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MAXIMIZING ENTROPY OF CYCLES ON TREES

LLUfS ALSEDA, DAVID JUHER, DEBORAH KING, AND FRANCESC MANOSAS

ABSTRACT. In this paper we give a partial characterization of the periodic
tree patterns of maximum entropy. More precisely, we prove that each periodic
pattern with maximal entropy is irreducible and simplicial. Moreover, it is also
maximodal in the sense that for every monotone representative of the pattern
every periodic point is a “turning point”.

1. INTRODUCTION

A pattern is a classical and well studied object in the theory of one-dimensional
combinatorial dynamics. Given a topological space X and a continuous map
f: X — X which is known to exhibit a finite invariant set P, the pattern of P is
a combinatorial object that encloses information about both the relative positions
of the points of P inside the space X and the way these positions are permuted
under the action of f‘P.

When X is an interval, the pattern of P can be identified with a permutation
7 in a natural way: set P = {p1,pa,...,pn} with p1 < p2 < ... < p, and define
m:{1,2,...,n} — {1,2,...,n} as (i) = j if and only if f(p;) = p;. If P is a
periodic orbit then 7 is a cyclic permutation and the pattern is called cyclic or
periodic. The notion of pattern for maps of the interval has its roots in the well
known Sharkovskii’s Theorem [21, 23], but it was formalized and developed by
Misiurewicz and Nitecki [19] in the early 1990s building on a previous work by
Baldwin [9].

On the other hand, the topological entropy of a continuous map f: X — X of
a compact metric space is a non-negative real number that measures the dynamical
complexity of f. This well known topological invariant was first introduced in 1965
[1]. This notion can also be used to define the topological entropy of a pattern ,
which is the infimum of the topological entropies of all self-maps of X having an
invariant set with pattern 7.

Although computing the entropy of a map of the interval is difficult in general,
the computation of the entropy of a pattern m can be easily done by using some
algebraic tools. Indeed, it turns out that in this case the entropy of 7 is equal to
the entropy of a specially simple map f,: [1,n] — [1,n] which satisfies:

(1) fr=(i) ==(@i), forie{l,...,n},

(2) fr is monotone on each interval I; = {x € [1,n]:i < x < i+ 1} for each
ie{l,...,n—1}.

The map f is essentially unique and it is known in the literature as the monotone

representative of m or the “connect-the-dots” map. Its entropy is minimum in the

set of all maps exhibiting an invariant set with pattern 7 and it is equal (see [10])

to the logarithm of the spectral radius of the so-called Markov matrix (m”)?]_:l1
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of m, whose entries are given by

{1 if f2 (L) D I,
mi,j =

0 otherwise,

fori,je{l,...,n—1}.

Besides the classical case of maps of the interval, recently there has been a
growing interest in extending the notion of pattern to more general one-dimensional
spaces such as graphs (see [6], where the notion of pattern is termed action, and
[2]) or trees (see [3]).

In this paper we are interested in patterns of maps defined on trees. In [3], the
authors introduce a notion of pattern of a finite invariant set of a continuous map
from a tree into itself (from now on such a map will be called a tree map). Next
we informally explain this notion. In Section 2 we will give the precise version of
this concept.

A model will be a triplet (T, P, f) such that f: T — T is a tree map and P is
a finite invariant subset of T. Two points x,y of P will be called consecutive if the
interior of the unique interval in T" whose endpoints are x and y contains no points
of P. Any maximal subset of P consisting only of pairwise consecutive points will
be called a discrete component.

A pattern is an object which can be identified with the conjugacy class of all
models with a fixed distribution of discrete components and images of points in the
distinguished finite invariant set P. For instance, in Figure 1 we can see two models
which represent the same cyclic pattern. Observe that two points p;,p; of P are
consecutive in 7" if and only if the corresponding points p}, p;- of P’ are consecutive
in T”. However, note that the trees T' and 7" need not be homeomorphic.

While for a pattern of the interval it is trivial to construct a monotone model,
this is not the case for tree maps. However, Theorem A of [3] states that for any
tree pattern 7 there exists a monotone representative (7', P, f) satisfying properties
very similar to those of the “connect-the-dots” interval maps. In particular, the
entropy of m equals the entropy of its monotone representative f, which can be
easily computed as the logarithm of the spectral radius of a certain non-negative
matrix (the path transition matriz defined later).

Given n € N, the set of all n-periodic patterns is finite. Hence, the set of entropies
of all the n-periodic patterns has a maximum.
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FIGURE 1. Set P = {p;}0_; and P' = {p/}_,. If f: T — T and
f'T" — T are tree maps such that f(p;) = pi41 and f'(p}) =
ppy1 for 1 < <5, f(ps) = p1 and f'(ps) = pj, then the models
(T, P, f) and (T", P, ') represent the same cyclic pattern .
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Once we have depicted the idea of tree pattern and established that for each tree
pattern one can compute its topological entropy, we are ready to explain the aim of
this paper. It comes from one of the natural questions arising in this setting: given
any n € N, can we identify the tree patterns with maximum entropy in the set of
all patterns (and/or cyclic patterns) of cardinality n? Answering this question is a
formidable challenge that at this moment remains unsolved even when one restricts
to the interval case.

For interval patterns, the answer to the above question is known for any n € N in
the case of n-permutations, and for n # 4k+2 in the case of n-cycles. For n = 4k+1
Misiurewicz and Nitecki, in [19], constructed a family of entropy-maximal n-periodic
orbits. Geller and Tolosa [12] extended this definition to a family of periodic orbits
of period n = 4k 4+ 3 and proved that this family in fact has maximum entropy
among all n-permutations. In [13] it was shown that this family is unique. So, the
characterization of the entropy-maximal n-cycles and n-permutations is complete
for n odd. For the case n even the situation is more complicated, since the entropy-
maximal n-permutations are not cyclic. All entropy-maximal n-permutations for n
even were described by King [15, 16] and independently by Geller and Zhang [14].
Finally, two families of entropy-maximal n-periodic orbits for n = 4k have been
recently described in [17], and they have been shown to be unique up to a reversal
of orientation. The characterization of the entropy-maximal interval patterns is
still unknown in the case n = 4k + 2. However, a very recent paper [4] studies this
case from a computational point of view and proposes a family of (4k + 2)-periodic
orbits which the authors conjecture are entropy-maximal.

As far as we know, there is no literature about this problem in the setting of tree
patterns. In this paper we give a partial characterization of the entropy-maximal
n-periodic tree patterns for any n € N. We start by restricting our study to the
setting of simplicial patterns. A pattern is said to be simplicial if all its discrete
components have cardinality 2. First we show that, for each n, the maximum
entropy is attained in the class of simplicial n-periodic patterns and that these
patterns have to be irreducible. This means that the periodic orbit cannot be
partitioned according to what we call a block structure. Equivalently, the Markov
matrix of its monotone representative is irreducible in the usual algebraic sense.
Then we show that any simplicial periodic pattern with maximum entropy has to
be mazimodal in the sense that for every monotone representative (T, P, f) of the
pattern and for every x € P there exists a small neighbourhood U of z such that
CI(f(U)) is an interval and f(z) is an endpoint of CI(f(U)). Finally, for each
n-periodic pattern which is not simplicial we construct an n-periodic simplicial
pattern with strictly more entropy, showing that in fact every periodic pattern
with maximum entropy has to be simplicial. Putting all together we get the main
result of this paper, which states that, for any n € N, each n-periodic pattern with
maximum entropy has to be simplicial, irreducible and maximodal. In Section 2
we give the precise definitions of these notions.

This paper is dedicated to the memory of our friend Pere Mumbrii, deceased on
July 28, 2005. Some of the underlying ideas of the manuscript were born when he
started to work on this problem together with Lluis Alseda and Francesc Manosas.

2. DEFINITIONS AND STATEMENT OF THE MAIN RESULTS

A tree is a compact uniquely arcwise connected space which is a point or a union
of a finite number of intervals (by an interval we mean any space homeomorphic
to [0,1]). Any continuous map f: T — T from a tree T into itself will be called a
tree map. A set X C T will be called f-invariant if f(X) C X. For each x € T, we
define the valence of x, denoted by Valy(z) or simply Val(x), to be the number of
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connected components of 7'\ {z}. A point of valence different from 2 will be called
a vertex of T' and the set of vertices of 7" will be denoted by V(7). Each point of
valence 1 will be called an endpoint of T. The set of such points will be denoted by
En(T). The points in V(T') \ En(7") have valence greater than or equal to 3. They
will be called the branching points of T and the set of such points will be denoted
by Br(T"). Also, the closure of a connected component of 7'\ V(T') will be called
an edge of T.

Given any subset X of a topological space, we will denote by Int(X) and CI(X)
the interior and the closure of X, respectively. For a finite set P we will denote its
cardinality by |P|.

A triplet (T, P, f) will be called a model if f: T — T is a tree map and P is a
finite f-invariant set such that En(7") C P. In particular, if P is a periodic orbit of
f and |P| = n then (T, P, f) will be called an n-periodic model. Given X C T we
will define the convex hull of X, denoted by (X )7 or simply by (X), as the smallest
closed connected subset of 1" containing X. We will write (z,y) to denote ({z,y})
and (z,y) to denote ({z,y}) \ {z,y}.

Let T be a tree and let P C T be a finite subset of 7. The pair (T, P) will
be called a pointed tree. A set Q C P is said to be a discrete component of
(T, P) if either |Q| > 1 and there is a connected component C' of T'\ P such that
Q =ClC)NP,or |Q =1and Q@ = P. We say that two pointed trees (T, P)
and (7", P') are equivalent if there exists a bijection ¢: P — P’ which preserves
discrete components. The equivalence class of a pointed tree (7, P) will be denoted
by [T, P].

Let (7,P) and (T’,P") be equivalent pointed trees, and let §: P — P and
0': P' — P’ be maps. We will say that § and 0 are equivalent if ¢ = pofop~!
for a bijection p: P — P’ which preserves discrete components. The equivalence
class of 6 by this relation will be denoted by [0]. If [T, P] is an equivalence class
of pointed trees and [f] is an equivalence class of maps then the pair ([T, P], [0])
will be called a pattern. We say that a model (T, P, f) exhibits a pattern (T, 0) if
T =[T,P]and © = [f|P]. This pattern will be denoted by [T, P, f]. Alternatively,
we will say that the model (7, P, f) is a representative of the pattern (7, ©).

The topological entropy [1] is a well known quantitative measure of the dynamical
complexity of a model. It is an important topological invariant which is defined
for continuous maps on compact metric spaces. The topological entropy of a map
f: T — T will be denoted by h(f). Given a pattern P, the topological entropy of
P is defined to be

h(P) :=inf{h(f) : (T, P, f) is a model exhibiting P}.

The simplest models exhibiting a given pattern are the monotone ones, according
to the following definition. Let S and T be trees and let f: T'— S be a map. Given
a,b € T we say that f‘ (@) is monotone if either f({(a,b)) is a point or it is an interval
and, given two homeomorphisms ¢: [0,1] — (a,b) and ¢: g({a,b)) — [0, 1], then
po fog:[0,1] — [0,1] is monotone (as a real function). Let (T, P, f) be a model.
A pair {a,b} C P will be called a basic path of (T, P) if (a,byN P = {a,b}. We will
say that f is P-monotone if f((a,b)) = (f(a), f(b)) and f’<a’b> is monotone for any
basic path {a,b}. The model (T, P, f) will be called monotone.

Theorem 2.1 (Theorem A of [3]). Let P be a pattern. Then the following state-
ments hold.
(a) There exists a monotone model (T, P, f) exhibiting the pattern P.

(b) The topological entropy of f is the minimum within the class of models which
exhibit P.
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Remark 2.2. From the proof of Theorem A of [3] it follows that if (T, P, f) is a
monotone model then the set P U V(T) is f-invariant. It easily follows that the
map f, which is P-monotone, is also (P U V(T'))-monotone.

The monotone models from Theorem 2.1 are essentially unique in the following
sense. Let (T, P, f) be a monotone model and let S be a non-empty union of
edges disjoint from P. We will say that S is an invariant forest of (T, P, f) if either
FH(S)NP = 0 for every i > 0 or there exists n > 0 such that f¢(S)NP = @ for every
1=0,1,...,n— 1 and f"(S) degenerates to a point of P. Then, we will say that
(T, P, f) is a canonical model of the pattern [T, P, f] if it has no invariant forests.
From [3, Theorem B] it follows that every pattern has a canonical model. Moreover,
given two canonical models (T, P, f) and (1", P’, f) of the same pattern there exists
a homeomorphism ¢: T — T" such that (P) = P’, and f’ocp}P = chf’P. Hence,
a canonical model of a pattern is essentially unique.

The topological entropy of a pattern P can be easily computed as the logarithm
of the spectral radius of a certain non-negative matrix called path transition matriz,
which depends only on the combinatorial data of P. This notion will be introduced
(and strongly used) in Section 7.

To establish the main result of this paper we need to introduce some definitions
on periodic patterns.

The first notion we need has to do with the spatial distribution of the points
of the invariant set. A pattern ([T, P],[0]) will be called simplicial if each discrete
component of (T, P) has two points. Observe that, in this case, for each pointed
tree (S,Q) € [T, P] we have that V(S) C @ and, for each discrete component 7 of
(S,Q), (m)s is an interval. Hence, if (S, Q) and (S’, Q') belong to [T, P] then S and
S’ are homeomorphic. It follows that if a pattern is simplicial then it has essentially
a unique monotone representative. Conversely, given a monotone model (T, P, f)
such that V(T') C P, the pattern [T, P, f] is simplicial. We will also say that the
model (T, P, f) is simplicial. In particular, if (T, P, f) is a monotone model then,
by Remark 2.2, (T, PUV(T), f) is monotone and simplicial.

The Markov graph and the Markov matriz associated to a simplicial model
(T, Q, f) are standard combinatorial objects which codify the dynamical behaviour
of f. In particular, the topological entropy of f can be computed by means of
the Markov matrix. Let us recall the definitions. An interval of T will be called
Q-basic if it is the closure of a connected component of 7'\ ). Observe that two
different @)-basic intervals have pairwise disjoint interiors. Given K, L C T, we will
say that K f-covers L if f(K) D L. Consider a labelling Iy, Io, ... I, of all Q-basic
intervals. The Markov graph of (T, Q, f) associated to this labelling is a combina-
torial directed graph whose vertices are the (Q-basic intervals and there is an arrow
from I; to I; if and only if I; f-covers I;. On the other hand, the Markov matriz
of (T,Q, f) associated to this labelling is an n x n matrix (m;;)7';_; such that
m;,; = 1 if and only if I; f-covers I, and m;; = 0 otherwise. Given two different
labellings of the set of @-basic intervals and their associated Markov matrices M
and N, there exists a permutation matrix P such that M = PTNP (where PT
denotes the transpose of P), and the corresponding Markov graphs are isomorphic.

The spectral radius of the Markov matrix M of a simplicial model (T, P, f) is a
very useful algebraic notion which has powerful implications for the dynamics of f.
We shall denote it by o(M). Recall that, by definition, it is the maximum of the
moduli of the eigenvalues of M. In a similar way to [5, Theorem 4.4.5] it follows
that h(f) = max{0,log(c(M))}.
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We recall [22] that an nxn matrix is called reducible if there exists a permutation
matrix P such that

M 0
1 PTymMp= ("""
) (le Mao

where My and Mg are square matrices of sizes ¢ x i and j X j (i, > 1) respectively
and 0 stands for the i x j matrix whose entries are all 0. If there does not exist such
P then the matrix M is called irreducible. In this spirit, a simplicial model (7', @, f)
will be called reducible if there exists a particular labelling of the set of Q-basic
intervals such that the associated Markov matrix of (7, @, f) reads as the right
hand side of (1). The corresponding simplicial pattern [T, @, f] will be also called
reducible. Observe that, in this case, the Markov matrix of (T, Q, f) associated to
any labelling of the set of Q-basic intervals is reducible. If a simplicial model (or a
simplicial pattern) is not reducible then we will call it irreducible.

Finally we introduce a notion of mazimodality for simplicial patterns. We borrow
this terminology from the usual and well known notion for interval maps (see for
instance [5]): the modality of a P-monotone interval map f is the number of points
of P at which f has a local extremum (turning point), and the map f is called
mazximodal if its modality is |P)|.

The extension to trees of the notion of maximodality is based on extending to
this setting the notion of local extremum. Indeed, if (7, P, f) is a monotone model
and x € T then we say that « is a local extremum of (7', P, f) if there exists a small
neighbourhood U of x such that C1(f(U)) is an interval and f(z) is an endpoint of
CI(f(U)). Then, a simplicial model (7', P, f) will be called maximodal when every
point from P is a local extremum (turning point). Taking these comments into
account we formalize the notion of maximodality in the following way.

Let (T, P, f) be a simplicial model. A triplet a,z,b of pairwise different points
from P will be called an ordered triplet with midpoint x, denoted by [a;x;b] (or
[b;x;a)), if and only if € (a,b). Observe that a,z,b can fail being an ordered
triplet with midpoint « whenever ({a,x,b})7 is a tree with 3 endpoints or when
({a,x,b})r is an interval but x ¢ (a,b). An ordered triplet [a;x;b] will be called a
basic triplet if {a,b) NP = {a,z,b}. We say that a basic triplet [a; x; b] is monotone
if and only if f|<a7b> is monotone. Finally, a simplicial model (T, P, f) (and the
corresponding pattern [T, P, f]) will be called maximodal if it has no monotone
basic triplets.

The set of tree patterns of a fixed period is finite and hence the set of entropies
of all n-periodic tree patterns is finite for every n € N. Any n-periodic pattern
whose entropy is maximal in the set of entropies of all n-periodic patterns will be
called mazimal.

Now we are ready to state the main result of this paper.

Theorem A. The maximal periodic patterns are simplicial, irreducible and maxi-
modal.

This paper is organized as follows. In the next section we define the notion of
a combinatorial oriented generalized graph and we recall and prove some algebraic
properties of the spectral radius of their transition matrices. In Section 4 we show
that there exist simplicial patterns with maximum entropy. In Section 5 we prove
that a simplicial n-periodic pattern which is reducible cannot attain the maximum
entropy in the set of all n-periodic patterns. Analogously, in Section 6 we show that
a simplicial irreducible n-periodic pattern with monotone triplets cannot attain the
maximum entropy. Finally, in Section 7 we show that any maximal periodic pattern
is simplicial and prove Theorem A.
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3. A TECHNICAL LEMMA

In this section we define the notion of a combinatorial oriented generalized graph
and we prove a tool lemma stating some useful algebraic properties of the spectral
radius of transition matrices of combinatorial oriented generalized graphs.

A combinatorial oriented generalized graph is a pair G = (V,U) where V =
{v1,v2,...,0,} is a finite set, U C V x V x N, and for every i,j € {1,2,...,n}
there exists ¢;; > 0 such that {k € N: (v;,v;,k) € U} = {1,2,...,t;;}. The
elements of V' are called the vertices of G and each element (v;,v;,k) from U is
called a (labelled) arrow of G. When the graph has a unique arrow from v; to v;
(i.e. t;,; = 1) we will omit the label for simplicity.

The notions of path and loop of a combinatorial oriented generalized graph are
defined in the standard way by using labelled arrows instead of arrows. Also the
length of a path is defined as the number or arrows in the path.

Observe that a Markov graph is, in particular, a combinatorial oriented gener-
alized graph such that ¢; ; <1 for every 4, j.

The transition matriz of a combinatorial oriented generalized graph is defined
as the matrix T' = (¢; ;). Clearly T is an n X n non-negative integer matrix.

Given two matrices A = (a;,;) and B = (b; ;), we will write A > B if and only
if a; j > b; ; for each pair ¢,j. Also we will denote by aﬁj the entry i, j of A* (that

is, A% = (ak ).

Lemma 3.1. Let M = (m; ;)
the following statements hold.

ij=1 be an n X n non-negative integer matriz. Then,

(a) Assume that M s the transition matriz of a combinatorial oriented gener-
alized graph G. Then, for every k > 1, mf’ is the number of paths from
vertex 1 to vertex j of length k in G.

(b) The matriz M is irreducible if and only if for every i,j there exists a k =
k(i,5) > 1 such that mﬁj > 0.

(c) Assume that M is irreducible. Then,

J

o(M) = limsup {/m¥;
for every i € {1,2,...,n}.

(d) Assume that A # M is a matriz such that A > M. Then, o(A) > o(M).
Moreover, if one of the two matrices is irreducible then the inequality is
strict.

Remark 3.2. Statements (a) and (b) of the above lemma imply that the transition
matrix of a combinatorial oriented generalized graph G is irreducible if and only if
G is transitive. This means that for each par of vertices i, j there exists a path from
i1tojin G.

Proof of Lemma 3.1. The proof of Statement (a) follows directly from the defini-
tions and the proof of (b) follows from [24, Page 6].

Now we prove (d). From [20] it follows that o(M) is equal to the limit as k
goes to infinity of the k-th root of the sum of all entries of M¥. So, it follows by
induction that o(A) > (M) whenever A > M. On the other hand, if A # M
and A is irreducible, then we get o(A) > o(M) from [22, Lemma 5.3.3]. Finally, if
A > M and M is irreducible, it follows from (b) that A is irreducible. Thus, again,
o(A) > o(M) when A # M.

Finally, we prove (c). From [5, Lemma 4.4.2] it follows that

(2) o(M) = limsup {/| tr(M¥)]|,

k—o0
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where tr(-) denotes the trace function. Consequently, there exists a strictly increas-
ing sequence {k;}7°, such that

®3) o(M) = lim /| tr(M*)].

On the other hand, there exists p € {1,2,...,n} and a partial sequence of {k;},
denoted also by {k;} for simplicity, such that mj!, = max{mlffl, m§f2, ...,mkt Y for
every [ > 1. For every k; we have
L ar(MH)] < ml, < (M),

Consequently, from (3) we get, o(M) = lim;_, o \/m};lp

Observe also that, by (a) and (b), for any 7 € {1,2,...,n}, there exist paths «
and 3 in G from 7 to p and from p to ¢, respectively. We denote by s = s(i, p) the
sum of the lengths of these paths (clearly, we can take s = 0 when i = p). Then,
any loop of length k in G from p to p gives a loop of length k£ + s in G from i to i.
Thus, m p Sy +S for every k > 1.

ki+s
L N\ &k
Since \/m’,f’p ((m’;fp) kH‘S) l , it follows that
1 kk-ﬁ-s 1
— kM VEEs | = k \ETs kits) kits
o) = fim ((nf5) 77 ) " = i () T < i ()
< limsup {/mf, < hmsup V| tr(MF)| = o(M).
k—ro0
This ends the proof of the lemma. O

4. ON THE EXISTENCE OF MAXIMAL SIMPLICIAL PATTERNS

In this section we show (Corollary 4.2) that for each n there exist simplicial
maximal n-periodic patterns. To do it, given a periodic pattern we define a proce-
dure to construct another periodic pattern of the same period without decreasing
the entropy which is “simpler” in the sense that it has less vertices not contained
in the invariant set. The new pattern will be called a collapse. After performing
this operation finitely many times we will obtain an n-periodic simplicial monotone
model without decreasing the entropy. So, starting the process with a maximal
n-periodic pattern we get a maximal simplicial pattern.

Now let us define the notion of a collapse. Given a pattern P we define the
number of free vertices of P as the cardinality of Br(7') \ P where (T, P, f) is a
canonical model of P (recall that En(T") C P). Observe that, since two different
canonical models of the same pattern are conjugated by a homeomorphism (and,
hence, essentially unique) the number of free vertices of a pattern is well defined.
The number of free vertices of P will be denoted by v(P).

Let P be a periodic pattern such that v(P) > 0 and let (7, P, f) be a canonical
model of P. Clearly, there exists a pair (v,x) such that v € Br(T)\ P, x € P
and (z,v) N(PUV(T)) = {z,v}. Let 77 be the tree obtained from T" by collapsing
the interval (z,v) to one point and let x be the standard projection from T to 7.
Observe that ﬁ’P is bijective. Then, clearly P’ = ([T’, Kk(P)],[ko fo mil‘H(P)]) is
a periodic pattern of the same period as P such that v(P’) < v(P). The pattern
P’ will be called a collapse of P.

The fact that canonical models of the same pattern are conjugated imply that
the collapses of a pattern are independent of the chosen canonical representative.
They only depend on the original pattern and the collapsing pair x, v.

The next result states the properties of collapses that we need.
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Proposition 4.1. Let P be a periodic pattern such that v(P) > 0 and let P be a
collapse of P. Then h(P) < h(P’).

From the iterative use of Proposition 4.1 we see that given any periodic pattern
P there exists a simplicial periodic pattern P’ of the same period such that h(P’) >
h(P). Thus, starting with a maximal pattern P, we obtain the following

Corollary 4.2. For each n there exist simplicial mazimal n-periodic patterns.

Now we prove the proposition.

Proof of Proposition 4.1. Let (T, P, f) be a canonical model of P and let v € Br(T')\
P and z € P such that (z,v) N(PUV(T)) = {z,y}. By Remark 2.2 it follows that
f is @-monotone, where Q@ = P UV(T).

Let C, be the largest connected subset of T such that C, N (P UV(T)) = {v}.
Clearly, C1(C,) is a star with v as a branching point and C1(C,) D (z,v).

Let g: T — T be a Q-monotone map such that g‘T\CU = f|T\CU and g((v,x)) =

f(z). In particular, f|P = g|P and hence the patterns P = [T, P, f] and [T, P, g]
coincide. Therefore, h(g) > h(f) = h(P) because f is P-monotone (Theorem 2.1).

Now, let T” be the tree obtained from T by collapsing the edge (v, x) to a point
and let k be the standard projection from T to T'. Set P’ = x(P) which has the
same cardinality as P since k|, is bijective. Moreover, x(Q) = P’ U V(T") and
|Br(T")\ P'| = |Br(T)\ P|—1=v(P) — 1.

Next we define a tree map f': T/ — T’ as follows. For each t € T’, we set
f'(t) ;= kogor~1(t). Note that x~1(t) is a single point except when ¢ = x(z) and
k~1(t) = {v,x). But since g({v,z)) degenerates to f(z), it follows that the map f’
is well defined and continuous on T". Moreover, f'| ,, = ko for™! pr+ S0 clearly

P
[T, P, f= ([T/, k(P)],[ko fo m_l}H(P)]) is a collapse of P.

We will show that (77, P’, f’) is a monotone model of [T, P’, f’] and h(f') =
h(g). Hence, h([T', P', f')) = h(f") = h(g) = h(P).

To see that f’ is P’-monotone take any basic path {a’,b'} of (T’, P"). We have to
see that f’ maps monotonically (a’, b")r: onto (f’(a’), f/(b'))r:. Since k sends P bi-
jectively to P’ there exist unique points a,b € P such that k(a) = o’ and k(b)) =V'.
Moreover, from the definition of « it follows that, for every u, w € T x sends (u, w)r
monotonically onto (k(u), k(w))7s and, conversely, k=% sends (k(u), x(w))7 mono-
tonically onto (u,w)r. Therefore, k=1 sends (a’, V)7 monotonically onto (a,b)r
and [{a,byr N P| = [{(a’,b')7 N P'| = 2. Hence, {a,b} is a basic path of (T, P).

To prove the monotonicity of f/ = ko go k™!, we only have to see that g
maps monotonically (a,b)r onto (g(a),g(b))r. Since g|T\CU = f|T\CU and f is
P-monotone, the statement holds trivially when (a,b) N C, = 0.

Assume now that (a,b) N C, # (). Since v ¢ P and C, is a star that has v as a
branching, v € {(a,b)r. Hence, x(v) = k(z) € (a’,b')r:. Thus, x(z) € {a’,b'} and
hence, € {a,b}. Assume for definiteness that 2 = b. Since f is P-monotone
we have f(v) € (f(a), f(z)). By definition (and the P-monotonicity of f) g maps
monotonically (a,v) onto (g(a), g(v)) = (f(a), f(z)) and g({v,z)) = f(z). Summa-
rizing, g is monotone on (a, z:), which proves the claim.

Next we will show that h(f’) = h(g). Let I, Io,..., I; be a labelling of the set
of all Q-basic intervals of (T, @, g) such that I, = (v,x)p. Let M = (mi7j)ﬁj=1 be
the associated Markov matrix. Since g(Ij) reduces to a point, my; = 0 for j =
1,2,...,k. Hence, h(g) = max{0,log(c(M))} = max{0,log(c(N))}, where N =
(m%])f,g_:ll Set Iz = <ai,b¢)T and define Jz = <Ii(ai),fi(bi)>Tl for ] = 1,2, ey k—1.
From the definitions of g and f’ we have that I; g-covers I; if and only if J; f’-covers
Jj forevery j = 1,2,...,k—1. In other words, the Markov matrix of (", k(Q), f') =
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(IT",P"UV(T"), f') is N. Since f’ is P’-monotone, it is also P’ U V(T”)-monotone
by Remark 2.2. Consequently, h(f") = max{0,log(c(N))} = h(g). This ends the
proof of the proposition. O

In Section 7 we will need the following slight improvement of Proposition 4.1.

Lemma 4.3. In the situation of Proposition 4.1 we have v(P') > 0 whenever

v(P) > 1.

Proof. We use the notation of Proposition 4.1 and its proof. Assume that | Br(T)\
Pl =v(P)>1.1f (T', P, f') is already a canonical model, then

v([T', P, f']) = |Br(T))\ P'| = |Br(T)\ P| — 1 > 0,

and the proposition holds. Otherwise, let (T,]S, f) be the canonical model of
[T, P, '] obtained from (7", P’, f’) by collapsing every connected component of
an invariant forest of (7", P’, f') to a point. We have to prove that Br(f) \15 + .

By assumption there exists w € Br(7T”)\ P’. Denote by & the standard projection
from T’ to T. Clearly, Valz(R(w)) > Valp(w) > 3 and hence, r(w) € Br(T).
Assume now that x(w) = K(p) with p € P’. Since w ¢ P’ it follows that w # p
and hence K is not one-to-one in {w,p}. Therefore, w and p belong to the same
connected component of an invariant forest; a contradiction since every invariant
forest of (1", P’, f') is disjoint from P’ by definition. Consequently, 5(w) ¢ K(P’) =
P. O

5. THE MAXIMAL SIMPLICIAL PATTERNS ARE IRREDUCIBLE

In this Section we prove (Corollary 5.4) that a simplicial n-periodic pattern
which is reducible cannot attain the maximum entropy in the set of all n-periodic
patterns. To do it, first we show (Proposition 5.1) that the reducible patterns
have a very particular structure (what we call a block structure). Then we find
(Proposition 5.2) a strict upper bound for the entropy of any n-periodic model
having a block structure. This bound is log(| 2| — 1). Finally (Theorem 5.3) we
construct an n-periodic interval model whose entropy is larger than or equal to
log(|%]). This result has interest in itself since, in particular, it proves that the
maximum entropy of all n-cycles in the interval is larger than or equal to log( L%J)
thus giving a lower bound for this maximum entropy.

Let (T, P, f) be a simplicial model. We will say that (7', P, f) and its correspond-
ing pattern [T, P, f] have a p-block structure (or simply a block structure) if p > 2
and there exists a partition P = PyUP,U---UP, such that |P;| = |Py| = -+ = | Bp|,
(Piyr N{(Pj)r =0 for i # j, and f(P;) = Piyq for 1 <i < p and f(P,) = P;. Ob-
serve that |P;| = |P|/p > 1for 1 <i < pand T\ (U_,(P)r) is a finite union of
pairwise disjoint open intervals because V(T') C P. Moreover, f({(P;)7) = (Pit1)T
for 1 <i < pand f((P,)r) = (Pi)r since a simplicial model (T, P, f) is monotone
by assumption.

In the literature one can find several kinds of block structures and related notions
for periodic orbits. In the interval case, Sharkovskii’s square root construction
(see [21, 23] or [5]) is an earlier example of a block structure. Also the notion
of extension, first appeared in [11], gives rise to some particular cases of block
structures for interval periodic orbits. Also, the notion of division, introduced in
[18] for interval periodic orbits and generalized in [7] and [8] to several kinds of trees,
is a special case of block structure which has been used in a number of papers to
study the topological entropy of tree maps.

The next result tells us that each reducible model has a block structure. In fact,
the proof of Proposition 5.2 will tell us that the converse is also true, so that the
periodic simplicial models having a block structure are precisely the reducible ones.
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Proposition 5.1. Let (T, P, f) be a periodic simplicial model. If (T, P, f) is re-
ducible then it has a block structure.

Proof. Since (T, P, f) is reducible, there exists a particular labelling Iy, Io, ..., I,, of
the set of P-basic intervals such that the associated Markov matrix M of (T, P, f)

reads
M1 0
My Mo )’

where M7; and May are square matrices of sizes k x k and I x [ (k,l > 1) respectively
and 0 stands for the k x [ matrix whose entries are all 0. In particular, the set
X :=UF I is f-invariant.

Note that En(I;) C P for 1 <i < n and that U¥_, En([;) is f-invariant. There-
fore, since P is a periodic orbit, U¥_, En(I;) = P. Note that X # T because k < n.
Since X D P D En(T), it follows that X is not connected. Since f maps any
connected component of X onto a connected component of X and P is a periodic
orbit of f, it easily follows that f acts as a cyclic permutation of the set of con-
nected components of X. So, there exists a divisor p > 2 of |P| and a labelling
X1, Xo...,X, of the set of connected components of X such that f(X;) = X;14
for 1 <i < pand f(X,) = X;. Weset P, = X; NP and note that X; = (P;)p for
1 < i < p because each X; is a union of P-basic intervals. Moreover, f(P;) = P11
for 1 <4 < pand f(P,) = P;. Therefore, (T, P, f) has a p-block structure. O

Now we aim at obtaining an upper bound for the topological entropy of a model
(T, P, f) with a block structure, in terms of the period of P. In what follows |-|
will denote the integer part function.

Proposition 5.2. Let (T, P, f) be an n-periodic simplicial model with a block struc-
ture. Then, n >4 and h(f) <log(|Z| —1).

Proof. Let p > 2 and let P, U P, U...U P, be a partition of P such that (P;)y N
(Pjyr = 0 for i # j, f(P;) = Piy1 for 1 <4 < pand f(P,) = P1. Then n = pg,
where |P;| = ¢ > 2 for 1 <i < p. Hence, n > 4.

Since each (P;)p is a tree with all its vertices contained in F;, it follows that
the number of P-basic intervals contained in (P;)r is ¢ — 1, for each 1 <i < p. In
consequence, since the total number of P-basic intervals is n — 1, the number of P-
basic intervals whose interior does not intersect U?_, (P;)r isn—1—p(g—1) = p—1.
Let I, I3, ..., 1,1 be alabelling of the P-basic intervals such that, I(;_1)4—1)+; C
(Py)r forevery 1 <i <pand1<j<q—1,and Iyg_1)41, Ip@g—1)42,---» In—1 C
T\ (U1 (Pi)1)-

Let M be the Markov matrix of (T, P, f) associated to this labelling. From
Lemma 3.1(a) it follows that the 7, j entry of MP is the number of paths of length
p in the Markov graph starting at I; and ending at I;. Therefore,

A 0
P _
w3 )
where A and C' are square matrices of sizes p(¢—1) X p(¢—1) and (p—1) x (p—1)

respectively, 0 stands for the p(q — 1) x (p — 1) matrix whose entries are all 0, and
A has the form

A0 ... 0
0 A

: .0
0 ... 0 A4,

where each A; is a matrix of size (¢—1) x (¢—1) and 0 stands for the (¢—1) x (¢—1)
matrix whose entries are all 0. Moreover, for each i, every entry of A; is bounded
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above by (¢—1)?~! and every entry of C is bounded above by (p—1)?~L. To prove
this consider an entry of A;. It is an entry ml(fz of MP with (i —1)(¢ —1)+1<
jk < i(q —1) (i.e. I, and I} are P-basic intervals contained in (P;)). Hence,
ml(’pk) is the number of paths of length p in the Markov graph starting at I; and
ending at Ij. Such paths are of the form I;, — Jiyy — -+ — Jp — J1 —

- — Jicq — I, where Ji C (Py) for k € {1,2,...,p} \ {¢}. Since there are
at most ¢ — 1 choices for every Ji it follows that there are at most (¢ — 1)P~!
loops of this form and hence, ml(f;) < (¢ — 1)P7L. The same argument can be
used to show that every entry of the matrix C is upper bounded by (p — 1)P~L.
Consequently, since the spectral radius of a matrix is bounded above by any norm,
0(4;) < ||Ailloo < (g—1)? for 1 <i<pand o(C) < ||C|ec < (p—1)P.

Since h(f) = max{0,log(c(M))} and o(MP) = o(M)P, we have that h(f) =
max{0, % log(o(M?))}. Now observe that o(M?P) is the maximum of the spectral
radius of the matrices Ay, As,..., Ay, C. Taking into account the above estimates
of 0(A;) and o(C) we get h(f) < max{0,log(¢ — 1),log(p — 1)}. Therefore, since
n = pq with p,q > 2, it follows that

h(f) < max {0,log (% —1)} <log (% — 1),
where [ is a divisor of n such that 2 <1 < Z. So, if n is even the proposition holds.
If n is odd, then n > 9,1 > 3 and h(f) < log (% — 1) . Then, the inequality n > 9
implies 2n < 3(n — 1) which is equivalent to % < 251 = |2]. This ends the proof
of the proposition. O

Next we will show that, for each n > 4, there exists an n-periodic interval model
whose entropy is larger than or equal to log(L%J). This construction is based on
the well known notion of a horseshoe. If f: I — I is a continuous interval map
and s > 2, then an s-horseshoe for f is an interval J C I and a partition D of J
into s subintervals such that the closure of each element of D f-covers J. It is well
known (see for instance [5, Proposition 4.3.2]) that if f has an s-horseshoe then
h(f) > log(s).

As we have already said, this result has interest in itself since, in particular,
it proves in a constructive way that the maximum entropy of all n-cycles in the
interval is larger than or equal to log(|Z ).

Theorem 5.3. Let n € N be such that n > 4. Then, there exists a monotone

n-periodic interval model ([1,n],{1,2,...,n}, f) such that f has an L%J -horseshoe
and, hence, h(f) > log(|%]).

Corollary 5.4. The mazximal periodic simplicial patterns are irreducible.

Proof. Let P be a reducible n-periodic simplicial pattern. By Proposition 5.1 it
has a block structure. In particular, n = pq for some p, ¢ > 2. Hence, n > 4.
By Proposition 5.2 and Theorem 5.3 we get that P is not maximal. (|

‘Is it worth adding the next corollary? Was it really unknown?

Notice that the proof of the above corollary works in the same manner restricted
to maximal interval patterns. So we also get

Corollary 5.5. The mazximal periodic interval patterns are irreducible.

The rest of this section is devoted to prove Theorem 5.3. To this end we will
introduce some notation concerning permutations and we will prove a simple tech-
nical utility lemma.

A permutation of order n will be written as a bijective map from the set Z,, :=
{1,2,...,n} to itself. Given a permutation 6, as usual, we denote by 0 the k-th
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iterate of 6. Observe that 6 is cyclic if and only if 0¥ (i) # i for every i € Z,, and
1<k<n.

In a similar way, a one-to-one map ¢: A — Z,,, where A is a non-empty subset
of Z,, will be called a partial permutation of order n. For such a map we also
denote by ¢* the k-th iterate of ¢. Observe that, given k > 2 and i € A, ©* (i) will
not be defined whenever ¢'(i) ¢ A for some | < k (and | < |A|). We will say that
the partial permutation ¢ is periodic if there exists i € A and 1 < k < n such that
©F @) = 1.

Lemma 5.6. Let ¢: A — Z,, be a non-periodic partial permutation of order n.
Then, there exists a cyclic permutation 0: Z,, — Z,, such that 6”A = .

Proof. If A = Z,, then ¢ is already a cyclic permutation since it is non-periodic.
Assume now that A # Z,, (hence, p(A) # Z,,). Let 21,2, ..., x; be an enumeration
of the elements of Z, \ ¢(A). Clearly, for every x; there exists a sequence z} =
mi7x§,...,m§-i in Z, with j; > 0 such that x;) € A and E;H = gp(m;) for p =
0,1,...,4i —1; and z’ ¢ A. Hence, A = Uézl{mf),m’i,...,x;i_l} and Z, \ A =
{m}l,xiz,...,xél . . _

Now we define 0(w) = ¢(w) for every w € A, 0(z},) = wgtt fori=1,2,...,1—1
and H(xél) = z}. This defines 0 on the whole Z,, in such a way that it is one-to-one
and non-periodic. So,  is a cyclic permutation of order n. O

Now we are ready to prove Theorem 5.3.

Proof of Theorem 5.53. Set k = L%J . We claim that there exists a non-periodic
partial permutation ¢: A — Z,, where A = {l,l+1,...,l+k} C Z, for a certain

| € Z,, that will be defined later, such that
(4) (p(@),p(t+1)) D[, 1+ k] fori=114+1,...;0+k—1.

Assume that the claim holds and let us prove the theorem. By Lemma 5.6,
we know that there exists a cyclic permutation 0: Z,, — Z,, of order n such that
G‘A = . Now we define f: [1,n] — [1,n] as the unique continuous map such
that f(i) = 0(i) for every ¢ € Z, and f is affine on each interval of the form
[i,a+ 1] for ¢ = 1,2,...,n — 1. This completely specifies the n-periodic model
([1,n],{1,2,...,n}, f). Clearly, for i € A\ {l + k},

f(liyi+1]) = (i), (i + 1)) D [I,1 + k]
Hence, the model ([1,n],{1,2,...,n}, f) has a k-horseshoe and, by [5, Proposi-
tion 4.3.2]), h(f) > log(k).
Now we will prove the claim. To this end we set u = L"T’IJ (that is, n =4u+r
with r € {1,2,3,4}). Observe that u > 0 because n > 4.
We define A = {zg,21,...,2} by settingl =u+1and x; =l +i=u+1+1
fori=0,1,...,k. We also set
Ao ={x; € A:iis even},
A, ={x; € A:iis odd},
L:{ZG Zn : igﬂ,‘o}:{l,Q,...7$0},
R={ieZ,: 1>z} ={zr,zr+1,...,n}
Observe that, since k > 2, LN R = (). Also, A. N A, = () by definition.
We define ¢ on A, by

O(xgiq) =i fori=1,2,...,|A,
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and we define ¢ on A, by

fori=0,1,...,|A] —1.

(21) rr +1 when k is even
T2 ) =
pir n—i whenk is odd

Clearly, ¢(A,) ={1,2,...,]A,|} and
{zg, 2 +1,..., 2+ |Ae| — 1} when k is even,
plde) = {{n —|Ae| +1,n—|Ac| +2,...,n} when k is odd.
We will prove that
(5) |R| > |A.] and |L| > |A,l|.
This clearly implies
(6) ¢(Ac) CR and  ¢(4,) C L

and, hence, p(A) C Z, and ¢ is one-to-one because L N R = (). So, ¢ is a partial
permutation. Moreover, for ¢ € A\ {l + k}, (¢(3), (¢ + 1)) D [zo,z] = [I,1 + K.
Hence, (4) holds.
To prove (5), a simple computation shows that
k= |2 =2u+ [L] =2u+ (r—1) —s, with

_J0 when n —4u € {1,2},
"~ |1 when n—4u € {3,4}.

Observe that k is odd if and only if L%J = 1; which is equivalent to n — 4u € {2, 3}
and k = 2u + 1. Otherwise, n — 4u € {1,4} and k = 2(u + s). We have

|L| =u+1, and
IRl=n—(zx—1)=n—(u+k)=4du+r—Bu+(r—1)—s)=u+1+s.
On the other hand, when k is odd (that is, when n — 4u € {2,3}),

k+1 2u+2
Aol = |Ae| = 5= = == =u+ 1.

and, when k is even (n —4u € {1,4}),
k
[Ao| = JAe] =1 == =u+s.
2
Therefore, since s € {0, 1}, we have

A, <u+1=|L] and |Ae] <u+1+s=|R|

and (5) holds.

Now, to end the proof of the theorem, we have to show that ¢ is non-periodic.
From (6) it follows that the only possible periodic points of ¢ have to be contained
in {zo,zx}.

When k is even xp,z, € A.. Hence, p(z¢) = 1 and o(xg) = zp + % Since
k> 2, p(xg) # w0 and ¢?(z0) = ¢(z) > zk. Hence, 92 (1) = o(zx) ¢ A. So, ¢ is
non-periodic.

When k is odd, ¢(zg) = n ¢ A. On the other hand, xz; € A, and, hence,
o(xg) € w(A,) C L. So, either ¢(zr) ¢ A or p(zr) = xo. In any case, ¢ is
non-periodic as above. O
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FIGURE 2. On the left picture, a model (T, P, f) and the trees Ty,
Ty and T, as defined in the proof of Theorem 6.1. On the right
picture, the model (5, Q, g) as constructed in the proof of Theo-
rem 6.1.

6. THE MAXIMAL SIMPLICIAL PATTERNS ARE MAXIMODAL

In this Section we prove that an n-periodic irreducible simplicial pattern P which
has monotone triplets cannot attain the maximum entropy in the set of all n-
periodic patterns (Corollary 6.2). This basically follows from the following theorem.

Theorem 6.1. Let P be an n-periodic irreducible simplicial pattern. If P has
monotone triplets, then there exists an n-periodic simplicial pattern Q such that

h(Q) > h(P).
Then from Corollary 5.4 and Theorem 6.1 we immediately get:

Corollary 6.2. The maximal periodic simplicial patterns are irreducible and maz-
imodal.

Proof of Theorem 6.1. If h(P) = 0 the result follows trivially since, for every n > 3,
there exist patterns with positive topological entropy (for instance in the interval;
for n > 4 this follows also from Theorem 5.3). So, in what follows we assume that
h(P) > 0.

Let (T, P, f) be a monotone model of P and let [a; x;b] be a monotone triplet of
(T, P, f). We define T, (respectively, T}) as the connected component of 7"\ (a,b)
which contains a (respectively b). We also define T}, as the connected component of
T\ {x} which does not contain a neither b (see the left part of Figure 2). Observe
that Ty, Ty and T, are trees (maybe reduced to one point). Clearly, by construction,
T.UT,UT, =T\ ((a,z) U (x,b)).

We start by claiming that there exists a P-basic interval which f-covers either
{a,x) or (z,b), but not both intervals. To prove the claim, let 2= (respectively
b~1) denote the only point in f~1(z) N P (respectively f~1(b) N P). Since = # b,
271 # b7l Take a linear ordering < in (z~!,b71) such that =1 < b=1. Tet
Y1,Y2, - -,y denote all points in PN (z~!, b~1), labelled in such a way that 2= =
Y1 <y2 <+ <y, =b"L. Note that f(y1) =z € Ty, f(y,.) = b € T}, and each f(y;)
belongs either to T, or T, or Tp. It follows that there exists a P-basic interval I of
the form (y;,y;+1) for some 1 <4 < r such that f(y;) € T, and f(y;+1) ¢ T. Then
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I f-covers {(a,z) when f(y;y+1) € To and (z,b) when f(yi+1) € Tp. So the claim is
proved.

Without loss of generality, from now on, we assume that the basic interval I
f-covers (z,b) and does not f-cover (a,z).

Next we are going to construct a new model (5, Q, g) in the following way: we
remove the interval (a, z) from T and attach T, at some point v in the interval (z, b)
by gluing together a and v (see Figure 2 for an example). More precisely, there exists
amap ¢: T — S such that dj}TmUTbu(w,b) and ¢)|Tau(a,w) are homeomorphisms, and

¢(a) = v € (z,b). Observe that ¢|T ur,ur, 18 bijective. Then we set Q = o(P)

and g|suusbusz =¢ofo ¢71|Sausbusm’ where S, = ¢(T,) for every a € {a,x,b}.

Since P C T,UT,UT,, Q is a periodic orbit of g of period n. Next we extend g to

the whole S in such a way that it is continuous and (S, @, g) is a monotone model.

Clearly, since (T, P, f) is simplicial, (S, Q, ¢) is simplicial.

Let Q be the pattern [S, @, g]. To end the proof of the theorem we have to show
that h(Q) > h(P).

Since (5, @, g) is n-periodic and simplicial, it has n—1 @Q-basic intervals. Observe
that if (y, z) is a P-basic interval then {¢(y), ¢(2)) is a @Q-basic interval if and only
if (y, z) # (x,b). Moreover, if (y, z) is a Q-basic interval then (¢~ (y),¢~1(z)) is a
P-basic interval if and only if (y, z) # (¢(a), #(b)).

Now consider a labelling {I;}!-}' of the set of P-basic intervals of (T, P, f) such
that I,,_o = (a,x) and I,—; = {(x,b), and let M = (mu)f;:ll be the associated
Markov matrix. Since P is irreducible, M is irreducible. For every P-basic interval
I = (y,2) of (T, P, f) set ¢(I;) := (¢(y),¢(2)). Consider a labelling {.J;}'-}' of
the set of @-basic intervals of (S, @, g) such that .J; = ¢(I;) for 1 <i < n —2 and
Jn—1 = {(¢(a),p(b)). Let R = (r”)?;:ll be the associated Markov matrix. The
matrix R can be obtained from the matrix M in the following way:

(1) mjyj=mrforl1<i<nm—2and1<j<n-3.

(2) For any 1 < ¢ < n — 3, the ordered pair (m;,—2,m;,—1) changes to the pair
(rimn—2,7in—1) according to the following rules: (0,0) — (0,0), (0,1) — (1,1),
(1,0) = (1,0) and (1,1) — (0, 1).

(3) Tn—1,j = Mp—1, + My—_2, for each 1 < j < n — 3. Observe that, since [a; z; b]
is monotone, m,,—1,; and m,_» ; cannot simultaneously be equal to 1.

(4) The 2 x 2 submatrix

MMy — — MMy — -1 Tn—2n— Tn— -1
n—2,n—2 n—2,n Changes to n—2,n—2 n—2,mn
Mp—-1,n—2 Mnp—-1n-1 Tn—1n-2 Tn—-1mn-1

according to the following rules:
0 0y, (0 0 0 0 0 0 0 0y, (0 0
0 0 o 0o)° \1 o/ 7\t o) lo 1 1 1)
0 0 0 0 10 10 0 1 Loy
1 1) 7% 1) Lo o)\ o)) \o o) 7\t 1)
11 0 1
o o) "o 1)

No other configurations are possible for this 2 x 2 submatrix of M.
The above Statements (1-4) follow almost directly from the definition of the model
(S, @, g) and the labelling of the P-basic and Q-basic intervals. As an example let us
prove Statement (3). We have to show that if I, is f-covered either by I,_2 = {(a, x)
or by I,,_1 = (z,b) for some 1 < j < n — 3, then J,,_1 = (¢(a), #(b)) g-covers J;.
Assume that I; C (f(a), f(z)) (the proof is analogous if I; is f-covered by (z,b)).
Since 1 < j < n — 3, I; is contained in 15, Ty or T,,. Then, from the definition of
(S,Q,9) it follows that J; = ¢(I;) is contained respectively in S,, Sy or Sz, and
Ji € (o(f(a)), ¢(f(x))) = (9(¢(a)),g(¢(x))). Now observe that, since [a;x;b] is a
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monotone triplet then [f(a); f(x); f(b)] is an ordered triplet in 7T'. Note also that, if
[x1; 22; 23] is any ordered triplet in T, then [¢(z1); d(x2); ¢(x3)] is not an ordered
triplet in S if and only if 21 € Ty, 2o = x and g € T}. Since f(z) # z, it follows that
[0(/(@)); #(F(2)); 6(F(8))], which can be rewnitten as [g(6(a)); g(6(x)): g(#(b)], is
an ordered triplet in S. So, (g(¢(a)),g(6(b))) > (9(¢(a)),g(¢(x))) D Jj, which
proves (3).

Let L be the matrix of the linear transformation of R"~! given by

(1,22, .., Xp1) — (X1, T2, ..., T2, Tp—1 + Tp—2).
We have
h(Q) = h(g) = max{0,log(c(R))} = max{0,log(c(L~*RL))} and
h(P) = h(f) = max{0,log(c(M))}.

Since h(P) > 0 it follows that 0 < h(P) = log(a(M)). So, to end the proof of the
theorem it is enough to show that o(L~*RL) > o(M).

Observe that L coincides with the (n — 1) x (n — 1) identity matrix except for
the element placed at row n — 1, column n — 2, which is 1. Moreover, all entries of
L~ coincide with those of L except the element placed at row n — 1, column n — 2,
which is —1. We also note that, given any (n — 1) x (n — 1) matrix X:

e The product XL gives a matrix whose (n — 2)-th column is the sum of the
(n —2)-th and (n — 1)-th columns of X (the rest of columns of X remain
intact).

e The product L='X gives a matrix whose (n — 1)-th row is the (n—1)-th row
of X minus the (n — 2)-th row of X (the rest of rows of X remain intact).

Collecting the two statements above together with Statements (1-4) it is straight-
forward to check that L~'RL is a non-negative matrix whose entries coincide with
those of M except when the last two elements of a row of M are 0 and 1, in
which case the corresponding elements of L™'RL are respectively 2 and 1. In other
words, if L7'RL = (s”)?]j17 then s;; # m;; if and only if j =n —2, m;; =0
and m; j+1 = 1, and in this case s; ; = 2 and s; j41 = 1. Hence, L 'RL > M.

Recovering the claim at the beginning of the proof, recall that there exists a
P-basic interval I; which f-covers I,,_1 and does not f-cover I,,_s. In terms of the
matrix M this amounts to m;,—2 = 0 and m;,—1 = 1. Therefore, from above,
Sin—2 = 2> mjn—a and, hence, L™1RL # M.

On the other hand, M is irreducible by hypothesis. Thus, o(L™'RL) > o(M)
by Lemma 3.1(d). O

7. THE MAXIMAL PATTERNS ARE SIMPLICIAL. PROOF OF THEOREM A

Theorem A follows directly from Corollary 6.2 and the following theorem which
is the main result of this section.

Theorem 7.1. Any mazimal periodic pattern is simplicial.

As it has been said in Section 2, to prove the above theorem we need to introduce
some new tools. In particular the notion of path transition matriz.

7.1. Notation and tools. Let P = [T, P, f] be a pattern where (T, P, f) is a
monotone model of P. Let {m1,ma,..., 7} be the set of basic paths of the pointed
tree (7', P). We will say that the basic path m; f-covers the basic path 7; whenever
mj C (f(m;)). The fact that m; f-covers m; will be denoted by m; — ;.

The P-path graph is the combinatorial oriented graph whose vertices are in one-
to-one correspondence with the basic paths of (T, P), and there is an oriented edge
(or arrow) from the vertex 7 to the vertex j if and only if m; f-covers ;.
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The k x k matrix Mp(P) = (m;;) defined by

{1 if m; f-covers mj,

mij; = .

0 otherwise

(i.e. the transition matrix of the P-path graph) will be called the path transition
matriz of P.

It can be seen that the definitions of P-path graph and Mp(P) are independent
of the particular choice of the model (T, P, f). Thus, they are well-defined pattern
invariants.

A crucial fact about the path transition matrix of a pattern P is the following
(see [3])

(7) h(P) = max{0,logo(Mp(P))}.

Remark 7.2. In view of Theorem 5.3 and the fact that every 3-periodic inter-
val model has positive topological entropy (see for instance [5, Theorem 4.4.20])
it follows that if P is a maximal n-periodic pattern with n > 3 then, by (7),
o(Mp(P)) > 1 and h(P) = logo(Mp(P)).

There is also a converse of the operation just described (i.e. going from the P-
path graph to the path transition matrix). Indeed, let M = (m;;) be a k x k matrix
whose entries are non-negative integers. To M we can associate the combinatorial
oriented generalized graph whose vertices are 1,2, ...,k and there are m;; labelled
arrows from the vertex i to the vertex j. Such a graph will be called the M -induced
graph. Clearly, M is the transition matrix of the M-induced graph. In particular,
the P-path graph is the Mp(P)-induced graph.

Now we are ready to start the

7.2. Proof of Theorem 7.1. The strategy of the proof of Theorem 7.1 is as
follows. Assume that P is a maximal periodic pattern which is not simplicial (i.e.
v(P) > 0). By the iterative use of Proposition 4.1 and Lemma 4.3 we may assume
that P has a unique free vertex. In the rest of this section we will prove that any
maximal periodic pattern P with a unique free vertex admits a (special) collapse
P’ such that h(P’) > h(P), contradicting the maximality of P. To this end we fix
the notation for the rest of this section as follows.

Set P = [T, P, f] where (T, P, f) is a canonical monotone n-periodic model and
assume that Br(T') \ P = {v}. Notice that with these assumptions, n > 3.

By Remark 2.2 it follows that f(v) € PU{v} and f is (P U {v})-monotone.

Let C, = {p1,p2,...,pr} C P denote the discrete component of (7, P) such
that v € (Cy). Observe that v has valence k and that (C,) is a star that has v as
branching point. Since v € Br(T) it follows that & > 3. Note also that |P| > k
since otherwise P has a unique discrete component C,, = P and f is a permutation
over P. In such case h(P) = 0, contradicting Remark 7.2.

For i € {1,2,...,k} we will denote by C; the connected component of T \
Int((C,)) such that p; € C;. Observe that P C C; UCy U...C}.

The basic path {p;,p;} with 4,5 € {1,2,...,k} will be denoted by p; ; (or p;;)
and called an interior basic path of the P-path graph. Every other basic path will
be called an ezterior basic path of the P-path graph. The set of exterior basic paths
will be denoted by €. Observe that every exterior basic path is contained in (C;)
for some 1.

We will separate the proof of Theorem 7.1 into two cases according to the fact
that v is fixed by f or not.
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FIGURE 3. The two subcases of the proof of Theorem 7.1 in the
case f(v) # v. On the left the situation of Subcase 1 and on the
right the situation of Subcase 2.

7.2.1. Case f(v) # v.

Since f(v) € PU{v} it follows that f(v) € P.

We claim that the valence of f(v) is k. To prove the claim assume that the
valence of f(v) is smaller than k. Then, since f is P U {v}—monotone, the valence
of f(v) is k — 1 and there exists i € {1,2,...,k} such that f({v,p;)) = f(p:)-

We consider the pattern P’ obtained by collapsing the edge (v, p;) to the point
{p:i}. Clearly this pattern is simplicial. Moreover, since f |<v7pi> is constant, the
entropy of P’ coincides with the entropy of P in a similar way to the proof of
Proposition 4.1. Hence, P’ is maximal by assumption. On the other hand, the fact
that f(v) has valence k—1 implies that in the pattern P’, [p;; pi; pm] with i ¢ {I,m}
is a monotone ordered triplet and hence, P’ is not maximodal. This contradicts
Corollary 6.2 and ends the proof of the claim.

Let s € {1,2,...,k} be such that f(v) € Cs. Since the valence of f(v) is k
(and, hence, f is a local homeomorphism at v) it follows that we are in one of the
following two cases (see Figure 3):

Subcase 1. f(p;) € Cs for all i € {1,...,k}.

Observe that if f(C;) C Cs for every ¢ € {1,...,k} then P cannot be a periodic
orbit. Hence, f(C;) ¢ Cs for some i € {1,...,k} and, since f(p;) € Cs, some
exterior basic path must f—cover some interior basic path p,. ;.

Subcase 2. There exists a unique | € {1,...,k} such that f(p;) ¢ Cs.
Let r € {1,...,k}\ {s} be such that f(p;) € C,.

In both subcases, since k > 3, we may assume by relabelling the points p; if
necessary that 1 ¢ {r,s}.

We consider the pattern obtained from P by collapsing the edge (v,p1) to a
point (see the definition of a collapse from Section 4). In this way we obtain a
pattern P’ = ([T, P'],[xo for™'|,]) (where & is the standard projection from
T to the tree T obtained by collapsing the edge (v,p1) of T and P’ = k(P)).
Clearly P is simplicial and from Proposition 4.1 it follows that h(P’) > h(P).
Consequently, P’ is maximal. Since P’ is simplicial, the path-transition matrix
of P, Mp(P'), coincides with the Markov matrix of P’. Therefore, Mp(P’) is
irreducible by Corollary 6.2.

We have to show that h(P) < h(P’). To do this we will compare the spectral
radius of Mp(P) and Mp(P’) (Remark 7.2). Unfortunately these matrices cannot
be compared directly and we need the help of an auxiliary intermediate matrix
M obtained from Mp(P) as follows. The fact that f is P U {v}—monotone and
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f(v) has valence k implies that (f(v), f(p:)) N {(f(v), f(p1)) = {f(v)} for every
i €{2,3,...,k}. Therefore, the matrix Mp(P) has a zero in the entries lying in a
row corresponding to every interior basic path p; ; with 1 <7 < j and in a column
corresponding to every basic path contained in (f(v), f(p1)). The matrix M has
the same size as Mp(P) and coincides with Mp(P) except for the entries lying in
a row corresponding to every interior basic path p;; with 1 <7 < j and column
corresponding to every basic path contained in (f(v), f(p1)), where we replace the
zero in Mp(P) by a 2 in M. Observe that all basic paths contained in (f(v), f(p1))
are exterior.
We will prove that

(8) h(P) < loga(M) = h(P").

This contradicts the maximality of P and ends the proof of the theorem in the case
f(v) # .

The above inequalities will be proved by using Lemma 3.1. To this end we need
to extend the notions of interior and exterior basic path, defined for the P-path
graph, to the P’-path graph and to the M-induced graph.

Let f’ be a map from 7" to itself such that P’ = [T7, P/, f'] and (I”, P’, f') is
a monotone model. Set p; = r(p;) for i = 1,2,..., k. The basic path {p},p}} of
(1", P') with j € {2,3,...,k} will be denoted by p) ; and called an interior basic
path of the P'-path graph (observe that {p;,p}} with i,j € {2,3,...,k} is not a
basic path of P’). Every other basic path of the P’-path graph will be called an
exterior basic path. The set of exterior basic paths of the P’-path graph will be
denoted by &’

By the construction of the matrix M there is a one-to-one correspondence be-
tween the rows of Mp(P) and the rows of M. Thus, we can identify the basic
path originating a row of the matrix Mp(P) with the corresponding row index of
the matrix M and, hence, with the vertices of the M-induced graph. In the rest
of this section we will use this notation for the vertices of the M-induced graph
(i.e. if a node i of the M-induced graph is identified with the basic path 7, of the
P-path graph, in what follows it will be denoted by ;). In this setting the interior
and exterior basic paths of the P-path graph and the M-induced graph coincide.
Moreover, the P-path graph is a subgraph of the M-induced graph.

Observe that in the collapsing of the edge (v, p1) to obtain 7" from T" we did not
modify any exterior basic path of the P-path graph. Hence, the exterior basic paths
of the P’-path graph are in one-to-one correspondence with those of the P-path
graph which, in turn, are identified with the exterior basic paths of the M-induced
graph. So, if E € & we will denote by E’ the corresponding element of &', and
conversely. Also, the coverings between the elements of £ in the P-path graph and
the M-induced graph and the coverings between the elements of £ in the P’-path
graph are in one-to-one correspondence because when constructing the pattern P’
and the matrix M we only have modified the interior basic paths and the coverings
of interior basic paths, respectively.

The next lemma describes all f-coverings between interior paths of the P-path,
the P’-path and the M-induced graphs. It follows directly from the definitions.

Lemma 7.3. With the previous notation the P-path, the P’-path and the M-
induced graphs have exactly the following covers between interior basic paths.

Subcase 1. No interior basic path covers another interior basic path in the the P-
path, the P'-path and the M -induced graphs.
Subcase 2. In the cases
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Il #1 we have f(p1) € Cs and the P-path and the M-induced graphs
contain the arrows p;; — prs for all i # 1. The P’-path graph
contains the arrows py ; — pi . and py ; — pi .

Il =1 the P-path graph contains the arrows p;1 — pr s for all i # 1,
the M-induced graph contains the arrows p;1 — pr,s for all i # 1

and p; ; LN Drs and p; j 2, Drs for all 1 < i < j <k and the
P'-path graph contains the arrows p;, — pl.; and p;, — p;
for all i # 1.

The proof of (8) will be split into two lemmas. Before stating and proving them
we will recall the notion of a concatenation of paths. Let a = «q do, i LN

ln—2 Tm—2 Tm—1

o Qp— 1_‘_>an andﬁ BO,_>51'_> ﬁm—l

Bm be two
paths in an oriented generalized graph. If o, = By then we can concatenate o and

l l I ln— T —
B to get the path ag == a1 —= -+ — 1 — A —= f1 — ... 22

Tm—1

Bm—1 — Bm. Such a path will be denoted by af and called the concatenation
of a and 3.
Lemma 7.4. With the above notations h(P) < logo(M).

Proof. From Remark 7.2 it follows that h(P) = logo(Mp(P)). So, we have to
show that o(Mp(P)) < o(M). As it has been said, to compare the entries of these
matrices we will use the interpretation in terms of loops of the corresponding graphs
given by Lemma 3.1(a).

First of all we claim that any pair of exterior basic paths of the P-path graph
(and, hence, of the M-induced graph) can be joined by a path in the M-induced
graph. To prove the claim take E,E € & and let E',E' € & denote the corre-
sponding exterior basic paths in the P’-path graph (recall that the elements of £
are in one-to-one correspondence with those of £). Since Mp(P’) is irreducible, it
follows from Lemma 3.1(a,b) that there exists a path from E’ to E in the P’-path
graph. Among these paths, let us take one with a minimal length. If such a path
does not contain interior basic paths, a corresponding path also exists in the M-
induced graph (recall that the coverings between the elements of £’ in the P’-path
graph and the coverings between the elements of £ in the M-induced graph are in
one-to-one correspondence). This ends the proof of the claim in this case.

Assume now that the above minimal path contains interior basic paths. Such
a path can be written as a concatenation of paths vi7;---7;, such that each v;
begins and ends with an external basic path (y] begins with £ and ], ends with
E' ), contains interior basic paths and all interior basic paths contained in each ’y]’v
are consecutive. ) _

We will show that for each v} = EY — Ej — -+ — Ej] there exists a

path v; from E{ to EﬁLJ in the M-induced graph, where E{ (respectively E,JTJ) is
the external basic path of the M-induced graph that correspondg to Eij (respec-
tively E;{j) In particular, v; begins with E and +,, ends with E. Thus, we can
concatenate the paths 7; to get a path vi72--- vy, from E to E and the claim

follows.
Now we will show that for each path ) = EY — Ej — -+ — Ej) with the

above properties there exists a path 7; from E] to EJ ; in the M- 1nduced graph.
Accordlng to Lemma 7.3 and in view of the mlnlmahty of the length of the path
VIVs "+ Vi €ach path ny must be of one of the following forms with i € {2,3, ..., k}:

OE{H-HHE;me/MHElH . — E!

mas O
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— B!,

B — - — Bl — piy — ph, — B
(only for [ 7é 1), or
e Ef — - HEim — i — P — Bl
(only for I #1), o
E/ — —>E;n1 —>p/1,z —>p/1,r —>Ei
(only for I =1), o
By — - HEinl — P — s — B
(only for I = 1),

Lol
l
&

where all basic paths forming the paths £} — --- — E;  and E{ —_—
— E;nz are exterior basic paths.

When E} C x((f(v), f(p1))) it follows that P — E/ foreveryi € {2,3,....k}.
Hence, by the minimality of the path, we are in the first case of the above list. In
that case, if E}, does not f’-cover another interior path it follows that £ —

— Eml — pl i — E1 —_— s — Em2 is a path in the M-induced graph from
Fi to Em2 If E;, also f’-covers pl . then the M-induced graph contains the path
EL— - — Eml — Dl — E1 — s — EmZ from E1 to EmZ

When B € r((£(0). Fpr)). B € K((F(0). Fpu) or B} C w((F(2), F(po). an
analysis similar to the above one shows that, in all the cases, the M-induced graph
contains a path from F; to E‘mz. This ends the proof of the claim.

Now we start the process of comparing paths in the P-path and the M-induced
graphs.

We will say that a basic path 7 of the M-induced graph is admissible if there
exists a path in the M-induced graph beginning at some exterior basic path and
ending at 7. Let A be the set of all admissible basic paths. By the claim, £ C A.

We claim that the set A is transitive in the following sense: any two elements
of A can be joined by a path in the M-induced graph using only elements of A.
Now we prove this claim. Notice that it holds for any two exterior basic paths F, E
since, in the previous claim, we have proved that there is a path in the M-induced
graph joining F and E (the interior basic paths contained in this path all belong
to A by definition).

Let p;; € A with 4,5 € {1,2,...,k}, ¢ # j be an interior basic path and let
E € £ We will prove that there exists a path from E to p;; and a path from p; ;
to E, both containing only elements from A.

Since £ C A, there exists a path v from some exterior basic path E to Dij
and a path « from E to E) both paths containing only elements from A. The
concatenation oy gives a path beginning at F and ending at p; ; containing only
elements from A.

To prove that there is a path from p; ; to E containing only elements from A, we
note that there is at least one arrow from p; ; to some exterior basic path F in the
M-induced graph. Indeed, since at most one element from f({p1,p2,...,px}) does
not belong to Cj, either f(p;) or f(p;) belong to Cs. Assume for definiteness that
f(p;) € Cs. Then, (f(v), f(p;)) C (Cs) and all basic paths contained in (f(v), f(p;))
are exterior basic paths of the P-path graph. On the other hand, f({(p;;)) =
(f(pi), f(pj)) D (f(v), f(pj)). Hence, there is an arrow from p; ; to some exterior
basic path £ C (f(v), f(pj)) in the P-path graph. Since the vertices of the P-path
graph and the M-induced graph are identified and the P-path graph is a subgraph
of the M-induced graph, there is an arrow from p; ; to E in the M-induced graph.

Concatenating the path p; ; — E with a path from E to FE, we obtain a path
beginning at p; ; and ending at F, containing only elements from A.
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To end the proof of the claim take interior paths m,7 € A and let E € £. From
the part already proven, there exist paths v; from 7 to E and 9 from F to 7,
containing only elements from A. The path 172 joins 7 with 7 and contains only
elements from A. This ends the proof of the second claim.

Now we claim that p, s € A. In Subcase 1, p, s was defined as an interior basic
path covered by some exterior basic path. So, p, s € A by definition.

Now we consider Subcase 2 when [ # 1. We recall that since Mp(P’) is irre-
ducible the P’-path graph contains a path from some exterior basic path E’ to p} ;
by Lemma 3.1(a,b). Then, the M-induced graph contains a path from E to p;; for
some ¢ € {1,2,...,k}. By Lemma 7.3 it follows that p;; — p, s and hence, by
concatenating the two loops, we obtain a loop in the M-induced graph from E to
Pr,s- Thus, again, p, s € A by definition.

A similar argument works in Subcase 2 when [ = 1, and the claim holds.

Now let Y denote the set of basic paths of the M-induced graph that do not
belong to A. Clearly Y is disjoint from £ and so, it only contains interior basic
paths. The columns of the matrix M corresponding to the elements of Y are
identically zero. To see it notice that, by definition, there are no coverings from
any element of A to any element of Y. Also, there are no coverings from any
element of Y to any element of Y. Indeed, all elements of Y are interior basic paths
and, by Lemma 7.3, the only interior basic path covered by another interior basic
path is p, ; that belongs to A.

Let Mp(P) and M be the matrices obtained respectively from Mp(P) and M
by deleting the rows and the columns corresponding to the elements of Y. Clearly
o(Mp(P)) = o(Mp(P)) and (M) = o(M). On the other hand, the matrix M
is irreducible because we have proved that the set A is transitive (i.e. any two
elements of A can be joined by a path in the M —ind%ed graph using only elements
of A — see Lemma 3.1(a,b)). Observe also that M > Mp(P) by the definition
of M. Since p,s ¢ Y it follows that both matrices M and MP(P), have a row
corresponding to p, s. Moreover, since 1 ¢ {r, s}, from the definition of the matrix
M it follows that the entries of the row of M corresponding to p, s are strictly

greater than the corresponding entries of MP(P). So, by Lemma 3.1(d),

o(Mp(P)) = o(Mp(P)) < o(M) = o(M).

Lemma 7.5. With the above notations h(P') =logo(M).

Proof. Since P’ is maximal we get h(P’) = logo(Mp(P’)) from Remark 7.2. Thus,
we have to prove that o(Mp(P')) = ¢(M). To do this we will use the matrix M from
the proof of the previous lemma. Hence we have to prove that o(Mp(P')) = o(M)
because U(M) =o(M).

Fix an external basic path E/ € £ and the corresponding external path E € &£.
The set Y defined in the proof of the previous lemma is disjoint from £. Thus,
the M-induced graph has a vertex associated to E. Since Mp(P’) and M are
irreducible, by Lemma 3.1(c) it is enough to show that, for every k € N, the number
of loops of length k& in the P’-path graph starting and ending at E’ coincides with
the number of loops of length k£ in the M-induced graph starting and ending at F.

Let A’ be the set of loops of length k starting and ending at E’ in the P’-path
graph and let A be the set of loops of length k starting and ending at E in the M-
induced graph. In A’ we introduce the equivalence relation ~' as follows. Given two
loops from A’ we say that they are ~’-equivalent if they have the same elements of
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&’ in the same position. Analogously, two loops from A are said to be ~-~equivalent
if they have the same elements of £ in the same position.

We claim that, given two exterior basic paths Fj, F}) € & and m > 2, the
number of paths of the P’-path graph of the form F| — 7 — w5, — ---

— 7,1 — Eb where 7,7}, ... 7, _; are interior basic paths coincides with
the number of paths of the M-induced graph of the form Fy — 7 — 110 — - -
— Tm—1 — Fo, where 71, 7s, ..., Ty_1 are interior basic paths.

Clearly, if the claim holds, there is a bijection W: A’ /~'— /Nl/fv and for every
[A] € A/~ it follows that [A] and W([A]) have the same number of elements. Thus
the cardinality of A’ and A coincides and, hence, the lemma follows.

The rest of the proof is devoted to prove the claim.

First we prove the claim in Subcase 1. By Lemma 7.3, all paths of the P’-
path graph verifying the assumptions of the claim are of length 2 and of the
form B} — pj,; — Ej with 7 € {2,3,...,k}. From the definition of the model
(T, P, f') it follows that Eo C (f(v), f(p1)) U {(f(v), f(p:)).

If p ; is the unique basic interior path f’-covered by Ef then there is a unique i
such that E] — P} ; — I is a path from EY to Ej in the P’-path graph, and the
only path from FE; to Fy in the P-path graph and hence in the M-induced graph
is By — p1,; — Es (recall that the matrices Mp(P) and M only differ in rows
corresponding to paths p; ; with 1 < i < j). By the definition of the sets A and
Y from the proof of the previous lemma it follows that Eq,p1,;, E2 ¢ Y. Hence
Ey — p1,; — E5 is the only path from E; to E3 in the M-induced graph. Thus,
the claim follows in this case.

Assume now that E] f’-covers p ; and p) ; with 1 < i < j. In this case we clearly
have the arrow Ey — p; ; in the M-induced graph. When E5 C (f(v), f(p:)), as
in the previous case, there is a unique i such that Ef — pj,; — FEj is a path
from E’ to F} in the P’-path graph. Moreover, by the definition of the matrix M,
the entries of Mp(P) and M corresponding to the row associated to the basic path
pi,; and to the column associated to Es coincide. The fact that Ey C (f(v), f(pi))
implies that p; ; f-covers Ey and, hence, there is a unique arrow from p; ; to E3 in
the M-induced graph. Consequently, as above, E1 — p; j; — E» is the only path
from E; to B in the M-induced graph and the claim follows as in the previous
case. Assume now that Fo C (f(v), f(p1)). In this case there are two paths from
Ej to Ej in the P'-path graph: B — p}; — Ej and B} — p} ; — Ej. On the
other hand, again by the definition of the matrix M, the entry of M corresponding
to the row associated to the basic path p; ; and to the column associated to Ey is
2, meaning that there are two labelled arrows from p; ; to E» in the M-induced
graph. Consequently, there are two paths from F; to Es in the M-induced graph:
Ey — pij 2, E, and Ey — p;j 2, FE5. This ends the proof of the claim in

Subcase 1.

Now we consider Subcase 2 with | ¢ {1,7,s}. In this situation, again by
Lemma 7.3, all paths of the P’-path graph verifying the assumptions of the claim
are of length 2 or 3. When m = 2 and there is a path Ef — p}, — Ej with
i€{2,3,...,k} from E] to F)} in the P’-path graph the claim holds by the same
arguments as in Subcase 1.

Assume now that there is a path from Ef to E} in the P’-path graph of length 3.
By Lemma 7.3 this path must be £ — p} ; — p} ; — Ej with i € {r,s}. If p;
is the unique basic interior path f’-covered by E’ then, by the definition of M and
Y, we have the following path in the M-induced graph By — p1,; — prs. When
Ey C(f(v), f(pi)), E1 — Py, — pi; — Ej is the only path of length 3 from £}
to B4 in the P’-path graph. On the other hand, by using similar arguments as above,
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there is a unique arrow from p, s to Eo in the M-induced graph. Consequently,
Ey — p1,; — pr,s — E> is the only path from E; to Es in the M-induced graph
and the claim follows. Assume now that Ey C (f(v), f(p1)). In this case there are
two paths from E] to Ej in the P’-path graph: Ei — p}, — pj, — Ej and
B} — pi; — pi,s — E%. Again by the definition of the matrix M and Y, there

are also two paths from E; to Es in the M-induced graph: By — p1j — Drs LN

Ey and By — p1y — Drs 2, FE5. Thus the claim follows in Subcase 2 with
1 ¢ {1,r,s}, the loops from E] to Ej in the P'-path graph have length 3 and p , is
the unique basic interior path f’-covered by Ef.

Now we consider the case when Ef f’-covers p) ; and p ; with 1 <[, j and [ # j.

In this case we clearly have the path Ey — p; ; — p, in the M-induced graph
and the claim follows by using the same arguments as in the previous case.

Now we assume that we are in Subcase 2 with [ € {r, s} (since 1 ¢ {r, s} we
automatically have [ # 1). We only study the case | = r. The other case follows in
a similar way.

By Lemma 7.3, in this case we have paths of the P’-path graph verifying the
assumptions of the claim of arbitrary length m > 2. All these paths are of the form
either

m—2 (

(1’) (E{ —)pll,r) (p/l,r —>pl1,r) p/l,r — Eé) =
Ei _>p/1,7‘ _>p/1,r — _>pl1,'r‘ — Eé7 or

(i) (Bf — ph,) W, — p0)" " (0h, — i) (0h, — Eb) =
Bl — P, — P, — 0 — P, — P — B

From Lemma 7.3 and the definition of Y it follows that the M-induced graph has
the path

(i) (By — p1.r — Dr.s) (prs — prs)™ > when E only f’-covers i, and

(i) (BEx — prj —> Dr,s) (Dr,s — pr,s)m73 when Fj f’-covers p} ,. and p} ; with
1<r,jandr#j.

Now, from the definition of M and Y as before, if E5 C (f(v), f(pr))U{(f(v), f(ps))
it follows that either (i’) or (ii’) is the unique path of length m from E} to E in
the P’-path graph, and concatenating the paths (i) or (ii) with (p,s — E2) we
obtain a unique path of length m from E; to Fy in the M-induced graph and the
claim holds. When Es C (f(v), f(p1)) then both paths of length m, (i’) and (ii’),
occur in the P’-path graph and concatenating the paths (i) or (ii) with the labelled
arrows (p'r,s 2 Eg) and (pr,s 2, Eg) we also obtain two paths from F; to Es

in the M-induced graph. So, the claim holds also in this case.

Finally we consider Subcase 2 with [ = 1. Again from Lemma 7.3 we have paths
of the P’-path graph verifying the assumptions of the claim of arbitrary length
m > 2. These paths are of the form E} — p);, — py,, — Pl — -
— Py, — 5, wherei € {2,3,...,k}, l; € {r,s} for j =2,3,...,m — 1 and
Ey C (f(v), f(pr)) U(f(v), f(ps)) U (f(v), f(p1)). Moreover, l;,_y =7 (respectively
Im—1 =) if By C (f(v), f(pr)) (respectively Es C (f(v), f(ps)))-

If p} ,; is the only path f’-covered by Ej, there are 2m=2 (respectively 2m73)
paths of length m from E] to E} in the P’-path graph when Ey C (f(v), f(p1)) (re-
spectively Es C (f(v), f(pr))U{f(v), f(ps)}). Moreover, by the definition of M and
Y (and Lemma 7.3), we have the following paths of length m from E; to Fs in the
M-induced graph By — p1i — Drs 2, Dr.s Sy 2l Dr.s 2y B, where

s; € {1,2} for j = 3,4,...,m—1and s,, € {1, 2} (respectively s,, = 1) when Ey C
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(f(v), f(p1)) (respectively Ey C (f(v), f(pr)) U (f(v), f(ps))). Consequently, there
are 2™~ 2 (respectively 2™~3) paths of length m from Ej to Es in the M-induced
graph when Ey C (f(v), f(p1)) (respectively Ey C (f(v), f(pr))U{(f(v), f(ps))) and
the claim holds.

The case when Ej f’-covers p) ; and p) ; with 1 < i < j follows from a similar
analysis. (]

From Lemmas 7.4 and 7.5 it follows (8) and, hence, Theorem 7.1 in the case

fw) # .
7.2.2. Case f(v) =v.

Since f is P U {v}-monotone it is locally injective at v. This means that f
induces a permutation 7: {1,2,...,k} — {1,2,...,k} defined by: f(p;) € Cr;
for i =1,2,..., k. We denote by B; the set of all basic paths contained in the path
(Dr(iy, f(pi)). Observe that from the definition of 7, p.(;), f(p:) € Cr¢;y. Hence,
either f(p;) = pry and B; = (0 or all elements of B; are exterior basic paths
contained in C ;.

Set

N:={ie{l,2,....k}: B; #0} ={i € {1,2,...,k} : f(pi) #P-())}-

Observe that N # 0. Otherwise, f(pi) = pru) € {p1,p2,-..,pr} for every
pi € {p1,p2,---,Pk}. So, since |P| > k, {p1,p2,...,pr} is a proper f- invariant
subset of P; a contradiction.

We claim that either there exists j € N such that 7(j) # j (that is, f(p;) #
Pri) # pj) or T = Id and N = {1,2,...,k} (that is p; # f(pi) € C; for i =
1,2,...,k). To prove the claim observe that either there is j € N such that 7(j) # j
or T|N = Id’N. We have to show that T}N = Id‘N implies N = {1,2,...,k}.
Assume that T|N = Id|N. Since 7 is a permutation and 7(N) = N it follows
that 7({1,2,...,k} \ N) C {1,2,...,k} \ N. Set N := {p; : i € {1,2,...,k} \ N}.
Since N C {p1,p2,...,pk} C P and |P| > k, N is a proper subset of P. Putting
all together we have f(p;) = prq) € N for every p; € N. Consequently, N is f-
invariant; a contradiction. This ends the proof of the claim.

Assume that 7 =1Id and N = {1,2,...,k}. This implies that ps # f(p2) € Co.
Consequently, since Cy cannot be f-invariant, there exists an exterior basic path in
(s f-covering some interior basic path of the form ps ; with 2 # j.

From the claim and the above observation, by relabelling the points p; if nec-
essary, we may assume that either 7(1) # 1 € N or 7 = Id and there exist
wy,wy € {2,3,...,k}, w1 # ws such that some exterior basic path in Cy,, f-covers
the interior basic path pu, w,-

We consider the pattern obtained from P by collapsing the edge (v,p1) to a
point. In this way we obtain a pattern P’ = ([T",P'],[c o forx™'[,]) (where &
is the standard projection from 7' to the tree T” obtained by collapsing the edge
(v,p1) of T and P’ = k(P)). As in the Case f(v) # v, P’ is maximal, simplicial
and Mp(P’) is irreducible.

We will prove that h(P’) > h(P). As in the case f(v) # v this will be done
with the help of two intermediate matrices (each of them “closer” to the matrix
Mp(P')) in a sequence of three lemmas. To this end we need to extend the notions
of interior and exterior basic path, defined for the P-path graph, to the P’-path
graph as we did in the Case f(v) # v.

Let f’ be a map from T” to itself such that P’ = [T”, P/, '] and (T",P’, ') is a
monotone model. Set p; = x(p;) and C! = k(C;) for i = 1,2, ..., k. The basic path
{p1, 5} of (T', P') with j € {2,3,...,k} will be denoted by p} ; (or p} ;) and called
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an interior basic path of the P’-path graph. Every other basic path of the P’-path
graph will be called an exterior basic path. The set of exterior basic paths of the
P’-path graph will be denoted by &’.

Now we define the first one of the intermediate matrices. To do it observe that,

for any i,j € {1,...,k}, i # j,

9) pi,j [-covers py , if and only if {u,v} = {7(2),7(j)}.

This means that the matrix Mp(P) has a 1 in every entry that is in a row corre-
sponding to an interior basic path p; ; with ¢ # j and in the column corresponding
to pr(i),r(j)- Every other entry in the same row and in the column corresponding
to an interior basic path different from p.(;) r(;) has a 0. In particular, if we take
i,7 so that 1 ¢ {7, 7}, the matrix Mp(P) has a 0 in the columns corresponding to
the paths pr(1),-@iy and pr(1),7¢;) (in the row corresponding to p; ;).

Let M be the matrix obtained from Mp(P) by modifying the rows corresponding
to the interior basic paths p; ; with 1 < ¢ < j < k in the following way. We
substitute the 1 appearing in the column corresponding to pr(;),~(;) by a 0 and we
substitute the 0’s in the columns corresponding to p,(1),-¢;) and pr1,-(;) by a 1.

The definition of the matrix M is motivated as follows. Let p} ; (with i # 1) be
an interior basic path of the P’-path graph. By the definition of 7 and (77, P’, f’),
') € C;(l) and f'(p)) € C;(i). By definition pj ; f’-covers pj ; if and only if
p1,; C (f'(P1), f'(P})), which is equivalent to j € {7(1),7(é)}. So the definition of
M is natural taking into account that, as it has been said before, we want that M
is “closer” to Mp(P’) than Mp(P).

The relation between the entropy of P and the spectral radius of M is given by
the following

Lemma 7.6. With the above notations logo (M) > h(P).

The proof of Lemma 7.6 is based in the comparison of loops of the P-path
graph and the M-induced graph. To this end we need some more notation and two
technical results. In what follows we identify the vertices of the M-induced graph
with the vertices of the P-path graph. In particular the notions of interior and
exterior basic paths are extended to the M-induced graph.

We will denote by B¢ the set of paths ag — a1 — - -+ — a,,, in the P-path
graph such that m > 2, ag,a,, € € and ag, a9, ..., a1 are interior basic paths.
In a similar way, Bf/[ will denote the set of paths Sy — 1 — --+ — B, in the
M-induced graph such that m > 2, By, 8 € € and 1, B, ..., m_1 are interior
basic paths of the P-path graph.

Lemma 7.7. There exists an injective length preserving map v: BE —» Bif such
that the initial and final vertices of () coincide with those of a for every a € BE.

Proof. Let o € BE be a loop of length ¢ > 2. From (9) it follows that « is of the
form
Q0 = Pa,b = Pr(a),r(b) — 7 " T Pra=2(a),7a-2(b) — 7 Qg-

If ¢ = 2 then « is also a path in the M-induced graph and we set ¥(a) = a.
Thus, in the rest of the proof we assume ¢ > 3.

Note that pra—2(4),ra—2(p) only f-covers exterior basic paths in Brq-2(q)UBra-2(4)-
So, either a; € Bra-2(q) O @y € Brq—2(). Assume for definiteness that a, €
Bra—2(q)-

Set( ti) = b and observe that ag — p, ¢, is a path of length 1 in the M-induced
graph with ¢y # a = 7°(a).

We will inductively show that if 0 <i < ¢ — 2 and

Q0 — Pato — Pr(a)ts — 7 Pr2(a),ta — 7 """ T Dri(a),t;
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is a path in the M-induced graph where t; € {1,2,....k}\{77(a)} for j = 0,1,...,4,
then there exists t;11 € {1,2,...,k}\ {7"*!(a)} such that

Qg — Paty — Pr(a),ts — 7 Pr2(a)ts — 7 " 7 Pri(a),t; — 7 Pritl(a),tisr

is a path of length i + 2 in the M-induced graph. If 1 ¢ {7%(a),t;} then, by the
definition of M,

Qo = Pato = Pr(a)ts — 7 Pr2(a)ts — 7 " T Pria),t; 7 Priti(a),r(1)

is a path in the M-induced graph. Since 7%(a) # 1 and 7 is a permutation it follows
that 7071(a) # 7(1). Thus, the claim holds in this case by taking ;.1 = 7(1).
Assume that 1 € {7%(a),#;}. Then,

Qg — Pa,to — Pr(a),ts — 7 Pr2(a)ty — 7 """ — 7 Pri(a),t; — Priti(a),r(t;)

is a path in the M-induced graph. Since 7%(a) # t; and T is a permutation it follows
that 7071 (a) # 7(¢;) and the claim follows by taking ¢;11 = 7(t;).
By the claim it follows that

Qo — Patg = Pr(a),t1 — 7 Pr2(a)ts — 7 """ T2 Pra—2(a)t,_ o
is a path in B¢;. Thus, since o, € Bra-2(4),
Y(a) = a0 — pa,t, — Pr(a),ti = Pr2(a)ts — 7 """ T Pra—2(a)ty o — 7 Qg

is a path in Bi{ of length ¢. This completes the definition of the map .
Notice that « is uniquely determined by its length, the arrow ag — p; ; and ay.
By the above construction this also determines uniquely ¢ (a). So, 1 is injective. [

Given a loop a = a9 — a3 — -+ — @, — g in a combinatorial ori-
ented generalized graph we define the shift of «, denoted by S(«), as the loop
ap —r g —> o+ — ay — ag — 1. For £ > 0 we will also denote

by S* the ¢-fold shift. This means that S°(a) = «a and if j = ¢ (mod m) then
SZ(CY) =0 = Q] —> > Q] —> g —> Q] — 7 (1 — (.

We also denote by EL™ the set of all loops of length m in the P-path graph that
contain some exterior basic path and by L'} the set of all loops of length m in the
M-induced graph.

Lemma 7.8. There exists an injective map ¢: EL™ — LY.

Proof. We define the map ¢ with the help of the map v obtained in Lemma 7.7.
To this end we introduce the following notation.

We will denote by EP the set of all paths in the P-path graph that do not
contain interior basic paths. Also, given a path a € E£™ we will denote by i(«)
the number of consecutive interior basic paths at the beginning of «. That is, if
a=ayg—>ay —> " —> Qpm_1 — Qp, then i(«) is defined so that Qi(q) € € but
Qp, 1, . . ., Qj(q)—1 are interior basic paths.

Now we define ¢(a) for a« € EL™. We start with the case i(a) = 0. If a €
EP then, since the entries of the matrix M corresponding to rows and columns
associated with exterior basic paths coincide with those of Mp(P), it follows that
« is also a path in the M-induced graph. So, we set ¢(a) = a.

Assume now that o ¢ EP (and i(«) = 0). Then « can be written in concate-
nation form as o = glélg2é2 .. .gnﬁngm_l where n > 1, Bl,ﬁ ..,ﬁn € B¢ and

1290 =,
Qp,Qy,. .., Q,, @, are either empty paths or paths from £P. We set

P(a) == Qﬂ/’(ﬁl)QQw(ﬁQ) X ~Qn¢(ﬁn)9n+1~

Clearly ¢(a) € L7} since ¢ is length preserving and, for every 1, w(ﬁl) has the same
initial and final vertices as ﬁl
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When i(a) # 0 then o ¢ EP and we have i (57 (a)) = 0. Hence ¢ (S“)(a))

is already defined. We set
o) = §™ (4 (51 (@))).

Clearly ¢ is a well defined map from ££™ to L};. To end the proof of the lemma
we have to see that ¢ is injective. Observe that ¢(a) = S™~) (¢ (S¥(¥)(a))) for
every @ € EL™ (independently on the fact that i(«) is positive or zero). Moreover,
« starts with an exterior basic path if and only if ¢(a) also starts with an exterior
basic path.

We claim that

¢ (S(@) = S (6(a)).

To prove the claim we start with the case i(a) > 0. Clearly, i(S(«)) =i(a) —1 >0
and, hence,

$(9(@)) = § (877 (6 (5"(@) ) ) ) = 577 (g (51971 (S(a) ) )

= o(5()).
Now we assume that i(a) = 0. If i(S(«)) = ¢ > 0, then, in a similar way as before,
a=papf,. ..o, &, wheren >1,5.8,,....,0 € B¢ and ay, ... s Qs Qi 1

are either empty paths or paths from EP. Clearly, S*'(a) = auf3, ... @, 8 a1 5,
and i (SF1(a)) = 0. Hence, from the definition of ¢ for the case i(a) = 0,

¢ (S () = ¢ (Q2ﬁ2 . -gnéngnﬂﬁl) =y (8,) - a,¥(B, ), 1% (8,)

= 5" (6(8,)aa¥(8,) - 2,8 )t ) = 5" (9(a))
and thus,
6 (5(a)) = 5™ (6 (5°(S(e)))) = 5™ (S (6(e)) = S (B(a) -

Finally, if i(a)) = i(S(a)) = 0, with the same notation as before we can write
a=(ag — a1)a; B a,p, .. B oy

Hence,

6 (S(0)) = 6 (218,028, -+ 2,8, 8,1 (00 — 1))
=a19(B,)as(B,) - -, ¥(B, )y 11 (o — a1) and

—n

P(ar) = (a0 — ar)a(B,)a¥(B,) - - an¥ (B, ) 11

Consequently, ¢ (S(a)) =S (¢(«)) . This ends the proof of the claim.

To end the proof of the lemma we have to show that if o, 8 € EL™, a # (3 then
() # ¢(B). The statement clearly holds when one of a or 5 belongs to EP since
¢| ep 18 the identity and ¢(y) contains interior basic paths of the P-path graph
whenever v ¢ EP (Lemma 7.7). So, we may assume that «, 5 ¢ EP.

We assume for definiteness that i(a) > (/). By way of contradiction we also
assume that ¢(a) = ¢(8). Then, by the iterative use of the claim, ¢ (S*#(a)) =
¢ (S"@(B)) . On the other hand, S*?(8) = 0 and so, S*?)(3) starts with an ex-
terior basic path. Hence, ¢ (S"¥@(3)) = ¢ (5°¥)(a)) starts with an exterior basic
path which implies that Si(ﬂ)(a) also starts with an exterior basic path. Conse-
quently, i(S"#) (a)) = i(S*P(B)) = 0. By the definition of ¢ and the injectivity
of ¢ (Lemma 7.7), ¢ (S*®(a)) = ¢ (S*¥)(B)) implies that S*¥)(a) = SUH(B); a

contradiction. O

Now we are ready to prove Lemma 7.6.
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Proof of Lemma 7.6. 1t is based in the comparison of the number of loops of length
m in the M-induced graph and in the P-path graph.

First we claim that the number of loops of a fixed length m in the P-path graph
that contain only interior basic paths is bounded above by @ (recall that k is
the cardinality of C,). Let o = p;j; — g — a9 — -+ —> Q1 — Dij be
one of such loops. By (9), a is of the form p; j — pr(i),(j) — Pr2@i)r2) — -
— Prm-1(i),rm-1(j) — Pij and hence it is uniquely determined by p; ;. Thus, the
number of loops of fixed length m in the P-path graph that contain only interior
basic paths is bounded above by the number of interior basic paths which is @
since k = |C|. This ends the proof of the claim.

From Lemma 3.1(a) it follows that, for every m € N, tr(M™) = |£7%| and
tr(Mp(P)™) is the number of loops of length m in the P-path graph. The set of
such loops is, by definition, £E£™ union the set of loops of length m in the P-path
graph that contain only interior basic paths. So, by the the claim and Lemma 7.8,
w(ap(Py) < lecm| + L (e my 4 HEZD
kE(k—1) kE(k—1)

<|L
L5+ == 5

=tr(M™) +

Consequently, by [5, Lemma 4.4.2],

m —1
o(M) =limsup ¥/tr(M™) = limsup \/tr(Mm) + %

m—00 m— o0
> limsup {/tr(Mp(P)™) = o(Mp(P))
m—r0o0
and the lemma follows from Remark 7.2. O

Now we consider the matrix M obtained from M in the following way. For any
1 <1 < j <k we modify the entries corresponding to the row p;; and to any
column corresponding to an exterior basic path contained in B; by putting a 2 in
each of these entries. As we did for the matrix M we identify the vertices of the
M-induced graph with the vertices of the M-induced graph (and, hence, with those
of the P-path graph) In particular the notions of interior and exterior basic paths
are extended to the M-induced graph.

Observe that, by definition, the coverings between the elements of £ in the P’-
path graph and the coverings between the elements of £ in the M-induced and
the M-induced graphs are in one-to-one correspondence. Moreover, in view of the
definition of 7, it follows that

for every interior path p; ;, there exists an exterior basic path
(10) E € Bj such that p; ; — E is an arrow in the M-induced
graph.

In the next two lemmas we will prove
logo (M) < logo(M ) h(P").
This, together with Lemma 7.6, will give Theorem 7.1 in the case f(v) =

Lemma 7.9. With the above notations o(M) < U(M).

Proof. The proof follows the same approach as in Lemma 7.4.

First of all we clalm that any pair of exterior basic paths of the P- path graph
(and, hence, of the M-induced graph) can be joined by a path in the M-induced
graph. To prove the claim take F, E € €. Since M p(P’) is irreducible, it follows
from Lemma 3.1(a,b) that there exists a path from E’ to E' in the ‘P’-path graph
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where F’, E' denote the elements of &’ corresponding to F and E‘ respectively.
If such a path does not contain interior basic paths by the definition of M, a
corresponding path from F to E also exists in the M-induced graph. This ends the
proof of the claim in this case.

Assume now that the above minimal path contains interior basic paths. Such
a path can be written as a concatenation of paths v{v5---;, such that each ~;
begins and ends with an external basic path (v begins with E’ and ~, ends with
E ), contains interior basic paths and all interior basic paths contained in each ~/
are consecutive.

We will show that for cach 7] = Eff — EY — -+ — EJ! there exists a path 7;
from Ef to E}, in the M-induced graph, where E! (respectively E! ) is the external
basic path of the M-induced graph that corresponds to Ef’ (respectively EJ ). In
particular, 7, begins with E and +,, ends with E. Thus, we can concatenate the
paths ~; to get a path v1y2 -+ -y, from E to E and the claim follows.

Now we will show that for each path v, = Eff — Ef — --- — EJ! with the
above properties there exists a path 7; from E! to Eﬁh in the M-induced graph.
By the definition of P’, for every i € {2,3,...,k}, pj,; only f'— covers the inte-
rior basic paths p’177(i) and p’177(1). Thus, the path 4/ is of the form F] —

— E;m lel,fo Hp’ul — . —>p'” — B — - — E’2 where
E,’ﬂ = Eji, all basic paths in Bf — -+ — EJ, and Ef — -+ — E’

are exterior basic paths, o € {2,3,...,k}, » > 0 and ¢; € {7(¢i—1),7(1)} ¢
{7(lo), 7(1), 72(1),..., 7' (1)} for i = 1,2,...,7

Since the coverings between the elements of £ in the P’-path graph and the
coverings between the elements of £ in the M-induced and the M induced graphs
are in one-to-one correspondence, By — - -+ —> Em1 and E1 — e — Emz are
paths in the M-induced graph, where El, ey By, El, . Em2 are the elements of
& corresponding to Ef,..., B, , E{, . Emz, respectively. By the definition of P’,
El € By UB;y,.

Assume that there exists j ¢ {1, 4o} such that £, f’-covers p} ;. Then, clearly,
E,,, f-covers py, ; and, in the case El € By, it follows by the definition of M that
Ey — -+ — Epy — Duy,j BN E‘l —_— s — Em2 is a path in the M-induced
graph and we are done.

Assume now that El € By,.. Then, any interior basic path of the form py, q
f-covers Ei. So, by definition, the M-induced and M-induced graphs contain the
AITOW Pr, — El and £ — -+ — Em1 — Pto,j — Pr(to),~(1) 1S a path in
the M-induced graph. If r = 0 then By — -+ — Ep,, — Dryj — E1 — -
— Em2 is the path in the M-induced graph that we are looking for. Assume now
that r > 1. If £, = 7"({p), in a similar way to the inductive step in the proof of
Lemma 7.7, there exist ty = 7(1),ta, t3, ..., t, with t; € {1,2,...,k} \ {7'(¢o)} for
1 =1,2,...,r such that

By — o — By — Peyj —

DPr(to),t1 —7 Pr2(Lo),ta — 7 Pr3(ko)ts — 2 " T Prr(lo),t. 7

By — - — By,
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is a path in the M-induced graph. If ¢, # 77 (¢p) then £, = 7™ (1) with 1 <m < r.
As above, there exist t1 = 7(lo), ta,t3, ..., tm such that

By — - — By — Doy —
Pr(),ty — 7 Pr2(),ta — 7 Pr3(U)yts — 0 T2 P (D)t 7
By~ — B,

is a path in the M-induced graph and the claim follows when there exists j ¢ {1,040}
such that Ej, f'-covers pi ;.

Now assume that, for every j ¢ {1,4o}, E}, does not f’-cover p ;. In this
situation E,,, f-covers p; g, and using arguments similar to the above ones we also
obtain a path from E; to Em2 in the M-induced graph. This ends the proof of the
claim. .

We will say that aj{aasic path 7 of the M-induced graph is admissible if there
exists a path in the M-induced graph beginning at some exterior basic path and
ending at 7. Let A be the set of all admissible basic paths. By the claim, £ C A.

We claim that the set A is transitive. We have to see that for every my,m € A
there exists a path from m; to 7o in the M-induced graph using only elements of
A. When 7 € £ this statement follows exactly as in Lemma 7.4.

Assume that 7 ¢ €. By (10) there exists an exterior basic path E € By such that
m — E is an arrow in the M-induced graph. Since my € A there exists a basic
path ~ in the M-induced graph from an exterior basic path E to o containing only
elements of A (if po € £ this path can be taken to be the empty path). By the
previous claim there exists a basic path « from E to E in the M-induced graph
containing only elements of A. Then the concatenated path (m — E)ary is a path
from 7y to 7o in the M-induced graph containing only elements of A. This ends
the proof that A is transitive. .

Now let Y denote the set of basic paths of the M-induced graph that do not
belong to A. Clearly Y is disjoint from & and so, it only contains interior basic
paths. The columns of the matrix M corresponding to the elements of Y are
identically zero. To see it notice that, by definition, there are no arrows from any
element of A to any element of Y. Also, there are no arrows from any element
of Y to any element of Y. Indeed, all elements of Y are interior basic paths and
by definition they have only arrows to interior basic paths of the form p; -1y that
belong to A. Moreover, since M < M it follows that the columns of the matrix M
corresponding to the elements of Y are also identically zero.

Denote by M’ and M’ the matrices obtained respectively from M and M by
deleting the rows and the columns corresponding to the vertices in Y. As in
Lemma 7.4, o(M') = o(M) and o(M’) = o(M). On the other hand, the ma-
trix M’ is irreducible because the set A is transitive (i.e. any two elements of A
can be joined by a path in the M-induced graph using only elements of A — see
Lemma 3.1(a,b)). Clearly, M’ > M’ because M > M. We claim that M’ # M’. If
the claim holds, by Lemma 3.1(d),

o(M) =o(M') > o(M') = o(M)
and the lemma is proved.
Now we prove that M’ # M’. In the case 7 = Id we know by construction

that there exist wy,wy € {2,3,...,k}, w1 # ws such that some exterior basic path
f-covers the interior basic path py, w,. Since this kind of arrows from the P-path

graph have been preserved in the M-induced and the M-induced graphs, Pu, w, €
A. Thus, M M’ # M' because in the definition of M we have strictly increased the
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entries corresponding to the row of py, w, and the columns corresponding to the
clements in By C £ C A (since 1 € N, By # ). Hence, M’ # M’ in this case.

Assume now that 7 # Id. It is enough to show that there exists w ¢ {1,7(1)}
such that p, ) € A. Indeed: since 1 ¢ {w,7(1)}, in the definition of M we
have strictly increased the entries corresponding to the row py, (1) in the columns
corresponding to the elements in By C A (and hence, M # M.

The rest of the proof of the lemma will be devoted to show that, when 7 # Id,
there exists w ¢ {1,7(1)} such that p, (1) € A.

Assume that there exists E' € £’ such that £’ f'-covers p} , and p} ; with r # .
Since 7 is a permutation, one of r and [, say r for definiteness, verifies 7(r) # 1. Also,
7(r) # 7(1) because r # 1. By the definition of M and M,E — Dl = Pr(r),r(1)
is a path in the M-induced graph and the claim follows from the definition of A by
setting w = 7(r).

Now assume that every exterior basic path of P’ f’-covers at most one interior
basic path. There exists E’ € £ such that E’ f’-covers a unique p} , with r # 1. In
this case the M-induced graph has the path E — p1, — prey,-q)- H7(r) # 1
then the claim follows from the definition of A by setting w = 7(r).

Suppose now that 7(r) = 1. We know that the M-induced graph has the path
E — p1r — p17(1) — Pr21),r(1) I 72(1) # 1 then, again, the claim follows by
setting w = 72(1).

We are left with the case 72(1) = 1 and if an exterior basic path of P’ f'-
covers one interior basic path then this basic path is precisely p} , with r = 7(1).
Clearly, in this situation, the only interior basic path f’-covered by p/1,r(1) is itself.
Consequently, the set of vertices & U {pll,‘r(l)} is invariant in the P’-path graph
(i.e. every path starting at & U {p'l,T(l)} has all vertices in & U {p’l,T(l)}). This
contradicts the irreducibility of Mp(P’) (Lemma 3.1(a,b)). O

Lemma 7.10. With the above notations logo(M) = h(P’)

In what follows we will denote by Orb,(a) the set {a,7(a),7%(a),...}. Clearly,
since 7 is a permutation over a set of cardinality &k, Orb,(a) has cardinality at most
k for every a.

Proof of Lemma 7.10. From the proof of Lemma 7.5 we have to show that J(M’) =
o(Mp(P")), where M’ is the matrix from the proof of the previous lemma. Again
by the proof of Lemma 7.5 it is enough to show that, given two exterior basic paths
Ei, By € & and m > 2, the number of paths of the P’-path graph of the form
Ef — 7w, — 7w — -« — 7wl — Eb, where 7}, 7, ..., 7/, are interior
basic paths, coincides with the number of paths of the M-induced graph of the form
Fy — m — o — -+ —> W1 — FEs, where w1, m9, ..., Ty_1 are interior
basic paths.

We prove this in the case 7 # Id. The case 7 = Id is simpler and we leave the
details to the reader.

We start by proving the statement in the case m = 2. Let Ej — p},; — Ej
be a path of length 2 in the P’-path graph from E’ to Ej. The fact that the above
path ends with p} ; ~ — Ej implies that Fy € By U B;,,_,.

If p) ;, is the unique interior basic path f’-covered by Ej then the above path is
the unique path of length 2 in the P’-path graph starting with £} and ending with
El and Ey — p1,;, — E5 is the unique path of length 2 in the M-induced graph
joining Fy and E5. Thus the lemma holds in this case.
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Now assume that, additionally, £ f'—covers p , with b1 # i1 (1 ¢ {i1,b1}). If
By € By, then, as before, £y — p} ; — Ej is the unique path of length 2 in the
P’-path graph starting with E{ and ending with E} and Ey — p;, 5, — Eo is
the unique path of length 2 in the M-induced graph joining Fq and FEj.

When E5 ¢ B;, it follows that F5 € B; and there are exactly two paths of length
2 in the P’-path graph starting with E] and ending with Ej : By — p); — Ej
and E] — p', — E;. On the other and, from the definition of the matrix M it
follows that there are exactly two paths of length 2 in the M-induced graph starting
with E; and ending with By : By — p;, 5, — Es and By —» p;, 4, — E,. This
ends the proof of the lemma in the case m = 2. So, in the rest of the proof we
assume that m > 3.

By the definition of P’, for every i € {2,3,...,k}, p}; only f'— covers the
interior basic paths p’l’T(i) and p,1,7(1)- Thus, the path Ff — 7} — 7f, — -+«
— 7,1 — E} is of the form

/ / / / /
E, — Pri, =7 P, —7 7 7 Pl 7 Ey

with i1 € {2,3,...,k} and 42,43,...,%m-1 € Orb,(1) UOrb,(i1) such that i; ¢
Orb, (1) implies 41,49, ...,1j—1 ¢ Orb,(1) for j = 2,3,...,m— 1. Moreover, in such
case i; = 7771 (i1). Also, as in the case m = 2, Ey € By with £ € {1,iy,—1}.

Concerning the M-induced graph, from (9), the definition of M and the fact that
in the definition of M we did not modify the entries corresponding only to interior
paths, it follows that the path £y — m — 79 — -++ — m,,_1 — F5 is of the
form

Ev — DPay by = Pr()ts — " = Pr( sty — B2

with a1,b1 € {1,2,3,...,k} and to,t3,...,tm—1 € Orb;(1) U Orb,(a1) U Orb,(b1)
such that ¢; ¢ Orb,(1) implies ta,%3,...,tj—1 ¢ Orb (1) for j = 2,3,...,m — 1.
Moreover if a; ¢ Orb,(1) and t; € Orb,(ay) thent; = 7971 (ay) for j = 2,3,...,m—
1, and the same holds for by instead of a;.

Assume first that £ ¢ Orb,(1). Then, £ = i,,_1 = 7" 2(i1), 41 ¢ Orb,(1) and

/ / / / /
Ey —phi — Diqr(iy) = T Piam-2y) T Ey

is a path of length m in the P’-path graph starting with F{ and ending with Ef.

If p’l’i1 is the unique interior basic path f’-covered by E{ then the above path
is the unique path of length m in the P’-path graph starting with E] and ending
with Ef having all basic paths different from E] and E} interior and

Ey — p1iy — Pr()r(i) — 0~ Dr(1)rm2(i) — B

is the unique path of length m in the M-induced graph joining F; and Ey and
having all basic paths different from F; and F5 interior. Thus the lemma holds in
this case.

Now assume that E| f’—covers p’Lb1 with by # i1 (1 ¢ {i1,b1}). Clearly,

By — Diy by = Dr(U)yr(in) — 0~ Dr(1),rm—1(ay) —— 2
is the unique path of length m in the M-induced graph joining F; and Fy and

having all basic paths different from F; and FEs interior. To prove the lemma in
this case we have to show that

/ / / / /
Ey —pi;, — Diriy) = T P omezgy) T Ey

is the unique path of length m in the P’-path graph starting with F{ and end-
ing with F} and having all basic paths different from FE{ and FE) interior. Ob-
serve that there is a unique path in the P’-path graph of length m — 1 starting
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with B — pi, 0 B — piy, — Py, — 0 — Piy, ., With byno1 €
Orb, (1) U Orb,(b1). If, additionally, p}, = f'-covers some exterior basic path
then this must belong to By U By, ,. Since £ ¢ Orb.(1) it follows that € # by,_1
when b,,—1 € Orb,(1). On the other hand, when b,,_1 ¢ Orb,(1), by # 41 im-
plies by,—1 = 7™ 2(by) # 7 2(i1) = £. Thus, in any case { ¢ {b,,_1,1}, and
By — phy, — Ply, — 0 — Phy,,, — 2 is not a path in the P’-path
graph because Ey € By. This ends the proof of the lemma in the case ¢ ¢ Orb,(1).

Assume now that ¢ € Orb,(1) and denote by p the 7—period of 1. We also
assume that p > 2 (i. e. 72(1) # 1). The proof in the case p = 2 works in a similar
way with minor changes.

To deal with this case we introduce the following notation. For every r > 2
and i € {1,2,3,...,p — 1} we denote by ! the number of paths of length r in
the P'-path graph of the form Ej — 7 — 75 — -+ — ™., — P
where 71,7, ..., 7., are interior basic paths. Analogously, for r > 2 and i €
{0,2,3,...,p — 1} we denote by a] the number of paths of length r of the M-
induced graph of the form Fy — 7y — m2 — -++ — 1 — Pr(1),ri(1) Where
1,2, ..., Tr_1 are interior basic paths. Also, given E' € £ we set

K(E") :={ie{2,...,k}: E' f' — covers p} ;}.

Clearly |<(E")| < 2.
We claim that, for every » > 2 and i € {2,3,...,p — 1}, 87 = ol and

p—1
By = |k(E})\ Orb-(1)| + af + > al.
=2

First we will end the proof of the lemma in the case £ = 77(1) with j €
{0,1,2,...,p— 1} by using the claim, and later we will prove the claim.

Denote by A/ the number of paths of length m of the P’-path graph of the form
By — 7w — 7wy — -+ — 7,1 — Eb where 7,75, ..., 7, are interior
basic paths and by hym the number of paths of of length m of the M-induced graph
of the form £y — 1 — 9 —> -+ —> W1 —> Fo, where 71,72, ..., Tpm_1 are
interior basic paths.

Assume j =0 (ie. £ =1). We claim that

p—1
R, =s+ ZBZ"_17 and
i=1

p—1
B = 2 (5 + Za;”‘l) +ar

=2
where s = [k(E7) \ Orb,(1)|. We start by proving that k!, = s+ Zf;ll Bt Since
By € By, every path counted in /""" (i.e. every path of length m — 1 of the form
Bl —m —7h— - —m, o, — p/1,ri(1) where 7,7, ..., 7, _, are interior
basic paths) gives a path that must be counted in h/,. Let t € k(E}) \ Orb,(1).
Then, as in the case £ ¢ Orb,(1),
Ey — pey — pryr) — 0 — Pr(1),rm-2) — B2

with ¢/ = 1 when s = 1 and ¢’ € x(E7) \ {¢t} when s = 2 is a path of length m in
the P’-path graph from E} to Ej. Since 77 2(t) ¢ Orb,(1) this path is different
from the paths counted in 3"~'. This proves that h, = s + Zf;ll Bt

Now we prove that h,, = 2 (s + Zf:_; 042"’71) + af'~t. We are looking at the

paths of length m — 1 in the M-induced graph of the form F; — m — w1 —
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“r == Mp_1 — Pr(1),; Where 1,72, ..., 71 are interior basic paths. From the
definitions it follows that there are of' ' of such paths with t = 1, a;”*l paths
with ¢ = 74(1) and i € {2,3,...,p — 1}, and s paths with ¢ ¢ Orb,(1). Since
FE5 € By, each of the a6”71 paths that have ¢ = 1 gives a unique path of length
m in the M-induced graph from FE; to F, having all basic paths different from
E; and Fs interior. For the rest of paths (which amount to s + Zf;; a;”_l) it
follows that 1 ¢ {7(1),¢}. To see it recall that 1 # 7(1) by assumption and 1 # ¢
when t ¢ Orb,(1). Observe also that, since p is the 7-period of 1 and p > 2,

1# 74(1) for i € {2,3,...,p — 1}. Hence, by the definition of the matrix M, each

of these paths gives two paths of length m in the M-induced graph from FE; to Fo
having all basic paths different from F; and Fs interior: Fy — m — mp — -+~

1 2
M1 = Pr) —— Poand By —m —— M2 — - =2 T —— D),

FE5. This shows the above formula for Em.N
By the two formulas above for i, and h,,, and the claim we get

p—1 p—1 p—1
B = s+ BT 4D BT =t <s+a6“ +Zaz“> +D_ o
=2

=2 =2
p—1
=2 (s + Z alml> + ol = By,
=2
When j = 1 (ie. £ = 7(1)), in a similar way as in the case j = 0 we get
W, = Bl and hy, = [K(E})\ Orb,(1)] + o™ + Y2270 =1 By the claim
hl, = hy,.

Finally, if j > 2, b, = 5;”‘1 and h,, = aT_l and the lemma follows again from
the claim.

Now we prove the claim by induction on r. We will prove the claim assuming
that ] f’-covers a unique interior basic path p} ; (so, [£(£])\ Orb.(1)] < 1). The
proof in the case when Ej f’-covers two interior basic paths follows in a similar
way with the help of paths described above.

When r = 2 and i; # 7P71(1) there are only two paths of length r in the P’-
path graph starting with F] and containing only interior basic paths except for
Ei: By — py,, — P ) and Ef — py; — P ;- In the M-induced graph
there is a unique path of length r starting with F; and containing only interior
basic paths except for Ei: By — p1i, — Pr(1),7(i1)-

If i; ¢ Orb, (1) then, from the definitions we get |x(E})\ Orb,(1)| =1, 5 =1,
a2 =0and a? = 82 fori =2,3,...,p — 1. So, the claim holds in this case.

If iy = 7°(1) with s # p — 1 then, |k(E])\Orb,(1)] =0, 7 =1, o = 0,
a§+1 :,6’§+1 =landa? =p2=0fori=2,3,...,p—1,i= s+ 1. So, the claim
also holds in this case.

Lastly, if 7 = 2 and i; = 7P~1(1) there is a unique path of length 2 in the
P’-path graph (respectively in the M-induced graph) starting with E] (respec-
tively Fp) and containing only interior basic paths except for the initial one:
Ef — p’l’Tp,l(l) — p’l’T(l) (respectively By — pyro-101) — Pra1),1)- In
this case we have |k(E})\ Orb,(1)] = 0, 8 = a3 = 1 and o? = 32 = 0 for
1=2,3,...,p— 1 and the claim also holds.

Now assume that the claim holds for » > 2 and prove it for r + 1.

To do this note that from the definitions we get ﬁ;“ =g, fori>2, ag‘H =

;"*1 = of_; for i > 3. Thus, by the induction hypothesis,

r

»—1 and «

«

Bgrtt =pr

i—

T _r+1
1= 0 = Oy
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for ¢ > 3.

On the other hand we have a3 ™! = [k(E}) \ Orb, (1)] + o + 77} aF. Indeed,
in view of the definition of M and M. , each path of length r of the M-induced
graph of the form F; — m — M — -+ — o1 — DPr(1),7i(1) With 7 €
{0,2,...,p— 1}, gives the following path of length r +1: By — 711 —> m2 —> -+~
— Tr_1 — Dr(1),7i(1) — Pr(1),r2(1)- Clearly all these paths contribute to asy
and there are o+ Zf:_; af of such paths. On the other hand, if x(E{)\ Orb,(1) =
{i1} then the path By — p1,;, — pT(l)J(“) — - — Pr(1),7-1(iy) gives the
pdth F — p1 i T Pr(1),7(i1) —_— Pr(1),77=1(iy) — Pr(1),72(1) of length

r+1

7+ 1 in the M-induced graph. Since this path also contributes to a;"" and is

different from the previous ones, we get the formula
"= [k(E}) \ Orb (1) +af + Y af.

So, by induction we have
r+1 _ or r+1
oy =01 = .

r+1

In a similar way to the computation of a5™" we get

p—1
= |k(By) \ Orb- (1) + > 8.

On the other hand, from above and the induction hypothesis, 3, ; = aj_; = 046"'1

and g = f“ fori =2,...,p— 1. Hence,

T = |k(E}) \ Orb, (1) H—of"'l—&—Za

This ends the proof of the lemma. O

7.3. Proof of Theorem 7.1. It follows from Lemmas 7.4 and 7.5 in the case
f(v) # v and from Lemmas 7.6, 7.9 and 7.10 in the case f(v) =
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