait by Ric. 33.

9: µ0 ̸= 0, H10 = 0,R < 0 ⇒ Config. 3.35. Since there are no real finite singularities we get

the unique phase portrait which is equivalent to Ric. 28.

10: µ0 ̸= 0, H10 = 0,R > 0 ⇒ Config. 3.36. This configuration could be obtained from

Config. 3.30 by coalescing the two lines and moreover, the saddle (respectively the node) located

on one line coalesced with the node (respectively the saddle) located on the other line. Then

we get one separatrix of a saddle-node on each semi-plane and they both must go to the infinite

singularities (in different directions). As a result we obtain a new phase portrait which we denote

by Ric. 34.

11: µ0 ̸= 0, H10 = 0,R = 0, B2 ̸= 0 ⇒ Config. 3.37. In these conditions we have a

double line and a unique finite singularity which is of multiplicity four. We observe that the

systems possessing Config. 3.37 are not homogeneous, otherwise we must have invariant lines

of total multiplicity at least four. So this singularity is nilpotent with index 0 and it must be a

saddle-node. Therefore we get a phase portrait which is topologically equivalent to Ric. 31.

12: µ0 ̸= 0, H10 = 0,R = 0, B2 = 0 ⇒ Config. 5.10. According to [19, Diagram 3] we obtain

Picture 5.10 which is denoted here by Ric. 35.

13: µ0 = 0, µ2 ̸= 0,D < 0 ⇒ Config. 3.38. This configuration can be obtained from Config.

3.31 by coalescing the finite invariant line without real singularities with infinite line. As a result

we obtain the same phase portrait Ric. 30.

14: µ0 = 0, µ2 ̸= 0,D > 0, B2 ̸= 0 ⇒ Config. 3.39. This configuration can be obtained from

Config. 3.29 by coalescing one of the finite invariant lines with the infinite line. So we arrive at

the phase portrait Ric. 28.

15: µ0 = 0, µ2 ̸= 0,D > 0, B2 = 0 ⇒ Config. 5.9. By [19, Diagram 3] we obtain Picture 5.9

(≃ Ric. 30 ).

16: µ0 = 0, µ2 ̸= 0,D = 0 ⇒ Config. 3.40. This configuration can be obtained from Config.

3.32 by coalescing the finite invariant line without real singularities with the infinite line. So

the unique phase portrait is given by Ric. 31.
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17: µ0 = 0, µ2 = 0 ⇒ Config. 3.41. This configuration can be obtained from Config. 3.39

by coalescing the finite invariant line with the infinite one. In this case we arrive at the phase

portrait Ric. 28.

4.3 The case η = 0, M̃ ̸= 0

According to the Diagram 3 we examine two subcases: Ñ ̸= 0 and Ñ = 0.

4.3.1 The subcase Ñ ̸= 0

Since η = 0 and M̃ ̸= 0, according to Lemma 3.4 we consider the following canonical form:

ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2,
(18)

for which by Lemma 3.7 the conditions θ = B1 = H7 = 0 have to be fulfilled. As it was shown

in [10] forcing these conditions in the case µ0 ̸= 0 we arrive at the family of systems

ẋ = a+ cx+ x2, ẏ = b+ xy + y2 (µ0 ̸= 0) (19)

and in the case µ0 = 0 we get the family of systems

ẋ = a+ cx+ gx2, ẏ = b+ (g − 1)xy (µ0 = 0). (20)

So in what follows we consider two possibilities: µ0 ̸= 0 and µ0 = 0.

4.3.1.1 The possibility µ0 ̸= 0. In this case we consider systems (19) for which the following

remark is valid.

Remark 4.15. The singular point N1[1 : 0 : 0] of systems (19) is a saddle-node of the type(
0
2

)
SN , because it is a double singularity obtained by coalescense of two infinite singularities.

The elemental singular point N2[0 : 1 : 0] is a star node, because the corresponding Jacobian

matrix is of the form

(
1 0
0 1

)
.

According to Diagram 3 we have to examine two cases: B2 ̸= 0 and B2 = 0. However as it

was pointed out earlier in the case η > 0, we begin with B2 = 0 because in this case the systems

belong to a higher codimension subfamilies and these subfamilies form a skeleton from which

systems will bifurcate into systems with B2 ̸= 0.

4.3.1.1.1 The case B2 = 0. Following Diagram 3 we examine one by one the corre-

sponding cases.

1: B3 ̸= 0, H10 < 0 ⇒ Config. 4.14. Since we are in the class of quadratic systems possessing

invariant lines of total multiplicity ≥ 4 we use the classifications given in [21] and [19].

According to this classification (see [21, Table 2] ) the configuration Config. 4.14 leads to

the unique phase portrait Portrait 4.14 which we denote here by Ric. 36.

2: B3 ̸= 0, H10 > 0 and either (i) H4 < 0 ⇒ Config. 4.11 or (ii) H4 > 0 ⇒ Config. 4.11a.

We examine these two cases together in the paper [21] (as well as in [18]) there is omitted the

configuration Config. 4.11a. This mistake was corrected in [10] (see Remark 6.6 and Lemma 6.4)

where it was proved that the invariant polynomial H4 distinguishes these two configurations as it

is indicated above. Moreover as it was proved in [21] (see Table 2) that this invariant polynomial

distinguishes also the phase portraits Portrait 4.11(b) and Portrait 4.11(a). We denote them

here by Ric. 37 and Ric. 38, respectively.
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Thus according to [21, Table 2] we get Ric. 37 if H4 < 0 and Ric. 38 if H4 > 0.

3: B3 ̸= 0, H10 = 0 ⇒ Config. 4.23. By [21, Table 2] this configuration gives us only the

phase portrait Portrait 4.23 which we denote by Ric. 39.

4: B3 = 0, D̃ ̸= 0 ⇒ Config. 5.11. According to [19, Diagram 3] we obtain Picture 5.11

which is denoted here by Ric. 40.

5: B3 = 0, D̃ = 0 ⇒ Config. 5.19. By [19, Diagram 3] we get Picture 5.19 which we denote

by Ric. 41.

4.3.1.1.2 The case B2 ̸= 0. According to Diagram 3 we consider the next cases as

follows.

1: H10 < 0 ⇒ Config. 3.42. This configuration can be derived form Config. 4.14 by breaking

the separatrix connection which is the straight line defined by the condition b = 0 in the systems

(19). More exactly, if we perturb these systems, making 0 < |b| ≪ 1 then we detect that taking

perturbation b > 0 we get a new phase portrait which we denote by Ric. 42. In the case b < 0

we also obtain a new phase portrait which we denote by Ric. 43.

On the other hand for systems (19) we calculate H1 = −576b, i.e. sign (H1) = −sign (b). So

we get Ric. 42 if H1 < 0 and Ric. 43 if H1 > 0.

2: H10 > 0,D < 0, H15 < 0 ⇒ Config. 3.43. The singularities in this configuration are

exactly the same as in Config. 3.42. However the existence of real invariant parallel lines makes

impossible to obtain it from a perturbation of Config. 4.14. Therefore in this case we obtain the

unique phase portrait which is topologically equivalent to Ric. 42.

3: H10 > 0,D < 0, H15 > 0 ⇒ Config. 3.44. This configuration can be obtained from Config.

3.16 by coalescing of the infinite singularity N2[1 : 1 : 0] with N1[1 : 0 : 0] obtaining a double

singular point. As it was proved earlier (see page 34) the configuration Config. 3.16 generates

three phase portraits: Ric. 3, Ric. 15 and Ric. 16. Moreover Lemma 4.6 provides the necessary

and sufficient conditions for the realization of each one of the three phase portraits.

We determine that for systems (19) we have Ñ = x2 > 0. On the other hand according

to Lemma 4.6 the condition Ñ < 0 is necessary for the existence of the phase portrait Ric. 15.

So we deduce that after any perturbation from a phase portrait generated by Config. 3.44

we cannot obtain Ric. 15. This means that by coalescing the two infinite singularities (as it is

described above) we could obtain only two phase portraits: one from Ric. 3 which is topologically

equivalent to Ric. 37 and one from Ric. 16 which is new and we denote it by Ric. 44.

On the other hand for systems (19) we have B2 = −648b2x4 < 0. Therefore considering the

conditions for distinguishing the phase portraits Ric. 3 and Ric. 16 provided by Lemma 4.6 we

conclude that we have Ric. 37 if either G2 ≤ 0 or G2 > 0 and H16 < 0. In the case G2 > 0 and

H16 > 0 we have the phase portrait Ric. 44.

4: H10 > 0,D > 0 ⇒ Config. 3.45. This configuration can be obtained from Config. 3.17

by coalescing the infinite singularity N2[1 : 1 : 0] with N1[1 : 0 : 0]. Since Config. 3.17 generates

a single phase portrait then in this case we also obtain the unique phase portrait which is new

and we denote by Ric. 45.

5: H10 > 0,D = 0, H15 < 0 ⇒ Config. 3.46. This configuration can be obtained from Config.

3.18 by coalescing the infinite singularity N2[1 : 1 : 0] with N1[1 : 0 : 0]. Since Config. 3.18

generates a single phase portrait then in this case we also obtain the unique phase portrait which

is new and we denote it by Ric. 46.

6: H10 > 0,D = 0, H15 > 0 ⇒ Config. 3.47. This configuration can be obtained from Config.

3.19 by coalescing the infinite singularity N2[1 : 1 : 0] with N1[1 : 0 : 0] in the same way as
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Config. 3.44 came from Config. 3.16. Therefore we obtain two new phase portraits: one from

Ric. 37 which we denote by Ric. 47 and one from Ric. 44 which we denote by Ric. 48.

Thus considering the conditions for distinguishing the phase portraits Ric. 37 and Ric. 44 we

conclude that we have Ric. 47 if either G2 ≤ 0 or G2 > 0 and H16 < 0. In the case G2 > 0 and

H16 > 0 we have the phase portrait Ric. 48.

7: H10 > 0,D = 0, H15 = 0 ⇒ Config. 3.48. This configuration can be obtained from Config.

3.47 by coalescing the elemental finite singularities along the invariant line on which they are

located.

For systems (19) we calculate

H10 = −8(4a− c2), H15 = 32(4a− c2)(2a+ 8b− c2),

D = −48(4a− c2)2
[
(a+ 4b)2 − 4bc2].

Since H10 > 0 the condition H15 = 0 yields a = 1
2

(
c2 − 8b

)
. Then the last factor in D (which

must be zero) gives −c2(16b − c2)/4 = 0 and due to H10 ̸= 0 we get c = 0. Then a = −4b and

for these values of the parameters a and c for (19) we have:

H16 = −184320b4, H10 = 128b.

So since H10 ̸= 0 we get H16 < 0 and considering the conditions for the realization of the phase

portraits Ric. 47 and Ric. 48 we conclude that Ric. 48 could not produce any phase portrait by

coalescing the elemental finite singularities. So Config. 3.48 generates only one phase portrait

which we denote by Ric. 49.

8: H10 = 0,R < 0 ⇒ Config. 3.49. This configuration can be obtained from Config. 3.43

by coalescing the two real invariant lines obtaining one double without real finite singularities.

Since Config. 3.43 generates only the phase portrait Ric. 42 we also obtain here the unique

phase portrait which is topologically equivalent to Ric. 42.

9: H10 = 0,R > 0 ⇒ Config. 3.50. This configuration can be obtained from Config. 4.23

which implies the phase portrait Ric. 39. We observe that by breaking the separatrix connection

between the infinite saddle-node and a finite one we can produce two different phase portraits

which are new and we denote them by Ric. 50 and Ric. 51.

We observe that for the systems (19) the condition H10 = −8(4a − c2) = 0 yields a = c2/4

and this leads to the family of systems

ẋ = (x+ c/2)2, ẏ = b+ xy + y2.

So for b = 0 these systems possess the invariant line y = 0. Therefore the parameter b governs

the breaking of the separatrix connection and the invariant polynomial which is responsible for

the sign of this parameter is H1 = −576b. Thus we have sign (H1) = −sign (b) and we arrive at

the phase portrait Ric. 50 if H1 < 0 and at Ric. 51 if H1 > 0.

10: H10 = 0,R = 0 ⇒ Config. 3.51. This configuration can be obtained from Config. 3.23

by coalescing the infinite singularity N2[1 : 1 : 0] with N1[1 : 0 : 0]. Since Config. 3.23 generates

a single phase portrait (Ric. 18 ) then in this case we also obtain the unique phase portrait which

is topologically equivalent to Ric. 46.

4.3.1.2 The possibility µ0 = 0. In this case we consider systems (20) for which we calculate:

µ0 = µ1 = B2 = 0, µ2 = ag(g − 1)2x2, B3 = −3b(g − 1)2,

Ñ = (g2 − 1)x2, K̃ = 2g(g − 1)x3.
(21)

So we examine two cases: B3 = 0 and B3 ̸= 0.
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4.3.1.2.1 The case B3 = 0. Due to Ñ ̸= 0 we get b = 0 and hence systems (20) have an

additional invariant line y = 0. This means that these systems belong to the class QSL≥4 and

we shall use the classifications given in [21] and [19].

We point out that in the case K̃ ̸= 0 and B3 = 0 (i.e. b = 0) the condition µ2 = 0 leads to

degenerate systems because considering (21) these conditions give us a = 0 (due to K̃ ̸= 0) and

then the right hand sides of systems (20) have the common factor x.

So considering Remark 4.1 in the case K̃ ̸= 0 we assume µ2 ̸= 0.

We follow step by step the branch of the Diagram 3 corresponding to the case B3 = 0.

1: H6 ̸= 0, K̃ ̸= 0, H11 < 0 ⇒ Config. 4.15. According to [21, Table 2]) the configuration

Config. 4.15 generates two distinct phase portraits Portrait 4.15(a) and Portrait 4.15(b). They

are new and we denoted the second one by Ric. 52 and the first one Ric. 53.

According to [21, Table 2] the phase portrait Ric. 52 is realizable for L̃ < 0 whereas Ric. 53

for L̃ > 0.

2: H6 ̸= 0, K̃ ̸= 0, H11 > 0 ⇒ Config. 4.12. By [21, Table 2]) this configuration generates 5

topologically distinct phase portraits Portrait 4.12(a) - Portrait 4.12(e) . Moreover in [21, Table

2]) there are determined necessary and sufficient affine invariant conditions for the realization of

each one of the indicated phase portraits. More exactly we have the next remark.

Remark 4.16. For µ2 ̸= 0 Config. 4.12 generates the following five phase portraits indicated

below if the corresponding conditions are satisfied (we denote them respectively as it is indicated):

µ2 < 0, K̃ < 0 ⇒ Portrait 4.12(c) ⇒ Ric. 54;

µ2 < 0, K̃ > 0, L̃ < 0 ⇒ Portrait 4.12(e) ⇒ Ric. 55;

µ2 < 0, K̃ > 0, L̃ > 0 ⇒ Portrait 4.12(d) ⇒ Ric. 56;

µ2 > 0, L̃ < 0 ⇒ Portrait 4.12(b) ⇒ Ric. 57;

µ2 > 0, L̃ > 0 ⇒ Portrait 4.12(a) ⇒ Ric. 58.

3: H6 ̸= 0, K̃ ̸= 0, H11 = 0 ⇒ Config. 4.24. According to [21, Table 2]) this configuration

generates two topologically distinct phase portraits: Portrait 4.24(a) and Portrait 4.24(b). Fur-

thermore in the case L̃ < 0 we have Portrait 4.24(b) (we denote it by Ric. 59 ) whereas for L̃ > 0

we obtain Portrait 4.24(a) (which we denote by Ric. 60 ).

4: H6 ̸= 0, K̃ = 0, H11 ̸= 0 ⇒ Config. 4.19. By [21, Table 2]) we arrive at two topologically

distinct phase portraits: Portrait 4.19(a) and Portrait 4.19(b). Moreover as it was proved in [21]

(see Table 2) in the case µ3K1 < 0 we have Portrait 4.19(a) (we denote it by Ric. 61 ) and for

µ3K1 > 0 we obtain Portrait 4.19(b) (which we denote by Ric. 62 ).

5: H6 ̸= 0, K̃ = 0, H11 = 0 ⇒ Config. 4.36. According to [21, Table 2]) this configura-

tion generates two topologically distinct phase portraits: Portrait 4.36(a) and Portrait 4.36(b).

Furthermore in the case κ2 < 0 we have Portrait 4.36(a) (which is topologically equivalent to

Ric. 53 ) whereas for κ2 > 0 we obtain Portrait 4.36(b) (which is topologically equivalent to

Ric. 52 ).

6: H6 = 0, K̃ ̸= 0 ⇒ Config. 5.14. So we are in the class of systems possessing invariant lines

of total multiplicity five. According to [19] (see Diagram 3) this configuration leads to the two

phase portraits: Picture 5.14(a) (which is equivalent to Ric. 58 ) and Picture 5.14(b) (which is

equivalent to Ric. 56 ). Considering [19] (see page 2053) we deduce that in this case Ric. 56 is

realizable for µ2 < 0, whereas we get Ric. 58 for µ2 > 0.

6: H6 = 0, K̃ = 0 ⇒ Config. 5.18. According to [19] (see Diagram 3) this configuration leads

to the unique phase portrait Picture 5.18 (≃ Ric. 62 ).
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4.3.1.2.2 The case B3 ̸= 0. According to Diagram 3 we examine the next possibilities.

1: H6 ̸= 0, µ2 ̸= 0, H11 < 0 ⇒ Config. 3.52. This configuration can be obtained from Config.

4.15 by breaking the real invariant line. As it was shown earlier (see point 1: in the case B3 = 0

above) Config. 4.15 leads to the two phase portraits: Ric. 52 (for L̃ < 0) and Ric. 53 (for

L̃ > 0).

We observe that Ric. 52 has no affine separatrix connection and by breaking the line we

could not produce a new phase portrait. At the same time Ric. 53 has a separatrix which is

the line itself. So breaking it we can produce two phase portraits which due to symmetry are

topologically equivalent getting a unique new phase portrait which we denote by Ric. 63.

Thus we obtain Ric. 52 for L̃ < 0 and Ric. 63 for L̃ > 0.

2: H6 ̸= 0, µ2 ̸= 0, H11 > 0 ⇒ Config. 3.53. Similarly as in the previous case this config-

uration is related with Config. 4.12, which generates 5 phase portraits: Ric. 54 - Ric. 58 (see

Remark 4.16).

As in the previous case phase portraits Ric. 55, Ric. 56 and Ric. 58 do not have separatrix

connections and so the breaking of the horizontal invariant line we obtain the same phase portrait,

correspondingly.

On the other hand each one of the phase portraits Ric. 54 and Ric. 57 after breaking the

invariant line (which is a separatrix connection) produces only one new phase portrait because

of the symmetry. We denote them by Ric. 64 and Ric. 65, respectively.

Considering Remark 4.16 we get the following affine invariant criteria for the realization of

each one of the phase portraits mentioned above.

Remark 4.17. The configuration Config. 3.53 generates the following five phase portraits indi-

cated below if the corresponding conditions are satisfied:

µ2 < 0, K̃ < 0 ⇒ Ric. 64;

µ2 < 0, K̃ > 0, L̃ < 0 ⇒ Ric. 55;

µ2 < 0, K̃ > 0, L̃ > 0 ⇒ Ric. 56;

µ2 > 0, L̃ < 0 ⇒ Ric. 65;

µ2 > 0, L̃ > 0 ⇒ Ric. 58.

3: H6 ̸= 0, µ2 ̸= 0, H11 = 0 ⇒ Config. 3.54. This configuration can be obtained from

Config. 4.24 by breaking the real simple invariant line. As it was shown earlier (see point 3:

in the case B3 = 0 above) Config. 4.24 leads to the two phase portraits: Ric. 59 (for L̃ < 0)

and Ric. 60 (for L̃ > 0). We observe that Ric. 60 does not have separatrix connection outside

the double vertical line and hence we could not produce new phase portraits by breaking the

horizontal invariant line. The phase portrait Ric. 59 has a separatrix connection (being a part

of the horizontal invariant line) and breaking this invariant line due to the symmetry we get a

single phase portrait. It is new and we denote it by Ric. 66.

4: H6 ̸= 0, µ2 = 0, K̃ ̸= 0 ⇒ Config. 3.55. Since K̃ ̸= 0, according to (21) the condition

µ2 = 0 gives us a = 0 and the systems (20) have the form

ẋ = x(c+ gx), ẏ = b+ (g − 1)xy. (22)

For these systems we have

η = 0, M̃ = −8x2, µ0 = µ1 = µ2 = 0, µ3 = −bcg(g − 1)x3, B3 = −3b(g − 1)2x4,

Ñ = (g2 − 1)x2, K̃ = 2g(g − 1)x3, L̃ = 8gx2, H6 = −128c2(g − 1)4x6

and due to B3K̃H6 ̸= 0 we get µ3L̃ ̸= 0. So according to [17, Table 4] (see also [5, Diagram 6.3])

we conclude that the behavior of the trajectories in the vicinity of infinity corresponds to three
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Figure 17: Some configurations of infinite singularities for systems (20)

of those presented in Figure 17 and are governed by the invariant polynomials K̃ and L̃. More

exactly, according to [17, Table 4] we have Fig. 14 if K̃ < 0; Fig. 26 if K̃ > 0 and L̃ < 0 and

we have Fig. 25 if K̃ > 0 and L̃ > 0.

Taking into consideration that systems (22) possess two real parallel invariant lines intersect-

ing at infinity at the intricate singular point N2[0 : 1 : 0] it is not too difficult to determine that

we arrive at three new phase portraits which we denote as following: Ric. 67 if K̃ < 0; Ric. 68

if K̃ > 0 and L̃ < 0 and Ric. 69 if K̃ > 0 and L̃ > 0.

5: H6 ̸= 0, µ2 = 0, K̃ = 0, µ3 ̸= 0 ⇒ Config. 3.56. This configuration can be obtained from

Config. 4.19 by breaking the real horizontal invariant line. As it was shown earlier (see point 4:

in the case B3 = 0 above) Config. 4.19 leads to the two phase portraits: Ric. 61 (for µ3K1 < 0)

and Ric. 62 (for µ3K1 > 0).

We observe that in the case of Ric. 62 the invariant line under discussion is not a separatrix

connection and hence, by breaking this line we obtain the same phase portrait.

On the other hand in Ric. 61 this line is a separatrix connection and considering Corollary 4.1

we deduce that by breaking the horizontal invariant line the separatrix connection disappears.

Therefore due to a symmetry we obtain a single phase portrait which is new and we denote it

by Ric. 70. Therefore for µ3K1 < 0 we get Ric. 70 and for µ3K1 > 0 we get Ric. 62.

6: H6 ̸= 0, µ2 = 0, K̃ = 0, µ3 = 0, H3 ̸= 0 ⇒ Config. 3.57. This configuration can be obtained

from Config. 4.36 by breaking the real invariant line. As it was shown earlier (see point 5: in

the case B3 = 0 above) Config. 4.36 generates two phase portraits: Ric. 53 (for κ2 < 0) and

Ric. 52 (for κ2 > 0).

We observe that in the case of Ric. 53 the invariant line under discussion is not a separatrix

connection and hence, by breaking this line we obtain the same phase portrait.

On the other hand in Ric. 52 this line is a separatrix connection and considering Corollary 4.1

we deduce that by breaking the horizontal invariant line the separatrix connection disappears.

Therefore due to a symmetry we obtain a single phase portrait which is topologically equivalent

to Ric. 63. So for κ2 < 0 we obtain and Ric. 53 and for κ2 > 0 we obtain Ric. 63.

7: H6 ̸= 0, µ2 = 0, K̃ = 0, µ3 = 0, H3 = 0 ⇒ Config. 3.58. Considering (21) we observe that

for systems (20) the conditions K̃ = 0 and B2 ̸= 0 yield g = 0 and this implies µ2 = 0. Then

for systems (20) we calculate H3 = 8ax2 and therefore the condition H3 = 0 gives a = 0. As a

result we arrive at the family of systems

ẋ = cx, ẏ = b− xy. (23)

for which we calculate:

η = 0, M̃ = −8x2, µ0 = µ1 = µ2 = µ3 = 0, µ4 = −bc2x3y,

κ = κ1 = L̃ = 0,K1 = −cx2y, H6 = −128c2x6.
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The condition H6 ̸= 0 implies µ4K1 ̸= 0 and according to [17, Table 4] (see also [5, Diagram

6.3]) we conclude that the behavior of the trajectories in the vicinity of infinity corresponds to

Fig. 15 in Figure 17.

Taking into consideration the invariant line passing through intricate infinite singularity it is

not too difficult to determine that we get a new phase portrait denoted here by Ric. 71.

8: H6 = 0, K̃ ̸= 0, H11 ̸= 0 ⇒ Config. 4.30. According to [21, Table 2] this configuration

generates two topologically distinct phase portraits: Portrait 4.30(a) if µ2 > 0 and Portrait

4.30(b) if µ2 < 0. We observe that the first phase portrait is topologically equivalent to Ric. 58

and the second to Ric. 55.

9: H6 = 0, K̃ ̸= 0, H11 = 0 ⇒ Config. 3.43. By [21, Table 2] this configuration generates

three phase portraits: Portrait 4.43(a) if L̃ < 0; Portrait 4.43(b) if L̃ > 0 and R ≥ 0 and Portrait

4.43(c) if L̃ > 0 and R < 0. We determine that Portrait 4.43(a) ≃ Ric. 63 and Portrait 4.43(b)

≃ Ric. 36 whereas Portrait 4.43(c) is new and we denote it by Ric. 72.

10: H6 = 0, K̃ = 0 ⇒ Config. 4.40. According to [21, Table 2] this configuration leads to

the unique phase portrait Picture 4.40 (≃ Ric. 62 ).

4.3.2 The subcase Ñ = 0

According to Diagram 3 we have to consider two possibilities: K̃ ̸= 0 and K̃ = 0.

4.3.2.1 The possibility K̃ ̸= 0. As it was shown in [10] in this case a quadratic system

with θ3 ̸= 0 could not belong to the class QSL2p and hence, it could neither belong to the family

QSRic .

On the other hand according to [10] for θ3 = 0 this system could be brought via an affine

transformation and time rescaling to the form (24) (from [10]), i.e. we arrive at the subfamily

of the Riccati systems

ẋ = a+ cx− x2, ẏ = b− 2xy. (24)

For these systems we have B3 = −12bx4 and we consider two cases: B3 = 0 and B3 ̸= 0.

4.3.2.1.1 The case B3 = 0. Then we have b = 0 and hence systems (24) have an

additional invariant line y = 0. This means that these systems belong to the class QSL≥4 and

we shall use the classifications given in [21] and [19] for the systems in this class.

We follow step by step the branch of the Diagram 3 corresponding to the case B3 = 0.

1: H6 ̸= 0, H11 < 0 ⇒ Config. 4.15. As it was shown earlier (see page 53) this configuration

leads to the phase portrait Ric. 52 if L̃ < 0 and to Ric. 53 for L̃ > 0. However for systems (24)

with b = 0 we have L̃ = −8x2 < 0 and hence only the phase portrait Ric. 52 is realizable in this

case.

2: H6 ̸= 0, H11 > 0 ⇒ Config. 4.12. In the generic case Ñ ̸= 0 this configuration generates

five topologically distinct phase portraits (see Remark 4.16). However in the case Ñ = 0 only

two of them are realizable. Indeed, for systems (24) we calculate:

µ2 = −4ax2, K̃ = 4x2, L̃ = −8x2 (25)

and hence the conditions K̃ > 0 and L̃ < 0 hold. Therefore considering Remark 4.16 we get

Ric. 55 if µ2 < 0 and Ric. 57 if µ2 > 0.

3: H6 ̸= 0, H11 = 0 ⇒ Config. 4.24. As it was shown earlier (see page 53) the configuration

Config. 4.24 generates two phase portraits: Ric. 59 if L̃ < 0 and Ric. 60 for L̃ > 0. However as
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it is mentioned in previous case the condition L̃ < 0 holds for systems (24) with b = 0. Therefore

we obtain the unique phase portrait Ric. 59.

4: H6 = 0, H11 < 0 ⇒ Config. 6.9. According to [19] (see Diagram 1) this configuration

leads to the unique phase portrait Picture 6.9 (≃ Ric. 52 ).

5: H6 = 0, H11 > 0 ⇒ Config. 6.8. By [19] (see Diagram 1) this configuration leads to the

unique phase portrait Picture 6.8 (≃ Ric. 55 ).

4.3.2.1.2 The case B3 ̸= 0. Then b ̸= 0 and the line y = 0 is not invariant for systems

(24). According to Diagram 3 we examine the next possibilities.

1: H6 ̸= 0, µ2 ̸= 0, H11 < 0 ⇒ Config. 3.52. We have examined this configuration in the

generic case Ñ ̸= 0 and we obtained two phase portraits: Ric. 52 (for L̃ < 0) and Ric. 63 (for

L̃ > 0). Since for systems (24) we have L̃ = −8x2 < 0 it follows that only Ric. 52 is realizable

in the case considered.

2: H6 ̸= 0, µ2 ̸= 0, H11 > 0 ⇒ Config. 3.53. In the generic case Ñ ̸= 0 we proved (see Remark

4.17) that the configuration Config. 3.53 generates five topologically distinct phase portraits.

Considering (25) for systems (24) the conditions K̃ > 0 and L̃ < 0 hold. Therefore considering

Remark 4.17 we get Ric. 55 if µ2 < 0 and Ric. 65 if µ2 > 0.

3: H6 ̸= 0, µ2 ̸= 0, H11 = 0 ⇒ Config. 3.54. As it was shown in the generic case Ñ ̸= 0

this configuration leads to the two phase portraits: Ric. 66 (for L̃ < 0) and Ric. 60 (for L̃ > 0).

Since for systems (24) we have L̃ < 0 (see the previous case) we conclude that in this case we

have the unique phase portrait Ric. 66.

4: H6 ̸= 0, µ2 = 0 ⇒ Config. 3.55. We have examined this configuration in the generic case

Ñ ̸= 0 and we obtained three phase portraits: Ric. 67 if K̃ < 0; Ric. 68 if K̃ > 0 and L̃ < 0 and

Ric. 69 if K̃ > 0 and L̃ > 0. Since from (25) for systems (24) we have K̃ > 0 and L̃ < 0, we

conclude that in the considered case only Ric. 68 is realizable.

5: H6 = 0, H11 < 0 ⇒ Config. 5.25. According to [19] (see Diagram 3) this configuration

leads to the unique phase portrait Picture 5.25 (≃ Ric. 63 )

6: H6 = 0, H11 > 0 ⇒ Config. 5.22. By [19] (see Diagram 3) this configuration leads to the

unique phase portrait Picture 5.22 (≃ Ric. 55 ).

7: H6 = 0, H11 = 0 ⇒ Config. 5.29. According to [19] (see Diagram 3) this configuration

leads to the unique phase portrait Picture 5.29 (≃ Ric. 63 ).

4.3.2.2 The possibility K̃ = 0. According to Diagram 3 we have to consider two cases:

B2 = 0 and B2 ̸= 0.

4.3.2.2.1 The case B2 = 0. Following Diagram 3 we examine the next possibilities.

1: µ2 ̸= 0, N1 ̸= 0, N2 ̸= 0, N5 < 0 ⇒ Config. 4.32. According to [21, Table 2]) this

configuration leads to a single phase portrait Portrait 4.32 (≃ Ric. 53 ).

2: µ2 ̸= 0, N1 ̸= 0, N2 ̸= 0, N5 > 0 ⇒ Config. 4.28. By [21, Table 2]) this configuration leads

to a single phase portrait Portrait 4.28 (≃ Ric. 58 ).

3: µ2 ̸= 0, N1 ̸= 0, N2 ̸= 0, N5 = 0 ⇒ Config. 4.39. According to [21, Table 2]) this

configuration leads to a single phase portrait Portrait 4.39 (≃ Ric. 60 ).

4: µ2 ̸= 0, N1 ̸= 0, N2 = 0 ⇒ Config. 5.21. By [19] (see Diagram 3) this configuration leads

to the unique phase portrait Picture 5.21 (≃ Ric. 58 ).
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5: µ2 ̸= 0, N1 = 0, N2 ̸= 0, N5 < 0 ⇒ Config. 5.15. According to [19] (see Diagram 3) this

configuration generates the unique phase portrait Picture 5.15 (≃ Ric. 53 ).

6: µ2 ̸= 0, N1 = 0, N2 ̸= 0, N5 > 0 ⇒ Config. 5.13. By [19] (see Diagram 3) this configuration

leads to the unique phase portrait Picture 5.13 (≃ Ric. 58 ).

7: µ2 ̸= 0, N1 = 0, N2 ̸= 0, N5 = 0 ⇒ Config. 5.17. According to [19] (see Diagram 3) this

configuration generates the unique phase portrait Picture 5.17 (≃ Ric. 60 ).

8: µ2 ̸= 0, N1 = 0, N2 = 0 ⇒ Config. 6.7. By [19, Diagram 1] ⇒ Picture 6.7 (≃ Ric. 58 ).

9: µ2 = 0, N1 ̸= 0, N2 ̸= 0, N5 < 0 ⇒ Config. 4.33. According to [21, Table 2]) this

configuration leads to a single phase portrait Portrait 4.33 (≃ Ric. 53 ).

10: µ2 = 0, N1 ̸= 0, N2 ̸= 0, N5 > 0 ⇒ Config. 4.29. According to [21, Table 2]) this

configuration generates two phase portraits: Portrait 4.29(b) for µ4 < 0 and Portrait 4.29(a)

for µ4 > 0. The first phase portrait is new and we denote it by Ric. 73. The second one is

topologically equivalent to Ric. 43. So we get Ric. 73 for µ4 < 0 and Ric. 43 for µ4 > 0.

11: µ2 = 0, N1 ̸= 0, N2 = 0 ⇒ Config. 5.28. According to [19] (see Diagram 3) this

configuration generates the unique phase portrait Picture 5.28 (≃ Ric. 36 ).

12: µ2 = 0, N1 = 0, N2 ̸= 0, N5 < 0 ⇒ Config. 5.24. By [19] (see Diagram 3) this

configuration leads to the unique phase portrait Picture 5.24 (≃ Ric. 53 ).

13: µ2 = 0, N1 = 0, N2 ̸= 0, N5 > 0 ⇒ Config. 5.20. According to [19] (see Diagram 3) this

configuration generates the unique phase portrait Picture 5.20 (≃ Ric. 43 ).

14: µ2 = 0, N1 = 0, N2 = 0 ⇒ Config. 6.10. By [19] (see Diagram 1) this configuration leads

to the unique phase portrait Picture 6.10 (≃ Ric. 36 ).

4.3.2.2.2 The case B2 ̸= 0. According to Lemma 3.7 in this case a quadratic system

with θ5 ̸= 0 could not belong to the class QSL2p and hence, it could neither belong to the family

QSRic .

On the other hand according to [10] for θ5 = 0 this system could be brought via an affine

transformation and time rescaling to the form (26) (from [10]), i.e. we arrive at the subfamily

of the Riccati systems

ẋ = a+ cx, ẏ = b+ ex+ y2. (26)

Following [6, Diagram 3] we evaluate for systems (26) the following invariant polynomials:

η = µ0 = µ1 = 0, M̃ = −8y2, µ2 = c2y2, κ = 0, κ1 = 32e,

U = −4c3(bc− ae)x2y4, K̃ = 0, L̃ = 8y2, B2 = −648e4x4.
(27)

We examine the possibilities given by Diagram 3.

1: µ2 ̸= 0,U < 0 ⇒ Config. 3.59. By (27) we have µ2 > 0 and κ1 ̸= 0 due to B2 ̸= 0.

Then considering the conditions κ = K̃ = 0 and µ2L̃ > 0, according to [6, Diagram 3] the

global topological configuration of the singularities (finite and infinite) corresponds to (142):(
2
2

)
PH − H, N . Since we do not have real finite singularities and only one finite separatrix

belonging to the multiple infinite singularity, we conclude that this separatrix must go to the

infinite node which is adjacent to the parabolic part of the non-elemental singularity. This leads

to a unique phase portrait which is new and we denote it here by Ric. 74.

2: µ2 ̸= 0,U > 0⇒ Config. 3.60. In this case considering (27) according to [6, Diagram 3] the

global topological configuration of the singularities corresponds to (135): s, a;
(
2
2

)
PH −H, N .
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Since we have an invariant straight line passing through both finite singularities (a saddle

and a node) and tending to the infinite node N [0 : 1 : 0], this splits the plane in two semi-planes.

By a vertical symmetry, we may assume the saddle is located below the node, and by a time

change we may assume the node being repellor. We have a nilpotent singularity at N [1 : 0 : 0]

being a saddle-node which has only one finite separatrix, which by a symmetry we may assume

it on the right semi-plane.

The unstable separatrix of the finite saddle on the left semi-plane can only go to the infinite

attractor node N [0 : 1 : 0]. On the right semi-plane there are several possibilities depending

on the stability of the finite separatrix of the infinite singularity and the relative position of

the two separatrices in that semi-plane (see (b) in Figure 18). However, we must notice first

that the separatrix of the finite saddle cannot go to the same infinite node since that would

contradict Proposition 3.34 from [3] (see (b1) in Figure 18). This proposition says that if a phase

portrait has at least two pairs of infinite singularities and a finite saddle sends two separatrices

to the same infinite point, the opposite infinite point cannot receive a separatrix from this finite

saddle. So the separatrix of the finite saddle must go the nodal part of the nilpotent singularity,

or coincide with its separatrix. However, if the connection were possible, by means of small

perturbation, we could arrive to the previous situation which contradicts Proposition 3.34 of [3].

So, the connection is not possible.

Figure 18: Scheme of the proof to obtain Ric. 75.

So, it remains (see (b) in Figure 18) to determine the position and stability of the finite sep-

aratrix of the infinite singularity. Since the surrounding of the singularity must have a parabolic

and an hyperbolic sectors the only possibility is that the separatrix go to infinity and come from

the finite node producing a unique phase portrait that we denote by Ric. 75 (see (b2) in Figure

18).

3: µ2 ̸= 0,U = 0 ⇒ Config. 3.61. This configuration could be obtained from Config. 3.60 by

coalescing the two finite singularities. This means that we can produce a single phase portrait

denoted here by Ric. 76.

4: µ2 = 0 ⇒ Config. 3.62. Considering (27) the condition µ2 = 0 gives us c = 0 and then for

systems (26) we obtain µ3 = 0 and µ4 = a2y4 ̸= 0, otherwise we get degenerate systems. Then

considering (27) according to [6, Diagram 3, page 15] the global topological configuration of the

singularities corresponds to {142}:
(
4
2

)
PH − H, N which topologically is equivalent with the

configuration
(
2
2

)
PH −H, N examined above (see case 1:). Thus we arrive at the same phase

portrait Ric. 74.

4.4 The case η = 0 = M̃

According to the Diagram 4 we examine two subcases: C2 ̸= 0 and C2 = 0.
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4.4.1 The subcase C2 ̸= 0

Since η = 0 = M̃ and C2 ̸= 0, according to [24] (see also [17]) we consider the following canonical

form:
ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy − x2 + gxy + hy2.
(28)

for which by Lemma 3.7 the conditions θ = B1 = H7 = 0 have to be fulfilled. As it was shown

in [10] forcing these conditions to be satisfied, in the case Ñ ̸= 0 we arrive at the family of

systems (95) from [10], i.e. we consider the family of systems

ẋ =a+ cx+ gx2, ẏ = b− x2 + gxy. (29)

On the other hand for Ñ = 0 we obtain the family of systems (98) from [10], i.e. in this case we

consider the family of systems

ẋ =a+ cx, ẏ = b+ fy − x2. (30)

Thus as in the previous cases we have to examine two possibilities: Ñ ̸= 0 and Ñ = 0.

4.4.1.1 The possibility Ñ ̸= 0. Following [6, Diagram 3] we evaluate for systems (29) the

following invariant polynomials:

C2 = x3, Ñ = g2x2, µ2 = ag3x2, U = g2(c2 − 4ag)x4[(a+ bg)x− agy]2,

H11 = 48g4(c2 − 4ag)x4, K̃ = 2g2x2, κ = 0, L̃ = 0.
(31)

We observe that if H11 ̸= 0 then sign (H11) = sign (U).

According to the Diagram 4 we consider the next cases.

1: µ2 ̸= 0, H11 < 0 ⇒ Config. 3.63. The condition H11 < 0 implies U < 0 and due to

Ñ ̸= 0 we have K̃ ̸= 0. Then considering the condition κ = L̃ = 0, according to [6, Diagram 3]

the global topological configuration of the singularities corresponds to (12):
(
2
3

)
P − P . So this

is topologically equivalent with an elemental node and thus the only possible phase portrait is

Ric. 28.

2: µ2 ̸= 0, H11 > 0 ⇒ Config. 3.64. By (31) this implies U > 0 and we consider two cases:

µ2 < 0 and µ2 > 0.

2.1: If µ2 < 0 then taking into consideration (31) by [6, Diagram 3] we obtain that the global

topological configuration of the singularities corresponds to (127): a, a;
(
2
3

)
HHP − PHH.

Since H11 = 48g4(c2 − 4ag)x4 > 0 we have c2 − 4ag > 0 and the phase portrait has two

parallel vertical invariant straight lines. We also have one node located on each invariant line.

This leads to a unique phase portrait which is new and we denote it here by Ric. 77.

2.2: Assuming µ2 > 0 according to [6, Diagram 3] we obtain that the global topological

configuration of the singularities corresponds to (130): s, a;
(
2
3

)
HE − P .

Since H11 > 0, as it was mentioned above we have two parallel vertical invariant lines and on

each one of them there is a singular point. As one of the finite singularities is a saddle we conclude

that one separatrix of this saddle is located between the two parallel invariant lines. Without

loss of generality we may assume that the parabolic sector of the infinite intricate singularity is

located on the semi-plane y > 0 and that it is an attractor. This forces the direction of the flow

on every separatrix. Therefore the separatrix between the invariant lines must come from the

finite node and the other separatrix must border the infinite elliptic sector. Thus we obtain a

unique phase portrait which is new and we denote it here by Ric. 78.
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3: µ2 ̸= 0, H11 = 0 ⇒ Config. 3.65. The condition H11 = 0 implies U = 0 and by [6,

Diagram 3] we get the global topological configuration of the singularities (146): sn;
(
2
3

)
HE−P .

We observe that in this case systems under consideration possess a vertical invariant line (of

multiplicity at least two) and a semi-elemental saddle-node of multiplicity 2 is located on this

line. Moreover both semi-lines of this invariant line are the separatrices of the saddle-node and

the separatrices can be considered repellor due to a time rescaling. We have another separatrix in

one of the semi-planes defined by the invariant line. Without loss of generality we may consider

that the parabolic sector of the infinite singularity is located in the semi-plane y > 0. Therefore

the finite separatrix can only come from the opposite region formed by parabolic sector. As a

result we obtain the elliptic sector and this leads to a unique phase portrait which is new and

we denote it here by Ric. 79.

4: µ2 = 0, N6 ̸= 0, H11 ̸= 0 ⇒ Config. 4.31. According to [21, Table 2]) this configuration

leads to the phase portrait Portrait 4.31(a) if K3 > 0 and Portrait 4.31(b) if K3 < 0. These

phase portraits are new for the Riccati family and we denote Portrait 4.31(b) by Ric. 80 and

Portrait 4.31(a) by Ric. 81. Thus we get Ric. 80 for K3 < 0 and Ric. 81 for K3 > 0.

5: µ2 = 0, N6 ̸= 0, H11 = 0 ⇒ Config. 4.44. By [21, Table 2]) this configuration generates

two phase portraits: Portrait 4.44(a) if K3 > 0 and Portrait 4.44(b) if K3 < 0. The first phase

portrait is topologically equivalent to Ric. 28, whereas Portrait 4.44(b) is new and we denote it

by Ric. 82.

6: µ2 = 0, N6 = 0 ⇒ Config. 5.23. According to [19] (see Diagram 3) this configuration

generates the unique phase portrait Picture 5.23 (≃ Ric. 81 ).

4.4.1.2 The possibility Ñ = 0. Following the branch of Diagram 4 defined by this condition

we consider the next cases.

1: N3 ̸= 0, D1 ̸= 0, N6 ̸= 0, D̃ ̸= 0 ⇒ Config. 4.37. By [21, Table 2]) this configuration

generates three phase portraits: Portrait 4.37(a) if µ3K1 > 0 and K3 ≥ 0; Portrait 4.37(b) if

µ3K1 > 0 and K3 < 0 and Portrait 4.37(c) if µ3K1 < 0. All these phase portraits are new

for the Riccati family and we denote Portrait 4.37(c) (respectively, Portrait 4.37(b); Portrait

4.37(a)) by Ric. 83 (respectively Ric. 84 ; Ric. 85 ).

2: N3 ̸= 0, D1 ̸= 0, N6 ̸= 0, D̃ = 0 ⇒ Config. 4.38. According to [21, Table 2]) this

configuration generates two phase portraits: Portrait 4.38(a) if µ4 > 0 and Portrait 4.38(b) if

µ4 < 0. We observe that the second phase portrait is topologically equivalent to Ric. 28, whereas

Portrait 4.38(a) is new and we denote it by Ric. 86.

3: N3 ̸= 0, D1 ̸= 0, N6 = 0 ⇒ Config. 4.46. According to [21, Table 2]) this configuration

leads to the unique phase portrait Portrait 4.46 which is new and we denote by Ric. 87.

4: N3 ̸= 0, D1 = 0 ⇒ Config. 5.26. According to [19] (see Diagram 3) this configuration

generates the unique phase portrait Picture 5.26 (≃ Ric. 83 ).

5: N3 = 0, D1 ̸= 0 ⇒ Config. 5.27. By [19] (see Diagram 3) this configuration leads to the

unique phase portrait Picture 5.27 (≃ Ric. 85 ).

6: N3 = 0, D1 = 0 ⇒ Config. 5.30. According to [19] (see Diagram 3) this configuration

generates the unique phase portrait Picture 5.30 (≃ Ric. 28 ).

4.4.2 The subcase C2 = 0

In this case the invariant line at infinity of a quadratic system is filled up with singularities. This

class of systems was classified in [20], where all the phase portraits as well as the affine invariant
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criteria for their realization are detected. Following Diagram 4 we present here below the phase

portraits in the Riccati family for which C2 = 0 together with the corresponding conditions.

H12 ̸= 0, H11 < 0 ⇔ Config. C2.6 ⇒ Picture C2.6 ⇒ Ric. 88;

H12 ̸= 0, H11 > 0 ⇔ Config. C2.5 ⇒
{
Picture C2.5(a) if µ2 < 0

Picture C2.5(b) if µ2 > 0

⇒ Ric. 89;

⇒ Ric. 90;

H12 ̸= 0, H11 = 0 ⇔ Config. C2.7 ⇒ Picture C2.7 ⇒ Ric. 91;

H12 = 0, H11 ̸= 0 ⇔ Config. C2.8 ⇒ Picture C2.8 ⇒ Ric. 92;

H12 = 0, H11 = 0 ⇔ Config. C2.9 ⇒ Picture C2.9 ⇒ Ric. 93.

4.5 The degenerate Riccati systems

We split this class of quadratic systems in sub-classes defined by the invariant polynomials η, M̃

and C2 according to the number and the kind of infinite singularities.

4.5.1 The case η > 0

According to Lemma 3.4 we consider the family of systems (SI). We claim that if for a system

belonging to this family the condition Ñ = 0 holds then this system could not be degenerate.

Indeed for systems (SI) we calculate

µ0 = gh(g + h− 1), Ñ = (g2 − 1)x2 + 2(g − 1)(h− 1)xy + (h2 − 1)y2

and therefore Ñ = 0 if and only if (g, h) ∈ {(1, 1), (1,−1), (−1, 1)}. However evidently in all

these cases we get µ0 ̸= 0 and by Lemma 3.3 the systems could not be degenerate.

Thus we assume that for systems (SI) the condition Ñ ̸= 0 is fulfilled. As it was shown

earlier (see Subsection 4.1.1) in this case a system in QSRic via an affine transformation and

time rescaling can be brought to the canonical form

ẋ =a+ cx+ gx2, ẏ = b+ ex+ fy + (g − 1)xy + y2. (32)

According to Lemma 3.3 in order to obtain degenerate systems we have to impose the conditions

µi = 0 for all i ∈ {0, 1, . . . , 4}.
For the above systems we have µ0 = g2 = 0 which implies g = 0. Then µ1 = 0 and

µ2 = −c2(x− y)y. So the condition µ2 = 0 gives c = 0 and then we calculate

µ3 = 0, µ4 = a2y2(−x+ y)2.

Therefore µ4 = 0 yields a = 0 and after the translation (x, y) 7→ (x + 2e + f, y + e) (forcing

e = f = 0) we arrive at the family of degenerate systems

ẋ =0, ẏ = b− xy + y2. (33)

It is clear that in the case b ̸= 0 the conic b−xy+y2 = 0 is a hyperbola which becomes reducible

if b = 0.

On the other hand for the above systems we calculate L1 = −12bx2. Since sign (L1) =

−sign (b) we arrive at the phase portrait Ric.D1 if L1 < 0; Ric.D2 if L1 > 0 and at the phase

portrait Ric.D3 if L1 = 0.

It remains to observe that for systems (33) we have B2 = −648b2x4 and hence the condition

L1 = 0 is equivalent with B2 = 0. So for B2 ̸= 0 we arrive at the conditions given in Diagram 5

for Ric.D1 and Ric.D2.

We examine the case of the phase portrait Ric.D3. We claim that for systems (32) the

conditions µ0 = µ2 = 0 and B3 = 0 lead to degenerate systems. Indeed, as it is mentioned above

62



the conditions µ0 = µ2 = 0 for (32) give us g = c = 0 and this implies µ3 = 0. Moreover we may

assume e = f = 0 due a translation and then for these systems we calculate

B3 = −3x2(bx2 − 2bxy + ay2).

Evidently the condition B3 = 0 yields b = a = 0 (which gives B2 = 0) and this implies µ4 = 0

which leads to degenerate systems and this proves our claim.

In such a way we determine exactly the branches in the Diagram 5 on which are located the

phase portraits Ric.D1, Ric.D2 and Ric.D3, correspondingly.

4.5.2 The case η < 0

In this case we have to consider the family of systems (SII). As in the case η > 0 we claim that

if for a system belonging to this family the condition Ñ = 0 holds then this system could not be

degenerate.

Indeed for systems (SII) we calculate

µ0 = −h
(
g2 + (h+ 1)2

)
, Ñ = x2

(
g2 − 2h+ 2

)
+ 2g(h+ 1)xy + (h2 − 1)y2

and we determine that the condition Ñ = 0 holds if and only if g = 0 and h = 1. However in

this case we get µ0 = −4 ̸= 0 and this complete the proof of our claim.

So we assume Ñ ̸= 0. Then according to [10] a quadratic system satisfying the conditions

η < 0 and θ = B1 = H7 = 0 could be brought via an affine transformation and time rescaling to

the form

ẋ = a+ cx+ gx2, ẏ = b+ ex− x2 + gxy − y2. (34)

For these systems we have µ0 = g2 = 0, i.e. g = 0. Then we get µ1 = 0 and µ2 = c2(x2 + y2).

Therefore the condition µ2 = 0 gives us c = 0 and this implies µ3 = 0 and µ4 = a2(x2 + y2)2.

Clearly the condition µ4 = 0 yields a = 0 and after the translation (x, y) 7→ (x+ e/2, y) (forcing

e = 0) we arrive at the family of degenerate systems

ẋ = 0, ẏ = b− x2 − y2. (35)

It is clear that in the case b ̸= 0 the conic b− xy + y2 = 0 is an ellipse which becomes reducible

if b = 0.

On the other hand for the above systems we calculate L1 = −12bx2. Since sign (L1) =

−sign (b) we arrive at the phase portrait Ric.D4 if L1 < 0.

There are some cases with degenerate systems that produce phase portraits which are topo-

logically equivalent to non-degenerate systems. We have the followin remark

Remark 4.18. In the case L1 > 0 we have a phase portrait which is topologically equivalent

to Ric. 28 (the complex ellipse is not visible). Even more interesting is the case L1 = 0 (i.e.

b = 0) where we have a flow formed by vertical straight lines plus a finite singularity (0, 0) which

comes from the intersection of two complex lines. In this case we obtain a phase portrait which

is topologically equivalent to Ric. 35 (where the singular point is an intricate singularity with two

hyperbolic sectors). For this reason we will denote by Ric. 28d if L1 > 0 and Ric. 35d if L1 = 0

in Diagram 6. However we do not add these phase portraits in the lists of phase portraits given

in Figures 5 and 6.

4.5.3 The case η = 0, M̃ ̸= 0

In this case we have to consider the family of systems (SIII) and we examine two subcases:

Ñ ̸= 0 and Ñ = 0.
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4.5.3.1 The subcase Ñ ̸= 0. Since we are interested in degenerate systems the condition

µ0 = 0 is necessary. As it was mentioned earlier (see Subsection 4.3.1) in this case a Riccati

system could be brought via an affine transformation to the canonical form (20), i.e. we consider

the family of systems

ẋ = a+ cx+ gx2, ẏ = b+ (g − 1)xy. (36)

For these systems we have

µ0 = µ1 = 0, µ2 = ag(g − 1)2x2, Ñ = (g2 − 1)x2, K̃ = 2(g − 1)gx2

and we consider two possibilities: K̃ ̸= 0 and K̃ = 0.

4.5.3.1.1 The possibility K̃ ̸= 0. Then g(g − 1) ̸= 0 and hence the condition µ2 = 0

implies a = 0. In this case we calculate

µ3 = −bc(g − 1)gx3, µ4 = bx3
[
bg2x+ c2(g − 1)y

]
(37)

and evidently due to K̃ ̸= 0 the condition µ3 = µ4 = 0 implies b = 0. So we arrive at the family

of degenerate systems

ẋ = x(c+ gx), ẏ = (g − 1)xy. (38)

which possess the invariant line x = 0 filled with singularities. For the above systems we have

K̃ = 2g(g − 1)x2 ̸= 0, L̃ = 8gx, K2 = 48c2(2− g + g2)x2.

We observe that the underlying linear systems:

ẋ = c+ gx, ẏ = (g − 1)y,

due to K̃ ̸= 0 (i.e. g(g − 1) ̸= 0) possess the finite singular point M1(−c/g, 0). Moreover this

singularity is isolated if c ̸= 0 and lies on the singular line x = 0 if c = 0. We observe that these

possibilities are governed by the invariant polynomial K2 (see its value above).

For the finite singularity M1(−c/g, 0) we obtain λ1λ2 = g(g−1) ̸= 0 and hence sign (λ1λ2) =

sign (K̃). So we get a saddle if K̃ < 0 and a node if K̃ > 0.

Moreover in the second case we have that the orbits are all (except one) tangent to the

direction given by the eigenvector of the eigenvalue that is smaller in absolute value. There-

fore if g < 0 (respectively g > 0) the orbits are tangent to the x-axis (respectively y-axis).

Since sign (g) = sign (L̃) we arrive at the following phase portraits defined by the corresponding

conditions:
K̃ < 0, K2 ̸= 0 ⇒ Ric.D5;

K̃ < 0, K2 = 0 ⇒ Ric.D6;

K̃ > 0, L̃ < 0 ̸= K2 ⇒ Ric.D7;

K̃ > 0, L̃ < 0 = K2 ⇒ Ric.D8;

K̃ > 0, L̃ > 0 ̸= K2 ⇒ Ric.D9;

K̃ > 0, L̃ > 0 = K2 ⇒ Ric.D10.

In order to determine the exact places of the above degenerated phase portraits in the

branches of Diagram 7 we prove the following lemma.

Lemma 4.9. In the case K̃ ̸= 0 the conditions µ2 = µ3 = µ4 = 0 for systems (36) are equivalent

to µ2 = B3 = 0. Moreover for systems (38) the conditions H6 ̸= 0 and K2 ̸= 0 are equivalent

and the condition H6 = 0 implies H11 = 0.
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Proof: As it was shown above the condition µ2 = 0 implies a = 0 for systems (36) and then

B3 = −3b(g−1)2x4. Therefore considering (37) due to K̃ ̸= 0 the condition B3 = 0 is equivalent

to µ3 = µ4 = 0. It remains to observe that for systems (38) we have

H6 = −128c2(g − 1)4x6, H11 = 48c2(g − 1)4x4

and considering the value of the invariant polynomial K2 given above we deduce that the condi-

tion H6 ̸= 0 is equivalent to K2 ̸= 0 and that H6 = 0 implies H11 = 0. This completes the proof

of the lemma.

4.5.3.1.2 The possibility K̃ = 0. Then g(g − 1) = 0 and due to Ñ ̸= 0 we get g = 0

and we get the family of systems

ẋ = a+ cx, ẏ = b− xy (39)

for which we have

µ0 = µ1 = µ2 = 0, µ3 = −acx2y, µ4 = x2y(−bc2x+ a2y), B3 = −3bx4. (40)

Clearly the conditions µ3 = µ4 = 0 imply a = 0 and then µ3 = 0 and µ4 = −bc2x3y. So we

examine two cases: B3 ̸= 0 and B3 = 0.

1: If B3 ̸= 0 (i.e. b ̸= 0) we get c = 0 and we obtain the family of systems

ẋ = 0, ẏ = b− xy.

It is clear that in the case b ̸= 0 the conic b− xy = 0 is a hyperbola which is irreducible due to

b ̸= 0. As a result, due to symmetry, we get the unique phase portrait Ric.D11.

2: For B3 = 0 we get b = 0 and we obtain the systems

ẋ = cx, ẏ = −xy, (41)

possessing the singular invariant line x = 0. Clearly we have to distinguish the possibilities c ̸= 0

and c = 0.

2.1: In the case c ̸= 0 we have the underlying linear systems:

ẋ = c, ẏ = −y

which do not have finite singularities due to c ̸= 0. It is not difficult to determine that in this

case we obtain the phase portrait given by Ric.D12.

2.2: For c = 0 we obtain the degenerate systems

ẋ = 0, ẏ = −xy

and it is easy to determine that the phase portrait of the above systems is Ric.D13.

On the other hand for systems (41) we haveK1 = −cx2y and considering the above discussion

we arrive at the phase portrait Ric.D12 if K1 ̸= 0 and Ric.D13 if K1 = 0.

Now we have to determine the exact places of the phase portraits Ric.D11–Ric.D13 in the

Diagram 7 the branches of which are defined by other invariant polynomials in the case K̃ = 0.

We prove the next lemma.

Lemma 4.10. The phase portrait of a system (39) corresponds to one of the portraits Ric.D11–

Ric.D13 if the corresponding conditions are satisfied, respectively:
B3 ̸= 0, µ3 = H6 = 0 ⇒ Ric.D11;

B3 = 0, µ3 = H6 = 0 ⇒ Ric.D13 ;

B3 = 0, µ3 = 0, H11 ̸= 0 ⇒ Ric.D12 .
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Proof: Assume first B3 ̸= 0, i.e. b ̸= 0. For systems (39) we have H6 = 128(a− c2)x6 and since

b ̸= 0 considering (40) we deduce that the conditions µ3 = µ4 = 0 are equivalent to µ3 = H6 = 0

and we arrive at Ric.D11.

Suppose now B3 = 0. Then b = 0 and for systems (39) in this case we have

µ3 = −acx2y, µ4 = a2x2y2, H11 = 48c2x4, H6 = 128(a− c2)x6, K1 = −cx2y

So if µ3 = H6 = 0 then we get a = c = 0 which implies µ3 = µ4 = K1 = 0 and this leads to

Ric.D13.

Assume now B3 = µ3 = 0, H11 ̸= 0. Then considering the above expressions for these

invariant polynomials we obtain a = 0 (which implies µ4 = 0) and c ̸= 0 and then K1 ̸= 0. So

we get Ric.D12 and this completes the proof of the lemma.

4.5.3.2 The subcase Ñ = 0. According to Diagram 3 we have to distinguish two possibili-

ties: K̃ ̸= 0 and K̃ = 0.

4.5.3.2.1 The possibility K̃ ̸= 0. In this case, in order for a system to be a Riccati

system the condition θ3 = 0 must be satisfied. Moreover as it was shown in [10] in this case a

Riccati system could be brought via an affine transformation to the canonical form (24) from [10],

i.e. we consider the family of systems

ẋ = a+ cx− x2, ẏ = b− 2xy. (42)

For these systems we have

Ñ = B2 = 0, K̃ = 4x2 ̸= 0, µ0 = µ1 = 0, µ2 = −4ax2

and clearly the condition µ2 = 0 implies a = 0 and then we have

µ3 = −2bcx3, µ4 = bx3(bx− 2c2y).

Evidently the conditions µ3 = µ4 = 0 give us b = 0 and we arrive at the degenerate systems

ẋ = x(c− x), ẏ = −2xy. (43)

which possess the invariant singular line x = 0 and the underlying linear systems are:

ẋ = c− x, ẏ = −2y.

It is easy to detect that we get the phase portrait Ric.D7 in the case c ̸= 0 and Ric.D8 if c = 0.

On the other hand for systems (43) we have H6 = −2048c2x6 and therefore we get Ric.D7

if H6 ̸= 0 and Ric.D8 if H6 = 0.

Next in order to determine the exact places of the above degenerate phase portraits in the

branches of Diagram 7 we have to take into consideration the next remark.

Remark 4.19. A system (42) possesses the phase portrait Ric.D7 if B3 = µ2 = 0 and H6 ̸= 0

(which implies H11 > 0) and it possess the phase portrait Ric.D8 if B3 = H6 = H11 = 0.

Indeed for systems (42) we calculate

H6 = −2048c2x6, H11 = 768(4a+ c2)x4, B3 = −12bx4, µ2 = −4ax2

and clearly in the case H6 ̸= 0 (i.e. c ̸= 0) the conditions B3 = µ2 = 0 imply a = b = 0. So we

get degenerate systems (43) with c ̸= 0 and we arrive at Ric.D7.

If H6 = 0 we get c = 0 and then the conditions B3 = µ2 = 0 are equivalent to B3 = H11 = 0

and in this case we get Ric.D8.
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4.5.3.2.2 The possibility K̃ = 0. We consider two cases: B2 ̸= 0 and B2 = 0.

1: The case B2 ̸= 0. As it was shown in [10] in this case a Riccati system could be brought

via an affine transformation to the canonical form (90) from [10], i.e. we consider the family of

systems

ẋ = a+ cx, ẏ = b+ ex+ y2.

for which we have

µ0 = µ1 = 0, µ2 = c2y2, B2 = −648e4x4.

So the condition µ2 = 0 gives us c = 0 and then we have µ3 = 0 and µ4 = a2x2. Therefore the

condition µ4 = 0 implies a = 0 and since e ̸= 0 we may assume e = 1 and b = 0 due to the

transformation (x, y) 7→ (−(x+ b)/e, y). Thus we get a degenerate system

ẋ = 0, ẏ = x+ y2

possessing the phase portrait Ric.D14.

2: The case B2 = 0. According to [10] in this case a Riccati system could be brought via an

affine transformation to the canonical form (92) from [10], i.e. we consider the family of systems

ẋ = a+ x2, ẏ = b+ ex+ fy,

for which we have

µ0 = µ1 = 0, µ2 = f2x2.

Therefore the condition µ2 = 0 yields f = 0 and then we have

µ0 = µ1 = µ2 = µ3 = 0, µ4 = (b2 + ae2)x4, N1 = 8ex4, N2 = 16ax, N5 = −64ax2

and we consider two possibilities: N1 ̸= 0 and N1 = 0.

2.1: If N1 ̸= 0 then e ̸= 0 and we may assume e = 1 due to a rescaling. Then the condition

µ4 = 0 gives us a = −b2 (which implies N5 > 0) and then we arrive at the degenerate systems

ẋ = (x− b)(b+ x), ẏ = b+ x.

These systems possess the singular invariant line x = −b and the underlying linear systems are:

ẋ = x− b, ẏ = 1.

We observe that these systems have at infinity a node and a saddle-node having the invariant

line x = b as a separatrix. Therefore for the initial systems we get two phase portraits: Ric.D15

if b ̸= 0 and Ric.D16 if b = 0. It remains to mention that in the case considered we have

N2 = −16b2x and hence this invariant polynomial distinguishes the phase portraits we obtained.

2.2: Assume N1 = 0, i.e. e = 0. Then the condition µ4 = b2x4 = 0 implies b = 0 and we get

the degenerate systems

ẋ = a+ x2, ẏ = 0,

which possess two singular invariant lines x2 + a = 0. Clearly these lines could be either real (if

a < 0) or complex (if a > 0) or they could coincide (if a = 0).

On the other hand for these systems we have N5 = −64ax2 and therefore we get Ric.D17 if

N5 > 0 and Ric.D18 if N5 = 0. In the case N5 < 0, for similar reason as given in Remark 4.18

we get Ric. 53d.

In order to fit this case with the conditions inside the corresponding branch of Diagram 7 we

point out that the condition N5 = −64ax2 = 0 is equivalent to N2 = 16ax = 0.
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4.5.4 The case η = M̃ = 0

According to Diagram 4 we have to consider two possibilities: C2 ̸= 0 and C2 = 0.

4.5.4.1 The possibility C2 ̸= 0. According to the Diagram 4 we have to examine two cases:

Ñ ̸= 0 and Ñ = 0.

1: If Ñ ̸= 0 it was shown earlier (see Section 4.4.1) we must consider the canonical form (29),

i.e. the following systems

ẋ =a+ cx+ gx2, ẏ = b− x2 + gxy. (44)

For these systems we calculate

µ0 = µ1 = 0, µ2 = ag3x2, Ñ = g2x2.

So g ̸= 0 and the condition µ2 = 0 implies a = 0. In this case we have

µ3 = −bcg2x3, µ4 = bx3
(
bg2x+ c2gy − c2x

)

and evidently the conditions µ3 = µ4 = 0 imply b = 0. So since g ̸= 0 after the rescaling

(x, y) 7→ (x/g, y/g2) we arrive at the family of degenerate systems

ẋ =x(c+ x), ẏ = −x(x− y) (45)

possessing the singular invariant line x = 0 and the underlying linear systems are

ẋ = c+ x, ẏ = −x+ y.

We observe that the finite singularity of these systems M1(−c,−c) is an one-direction node and

considering the fact that the invariant line x = −c coincides with the singular line x = 0 we

arrive at the phase portrait Ric.D19 if c ̸= 0 and at Ric.D20 if c = 0. It remains to observe that

for the systems (45) we have N6 = 8c2x3, i.e. this invariant polynomial is responsible for the

condition c = 0.

In order to fit this case with the conditions inside the corresponding branch of Diagram 8 we

point out that for systems (44) with a = 0 (i.e. µ2 = 0) we have

N6 = 8(b+ c2)x3, H11 = 48c2x4, K3 = −6bx6.

So K3 = 0 yields b = 0 and this implies µ3 = µ4 = 0 and in this case N6 ̸= 0 implies H11 ̸= 0.

So we arrive at the next remark.

Remark 4.20. The phase portrait of a system (44) corresponds to one of the portraits Ric.D19

or Ric.D20 if the corresponding conditions are satisfied, respectively:
N6 ̸= 0, µ2 = K3 = 0 ⇒ Ric.D19 ;

N6 = µ2 = µ3 = 0 ⇒ Ric.D20.

2: Assume now Ñ = 0. As it was shown earlier (see Section 4.4.1) we have to examine the

canonical form (30), i.e. the following systems

ẋ =a+ cx, ẏ = b+ fy − x2, (46)

for which we calculate

µ0 = µ1 = µ2 = 0, µ3 = −c2fx3, D̃ = −f2x3.
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So we consider two possibilities: D̃ ̸= 0 and D̃ = 0.

2.1: Suppose first D̃ ̸= 0. Then f ̸= 0 and the condition µ3 = 0 implies c = 0. In this case

we obtain µ4 = a2x4 = 0 which yields a = 0. As a result we get the family of degenerate systems

ẋ =0, ẏ = b+ fy − x2, (47)

and since f ̸= 0 we can assume b = 0 and f = 1 due to the rescaling (x, y, t) 7→
(
x, (y−b)y/f, t/f

)
.

It is not difficult to detect that we obtain the unique phase portrait Ric.D21.

2.2: Assume now D̃ = 0. Then f = 0 and this implies

µ0 = µ1 = µ2 = µ3 = 0, µ4 = (a2 − bc2)x4, N6 = 8c2x3.

If N6 ̸= 0 then c ̸= 0 and we may assume c = 1 due to the rescaling (x, y, t) 7→ (cx, cy, t/c).

Therefore the condition µ4 = 0 implies b = a2 and we arrive at the family of degenerate systems

ẋ = a+ x, ẏ = (a− x)(a+ x), (48)

which possess the singular invariant lines x = −a. Since the underlying linear systems are:

ẋ = 1, ẏ = a− x

it is easy to determine that we get the unique phase portrait Ric.D22.

Suppose now N6 = 0, i.e. c = 0. Then the condition µ4 = a2x4 = 0 implies a = 0 and we

obtain the degenerate systems

ẋ = 0, ẏ = b− x2. (49)

It is clear that we get the phase portrait Ric. 28d if b < 0; Ric.D23 if b > 0 and Ric.D24 if b = 0.

It remains to observe that for the above systems we have L3 = 4bx4, i.e. sign (b) = sign (L3) and

hence this invariant polynomial distinguishes the phase portraits obtained.

In order to fit the case Ñ = 0 with the conditions inside the corresponding branch of Dia-

gram 8 we prove the next lemma.

Lemma 4.11. The phase portrait of a system (46) corresponds to one of the portraits Ric.D21–

Ric.D24 or Ric. 28d if the corresponding conditions are satisfied, respectively:
N3 ̸= 0, N6 = µ4 = 0 ⇒ Ric.D21;

N6 ̸= 0, D̃ = µ4 = 0 ⇒ Ric.D22;

N3 = D1 = µ4 = 0, L3 > 0 ⇒ Ric.D23;

N3 = D1 = µ4 = 0, L3 = 0 ⇒ Ric.D24;

N3 = D1 = µ4 = 0, L3 < 0 ⇔ Ric. 28d .

Proof: For systems (46) calculations yield

N3 = 3(c− f)x3, N6 = 8c(c− f)x3, D1 = c+ f, D̃ = −f2x3, µ3 = −c2fx3

and clearly the condition N6 = 0 and N3 ̸= 0 implies c = 0. Then µ3 = 0 and the condition µ4 =

a2x4 = 0 gives a = 0. So we get the degenerate systems (47) which possess the phase portrait

Ric.D21. It remains to point out that in this case we have D̃D1 ̸= 0 due to N3 = −3fx3 ̸= 0.

Assume now N6 ̸= 0 and D̃ = 0. Then f = 0, c ̸= 0 and since µ4 = 0 we arrive at the

degenerate systems (48) which possess the phase portrait Ric.D22. We observe that in this case

due to N6 ̸= 0 the condition N3D1 ̸= 0.

Suppose finallyN3 = D1 = 0. This implies c = f = 0 and considering the condition µ4 = 0 we

get the degenerate systems (49) possessing three phase portraits: Ric. 28d (if L3 < 0); Ric.D23

(if L3 > 0) and Ric.D24 (if L3 = 0). It remains to underline that these conditions are exactly

those provided by Diagram 8 for these phase portraits.

69



4.5.4.2 The possibility C2 = 0. According to Lemma 3.4 we have to examine the family of

systems (SV ) for which the necessary condition H7 = 4d = 0 to belong to the class QSRic implies

d = 0. Then due to a translation we can assume e = f = 0 and we get the systems

ẋ = a+ cx+ x2, ẏ = b+ xy, (50)

for which we calculate

µ0 = µ1 = 0, µ2 = ax2.

So the condition µ2 = 0 implies a = 0 and we obtain

µ3 = −bcx3, µ4 = bx3(bx+ c2y)

and evidently the conditions µ3 = µ4 = 0 imply b = 0. Therefore we arrive at the family of

degenerate systems

ẋ = x(c+ x), ẏ = xy,

which possess the invariant singular line x = 0. The underlying linear systems are

ẋ = c+ x, ẏ = y

and it is easy to determine that we get the phase portrait Ric.D25 if c ̸= 0 and Ric.D26 if

c = 0. On the other hand for the above degenerate systems we have H11 = 48c2x4 and hence

this invariant polynomial distinguishes the two detected phase portraits.

Considering the block of Diagram 8 defined by the condition C2 = 0, for systems (50) we

calculate

H12 = −8a2x2, µ2 = ax2, H11 = −48(4a− c2)x4.

Therefore the condition µ2 = 0 is equivalent to H12 = 0 and this yields a = 0. Then we obtain

H11 = 48c2x4, µ3 = −bcx3, µ4 = bx3(bx+ c2y)

and hence the conditions H11 ̸= 0 (i.e. c ̸= 0) and µ3 = 0 imply b = 0 (then µ4 = 0) and we get

Ric.D25.

Assuming H11 = 0 we have c = 0 and this implies µ3 = 0. Then in order to obtain degenerate

systems we must force µ4 = 0 getting b = 0 and this leads to the phase portrait Ric.D26.

Wu thus determined exactly the branches of the Diagram 8 that provide these two phase

portraits. This completes the examination of the degenerate Riccati systems.

5 Topological invariants and the proof of the non-equivalence

of the 119 phase portraits

In order to complete the proof of Main Theorem we prove in this section that all the phase

portraits given in Figures 5 and 6 are topologically non-equivalent. For this goal a simple visual

comparison two by two of the phase portraits (which may imply thousands of comparisons) does

not guarantee the success.

So here we define a set of topological invariants associated to the phase portraits Ric. 1 to

Ric. 93 and Ric.D1 to Ric.D26 which completely distinguish these phase portraits.

These invariants yield a classification which is easier to grasp. In this study we will start by

using a new strong invariant which condenses and substitutes other invariants used in previous

papers. This invariant is related with [7], where a list of all topologically different configurations

of singularities (finite and infinite) containing 208 possibilities is given.
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Definition 5.1. We denote by I1(S) the code from [7] which describes the topological config-

uration of singularities (finite and infinite). This is a code ranging from (1) to (208) and for

example we have that (8) stands for s, s, a, a;N meaning that the system has two finite saddles

and two finite anti-saddles, plus an infinite node, or (41) stands for phph;N,
(
0
2

)
SN and means

that we have a finite intricate singularity with sectors (parabolic-hyperbolic-parabolic-hyperbolic)

and at infinity we have a node plus a saddle-node formed by the coalescence of an infinite saddle

plus an infinite node.

For a given infinite singularity s of a system S, let ls be the number of global or local

separatrices beginning or ending at s and which do not lie on the line at infinity. We have

0 ≤ ls ≤ 3.

Definition 5.2. We denote by I2(S) the sequence of all such ls when s moves in the set of

infinite singular points of the system S. We start the sequence at the infinite singular point

which receives/sends the greatest number of separatrices and take the direction which yields the

greatest absolute value. For example, the values 2110 and 2011 for this invariant are symmetrical

(and, therefore, they are the same), so we consider I2(S) = 2110.

Definition 5.3. We denote by I3(S) the number of separatrix connections, distinguishing the

finite-to finite ones from the finite-to-infinite ones. That is, I3 = (SCf
f , SC

∞
f ), where SCf

f

(respectively, SC∞
f ) is the number of separatrix connections connecting two finite singularities

(respectively a finite and an infinite one). Even in this family there are also infinite-to-infinite

(SC∞
∞) separatrices, we do not need them to distinguish phase portraits.

Next topological invariant is defined for distinguishing the phase portraits in the subfamily

of degenerate Riccati quadratic systems.

Definition 5.4. We denote by I4(S) a topological invariant which takes the following values:

I4(S) =

{
1− if there exists a trajectory connecting two infinite singularities of (S);

0− if there does not exist such a trajectory.

Theorem 5.1. Consider the family QSRic of Riccati systems and denote by P the set of all

the phase portraits that we have obtained for this family. The values of the affine invariant

I = (I1, I2, I3, I4) given in the Diagram 9 yields a partition of the set P.

Furthermore, for each value of I in this diagram there corresponds a single phase portrait;

i.e. S and S′ are such that I(S) = I(S′), if and only if S and S′ are topologically equivalent.

6 Appendix: Comparison between the phase portraits given

in this paper and those presented in [13]

In this Appendix we confront the results obtained previously in [13, Fig.1] with our results

obtained in this paper. Both articles had as a goal to produce phase portraits of the Riccati

family of systems, i.e. to classify topologically the systems in this family. While the principal

goals were the same, the methods used in the two papers are very different. While in [13]

the authors used the usual classical methods (calculation of singularities finite and infinite,

finding the separatrices and then the connections (the Riccati systems have no limit cycles), all

calculations done with respect to a fixed normal form, the methods used in this paper are modern

using the theory of algebraic invariants allowing to change normal forms, the recently obtained

powerful tool of the topological configurations of singularities, the geometrical configurations

of singularities as well as several other new methods involving the classifications of quadratic
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Diagram 9: The topologically non-equivalence of the phase portraits for the class QSRic

systems modulo limit cycles. The affine equivalence relation is finer than the topological one.

However, the affine equivalence relation plays a major role in topologically classifying families of
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Diagram9 (continuation): The topologically non-equivalence of the phase portraits for the class

QSRic
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Diagram9 (continuation): The topologically non-equivalence of the phase portraits for the class

QSRic

74



Diagram9 (continuation): The topologically non-equivalence of the phase portraits for the class

QSRic

polynomial vector fields firstly because it is via this equivalence relation that we get to normal

forms eliminating superfluous parameters. Secondly, at least in the initial stages of calculating

the main features of phase portraits of families of systems, features of an algebraic nature, we

use affine invariant polynomials and these also appear in the initial stages of the construction

of bifurcation diagrams done in the 12-dimensional space of the families of systems. Sometimes,

in families with strong algebraic geometric features, like it is the case for Riccati systems these

75



turn out to even be complete bifurcation diagrams in terms of invariant polynomials. This is a

family of systems with numerous phase portraits and the use of their geometric properties acts

like a guiding flashlight in this labyrinth.

In this paper we obtain 119 topologically distinct phase portraits of the family (3), without

any additional conditions, and we give them in Figures 5 and 6. From these 119 portraits,

93 correspond to non-degenerate systems and we denote them by Ric.i and 26 correspond to

degenerate ones. The authors of [13] only considered quadratic Riccati systems (3) under the

condition n(b2 + e2 + l2) ̸= 0 giving as reason that for n = 0 the systems are Liénard and for

b = e = l = 0 the systems are Bernoulli. They denote their portraits by Pi with 1 ≤ i ≤ 74.

Because of the wider scope of our paper, we cannot obtain a full comparison of the two works.

We only confront their results with ours and start by pointing out some minor observations on

portraits that have some typos or are wrong. The portraits P49 and P50 in [13] have small typos

which are easy to observe and after correction they are both topologically equivalent to P30 and

this portrait is equivalent with our portrait Ric. 50. In P69 there is an extra singularity on the

vertical line. After removing it this phase portrait is equivalent to Ric. 75. There are also other

three phase portraits P22, P25 and P58 which are wrong but here it is more difficult to decide

what would the correct portraits be in this case.

We sum up the topological equivalence among the pictures P1–P74 and also their agreement

with our phase portraits from Figure 5 in the following remark where in the left side there appear

the numbers in this enumeration going from (1) to (45).

Remark 6.1. We have checked the following topological equivalences of our phase portraits with

those in [13]:

1. Ric. 1 ≃ P70 ;

2. Ric. 2 ≃ P20 ≃ P48 ≃ P71;

3. Ric. 3 ≃ P3;

4. Ric. 4 ≃ P4;

5. Ric. 6 ≃ P7 ≃ P12;

6. Ric. 8 ≃ P8 ≃ P13;

7. Ric. 10 ≃ P15 ≃ P44;

8. Ric. 11 ≃ P59;

9. Ric. 12 ≃ P61;

10. Ric. 13 ≃ P64;

11. Ric. 14 ≃ P47;

12. Ric. 15 ≃ P5;

13. Ric. 16 ≃ P1 ≃ P2;

14. Ric. 18 ≃ P17 ≃ P19 ≃ P45 ≃ P46;

15. Ric. 19 ≃ P9 ≃ P14;

16. Ric. 20 ≃ P6 ≃ P11;

17. Ric. 21 ≃ P16;

18. Ric. 23 ≃ P42 ≃ P43;

19. Ric. 24 ≃ P10 ≃ P18 ≃ P60;

20. Ric. 25 ≃ P65;

21. Ric. 26 ≃ P62;

22. Ric. 27 ≃ P63;

23. Ric. 28 ≃ P41;

24. Ric. 29 ≃ P33;

25. Ric. 30 ≃ P35 ≃ P39;
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26. Ric. 31 ≃ P38 ≃ P40 ≃ P57;

27. Ric. 32 ≃ P34 ≃ P36;

28. Ric. 33 ≃ P37;

29. Ric. 34 ≃ P56;

30. Ric. 36 ≃ P72;

31. Ric. 37 ≃ P23;

32. Ric. 41 ≃ P53;

33. Ric. 42 ≃ P32 ≃ P55 ≃ P73;

34. Ric. 43 ≃ P74;

35. Ric. 44 ≃ P21;

36. Ric. 45 ≃ P26;

37. Ric. 46 ≃ P29 ≃ P31 ≃ P52 ≃ P54;

38. Ric. 48 ≃ P24 ≃ P27;

39. Ric. 49 ≃ P28;

40. Ric. 50 ≃ P30 ≃ P49 ≃ P50;

41. Ric. 51 ≃ P51;

42. Ric. 58 ≃ P66;

43. Ric. 60 ≃ P68;

44. Ric. 75 ≃ P67;

45. Ric. 76 ≃ P69.

We observe that sets of two or more phase portraits considered as distinct in [13] are in fact

topologically equivalent. This is because sometimes phase portraits may be too complex and to

distinguish them it is advisable to use invariants, affine or topological. As it can be seen there

are only 45 topologically distinct phase portraits in [13] (plus 3 which are wrong and we could

not compare them with ours).

From our 93 phase portraits in Figure 5 for non-degenerate Riccati systems, removing the

ones which have the invariant infinite line filled up with singularities we get 87 topologically

distinct phase portraits. The difference 87-45=42 could correspond to the systems which are

Riccati and also Liénard which are not investigated in [13]. Recall that we mentioned in the

introduction that the Liénard systems are those Riccati systems (3) for which we have n = 0.

However we will show that some of the missing phase portraits are in fact not Liénard but are

omitted in [13]. We denote by QSLien the family of systems of Liénard form, i.e. the systems

(3) with n = 0.

It is interesting to note that all phase portraits can be split in three sets: (i) those which

are realizable only for systems in the class QSLien; (ii) those which are realizable only for non-

Liénard normal form (i.e. the systems (3) with n ̸= 0) and (iii) phase portraits which are

realizable for both normal forms, i.e. (3) with n = 0 and (3) with n ̸= 0.

We point out that the last set can be divided in two subsets: (iiia) those for which there exists

an affine transformation which brings the corresponding Liénard normal form into non-Liénard

normal form and (iiib) those for which such kind of affine transformation does not exist.

This partition of the family of systems (3) is proved in Lemmas 6.1 and 6.2 below.

Lemma 6.1. Assume that a Riccati system (3) belongs to the family QSLien. Then there exists

an affine transformation which brings this system to a non-Liénard form inside the family of

Riccati systems if and only if the conditions η = 0, M̃ ̸= 0 and Ñ = K̃ = B2 = N1 = 0 are

satisfied.
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Proof: Sufficiency. Assume that the conditions provided by the lemma are satisfied for a Riccati

system except N1 = 0. In this case according to [10] this system via an affine transformation

can be brought to the canonical form (25) from [10], i.e. to the systems

ẋ = a+ x2, ẏ = b+ ex+ fy.

For these systems we have N1 = 8ex4 and hence the condition N1 = 0 gives us e = 0. So we

arrive at the family of systems

ẋ = a+ x2, ẏ = b+ fy (51)

which evidently are Liénard systems. After the linear transformation x1 = y, y1 = x we obtain

the systems

ẋ1 = b+ fx1, ẏ1 = a− y21 .

Clearly these systems are Riccati but they are non-Liénard systems (i.e. have the form (3) with

n ̸= 0) and this completes the proof of the sufficiency.

Necessity. Assume that a Riccati system (3) is of Liénard normal form and there exists an

affine transformation which brings this system to a non-Liénard form inside the family of Riccati

systems. As it was mentioned earlier for a Liénard system in the family (3) the condition n = 0

is necessary. This condition implies η = n2
[
(g − 2m)2 − 4ln

]
= 0 and we get the subfamily of

Riccati systems:
dx

dt
= a+ cx+ gx2,

dy

dt
= b+ ex+ fy + lx2 + 2mxy. (52)

For these systems we have C2 = −x2
[
lx + (2m − g)y

]
and M̃ = −8(g − 2m)2x2. Since there

exists an affine transformation which brings this system to a non-Liénard form inside the family

of Riccati systems (and this transformation is not the identity, otherwise we remain in the

class of Liénard systems), we deduce that at infinity there must exist a second singular point

besides N1[0 : 1 : 0]. Considering the value of C2 it is clear that the second singularity must be

N2[g − 2m : l : 0] and this implies the condition M̃ ̸= 0.

Therefore applying the linear transformation x1 = 2lx+ (2m− g)y, y1 = x we arrive at the

family of systems

ẋ1 =al + b(2m− g) + fx1 + (cl − eg − fl + 2em)y1 + 2mx1y1,

ẏ1 =a+ cy1 + gy21
(53)

for which C2 = (2m− g)x1y
2
1 , i.e. the infinite singular points are Ñ1[0 : 1 : 0] and Ñ2[1 : 0 : 0].

Therefore the above systems belong to the family or Riccati systems if and only if the right

hand part of the first equation depends only on x1. This implies m = 0 and cl−eg−fl+2em = 0.

On the other hand for systems (53) we calculate

η = 0, M̃ = −8(2m− g)2y21 , B2 = 0, Ñ = 4(g −m)my21 ,

K̃ = 4gmy21 , N1 = −8(g − 2m)2(cl − eg − fl + 2em)y41

and we observe that the conditions m = 0 and cl − eg − fl = 0 imply Ñ = K̃ = N1 = 0.

Conversely assume that the condition Ñ = K̃ = N1 = 0 are fulfilled. It is clear that the

conditions Ñ = K̃ = 0 yield m = 0. In this case g ̸= 0 otherwise we get M̃ = 0 and therefore

the condition N1 = 0 implies cl − eg − fl = 0.

Since g ̸= 0 we deduce that systems (53) with the conditions mentioned above are non-Liénard

systems and this completes the proof of Lemma 6.1.

Lemma 6.2. A Riccati system (3) is of Liénard normal form (i.e. n = 0) if and only if

the conditions given in Diagram 10 are satisfied, correspondingly, taking into consideration the

conditions provided by Lemma 6.1.
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Diagram 10: The partition of the family QSRic of Riccati systems

Proof: We consider the conditions provided by Diagram 10 taking into account that for the

family (3) we have

η = n2
[
(g − 2m)2 − 4ln

]
, µ0 = g2n2, Ñ = 4(gn−m2 + ln)x2. (54)

1: η ̸= 0 (i.e. η > 0 or η < 0). Then a Riccati system (3) could not be a Liénard system

because according to (54) the condition η ̸= 0 implies n ̸= 0.

2: η = 0, M̃ ̸= 0, Ñ ̸= 0, µ0 ̸= 0. From (54) we get that µ0 ̸= 0 implies n ̸= 0 and we get

non-Liénard systems.

3: η = 0, M̃ ̸= 0, Ñ ̸= 0, µ0 = 0. We claim that these conditions imply n = 0. Indeed

suppose the contrary, that n ̸= 0. Then considering (54) the condition µ0 = 0 yields g = 0 and

then η = 0 implies l = m2/n. However in this case we get Ñ = 0 and this contradiction proves

our claim.

4: η = 0, M̃ ̸= 0, Ñ = 0, K̃ ̸= 0. We claim that these conditions imply n = 0. Indeed

assuming n ̸= 0 the condition η = 0 gives us l = (g2 − 4gm + 4m2)/(4n) and then we get

Ñ = g2x2 and K̃ = 4gx(mx + ny). So Ñ = 0 implies K̃ = 0 which contradicts the conditions

provided for this branch of Diagram 10.

5: η = 0, M̃ ̸= 0, Ñ = 0, K̃ = 0, B2 ̸= 0. These conditions imply n ̸= 0 and for this it

is sufficient to evaluate the invariant polynomial B2 for Riccati systems (3). Indeed for these

systems we calculate B2 = nΦ(a, b, c, e, f, g, l,m, n, x, y), where Φ is a polynomial in the indicated

parameters and variables. So the condition B2 ̸= 0 implies n ̸= 0 and we are in the family of

non-Liénard systems.

6: η = 0, M̃ ̸= 0, Ñ = 0, K̃ = 0, B2 = 0, N1 ̸= 0. We claim that these conditions again

imply n = 0. Indeed assuming n ̸= 0 similarly as above we get that the condition η = 0 gives

us l = (g2 − 4gm+ 4m2)/(4n) and then we obtain Ñ = g2x2 = 0 which implies g = 0. Then we

calculate

B2 = −648(cm− fm+ en)4x4, N1 = 16(cm− fm+ en)x2(mx+ ny)2/n

and evidently the conditions B2 = 0 and N1 ̸= 0 are incompatible.
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7: η = 0, M̃ ̸= 0, Ñ = 0, K̃ = 0, B2 = 0, N1 = 0. According to Lemma 6.1 the systems in this

subfamily due to an affine transformation can be presented in both (Liénard and non-Liénard)

canonical forms.

8: η = 0, M̃ = 0. We claim that these conditions imply n = 0. Indeed assuming n ̸= 0 the

condition η = 0 gives us l = (g2−4gm+4m2)/(4n) and then we get M̃ = −2
[
(g−2m)x−2ny

]2
.

So evidently the condition M̃ = 0 implies n = 0 and we are inside the family of Liénard systems.

As all the cases provided by Diagram 10 are examined we deduce that Lemma 6.2 is proved.

Next we continue the comparison.

Considering the information from Diagram 10 together with that from Diagrams 5 to 8 we

get the next corollary.

Corollary 6.1. Taking into account Lemma 6.2 and Theorem 4.1 we deduce that the phase

portraits Ric. 1 - Ric. 51, Ric. 53 , Ric. 58 , Ric. 60 , Ric. 74 - Ric. 76 can be obtained for systems

in Riccati form (3) which are non-Liénard.

Similarly the phase portraits Ric. 28, Ric. 36, Ric. 43, Ric. 52 - Ric. 73, Ric. 77 - Ric. 93 can

be obtained for systems in Riccati form (3) which belong to the family QSLien.

As a consequence we conclude that the phase portraits Ric. 28, Ric. 36, Ric. 43, Ric. 53, Ric. 58

and Ric. 60 can be realized for systems in both Liénard and non- Liénard forms.

Since in the article [13] it is claimed that they determined all the phase portraits for Riccati

systems (3) which are non-Liénard the authors should have found all the phase portraits from

the first group. This group contains 57 phase portraits however in [13] are presented only 45

topologically distinct phase portraits (plus 3 wrongs ones) as it is mentioned in Remark 6.1.

Considering the list in Remark 6.1 and the Diagram 1 it can be easily seen that in [13]

the following phase portraits are missed: Ric. 5, Ric. 7, Ric. 9, Ric. 17, Ric. 22, Ric. 35, Ric. 38,

Ric. 39,

For each one of the above phase portraits we present an example of its realization in the

families (i) - (iii) from [13].

Ric. 5 : ẋ = x(x+ 1), ẏ = 4x− y − xy + y2;

Ric. 7 : ẋ = x(x+ 1), ẏ = −9/4 + x+ 77x2/4− 8xy + y2;

Ric. 9 : ẋ = x2, ẏ = −1/9 + x− xy + y2;

Ric. 17 : ẋ = x(x+ 1), ẏ = 1 + 14x+ 15y + 20x2 + 10xy + y2;

Ric. 22 : ẋ = x(x+ 1), ẏ = 1− 3x/8 + 2y + 7x2/8− xy + y2;

Ric. 35 : ẋ = x2, ẏ = 1 + x+ 2x2 − 2y − xy + y2;

Ric. 38 : ẋ = x(x+ 1), ẏ = −1 + x2 − xy + y2;

Ric. 39 : ẋ = x2, ẏ = −2− y + x2 + 3xy + y2;

Ric. 40 : ẋ = x(x+ 1), ẏ = y + x2/4 + y2;

Ric. 47 : ẋ = x(x+ 1), ẏ = 3x/8 + x2/4 + y2;

Ric. 53 : ẋ = x, ẏ = 1 + y2;

Ric. 74 : ẋ = x, ẏ = 1 + x2/4 + xy + y2;
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