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Département de Mathématiques et de Statistiques
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Abstract

We denote by QSL3 the family of quadratic differential systems possessing invari-

ant straight lines, finite and infinite, of total multiplicity exactly three. In a sequence of

papers the complete study of quadratic systems with invariant lines of total multiplicity

at least four was achieved. In addition three more families of quadratic systems pos-

sessing invariant lines of total multiplicity at least three were also studied, among them

the Lotka-Volterra family. However there were still systems in QSL3 missing from all

these studies. The goals of this article are: to complete the study of the geometric con-

figurations of invariant lines of QSL3 by studying all the remaining cases and to give

the full classification this family modulo their configurations of invariant lines together

with their bifurcation diagram. The family QSL3 has a total of 81 distinct configura-

tions of invariant lines. This classification is done in affine invariant terms and we also

present the bifurcation diagram of these configurations in the 12-parameter space of co-

efficients of the systems. This diagram provides an algorithm for deciding for any given

system whether it belongs to QSL3 and in case it does, by producing its configuration

of invariant straight lines.

1 Introduction and the statement of the Main Theorem

We consider here real planar differential systems of the form

(S)
dx

dt
= p(x, y),

dy

dt
= q(x, y), (1)

where p, q ∈ R[x, y], i.e. p, q are polynomials in x, y over R. We call degree of a system

(S) the integer deg(S) = max(deg(P ),deg(Q)). We call quadratic (respectively cubic)

differential system such a polynomial system of degree two (respectively three). We shall

1



sometimes use quadratic system instead of quadratic differential system. Each such system

generates a complex differential vector field when the dependent variables range over C.
Of the three classical problems on these systems, Hilbert’s 16th problem, the problem

of Poincaré and the problem of the center, only this last one was solved for the family QS

of quadratic differential systems. Although it is the simplest non-linear class of polynomial

systems we are still far from understanding this family. To gain insight into this family, in

recent years subfamilies of QS began to be studied from a global viewpoint using a variety

of methods among them algebraic and geometric or analytical, also numerical or involving

substantial symbolic calculations. In particular families of quadratic systems possessing

invariant algebraic curves began to be studied, the simplest ones being those possessing

invariant lines.

Every system in QS possesses an invariant line, the line at infinity. This line could be

simple, or multiple in which case producing several distinct lines in perturbations.

The notion of multiplicity of an invariant line of a system (1) has been introduced in [9].

This concept was extended to the notion of multiplicity of an invariant algebraic curve of

a differential system. In the fundamental article [6] several notions of multiplicity of an

invariant algebraic curve of a polynomial systems were introduced and they were proven to

be equivalent in the case of algebraic solutions which are algebraic invariant curves defined

by polynomials that are irreducible over C. If a system has a finite number of invariant lines

fi(x, y) = 0, i = 1, ..., k, of respective multiplicities m1, ...,mk, we call total multiplicity of

the invariant lines of (S), the number M =
∑

imi +m∞ where m∞ is the multiplicity of

the line at infinity. Since in any system (1) the line at infinity is invariant we always have

m∞ ≥ 1 and in particular we have this for any system in QS.

At the beginning of this century a systematic study of non-degenerated quadratic sys-

tems possessing invariant algebraic curves was initiated by Schlomiuk and Vulpe. In the

series of articles [9, 11, 13, 14] the authors studied the class QSL≥4 of quadratic systems

having invariant lines, including the line at infinity, of total multiplicity at least four. We

see in [9] that the maximum number of invariant lines, including the line at infinity of

non-degenerate quadratic systems is six.

This study was based on the notion of configuration of invariant lines of a real polyno-

mial differential system defined in [14]. We recall here this definition.

Definition 1.1. Consider a real polynomial differential system (S) endowed with a finite

number of invariant algebraic curves fi(x, y) = 0, i = 1, . . . , k over C. We call configuration

of invariant curves of (S) the set of curves f1 = 0, . . . , fk = 0 and the line at infinity, each

endowed with its own multiplicity, together with all the real singular points of (S) situated

on these curves, each one of them endowed with its own multiplicity.

The notion of configuration is an affine invariant which is a powerful classification tool.

This was clearly seen in the way the topological classification was obtained for the Lotka-

Volterra systems which have a total of 112 phase portraits. The geometry of configurations

acts like a guiding light to fray our way through this maze of phase portraits. Thus we first

obtained the geometric classification by splitting the class according to their 65 distinct

configurations of invariant lines that the systems possess. Then we classified topologically

each one of these 65 families.
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In order to classify all the configurations of the family QSL3 we first need to say when

two configurations C1, C2 of invariant lines of two quadratic systems (S1) and (S2) are to

be considered as distinct, respectively when two such configurations are to be considered

equivalent.

Consider two polynomial differential systems (S1) and (S2) such that each has a finite

set of singular points and a finite set of invariant lines, including the line at infinity. Let

C1, C2 be the two configurations of invariant lines of (S1) and (S2).

Definition 1.2. We say that two configurations C1, C2, of (S1) and (S2) formed by invariant

lines (including the line at infinity) are equivalent if and only if there is a bijection ϕ

between the two sets of invariant lines sending the line at infinity of C1 to the line at

infinity of C2, sending a line with coefficients in R of (S1) to a line with coefficients in

R of (S2). In addition the map preserves the multiplicities of the invariant lines, and for

each invariant line L of C1 there is a one to one correspondence ϕL between the set of real

singular points of (S1) situated on the line L and the set of real singular points of the system

(S2) situated on the line ϕ(L) which preserves the multiplicities of the singular points and

sends a real singular point at infinity to a real singular point at infinity. In addition we

have the following:

(i) When we list in a counterclockwise sense the real singular points at infinity on (S1)

starting from a point p on the Poincaré disk, p1 = p, ..., pl, this correspondence preserves

the multiplicities of the singular points and preserves or reverses the orientation.

(ii) We consider the total curves

F :
∏

Fj(X;Y ;Z)miZm = 0;F ′ :
∏

F ′
j(X;Y ;Z)m

′
iZm = 0

where Fi(X;Y ;Z) = 0 (respectively F ′
i (X;Y ;Z) = 0) are the projective completions of the

lines Li (respectively L′
i) and mi;m

′
i are the multiplicities of the curves Fi = 0; F ′

i = 0

and m,m′ are respectively the multiplicities of Z = 0 in the first and in the second system.

Then, there is a one-to-one correspondence between the real singularities of the curves F
and F ′ conserving their multiplicities as singular points of the total curves.

After the study of the family QSL≥4 mentioned above, the next step is the study of

the subfamily QSL3 of QS which is the family of all non-degenerate quadratic differential

systems with invariant lines of total multiplicity three. The study of this class began

with work on the Lotka-Volterra systems (shortly L-V systems), a family important for

applications. (Previous literature on L-V systems systems is also mentioned in [16, 17].)

This is the class of all quadratic differential systems that have two real invariant lines

intersecting at a finite point. In [16, 17] the authors completed the study of this class by

giving its bifurcation diagram in the 12-dimensional space of the coefficients of quadratic

systems (1).

The family QSL3 which splits into several subfamilies of QS according to the geometry

of the systems one of them being the L-V systems. Another subfamily of QSL3 is the family

of non-degenerate real quadratic systems possessing two complex invariant lines intersecting

at a (real) finite point. The topological classification for this family was done in [19] but

without using the configurations of invariant lines. The bifurcation diagram in terms of
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invariant polynomials was done in [3]. But the configurations of invariant lines for systems

in this family and occurring in QSL3 is presented here for the first time.

In [5] one more subfamily of QSL3 was studied. More exactly in [5] the study of the

family QSL2p of quadratic systems possessing one of the following defining properties: two

parallel invariant lines or a unique affine line that is double, or an affine invariant line and

the line at infinity double or the line at infinity triple.

However, we still have quadratic systems in QSL3 that were not mentioned so far.

These are quadratic differential systems in QSL3 that are limit points of the L-V systems.

Indeed such systems could be obtained from a generic L-V system using the following

one of the following three possibilities:

(i) Two simple invariant lines of a L-V-system from the subfamily QSL3 coalesced

obtaining a double invariant line and a multiple real singular point at infinity.

(ii) One simple invariant line of a L-V system from the subfamily QSL3 coalesced with

infinite line Z = 0 obtaining a double infinite invariant line with the second invariant line

remaining in the finite part of the phase plane.

(iii) Both simple invariant lines of a L-V system from the subfamily QSL3 coalesced

with infinite line Z = 0 producing a triple line at infinity.

The goal of this paper is to complete the study of the configurations of invariant lines

of family QSL3 and to present all possible configurations of invariant lines which a non-

degenerate quadratic system from the classQSL3 could have. Our main results are summed

up in the following theorem:

Main Theorem. The following statements hold:

(i) The family QSL3 possesses a total of 81 distinct configurations of invariant lines

given in Figure 1.

(ii) The classification of the family QSL3 is done using algebraic invariants and hence it

is independent of the normal forms in which the systems may be presented.

(iii) The ”bifurcation” diagram of the configurations of invariant lines for systems in the

family QSL3 is done in the twelve-dimensional parameter space R12 and it is presented

in Diagrams 1 and 2. These diagrams give us an algorithm by determining for any

given system if it belongs or not to the family QSL3 and in case it belongs to this

family, it gives us the specific configuration of invariant lines.

2 The main invariant polynomials associated to the class

QSL3

We consider the class of real quadratic polynomial differential systems

ẋ = p0 + p1(x, y) + p2(x, y) ≡ P (ã, x, y),

ẏ = q0 + q1(x, y) + q2(x, y) ≡ Q(ã, x, y)
(2)
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Figure 1: The configurations of quadratic systems in QSL3

where
p0 = a, p1(x, y) = cx+ dy, p2(x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(x, y) = ex+ fy, q2(x, y) = lx2 + 2mxy + ny2
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Figure 1 (continuation) The configurations of quadratic systems in QSL3

and with max(deg(p),deg(q)) = 2. It is known that on the set QS acts the group Aff (2,R)
of affine transformations on the plane (cf. [10]). For every subgroup G ⊆ Aff (2,R) we

have an induced action of G on QS . We can identify the set QS of systems (2) with
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Figure 1 (continuation) The configurations of quadratic systems in QSL3

a subset of R12 via the map QS−→ R12 which associates to each system (2) the 12–

tuple ã = (a, c, d, g, h, k, b, e, f, l,m, n) of its coefficients. We associate to this group action

polynomials in x, y and parameters which behave well with respect to this action, the GL–

comitants (GL–invariants), the T–comitants (affine invariants) and the CT–comitants. For

their definitions as well as their detailed constructions we refer the reader to the paper [10]

(see also [1]).

According to [1] (see also [4]) we apply the differential operator L = x ·L2−y ·L1 acting
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Diagram 1: The configurations of systems in QSL with B1 = 0 and B2 ̸= 0

on R[ã, x, y] with

L1 =2a
∂

∂c
+ c

∂

∂g
+

1

2
d
∂

∂h
+ 2b

∂

∂e
+ e

∂

∂l
+

1

2
f
∂

∂m
,

L2 =2a
∂

∂d
+ d

∂

∂k
+

1

2
c
∂

∂h
+ 2b

∂

∂f
+ f

∂

∂n
+

1

2
e
∂

∂m
,

to construct several needed invariant polynomials. More precisely using this operator and
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Diagram1 (continuation): The configurations of systems in QSL with B1 = 0 and B2 ̸= 0

the affine invariant µ0 = Res x
(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct the following poly-

nomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, .., 4, where L(i)(µ0) = L(L(i−1)(µ0)).

Using these invariant polynomials we define some new ones, which according to [1] are
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Diagram1 (continuation): The configurations of systems in QSL with B1 = 0 and B2 ̸= 0

responsible for the number and multiplicities of the finite singular points of (2):

D =
[
3
(
(µ3, µ3)

(2), µ2
)(2) −

(
6µ0µ4 − 3µ1µ3 + µ22, µ4

)(4)]
/48,

P =12µ0µ4 − 3µ1µ3 + µ22,

R =3µ21 − 8µ0µ2,

S =R2 − 16µ20P,

T =18µ20(3µ
2
3 − 8µ2µ4) + 2µ0(2µ

3
2 − 9µ1µ2µ3 + 27µ21µ4)−PR,

U =µ23 − 4µ2µ4.

In what follows we also need the so-called transvectant of order k (see [7], [8]) of two

polynomials f, g ∈ R[ã, x, y]

(f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

In order to construct the remaining invariant polynomials contained in the set (??) we

first need to define some elementary bricks which help us to construct these elements of the

set.

We remark that the following polynomials in R[ã, x, y] are the simplest invariant poly-

nomials of degree one with respect to the coefficients of the differential systems (2) which

are GL-comitants:
Ci(x, y) = ypi(x, y)− xqi(x, y), i = 0, 1, 2;

Di(x, y) =
∂

∂x
pi(x, y) +

∂

∂y
qi(x, y), i = 1, 2.
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Diagram 2: The configurations of systems in QSL with B2 = 0 and B3 ̸= 0

Apart from these simple invariant polynomials we shall also make use of the following nine
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Diagram2 (continuation): The configurations of systems in QSL with B2 = 0 and B3 ̸= 0

GL-invariant polynomials:

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0, D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2, D2)
(1) .

These are of degree two with respect to the coefficients of systems (2).
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Diagram2 (continuation): The configurations of systems in QSL with B2 = 0 and B3 ̸= 0

We next define a list of T -comitants:

Â(ã) = (C1, T8 − 2T9 +D2
2)

(2)/144,

B̂(ã, x, y) =
{
16D1(D2, T8)

(1)(3C1D1 − 2C0D2 + 4T2) + 32C0(D2, T9)
(1)(3D1D2

− 5T6+ 9T7) + 2(D2, T9)
(1)

(
27C1T4− 18C1D

2
1−32D1T2+32(C0, T5)

(1)
)

+ 6(D2, T7)
(1)

[
8C0(T8 − 12T9)− 12C1(D1D2+T7) +D1(26C2D1+32T5)

+ C2(9T4 + 96T3)
]
+ 6(D2, T6)

(1)
[
32C0T9 − C1(12T7 + 52D1D2)

− 32C2D
2
1

]
+ 48D2(D2, T1)

(1)(2D2
2 − T8) + 6D1D2T4(T8 − 7D2

2 − 42T9)

− 32D1T8(D2, T2)
(1) + 9D2

2T4(T6 − 2T7)− 16D1(C2, T8)
(1)(D2

1 + 4T3)

+ 12D1(C1, T8)
(2)(C1D2 − 2C2D1) + 12D1(C1, T8)

(1)(T7 + 2D1D2)

+ 96D2
2

[
D1(C1, T6t)

(1) +D2(C0, T6)
(1)

]
− 4D3

1D2(D
2
2 + 3T8 + 6T9)

− 16D1D2T3(2D
2
2+3T8) + 6D2

1D
2
2(7T6+2T7)−252D1D2T4T9

}
/(2833),

D̂(ã, x, y) =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6)− (C1, T5)
(1) − 9D2

1C2

+ 6D1(C1D2 − T5)
]
/36,

Ê(ã, x, y) =
[
D1(2T9 − T8)− 3(C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̂ (ã, x, y) =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0(D2, T9)

(1) − 9D2
2T4

+ 288D1Ê − 24(C2, D̂)(2) + 120(D2, D̂)(1) − 36C1(D2, T7)
(1)

+ 8D1(D2, T5)
(1)

]
/144,

K̂(ã, x, y) = (T8 + 4T9 + 4D2
2)/72,

Ĥ(ã, x, y) = (−T8 + 8T9 + 2D2
2)/72,
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as well as the following affine invariants (which serve as bricks for constructing the needed

invariant polynomials):

A2(ã) = (C2, D̂)(3)/12, A17(ã) =
(
((D̂, D̂)(2), D2

)(1)
, D2

)(1)
/64,

A18(ã) =
(
(D̂, F̂ )(2), D2

)(1)
/16, A19(ã) =

(
(D̂, D̂

)(2)
, Ĥ

)(2)
/16,

A20(ã) =
(
(C2, D̂)(2), F̂

)(2)
/16.

Next we present here the list of invariant polynomials which are necessary for the clas-

sification of the configurations of invariant lines for the family QSL3:

K̃(ã, x, y) = 4K̂ ≡ Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
,

M̃(ã, x, y) = (C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
,

Ñ(ã, x, y) = K̃ − 4Ĥ,

D̃(ã, x, y) = D̂,

η(ã) = (M̃, M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
,

θ(ã) = − (Ñ , Ñ)(2)/2 ≡ Discrim
(
Ñ(ã, x, y)

)
;

B1(ã) =Res x

(
C2, D̃

)
/y9 = −2−93−8 (B2, B3)

(4) ,

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, D̃)(3),

B3(ã, x, y) = (C2, D̃)(1) ≡ Jacob
(
C2, D̃

)
,

H1(ã) =−
(
(C2, C2)

(2), C2)
(1), D̃

)(3)
,

H3(ã, x, y) =(C2, D̃)(2),

H4(ã) =
(
(C2, D̃)(2), (C2, D2)

(1)
)(2)

,

H6(ã, x, y) =16N2(C2, D̃)(2) +H2
2 (C2, C2)

(2),

H7(ã) = (Ñ , C1)
(2),

H8(ã) =9
(
(C2, D̃)(2), (D̃,D2)

(1)
)(2)

+ 2
[
(C2, D̃)(3)

]2
,

H9(ã) = − [[D̃, D̃)(2), D̃,
)(1)

, D̃
)(3)

,

H10(ã) =
(
(Ñ , D̃)(2), D2

)(1)
,

H11(ã, x, y) = 8Ĥ
[
(C2, D̃)(2) + 8(D̃,D2)

(1)
]
+ 3

[
(C1, 2Ĥ − Ñ)(1) − 2D1Ñ

]2
,

H13(ã, x, y) =A1A2 −A14 −A15,

H14(ã, x, y) =A2(156A5 − 20A3 − 33A4) + 4(99A1A6 − 5A22 + 42A23 − 21A24),

H15(ã) =
(
(D̃, D̃)(2), H̃

)(1)
,

H17(ã) =2A2
2 − 16A17 − 16A18 + 12A19 − 2A20,

N1(ã, x, y) =C1(C2, C2)
(2) − 2C2(C1, C2)

(2),

N2(ã, x, y) =D1(C1, C2)
(2) −

(
(C2, C2)

(2), C0

)(1)
,

N3(ã, x, y) = (C2, C1)
(1) ,
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N4(ã, x, y) =4 (C2, C0)
(1) − 3C1D1,

N5(ã, x, y) =
[
(D2, C1)

(1) +D1D2

]2 − 4
(
C2, C2

)(2)(
C0, D2

)(1)
,

N6(ã, x, y) =8D + C2

[
8(C0, D2)

(1) − 3(C1, C1)
(2) + 2D2

1

]
.

3 Preliminary results involving the use of polynomial invari-

ants

The following two lemmas reveal the geometrical meaning of the invariant polynomials B1,

B2, B3, θ and Ñ .

Lemma 3.1 ( [9]). For the existence of an invariant straight line in one (respectively 2;

3 distinct) directions in the affine plane it is necessary that B1 = 0 (respectively B2 = 0;

B3 = 0).

Lemma 3.2 ( [9]). A necessary condition for the existence of one couple (respectively, two

couples) of parallel invariant straight lines of a system (2) corresponding to a ∈ R12 is the

condition θ(a) = 0 (respectively, Ñ(a, x, y) = 0).

We remark that the invariant polynomials µi(ã, x, y) (i = 0, 1, . . . , 4) defined earlier

(see page 9) are responsible for the total multiplicity of the finite singularities of quadratic

systems (2). Moreover they detect whether a quadratic system is degenerate or not as

well as the coordinates of infinite singularities that result after the coalescence of finite

singularities with an infinite one. More exactly according to [1, Lemma 5.2] we have the

following lemma.

Lemma 3.3. Consider a quadratic system (S) with coefficients a ∈ R12. Then:

(i) The total multiplicity of the finite singularities of this system is 4−k if and only if for

every i such that 0 ≤ i ≤ k − 1 we have µi(a, x, y) = 0 in R[x, y] and µk(a, x, y) ̸= 0.

In this case the factorization µk(a, x, y) =
∏k

i=1(uix− viy) ̸= 0 over C yields the

coordinates [vi : ui : 0] of points at infinity that have multiplicity greater than one,

this being the result of coalescence of finite and infinite singularities. Moreover the

number of distinct expressions uix − viy in this factorization is less than or equal

to three (the maximum number of infinite singularities of a quadratic system), and

the multiplicity of each one of the expressions uix − viy gives us the number of the

finite singularities of the system (S) that have coalesced with the infinite singular point

[vi : ui : 0].

(ii) Let the point M0(0, 0) be a singular point for the quadratic system (S). Then the point

M0(0, 0) is a singular point of multiplicity k (1 ≤ k ≤ 4) if and only if for every i

such that 0 ≤ i ≤ k − 1 we have µ4−i(a, x, y) = 0 in R[x, y] and µ4−k(a, x, y) ̸= 0.

(iii) The system (S) is degenerate (i.e. gcd(p, q) ̸= constant) if and only if µi(a, x, y) = 0

in R[x, y] for every i = 0, 1, 2, 3, 4.
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On the other hand the invariant polynomials η, M̃ and C2 govern the number of real

and complex infinite singularities. More precisely, according to [18] (see also [10]) we have

the next result.

Lemma 3.4. The number of infinite singularities (real and complex) of a quadratic system

in QS is determined by the following conditions:

(i) 3 real if η > 0;

(ii) 1 real and 2 imaginary if η < 0;

(iii) 2 real if η = 0 and M̃ ̸= 0;

(iv) 1 real if η = M̃ = 0 and C2 ̸= 0;

(v) ∞ if η = M̃ = C2 = 0.

Moreover, the quadratic systems (2), for each one of these cases, can be brought via a linear

transformation to the corresponding case of the following canonical systems (SI)− (SV ):
{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI)

{
ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII)

{
ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SIV )

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

Remark 3.1. In order to describe the various kinds of multiplicity for infinite singular

points we use the concepts and notations introduced in [9]. Thus we denote by “(a, b)”

the ordered couple of a, respectively b where a (respectively b) is the maximum number of

infinite (respectively finite) singularities which can be obtained by perturbation of a multiple

infinite singular point.

Now we define the affine comitants which are responsible for the existence of invariant

lines for a non-degenerate quadratic system (2).

Let us apply a translation x = x′ + x0, y = y′ + y0 to the polynomials p(ã, x, y) and

q(ã, x, y). We obtain p̂(â(ã, x0, y0), x
′, y′) = p(ã, x′ + x0, y

′ + y0), q̂(â(ã, x0, y0), x
′, y′) =

q(ã, x′ + x0, y
′ + y0). Let us construct the following polynomials

Γi(ã, x0, y0) ≡ Res x′
(
Ci

(
â(ã, x0, y0), x

′, y′
)
, C0

(
â(ã, x0, y0), x

′, y′
))
/(y′)i+1,

Γi(ã, x0, y0) ∈ R[ã, x0, y0], (i = 1, 2).

Notation 3.1.

Ẽi(ã, x, y) = Γi(ã, x0, y0)|{x0=x, y0=y} ∈ R[ã, x, y] (i = 1, 2).
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Observation 3.1. We note that the constructed polynomials Ẽ1(ã, x, y) and Ẽ2(ã, x, y) are
affine comitants of systems (2) and are homogeneous polynomials in the coefficients a, . . . , n

and non-homogeneous in x, y and

degã Ẽ1 = 3, deg (x,y) Ẽ1 = 5, degã Ẽ2 = 4, deg (x,y) Ẽ2 = 6.

Notation 3.2. Let Ei(ã, X, Y, Z) (i = 1, 2) be the homogenization of Ẽi(ã, x, y), i.e.

E1(ã, X, Y, Z) = Z5Ẽ1(ã, X/Z, Y/Z), E2(ã, X, Y, Z) = Z6Ẽ2(ã, X/Z, Y/Z)

and H(ã, X, Y, Z) = gcd
(
E1(ã, X, Y, Z), E2(ã, X, Y, Z)

)
in R[ã, X, Y, Z].

The geometrical meaning of these affine comitants is given by the two following lemmas

(see [9]):

Lemma 3.5 ( [9]). The straight line L(x, y) ≡ ux+ vy+w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0)

is an invariant line for a quadratic system (2) if and only if the polynomial L(x, y) is a

common factor of the polynomials Ẽ1(a, x, y) and Ẽ2(a, x, y) over C, i.e.

Ẽi(a, x, y) = (ux+ vy + w)W̃i(x, y) (i = 1, 2),

where W̃i(x, y) ∈ C[x, y].

Lemma 3.6. 1) If L(x, y) ≡ ux + vy + w = 0, u, v, w ∈ C, (u, v) ̸= (0, 0) is an invariant

straight line of multiplicity k for a quadratic system (2) then [L(x, y)]k | gcd(Ẽ1, Ẽ2) in

C[x, y], i.e. there exist Wi(a, x, y) ∈ C[x, y] (i = 1, 2) such that

Ẽi(a, x, y) = (ux+ vy + w)kWi(a, x, y), i = 1, 2.

2) If the line l∞ : Z = 0 is of multiplicity k > 1 then Zk−1 | gcd(E1, E2), in other words

we have Zk−1 | H(a, X, Y, Z).

In what follows the following Lemma will be useful.

Lemma 3.7. The non-singular invariant line at infinity for a non-degenerate quadratic

system has the multiplicity greater or equal to two if and only if the the condition K̃ = 0.

Proof: Considering Lemma 3.6 (see statement 2) we deduce, that the line at infinity of a

quadratic system is of multiplicity > 1 if and only if Z | gcd(E1, E2). In other words Z is a

common factor of the polynomials E1(X,Y, Z) and E2(X,Y, Z) (see Notation 3.2).

Taking into account the definition of the invariant polynomials E1(X,Y, Z) and E2(X,Y, Z)
(see Notations 3.1 and 3.2) for systems (2) we calculate

E1(X,Y, Z) =
1

2
C2(X,Y )K̃(X,Y ) + ϕ1(X,Y )Z + ϕ2(X,Y )Z2 + . . .+ ϕ5(X,Y )Z5,

E2(X,Y, Z) =C2(X,Y )Ψ(X,Y ) + ψ1(X,Y )Z + ψ2(X,Y )Z2 + . . .+ ψ6(X,Y )Z6,

where

C2(X,Y ) =− lX3 + (g − 2m)X2Y + (2h− n)XY 2 + kY 3,

K̃(X,Y ) = 4
[
(gm− hl)X2 + (gn− kl)XY + (hn− km)Y 2

]
≡ 4

[
αX2 + βXY + γY 2

]
,

Ψ(X,Y ) = (2gα+ lβ)X3 +
[
(4h+ 2n)α+ gβ + 4lγ

]
X2Y

+
[
2kα+ (2h+ n)β + 4mγ

]
XY 2 + (kβ + 2nγ)Y 3.

17



Therefore we conclude that the invariant polynomials E1(X,Y, Z) and E2(X,Y, Z) have the
common factor Z if and only if the conditions C2(X,Y )K̃(X,Y ) = C2(X,Y )Ψ(X,Y ) = 0

hold. Since C2 = 0 leads to systems with the line at infinity filled up with singularities (see

Lemma 3.4) clearly the condition C2 ̸= 0 has to be satisfied.

On the other hand we observe that the condition K̃(X,Y ) = 0 implies α = β = γ = 0

and then Ψ(X,Y ) = 0. Therefore we obtain that the condition K̃(X,Y ) = 0 is necessary

and sufficient for a quadratic system to have the invariant line at infinity of multiplicity at

least 2. This completes the proof of Lemma 3.7.

4 The quadratic systems belonging to the family QSL3

As it is mentioned in Introduction some of the configurations of the quadratic systems

in the family QSL3 are determined early in other papers. More exactly in [16] the con-

figurations Config. 3.1–Config. 3.13 are constructed. In a recent published article [5] the

family of systems possessing two parallel invariant lines is considered and the configurations

Config. 3.14–Config. 3.65 are determined.

In this section we complete the investigation of the family QSL3 and prove that there

exists 16 possible new configurations Config. 3.66–Config. 3.81.

First of all we prove some necessary conditions for a quadratic system to belong to the

family QSL3. We have the following lemma.

Lemma 4.1. Assume that a non-degenerate quadratic system belongs to the class QSL3.

Then for this system the conditions B1 = 0 and B3 ̸= 0 haves to be fulfilled.

Proof: According to Lemma 3.1 if for a quadratic system the condition B1 ̸= 0 holds then

this system could not have any invariant affine line going in some direction. On the other

hand if a system belong to the class QSL3 then there either exists at least one invariant

affine line or the line at infinity is triple. However in the second case there must exist a

perturbation such that the perturbed system necessarily possesses at least one invariant

affine line and this means that for this system we must have B1 = 0. So we deduce that

this condition must be satisfied for the non-perturbed system, too.

Therefore we obtain that for a system inQSL3 the condition B1 = 0 have to be satisfied.

In order to complete the proof of Lemma 4.1 we have to show that for a system in QSL3

the condition B3 ̸= 0 is also necessary. We prove the following lemma.

Lemma 4.2. Assume that for a non-degenerate quadratic system the condition B3 = 0

holds. Then this system belongs to the class QSL≥4. Moreover any system in this class could

have a configuration of invariant lines given in Diagram 3 if and only if the corresponding

conditions are satisfied, respectively.

Proof: Assume that for a non-degenerate quadratic system the condition B3 = 0 is fulfilled.

In the articles [9] and [11] the families of quadratic systems possessing invariant line of total

multiplicity at least four are investigated and the corresponding possible configurations of

invariant lines are determined.
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So considering Tables 2 and 4 from [9] as well as Table 2 from [11] it is not too diffi-

cult to convince ourselves that the conditions given in these tables for the corresponding

configurations are equivalent to the respective conditions presented in Diagram 3.

We observe that this diagram gives us a complete partition of the whole set QSL{B3=0}.
This completes the proof of Lemma 4.2 as well as the proof of Lemma 4.1.

4.1 Configurations of systems belonging to the subfamily

QSL3∩ QS2cIL

In paper [2] (see also [19]) the phase portraits of the family of quadratic systems possessing

two complex invariant lines intersecting at a real finite point are considered. We denote

this family by QS2cIL. A result in [2] determined 20 topologically distinct phase portraits.

However the problem of how many configurations of invariant lines could have systems in

the family QS2cIL remains open.

Here we are interested in the configurations of the quadratic systems belonging to the

subfamily QSL3∩ QS2cIL. We prove the following theorem.

Theorem 4.1. An arbitrary non-degenerate quadratic system belongs to the subfamily

QSL3∩ QS2cIL if and only if the conditions η < 0, B2 = 0 and B3Ñ ̸= 0 hold. Moreover

this system possesses the configuration Config. 3.66 if µ0 ̸= 0 and Config. 3.67 if µ0 = 0.

Proof: According to [2, Theorem 1] a non-degenerate quadratic system possesses two com-

plex invariant lines meeting at a finite real point if and only if one of the following two sets

of conditions are satisfied:

(i) η < 0, B2 = 0; (ii) C2 = 0, D > 0.

By [15] quadratic systems with C2 = 0 possess in the finite part of the phase plane

invariant lines of total multiplicity three. Therefore we obtain that a system with C2 = 00

could not belong to the class QSL3. Moreover we deduce that for C2 ̸= 0 the conditions

η < 0 and B2 = 0 are necessary and sufficient for a system to belong to the family QS 2cIL.

Since we are interested in the determinations of the configurations of the quadratic

systems in the subclass QSL3 ∩QS 2cIL we consider that for a non-degenerate quadratic

system the conditions η < 0 and B2 = 0 are satisfied. Thus according to what is mentioned

above we conclude that in order to complete the proof of Theorem 4.1 it is sufficient to

prove that if for a quadratic system we have η < 0 and B2 = 0 then the condition B3Ñ ̸= 0

guarantees that this system belongs to the class QSL3. Moreover we have also to determine

the possible configurations of invariant lines of these systems.

According to [20] if a quadratic system possesses two complex invariant lines intersect-

ing at a real finite singular point then via an affine transformation this system takes the

following form:

dx

dt
= (αx− βy)(ax+ by + c) + k(x2 + y2) ≡ P (x, y),

dy

dt
= (βx+ αy)(ax+ by + c) ≡ Q(x, y)

(3)
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Diagram 3: The configurations of systems in QSL with B3 = 0

where α, β, a, b, c, k are arbitrary real parameters. These systems possess the complex in-

variant lines x± iy = 0 and we calculate

η = −4
[
(k − bβ)2 + a2β2

]2
< 0, B2 = 0, B3 = 3ac2kβ(α2 + β2)(x2 + y2)2.

20



Diagram3 (continuation): The configurations of systems in QSL with B3 = 0

According to Lemma 4.1 for a system (3) to belong to the class QSL3 the condition

B3 ̸= 0 is necessary. The question which appears is the following: which conditions must
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Diagram3 (continuation): The configurations of systems in QSL with B3 = 0

be added in order to get the necessary and sufficient ones?

Providing the conditions η < 0 and B3 ̸= 0 to be fulfilled for a system (3) we examine

what additional conditions could increase the total multiplicity of the invariant lines of this
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system.

Assume that a system (3) possesses invariant lines of total multiplicity exactly four. In

[11] the family of systems belonging toQSL4 has been investigated and in Table 2 necessary

and sufficient conditions for the realization of each one of the possible 46 configurations of

invariant lines for this class are given. Considering Table 2 from [11] we detect that systems

with the condition η < 0 (i.e. having 2 complex and one real infinite singularities) could

possess only one of the following 4 configurations: Config.4.2 and Config.4.6–Config.4.8.

However for all these configurations the condition B3 = 0 has to be satisfied and hence we

get a contradiction to Lemma 4.1.

Thus we conclude that a system (3) could not belong to the class QSL4.

Suppose now that a system (3) possesses invariant lines of total multiplicity at least

five. According to [9] (see Theorem 50, statement (ii)) for having invariant lines of total

multiplicity 6 the condition B3 = 0 is necessary for any quadratic system. So we conclude

that a system (3) could not belong to the class QSL6.

It remains to consider the possibility when a system (3) with η ̸= 0 (i.e. η < 0) and

B3 ̸= 0 belongs to the class QSL5. In this case we consider Table 4 from [9] and we

detect that subject of these conditions we could have the unique configuration Config.5.6.

However to obtain this configuration the condition Ñ = 0 must be satisfied.

Thus we conclude that a system (3) with η < 0 and B3 ̸= 0 belongs to the class QSL3

if Ñ ̸= 0 and to the class QSL5 if Ñ = 0. This means that the conditions provided by

Theorem 4.1 for a quadratic systems to belong to the subclass QSL3∩QS 2cIL are satisfied.

Next we determine the configurations which a system (3) from the class QSL3 could

possess. For this we have to determine the position of the singularities of this system with

respect to the invariant lines.

A straightforward calculation gives us the following finite singularities of systems (3):

M1(0, 0), M2 =
(
− cα

k + aα− bβ
,

cβ

k + aα− bβ

)
, M3,4 =

(
− c

a± ib
,− c

b∓ ia

)
.

Since the condition B3 ̸= 0 implies ackβ ̸= 0 we conclude that the singular points M2 and

M3,4 could not coalesce with M1. Moreover the singular point M2 exists if k+aα− bβ ̸= 0,

otherwise it goes to infinity coalescing with the real infinite singularity.

On the other hand for systems (3) we calculate

µ0 = (a2 + b2)k(k + aα− bβ)(α2 + β2)

and hence for µ0 ̸= 0 these systems possess two real and two complex finite singular points

and we arrive at the configuration given by Config.3.66.

Assume now µ0 = 0. Due to the condition B3 ̸= 0 (i.e. ackβ ̸= 0) we get k = bβ−aα ̸= 0

and hence we calculate

µ1 = c(a2 + b2)(aα− bβ)(α2 + β2)(βx+ αy).

We observe that µ1 ̸= 0 due to the condition ackβ(bβ − aα) ̸= 0. Since µ0 = 0, according

to Lemma 3.3 one finite singular point went to infinity and coalesced with the infinite real

singularity N1[α,−β, 0] (see the factor of the invariant polynomial µ1(x, y)). In this case

we arrive at the configuration given by Config.3.67.

As all the cases are examined we conclude that Theorem 4.1 is proved.
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4.2 Configurations of quadratic systems that are limit points of the

family of Lotka-Volterra systems

It turn out that a quadratic system could have invariant lines of total multiplicity 3 which

are not included in one of the following three classes: (i) Lotka-Volterra systems, or (ii)

systems with two parallel invariant lines, or (iii) systems with two complex lines meeting

at a finite singularity.

Indeed such kind of configurations could be obtained from an L-V system using the

following two possibilities:

(α) Two simple invariant affine lines of a L-V system belonging to the subclass QSL3

coalesced and we obtain a double invariant affine line and a multiple real singular point at

infinity.

(β) One (or two) simple invariant affine lines of an L-V system in QSL3 coalesced with

infinite line Z = 0 obtaining a double (or a triple) infinite invariant line.

Since we are in the class of L-V systems by Lemma 3.1 it is clear that the condition

B2 = 0 must be satisfied in both these cases. Moreover in the case (α) the condition η = 0

has to be fulfilled, because we have a double (or triple) singular point at infinity.

On the other hand considering Lemma 3.7 we conclude that in the case (β) the condition

K̃(a, x, y) = 0 is necessary.

In what follows assuming the condition B2 = 0 to be fulfilled we examine each one of

the cases we mentioned above and determine the possible configurations of invariant lines

as well as the corresponding affine invariant conditions for their realization.

(α) In this case for a quadratic system the condition η = 0 has to be satisfied. We

examine two cases: M̃ ̸= 0 and M̃ = 0.

1: The case M̃ ̸= 0. According to Lemma 3.4 a quadratic system could be brought via

a linear transformation to the canonical form (SIII), i.e. we have to examine the family

systems
ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2.
(4)

For these systems calculations yield:

θ = 8h2(1− g), µ0 = gh2, C2 = x2y, Ñ = (g2 − 1)x2 + 2h(g − 1)xy + h2y2. (5)

Since C2 = x2y we conclude that these systems possess two infinite singularities: N1[1 : 0 : 0]

(simple) and N2[0 : 1 : 0] (double). We discuss two subcases: θ ̸= 0 and θ = 0.

1.1: The subcase θ ̸= 0. The condition θ ̸= 0 yields h(g−1) ̸= 0 and we may consider

d = e = 0 due to a translation. Moreover, since h ̸= 0 we may assume h = 1 due to the

rescaling y → y/h. Thus we obtain the family of systems

ẋ = a+ cx+ gx2 + xy, ẏ = b+ fy + (g − 1)xy + y2,

for which we calculate Coefficient[B2, y
4] = −648a2. Hence the necessary condition B2 = 0

yields a = 0 and then

B2 = −648b(b+ c2 − cf)(g − 1)2x4, H4 = 48(b+ c2 − cf), θ = 8(1− g),

B3 = −3
[
b(g − 1)2x2 − (b+ c2 − cf)y2

]
x2
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We shall consider two possibilities: H4 ̸= 0 and H4 = 0.

1.1.1: The possibility H4 ̸= 0. In this case the condition B2 = 0 yields b = 0 and

we arrive to the family of systems

ẋ = x(c+ gx+ y), ẏ = y[f + (g − 1)x+ y],

possessing the invariant lines x = 0 and y = 0. So we obtain LV -systems, i.e. no new

configurations could de detected.

1.1.2: The possibility H4 = 0. Then we have b = c(f − c) and this leads to the

family of systems

ẋ = x(c+ gx+ y), ẏ = c(f − c) + fy + (g − 1)xy + y2, (6)

possessing the invariant line x = 0 which is double because H(X ,Y,Z) = X2 (see Notation

3.2). So, these systems possess invariant lines of total multiplicity at least 3. However for

these systems the condition B3 = B3 = 3c(c− f)(g − 1)2x4 ̸= 0 is necessary and therefore

by Lemma 3.1 we could not have an additional invariant line in the direction y = 0.

Thus we deduce that in the case B3 ̸= 0 systems (6) possess invariant lines of total

multiplicity exactly 3. More exactly we have a double invariant affine line x = 0, on which

there are located two finite singularities: M1(0,−c) and M2(0, c − f). The third finite

singularity M3(x3, y3) of systems (6) has the coordinate

x3 = −cg + c− fg

g
, y3 = (c− f)g.

Since for systems (6) we have µ0 = g we conclude that for µ0 ̸= 0 all the finite singularities

are on the plane and this means that one of the mentioned finite singularities is double.

We claim that the double singularity is M1(0,−c). Indeed after translation of the origin of

coordinates to the singular point M1 we obtain the systems

ẋ = x(gx+ y), ẏ = c(1− g)x+ (f − 2c)y + (g − 1)xy + y2 (7)

possessing a double singular point at the origin because the determinant of the linear part

equals zero. So these systems have the finite singular points

M1(0, 0), M2(0, 2c− f), M3

(
− (c+ cg − fg)/g, c+ cg − fg

)

and we observe that M3 goes to infinity if g = 0. Moreover it is clear that M2 coalesces

with M1 if 2c− f = 0 and M3 coalesces with M1 if c+ cg − fg = 0.

On the other hand for systems (7) calculations yield:

µ0 = g, H3 = 8(2c− f)(c+ cg − fg)x2, H13 = −288c(2c− f)2(g − 1),

B3 = 3c(c− f)(g − 1)2x4

and we observe that due to B3 ̸= 0 the condition H13 = 0 is equivalent to f = 2c. So we

consider two cases: µ0 ̸= 0 and µ0 = 0.
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1.1.2.1: The case µ0 ̸= 0. Then g ̸= 0 and the finite singularity M3 remains in the

finite plane. So if H3 ̸= 0 none of the singular points could coalesced and we arrive at the

configuration Config. 3.68 (see Figure ??)

Assume now H3 = 0, i.e. (2c− f)(c+ cg − fg) = 0. Then evidently we obtain Config.

3.69 if H13 ̸= 0 and Config. 3.70 if H13 = 0.

We point out that all three finite singularities could not coalesced due to B3 ̸= 0 (i.e.

c ̸= 0).

1.1.2.2: The case µ0 = 0. Then g = 0 and systems (7) become

ẋ = xy, ẏ = cx+ (f − 2c)y − xy + y2

possessing the following two finite singularities: M1(0, 0) and M2(0, 2c − f). Since for the

above systems we have µ0 = µ1 = 0 and µ2 = −cy ̸= 0 (otherwise we get degenerate

systems), according to Lemma 3.3 the singular point M3 of systems (7) has gone to infinity

and coalesced with the infinite singular point N1[1 : 0 : 0] which becomes of multiplicity 2

of the type (1, 1).

On the other hand the finite singularity M2 could coalesce with M1 if the condition

f = 2c holds. For the above systems we calculate

B3 = 3c(c− f)x4 ̸= 0, H3 = 8c(2c− f)x2

and therefore we arrive at the configuration Config. 3.71 if H3 ̸= 0 and Config. 3.72 if

H3 = 0.

1.2: The subcase θ = 0. Considering (5) this condition gives h(g − 1) = 0 and since

µ0 = gh2 we examine two possibilities: µ0 ̸= 0 and µ0 = 0.

1.2.1: The possibility µ0 ̸= 0. Then h ̸= 0 and hence the condition θ = 0 yields

g = 1. Therefore we may consider h = 1 due to the rescaling y → y/h and d = f = 0 due

to a translation. Thus we obtain the family of systems

ẋ = a+ cx+ x2 + xy, ẏ = b+ ex+ y2,

for which we have Coefficient[B2, y
4] = −648a2 and therefore the condition B2 = 0 implies

a = 0. Then we calculate

B2 = −648(b+ c2)e2x4, H7 = −4e.

and clearly if e = 0 (i.e. H7 = 0) then the above systems with a = e = 0 possess three

invariant affine lines x = 0 and y2+b = 0. Therefore we could not obtain new configurations

apart from the ones already known.

Assuming H7 ̸= 0 we get the conditions b = −c2 and this leads to the family of systems

ẋ = x(c+ x+ y), ẏ = −c2 + ex+ y2,

possessing the invariant line x = 0 which is double because H(X ,Y,Z) = X2 (see Notation

3.2). These systems have three finite singularitiesM1(0,−c),M2(0, c) andM3(−2c−e, c+e).
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We observe that the singular point M1 is double because after the translation (x, y) →
(x, y + c) we arrive at the systems

ẋ = x(x+ y), ẏ = ex− 2cy + y2, (8)

possessing a double singularity M1(0, 0) at the origin of coordinates (since the determinant

of linear part vanishes) and two elemental singularities M2(0, 2c) and M3(−2c− e, 2c+ e).

It is clear that in the case e = −2c the singular point M3 coalesces with the double point

M1 whereas for c = 0 the singularity M2 coalesces with M1.

On the other hand for the above systems we calculate

B3 = −3e2x4, H3 = 16c(2c+ e)x2, H13 = 2c2e.

and due to B3 ̸= 0 (i.e. e ̸= 0), by Lemma 3.1 systems (8) could not possess invariant lines

in the direction y = 0. Therefore we deduce that in this case systems (8) possess invariant

lines of total multiplicity 3.

Thus considering the condition H7 ̸= 0 (i.e. e ̸= 0) it is not to difficult to determine

that we get the configuration Config. 3.68 if H3 ̸= 0; Config. 3.69 if H3 = 0 and H13 ̸= 0,

and Config. 3.70 if H3 = H13 = 0.

1.2.2: The possibility µ0 = 0. Considering (5) we get h = 0 and therefore for

systems (4) we obtain Ñ = (g2 − 1)x2.

So we discuss two cases: Ñ ̸= 0 and Ñ = 0.

1.2.2.1: The case Ñ ̸= 0. Then g − 1 ̸= 0 and assuming e = f = 0 (due to a

translation) we arrive at the systems

ẋ = a+ cx+ dy + gx2, ẏ = b+ (g − 1)xy,

for which we calculate

H7 = 4d(g2 − 1), Ñ = (g2 − 1)x2, Coefficient[B2, y
4] = −648d4g2.

We observe that for d = 0 the above systems possess two parallel invariant lines a + cx +

gx2 = 0 and hence no new configurations could be obtained in this case.

Since Ñ ̸= 0 we obtain that the condition d = 0 is equivalent to H7 = 0 and in what

follows we assume H7 ̸= 0. Then the condition B2 = 0 implies g = 0 and then we obtain

B2 = −648bcdx4, H7 = −4d, µ0 = µ1 = 0, µ2 = −cdxy

and we discuss two subcases: µ2 ̸= 0 and µ2 = 0.

1.2.2.1.1: The subcase µ2 ̸= 0. Then we have c ̸= 0 and the condition B2 = 0

gives b = 0 and we obtain the family of systems

ẋ = a+ cx+ dy, ẏ = −xy, (9)

possessing the invariant line y = 0. Moreover for these systems we calculate H(X ,Y,Z) =

Y Z and by Lemma 3.6 we deduce that the infinite invariant line is double. In other words

we have invariant lines of total multiplicity 3.
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Since µ0 = µ1 = 0 and µ2 = −cdxy ̸= 0, according to Lemma 3.3 we deduce that

two finite singular points have gone to infinity and coalesced with infinite singular points

N1[1 : 0 : 0] and N2[0 : 1 : 0], respectively. So at infinity we get two multiple singularities

of multiplicities (1, 1) and (2, 1) (see Remark 3.1), correspondingly.

On the other hand due to µ2 ̸= 0 (i.e. cd ̸= 0) systems (9) possess two finite singularities

M1(0,−a/d) and M1(−a/c, 0) both simple (i.e. of multiplicity one). We observe that M2

is located on the invariant line y = 0 and these singularities coalesce if and only if a = 0.

Since this condition is captured by the invariant polynomial H9 = −576a2c2d2 we arrive

at the configuration Config. 3.73 if H9 ̸= 0 and Config. 3.74 if H9 = 0.

1.2.2.1.2: The subcase µ2 = 0. Since d ̸= 0 (due to H7 ̸= 0) we obtain c = 0

and this leads to the systems

ẋ = a+ dy, ẏ = b− xy,

for which we have

B2 = 0, B3 = −3bx4, H7 = −4d ̸= 0, µ0 = µ1 = µ2 = 0, µ3 = adxy2.

For for these systems we calculate H(X ,Y,Z) = Z2 and by Lemma 3.6 we deduce that the

infinite invariant line is triple, i.e. we have invariant lines of total multiplicity 3. It is clear

that we remain in this class due to the condition B3 ̸= 0.

It µ3 = adxy2 ̸= 0 then by Lemma 3.3 we deduce that two finite singular points have

gone to infinity and coalesced with the infinite singularity N1[1 : 0 : 0] producing a triple

point of the multiplicity (1, 2). At the same time one finite singularity has coalesced with

N2[0 : 1 : 0] and we obtain a triple infinite singularity of multiplicity (2, 1). As a result we

obtain the configuration Config. 3.75.

Assume now µ3 = 0. Then due to H7 ̸= 0 (i.e. d ̸= 0) we get a = 0 and hence we arrive

at the systems

ẋ = dy, ẏ = b− xy,

for which we have

B2 = 0, B3 = −3bx4 ̸= 0, H7 = −4d ̸= 0, µ0 = µ1 = µ2 = µ3 = 0, µ4 = −bd2xy3.

We observe that µ4 = −bd2x ̸= 0 (due to B3H7 ̸= 0) and therefore according to Lemma

3.3 in the same manner as it was described above these systems possess at infinity the

singularities N1[1 : 0 : 0] and N2[0 : 1 : 0] of multiplicities (2, 1) and (1, 3), respectively. In

this case we obtain the configuration Config. 3.76.

1.2.2.2: The case Ñ = 0. In this case g2 − 1 ̸= 0 and since for systems (4) with

h = 0 we have K̃ = 2g(g − 1)x2 we consider two subcases: K̃ ̸= 0 and K̃ = 0.

1.2.2.2.1: The subcase K̃ ̸= 0. Then g ̸= 1 and the condition Ñ = 0 gives

g = −1. Then we may assume in systems (4) e = f = 0 and we arrive at the systems

ẋ = a+ cx+ dy − x2, ẏ = b− 2xy.
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for which we have Coefficient[B2(a, x, y), y
4] = −648d4y4 and hence the condition B2 = 0

implies d = 0. However in this case we obtain two parallel invariant lines a + cx − x2 = 0

and this class of systems is already investigated in [5].

1.2.2.2.2: The subcase K̃ = 0. Then the condition Ñ = 0 gives g = 1 and we

may assume c = 0 in systems (4) with h = 0 ad g = 1. This leads to the family of systems

ẋ = a+ dy + x2, ẏ = b+ ex+ fy

for which we have B2 = −648d4y4 Therefore the condition B2 = 0 yields d = 0 obtaining

two invariant affine lines x2+ a = 0. So we get two parallel invariant lines and we conclude

that in this case we also could not have new configurations.

2: The case M̃ = 0. According to Lemma 3.4 a quadratic system in this class could be

brought via a linear transformation to the canonical form (SIV ), i.e. we have to examine

the family systems
ẋ =a+ cx+ dy + gx2 + hxy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,
(10)

for which calculations yield:

θ = 8h3, µ0 = −h3, C2 = x3.

Since C2 = x3 we conclude that these systems possess only one infinite singularity N1[0 :

1 : 0] which is triple. We discuss two subcases: θ ̸= 0 and θ = 0.

2.1: The subcase θ ̸= 0. Then h ̸= 0 and we may assume c = d = 0 due to a

translation. So we obtain the systems

ẋ =a+ gx2 + hxy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,

for which we calculate Coefficient[B2, y
4] = −3888a2h4x2y2 and therefore the condition

B2 = 0 implies a = 0 due to h ̸= 0. In this case we obtain B2 = −648b2h4x4 = 0 which

implies b = 0 and we get the systems

ẋ =x(gx+ hy), ẏ = ex+ fy − x2 + gxy + hy2. (11)

For these systems following Notation 3.2 we calculate H(X ,Y,Z) = X2, i.e. by Lemma 3.6

the invariant line x = 0 of systems (11) has the multiplicity 2.

On the other hand due to θ ̸= 0 (i.e. h ̸= 0) the above systems possess the following

three finite singularities:

M1(0, 0), M2(0,−f/h), M3((eh− fg)/h, g(fg − eh)/h2).

It is clear that M1 is double because the first equation of systems (11) does not have linear

terms (nor constant one).

For systems (11) we have B2 = 0 and by Lemma 4.1 in order to remain in the class

QSL3 the condition B3 = −3f(fg − eh)x4 ̸= 0 is necessary.
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Then considering the information pointed out above about the multiplicity of finite and

infinite singularities of systems (11) we arrive at the configuration Config. 3.77.

2.2: The subcase θ = 0. This condition gives h = 0 and then for systems (10) we

have

Coefficient[B2, x
2y2] = −3888d4g2, Ñ = g2x2.

We observe that in the case Ñ ̸= 0 (i.e. g ̸= 0) the condition B2 = 0 implies d = 0 and

then systems (10) possess two parallel invariant lines gx2 + cx + a = 0. Since this family

of systems was already investigated we have to impose the condition Ñ = 0 which yields

g = 0. However in this case we get B2 = −648d4x4 = 0, i.e. d = 0 and again we conclude

that no new configurations could be obtained in this case.

Thus in the case M̃ = 0 and B2 = 0 we have exactly one new configuration Config.

3.77 and for this it is necessary θ ̸= 0.

(β) It was mentioned earlier (see page 24) that in this case for a quadratic system

apart from the condition B2 = 0 the condition K̃ = 0 has to be satisfied. According to

Lemma 3.7 the infinite invariant line is of multiplicity at least two. This case contains both

possibilities: either Z = 0 is double and we have an additional invariant affine line or Z = 0

is triple. Clearly in both cases we are in the class QSL3.

In the previous case (α) when η = 0 we have examined all the possibilities when the

invariant line Z = 0 is either simple or double or triple. So we have to investigate the cases

η < 0 and η > 0 when in addition we have the multiple invariant line at infinity.

1: The case η < 0. We prove the following lemma.

Lemma 4.3. If for a quadratic system the conditions η < 0 and B2 = K̃(a, x, y) = 0 hold,

than this system possesses invariant lines af total multiplicity at least 4.

Proof: Assume that for a quadratic system the condition η < 0 holds. Then according to

Lemma 3.4 a quadratic system in this class could be brought via a linear transformation to

the canonical form (SII), i.e. we have to examine the family systems

ẋ =a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ =b+ ex+ fy − x2 + gxy + hy2,

for which calculations yield:

C2 = x(x2 + y2), K̃ = 2(1 + g2 + h)x2 + 4ghxy + 2h(1 + h)y2.

Evidently the condition K̃ = 0 is equivalent to g = 0 and h = −1 and therefore applying

an additional translation which gives e = f = 0 we get the family of systems

ẋ =a+ cx+ dy, ẏ = b− x2 − y2.

For these systems we have

B2 = −648
[
16a2 + (c2 + d2 − 4b)2

]
x4 = 0 ⇒ a = 0, b = (c2 + d2)/4
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and we arrive at the systems

ẋ =cx+ dy, ẏ = (c2 + d2)/4− x2 − y2

which possess the double invariant line Z = 0 and two complex invariant affine lines

(c± id∓ 2ix+ 2y) = 0.

So the above systems have invariant lines of total multiplicity at least four and this com-

pletes the proof of Lemma 4.3.

2: The case η > 0. By Lemma 3.4 a quadratic system in this class could be brought

via a linear transformation to the canonical form (SI), i.e. we have to examine the family

systems
ẋ =a+ cx+ dy + gx2 + (h− 1)xy,

ẏ =b+ ex+ fy + (g − 1)xy + hy2,
(12)

for which we calculate:

C2 = xy(x− y), K̃ = 2g(g − 1)x2 + 4ghxy + 2h(h− 1)y2.

Therefore the condition K̃ = 0 implies gh = g(g − 1) = h(h − 1) = 0. Evidently we can

assume g = 0, otherwise we apply the change

(x, y, a, b, c, d, e, f, g, h) 7→ (y, x, b, a, f, e, d, c, h, g) (13)

which conserves systems (12). In this case we have either g = h = 0 or g = 0 and h = 1.

We claim that the second case can be reduced to the first one via a transformation. Indeed

assuming g = h = 0 we get the family of systems

ẋ =a+ cx+ dy − xy, ẏ = b+ ex+ fy − xy (14)

whereas for g = 0 in the case h = 1 we arrive at the systems

ẋ =a+ cx+ dy, ẏ = b+ ex+ fy − xy + y2 (15)

Then applying the linear transformation x1 = y, y1 = y − x to systems (15) we arrive at

the family of systems

ẋ1 = a′ + c′x1 + d′y1 − x1y1, ẏ1 = b′ + e′x1 + f ′y1 − x1y1

where

a′ = b, c′ = e+ f, d′ = −e, b′ = b− a, e′ = e+ f − c− d, f ′ = c− e.

Comparing the above system with (14) we deduce that our claim is proved.

Thus g = h = 0 and for systems (14) we calculate

B2 = −648(a+ cd)(b+ ef)(x− y)4 = 0.
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Due to the change (13) we may assume b = −ef . Then we arrive at the systems

ẋ =a+ cx+ dy − xy, ẏ = (f − x)(y − e), (16)

which besides the double infinite invariant line Z = 0 possess the invariant affine line y = e.

We point out that for these systems we have

B3 = 3(a+ cd)(x− y)2y2, H7 = −4(c+ d− e− f)

and by Lemma 4.1 the condition B3 ̸= 0 has to be satisfied. We claim that in order to be in

the class QSL3 we must force also the condition H7 ̸= 0 to be fulfilled. Indeed supposing

H7 = 0 we obtain f = c+ d− e and we arrive at the family of systems

ẋ = a+ cx+ dy − xy, ẏ = (c+ d− e− x)(y − e)

possessing the following two invariant affine lines:

y = e, a+ ce+ de− e2 + (c− e)(x− y) = 0,

i.e. the above systems belong to the class QSL≥4 and this completes the proof of our claim.

Next we examine configurations of invariant lines for the family of systems (16) in the

case B3H7 ̸= 0. We determine that these systems possess the singular points Mi(xi, yi)

with the coordinates:

x1 = f, y1 = −a+ cf

d− f
; x2 = −a+ de

c− e
, y2 = e

and evidently these finite singularities exist if and only if (c− e)(d− f) ̸= 0. Moreover the

singularity M2 is located on the invariant line y = e of systems (16).

On the other hand for systems (16) we calculate

µ0 = µ1 = 0, µ2 = −(c− e)(d− f)xy, H9 = −576(c− e)2(d− f)2(a+ de+ cf − ef)2.

and hence if µ2 ̸= 0 we have two finite singularities M1 and M2, where M2 is located on the

invariant line y = e. Moreover we observe that in the case a+de+ cf − ef = 0 the singular

point M1 coalesced with M2 obtaining the double singularity M1,2(f, e) on the invariant

line y = e. We examine two possibilities: µ2 ̸= 0 and µ2 = 0.

2.1: The possibility µ2 ̸= 0. In this case the condition H9 = 0 is equivalent to a +

de + cf − ef = 0. Then taking into account the factorization of the invariant polynomial

µ2(x, y) by Lemma 3.3 we obtain that at infinity both the singular points N1[1 : 0 : 0] and

N2[0 : 1 : 0] are double of the type (1, 1). Therefore we arrive at the configuration Config.

3.78 if H9 ̸= 0 and at Config. 3.79 if H9 = 0.

2.2: The possibility µ2 = 0. This condition implies (c− e)(d− f) = 0 and since we have

µ3 = −(c− e)(a− de+ cf + ef)x2y + (d− f)(a+ de− cf + ef)xy2

by Lemma 3.3 we deduce that for d = f the finite singularity M1 coalesced with infinite

singular point N1[1 : 0 : 0] which becomes of the multiplicity (1, 2). This leads to the

configuration Config. 3.80.
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In the case c = e the finite singularity M2 coalesced with infinite singular point N1[0 :

1 : 0] located at the ”end” of the invariant affine line y = e and we get the configuration

Config. 3.81.

On the other hand for systems (16) we have

H17 = 9(a+ cd)(c− e)2

and therefore in the case µ2 = 0 (i.e. (c− e)(d− f) = 0) we get d = f if H17 ̸= 0 (Config.

3.80 ) and we obtain c = e if H17 = 0 (Config. 3.81 ).

We point out that we could not have simultaneously d = f and c = e because in this

case we get H7 = −4(c+ d− e− f) = 0 and this contradicts our assumption H7 ̸= 0.

On the other hand in the case d = f we obtain

µ3 = (e− c)(a+ cf)x2y, B3 = 3(a+ cf)(x− y)2y2, H7 = 4(e− c)

whereas for c = e we have

µ3 = (d− f)(a+ de)xy2, B3 = 3(a+ de)(x− y)2y2, H7 = −4(d− f).

We observe that in both cases the condition B3H7 ̸= 0 implies µ3 ̸= 0 and therefore we

could not have other new configurations in the case under consideration.

It remains to show that i) the 16 new configurations are distinct among themselves and

ii) that they are distinct from all the other 65 configurations.

We first show i). First we split these 16 configurations in four subsets with distinct

geometrical properties:

a) Two configurations with complex invariant affine lines: Config. 3.66 and Config.

3.67 ;

b) Six configurations with the line at infinity double: Config. 3.73, Config. 3.74 and

Config. 3.78–Config. 3.81 ;

c) Six configurations with the unique invariant affine line which is double: Config. 3.68–

Config. 3.72 and Config. 3.77 ;

d) Two configurations with the line at infinity triple: Config. 3.75 and Config. 3.76.

We now prove that each of these four subsets has distinct configurations.

1: The group a). The two configurations in this group are of course distinct from all the

other 14 new configurations because the affine invariant lines are complex. They are also

distinct from one another because the multiplicities of the unique singular point at infinity

are different.

2: The group b). The six configurations in this group are distinguished by the number of

the singular points at infinity, by their multiplicities and by the multiplicities of the singular

points on the invariant affine line.

3: The group c). The six configurations in this group are clearly distinguished by the

number of singularities on the double invariant line as well as their multiplicities.
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4: The group d). The two configurations in this group are distinguished by the multiplicities

of the singular points on this triple line. In Config. 3.75 we have two such singularities each

triple while in Config. 3.76 we have two such singular points, one triple and one quadruple.

Entirely similar arguments apply also for the proof of ii).
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