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Abstract

Recently, V. Cruz, J. Mateu and J. Orobitg have proved a T(1) theorem for the Beurling
transform in the complex plane. It asserts that given 0 < s < 1, 1 < p < 0 with sp > 2
and a Lipschitz domain Q2 < C, the Beurling transform Bf = 7p.v.# * f is bounded in the
Sobolev space W*P(Q) if and only if Bxa € W*P(Q).

In this paper we obtain a generalized version of the former result valid for any s € N and
for a larger family of Calderén-Zygmund operators in any ambient space R? as long as p > d.
In that case we need to check the boundedness not only over the characteristic function of the
domain, but over a finite collection of polynomials restricted to the domain. Finally we find a
sufficient condition in terms of Carleson measures for p < d. In the particular case s = 1, this
condition is in fact necessary, which yields a complete characterization.

1 Introduction

The aim of the present article is to find necessary and sufficient conditions on certain singular
integral operators to be bounded in the Sobolev space of a Lipschitz domain.
An operator T defined for f e L] (R%) and x € R¥\supp(f) as

loc

Tflx)=| K@-y)f(y)dy,
R(
is called a smooth convolution Calderon-Zygmund operator of order n if it is bounded in the Sobolev
space W™P(R9) (the space of LP functions with distributional derivatives up to order n in LP) for
every 1 < p < o and its kernel K satisfies

. C
for 0 < j < n (see Section 2 for more details). In the present article we deal with some properties
of the operator T truncated to a domain 2, defined as To(f) = xa T (xa f)-
In the complex plane, for instance, the Beurling transform, which is defined as the principal
value ) f(w)
. w
Bf(Z) = —; (31_141)1’(1) ‘wiz‘>€ mdm(w), (11)

is a smooth convolution Calderén-Zygmund operator of any order with kernel K(z) = —lez.

In the recent article [CMO13], Victor Cruz, Joan Mateu and Joan Orobitg, seeking for some
results on the Sobolev smoothness of quasiconformal mappings proved the next theorem.
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Theorem ([CMO13]). Let Q be a bounded C**¢ domain (i.e. a Lipschitz domain with parameter-
izations of the boundary in C1*¢) for a given e > 0, and let 1 <p < w0 and 0 < s < 1 such that
sp > 2. Then the truncated Beurling transform Bgq is bounded in the Sobolev space W*P () if and
only if B(xq) € W*P(Q).

This was proved in fact for a wider class of even Calderén-Zygmund operators in the plane.
Using a result in [MOV09], one can see that, if ¢ > s and  is a C**¢ domain then Byq € W*P(Q),
so we have that, assuming the conditions in the previous theorem for 2, s and p, one always has
the Beurling transform bounded in W*?(Q). Using this result, in [CMO13] the authors deduce
the next remarkable theorem that we state here as a corollary.

Corollary ([CMO13]). Let Q, s and p be as in the previous theorem with the restriction € > s.
Given a function p such that supp(u) < Q and |pl|l,, < 1, consider the Beltrami equation

06(2) = n(2)09(2),

and consider its principal solution ¢(z) = z+ C(h)(z), where C stands for the Cauchy transform.
If e W*P(Q), then h e WP(Q).

In this paper, we consider the extension of the theorem above to higher orders of smoothness
s and other ambient spaces RY. We have restricted ourselves to the study of the classical Sobolev
spaces, where the smoothness is a natural number, so we denote it by n. The first result of the
present article is the next theorem.

Theorem 1.1. Let Q c R? be a Lipschitz domain, T a smooth convolution Calderén-Zygmund
operator of order n € N and p > d. Then the following statements are equivalent:

a) The truncated operator Tq is bounded in WP (Q).
b) For every polynomial P of degree at most n — 1, we have that Tq(P) € W™P(Q).

The notation is explained in Section 2. Note that we do not assume the kernel to be even. This
result reminds us the results by Rodolfo H. Torres in [Tor91], where the characterization of some
generalized Calderén-Zygmund operators which are bounded in the homogeneous Triebel-Lizorkin
spaces in R? is given in terms of its behavior over polynomials. Let us also remark that in [Vah09]
Antti V. Vihédkangas obtained some T1 theorem for weakly singular integral operators on domains.
Roughly speaking, he showed the image of the characteristic function being in a certain BMO-type
space to be equivalent to the boundedness of Tt : LP(Q) — W™P(Q) where m is the degree of the
singularity of T’s kernel.

In 2009, Victor Cruz and Xavier Tolsa found a sufficient condition weaker than € > s for the
validity of the corollary. Namely, they proved in [CT12] that if Q < C is a Lipschitz domain and
its unitary outward normal vector NV is in the Besov space Bj,"?(0Q) (following the notation in
[Tri78]), then one has B(xq) € W*P(2). Furthermore, the parameterizations of the boundary are
in B;;l/pﬂ(&(l) c C1*¢(09) if sp > 2 (see [Tri78, Section 2.7.1]), so one can use the result in
[CMO13], leading to the boundedness of the Beurling transform. Xavier Tolsa proved in [Tol13]
that this geometric condition is necessary when the Lipschitz constants of 02 are small. The result
in [CT12] can be extended to n > 2 but it is out of reach of the present article. This will be the
subject of a forthcoming paper by us.

In Section 8 we define the shadows Sh(z) and §f1(x) for every point x in a Lipschitz domain
Q close enough to 02. Those shadows can be understood as Carleson boxes of the domain. We
say that a positive and finite Borel measure p is a p-Carleson measure if for every a € 2 and close
enough to the boundary,

@ Oush().  (12)

; (d—p)(1—p") P %
LM) dist(z, 09) (1(Sh(z) 0 Shia))” ot



N. Arcozzi, R. Rochberg and E. Sawyer proved in [ARS02] that in the case when € coincides with
the unit disk D < C, the measure p is p-Carleson if and only if the trace inequality

f P du < CIFO) + cf P dm
D D

holds for any holomorphic function f on D. It turns out that the notion of p-Carleson measure is
also essential for the characterization of the boundedness of Calderén-Zygmund operators of order
n in W™P(Q) when 1 < p < d as our next theorem shows.

Theorem 1.2. Let T be a smooth convolution Calderdn-Zygmund operator of order n, and consider
a Lipschitz domain Q and 1 < p < d. If the measure |V"TqP(z)|Pdz is a p-Carleson measure for
every polynomial P of degree at most n — 1, then Tq is a bounded operator on W™P ().

This condition is in fact necessary for n = 1:

Theorem 1.3. Let T be a smooth convolution Calderdn-Zygmund smooth operator of order 1, and
consider a Lipschitz domain Q and 1 < p < 0. The following statements are equivalent:

1. Tq is a bounded operator on WhHP(Q).
2. The measure |VTxq(x)|Pdz is a p-Carleson measure for Q.

Example 1.4. Those theorems can be used to prove the boundedness of Bp in W™P(D) for any
neN and p > 1 in one stroke. Indeed, given any multiindez X = (A1, \a), consider Py(z) = 2> =
M2 In [AIMO09, page 96] the authors find a function f € WYP(C) for p big such that of = xp
and then using that B(0f) = of they deduce who is Bxp. Using the same procedure, one can see

that
e if \y =0, then Bp(Py)(z) = Cxz~ 2 2xpe(2),
e if 0 <\ <X+ 1, then Bp(Py)(2) = Ci2AEDyp(2) + C32M 72272y (2),
o if A\ = Ao + 1, then Bp(Py)(z) = Chz* ("1 xp(2),
o if At > Aa + 1, then Bp(Py)(z) = (C22M (1D 4 C32M172272) yp(2),

with constants depending only on A. Summing up, for any polynomial P of degree n — 1, its
transform BpP agrees with a polynomial of degree smaller or equal than n—1 in D so V" BpPy(z) =
0 for z € D. Thus, the sufficient conditions of Theorems 1.1 and 1.2 are satisfied.

Example 1.5. For a negative example, consider a square Q in the complex plane with a corner at
w. In that case, one can see that B(xq)(z) is expressed as a sum of logarithms [AIMO09, (4.122)].
Since |0B(xq)(2)| ~ |z — w|™! when z is close enough to w, it follows that B(xq) ¢ W P(Q)
for p = 2 and, thus, Bg is not bounded in WP(Q) for p = 2. By the same token, for n > 2
one has |0"B(xq)(#)| ~ |z — w|™™ and therefore Bg is not bounded in W™P(Q) for any p > 1.
However, since B(xq) is analytic, one can see with some effort that when n =1 and p < 2, then
w(z) = [VBxq(2)? is a p-Carleson measure. Using Theorem 1.2, this leads to the boundedness of
Bg in WhP(Q) for 1 <p < 2.

The question arises whether is there any Lipschitz domain Q such that Bg is not bounded in
WLP(Q) for p < 2. We refer the reader to [Tol13] to find the tools to answer this question in the
affirmative.



The plan of the paper is the following. In Section 2 we begin by stating some remarks and
definitions and then we cite some results that we will use. In Section 3 we define an oriented
Whitney covering and we discuss about its properties. To end with the preliminaries, we present
some approximating polynomials for a given function f € W™P(Q) in Section 4. These polynomials
will be the cornerstone of the proof of Theorems 1.1 and 1.2. Before we prove these theorems, we
devote the rather technical Section 5 to show the existence of weak derivatives of T, f in 2 as long
as f € W™P(Q). The expert reader may skip it. In Section 6 we prove a Key Lemma which is
the first step toward the proofs of Theorems 1.1, 1.2 and 1.3. Afterwards we prove Theorem 1.1
in Section 7, Theorem 1.2 in Section 8 and Theorem 1.3 in Section 9. Finally, in Section 10 we
sketch an alternative argument for Theorem 1.3 in the planar case using complex analysis.

2 Notation and well-known facts

Along this paper m stands for the Lebesgue measure and H* for the k-th dimensional Hausdorff
measure. We write dz for dm(x) when integrating on subsets of R? with respect to the Lebesgue
measure if there is no risk of confusion.

We call P" the vector space of polynomials of degree smaller or equal than n (in R?).

The polynomials and derivatives will be written with the multiindex notation. For every multi-
index o € N (where we assume the natural numbers to include the 0), & = (v, - -+ , o), we define
its modulus as |a] = Z;l:l a; and its factorial ! := ]_[;-l:l a;!, leading to the usual definitions
of combinatorial numbers. For two multiindices o, 3 € N® we write o < 8 whenever a; < 3; for
1<i<d, and we write o < B if @ < f and a # (. For z € R? let 2 := ]_[;l:la:?j and for ¢ € CP

(infinitely many times differentiable with compact support), let D%¢ := 51?1‘3‘7(11% .

(71‘d

In general, for any open set U, and every distribution f € D'(U), the « distributional derivative

of f is defined by
(Df, ¢y := (—1)I{f,D*¢) for every ¢ € CL(U).

If the distribution is regular, that is D®f € L}, ., we say it is a weak derivative in U. We write
IV f = 2jaj=n IDf-

We say that f € LP(U) is in the Sobolev space W™P(U) if it has weak derivatives up to order
n and D*f € LP(U) for |a| < n. We say that f € W;"P(U) if those derivatives are in the space
L? (U) instead. We will use the norm

HfHanP(U) = Z “Daf‘|LP(U)'
laj<n

For Lipschitz domains, it is enough to consider the higher order derivatives and the function itself,

L lwee@ry = 1oy + 1V fle @
(see [Tri78, 4.2.4]).

Definition 2.1. We say that a measurable function K € VVIZ’C1 (R4\{0}) is a smooth convolution
Calderén-Zygmund kernel of order n if

Ck

|‘r‘d+j

IV K (z)] < forx#0 and 0 < j < n,

for a positive constant Cx and that kernel can be extended to a tempered distribution Wi in R?
in the sense that for every Schwartz function ¢ € S with 0 ¢ supp(¢), one has

Wi, ¢y = (K = $)(0).



We will use the classical notation f for the Fourier transform of a given Schwartz function,
for = | e mesaa,
Rd

and f will denote its inverse. It is well known that the Fourier transform can be extended to the
whole space of tempered distributions by duality and it induces an isometry in L? (see for example
[Gra08, Chapter 2]).

Definition 2.2. We say that an operator T : S — S’ is a smooth convolution Calderén-Zygmund
operator of order n with kernel K if K is a smooth convolution Calderdn-Zygmund kernel of order
n such that Wy € L}, T is defined as

loc’
To = Wi i= (Wi -4)”
for every ¢ € S, and T extends to an operator bounded in LP for every 1 < p < co.

One can see using the results in [Ste70, Chapter IV] and [Gra08, Chapter 4], for instance, that

this boundedness property is equivalent to having VI//; e L™.
It is a well-known fact that the Schwartz class is dense in LP for p < oo. Thus, if f € LP and

x ¢ supp(f), then
7f) = | K~ )i )i

Example 2.3. In the complex plane, the Beurling transform (1.1) is a smooth convolution Calde-
ron-Zygmund operator of any order associated to the kernel K(z) = —lez and its multiplier is

@(S) = % Thus, the Beurling transform is an isometry in L?.

For any cube @ we write £(Q) for its side-length. Given 7 € R we write r@ for the cube
concentric with @ and side length r4(Q).

Definition 2.4. Let Q < R? be a domain (open and connected). We say that a cube Q with side-
length R > 0 and center x € 0) is an R-window of the domain if it induces a local parameterization
of the boundary, i.e. there exists a continuous function Ag : R%™1 — R such that, after a suitable
rotation that puts all the faces of Q parallel to the coordinate axes,

Q20 ={(y,ya) € R xR) n 20 : 44 > Ag(y')}

(we use the double cube 2Q in order to ensure that the central point of the upper face of Q is far
from the boundary of Q).

We say that a bounded domain  is a (d, R)-Lipschitz domain if for each x € 0S) there exists
an R-window Q centered in x with Ag Lipschitz with a uniform bound |V Agl|,, <.

We say that an unbounded domain € is a special §-Lipschitz domain if there exists a Lipschitz
function A such that |[VA|, <0 and

Q={(¥,ya) € R xR: ya > A}

With no risk of confusion, we will forget often about the parameters § and R and we will talk
in general of Lipschitz domains and windows without further explanations.

In Section 9 we will solve a Neumann problem by means of the Newton potential: given an
integrable function with compact support g € L§(R?), its Newton potential is

x —y[>d . log |z — .
Ng(z) = ﬁg(wdy ifd>2, Ng(x):f%g(y)dy if d=2, (2.1)



where wy stands for the surface measure of the unit sphere in R?. Recall that the gradient of Ng
is the (d — 1)-dimensional Riesz transform of g,

VNg(o) = R Vg(o) - |

S (2) dz.

wa|r — z|dg

It is well known that ANg(x) = g(z) for € R? (see [Fol95, Theorem 2.21] for instance).
We recall now two results that we will use every now and then. The first is the Leibnitz’
Formula, which states that for f € W™P(Q) and |a| < n, if ¢ € CP(Q), then f- ¢ € W™P(Q) and

D(f-¢) = () DPo DAy (2.2)
S (5)

(see, for example, [Eva98, 5.2.3]).
The second is the Sobolev Embedding Theorem for Lipschitz domains (see [AF03, Theorem
4.12, Part I1]), which says in particular that for each Lipschitz domain 2 and every p > d, we have

the continuous embedding of the Sobolev space W1?(Q2) into the Holder space col-y (€2). Recall

e £ = 1)
z) — f(y
loos = Iflgeq + sup LD=IOL
z,yeQ |'T - y‘
TH#Y

3 Oriented Whitney covering

Along this section we consider €2 to be a fixed (8, R)-Lipschitz domain. We also consider a given
dyadic grid of semi-open cubes in R%.

Definition 3.1. We say that a collection of cubes W is a Whitney covering of Q if

W1. The cubes in W are dyadic.

W2. The cubes have pairwise disjoint interiors.

WS3. The union of the cubes in W is Q.

W4. There exists a constant Cyy such that Cywl(Q) < dist(Q, 0Q) < 4CwL(Q).

W5. Two neighbor cubes Q and R (i.e. Q n R # &, Q # R) satisfy £(Q) < 2¢(R).

W6. The family {10Q}qgew has finite superposition, that is }5eyy X10Q < C.

We do not prove here the existence of such a covering because this kind of covering is well
known and widely used in the literature.

Recall that we say that Q is an R-window of € if it is a cube centered in 02, with side-length
R inducing a Lipschitz parameterization of the boundary (see Definition 2.4). We can choose a
number N ~ H41(0Q)/R?~1 and a collection of windows {Qy}2_; such that

N
Qe |61k, (3.1)
k=1

where §; < i is a value to fix later (in Remark 3.4).
FEach window Qj, is associated to a parameterization Ay in the sense that, after a rotation,

Q20 ={(y',ya) € (R x R) N 2Qk : ya > An(y')}-

Thus, each Oy induces a vertical direction, given by the eventually rotated yq axis. The following
is an easy consequence of the previous statements and the fact that the domain is Lipschitz:



W7. The number of Whitney cubes in Q) with the same side-length intersecting a given vertical
line is bounded by a constant depending only on the Lipschitz character of €2, where the
“vertical” direction is the one induced by the window.

This is the last property of the Whitney cubes we want to point out. Next we define paths
connecting Whitney cubes. First, we use that the notion of vertical direction allows us to say that
one cube is above another one even if the faces of the Whitney cubes are not parallel to the faces
of Qk

Definition 3.2. We say that a cube S is above Q with respect to Qy if Q,S < Qy, there is a
line parallel to the vertical direction induced by Qy, intersecting the interior of both cubes and there
erists a point x € S such that for every y € Q, xq > yq in local coordinates.

We distinguish the cubes in the central region from those which are close to the boundary of
the domain.

Definition 3.3. We say that Q is central if sup,cq dist(x, 0Q2) > 62 R, where 52 < % is a constant
to fix in Remark 3.4. We denote this subcollection of cubes by Wy.
We say that Q is peripheral if it is not central.

Remark 3.4. Consider 6y < % to be fired. We call 69Qr n Q) the canvas of the window Q, and

we divide the peripheral cubes in collections Wy, = {Q € W\Wp : Q < §Q n Q}. For Whitney
constants big enough and for dg, 91 and do small enough we have that

1) The union of central cubes is a connected set.

2) Every peripheral cube is contained in a window canvas. The subcollections Wy, are not disjoint
and, if two peripheral cubes Q and S are not contained in any common Wy, then dist(Q, S) ~ R.

3) For each peripheral cube @ € Wy, there exists a cube S < Qy above Q which is central.
Furthermore,
4) All the central cubes have comparable side-length.

Next we provide a tree-like structure to the family of cubes.

Definition 3.5. We say that C = (Q1,Q2, - ,Qn) s a chain connecting Q1 and Qu if Q; and
Qi+1 are neighbors for every i < M. We will call the next cube to No(Qi) = Qis1. In general,
we consider the iteration N%(Q;) = Qi+; whenever i +j < M.

We want to have a somewhat rigid structure to gain some control on the chains we use, so we
need to introduce a chain function [-,-] : W x W — | J,, WM. We state three rules. The first one
is on the definition of chain function.

First rule:
1.1: For any cubes Q,S € W, [Q, S] is a chain connecting @) and S.

Abusing notation we will also write [@,S] for the non-ordered collection {Q;}, so that we
can say that Q; € [@Q, S].

Given two cubes @, S, we will use the open-close interval notation (Q,S) = [@, S]\{Q, S},
[@Q,9) = [Q, S\{S}, (@, 5] := [@, SI\{Q}-



Now we can state the second rule, concerning the central cubes. For that purpose, assume that
we have fixed a central cube Qg.

Second rule:

2.1 For every central cube Q € Wy, [Q, Qo] is a chain of central cubes connecting these two cubes
with minimal number of steps.

2.2 For any central cubes Q,S € Wy with S € [Q, Qo], we have [S, Qo] < [Q,Qo]. Thus, we can
define (@, S] = [Q, Qo]\(S; Qo] (see Figure 3.1).

Figure 3.1: Second rule, 2.2.
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2.3 Given two different central cubes @) and S, let Qs be the first cube in [Q, Qo] with a neighbor
in [S, Qo] and let Sg be the first neighbor of Qg in [S, Qo). Then, [Q, S] = [Q,Qs] v [Sg, S]
(see Figure 3.2).

Figure 3.2: Second rule, 2.3.
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Note that Sg may be different from S'Q. Abusing notation we will always write Sg. This
completes the central structure. For every Whitney cube @ < §oQy, we define [Q, Qo]x as a chain
connecting @) and @ and such that each cube S € [@, Qo]x is either central or above @ with
respect to Qg, and in case S is central, then [Q, Qolr = [@, S]k U [S; Qo], where [Q, S]i is the
subchain of [Q, Qo]x limited by @ and S (see Figure 3.3). The chain [Q, Qo] exists in virtue of
Remark 3.4.
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Figure 3.3: [Q, Qo]x for Q < §p Q.

Now we can add the rule for peripheral cubes.
Third rule:

3.1: Given two different peripheral cubes which are both contained in, at least, one common
window canvas @, S € Wy, fix k and use [,]s: Define Qs € [Q,Qoli, Sg € [S,Qolx and
[Q,S5] =[Q,Qs]k v [Sq, Sk as in rule 2.3.

3.2: For every peripheral cube S, fix any k such that S € Wy, and define [S, Qo] := [S, Qo]x-
3.3: Given two different cubes @) and S in any situation different from 3.1, use rule 2.3.

Definition 3.6. Given a Lipschitz domain 2, we say that {W,{Qx}_,,Qo, [*,]} is an oriented
Whitney covering of Q if W is a Whitney covering of Q (see Definition 3.1), Qi are windows
satisfying (3.1), the cube Qo € W is a central cube of Q with respect to those windows and [-,-] is
a chain function satisfying the three rules explained before. All the constants are fized in Remark
3.4.

We say that the covering is properly oriented with respect to a window Qy if the cubes in the
Whitney covering have sides parallel to the faces of Q.

Definition 3.7. If Q,S € [P,Qo] for some P and ./\/'[jP Qo] (Q) = S for some j = 0, then we say
that Q < S. We will say that Q < S if Q < .S and Q # S.

Remark 3.8. If the covering is properly oriented with respect to Qi and Q,S € Wy, then Q < S
if and only if S € [@,Qo]. Otherwise, @ < S does not imply that S € [Q, Qo], but if Q and S are

peripheral it implies that their vertical projections in some window have non-empty intersection.

Definition 3.9. Given two cubes Q and S of an oriented Whitney covering, we define the long
distance

D(Q,S) = £(Q) + £(S) + dist(Q, S).

Remark 3.10. Using the properties of the Whitney covering, Remark 3.4 and the chain function
rules 2.8, 3.1 and 3.3, one can prove that, for P € [Q,Qs],

D(P,S) ~ D(Q,S)



and

D(P,Q) ~ ¢(P).

Now we consider the Hardy-Littlewood mazimal operator,

Mg(x) = zgg]ég(y)dy-

It is a well known fact that this operator is bounded in L? for 1 < p < co.

Lemma 3.11. Assume that g € Llloc and r > 0. For every Q € W, we have

1) Ifn>0,

Z §s9(x)dx - inf,eq Mg(y)

— 5 )

S:D(Q,S)>r D(Q7 S) o ™
2) Ifn >0,
Sqg(a)de
Jg I B n
2 D(Q, 5y = {nf Ma(y)r.

S$:D(Q,9)<r

3) In particular,
% [ ote)ds < ing gl @)
5:5<Q VS veQ

Proof. The sum in 1) can just bounded by

g(x) dzx
i

for every y € @, and this can be bounded separating the integral region in dyadic annuli. The sum
in (2) can be bounded by an analogous reasoning. Using the property W7 of Definition 3.1 we can

see that 3) is a particular case of 2) for n = d.

Note that we used the Lipschitz character of © only to prove 3). In Section 9 we will make use
of the following technical results, specific for Lipschitz domains, which sharpen the results of the

previous lemma for g constant.

Lemma 3.12. Let a > d—1 and Q a Whitney cube. Then

DUS)" ~ Q)"

S<Q

with constants depending only on a and d.

Proof. First assume that @ is not central. Selecting the cubes by their side-length, we can write

DAUST =3 Y Q)T =UQ) Y 2HS <QU(S) = 277H(Q)}-

S<Q Jj=1 S<Q
£(8)=2772(Q)

Using W7 and Remark 3.8 we get that

#{S < Q: (S) =2774(Q)} < C20 Vi

10



and thus

Z 0S)" < Q)" Z 9—jla—(d-1))
j=1

S<Q

This is bounded if a > d — 1.
By the same token, given an R-window Qj,

D, U8
ScQy

Thus, the lemma is also valid for @ central by the last statement of Remark 3.4. O

Lemma 3.13. Letb>a>d—1 and Q a Whitney cube. Then

b
Sew D@, 5)
with C' depending only on a, b and d.

Proof. Let us assume that @Q € Wy. First of all we consider the cubes contained in Qj and we
classify those cubes by their side-length and their distance to Q:

(sy _ & ¥ (2'0(Q)"

2 D5y S OGN

D57 <2, 2 S;Z(SEMQ) @UQ)
2jf(Q)<D(S Q)<2(Q)

) Z 22:#{5 ((S) = 2(Q), D(S,Q) < 27T(Q)}.

i=—00 j=0

Note that the value of j in the last sum must be greater or equal than i because, otherwise, the
last cardinal would be zero.
Using again W7, we can see that

j d—1
#{S e W, : £(S) = 214(Q), D(5,Q) < 2 Q) < C (W) = 0oU—)d=1),

Thus,

Z E(S)a < Z(Q)afbi Z]: 2i(a+17d)7j(b+17d) <C bdg(Q)aib
5cQu D(@,5)’ j=0i=—c0 -

assoonas b>a>d—1.
On the other hand, when S ¢ Qf the long distance D(Q, S) is always bounded from below by

a constant times R (because @ < d9Qy), so separating W in subcollections W), and using Lemma
3.12,

/(S)e dlamQ VA S
Y sogps X ey % 4

SEQk SeWy Jj#k S€W7

SUQ)" (3.2)

To prove the lemma for a central cube Q € W), just apply an argument analogous to (3.2). O
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4 Approximating Polynomials

Recall that the Poincaré inequality tells us that, given a cube @ and a function f € WP(Q) with
0 mean in the cube,

£ 1o (q) S UV fl Lo ()

with universal constants once we fix d and 1 < p < w0 (see, for example, [Zie89, Theorem 4.4.2]).
If we want to iterate that inequality, we also need the gradient of f to have 0 mean on ). That
leads us to define the next approximating polynomials.

Definition 4.1. Let Q be a domain and a cube Q < Q. Given f € L(Q) with weak derivatives up
to order n, we define P¢y(f) € P as the unique polynomial (restricted to ) of degree smaller or
equal than n such that

][ DPPY f dm :][ DPfdm (4.1)
Q Q
for every multiindez 3 € N with |8] < n

Note that these polynomials can be understood as a particular case of the projection L :
WhP(Q) — P™ introduced by Norman G. Meyers in [Mey78].

Lemma 4.2. Given a cube Q and f € W"11(3Q), the polynomial Pgélf e P*~1 erists and is
unique. Furthermore, this polynomial has the next properties:

P1. Let xg be the center of Q. If we consider the Taylor expansion of Pgélf at zq,
Pio f(y) = Y, masly—aq), (4.2)
~eN®
[v[<n

then the coefficients mq , are bounded by

n—1

maal < en D [V f] e a0y QYN

i=hl
P2. Furthermore, if f € W™P(3Q), for 1 < p < o0 we have

1f = P35 flirs) < CUQ) V™ FlLLogagy-

P3. Given an oriented Whitney covering W with chain function [-,-] associated to ), and given
two Whitney cubes Q,S € W and f € W™P(Q),

U(S)ID(P, S)»!
< ¥ (S)“D(P, S)

|7 —Pigl] it IV sy

L) pd5lg)

Proof. Note that (4.1) is a triangular system of equations on the coefficients of the polynomial.
Indeed, for v fixed, if the polynomial exists and has Taylor expansion (4.2), then

D’YP;L 1 Z mQﬁ 5 '7) ( _xQ)B_’Y'
B=y

12



When we take means on the cube 3Q),

fmfdm ][DVP Lf dm

B! 3 [B—~| by
Z Y] ( Z(Q)) ]ig(o,ny W

B=y
= > Cpamqopl(@) 7,

B=y

which is a triangular system of equations on the coeflicients mq g.
Solving for mgq -, since C,, , # 0 we obtain the explicit expression

mQ,y

f Drdm= Y Casmo @) (43)

¥y J3Q Bory

For |y| = n — 1 this gives the value of mg ., in terms of D7 f,

1
mqQ,y = ][ D’Yf dm.
s

Using induction on n — |y| we get the existence and uniqueness of P, 1 f. Taking absolute values
we obtain P1.
The equality (4.1) allows us to iterate the Poincaré inequality

If = Piq" flrse) < CUQIV(S = Pig Hliree) < - < CMUQ)" IV flb0):
that is, P2.
To prove P3, we consider the chain function in Definition 3.6 to write
n—1 n— 1
=253 <1 P35 g + o LTS e Y] R ()

where we write N'(P) instead of Mg q)(P) from Definition 3.5. For every polynomial ¢ € P"~1,
from the equivalence of norms of polynomials of bounded degree P"~! it follows that

HqHLl(Q) ~ Z(Q)dHQHLw(Q)y

and for r > 1, also
HqHLOO(’I'Q) S rn_IH‘]HLac(Q):

with constants depending only on d and n. Applying these estimates to ¢ = P35'f — Piv (P)f
with 7 ~ D,F(’j;)s), it follows that
n—1 n—1 P 1 n—1 d
HPL‘P F =P/ LY(S) H /- P3N(P)fHL”(S
B LSYD(P, )"t
s P" 1 H P S A Sl M
H 3 = Pivin/ L=@3P3N(P)  L(P)"!

(S)D(P, S)n !

Py 'f—P
H sp = P S L (3PA3N(P)) L(P)"—14(P)d

13



Using this estimate in (4.4) and P2 we get

L(S)ID(P,S)" !

—prst
Hf 3Q L1<3N<P>)> ((pydin=t

= 3 (1P5 = Sl + |~ Pt
Pe[S.Q)
_ 0S) D(P, S
S Hf - Py lfH 1 n—
PG%Q] 57 TUAGR) ((p)din=t

n ((S)*D(P,S)"!
< DIV ny@p)W
Pe[S,Q]

5 Some remarks on the derivatives of Ty f

From now on, we assume T' to be a smooth convolution Calderén-Zygmund operator of order n.
Recall that for f € LP and = ¢ supp(f),

Tf(@) = [ Ko - ) f) dy,
where the kernel K has derivatives bounded by

VK (x)] < ELE for 0 < j <n. (5.1)

Given a function f € W™P(Q), we want to see that its transform Tof = xoT(xq f) is in some
Sobolev space, so we need to check that its weak derivatives exist up to order n. Indeed that is
the case.

Lemma 5.1. Given f € W™P(Q), the weak derivatives of Taf in Q exist up to order n.
Before proving this, we consider the functions defined in all R?.

Remark 5.2. Since T is a bounded linear operator in L*(R?) that commutes with translations,
for Schwartz functions the derivative commutes with T (see [Gra08, Lemma 2.5.3]). Using that S
is dense in W™P (see [Tri78, Sections 2.3.3 and 2.5.6], for instance), we conclude that for every
fewmr(RY)

DT (f) = TD*(f) (5:2)

and, thus, the operator T is bounded in W™P(R?).

Definition 5.3. Let K € WlZf(Rd\{O}) be the kernel of T and consider a function f € LP, a
multiinder o € N? with |a| < n and ¢ supp(f). We define

T f(z) = fD“K(m ) f(y) dy.

Lemma 5.4. Let f € LP. Then Tf has weak derivatives up to order n in R:\suppf. Moreover,
for every multiindex o € N® with |a| < n and x ¢ suppf

DOTf(z) = T f(x).

14



Proof. Take a compactly supported smooth function ¢ € C(R*\suppf). We can use Fubini’s
Theorem and get

@O o= [ [ DR ) dyot)do
supp¢ Jsupp f
[ | Dl - weta) o fw) .
suppf Jsuppg
Using the definition of distributional derivative and Tonelli’s Theorem again,
@Of0) = D [ | K- D) do fy) dy
suppf Jsuppg
—E0 [ KGe—)(0) dy D) de = (<)L D),
supp¢ Jsupp f

O

Proof of Lemma 5.1. Take a classical Whitney covering of 2, W, and for every @ € W, define a
bump function ¢g € CP such that x20 < ¢g < x3@. On the other hand, let {¢)g}gen be a
partition of the unity associated to {3Q : @ € W}. Consider a multiindex a with || = n. Then

take le =g - f, and f2Q =(f - le)XQ. One can define

9) = Y voW) (TD 1Ry + T 2(y)) .

QeWwW

This function is defined almost everywhere in 2 and is the weak derivative DTq f.
Indeed, given a test function ¢ € CP (), then, since ¢ is compactly supported in 2, its support
intersects a finite number of Whitney double cubes and, thus, the following additions are finite:

9:6) = Y Yo - TDf? + g - T [, )

QeWw
= Y ATDf2 )+ D) (T f2 60, (5.3)
Qew QeW

where ¢g = g - ¢. In the local part we can use (5.2), so
(TDf,6q) = (1)K [, D*(6)).

When it comes to the non-local part, bearing in mind that f2Q has support away form 2@ and
¢g € CP(2Q), we can use the Lemma 5.4 and we get

(T f2 00> = (—1)NT [, D*q).

Back to (5.3) we have

(9,0) = >, (=) UT 2, Do) + Y, (~)*KT 7, D) = Y (=1)*KTaf, D*éq)

QeW QeEW Qew
= (-1 Tof, D¢,

that is g = DT f in the weak sense. O
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6 The Key Lemma

To prove Theorem 1.1 we need the following lemma which says that it is equivalent to bound the
transform of a function and its approximation by polynomials.

Key Lemma 6.1. Let Q be a Lipschitz domain, W an oriented Whitney covering associated to
it (see Definition 3.6), T a smooth convolution Calderdn-Zygmund operator of order n € N and
1 < p < oo. Then the following statements are equivalent:

i) For every f € W™P(Q) one has

HTQfHWn,p(Q) < CHfHan(Q)7
where C depends only on n, p, T and the Lipschitz character of 2.

ii) For every f € W™P(Q) one has
Y [vrre®ign)l <Ol
S L7(@)

where C' depends only on n, p, T and the Lipschitz character of €.
Proof. Given a multiindex a with |a| = n, we will bound the difference

3 [Tt =Pt n| 19y (6.1)
~ ()

S Lr(Q)

For each cube @ € W we define a bump function ¢g € CZ such that x 3Q S PQ < X20 and

EV15¢Q‘|w ~ £(Q)~7 for every j € N. Then we can break (6.1) into local and non-local parts as
ollows:

HD To(f — Py, f)
QeWwW

< Y oot (ealr —Pig'n)|)
Qew

+ 3 [T (e - wa)(s =P )|

Sy (@)

=O+@). (6.2)

First of all we will show that the local term in (6.2) satisfies
©=3 DT (a(f =Pig D) < IV 1I; (6.3)
= P YQ 3Q (@) "~ Lr(Q)" .
To do so, notice that pg(f — P35, 1f) WnP(R?) and, by (5.2) and the boundedness of T in L?,
—_ p « TL
DT (alf = Pig' D[, o) < 71| D" (#alf =~ Pi" 1))

= c|p* (vt ~Pig D[], 0

@) "~ Lr(Q)

p

LP(R9)

where H'H(p,p) stands for the operator norm in LP(R9). Using first the Leibnitz formula (2.2), and
then using j times the Poincaré inequality as in P2 from Lemma 4.2, we get

o7 (ot =B D[], ) < 2 19700l [V~ PR ]

j=1 LP(2Q)
<2 o @V =P D =V Sy
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Summing over all @ we get (6.3).
For the non-local part in (6.2),

@= 3 |07 ((xa - 0a)(s ~ Pia"0)|

S (@)

we will argue by duality. We can write

@) = suwp j D°T [(xa = 2Q)(f = Pig' )] ()] 9(a) de, (6.4)

l9llpr <t Qew

Note that given x € @), by Lemma 5.4 one has
DT(xe — ¢q)(f = Pig" N(@) = J DK (z—y) (1 - va(y) (Fv) — Pig S (1)) dy.

Taking absolute values and using Definition 2.1, we can bound

_ pn—l
ID*T[(xa = v@)(f = Pig" NI(@)] < COx fn\m lf(y)x — ygigm w) dy

—Pn71 ‘
Hf so 1 L1(S)

< n+d
&, D@Q.S)

(6.5)

By property P3 in Lemma 4.2 we have

2S8)¢D(P, S 1
Y (5)“D(P, S)

Hf - f WHVTLJCHLI(:W)’

b S Pe[5.Q]

so plugging this expression and (6.5) into (6.4), we get

@'s s ¥y ¥

lgll,» <1 Qew SeW Pe[5,Q]

dD(P S UV fllraapy
d ID(Q’S)ner

Finally, we use that P € [S, Q] implies D(P, S) < D(Q, S) (see Remark 3.10) to get

1 ‘ SNV fllza
@ < sup Z Z Jg(x)dxg(]g)qu(Q,S)dH

9l <1 @.5ew Pe[s,5q] ¥ Q

+ sup
lgll,r <1 Q,5ew Pe[Qs,Q]

~(21)+(22)

We consider first the term @ where P € [S, Sg| and, thus, by Remark 3.10 the long distance
D(Q,S) ~ D(P, Q). Rearranging the sum,

anfHLl(?)P) SQ g(x
DERUIPWE DQlez

Il <1 peyy S<P

ST e
Lg 0 T DQ. 5y
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By Lemma 3.11,

and

D Sou(x)dx _ infuezp Mg(x)

&, D@ Py~ (P)

Next we perform a similar argument with @ Note that when P € [@, Qs], we have D(Q, S) ~
D(P,S), leading to

@D g, 3 e 5 [ oy

lgll,r <1 peyy

By Lemma 3.11,
> f z)dr < inf Mg(a ) £(P),
Q<P

and

2 (st 1
= D(P, S)d+1 — ¢(P)
Thus,

”vanLl(:)’P) infsp Mg d n
@D)+(22)s sw Py P S sup SV Mol

lgll, <1 PeW Il <1 peyy

and, by Holder inequality and the boundedness of the Hardy-Littlewood maximal operator in Lp/7

N 1/p 1/p’
@p S ( Z |erfZL],P(3P)) ( Sup Z H gHLp’ (3p)> g anfHLp(Q).
Pew lgll, <1"p

7 Proof of Theorem 1.1

Proof. The implication a) = b) is trivial.
To see the converse, fix a point zg € Q. We have a finite number of monomials Py (z) = (z—2x)*
for multiindices A € N% and |A| < n, so the hypothesis can be written as

1T (Pr)lwne @) < C. (7.1)

Assume f e W™P(Q). By the Key Lemma, we have to prove that

QZW anTSZ(Pgél )Hip(@) < HfHI[jVn,P(Q)'
€

We can write the polynomials

Piotf(@) = ) moa(e — )7,

[vl<n
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where z¢ stands for the center of each cube (). Taking the Taylor expansion in zy for each
monomial, one has

P ) = % mas 3 ()6 a0 - gy

[yvl<n 0<A<y
Thus,
n n— 'Y — n
V'Ta(Pio' f)(y) = ) mos ) <A> (20— 20) VM (TaPy)w)- (7.2)
[v[<n 0<A<y

Recall the property P1 in Lemma 4.2, which states that

n—1 n—1
Mol <C X0 IV o) 0@V T 30 [V £ o oy diame2T 1 (7.3)

= J=[vl

Raising (7.2) to the power p, integrating in @ and using (7.3) we get

v ra@sgth)|

Z ijf|‘1£00(g) Z diamQ(jilM)puvn(TﬂpA)HZP(Q)’

Lp £
@ 5 [Al<j

By the Sobolev Embedding Theorem, we know that HVJ'fHLw(Q) < C’HijHWLP(m as long as
p > d. If we add with respect to @ € W and we use (7.1) we get

QewW

LP(Q ]Z H Jf”wl p(Q Z an TQPA)HLP(Q) § HfHI{:V"wp(Q)a

[Al<j

with constants depending on the diameter of €2, p, d and n. O

8 Carleson measures

Theorem 1.1 provides us with a nice tool to check if an operator is bounded in W™P(Q) as long as
p > d. Our concern for this section is to find a sufficient condition valid even if p < d. We want
this condition to be related to some test functions (the polynomials of degree smaller than n seem
the right choice) but somewhat more specific than the condition in the Key Lemma. In particular
we seek for some Carleson condition in the spirit of the celebrated article [ARS02] by N. Arcozzi,
R. Rochberg and E. Sawyer. In the next section we will check that, when we consider only the
first derivative, that is for WHP(Q), the sufficient condition below is in fact necessary.

To use their techniques we need to have some tree structure coherent with the shadows of
the cubes. We will use a local version of the Key Lemma in order to get rid of some technical
difficulties:

Lemma 8.1. Let Q < R? be a Lipschitz domain, T a smooth convolution Calderén-Zygmund
operator of order n € N and 1 < p < co. Then the following statements are equivalent.

i) For every f € W™P(Q) one has

HTQfHme(Q) < CHfHWn,p(Q)- (8-1)
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ii) For every window Q and every f € W™P(Q) with f|5,0)c =0 one has

n—1 p p
2, HVHTQ(P?’Q f)HLP(Q) < Ol
QEWg

where the Whitney covering Wq is properly oriented with respect to Q, that is, with the dyadic
grid parallel to the local coordinates (see Definition 3.6).

Sketch of the proof. To see that ) implies i) just use the Key Lemma with an appropriate dyadic
grid.

To see the converse, one can choose a finite a collection of windows {Qy}Y , with N ~
HI=1(892) /R such that i—ng is a covering of the boundary of Q, call Qg to the inner region
AU %Qk, and let {1y} = C* be a partition of the unity related to the covering {Qo} U {50 Qx }1V_;.
Consider a function f € W™P(§). Notice that our hypothesis does not give information about the
inner region, but since vy is compactly supported in Q, 1y f € W™P(R?) and by Remark 5.2 also
T(yof) € WP(R), so

1o o) ey = ITW0 gy < 1T gty < Clof Iy -

Now, following the proof for the Key Lemma but replacing f by ¢y f and using an appropriate
Whitney covering for every single window, one gets

ITa(n )iy < ClkFlwrncay-
Thus,

N N
ITaflwnr@ < D) 1Ta@rkH)lwno@) < C D) [k flwnn):
k=0 k=0

Choosing 1, as bump functions with the usual estimates on the derivatives HVj Vi R, one

can get (8.1) using the Leibnitz formula.

o <

Next we recall some useful results from [ARS02]. First we need to introduce some notation.

(o)

Y

Figure 8.1: y € Shy(x).

Definition 8.2. We say that a connected, loopless graph T is a tree, and we will fiz a vertexo e T
and call it its root. This choice induces a partial order in T, giwven by x = y if x € [o,y] where
[0,y] stands for the geodesic path uniting those two vertices of the graph (see Figure 8.1). We call
shadow of x in T to the collection

Shr(z) ={yeT:y <z}

We say that a function p : T — R is a weight if it takes positive values (by a function we mean
a function defined in the vertices of the tree).
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Remark 8.3. Note that in [ARS02] the notation is < instead of =. We use the latter to be
consistent with the tree structure of the Whitney covering that we introduce below.

Definition 8.4. Given h: T — R, we call the primitive Zh the function

Thiy) = Y h(a).
z€fo,y]
Theorem 8.5. [ARS02, Theorem 3] Let 1 < p < oo and let p be a weight on T . For a nonnegative
measure i on T, the following statements are equivalent:

i) There exists a constant C = C(u) such that
HIhHLP(H) < CHhHLP(p)

it) There exists a constant C = C(u) such that for every r € T one has
p/

3 Yoouy) | p@) P <C Y p@).

zeShy(r) \yeShy(z) zeShr(r)

For every 1 < p < o0, we say that a non-negative measure y is a p-Carleson measure for (Z, p, p)
if there exists a constant C' = C'(u) such that the condition i) is satisfied.

Given an R-window Q of a Lipschitz domain {2 with a properly oriented Whitney covering W,
for every x € Q, we write = (2',24) € R4~ x R and, if « is contained in a Whitney cube Q € W,
we define the shadow of x as

1
Sh(z) = {ye QN Q:yg<wgand [ —y/| < fK(Q)}.

2
Note that if = is the center of the upper (n — 1)-dimensional face of @, the vertical projection of
Sh(x) (which is an (n — 1)-dimensional square) coincides with the vertical projection of @ (see
Figure 8.2). Finally, we define the vertical extension of Sh(z),

Sh(z) = {y €QNQ:yg<zg+20Q) and [z’ —¢/| < %Z(Q)} .

More generally, given a set U c Q we call its shadow
Sh(U) = {y€ QnQ: there exists « € U such that yq < x4 and 2’ = y/'} .

Recall that we have a proper orientation in the Whitney covering. Thus, given a Whitney cube Q,
we call the father of @, F(Q) the neighbor Whitney cube which is immediately on top of @ with
respect to the vertical direction. This parental relation induces an order relation (P < @ if P is
a descendant of @)). This would provide a tree structure to the Whitney covering W if there was
a common ancestor Qg for all the cubes. This does not happen, but we can add a “formal” cube
Qo (root of the tree) and then we can write @ < Qo for every Q@ < Q. If we call T to the tree
with the Whitney cubes as vertices complemented with Qo and the structure given by the order
relation <, then for every Whitney cube Q < Q,

sh@=(JP= |J P

P<Q PeSh1(Q)

(see Figure 8.2). Since we will only consider functions and measures supported in the window
canvas 0gQ N ), we can extend any of them formally in Qo as the null function.

Now, some minor modifications in the proof of [ARS02, Proposition 16] allow us to rewrite this
theorem in the following way.
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Proposition 8.6. Given 1 < p < 0 and an R-window Q of a Lipschitz domain Q2 with a properly
oriented Whitney covering W, consider the weights p(z) = dist(z, 0Q2)4?, pyw(Q) = £(Q)?~P. For
a positive Borel measure p supported on §oQ N §2, the following are equivalent:

1. For every a € §oQ N 2 one has

ﬁ‘pmkwmwuw@mmﬁ e

g < Cu(Sh(a)).
Sh(a) dlSt(J)7 ﬁQ)d /j'( (a))

2. For every P € W one has

2<Zmﬂfm@H<02M@. (8.2)

Q<P \S<Q Q<P

In virtue of [ARS02, Theorem 1], when d = 2 and the domain  is the unit disk in the plane,
the first condition is equivalent to p being a Carleson measure for the analytic Besov space B, (p),
that is, for every analytic function defined on the unit disc D,

0 = 1T, 0 = FOP + [ (1= PGP0 s

Definition 8.7. We say that a measure satisfying the hypothesis of Proposition 8.6 is a p-Carleson
measure for Q.

We say that a positive and finite Borel measure p is a p-Carleson measure for a Lipschitz
domain Q if it is a p-Carleson measure for every R-window of the domain.

We are ready to prove the second theorem. This proof is very much in the spirit of Theorem
1.1. Again we fix a point z¢ € Q and we use the polynomials Py(z) = (z—x0)* for every multiindex
|A] < n, but now the key point is to use the Poincaré inequality instead of the Sobolev Embedding
Theorem. Our hypothesis is reduced to duy(z) = |V"Tq Px(z)[Pdz being a p-Carleson measure for
Q for every |A| < n.

Proof of Theorem 1.2. Consider a fixed R-window Q and a properly oriented Whitney covering

W, that is, with dyadic grid parallel to the window faces. Making use of Lemma 8.1, we only need

to bound »
> VTP )Hm

< Ui
S @

=

Figure 8.2: The shadows Sh(x) and Sh(Q) coincide when z is the center of the upper face of the
cube. Furthermore, P — Sh(Q) if and only if P € Sh(Q).
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for every f e W™P(Q) with fl(5,0)c = 0.
Fix such a function f. Using the expression (4.2) and expanding it as in (7.2) at a fixed point
xo € ), we have

Z HV”TQ Pn 1
QeWw

LP(Q) Z Z Ciae Z |mQ,7|pHVnTQPAH§p(Q)~
[vl<n G<a<y Qew

Moreover, by induction on (4.3), the coeflicients are bounded by

moal < aQﬂﬂﬁMhﬁLf Lﬂfdes )y cbﬁﬂlf Lﬁfdmy

|Bl<n: B2y 3Q |Bl<n: B2y 3Q
S0

Z HV To(P3g 1f HA

Qew @ " |Bl<n QeW -

0<A<p
Taking into account that f|(s,0)c = 0, we have JCSP DPfdm = 0 for P close enough to the root
Qo. Thus,
][ DPfdm = (f DA fdm — ][ Dﬁfdm),
8Q Pe[Q Qo)

and we can use the Poincaré inequality to find that

L B ' '
@ \B\Zjn Q;W <P§Q 7 ]ip VD fdm) (@) (8.3)
0<A<p

> IV TaPig )
QewW

By assumption, ) is a p-Carleson measure for every |A\| < n, that is, it satisfies both conditions
of Proposition 8.6. By Theorem 8.5, we have that, for every h € I”(pyw),

Z(me>m@<02h@W@Wﬂ (8.4)
QeWwW \P=Q Qew

where py(Q) = £(Q)*?
Let us fix 8 and A momentarily and take h(P) = ((P) £, , [VD? f|dm in (8.4). Using Jensen’s
inequality and the finite overlapping of the quintuple cubes, we have

> (Z UPp) ]£P|VD/3f|dm>pm <C ) (f |VD’3f|dm)p 0(Q)?

QeW \P>Q Qew
<)) f |VD? fIP dm 0(Q)*
QeWw
SJ IV D? [P dm. (8.5)
Q
Plugging (8.5) into (8.3) for each 8 and A, we get
V' To (P, f) H el i
%J i) < Ol ey
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9 The remaining implication in Theorem 1.3

In this section we prove the implication 1. = 2. in Theorem 1.3. First we need some tools from
partial differential equations.

Remark 9.1. Given g € Lé(ﬁ) and d > 2, consider the function

do(y) for v e RY, (9.1)

(d-1)
F(z) = N[(Ry'™ " g)do](x) = L (2 _(];fwmg)_(?\d,Q

where N denotes the Newton potential (2.1), RYY
rial (d — 1)-dimensional Riesz transform R(d*g
function is well defined since

stands for the vertical component of the vecto-
and do is the hypersurface measure in 0}Ri. This

s

2d
< ———|g(2)| dz do
Li(o) LRj J-]R‘j_ ly — Z‘d|g( ) ®)

- 2 a z)|az ~
7J}R <LR1 y— 22" (y)> l9(2)ld= ~ | g1,

and, thus, the right-hand side of (9.1) is an absolutely convergent integral for each x € R‘i, with
F(z) < Lol By the same token, all the derivatives of F are well defined, F is C*(R%),

[wal=2
harmonic and VF(x) = R(d_l)[(Réd_l)g)da] (x). When d = 2 we have to make the usual modifi-
cations.

d
+

Lemma 9.2. Consider a ball By < R? centered at the origin and a real number € > 0. Let
ge LY(RY n 1By) with g(a',z4) = 0 for every (2/,24) € R¥"! x (0,¢) and define

he) = N[(Ry~Vg)do] (@) ~ No(z).
Then h has weak derivatives in R% and for every ¢ € CX(RY),

V¢ -Vhdm = Pgdm. (9.2)
Rd

d
RY

Furthermore, if By has radius r1 then for every x € R‘i\Bl we have

1 .
|$|d—2 H9H1 if d> 2,
Ih@)] < . (9.3)
g .
(uog\xu i1 +%) lol, ifd=2.
and )
Zq
Vh)I S oy (14 o 4]l (9.4

Remark 9.3. Note that h can be understood as a weak solution to the Neumann problem

—Ah(z) = g(z) ifzeRe,
Oah(y) =0 if y € ORY.
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Sketch of the proof of Lemma 9.2. Let us define F' as in (9.1). Then,
VF = RU-D[(RYVg)do]

and h = F — Ng. It is an exercise to check that F' and Ng are C' up to the boundary, with
0qF (y) = Rgdil)g(y) for all y € OR%. Consider ¢ € C°(R). Using the Green identities, since F is
harmonic in Ri, we have

f v¢~Vde—f Vé-VNgdm = ¢6dFda—J qufid*”gdaJrJ qzﬁgdm:j g,
Rd R e R R

R

proving (9.2).
To prove the pointwise bounds for Vh, recall that

Vh(z) = ROV[(RY ™ g)do](z) — RO Vg(x).

Given z € R%\By, since supp(g) < 1B1,

IR Vg(z)| = c

[, ae=s ] < loh 05)

jx—zd T fal

On the other hand, consider z € supp(g) © 1By and x ¢ By. Then, for y € dR% n B(0, |z]/2)
one has |z — y| ~ |z|, for y € IRL n B(0,2|z|)\B(0, |z|/2) one has |y — z| ~ |z| and otherwise

ly —z| ~ [y — 2| ~ |y|. Thus,
J U 9(2)zd dZ> (x —y)do(y)
orR: \JBy ly — 2|4 |z -yl
<f (J Ig(Z)IdeZ) do(y)
- oR% AB(0,]z|/2) \JIB, ly — 2| ||t

+J (J Ig(Z)IdeZ) do(y)
oR? ~B(0,2]2)\B(0,]z|/2) \JB, || |z — y[d—1

RODI(RE g)do)(x)] = ¢

do(y
+J <j l9(2)|za dz) | |227)1. (9.6)
oR4\B(0,2[z]) \JBy Yy
The first term can be bounded by C' Hgd”ll because .. d%(y)d = CL. The second can be
|z ORY [y—2| Zd
bounded by C’Tﬂ‘gd“l log % using polar coordinates and the last one can be bounded by C' h‘lfdul

trivially. Thus,

r1lgly
|4

Td

%8 Tzl

d-1)1/ p(d—1) lglly , rlglly
‘R( )[(Rd g)do](z)| < \x|d*1 + o[ 1

proving (9.4) since 1 < |z|.
To prove the pointwise bounds for h, recall that

h(z) = N[(R{'™Vg)do](z) — Ng(x).

When d > 2 we use the same method as in (9.5) and (9.6) using Newton’s potential instead of the
vectorial (d — 1)-dimensional Riesz transform to get

lgly  rilgly
hs g .
|7 ()] lz|d=2 " Jg[d-1
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When d = 2 the Newton potential is logarithmic, but the spirit is the same. In this case,
arguing as before,

< |z| + |z|log |z| + 22 log xo
[h* ()| < log|z[lgly +rilgly EE -
O
Proposition 9.4. Let 1 < p < 0. Given a window Q of a special Lipschitz domain  with a
Whitney covering W and given f € WP(Q), define the Whitney averaging function
Af@) = 3 xal f, 1)y (97)
3

QeWw
If 1 is a finite positive Borel measure supported on 60Q with
1(Sh(Q)) < CUQ)™™  for every Whitney cube Q < Q, (9.8)

and A : WP (Q) — LP(u) is bounded, then u is a p-Carleson measure.

Proof. We will argue by duality. Let us assume that the window Q = Q(0, %) is of side-length R
and centered at the origin, which belongs to 2. Note that the boundedness of A is equivalent to
the boundedness of its dual operator

A% LY () — (WhP(Q)*.

We also assume that 4 = 0 in a neighborhood of 0£2. One can prove the general case by means of
truncation and taking limits since the constants of the Carleson condition (8.2) and the the norm
of the averaging operator will not get worse by this procedure.

Fix a cube P. Analogously to [ARS02, Theorem 3], we apply the boundedness of A* to the
test function g = xsn(p) to get

JA% gl oy ol = (SB(P)).

Thus, it is enough to prove that

N u(Sh(Q)P Q)7 < |A* gl + H(SH(P)). (9.9)
Q<P

Given any f € WHP(Q), using (9.7) and Fubini’s Theorem,

Arg. )= [gArin=| s ( > X ngdu> dm,

QeW

where we wrote (-, ) for the duality pairing. Consider

o x3q () _ 1(Q)
9(z) == Qewnj(%@ﬁ?gdu = Qgpng(az)m(gQ). (9.10)

Then,
(A*g. I :f fgdm.
Q
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Sh(Q) —

Sh,,(Q)

Figure 9.1: We divide Ri in pre-images of Whitney cubes.

Note that g is in L with norm depending on the distance from the support of p to 02 by (9.8),
but the norm of § in L' is

19l L+ = n(Sh(P)).

Consider also the change of variables w : R? — R?, w(a’, z4) = (', 24 + A(z')) where A is the
Lipschitz function whose graph coincides with 02, and to every Whitney cube @ assign the set
Qw = w Q) and its shadow Sh,,(Q) = w™'(Sh(Q)) (see Figure 9.1). Then, for every = € R? we
define

90(z) := glw())|det(Dw(x))|, (9.11)

where det(Dw(+)) stands for the determinant of the Jacobian matrix. Note that still |go] ;. =
|9l = n(Sh(P)), and

<A*g,f>:J fﬁdm:f fow-godm. (9.12)
Q RY
The key of the proof is using

h(z) := N[(R{V go)do](x) — Ngo(z), (9.13)

which is the L}

L (R%) solution of the Neumann problem

f Vé-Vhdm = | ¢godm  for every ¢ € CX(RY), (9.14)
RY RY
provided by Lemma 9.2.

We divide the proof in four claims.

Claim 9.5. If ¢ € CX(RL), then
<A*g,¢ow*1>=f V¢ - Vhdm.
Ry

Proof. Since w is bilipschitz, the Sobolev W1? norms before and after the change of variables w
are equivalent (see [Zie89, Theorem 2.2.2]). In particular, for ¢ € C°(R%), pow™" € WP(Q) and
we can use (9.12) and (9.14). O
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Now we look for bounds for ||dgh| L+ (shy(p))- Lhe Holder inequality together with a density
argument would give us the bound

1A% gl w10 )yx < V[ Lo + p(Sh(P)),
with constants depending on the window size R, but we shall need a kind of converse.

Claim 9.6. One has
|0ah| Lo (s, Py S A g o ayx t ((Sh(P)).
(Sho( ( (

Proof. Take a ball B; containing w™!(4Q). The duality between L? and LP gives us the bound

10ahl Lo (sh,(py) <

f¢ dah dm'
¢ec°° Blm]R+)
lol,<1

To use the full potential of the Fourier transform, consider h* to be the symmetric extension of h
with respect to the hyperplane x4 = 0, h*(2', x4) = h(z', |z4]). One can see that h*® has global weak

derivatives 0;h° = (0;h)® for 1 < j < d — 1 and 0qh®(2’,zq) = —0qh(a’, —x4) for every zq < 0.
Thus,
H@thLP«(ShW(P)) < sup Uqﬁ&dhs dm‘. (9.15)
$eC° (B1)
lol,<1

Given ¢ € CP(By), consider the function d(x) = ¢(x) — ¢(x — 271 e4), where eq denotes the
unit vector in the d-th direction and r; = %diam(Bl), and take

Td ~
_ J 3, t)dt. (9.16)
—0
Then, we have I, € CX(3B;) with 0415 = ¢ in the support of ¢ and H6d1¢HZ = 2[¢|7. Thus,
J-Qﬁadhsdm = <6d1¢,6dh5> - 6,1I¢ 8dhsdm (9.17)
3B1\Bi

where we use the brackets for the dual pairing of test functions and distributions. Using Hoélder’s
inequality and the estimate (9.4) one can see that the error term in (9.17) is bounded by

LB . |0aly 0ah®ldm < |[0als,[0ah” | Lo 38,\8,) < ClO] Lo t(SH(P)). (9.18)

Note that C only depends on 71, which can be expressed as a function of the Lipschitz constant
0o and the window side-length R.
It is well known that the vectorial d-dimensional Riesz transform,

T —
R(d)f(:c) = V. J]Rd ﬁf(y)dy for every f €S

p
2wg 1

is, in fact, a Calderén-Zygmund operator and, thus, it can be extended to a bounded operator in
LP. Writing R( ) for the i-th component of the transform and R(d) = R(d) R;d) for the double

Riesz transform in the i-th and j-th directions, one has ;14 = RE?)AI¢ = ARS)I¢ by a simple

28



Fourier argument (see [Gra08, Section 4.1.4]). Thus, writing f, = Rffi)l(ﬁ, we have Afy = 0galy,
S0

(Oaly, 0ah®) = —(aalys, h*) = —(Afy, h*). (9.19)

Let f, = o, fy with ¢, a bump function in CF(B2,(0)) such that xp () < ©r < XBa,.(0),
[Vo,| < 1/r and |Ap,| < 1/r2. We claim that

—(Afy,h*) = — lingo<Af7.7 h'y = lin010<VfT., Vh?), (9.20)

r— r—
The advantage of f, is that it is compactly supported, while only the Laplacian of f4 is compactly
supported. Recall that Af, = dgal, € CF(R?) so, by the hypoellipticity of the Laplacian operator,

fo € CP(RY) itself (see [Fol95, Corollary (2.20)]). Thus, the second equality in (9.20) comes from
the definition of distributional derivative. It remains to prove

(Afr = Afgy by =55 0, (9.21)
Since Afy4 is compactly supported, taking r big enough we can assume that

Al(er = 1) fg] = (Apr) fo + 2V, - V fy,

SO

(Af: = Afoh®)| 5 |
Bar(0)\B(0)
It is left for the reader to prove (9.21) plugging (9.3) in this expression. One only needs to use
that fs and V f4 are in every L? space for 1 < ¢ < c0.
Back to (9.20), we can use f5(x',zq4) := fr(2', —24) by a change of variables to obtain

(Lelle , 1951 g,

r2 T

JVfr-Vhsdm - VfT.Vhdm+f VS Vhdm = (A*g, (fr + f)ow ™ (9.22)
RY

RY
by means of Claim 9.5. Summing up, by (9.17), (9.18), (9.19), (9.20) and (9.22) and letting r tend
to infinity, we get

[oun an| < 4%, (55 + £2) 0] + 161 outSh(P) (9:23)

Using Holder inequality in (9.16) we have that |Iy], < C[¢[,. Now, d;fs = @Rgl)[(t, =
Rfij)ad1¢, so using the boundedness of the d-dimensional Riesz transform in LP we get
Ifolwre = Wfolpe + 1V Folpe < CUsl, + [0als],) < Cl4l,. (9.24)
Summing up, by (9.15), (9.23) and (9.24) we have got that

Hadh”Lp’(Shw(p)) b sup ’<A*ga f OW71>| + 1(Sh(P)).

‘f”vvlvp(gd)gl

On the other hand, by [Zie89, Theorem 2.2.2] Hf ow_lHWl'p(Q) ~ HfHWl,p(Ri) for every f, so
we have

HathLp'(Shw(p)) < sup [{A%g, )| + n(Sh(P)) = ‘|-’4*9H(W1.p(9))* + n(Sh(P)),

Hf”wl-,p(n)gl

that is Claim 9.6. O
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Next we stablish the relation between (9.9) and Claim 9.6.
Claim 9.7. One has

’

B Zd — Xd ~

P
QEPM(Sh(Q))plg(Q)ﬁ s HathgP'(Shw(P)) - QEPJ- w (J;Z:zd>wd} |$ - Z|dg(w(2))dz> dm
- @ + @ (9.25)

Proof. Note that in (9.13) we have defined h in such a way that

dah(z) = RY™VI(RY ™ go)do](x) — R go(x)
N C RS

— 2ld|x — yld Y
Wd Jrd \  Wd  Jord ly — 2|z —y |z — 2|

Given z, 2z € R%, consider the kernel of R&dil)[(REldfl)())da] - Rfid*l)(-)7

2424 do(y) Tq — 24
G(z,z) = f + )
wa Japs 9=z — gl Jo— 2]

so that

—1

Ogh(x) = — G(z,2)g0(2) dz. (9.26)

wy Ri
‘We have the trivial bound

Zd — X4

G(z,z) + (2) =0, (9.27)

|SU — Z|d X{zd>zd)

but given any Whitney cube Q < P, if z € @Q,, and z € Sh,,(Q) we can improve the estimate. In
this case,

J do(y) J do(y) 1
oR? NSh,, (Q) ly — 2[4~ OR? nw=1(Sh(w(2))) ly — 2| 24

and, thus,

24 — Td 2T 424 do(y)
Gla,2) + 2272y mny (2) = j
o — o[d Hzazea) R R

> f(Q)sz do(y) . 4Q)
Q) Jore nsmg(@) 1y — 27 T UQ)

By the Lipschitz character of Q we know that |det Dw(z)| ~ 1 for every z € R4. Thus, by
(9.10) and (9.11), given @ < P we have

Sh = S) < g(w)dw ~ 0(2)dz.
5(Sh(Q)) Sg@m )< Lh@)m ) Lhw(@g ()

For every z € Q,, using (9.27) and (9.28) first and then (9.26) we get

(9.28)

HSHQ) < [ G @ ¢ | M) @)
ST@U@ 4 | ) 4 @)
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Then, raising to the power p’, averaging with respect to z € Q. and summing with respect to
—d
Q < P with weight pyy(Q) = é(Q)%, since (d — 1)p’ + g%cll —d =0, we get Claim 9.7.
O

Finally, we bound the negative contribution of the (d—1)-dimensional Riesz transform in (9.25),
that is we bound @
Claim 9.8. One has

’

®- 3 | <f{ Zd”,a(w<z>>dz> dz < p(Sh(P)). (9.29)

Q<P 2:124>Tq} |.Z' - Z‘d

Proof. Consider z,z € Ri with x4 < z4 and two Whitney cubes @ and S such that x € @, and
zew H39)\w1(3Q), then

%4 = Td _ dist(w(z), 09) £(S)

~

e —2[4~ D(S,Q)7 D(S,Q)T
On the other hand, when 35S n 3Q # &,

f Bazdl 1. ) ~ u(s).

wasQ)|$"ﬂd

From the definition of § in (9.10) it follows that g(w(z)) < X e X3L(w(z))"‘;g“£). Bearing all

these considerations in mind, one gets

@< Y Q) (

QsP

y, o)’

S<P

Counsider a fixed € > 0. One can apply first the Holder inequality and then (9.8) to get

e S 1—ep 1+5p I;’,
<:>S 22 f( (22 M D( ’) ) (;ngt S Q )

Q<P S<P
1 ep E(S)d—p+1+ep) %
w(S
) EC/U
(5565 ) (5 e

By Lemma 3.13, the last sum is bounded by C#(Q) P+1T¢P with C depending on € as long as
d>d—p+1+4ep>d—1, that is, when Pp%? <e< P% Thus,

L=ep’ p(Q)d+(e=1)p"+2'/p

SHY(S
@SZ ZM( )E(S) RO

Q<P S<P

_ 1—ep’ E(Q)d71+€p,
—Sgpmsw& QgpiD(S,Q)d :

Again by Lemma 3.13, the last sum does not exceed CZ(S)*”GP/ with C depending on € as long
asd>d—1+ep’ >d—1, that is when 0 < € < % = ijl. Summing up, we need

{hof <ot
max{ ——,0p <€ <7.
p p
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Such a choice of € is possible for every p > 1. Thus,

@ < Y ulS) = u(Sh(P)).

S<P
O

Now we can finish the proof of Proposition 9.4. The first term in (9.25) is bounded due to
Claim 9.6 by

D) = 102kl sy = A% 91y + (SRIP)" (9.30)

Being 4 a finite measure, u(Sh(P))? < u(Sh(P))u(6pQ)? ~! and, thus, the bounds (9.29) and
(9.30) combined with (9.25) prove (9.9), leading to

3 u(Sh(Q)PUQ) 7T < u(Sh(P)).

Q<P

For the sake of clarity, we restate Theorem 1.3 in terms of Carleson measures.

Theorem 9.9. Given a Calderdn-Zygmund smooth operator of order 1, a Lipschitz domain Q2 and
1 < p < o0, the following statements are equivalent:

1. Given any window Q with a properly oriented Whitney covering, and given any Whitney cube
P c 69Q, one has

p/
p—d
2 (J- IVTo(xe)l” dm) Uy <C IVIo(xa)l” dm.
o=p \Jsh(@) Sh(P)

2. Tq is a bounded operator on WLP(Q).

Proof. The implication 1 = 2 is Theorem 1.2.

To prove that 2 = 1 we will use the previous proposition. Let us assume that we have
a properly oriented Whitney covering W associated to an R-window Q of a Lipschitz domain €,
where we assume that the window Q = Q(0, %) is of side-length R and centered at the origin.
Note that since Ty is bounded in W1P(Q) then, by the Key Lemma,

@) dz < | flwreq)- (9.31)

Qew 1/3Q

Consider the Lipschitz function A : R — R whose graph coincides with the boundary of ()
in Q. We say that Q) is the special Lipschitz domain defined by the graph of A that coincides with
Q in the window Q. One can consider a Whitney covering W associated to Q) such that it coincides
with W in §p Q. Consider the averaging operator

= Y xole f fy)dy for fe W' (@),

QeWw

Writing du(z) := |VT (xa)(@)P xs,0(2) dz, it is easy to see that (9.31) implies the boundedness of

AW () - L ()
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(consider an appropriate bump function and use the Leibnitz formula).

In order to apply Proposition 9.4, we only need to show that ;(Sh(Q)) < C¢(Q)4~P for every
Whitney cube @ < Q, which in particular implies that p is finite. Consider a bump function ¢g
such that xsn20) < @ < Xsh@g) With [Veg| < ﬁ.

Then,

u(sh(Q) = |

VT xa(z)Pde < j
Sh(Q)nsQ

VT (xa — o) (@)Pdz + j VTq(x)|Pdz.
Sh(Q) Q

With respect to the first term, notice that given z € Sh(Q), dist(z,supp(xa — ¢q)) > 24(Q) so
Lemma 5.4 together with (5.1) allows us to write

1 1
V(o - vo)(@) < dy< L
VT (xa = ¢a) (@)l \sh(2q) |y — x|+ Q)

Being 2 a Lipschitz domain, m(Sh(Q)) ~ £(Q)?, so
| 9T - va)@)lds < @)
Sh(Q)

The second term is bounded by hypothesis by a constant times |pq|[j1.» () and

Qim0 %0 + 1900l% 0@ < Q)+ UQ < (R + DUQ) ™,

where R is the side-length of the R-window Q, proving that p satisfies (9.8). O

10 Final remarks

Remark 10.1. The article of Arcozzi, Rochberg and Sawyer [ARS02] has been the cornerstone
in our quest for necessary conditions related to Carleson measures. In fact their article provides
a quick shortcut for the proof of Theorem 9.9 (avoiding Proposition 9.4) for simply connected
domains of class C! in the complex plane, and we believe it is worth to give a hint of the reasoning.

Sketch of the proof. In the case of the unit disk, we found in the Key Lemma that if T" is a smooth
convolution Calderén-Zygmund operator of order 1 bounded in W1?(D), then

Z ]iQfdm

Qew
for all f € WLP(D). If one considers du(z) = |VTxp(z)|Pdm(z) and p(z) = (1 — |2]?)27P, then,
when f is in the Besov space of analytic functions on the unit disk B,(p),

jQ VTx0 () Pdm () < | i) (10.1)

111, 1= 1FOF + | 17 G0 |z\2>f’p<z>% By

Using the mean value property (and (9.8) for the error terms), one can see that if 7' is bounded,
then for every holomorphic function f the bound in (10.1) is equivalent to

fD PN T (P dn() < 15,
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e, [ flpeq < HfHBp(p). Following the notation in [ARS02], the measure yu is a Carleson measure
for (Bp(p),p), stablishing Theorem 9.9 for the unit disk by means of Theorem 1 in that article.
For Q2 < C Lipschitz and f analytic in {2, we also have

L FEPIVTxaPdm(z) < |10 m)-

If © is simply connected, considering a Riemann mapping F': D — Q, and using it as a change of
variables, one can rewrite the previous inequality as

fD 1 o FIPp(F (@) [F' () Pdm(w) < |F(FO)? + fD I(F 0 F) (@) |F ()2 Pdim(w).

Writing dji(w) = p(F(w))|F'(w)[2dm(w), and p(w) = |F'(w)(1 — |w|?)|>7P, one has that given any
g analytic on D,
l91o ) = 19l 5, (0)-

So far so good, we have seen that fi is a Carleson measure for (B,(p),p), but we only can use
[ARS02, Theorem 1] if two conditions on p are satisfied. The first condition is that the weight p is
“almost constant” in Whitney squares, that is

for x1,20 € Qe W = p(x1) =~ p(x2),
and this is a consequence of Koebe distortion theorem, which asserts that for every w € D we have
|F(w)|(1 = |w|?) ~ dist(F(w), 09)

(see [AIM09, Theorem 2.10.6], for instance). The second condition is the Bekollé-Bonami condition,
which is

[ =ty 2pteyimc) ( [ (= pyzaey dm<z>)p_l < m(Q).

If the domain Q is Lipschitz with small constant depending on p (in particular if it is C!), then
this condition is satisfied (see [Bek86, Theorem 2.1]). O

Remark 10.2. Quite likely, our arguments to prove the Key Lemma apply to more general do-
mains, such as the so called uniform domains. However, for simplicity, we only deal with Lipschitz
domains in this paper and we do not pursue the objective of extending Theorem 1.1 to more general
Sobolev extension domains.

We want to point out some open problems to conclude this exposition. First of all, when n > 1
we have found a sufficient condition in terms of Carleson measures, but we do not know if this
condition (or a similar one) is necessary.

Secondly, it would be interesting to study the fractional Sobolev spaces, W*P(Q) for s ¢ N.

Finally we have obtained some results connecting the boundedness of the even smooth convolu-
tion Calderon-Zygmund operators to the geometry of the boundary of planar domains Q0 which will
be published in a forthcoming paper.
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