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WELL-POSEDNESS FOR THE CONTINUITY EQUATION

FOR VECTOR FIELDS WITH SUITABLE MODULUS OF

CONTINUITY

ALBERT CLOP, HEIKKI JYLHÄ, JOAN MATEU, AND JOAN OROBITG

Abstract. We prove well-posedness of linear scalar conservation laws
using only assumptions on the growth and the modulus of continuity of
the velocity field, but not on its divergence. As an application, we obtain
uniqueness of solutions in the atomic Hardy space, H1, for the scalar
conservation law induced by a class of vector fields whose divergence is
an unbounded BMO function.

1. Introduction

The scalar continuity equation

(1)

{
d
dt ρ+ div(b ρ) = 0

ρ(0, ·) = ρ0

appears in many conservation phenomena in nature. Among the most rep-
resentative ones, we mention the so called aggregation equation (see for
instance [8]), which describes the time evolution of an active scalar ρ(t, ·)
with initial state ρ0, under a velocity field

b(t, ·) = K ∗ ρ(t, ·).
The dependence of b with respect to the unknown ρ(t, ·) makes the aggrega-
tion equation nonlinear, while the analytic nature of the kernel K = ∇N (N
is the Newtonian potential) gives it a gradient flow structure. In the present
paper, though, we omit both nonlinearities and gradient flow structure, and
focus our attention on much simpler linear case.

It is known by the so-called superposition principle (see for instance [3])
that if a vector field b admits a unique flow φ of trajectories t 7→ φt(x) then
non-negative solutions to (1) are uniquely determined by ρ0. For this reason,
in the present paper we focus on the much more subtle question of signed
solutions.

Having a mass conservation structure, one may think that continuity equa-
tions have L1 as the natural function space for solutions. It is then reason-
able to think its adjoint equation, also known as transport equation,

{
d
dt ω + b · ∇ω = 0,

ω(0, ·) = ω0.
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in the L∞ setting. Indeed, the classical theory by DiPerna and Lions [16],
together with Ambrosio’s more recent developments [1], provides an ex-
istence, uniqueness and stability theory for solutions u ∈ L∞(0, T ;L∞)
for any Sobolev vector field b which, among other assumptions, satisfies
div(b) ∈ L∞. There is, though, an increasing interest in removing both
boundedness assumptions on the divergence [11, 12, 13, 15, 21] as well as
on the datum [14]. In this setting, the Euler system of equations deserves a
special mention. Its scalar formulation in the plane,

(2)
dω

dt
+ v · ∇ω = 0, where v(t, ·) =

i

2πz
∗ ω(t, ·),

has the structure of a nonlinear transport equation, together with the initial
condition v(0, ·) = i

2πz ∗ ω(0, ·). After Yudovich’s proof of global existence

and uniqueness of solutions ω ∈ L∞(0, T ;L∞) for ω0 ∈ L1 ∩ L∞ [28], there
has been many attempts to understand the case of unbounded vorticities.
Particular attention is devoted to spaces that stay close to BMO, the space
of functions of bounded mean oscillation, which arises naturally since it con-
tains the image of L∞ under any Calderón-Zygmund singular integral op-
erator. It is conjectured that well-posedness of (2) fails in BMO. Also,
strong ill-posedness has been proven in certain Sobolev spaces included in
BMO [9]. However, there exist classes of unbounded vorticities for which
(2) is well-posed [6, 7]. In a similar way, the present paper deals with the
well-posedness of (1) in the atomic Hardy space H1, which is the predual
of BMO, and which consists of L1 functions having L1 image under any
Calderón-Zygmund operator.

Cauchy problems for the linear continuity equation with non-smooth ve-
locity fields were successfully treated with the DiPerna-Lions scheme and
the notion of renormalized solution, as well as the more recent extensions
by Ambrosio in the BV setting. In both approaches, the starting point
is the classical Cauchy-Lipschitz theory, which allows to write the solution
ρ = ρ(t, x) of

(3)

{
d
dt ρ+ div(b ρ) = 0

ρ(0, ·) = ρ0

as the adjoint composition operator,

(4) ρ(t, x) = ρ0 ◦ φ−1
t (x) J(x, φ−1

t )

where φt : Rn → Rn is the flow generated by the velocity field b,

(5)

{
φ̇t(x) = b(t, φt(x)),

φ0(x) = x,

and J(x, φ−1
t ) denotes the jacobian determinant of the inverse flow φ−1

t at
the point x, at least for smooth enough b. Abusing of the classical mass
transport notation, one could equivalently write ρ(t, ·) = (φt)]ρ0. Towards
finding explicit solutions ρ ∈ L∞(0, T ;H1(Rn)) of the problem (3) for a
given ρ0 ∈ H1(Rn), there are two things to be analyzed. First, describing the
class Q of diffeomorphisms φt under which (4) defines a bounded operator in
H1(Rn). Second, describing the class of velocity fields b such that (5) has a
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solution φt that falls into Q. Both questions drive us naturally to Reimann,
who partially solved them both in two papers in the 70’s [23, 22]. In the
first one, quasiconformality was found to be the fundamental notion. In the
second, uniform bounds for the anticonformal part of Db were proven to be
enough. Let us recall that the anticonformal part of Db is, by definition,

SAb(t, x) =
Db(t, x) +DT b(t, x)

2
− divb(t, x)

n
In,

where In denotes the n-dimensional identity matrix.

Theorem 1. Let b : [0, T )×Rn → Rn be a vector field, b ∈ L1(0, T ;W 1,1
loc (Rn)),

such that SAb ∈ L1(0, T ;L∞(Rn)). Assume also that

|b(t, x)|
1 + |x| log(e+ |x|) ∈ L

1(0, T ;L∞(Rn)).

For every h0 ∈ H1(Rn), the problem

(6)

{
∂th+ div(bh) = 0 in (0, T )× Rn

h(0, ·) = h0 in Rn.

admits a unique weak solution h ∈ L∞(0, T ;H1(Rn)).

The essential point for existence is the fact that quasiconformal maps trans-
port boundedly measures with H1(Rn) density into themselves. For this, we
rely on previous results by Reimann [23, 14] and Fefferman’s H1 − BMO
duality.

In the proof of uniqueness in Theorem 1, most of the available literature
cannot be used, due to the unboundedness of div(b). However, we remark
two exceptions. First, a work by Ambrosio - Bernard [2], where uniqueness
is obtained from diagonal modulus of continuity assumptions on b, together
with global boundedness. Unfortunately, this was not enough for proving
Theorem 1, which includes many unbounded vector fields. We found a sec-
ond exception in a paper by Seis [25], which provides a detailed stability
estimate for solutions u ∈ L1(0, T ;Lq(Rn)) of continuity equations with a

velocity field b ∈ W 1,p
loc (Rn;Rn), 1

p + 1
q = 1, p ∈ (1,∞]. It turns out that a

modification of the argument in [25] brings the following uniqueness result
for solutions in L1(0, T ;L1(Rn)) (actually a more general one, see Section 4
for details).

Proposition 2. Let b : [0, T ]× Rn → Rn be a vector field. Assume that

(A1) |b(t, x)| ≤ C(1 + |x|),
and that

(A2) |b(t, x)− b(t, y)| ≤ C |x− y| log(e+ 1/|x− y|),
of all x, y ∈ Rn and almost every t ∈ [0, T ]. If ρ0 ∈ L1(Rn), then the Cauchy
problem {

∂tρ+ div(bρ) = 0 in (0, T )× Rn
ρ(0, ·) = ρ0 in Rn

has at most one weak solution ρ ∈ L1(0, T ;L1(Rn)).
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The above result still does not provide a complete proof for uniqueness in
Theorem 1. Indeed, there are vector fields b admissible for Theorem 1 for
which (A1) and (A2) may both fail at the same time. It is worth mention-
ing too that existence of solutions may fail in the setting of Proposition 2,
since flows arising from the above velocity fields b do not preserve Lebesgue
measurable sets in general. See [11, 12, 13] for optimal conditions in this
direction. In particular, these flows could move an initial datum ρ0 away
from L1(Rn) and transform it into a non absolutely continuous measure.
It is then natural to look at the case where ρ(t, ·) belongs to the space of
signed Borel measures on Rn with finite total variation, which is denoted by
M(Rn). It turns out that this is the right choice for a full well-posedness
theorem.

Theorem 3. Let b : [0, T ]×Rn → Rn be a vector field such that the following
two conditions hold: There exists a continuous and nondecreasing function
G : [0,∞)→ (0,∞) satisfying

´∞
r

ds
G(s) =∞ for some r > 0 such that

(B1) sup
x∈Rn

|b(t, x)|
G(|x|) ∈ L

∞(0, T ),

and there exists a continuous and nondecreasing function ω : [0,∞)→ [0,∞)
satisfying

´ r
0

ds
ω(s) =∞ for some r > 0 such that

(B2) sup
x,y∈B(0,R)

|b(t, x)− b(t, y)|
ω(|x− y|) ∈ L∞(0, T ).

for any radius R > 0. Then for any ρ0 ∈ M(Rn) there exists a unique
solution (as defined in Definition 4) ρ ∈ L1(0, T ;M(Rn)) for the Cauchy
problem

(7)

{
∂tρ+ div(bρ) = 0 in (0, T )× Rn

ρ(0, ·) = ρ0 in Rn.

Moreover, this solution is of the form ρ(t, ·) = (φt)]ρ0, where φt is the flow
of the vector field b.

It is worth mentioning that Theorem 3 holds under slightly more general-
ity. Namely, if one further knows that ρ ∈ L∞(0, T ;M(Rn)), then unique-
ness still holds if one replaces L∞(0, T ) by L1(0, T ) in both (B1) and (B2).
The argument for obtaining existence in Theorem 3 is straightforward, be-
cause of to the measure-valued setting and the continuity of b. Concerning
uniqueness, the proof is much trickier. Exactly as in Proposition 2, the
proof expands even further the methods used by Seis in [25] using opti-
mal transport. Among the consequences, uniqueness in Theorem 1 now
follows from Theorem 3. Moreover, it also provides uniqueness of solutions
in L1(0, T ;L1(Rn)) for the continuity equation in these cases where one can
guarantee the preservation of Lebesgue measurable sets under the flow. This
is the case for instance if

div(b) ∈ Exp

(
L

logL log logL · · ·

)
,



WELL-POSEDNESS FOR CONTINUITY EQUATION 5

see also [13]. Nevertheless, conditions (B1), (B2) are neither a consequence
of, nor a reason for any condition on the divergence of b. Some counterex-
amples in this direction are given at the end of Section 5.

The paper is structured as follows. In Section 2 we give some definitions
and basic results for continuity equations. In Section 3 we overview some
results from optimal transport theory. In Section 4 we prove a slightly more
general version of Proposition 2, which allows us to present the ideas behind
the proof of Theorem 3 without getting hung up on all the details. In Section
5 we prove Theorem 3 and give some counterexamples for the optimality of
its assumptions. In Section 6 we prove Theorem 1. All along the paper we
will be abusing notation, so that we identify ρ(t, ·) = ρt and φ(t, ·) = φt.

Acknowledgements. A.C., J.M. and J. O. were partially supported by re-
search grants 2014SGR75 (Generalitat de Catalunya) and MTM2016-75390-
P (spanish government). All named authors were partially supported by the
research grant FP7-607647 (European Union).

2. Basic properties of continuity equations

Let us first introduce our notation. By M+(Rn) we denote the set of finite
nonnegative Borel measures on Rn. We denote byM(Rn) the space of signed
Borel measures on Rn with finite total variation, that is, µ ∈M(Rn) if µ is
a signed Borel measure and

‖µ‖TV := sup
{∑

j∈N
|µ(Aj)| : Aj ∈ B(Rn), Ai ∩Aj = ∅ for i 6= j

}
<∞,

where B(Rn) is the Borel σ-algebra. For µ ∈ M(Rn) we denote by |µ| the
total variation measure of µ. We use the Jordan decomposition of measures:
Any µ ∈M(Rn) can be written as µ = µ+− µ− for some mutually singular
measures µ+, µ− ∈ M+(Rn) Given µ ∈ M(Rn) and a homeomorphism
φ : Rn → Rn we define the push-forward φ]µ by

φ]µ(A) := µ(φ−1(A)) for any A ∈ B(Rn).

Equivalently, one can define φ]µ by duality with the space C0(Rn) of con-
tinuous functions vanishing at infinity,

〈φ]µ, ϕ〉 :=

ˆ

ϕ(φ(x)) dµ(x), ∀ϕ ∈ C0(Rn).

Then it is easy to see that φ]µ ∈M(Rn) with ‖φ]µ‖TV ≤ ‖µ‖TV .

Definition 4. A measure valued map ρ ∈ L1(0, T ;M(Rn)) is a weak solu-
tion of the Cauchy problem (7) for the continuity equation if the equality
ˆ T

0

ˆ

Rn

[
∂tϕ(t, x) + 〈b(t, x),∇ϕ(t, x)〉

]
dρt(x) dt+

ˆ

Rn
ϕ(0, x) dρ0(x) = 0

holds for all functions ϕ ∈ C∞c ([0, T )× Rn).

Let’s point out some simple properties of solutions, which we will prove for
completeness. First is related to the weak continuity of solutions.
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Lemma 5. Let b ∈ L∞(0, T ;L∞loc(Rn)). Let ρ ∈ L1(0, T ;M(Rn)) be a
solution for the Cauchy problem (7). Then we have the convergence

ˆ

Rn
ϕ(x) dρt(x)

t→0−→
ˆ

Rn
ϕ(x) dρ0(x)

for every ϕ ∈ C∞c (Rn).

Proof. Let ϕ ∈ C∞c (Rn). Fix t0 ∈ (0, T ) and ε ∈ (0, t0). Choose a nonnega-
tive function ηt0,ε ∈ C∞c (t0− ε, t0 + ε) such that

´

ηt0,ε(s) ds = 1, and define

ψt0,ε(t) := 1−
´ t

0 ηt0,ε(s) ds. Then using ψt0,εϕ as a test function we get
ˆ T

0
ψ′t0,ε(t)

ˆ

Rn
ϕdρt dt+

ˆ T

0
ψt0,ε(t)

ˆ

Rn

〈
b(t, x),∇ϕ(x)

〉
dρt(x) dt

+

ˆ

Rn
ϕdρ0 = 0.

Taking ε→ 0 we obtain (for a.e. t0, if we are precise)

(8) −
ˆ

Rn
ϕdρt0 +

ˆ t0

0

ˆ

Rn

〈
b(t, x),∇ϕ(x)

〉
dρt(x) dt+

ˆ

Rn
ϕdρ0 = 0.

Thus we can deduce that
∣∣∣
ˆ

Rn
ϕdρt0 −

ˆ

Rn
ϕdρ0

∣∣∣ ≤
∣∣∣
ˆ t0

0

ˆ

Rn

〈
b(t, x),∇ϕ(x)

〉
dρt(x) dt

∣∣∣→ 0,

as t0 → 0, which is what we wanted to prove. �
Before the next Lemma we need to introduce speciffic cut-off functions that
will be used throughout the paper. Let k ∈ N and consider the function

χ̃k(x) =

{
1, if |x| ≤ k
max{0, 1−

´ |x|
k

dr
G(r)}, if |x| > k.

Modifying this function we find a smooth, compactly supported function
χk ∈ C∞c (Rn) such that

χk = 1 in B(0, k),

χk = 0 in Rn \B(0, Rk) for some k < Rk <∞

and |∇χk(x)| ≤ 2

G(|x|) .
(9)

Here the existence of Rk follows from the assumption
´∞
r

ds
G(s) =∞ for some

(and thus any) r > 0.

The second important property of solutions is the conservation of mass,
or from the point of view of this paper, the conservation of mass balance.

Lemma 6. Suppose the vector field b satisfies the condition (B1) and that
ρ ∈ L1(0, T ;M(Rn)) is a weak solution for the Cauchy problem

(10)

{
∂tρ+ div(bρ) = 0

ρ(0, ·) = 0

Then for a.e. t ∈ [0, T ] it holds that ρt(Rn) =
´

Rn dρt = 0, or in other words:

ρ+
t (Rn) = ρ−t (Rn).
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Proof. Use a test function ϕ(t, x) = ψ(t)χk(x), where ψ ∈ C∞c (0, T ). This
gives
ˆ T

0
ψ′(t)

ˆ

Rn
χk(x) dρt(x) dt = −

ˆ T

0
ψ(t)

ˆ

Rn

〈
b(t, x),∇χk(x)

〉
dρt(x).

Since this works for every ψ ∈ C∞c (0, T ), we obtain

∂t

( ˆ

Rn
χk(x) dρt(x)

)
=

ˆ

Rn

〈
b(t, x),∇χk(x)

〉
dρt(x).

Combining this with Lemma 5 we get

|ρt(Rn)| = lim
k→∞

∣∣∣
ˆ

Rn
χk(x) dρt(x)

∣∣∣

≤ lim sup
k→∞

ˆ t

0

∣∣∣
ˆ

Rn

〈
b(s, x),∇χk(x)

〉
dρs(x)

∣∣∣ds

≤2
∥∥∥ |b(t, x)|
G(|x|)

∥∥∥
L∞((0,T )×Rn)

lim sup
k→∞

ˆ t

0

ˆ

Rn\B(0,k)
d|ρs|(x)ds = 0,

and thus conclude the proof. �
In the smooth case, the solution to the continuity equation can be found
using the method of characteristics. Actually, this works also in our non-
smooth case.

Proof of the existence part of Theorem 3. Let φ be the flow of b. This flow
exists by the classical Cauchy-Lipschitz theory, and moreover it satisfies

(11) φ(t, x) = x+

ˆ t

0
b
(
s, φ(s, x)

)
ds for any x ∈ Rn.

We need to show that ρt := φ(t, ·)]ρ0 is a solution to the Cauchy problem
(7). First, the properties of the push-forward ensure that we actually have
ρt ∈ L∞(0, T ;M(Rn)), since ‖ρt‖TV is bounded by ‖ρ0‖TV .

Let ϕ ∈ C∞c ([0, T )×Rn). First notice that ϕ is Lipschitz and t 7→ φ(t, x)
is absolutely continuous for any x ∈ Rn. This implies that the function
fx(t) := ϕ(t, φ(t, x)) is absolutely continuous for any x ∈ Rn and

(12)

ˆ T

0
f ′x(t) dt = fx(T )− fx(0) = −ϕ(0, x).

On the other hand if we fix x ∈ Rn, then for L1-a.e. t ∈ [0, T ) we have

f ′x(t) = ∂tϕ(t, φ(t, x)) +
〈
∇ϕ(t, φ(t, x)), ∂tφ(t, x)

〉

= ∂tϕ(t, φ(t, x)) +
〈
b(t, φ(t, x)),∇ϕ(t, φ(t, x))

〉
.

(13)

Now we can check that ρt is a solution. Using the definition of the push-
forward measure and applying Fubini’s Theorem, (13) and (12) we calculate
ˆ T

0

ˆ

Rn

[
∂tϕ(t, x) +

〈
b(t, x),∇ϕ(t, x)

〉]
dρt(x) dt+

ˆ

Rn
ϕ(0, x) dρ0(x)

=

ˆ T

0

ˆ

Rn

[
∂tϕ(t, φ(t, x)) +

〈
b(t, φ(t, x)),∇ϕ(t, φ(t, x))

〉]
dρ0(x) dt+

ˆ

Rn
ϕ(0, x) dρ0(x)

=

ˆ

Rn

ˆ T

0
f ′x(t) dt dρ0(x) +

ˆ

Rn
ϕ(0, x) dρ0(x) = 0.
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Since ϕ ∈ C∞c ([0, T )×Rn) was arbitrary, φ(t, ·)]ρ0 is a solution to the Cauchy
problem (7). �

3. Useful results from the theory of optimal transport

In this section we present the part of the theory of optimal transport which
we will use in the uniqueness proof. For further interest to this topic we
refer to the books [27], [26] by Villani, as well as [24] by Santambrogio and
[4] by Ambrosio, Gigli and Savaré.

We want to transport mass in Rn but our use of cut-off functions might
lead to a difference between the initial and final mass. This could be a
problem. The typical way (see e.g. [17], [10] and [19]) to avoid this mass

inbalance is to add an isolated point ♦ to Rn. We write R̂n := Rn∪{♦}. We

also ”extend” the euclidean distance to R̂n by setting |x−♦| = |♦−x| =∞
whenever x ∈ Rn and obviously |♦− ♦| = 0.

Given two Borel measures µ, ν ∈ M+(R̂n) with µ(R̂n) = ν(R̂n) we de-
note the set of transport plans between µ and ν by Π(µ, ν). In other words,

a measure λ ∈M+(R̂n × R̂n) belongs to Π(µ, ν), if

λ(A× R̂n) = µ(A) and λ(R̂n ×A) = ν(A)

for all Borel sets A ⊂ R̂n. Equivalently, λ ∈ Π(µ, ν) if
ˆ

R̂n×R̂n

(
u(x) + v(y)

)
dλ(x, y) =

ˆ

R̂n
u(x) dµ(x) +

ˆ

R̂n
v(y) dν(y)

for all u ∈ L1(µ), v ∈ L1(ν). If in addition to the measures µ, ν ∈ M+(R̂n)

we are given a continuous cost function c : R̂n × R̂n → [0,∞], we can study
the optimal transport problem

inf
λ∈Π(µ,ν)

ˆ

R̂n×R̂n
c(x, y) dλ(x, y).

The existence of minimizers, called optimal transport plans, can be proved
with the direct method in the calculus of variations (see e.g. [26, Theorem
4.1]). In our case, we are interested in cost functions of the form c(x, y) =
c(|x− y|). With our notation, this means that c(x,♦) = c(♦, x) = c(∞) is a
constant among all x ∈ Rn. We assume that c : [0,∞]→ [0,∞] satisfies the
following conditions:

(14)





c(0) = 0, c(s) > 0 for every s > 0 and c is nondecreasing
c is bounded and continuous
c is concave
c is Lipschitz w.r.t. the euclidean distance in [0,∞).

We set

Cc(µ, ν) := min
λ∈Π(µ,ν)

ˆ

R̂n×R̂n
c(|x− y|) dλ(x, y)

We will study the total transport cost Cc(µ, ν) for a certain family of cost
functions and then compare the estimates for these costs to the special case

W (µ, ν) := min
λ∈Π(µ,ν)

ˆ

R̂n×R̂n
min{|x− y|, 1} dλ(x, y),
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which is used as a reference cost in our considerations. The key comparison
between transportation costs Cc(µ, ν) and W (µ, ν) is given by the following
Lemma, which is a generalization of [25, Lemma 5] .

Lemma 7. Let µ, ν ∈ M+(R̂n) with µ(R̂n) = ν(R̂n) and let c : [0,∞] →
[0,∞] be continuous and strictly increasing. Given any ε > 0 we have the
upper bound

W (µ, ν) ≤ c−1

(
Cc(µ, ν)

ε

)
µ(R̂n) + ε+

Cc(µ, ν)

c(1)
,

if Cc(µ,ν)
ε ∈ c

(
[0,∞]

)
.

Proof. Define the following sets in R̂n × R̂n:

K1 =

{
|x− y| ≤ 1 : c(|x− y|) ≤ Cc(µ, ν)

ε

}
,

K2 =

{
|x− y| ≤ 1 : c(|x− y|) > Cc(µ, ν)

ε

}
,

and K3 =
{
|x− y| > 1

}
.

Let λ be an optimal plan for Cc(µ, ν). Using λ as a test plan for W (µ, ν)
we see that

W (µ, ν) ≤
ˆ

R̂n×R̂n
min{|x− y|, 1} dλ(x, y)

=

ˆ

K1

min{|x− y|, 1} dλ(x, y) +

ˆ

K2

min{|x− y|, 1} dλ(x, y)

+

ˆ

K3

min{|x− y|, 1} dλ(x, y)

≤ c−1

(
Cc(µ, ν)

ε

)
λ(K1) + λ(K2) + λ(K3).

Here it is easy to see that

λ(K2) =

ˆ

K2

c(|x− y|)
c(|x− y|) dλ(x, y) ≤ ε

Cc(µ, ν)

ˆ

K2

c(|x− y|) dλ(x, y) ≤ ε

and similarly

λ(K3) =

ˆ

K3

c(|x− y|)
c(|x− y|) dλ(x, y) ≤ Cc(µ, ν)

c(1)
,

which concludes the proof. �

If c satisfies the conditions (14), then c(|x − y|) gives a metric in R̂n. For
this kind of cost functions the optimal transport problem admits a dual
formulation due to the celebrated Kantorovich Duality Theorem (see e.g.
[26, Theorem 5.10]).
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Theorem 8. Let µ, ν ∈ M+(R̂n) with µ(R̂n) = ν(R̂n) > 0. Suppose c :
[0,∞]→ [0,∞) satisfies conditions (14). Then we have the duality:

min

{
ˆ

R̂n×R̂n
c(|x− y|) dλ(x, y) : λ ∈ Π(µ, ν)

}

= max

{
ˆ

R̂n
v dµ−

ˆ

R̂n
v dν : sup

x 6=y

|v(x)− v(y)|
c(|x− y|) ≤ 1, v(♦) = 0

}
.

In addition, the maximizers of the dual problem, called Kantorovich poten-
tials, satisfy

v(x)− v(y) = c(|x− y|) for every (x, y) ∈ suppλ,

where λ ∈ Π(µ, ν) is an optimal plan for Cc(µ, ν).

Since it is important for us, we emphasize that in our case any test func-
tion v for the dual problem is bounded and Lipschitz in the euclidean dis-
tance:
(15)

sup
x∈R̂n

|v(x)| ≤ c(∞) and sup
x,y∈Rn

|v(x)− v(y)|
|x− y| ≤ sup

t,s∈[0,∞)

|c(t)− c(s)|
|t− s| ,

In addition, information about the gradient of the Kantorovich potentials
can also be extracted from the Duality Theorem.

Corollary 9. Suppose c : [0,∞] → [0,∞) is C1 and satisfies (14). Let

µ, ν ∈ M+(R̂n) with µ(R̂n) = ν(R̂n). Let λ ∈ Π(µ, ν) be an optimal plan
for Cc(µ, ν) and let v be a corresponding Kantorovich potential.

Then there exists a set E ⊂ Rn such that Ln(Rn \ E) = 0 and for any
(x, y) ∈ suppλ ∩ (E × E) such that x 6= y we have

∇v(x) = ∇v(y) = c′(|x− y|) x− y|x− y|
In addition, ∇v(x) = 0, if x ∈ E and (x,♦) ∈ suppλ or (♦, x) ∈ suppλ.

Proof. Since v is Lipschitz in the euclidean distance, we can apply the
Rademacher Theorem to find a set E ⊂ Rn such that Ln(Rn \ E) = 0
and v is differentiable in E.

Now, given (x, y) ∈ suppλ ∩ (E × E) we have by the Duality Theorem

c(|x− y|) + v(y) = v(x) = inf
y′∈Rn

{c(|x− y′|) + v(y′)}.

Thus, if x 6= y we can differentiate the function f(y′) = c(|x− y′|) + v(y′) at
its minimum point y ∈ E, which gives

c′(|x− y|) y − x|x− y| +∇v(y) = 0, i.e. ∇v(y) = c′(|x− y|) x− y|x− y| .

Similarly, the Duality Theorem implies

c(|x− y|)− v(x) = −v(y) = inf
x′∈Rn

{c(|x′ − y|)− v(x′)},

from which we obtain by differentiation

∇v(x) = c′(|x− y|) x− y|x− y| .
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If x ∈ E and (x,♦) ∈ suppλ, then using the Duality Theorem we see that

c(∞)− v(x) = 0 = inf
x′∈Rn

{c(∞)− v(x′)},

and again differentiation gives ∇v(x) = 0. The case where (♦, x) ∈ suppλ
can be handled similarly. �

In the uniqueness part of the proof on Theorem 3 we will deal with certain
integrals involving the gradient of a Kantorovich potential. These integrals
can be estimated easily using optimal transport theory:

Corollary 10. Suppose c : [0,∞] → [0,∞] is C1 and satisfies (14). Let

µ, ν ∈ M+(R̂n) with µ(R̂n) = ν(Rn) and let v : R̂n → R be a Kantorovich
potential for Cc(µ, ν). Assume that µ and ν are mutually singular, µ, ν <<
Ln and b ∈ L1(µ) ∩ L1(ν). Then

∣∣∣∣
ˆ

Rn
〈b,∇v〉d(µ− ν)

∣∣∣∣

≤ min{µ(Rn), ν(Rn)} sup
x,y∈F

∣∣∣∣c′(|x− y|)
〈
b(x)− b(y),

x− y
|x− y|

〉∣∣∣∣ ,

where F := (suppµ ∪ suppν) ∩ Rn.

Proof. Let λ ∈ Π(µ, ν) be an optimal plan for Cc(µ, ν). Since µ and ν

are singular, there exists a Borel set A ⊂ R̂n such that µ(A) = 0 and
ν(Rn \A) = 0. Then λ is concentrated on the set (Rn \A)×A.

Define functions f, g : R̂n → R by

f(x) =

{ 〈b(x),∇v(x)〉, x ∈ E
0, x ∈ R̂n \ E

g(y) =

{ −〈b(y),∇v(y)〉, y ∈ E
0, y ∈ R̂n \ E

Then f ∈ L1(µ) and g ∈ L1(ν), which means that

(16)

ˆ

R̂n
f dµ+

ˆ

R̂n
g dν =

ˆ

R̂n×R̂n

(
f(x) + g(y)

)
dλ(x, y).

Here
ˆ

R̂n
f dµ+

ˆ

R̂n
g dν =

ˆ

Rn
〈b,∇v〉dµ−

ˆ

Rn
〈b,∇v〉dν,

since µ, ν << Ln and Ln(Rn \ E) = 0. Thus we only need to estimate the
right side of (16).

To do this, we notice that λ is concentrated on the set

Λ :=
(
suppµ ∩ (E ∪ {♦}) ∩ R̂n \A

)
×
(
suppν ∩ (E ∪ {♦}) ∩A

)
.
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For any (x, y) ∈ Λ ∩ suppλ we can further apply Corollary 9. This gives
ˆ

R̂n×R̂n

(
f(x) + g(y)

)
dλ(x, y)

=

ˆ

Λ∩suppλ∩(E×E)

(〈
b(x),∇v(x)

〉
−
〈
b(y),∇v(y)

〉)
dλ(x, y)

+

ˆ

Λ∩suppλ∩((E×{♦})∪({♦}×E))

(
f(x) + g(y)

)
dλ(x, y)

=

ˆ

Λ∩suppλ∩(E×E)

〈
b(x)− b(y),∇v(x)

〉
dλ(x, y)

=

ˆ

Λ∩suppλ∩(E×E)

〈
b(x)− b(y), c′(|x− y|) x− y

|x− y|
〉
dλ(x, y).

Now the proof can be completed by taking the absolute value inside the
integral and noticing that suppλ ⊂ F × F and

λ(Λ ∩ suppλ ∩ (E × E)) ≤ min{µ(Rn), ν(Rn)}.
�

Finally, we want to know that the total transport cost behaves well under
convergence of measures.

Lemma 11. Suppose c : [0,∞] → [0,∞] satisfies conditions (14). Let

ρk, ρ ∈ M(R̂n), k ∈ N, be measures such that ρk(R̂n) = ρ(R̂n) = 0 for all
k ∈ N. Assume that ρk → ρ weakly as k →∞, that is

ˆ

R̂n
ϕdρk →

ˆ

R̂n
ϕdρ for every ϕ ∈ C0(R̂n).

Then

Cc(ρ
+, ρ−) ≤ lim inf

k→∞
Cc(ρ

+
k , ρ

−
k ).

Proof. Let v : R̂n → R be such that v(♦) = 0 and |v(x)− v(y)| ≤ c(|x− y|)
for all x, y ∈ R̂n. Then v is continuous and bounded, so it follows from weak
convergence and the Duality Theorem that

ˆ

R̂n
v dρ = lim

k→∞

ˆ

R̂n
v dρk ≤ lim inf

k→∞
Cc(ρ

+
k , ρ

−
k ).

Taking the supremum over v we get the claim. �

4. Proof of Proposition 2

In this section we prove the following more general version of Proposition 2.

Proposition 12. Let b : [0, T ] × Rn → Rn be a vector field. Assume that
there exists a continuous and nondecreasing function G : [0,∞) → (0,∞)
satisfying

´∞
r

ds
G(s) =∞ for some r > 0 such that

(B1) sup
x∈Rn

|b(t, x)|
G(|x|) ∈ L

∞(0, T ).
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Assume also that there exists a continuous and nondecreasing function ω :
[0,∞)→ [0,∞) satisfying

´ r
0

ds
ω(s) =∞ for some r > 0 such that

(B2’) Cω := ess supt∈(0,T ) sup
x,y∈Rn

|b(t, x)− b(t, y)|
ω(|x− y|) <∞.

If u ∈ L1(0, T ;L1(Rn)) is a weak solution of the Cauchy problem

(17)

{
∂tu+ div(b u) = 0 in (0, T )× Rn

u(0, ·) = 0 in Rn,

then u(t, ·) = 0 as L1(Rn) functions, for each t ∈ [0, T ].

In order to prove Proposition 12, we are given a function u ∈ L1(0, T ;L1(Rn)),
weak solution of the Cauchy problem (17). Associated to this solution u, we
define

µk(t) := χku
+(t, ·)Ln +m+

k (t)δ♦

νk(t) := χku
−(t, ·)Ln +m−t (t)δ♦,

where m±k (t) :=
(
−
´

Rn χk(x)u(t, x) dx
)±

, where the superscripts denote
the positive and negative parts of a number, and χk are as in (9) . Then

µk(t)(R̂n) = νk(t)(R̂n), and so we can consider the optimal transport prob-
lem

Dδ,k(t) := inf
λ∈Π(µk(t),νk(t))

ˆ

R̂n×R̂n
cδ(|x− y|) dλ(x, y),

where the cost function is cδ : [0,∞]→ [0,∞],

cδ(r) =

ˆ r

0

ds

ω(s) + δ
.

Since we can increase ω(s) when s > 0 is large without affecting condition
(B2’), we may assume that

´∞
1

ds
ω(s) < ∞. This ensures that cδ is C1,

strictly increasing and satisfies conditions (14), so that all the results from
the previous section are at our disposal. Our strategy is to estimate the
total cost Dδ,k and then use Lemma 7 as k →∞ and δ → 0.

Lemma 13. If k and δ are fixed, then Dδ,k(t)→ 0 as t→ 0.

Proof. By the Duality Theorem it is sufficient to prove that as t→ 0

(18) Dδ,k(t) = sup
v∈F

ˆ

Rn
v(x)χk(x)u(t, x) dx→ 0,

where

F := {v ∈ C(R̂n) : sup
x 6=y

|v(x)− v(y)|
cδ(|x− y|)

≤ 1, v(♦) = 0}.

Since u ∈ L1(0, T ;L1(Rn)) we can use Lipschitz functions in the definition
of solutions of (17). In particular, we can follow the arguments in the proof
of Lemma 5 in the case where ϕ = vχk, v ∈ F . Thus we get the following
version of (8):

−
ˆ

Rn
v(x)χk(x)u(t0, x) dx+

ˆ t0

0

ˆ

Rn

〈
b(t, x),∇(vχk)(x)

〉
u(t, x) dx dt = 0.
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Using the fact that |∇(vχk)| ≤ 1
δ + 2cδ(∞)

G(k) we arrive at the estimate

∣∣∣
ˆ

Rn
v(x)χk(x)u(t0, x) dx

∣∣∣ ≤ Cb
(1

δ
+

2cδ(∞)

G(k)

) ˆ t0

0

ˆ

Rn
|u(t, x)| dx dt,

where Cb := ‖b‖L∞(0,T ;L∞(B(0,Rk)) <∞. Since the bound on the right hand
side is independent of v ∈ F and goes to zero as t0 → 0 , we obtain (18). �

When we study the weak derivative of Dδ,k the Kantorovich potentials come
into play. To that end we denote by vk(t, ·) the Kantorovich potential for
Dδ,k(t).

Lemma 14. The total cost Dδ,k has a weak derivative

∂tDδ,k(t) =

ˆ

Rn

〈
b(t, x),∇vk(t, x)

〉
χk(x)u(t, x) dx

+

ˆ

Rn
vk(t, x)

〈
b(t, x),∇χ(x)

〉
u(t, x) dx.

Proof. Our possible derivative is clearly in L1(0, T ), so integrability is not
an issue. Using the duality and the assumption that vk(t,♦) = 0 we get for
any h ∈ R

Dδ,k(t)−Dδ,k(t− h)

≤
ˆ

Rn
vk(t, x)χk(x)u(t, x) dx−

ˆ

Rn
vk(t, x)χk(x)u(t− h, x) dx.

(19)

Let ψ ∈ C∞c (0, T ), ψ ≥ 0, be a test function and h ∈ R so small that
supp(ψ) ⊂ (|h|, T − |h|). It follows from a change of variables that

ˆ T

0
ψ(t)(Dδ,k(t)−Dδ,k(t− h)) dt =

ˆ T

0
(ψ(t)− ψ(t+ h))Dδ,k(t) dt

In particular we see that

(20) lim
h→0

1

h

ˆ T

0
ψ(t)(Dδ,k(t)−Dδ,k(t− h)) dt = −

ˆ T

0
ψ′(t)Dδ,k(t) dt.

Similarly it follows from a change of variables that

ˆ T

0

ˆ

Rn
ψ(t)vk(t, x)χk(x)(u(t, x)− u(t− h, x)) dx dt

=

ˆ T

0

ˆ

Rn
(ψ(t)vk(t, x)− ψ(t+ h)vk(t+ h, x))χk(x)u(t, x) dx dt

=

ˆ T

0

ˆ

Rn
∂t

(ˆ t

t+h
ψ(s)vk(s, x) ds

)
χk(x)u(t, x) dx dt.
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If we have a smooth function vε instead of vk above, we can use the fact
that u is a solution to the continuity equation to get

ˆ T

0

ˆ

Rn
∂t

(ˆ t

t+h
ψ(s)vε(s, x) ds

)
χk(x)u(t, x) dx dt

=−
ˆ T

0

ˆ

Rn
〈b(t, x),

ˆ t

t+h
ψ(s)∇vε(s, x) ds〉χk(x)u(t, x) dx dt

−
ˆ T

0

ˆ

Rn

ˆ t

t+h
ψ(s)vε(s, x) ds〈b(t, x),∇χk(x)〉u(t, x) dx dt.

(21)

Since vk is Lipschitz in the euclidean distance, we can approximate it with
smooth functions vε so that

lim
ε→0

ˆ T

0

ˆ

Rn
ψ(t)vε(t, x)χk(x)(u(t, x)− u(t− h, x)) dx dt

=

ˆ T

0

ˆ

Rn
ψ(t)vk(t, x)χk(x)(u(t, x)− u(t− h, x)) dx dt

and

lim
ε→0

(
ˆ T

0

ˆ

Rn
〈b(t, x),

ˆ t

t+h
ψ(s)∇vε(s, x) ds〉χk(x)u(t, x) dx dt

+

ˆ T

0

ˆ

Rn

ˆ t

t+h
ψ(s)vε(s, x) ds〈b(t, x),∇χk(x)〉u(t, x) dx dt

)

=

ˆ T

0

ˆ

Rn
〈b(t, x),

ˆ t

t+h
ψ(s)∇vk(s, x) ds〉χk(x)u(t, x) dx dt

+

ˆ T

0

ˆ

Rn

ˆ t

t+h
ψ(s)vk(s, x) ds〈b(t, x),∇χk(x)〉u(t, x) dx dt.

Thus we get
ˆ T

0

ˆ

Rn
ψ(t)vk(t, x)χk(x)(u(t, x)− u(t− h, x)) dx dt

=−
ˆ T

0

ˆ

Rn
〈b(t, x),

ˆ t

t+h
ψ(s)∇vk(s, x) ds〉χk(x)u(t, x) dx dt

−
ˆ T

0

ˆ

Rn

ˆ t

t+h
ψ(s)vk(s, x) ds〈b(t, x),∇χk(x)〉u(t, x) dx dt,

and furthermore, if we divide by h and let h→ 0 we obtain

lim
h→0

1

h

ˆ T

0

ˆ

Rn
ψ(t)vk(t, x)χk(x)(u(t, x)− u(t− h, x)) dx dt

=

ˆ T

0

ˆ

Rn
ψ(t)〈b(t, x),∇vk(t, x)〉χk(x)u(t, x) dx dt

+

ˆ T

0

ˆ

Rn
ψ(t)vk(t, x)〈b(t, x),∇χk(x)〉u(t, x) dx dt.

(22)

Now we want to combine this with (19) and (20). The limits (20) and (22)
do not depend on the sign of h, but the inequality (19) changes depending
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on whether we divide the sides by positive or negative h. Thus by combining
(19), (20) and (22) we have in fact proved that

−
ˆ T

0
ψ′(t)Dδ,k(t) dt

=

ˆ T

0

ˆ

Rn
ψ(t)〈b(t, x),∇vk(t, x)〉χk(x)u(t, x) dx dt

+

ˆ T

0

ˆ

Rn
ψ(t)vk(t, x)〈b(t, x),∇χk(x)〉u(t, x) dx dt.

(23)

To conclude the proof we need to show (23) for general test functions ψ ∈
C∞c (0, T ). This is done by approximating ψ+ and ψ− by smooth functions
for which (23) holds. �
Now we are ready to prove Proposition 12. Note that Proposition 2 immedi-
ately follows by the linearity of the equation, since (A1) and (A2) are partic-
ular cases of (B1) (with G(t) = 1 + t) and (B2’) (with ω(s) = s log(e+ 1

s )).

Proof of Proposition 12. Fix δ > 0 and k ∈ N. We note that using Lemmas
13 and 14 we see that

Dδ,k(t) ≤
∣∣∣
ˆ T

0

ˆ

Rn

〈
b(t, x),∇vk(t, x)

〉
χk(x)u(t, x) dx dt

∣∣∣

+
∣∣∣
ˆ T

0

ˆ

Rn
vk(t, x)

〈
b(t, x),∇χk(x)

〉
u(t, x) dx dt

∣∣∣.
(24)

The first term on the left hand side can be estimated by Corollary 10, where
we take into account that

c′δ(|x− y|) =
1

ω(|x− y|) + δ
≤ 1

ω(|x− y|) .

This gives
∣∣∣
ˆ T

0

ˆ

Rn

〈
b(t, x),∇vk(t, x)

〉
χk(x)u(t, x) dx dt

∣∣∣ ≤ Cω
ˆ T

0
‖u(t, ·)‖L1(Rn) dt,

where Cω <∞ by assumption (B2’). For the second term we only need the
bounds on vk and ∇χk:

∣∣∣
ˆ T

0

ˆ

Rn
vk(t, x)

〈
b(t, x),∇χk(x)

〉
u(t, x) dx dt

∣∣∣

≤ 2CG cδ(∞)

ˆ T

0

ˆ

Rn\B(0,k)
|u(t, x)| dx dt,

where

CG := ess supt∈(0,T ) sup
x∈Rn

|b(t, x)|
G(|x|) <∞

by assumption (B1). Thus we obtain Dδ,k(t) ≤ Cδ,k, where

Cδ,k := Cω

ˆ T

0
‖u(t, ·)‖L1(Rn) dt+ 2CG cδ(∞)

ˆ T

0

ˆ

Rn\B(0,k)
|u(t, x)| dx dt.

Now we denote µ(t) := u+(t, ·)Ln and ν(t) := u−(t, ·)Ln. Since
´

Rn u(t, x) dx =
0 by Lemma 6, we see that µk(t)− νk(t)→ µ(t)− ν(t) weakly. This enables
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us to apply first Lemma 11 and then Lemma 7, which gives for any ε > 0
and δ > 0 small enough

W (µ(t), ν(t)) ≤ lim inf
k→∞

W (µk(t), νk(t))

≤ lim sup
k→∞

c−1
δ

(Cδ,k
ε

)
‖u(t, ·)‖L1(Rn) + ε+

Cδ,k
cδ(1)

= c−1
δ

(C
ε

)
‖u(t, ·)‖L1(Rn) + ε+

C

cδ(1)
,

(25)

where

C := lim
k→∞

Cδ,k = Cω

ˆ T

0
‖u(t, ·)‖L1(Rn) dt <∞.

As δ → 0, our assumption on ω implies that c−1
δ (Cε ) → 0 and cδ(1) → ∞.

Thus it follows from (25) that W (µ(t), ν(t)) ≤ ε. Since this holds for any
ε > 0, we see that W (µ(t), ν(t)) = 0, which implies µ(t) = ν(t). In other
words, u = 0. �

5. Proof of Theorem 3

Let ρ ∈ L1(0, T ;M(Rn)) be a solution of (10). We want to repeat the argu-
ments in the previous section, but we run into trouble if we try to integrate
the gradient of a Lipschitz function over general measure ρt. So we regu-
larize the measures ρt, and take into account the fact that the regularized
measures might not be solutions of the same equation.

Lemma 15. Let ρ ∈ L1(0, T ;M(Rn)) be a solution of (10) and η ∈ C∞c (Rn).
Define ρηt := η ∗ ρt. Then for every ϕ ∈ C∞c ([0, T )× Rn) we have

ˆ T

0

ˆ

Rn

[
∂tϕ(t, x) +

〈
b(t, x),∇ϕ(t, x)

〉]
ρηt (x) dx dt

=

ˆ T

0

ˆ

Rn

ˆ

Rn

〈
(b(t, y)− b(t, x)),∇ϕ(t, y)

〉
η(x− y) dy dρt(x) dt.

(26)

Proof. Let ϕ ∈ C∞c ([0, T ) × Rn). Then we use the definition of ρηt and
Fubini’s Theorem to calculate

ˆ T

0

ˆ

Rn

[
∂tϕ(t, x) +

〈
b(t, x),∇ϕ(t, x)

〉]
ρηt (x) dx dt

=

ˆ T

0

ˆ

Rn

[
∂tϕ(t, x) + 〈b(t, x),∇ϕ(t, x)〉

]ˆ

Rn
η(x− y) dρt(y) dx dt

=

ˆ T

0

ˆ

Rn

ˆ

Rn
∂tϕ(t, x)η(x− y) dx dρt(y) dt

+

ˆ T

0

ˆ

Rn

ˆ

Rn

〈
b(t, x),∇ϕ(t, x)

〉
η(x− y)dx dρt(y) dt.

(27)

Now, if we define ψ(t, y) :=
´

Rn ϕ(t, x)η(x−y) dx, then ψ ∈ C∞c ((0, T )×Rn),

∂tψ(t, y) =

ˆ

Rn
∂tϕ(t, x)η(x− y) dx

and ∇ψ(t, y) = −
ˆ

Rn
ϕ(t, x)∇η(x− y) dx =

ˆ

Rn
∇ϕ(t, x)η(x− y) dx,



18 ALBERT CLOP, HEIKKI JYLHÄ, JOAN MATEU, AND JOAN OROBITG

where the last equality follows from integration by parts. Thus we may use
the fact that ρ solves (10) to get

ˆ T

0

ˆ

Rn

ˆ

Rn
∂tϕ(t, x)η(x− y) dx dρt(y) dt

=

ˆ T

0

ˆ

Rn
∂tψ(t, y) dρt(y) dt

=−
ˆ T

0

ˆ

Rn
〈b(t, y),∇ψ(t, y)〉dρt(y) dt

=−
ˆ T

0

ˆ

Rn

ˆ

Rn

〈
b(t, y),∇ϕ(t, x)

〉
η(x− y) dx dρt(y) dt.

Combining this with (27) gives the claim. �

Now we can proceed similarly to the previous section. For fixed β, δ > 0 we
define cβ,δ : [0,∞]→ [0,∞] by

cβ,δ(r) := β

ˆ r

0

ds

ω(s) + δ
.

Then cβ,δ is C1, strictly increasing and satisfies conditions (14), if we assume

that
´∞
r

ds
ω(s) < ∞. As before, we may assume this, because modifying ω

for large values does not affect the condition (B2). For 0 < α < 1 we
choose a mollifier ηα ∈ C∞c (Rn) such that ηα ≥ 0,

´

Rn ηα(x) dx = 1 and
suppηα ⊂ B(0, α). Let

µα,k(t) := χk(ηα ∗ ρt)+Ln +m+
α,k(t)

να,k(t) := χk(ηα ∗ ρt)−Ln +m−α,k(t),

where m±α,k(t) :=
(
−
´

Rn χk(x)(ηα ∗ ρt)(x) dx
)±

, and χk as in (9). Then

µα,k(R̂n) = να,k(R̂n). We denote

Dα,β,δ,k(t) := min

{
ˆ

R̂n×R̂n
cβ,δ(|x− y|) dλ(x, y) : λ ∈ Π(µt, νt)

}
,

and let vα,β,δ,k(t, ·) be a Kantorovich potential for Dα,β,δ,k(t). As before, we
try to obtain estimates for Dα,β,δ,k and then apply these estimates to our
reference cost via Lemma 7. But first, we need a counterpart to Lemma 13:

Lemma 16. Dα,β,δ,k(t)→ 0, as t→ 0.

Proof. Just repeat the proof of Lemma 13, but instead of using the defini-
tion of a solution to (17) use Lemma 15. This gives an extra term, which
fortunately causes no problems. �

Combining the proof of Lemma 14 with Lemma 15 we get the following
result.
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Lemma 17. The cost Dα,β,δ,k has a weak derivative:

∂tDα,β,δ,k(t) =

ˆ

Rn

〈
b(t, x),∇vα,β,δ,k(t, x)

〉
χk(x)(ηα ∗ ρt)(x) dx

+

ˆ

Rn
vα,β,δ,k(t, x)

〈
b(t, x),∇χ(x)

〉
(ηα ∗ ρt)(x) dx

+

ˆ

Rn

ˆ

Rn

〈
b(t, y)− b(t, x),∇ϕα,β,δ,k(t, x)

〉
ηα(y − x) dy dρt(x) dt,

where ϕα,β,δ,k(t, x) = vα,β,δ,k(t, x)χk(x).

Proof. Repeat the proof of Lemma 14, but for equality (21) use Lemma 15,
which gives the extra term. �
Now it is easy to estimate the actual transport cost.

Lemma 18. We have the estimate

Dα,β,δ,k(t) ≤βCω,k
ˆ T

0
|ρt|(Rn) dt

+ 2βCG

ˆ ∞

0

ds

ω(s) + δ

ˆ T

0
|ρt|(Rn \B(0, k − 1)) dt

+ Cω,k ω(α)
(β
δ

+
β

G(k)

ˆ ∞

0

ds

ω(s) + δ

)ˆ T

0
|ρt|(Rn),

where

Cω,k := ess supt∈(0,T ) sup
x,y∈B(0,Rk+1)

|b(t, x)− b(t, y)|
ω(|x− y|)

and CG := ess supt∈(0,T ) sup
x∈Rn

|b(t, x)|
G(|x|) .

Proof. Just integrate Lemma 17 while taking Lemma 16 into account. Lemma
17 gives three terms, which we estimate. First, it follows from Corollary 10
that

∣∣∣
ˆ T

0

ˆ

Rn

〈
b(t, x),∇vα,β,δ,k(t, x)

〉
χk(x)(ηα ∗ ρt)(x) dx

∣∣∣

≤ Cω,k

ˆ T

0
|ρt|(Rn) dt.

(28)

For the second term recall that
∣∣〈b(t, x),∇χk(x)

〉∣∣ ≤ |b(t, x)| 2

G(|x|) ≤ 2CG.

Thus it is easy to see that
∣∣∣
ˆ T

0

ˆ

Rn
vα,β,δ,k(t, x)

〈
b(t, x),∇χ(x)

〉
(ηα ∗ ρt)(x) dx

∣∣∣

≤ 2CGcβ,δ(∞)

ˆ T

0
|ρt|(Rn \B(0, k − 1)) dt.

(29)

Finally, we note that for ϕα,β,δ,k(t, x) = vα,β,δ,k(t, x)χk(x) we have

|∇ϕα,β,δ,k| ≤
β

δ
+

2cβ,δ
G(k)

,
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which implies

∣∣∣
ˆ T

0

ˆ

Rn

ˆ

Rn

〈
b(t, y)− b(t, x),∇ϕα,β,δ,k(t, x)

〉
ηα(y − x) dy dρt(x) dt

∣∣∣

≤ Cω,kω(α)
(β
δ

+
2cβ,δ(∞)

G(k)

) ˆ T

0
|ρt|(Rn) dt.

(30)

Combining the estimates (28), (29) and (30) and writing out cβ,δ(∞) gives
the claim. �

Now we can prove the uniqueness part of Theorem 3.

Proof of uniqueness in Theorem 3. It suffices to prove that if ρ ∈ L1(0, T ;M(Rn))
solves (10), then ρ = 0. Fix k ≥ 2, and choose parameters α, β and δ de-
pending on k. For ease of notation we denote

I :=

ˆ T

0
|ρt|(Rn) dt and Ik := max

{
ˆ T

0
|ρt|(Rn \B(0, k − 1)) dt,

1

k

}
.

Now we choose βk := 1
Cω,kI+1 , δk > 0 such that

ˆ ∞

0

ds

ω(s) + δk
=

Cω,kI + 1

2(CG + 1)Ik

and 0 < αk < 1 such that

ω(αk) ≤
1(

βk
δk

+ βk
G(k)

´∞
0

ds
ω(s)+δk

)
(Cω,kI + 1)

.

Now we set µk(t) := µαk,k(t), νk(t) := ναk,k(t) and ck := cβk,δk . We consider
the optimal transport problem Dk(t) := Dαk,βk,δk,k(t). Using Lemma 18 we
see that Dk(t) ≤ 3. Lemma 7 then gives for any ε > 0 the inequality

(31) W (µk(t), νk(t)) ≤ c−1
k (3/ε) + ε+

3

ck(1)
.

Since ρt(Rn) = 0 by Lemma 6, we see that µk(t)− νk(t)→ ρt weakly. Thus
we get from Lemma 11

W (ρ+
t , ρ

−
t ) ≤ lim inf

k→∞
W (µk(t), νk(t)).

Combining this with (31) we see that to prove the Theorem it suffices to
show that ck(r)→∞ for any r > 0 (which also implies that c−1

k (r)→ 0 for
any r > 0). So let’s do just that.

Because of our choice of βk and δk we have

ck(∞) = βk

ˆ ∞

0

ds

ω(s) + δk
→∞, as k →∞.

On the other hand, it holds that

βk

ˆ ∞

0

ds

ω(s) + δk
≤ βk

ˆ r

0

ds

ω(s) + δk
+ βk

ˆ ∞

r

ds

ω(s)
,



WELL-POSEDNESS FOR CONTINUITY EQUATION 21

where we can use the bound βk ≤ 1 to see that

βk

ˆ ∞

r

ds

ω(s)
≤
ˆ ∞

r

ds

ω(s)
<∞.

Thus we obtain ck(r) = βk
´ r

0
ds

ω(s)+δk
→∞. �

As mentioned in the introduction, the existence of solutions to the Cauchy
problem for the continuity equation (7) in L1(0, T ;L1(Rn)) may fail in gen-
eral. Indeed, given a vector field b satisfying (B1) and (B2), it admits a well
defined flow map φt : Rn → Rn solving

{
˙φt(x) = b(t, φt(x))

φ0(x) = x

but it is far from clear wether φt will (or will not) preserve the set of abso-
lutely continuous measures. In [12] (see also [13]) this situation is analyzed
in terms of div(b). In particular, a smooth vector field b is provided for
which the flow does not preserve Lebesgue measurable sets (both backward
and forward in time). As shown in [13], and modulo other conditions, a
certain sub-exponential degree of integrability for div(b) suffices to guaran-
tee the preservation of Lebesgue measurable sets. Below, we present some
examples to show that the exponential integrability of the divergence div(b)
and the Osgood modulus of continuity (B2) are independent conditions. By
simplicity we write the details in the plane.

It is easy to find vector fields b satisfying the Osgood continuity condition
(B2) but with div(b) /∈ L∞. For instance, let f1, f2 : R2 → R be BMO func-
tions with compact suport (in the next section we provide more information
about the BMO space). Then, define the vector field

b(x) := (I1 ∗ f1(x), I1 ∗ f2(x)),

where I1(x) = c/|x| is the Riesz potential of order 1. Then b belongs to
the Zygmund class, and so satifies an Osgood condition. Clearly, b has
derivatives locally in Lp for all p <∞. Likewise, the divergence is

div(b) = R1 ∗ f1 +R2 ∗ f2,

where Rj denotes the j-th Riesz transform. Clearly, divb /∈ L∞ in general,
even though it is exponentially integrable because div(b) ∈ BMO.

In order to get examples of vector fields b satisfying (B2) but with divergence
not exponentially integrable we have to be more precise. Let b a vector field
with compact support, smooth in R2 \{(0, 0)} and such that in a convenient
neighbourhood of the origin is defined by

b(x, y) = (xf(x, y), yf(x, y)),

whith f(x, y) = log(x2 + y2)(log(− log(x2 + y2))). When δ is small, the
modulus of continuity ω(δ) of b is like δ log(δ−2) log(log(δ−2)) and so, b
satisfies the Osgood condition. Besides, in a neighbourhood of the origin,

div(b) = 2 f(x, y) + log(− log(x2 + y2)) + 1)
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and then div(b) is not exponentially integrable because f does not admit
any BMO majorant. It is worth mentioning, though, that div(b) is subex-
ponentially integrable.

A slight modification gives an example of a vector field b with exponentially
integrable div(b) and not satisfying the Osgood condition (B2). Consider
the vector field b with compact support, smooth in R2 \ {(0, 0)} and such
that in a convenient neighbourhood of the origin is defined by

b(x, y) = (xg(x, y),−yg(x, y)),

whith g(x, y) = log(x2 +y2)(log(− log(x2 +y2)))2. In this case, the modulus
of continuity ω(δ) of b is as δ log(δ−2) (log(log(δ−2))2 when δ is small, thus
Osgood condition does not hold. However, div(b) is exponentially integrable
because in a neighbourhood of the origin

div(b) = 2
x2 − y2

x2 + y2

[
(log(− log(x2 + y2)))2 + 2 log(− log(x2 + y2))

]
,

that is, |div(b)| ≤ C| log(x2 + y2)| and so div(b) has a BMO majorant.

6. Proof of Theorem 1

In this section, we prove Theorem 1. In order to do so, we need to recall
some fundamentals on quasiconformality. We say that a sense-preserving
homeomorphism φ : Rn → Rn is K-quasiconformal if φ belongs to the local
Sobolev spaceW 1,n

loc (Rn;Rn) and its distributional differentialDφ(x) satisfies
the distortion inequality,

|Dφ(x)|n ≤ K J(x, φ)

at almost every point x ∈ Rn. Here |Dφ(x)| denotes the operator norm
of the differential matrix Dφ(x), and J(x, φ) denotes the jacobian deter-
minant detDφ(x). The inverse of a K-quasiconformal map is a Kn−1-
quasiconformal map. The composition of a K1-quasiconformal map and
a K2-quasiconformal map is a K1K2-quasiconformal map. For more about
this topic, we refer the interested reader to the monograph [20].

In classical harmonic analysis and Calderón-Zygmund theory, one introduces
H1(Rn) as the space of L1(Rn) functions h : Rn → R such that all the Riesz
transforms Rjh = cn P.V.

xj
|x|n+1 ∗ h , j = 1, . . . , n belong to L1(Rn) as well.

One indeed can define

‖h‖H1(Rn) := ‖h‖L1(Rn) +
n∑

j=1

‖Rjh‖L1(Rn).

The Hardy space H1(Rn) is the appropriate substitute in harmonic analysis
for L1(Rn), on which Calderón-Zygmund theory fails. It also appears as the
topological predual of BMO(Rn),

H1(Rn)∗ = BMO(Rn)
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by Fefferman Theorem [18]. Let us recall here that BMO(Rn) consists of
functions b : Rn → R with bounded mean oscillation, that is,

‖u‖BMO(Rn) = sup
B⊂Rn

inf
c∈R

1

|B|

ˆ

B
|u(x)− c| dx <∞.

The dual pairing 〈h, b〉, h ∈ H1(Rn) and b ∈ BMO(Rn), is given by an abso-
lutely converging integral only in some particular cases, but not in general.
It is also of interest for us the space VMO(Rn) of functions with vanishing
mean oscillation, which is the closure of

Cc(Rn) = {f : Rn → R; f is continuous and has compact support}
under the ‖ · ‖BMO-topology. It is a proper, closed subspace of BMO(Rn),
whose topological dual is precisely H1(Rn),

VMO(Rn)∗ = H1(Rn).

In Calderón-Zygmund theory, BMO(Rn) is the appropiate substitute for
L∞(Rn), while VMO(Rn) is the one for Cc(Rn). The following theorem
was proven by Reimann in [22].

Theorem 19 (Reimann, [22]). Given K ≥ 1 and an integer n ≥ 2, there
exists a constant C(n,K) with the following property. If φ : Rn → Rn is K-
quasiconformal, and b ∈ BMO(Rn), then b ◦ φ−1 ∈ BMO(Rn). Moreover,
one has

1

C(n,K)
‖b‖BMO ≤ ‖b ◦ φ−1‖BMO ≤ C(n,K)‖b‖BMO

for each b ∈ BMO(Rn).

Reimann’s result is optimal. More precisely, if φ : Rn → Rn is a sense-
preserving homeomorphism for which Cφ(b) = b◦φ induces a topological iso-
morphism on BMO(Rn), then necessarily φ is K-quasiconformal, for some
K ≥ 1 depending only on n and ‖Cφ‖BMO, see [5]. If we want to dualize
the above statement, then the composition operator Cφ must be replaced
by the transport operator Tφ,

〈Tφh, g〉 = 〈h,Cφg〉.
The above equality may not make sense in general, even in the cases when
the dual pairing 〈·, ·〉 is a true integral. However, quasiconformal maps
are known to preserve Lebesgue null sets, and so the change of variables
formula holds. As a consequence, if h ∈ L1

loc then the transport operator Tφ
maps the absolutely continuous measure dµ = h(x) dx to another absolutely
continuous measure Tφ(dµ) = φ](dµ) whose density comes from the change
of variables formula,

Tφ(dµ) = h(φ−1(x)) J(x, φ−1) dx.

By abbusing notation, one could simply write

Tφ(h) = φ]h = h(φ−1) J(·, φ−1).

The following corollary looks at this fact from the H1(Rn) perspective.
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Corollary 20. Let φ : Rn → Rn be K-quasiconformal. Then the transport
operator Tφ maps measures with H1(Rn) density boundedly into themselves.
That is, if h ∈ H1(Rn) then Tφh = h(φ−1) J(·, φ−1) is an H1(Rn) function,
and

‖Tφh‖H1(Rn) ≤ C(n,K) ‖h‖H1(Rn),

for each h ∈ H1(Rn).

Proof. We will prove that Tφ : H1(Rn) → H1(Rn) is the adjoint of the
composition operator Cφ : VMO(Rn) → VMO(Rn), Cφb = b ◦ φ. The rest
of the proof follows by Schauder’s Theorem,

‖Tφ‖H1→H1 = ‖C∗φ‖H1→H1 ≤ ‖Cφ‖VMO→VMO ≤ C(n,K)

together with Reimann’s previous result. Given h ∈ H1(Rn), it suffices to
see that if h ∈ H1(Rn) and g ∈ VMO(Rn), then

(32) 〈Tφh, g〉 = 〈h,Cφg〉
where 〈·, ·〉 denotes the VMO−H1 duality. By density, we can assume that
g ∈ Cc(Rn). But then (32) becomes an equality of absolutely converging
integrals,

ˆ

Rn
Tφh(x) g(x) dx =

ˆ

Rn
h(y) g(φ−1(y)) dy

which is easily seen to be true due to the change of variables formula. Thus,
the claim follows. �

We are now in position of proving Theorem 1.

Proof of Theorem 1. According to [14, Theorem 5] (see also [23]), the Cauchy
problem {

φ̇t(x) = b(t, φt(x))

φ0(x) = x

admits a unique flow φt : Rn → Rn of Kt-quasiconformal maps, where

Kt ≤ exp

(
(n− 1)

ˆ t

0
2‖SAb(s, ·)‖∞ ds

)
, 0 ≤ t ≤ T.

By Corollary 20, we deduce that the transport operator Tφt maps measures
with H1(Rn) density boundedly into themselves. In particular, at every
fixed time t ∈ [0, T ] we can define an H1(Rn) function as follows,

h(t, ·) = Tφth0,

or more explicitly h(t, x) = h0(φ−1
t (x)) J(x, φ−1

t ), with norm

‖h(t, ·)‖H1(Rn) ≤ C(n,Kt) ‖h0‖H1(Rn).

In particular, h ∈ L∞(0, T ;H1(Rn)), since 1 ≤ Kt ≤ KT for all 0 ≤ t ≤ T .
It is an easy exercise to prove that h(t, ·) solves the Cauchy problem (6).
For uniqueness, we simply note that b is in the assumptions of Theorem 3,
which forces (6) to have a unique measure valued solution. �

As in the BMO setting, quasiconformality can also be characterized in H1

terms.
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Corollary 21. Let φ : Rn → Rn be a sense-preserving homeomorphism.
Assume that the transport operator Tφ maps absolutely continuous measures
with H1(Rn) density boundedly into themselves. That is, there is a constant
C0 with the following property. If dµ = h dx with h ∈ H1(Rn), then Tφ(dµ)
is absolutely continuous and∥∥∥∥

d

dx
Tφ(dµ)

∥∥∥∥
H1(Rn)

≤ C0 ‖h‖H1(Rn).

Then φ must be K-quasiconformal, for some K = K(C0, n) ≥ 1.

Proof. By assumptin, given any h ∈ H1(Rn), the measure Tφ(h dx) is abso-
lutely continuous with H1(Rn) density. Thus, for each b ∈ BMO(Rn) we
can define a linear functional (Tφb)

∗ : H1(Rn)→ R as follows,

〈(Tφb)∗, h〉 := 〈b, Tφh〉.
By our assumption, (Tφb)

∗ is well defined and bounded, with norm

‖(Tφb)∗‖BMO(Rn) ≤ C(n)C0 ‖b‖BMO(Rn)

where C(n) comes from Fefferman’s duality. Therefore we can identify
(Tφb)

∗ with a BMO(Rn) function. On the other hand, if h is smooth,
compactly supported, and has zero integral, then Tφh is a nice finite Borel
measure with compact support, and the action 〈b, Tφh〉 is an absolutely
converging integral. By the definition of image measure one has

〈b, Tφh〉 =

ˆ

b d(φ](h dx)) =

ˆ

b(φ(x))h(x) dx

whence

〈(Tφb)∗, h〉 =

ˆ

b(φ(x))h(x) dx.

It then follows that (Tφb)
∗ = Cφb, modulo additive constants. Using again

that Tφ acts boundedly on H1(Rn), and combining it with [5, Theorem 3],
the proof follows. �
As a consequence of Corollary 21, we deduce that if for a vector field b
the problem (6) admits a unique weak solution in H1(Rn), then either b
generates flows of quasiconformal maps, or it does not admit even a flow of
sense-preserving homeomorphisms. A similar phenomena occurs with the
transport equation in the BMO(Rn) setting (see [14]).
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