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About the Jones–Wolff Theorem on the

Hausdorff dimension of harmonic measure

Julià Cuf́ı, Xavier Tolsa, and Joan Verdera

1 Introduction

These notes are an account on a reading seminar on the Jones–Wolff Theorem on the
dimension of harmonic measure, held at the Universitat Autònoma de Barcelona during
the fall of 2017. We found that some passages of the original paper [3] were somehow
hermetic, so that reconstructing the proofs in detail became a delicate task. There is
also a presentation of the Jones–Wolff Theorem in chapter 9 of the book “Harmonic
Measure” by Garnett and Marshall [2]. We have expanded the original exposition and
also that of the book to cover most of the details. We hope that this will be useful to
other readers of this deep and beautiful result.

Let K be a compact subset of the plane and let Cap(K) be its logarithmic capacity.
Then Cap(K) = e−γK , where γK is the minimal energy of a unit mass distribution
on K. The energy of a compactly supported positive Borel measure µ is

∫ ∫
log

1

|z − w| dµ(z) dµ(w)

and

γK = inf

∫

K

∫

K
log

1

|z − w| dµ(z) dµ(w),

where the infimum is taken over all positive Borel measures supported on K having
total mass 1, that is, over all probability measures supported on K. It is a classical
result of potential theory that the previous infimum is indeed a minimum and that
there is a unique measure attaining the minimum, called the equilibrium measure.
The number γK is also called the Robin constant of K. For example, the capacity of
a closed disc is the radius.

Assume that Cap(K) > 0 and set Ω = C∗\K, C∗ being the Riemann sphere. Let
ω(·) = ω(Ω, ·,∞) be the harmonic measure of Ω with pole at infinity. If Ω is reg-
ular with respect to the Dirichlet problem (for example, if it has smooth boundary)
harmonic measure is defined as follows. Take a continuous function f on the bound-
ary ∂Ω of Ω and let u be the solution of the Dirichlet problem on Ω with boundary
values f . The mapping f → u(∞) is linear and bounded on the space of continuous
functions on ∂Ω and hence, by Riesz representation theorem, there is a measure ω
on ∂Ω satisfying

u(∞) =

∫

∂Ω
f(z) dω(z), f ∈ C(∂Ω).
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This positive measure is the harmonic measure of Ω. The same can be done replacing
the point at infinity with any point z in Ω and one obtains a harmonic measure dωz
satisfying

u(z) =

∫

∂Ω
f(w) dωz(w), f ∈ C(∂Ω).

If the domain Ω is not smoothly bounded one can use a limiting argument due to
Wiener to define harmonic measure [2].

The harmonic measure of the complement of a disc is the normalized arclength
measure on the boundary. If the domain is simply connected then one uses conformal
mapping in computing harmonic measure.

The notation we adopt for harmonic measure of the domain Ω with respect to
infinity is ω(E) = ω(Ω, E,∞), E ⊂ ∂Ω.

It is known that ω is precisely the equilibrium measure of K. The theorem of Jones
and Wolff asserts that ω lives on a set of Hausdorff dimension less than or equal to
one.

Theorem (Jones–Wolff). Let K ⊂ C be a compact set of positive capacity and let
Ω = C∗\K. Then there is a set F ⊂ ∂Ω of Hausdorff dimension less than or equal
to 1 such that ω(Ω, F,∞) = 1.

Let us recall the definition of Hausdorff content associated with a measure func-
tion h(r) (a non-negative increasing continuous function on [0,∞) satisfying h(0) = 0).
Let A be a subset of the plane. Then the Hausdorff content of A is

Mh(A) = inf
∑

n

h(rn),

where the infimum is taken over all coverings of A by a sequence (possibly finite) of
balls of radius rn.

The proof of the Theorem is reduced to showing a statement that looks a little
simpler.

Fix ε > 0 and take h(r) = r1+ε as a measure function. Then it is enough to show

For each η > 0 there is a set A ⊂ K with Mh(A) < η and ω(K\A) < η. (1)

In fact this implies that for η > 0 there is a set A ⊂ K with Mh(A) < η
and ω(K\A) = 0, which in turn implies that there is A ⊂ K with Mh(A) = 0
and ω(K\A) = 0. Now taking εn → 0, one gets sets An ⊂ K with Mhn(An) = 0
(hn(r) = r1+εn) and ω(K\An) = 0. Letting F =

⋂
n
An we have Mhn(F ) = 0, for

each n, which gives that the Hausdorff dimension of F is less than or equal to one, and
ω(K\F ) = 0.

We proceed now to describe a very rough sketch of the proof. One makes a reduction
to the case in which K is a finite union of pieces of small diameter and rather well
separated. Then one constructs an auxiliary compact K∗, which is a finite union
of closed discs, using two special modification methods, which one calls “the disc
construction” and the “annulus construction”. It is crucial to compare the harmonic
measure associated with Ω and that associated with the new domain Ω∗ = C∗\K∗. This
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is simple for the annulus construction, but much more delicate for the disc construction;
Lemma 1 below takes care of this issue. The gradient of the Green function g of Ω∗

with pole at∞ can be estimated on some special curves surrounding K∗ and contained
in level sets of g. All these ingredients allow to estimate the harmonic measure of Ω in
terms of the integral of the gradient of g on these curves. Lemma 3 is the main tool
to end the proof estimating this integral in the appropriate way. An ingredient in the
proof of Lemma 3 yields in the limiting case, assuming ∂Ω smooth, the formula

1

2π

∫

∂Ω

∂g

∂n
log |∇g| ds =

∑

k

g(ξk) + γK ,

where g is now the Green function of Ω with pole at ∞, n is the unit exterior normal
to ∂Ω and the ξk are the critical points of g. An heuristic, informal argument to un-
derstand that Jones–Wolff’s theorem is plausible proceeds as follows. Since g vanishes
on ∂Ω the tangential derivative of g vanishes too and ∇g = ∂g

∂n . The harmonic measure
is (in the smooth case)

dω(z) =
1

2π

∂g

∂n
(z) ds.

Assume that at the point z the “dimension” of ω is d(z), which means that ω(B(z, r)) ∼
rd(z), B(z, r) being the disc of center z and radius r. Since

∂g

∂n
(z) = lim

r→0

ω(B(z, r))

2r
,

we have

lim
r→0

1

2π

∫

∂Ω
(d(z)− 1) log(2r) dω(z) =

∑

k

g(ξk) + γK .

The right hand side is positive and thus the integrand in the left hand side of the
preceding identity should be non-negative, that is d(z) ≤ 1, z ∈ ∂Ω, and so, ω lives in
a set of dimension not greater than 1.

The theorem of Jones–Wolff has been improved by T. H. Wolff in [4], where he
proves that the harmonic measure is concentrated on a set of σ-finite length. Also
J. Bourgain [1] proved that the dimension of harmonic measure in Rn is less than
n − ε, where ε is a small positive number depending on n. One cannot take ε = 1 in
dimensions greater than 2, as shown by T. H. Wolff in [5].

2 The disc and the annulus construction

Let us start with the disc construction.

Disc construction

Fix ε > 0. Let Q be a square with sides parallel to the axes and side length ` = `(Q)
and set E = Q ∩ K. Replace E by a closed disc B with the same center as Q and
radius r(B) defined by

r(B) =
1

2

Cap(E)1+ε

`ε
=

1

2

e−γE(1+ε)

`ε
. (2)
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So we get a new compact set K̃ = (K\E)∪B, a new domain Ω̃ = C∗\K̃ = (Ω∪E)\B
and a new harmonic measure ω̃(·) = ω̃(Ω̃, ·,∞).

Note that B ⊂ Q. In fact, since the capacity of a disc is the radius

Cap(E) ≤
√

2

2
`,

so that

r(B) ≤ 1

2

(√
2/2
)1+ε · `1+ε

`ε
=
`

2

(√
2/2
)1+ε

≤ `/2.

Annulus construction

Let Q be a square with sides parallel to the axis and take the square RQ, where R is a
number larger than 1 that will be chosen later. One has to think that R is very large.
Delete K ∩ (RQ\Q)0 from K to obtain a new domain Ω̃ = Ω ∪ (RQ\Q)0 and a new
harmonic measure ω̃(·) = ω(Ω̃, ·,∞).

It is important to have some control on the harmonic measure of the new domain
obtained after performing the disc or the annulus construction. For the annulus this
is easy: any part of K which has not been removed has larger or equal harmonic
measure. In other words, if A satisfies A ∩ (RQ\Q) = ∅, then ω̃(A) ≥ ω(A). This is a
consequence of the fact that A ⊂ ∂Ω ∩ ∂Ω̃ and Ω ⊂ Ω̃ (the domain increases and the
set lies in the common boundary).

Estimating the harmonic measure after the disc construction is a difficult task. The
result is the following.

Lemma 1. Let Q be a square with sides parallel to the axis. Fix ε > 0 and per-
form the disc construction for this ε. Assume that RQ\Q ⊂ Ω. Then there exists a
number R0(ε) such that for R ≥ R0(ε) one has

a) ω̃(B) ≥ C(ε)ω(Q ∩K), where C(ε) is a positive constant depending only on ε.

b) ω̃(A) ≥ ω(A), if A ⊂ ∂Ω\RQ.

The proof of Lemma 1 will be presented in Section 7 and we will use it as a black
box along the paper.

3 Domain modification

Let Ω = C∗\K, CapK > 0 and assume that K ⊂ {|z| < 1/2} (this assumption will be
convenient later on, but it is not essential). Fix ε > 0 and let R > 2+R0(ε), R integer,
where R0(ε) is the constant given by Lemma 1. We let M stand for a large constant
that will be chosen later and we let ρ be a small constant so that M ≤ log 1/ρ, and
ρ = 1

2N
, N a positive integer. Consider the grid G of dyadic squares of side length ρ

and lower left corner at the points of the form {(m + ni)ρ; m,n ∈ Z}. For each
1 ≤ p, q ≤ R, let Gpq be the family of squares Q ∈ G with (m,n) ≡ (p, q) (mod R×R).

Then G =
R⋃

p,q=1
Gpq.
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Write Kpq =
⋃

Q∈Gpq
K ∩Q, Ωpq = C∗\Kpq, ωpq(A) = ω(Ωpq, A,∞). If A ⊂ K, then

ω(A) =
∑
pq
ω(A ∩Kpq) ≤

∑
pq
ωpq(A ∩Kpq) because Ω ⊂ Ωpq and we can assume that

A ⊂ ∂Ω and so A∩Kpq ⊂ ∂Ω∩ ∂Ωpq. Note that it is enough to prove the theorem for
K = Kpq. Indeed if we know the result for all Kpq, then we will find sets Apq ⊂ Kpq

with dimH(Apq) ≤ 1 and ωpq(Kpq\Apq) = 0. Taking F =
⋃
pq
Apq we get dimH(F ) ≤ 1

and

ω(K\F ) = ω

(⋃

pq

Kpq\
⋃

pq

Apq

)

= ω

(⋃

pq

(Kpq\Apq)
)
≤
∑

pq

ω(Kpq\Apq) ≤
∑

pq

ωpq(Kpq\Apq) = 0.

We remark that, by the construction, for each square Q ∈ Gpq one has RQ\Q ⊂ Ωpq,
so that we will be able to apply Lemma 1.

From now on we fix p, q and let Ω = Ωpq, K = Kpq, ω = ωpq. We let {Qj}j be the
family of squares in Gpq.

Fix ε > 0 and perform the disc construction for ε in every square Qj , so that
we get a finite family of closed discs {Bj}, whose union is a compact set K1, a new
domain Ω1 = C∗ \K1 and a new harmonic measure ω1(·) = ω(Ω1, ·,∞).

Next choose a dyadic square Q1 of largest side `(Q1), not necessarily from Gpq, such
that

`(Q1) ≥ ρ and ω1(Q1) ≥M`(Q1).

If such Q1 does not exist we stop the domain modification. If Q1 exists we perform
the annulus construction on Q1 (with constant R) and after this we perform the disc
construction on the square Q1, replacing K1 ∩ Q1 by a disc B1. So we obtain a new
compact K2, a new domain Ω2 = C∗ \ K2 and a new harmonic measure ω2(·) =
ω(Ω2, ·,∞).

Now we continue and takeQ2 dyadic with largest side such thatQ2 6⊂ Q1, `(Q2) ≥ ρ
and ω2(Q2) ≥ M`(Q2). If such Q2 does not exist we stop. Otherwise we perform the
annulus construction on Q2 but with a special rule: If B1 ∩ (∂(RQ2\Q2)) 6= ∅, then
we do not remove the set B1 ∩ (RQ2\Q2) from K2. The reason for this rule is to get
full balls in all cases.

After that we perform the disc construction on Q2, replacing K2 ∩Q2 by the cor-
responding disc B2, getting a new compact K3, a new domain Ω3 and a new harmonic
measure ω3.

We continue this process so that if K1 ∩Q1, K2 ∩Q2, . . . ,Kn−1 ∩Qn−1 have been
substituted by B1, . . . , Bn−1 we choose now (if there exists) a dyadic cube Qn with
largest side so that

Qn 6⊂ Qj , j = 1, . . . , n− 1, `(Qn) ≥ ρ, ωn(Qn) ≥M`(Qn).

Then (if we do not stop) we perform the annulus construction with respect to Qn but
without removing Bj∩(RQn\Qn), j = 1, . . . , n−1 in case that Bj∩(∂(RQn\Qn)) 6= ∅
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(this is the special rule). Finally we perform the disc construction on Qn, getting Bn,
Kn+1, Ωn+1 and ωn+1.

At each step there are only finitely many candidate dyadic squares, because ρ ≤
`(Q) ≤ 1/M. Since no Qj can be repeated (because Qj 6⊂ Q`, ` = 1, . . . , j − 1) the
modification process stops after finitely many steps. Let K∗,Ω∗ = C\K∗, ω∗(·) =
ω(Ω∗, ·,∞) be the final outcome so that K∗ is the disjoint union of the non removed
discs; more precisely,

K∗ =
⋃

k∈S
Bk ∪

⋃

j∈T
Bj (some finite sets of indices S and T ),

where the Bj are the original discs and the Bk are the new discs produced after
performing the annulus and the disc constructions.

Now we want to prove by means of Lemma 1 the following estimates:

ω∗(Bj) ≥ C(ε)ω(Qj), j ∈ T, (3)

ω∗(Qj) ≥ C(ε)M`(Qj), j ∈ S. (4)

For (3) note first that we always have RQj\Qj ⊂ Ω. Since Qj has survived all steps
we cannot have RQk ⊃ Qj at some step k. Since RQk is a union of dyadic squares,
the other possibility is RQk ∩ Qj = ∅ for all k and we can apply both inequalities in
Lemma 1.

For (4), when we select Qj we have ωj(Q
j) ≥ M`(Qj) and after performing the

annulus and the disc constructions, we get ωj+1(Bj) ≥ C(ε)ωj(Q
j) ≥ C(ε)M`(Qj). If

k > j there are three possibilities: i) Bj ⊂ RQk\Qk, in which case Bj has disappeared
and j would not be in S; ii) Bj ∩ (RQk\Qk) = ∅ in which case ωk+1(Bj) ≥ ωj+1(Bj)
and iii) Bj ∩ ∂(RQk\Qk) 6= ∅.

Qj

Bj Qk

RQk

R(ε)Qk

In this last case we have `(Qk) ≥ `(Qj) since otherwise Qk would had disappeared.
But now since R = 2 +R0(ε) we get that Bj ∩ (R0(ε)Qk\Qk) = ∅ and so ωk+1(Bj) ≥
ωj+1(Bj) by Lemma 1 part b). At the end we obtain

ω∗(Qj) ≥ ω∗(Bj) ≥ ωk+1(Bj) ≥ ωj+1(Bj) ≥ C(ε)ωj(Q
j) ≥ C(ε)M`(Qj).

6



We will also need the following estimate.
If z0 ∈ Qj , j ∈ T (or z0 ∈ Qk, k ∈ S) and r ≥ `(Qj) (r ≥ `(Qk)), then

ω∗{|z − z0| < r} ≤ CMr. (5)

Let us discuss the case of Qj , z0 ∈ Qj . We remark that if Q is a dyadic square with
Q ⊃ Qj , then one has ω∗(Q) ≤ M`(Q) because otherwise the process would not have
been stopped.

Q

r

Qj

z0

Qk

Q′

Take now a dyadic square Q ⊃ Qj with side
length 2m`(Qj) such that r ≤ 2m`(Qj) ≤ 2r.
We just said that ω∗(Q) ≤ Mr. Now the
disc {|z − z0| < r} is contained in 4 dyadic
squares of the same side length as Q. Take one
of these squares Q′ different from Q. If Q′ does
not contain any Qj′ or Qk then ω∗(Q′) = 0.
Otherwise ω∗(Q′) ≤Mr.
The case z0 ∈ Qk is dealt with similarly.

The next lemma shows that the union of the family of squares {Qj}j∈T and a
dilation of the family {Qk}k∈S contains K.

Lemma 2. K ⊂ ⋃
k∈S

2RQk ∪ ⋃
j∈T

Qj.

Proof. Recall that now K = Kpq =
⋃

Q∈Gpq
K ∩ Q. So let Q ∈ Gpq and E = K ∩ Q. If

Q = Qj for some j ∈ T then E ⊂ Qj and so E ⊂ ⋃
k

2RQk ∪ ⋃
j∈T

Qj .

If Q 6= Qj for every j ∈ T then there is a first index j1 such that Q ⊂ RQj1\Qj1 ;
if j1 ∈ S then Q ⊂ RQj1 , j1 ∈ S, and we are done. If j1 /∈ S there is a first index j2 such
that Qj1 ⊂ RQj2\Qj2 . In this case `(Qj2) ≥ 2`(Qj1) because if we had `(Qj1) ≥ `(Qj2)
then Qj2 ⊂ RQj1 and Qj2 ⊂ RQj1\Qj1 , so that Qj2 would have disappeared. If j2 ∈ S
we have Q ⊂ RQj2 and we are done. If j2 /∈ S there is a first j3 such that

Qj2 ⊂ RQj3\Qj3

and so on.
We get a sequence j1 < j2 < · · · < jn with j1, . . . , jn−1 /∈ S, jn ∈ S so that Qjk ⊂

RQjk+1\Qjk+1 and `(Qji+1) ≥ 2`(Qji), which implies Q ⊂ 2RQjn . The double radius
appears because we need to argue on two steps: in the first we use that Qjn−1 ⊂ RQjn
and in the second that Q ⊂ RQjn−1 .

4 Surrounding K∗ by level curves of the Green function

To continue the proof of the Theorem, let Q be a square Q = Qj , j ∈ T or Q = Qk, k ∈
S and let B be the corresponding disc. Let g(z) = g(Ω∗, z,∞) be the Green function
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of the domain Ω∗. The goal of this section is to find a closed curve σ surrounding B,
contained in a level set of g, and such that

|∇g(z)| ≤ CM2 log 1/`(Q), z ∈ σ, (6)

for a positive constant C.
The Green function g is the logarithmic potential of the equilibrium measure plus

the Robin constant, that is,

g(z) =

∫

K∗
log |z − w| dω∗(w) + γK∗

=

∫

B
log |z − w| dω∗(w) +

∫

K∗\B
log |z − w| dω∗(w) + γK∗ =: u(z) + v(z) + γK∗ .

We have the estimate

|∇v(z)| ≤
∫

K∗\B

dω∗(w)

|z − w| ≤ CM log 1/`(Q), z ∈ Q \B. (7)

To show this inequality, fix z ∈ Q\B and set ω∗(t) = ω∗(B(z, t)). We have

∫

K∗\B

dω∗(w)

|z − w| ≤
∫ 1

`(Q)

dω∗(t)
t
≤ ω∗(B(z, 1)) +

∫ 1

`(Q)

ω∗(t)
t2

dt

≤ 1 + CM

∫ 1

`(Q)

dt

t
≤ 1 + CM log 1/`(Q) ≤ CM log 1/`(Q),

where we have used (5).

We would like to estimate the derivative ∂u
∂r (z) from below. Assume for simplicity

that the center of the square Q, and so of the disc B, is the origin, and write z = reiθ.
Since

u(reiθ) =
1

2

∫

B
log |reiθ − w|2 dω∗(w),

we have

∂u

∂r
(z) =

1

2

∫

B

1

|reiθ − w|2
∂

∂r

(
(reiθ − w)(re−iθ − w̄)

)
dω∗(w)

=

∫

B
Re

(
(z − w) z̄

|z − w|2 |z|

)
dω∗(w),

which in particular tells us that ∂u
∂r (z) ≥ 0.

Now we write

Re

(
(z − w) z̄

|z − w|2|z|

)
=

1

|z − w|

〈
z − w
|z − w| ,

z

|z|

〉

and we look for the minimum value of
〈
z−w
|z−w| ,

z
|z|

〉
when |w| = τ , τ being the ra-

dius r(B) of B.
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τ

0 z/|z|
θ

w

Assuming that z
|z| = 1, set

〈
z−w
|z−w| , 1

〉
= cos θ (see the figure). The cosine Theorem

yields

cos θ =
1

2|z|

(
|z − w|+ |z|

2 − τ2

|z − w|

)

so that the minimum is attained for

|z − w| =
√
|z|2 − τ2,

that is, when z − w is orthogonal to w.
We then have

Re

(
(z − w) z̄

|z − w|2|z|

)
≥
√
|z| − τ

√
|z|+ τ

|z − w||z| ≥
√
|z| − τ

|z|
√
|z|+ τ

,

and also √
|z| − τ

|z|
√
|z|+ τ

≥ 1

|z|

(
1− τ

|z|

)
.

Returning to the case of a square Q centered at the point z0 with τ = r(B) we get the
estimate of ∂u

∂r (z) we are looking for, namely,

∂u

∂r
(z) ≥

√
|z − z0| − r(B)√
|z − z0|+ r(B)

ω∗(B)

|z − z0|
≥ ω∗(B)

|z − z0|
− r(B)ω∗(B)

|z − z0|2
, |z − z0| > r(B). (8)

We are now ready to estimate the gradient of the Green function g. Define

α = α(B) = max

(
ω∗(B)

M2 log 1/`(Q)
, 2r(B)

)

and distinguish two cases:

Case 1: α = 2r(B), that is,
ω∗(B)

M2 log 1/`(Q)
≤ 2r(B).

We let σ to be the circle ∂B so that we need to prove the estimate

|∇g(z)| ≤ CM2 log 1/`(Q), z ∈ ∂B.

This is a consequence of the inequality

sup
∂B
|∇g| ≤ C inf

∂B
|∇g| (9)

for some constant C.
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In fact, using (9) one gets

ω∗(B) =
1

2π

∫

∂B

∂g

∂n
ds ≥ inf

∂B
|∇g| r(B)

and for z ∈ ∂B

|∇g(z)| ≤ sup
∂B
|∇g(z)| ≤ C inf

∂B
|∇g(z)| ≤ C ω∗(B)

r(B)
≤ CM2 log 1/`(Q). (10)

In order to prove (9) assume that z0 = 0 and take two points z and z′ with |z| = |z′| =
2r(B). Then we have

m−1g(z′) ≤ g(z) ≤ mg(z′)

for some constant m; this follows by applying Harnack’s inequality to discs of ra-
dius δ < r(B) centered at points on the circle {|z| = 2r(B)}, chosen so that the discs
of radius δ/2 cover this circle.

Take now z and z′ with r(B) < |z| = |z′| < 2r(B). We also have

m−1g(z′) ≤ g(z) ≤ mg(z′).

Indeed, for θ ∈ [0, 2π], write gθ(z) = g(eiθz), then

m−1gθ(z) ≤ g(z) ≤ mgθ(z)

holds for |z| = 2r(B), and trivially also holds for |z| = r(B), θ ∈ [0, 2π]. By the
maximum principle we get

m−1gθ(z) ≤ g(z) ≤ mgθ(z), r(B) ≤ |z| ≤ 2r(B), θ ∈ [0, 2π].

As a consequence, for |z| = |z′| = r(B) and n, n′ the unit exterior normal vectors
to ∂B at z and z′, we have

m−1g(z′ + tn′)
t

≤ g(z + tn)

t
≤ mg(t′ + tn′)

t

and so

m−1 ∂g

∂n
(z′) ≤ ∂g

∂n
(z) ≤ m∂g

∂n
(z′), |z| = |z′| = r(B)

and finally sup
|z|=r(B)

|∇g| ≤ C inf
|z|=r(B)

|∇g|, as required.

Case 2: α > 2r(B), that is, α =
ω∗(B)

M2 log 1/`(Q)
.

We note that

α ≤ ω∗(Q)

M2 log 2
≤ 2M`(Q)

M2 log 2
≤ 4

M
`(Q). (11)

The inequality ω∗(Q) ≤M`(Q), for Q = Qj , comes from the fact that Qj has survived
the process to get to ω∗. If Q = Qk, take the dyadic square Q̃ with side length 2 `(Qk)
and containing Qk. Since the process has stopped, ω∗(Qk) ≤ ω∗(Q̃) ≤ M`(Q̃) =
2M`(Q).

Taking in (11) M > 8, we obtain α ≤ `(Q)/2 and so {|z − z0| = α} ⊂ Q.

10



Now we want to prove that

|∇g(z)| ≤ 4M2 log 1/`(Q), α ≤ |z − z0| ≤ µα, (12)

where µ is such that µ > e20π, a condition that will be used later. Choosing M > 8µ
we obtain αµ < `(Q)/2, by (11). Hence the annulus α ≤ |z − z0| ≤ µα is contained
in Q \B, a fact that will be used in the sequel without further mention.

Let us show
∂u

∂r
(z) ≥ |∇v(z)|, α ≤ |z − z0| ≤ µα. (13)

By (8) we get

∂u

∂r
(z) ≥

√
|z − z0| − r(B)√
|z − z0|+ r(B)

ω∗(B)

|z − z0|
≥
√
α− r(B)√
α+ r(B)

ω∗(B)

µα
, α < |z − z0| ≤ µα,

where we have used that the function x→
√
x−r(B)√
x+r(B)

is increasing.

Since α > 2r(B), taking the quotient M/µ big enough, we have

∂u

∂r
(z) ≥ 1√

3

ω∗(B)

µα

=
1√
3µ

M2 log 1/`(Q) ≥ CM log 1/`(Q) ≥ |∇v(z)|, α ≤ |z − z0| ≤ µα,

by (7).
Therefore

|∇g(z)| ≤ |∇u(z)|+ |∇v(z)| ≤ 2|∇u(z)| ≤ 2

∫

∂B

dω∗(w)

|z − w| , α ≤ |z − z0| ≤ µα,

and |z − w| ≥ |z − z0| − |w − z0| ≥ α− r(B) ≥ α
2 , which gives

|∇g(z)| ≤ 4
ω∗(B)

α
= 4M2 log 1/`(Q), α ≤ |z − z0| ≤ µα,

as required.

Assume z0 = 0, let c = sup{g(z) : |z| = α} and take as σ the connected component
of {g = c} that contains a point on |z| = α. The curve σ encloses a domain that
contains the disc {|z| < α}.

Q

r

α

σ

B

11



We claim that σ remains inside {|z| ≤ µα}, which, in view of (12), yields the
required estimate (6).

We have

|∇u(z)| ≤
∫

B

dω∗(w)

|z − w| ≤ 2
ω∗(B)

|z| , |z| > α,

because

|z − w| ≥ |z| − |w| ≥ |z|
2

+
α

2
− r(B) >

|z|
2
.

By (8)
∂u

∂r
(z) ≥ ω∗(B)

|z| −
r(B)ω∗(B)

|z|2 , |z| > r(B).

Note that
r(B)ω∗(B)

|z|2 ≤ 1

2

ω∗(B)

|z|
because

|z| ≥ α ≥ 2 r(B).

Then, for |z| > α,

∂u

∂r
(z) ≥ 1

2

ω∗(B)

|z| and |∇u(z)| ≤ 4
∂u

∂r
(z).

Therefore, by (13),

|∇g(z)| ≤ |∇u(z)|+ |∇v(z)| ≤ 5
∂u

∂r
(z), α ≤ |z| ≤ µα. (14)

0

r

s

σ

∇g

Note that since the quotient M/µ can be taken as
large as we want, we can improve (13) to

1

2

∂u

∂r
(z) ≥ |∇v(z)|, α ≤ |z − z0| ≤ µα.

Then

∂g

∂r
(z) =

∂u

∂r
(z) +

∂v

∂r
(z)

≥ ∂u

∂r
(z)− |∇g(z)| > 0, α ≤ |z| ≤ µα.

(15)

The curve σ contains at least a point a on the circle {|z| = α}. Consider the maximal
subarc τ of σ containing a and contained in the disc {|z| ≤ µα}. By (15), each ray
emanating from the origin intersects τ only once, and so τ can be parametrized by the
polar angle θ in the form r(θ)eiθ with θ1 ≤ θ ≤ θ2. Without loss of generality assume
θ1 < 0 < θ2 and r(0) = a.

If τ = σ we are done. If not, r(θ2) = µα and we will reach a contradiction. If r is
the radial direction and s is the orthogonal direction to r, then (14) yields

∣∣∣∣
∂g

∂s
(z)

∣∣∣∣ ≤ |∇g(z)| ≤ 5
∂u

∂r
(z) ≤ 10

∂g

∂r
(z).

12



Since g(r(θ)eiθ) = c, taking the derivative with respect to θ one gets

0 = 〈∇g(r(θ)eiθ), r′(θ)eiθ + ir(θ)eiθ〉 = r′(θ)
∂g

∂r
+ r(θ)

∂g

∂s

that gives

|r′(θ)| ∂g
∂r

= r(θ)

∣∣∣∣
∂g

∂s

∣∣∣∣
and so

|r′(θ)|
r(θ)

≤ 10.

Therefore

log
r(θ2)

r(0)
=

∫ θ2

0

r′(θ)
r(θ)

dθ ≤
∫ θ2

0

|r′(θ)|
r(θ)

dθ ≤ 20π

and, recalling the way µ has been chosen,

r(θ2) ≤ e20πr(0) = e20πα < µα,

which is a contradiction. By (12) we obtain the desired inequality (6).

5 The estimate of the gradient of Green’s function on the
level curves

In the previous section we have exhibited for each disc B = Bj , j ∈ T or B = Bk,
k ∈ S, a simple curve σ contained in a level curve of g and surrounding B, on which
the estimate (6) holds. Let now Γ be the curve formed by the set of σ’s corresponding
to each disc Bj or Bk. Then Γ separates K∗ from infinity.

In this section we prove the estimate

1

2π

∫

Γ

∂g

∂n
|log|∇g|| ds ≤ C log log(1/ρ). (16)

Since we are assuming that M ≤ log(1/ρ), we have, by (6),

log+ |∇g(z)| ≤ log(CM2 log 1/`(Q)) ≤ C log log(1/ρ), z ∈ Γ.

Note that
1

2π

∫

Γ

∂g

∂n
ds =

1

2π

∑

σ

∫

σ

∂g

∂n
ds =

∑

B

ω∗(B)

which is clear for those terms for which σ = ∂B and follows from the divergence
theorem for the others, because σ surrounds ∂B.

Hence

1

2π

∫

Γ

∂g

∂n
log+ |∇g| ds ≤ C log log(1/ρ)

1

2π

∫

Γ

∂g

∂n
ds

= C log log(1/ρ)
∑

B

ω∗(B) ≤ C log log(1/ρ).

In order to estimate the integral on Γ of ∂g
∂n log− |∇g| we need the following lemma.
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Lemma 3. Let g(z) = g(Ω, z,∞) be the Green function of the domain Ω with pole at

infinity and let Γ =
N⋃
j=1

Γj be the union of finitely many closed Jordan curves Γj so

that Γ ⊂ {|z| < 1}, Γ separates K = C∗\Ω from infinity and there are constants cj,
j = 1, . . . , N such that Γj ⊂ {g(z) = cj}, j = 1, . . . , N . Then

1

2π

∫

Γ

∂g

∂n
log |∇g| ds > − log 2,

where n is the outward unit normal to Γ.

The proof of this lemma will be discussed in Section 7.

By Lemma 3 we have

1

2π

∫

Γ

∂g

∂n
log− |∇g| ds ≤ 1

2π

∫

Γ

∂g

∂n
log+ |∇g| ds+ log 2,

which completes the proof of (16).

6 End of the proof of the Theorem

Recall from Section 1 that for a fixed ε > 0 and for each η > 0 we have to find a
set A ⊂ K with Mh(A) < η and ω(K\A) < η, where h(r) = r1+ε.

Decompose the set of indices T as T = T1 ∪ T2 with

T1 = {j ∈ T : ω∗(Bj) ≥ ρε/2 rj},
T2 = {j ∈ T : ω∗(Bj) ≤ ρε/2 rj},

where rj = r(Bj).
Set

A =

[
K ∩

(⋃

k∈S
2RQk

)]
∪


K ∩


⋃

j∈T1
Qj




 .

We know, by Lemma 2, that

K\A =
⋃

j∈T2
(K ∩Qj).

In order to prove that Mh(A) < η we need the following well known estimate.

Lemma 4. Let E be a compact set. Then there exists a positive constant C = C(ε)
such that

Mh(E) ≤ C (CapE)1+ε.

For sake of completeness we give a proof of this lemma in Section 7.

Inequality (4) yields, using that
∑

k∈S ω
∗(Qk) ≤ 1,

Mh

(
K ∩

(⋃

k∈S
2RQk

))
. (2R)1+ε

∑

k∈S
`(Qk)1+ε

≤ R1+ε

(M C(ε))1+ε

∑

k∈S
ω∗(Qk)1+ε ≤

(
R

M C(ε)

)1+ε

≤ η
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for M big enough. Using Lemma 4 and the definition of the radius of Bj in the disc
construction (2) we obtain

Mh


⋃

j∈T1
(K ∩Qj)


 ≤

∑

j∈T1
Mh(K ∩Qj) ≤ C

∑

j∈T1
Cap(K ∩Qj)1+ε

= C
∑

j∈T1
rj ρ

ε = C
∑

j∈T1
rj ρ

ε/2 ρε/2

≤ C
∑

j∈T1
ρε/2 ω∗(Bj) ≤ Cρε/2 ≤ η

provided ρ is small enough.
We have got Mh(A) < η and it remains to estimate ω(K\A).
By inequality (3)

ω(K\A) = ω


⋃

j∈T2
(K ∩Qj)


 ≤ 1

C(ε)

∑

j∈T2
ω∗(Bj).

Now we remark that for j ∈ T2 we are in the Case 1 of the Section 4, that is

ω∗(Bj)
M2 log(1/ρ)

≤ 2rj .

Indeed, since ω∗(Bj) ≤ ρε/2rj it is enough to see that

ρε/2 ≤ 2M2 log(1/ρ),

which clearly holds for ρ sufficiently small.

For z ∈ ∂Bj , j ∈ T2, we know by (10) that

|∇g(z)| ≤ C ω∗(Bj)
rj

≤ C ρε/2,

so that
log |∇g(z)| ≤ logC +

ε

2
log ρ ≤ ε

4
log ρ,

for small enough ρ. Hence, for such small ρ,

|log|∇g(z)|| ≥ ε

4
log(1/ρ).

We then get

ω(K\A) ≤ 1

C(ε)

∑

j∈T2
ω∗(Bj) ≤

1

C(ε)

1

2π

∑

j∈T2

∫

∂Bj

∂g

∂n
ds

≤ C

C(ε) ε log(1/ρ)

∑

j∈T2

1

2π

∫

∂Bj

∂g

∂n
|log|∇g|| ds

≤ C

C(ε) ε log(1/ρ)

1

2π

∫

Γ

∂g

∂n
|log|∇g|| ds

≤ C

εC(ε)

log log(1/ρ)

log(1/ρ)
,
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due to (16). Thus ω(K\A) < η if ρ is small enough. Therefore for fixed ε > 0 and
given η > 0, we can choose M and ρ such that the set A satisfies the desired conclusion.

7 Proof of the lemmas

7.1 Proof of Lemma 1

Changing scale we may assume `(Q) = 1. Let ξ0 stand for the center of Q.

Proof of a). The Green function g(z, ξ) of the domain Ω ∪ E (E = K ∩Q) with pole
at ξ has the form

g(z, ξ) = log
1

|z − ξ| + h(z, ξ)

with

h(z, ξ) =

∫

∂Ω\RQ
log |w − ξ| dω(Ω ∪ E,w, z).

Note that

h(z, ξ) ≥ log

(
R− 2

2

)
, ξ ∈ Q, z ∈ Ω ∪ E, (17)

and

|∇ξh(z, ξ)| ≤
∣∣∣∣∣

∫

∂Ω\RQ

1

w − ξ
dω(Ω ∪ E,w, z)

∣∣∣∣∣ ≤ O
(

1

R

)
, ξ ∈ Q, z ∈ C. (18)

Let now µE and µB be the equilibrium measures of E and B respectively and set

u(z) :=

∫

B
g(z, ξ) dµB(ξ), v(z) :=

∫

E
g(z, ξ) dµE(ξ).

For given z0 ∈ ∂Q one has

u(z) = γB + h(z0, ξ0) +O(1/R), z ∈ B,
v(z) = γE + h(z0, ξ0) +O(1/R), z ∈ E,

where the constant in O(1/R) is independent of z0. To see this just write

h(z, ξ) = (h(z, ξ)− h(z, ξ0)) + (h(ξ0, z)− h(ξ0, z0)) + h(z0, ξ0),

use (18), the symmetry of the Green’s function and the fact that the equilibrium
potential of a compact set is equal to the Robin constant on the set (except for an
exceptional set of zero capacity).

Now since u = v = 0 on ∂Ω\RQ one gets

u(z) =

∫

∂Ω̃
u(ξ) dω(Ω̃, ξ, z) =

∫

∂B
u(ξ) dω(Ω̃, ξ, z),

v(z) =

∫

∂Ω
v(ξ) dω(Ω, ξ, z) =

∫

∂E
v(ξ) dω(Ω, ξ, z).
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Hence, for z /∈ K ∪Q,

u(z) = (γB + h(z0, ξ0) +O(1/R))ω(Ω̃, B, z),

v(z) = (γE + h(z0, ξ0) +O(1/R))ω(Ω, E, z).

Assume for the sake of simplicity that ξ0 = 0. Then

u(z) = log
1

|z| +

∫

B
h(z, ξ) dµB(ξ), z /∈ B,

v(z) =

∫

E
log

1

|z − ξ| dµE(ξ) +

∫

E
h(z, ξ) dµE(ξ), z /∈ E.

Set

ϕ(z) := u(z)− v(z) =

∫

E

(
log

1

|z| − log
1

|z − ξ|

)
dµE(ξ)

+

∫

B
h(z, ξ) dµB(ξ)−

∫

E
h(z, ξ) dµE(ξ)

=

∫

E

(
log

1

|z| − log
1

|z − ξ|

)
dµE(ξ) +

∫

B
(h(z, ξ)− h(z, 0)) dµB(ξ)

−
∫

E
(h(z, ξ)− h(z, 0)) dµE(ξ).

Thus, for z ∈ Ω\RQ,

|ϕ(z)| ≤
∣∣∣∣
∫

E
log
|z − ξ|
|z| dµE(ξ)

∣∣∣∣+

∣∣∣∣
∫

B
(h(z, ξ)− h(z, 0)) dµB(ξ)

∣∣∣∣

+

∣∣∣∣
∫

E
(h(z, ξ)− h(z, 0))

∣∣∣∣ dµE(ξ) = O(1/R).

We have used that for ξ ∈ E

log
|z − ξ|
|z| ≤ log

|z|+ |ξ|
|z| ≤ log

(
1 +

2

|z|

)
= O

(
1

|z|

)

and

log
|z|
|z − ξ| ≤ log

(
1− |z − ξ| − |z||z − ξ|

)
≤ log

(
1 +

|ξ|
|z − ξ|

)
= O

(
1

|z|

)
.

Therefore
u(z) = v(z) +O(1/|z|), z ∈ Ω\RQ.

Recalling that Cap(B) = 1
2 Cap(E)1+ε one gets

ω(Ω̃, B, z) =
u(z)

γB + h(z0, 0) +O(1/R)
=

v(z) +O(1/|z|)
γE(1 + ε) + log 2 + h(z0, 0) +O(1/R)

=
(γE + h(z0, 0) +O(1/R))ω(Ω, E, z) +O(1/|z|)

γE(1 + ε) + log 2 + h(z0, 0) +O(1/R)
.
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Clearly there exists R0(ε) such that for R > R0(ε) we have

ω(Ω̃, B, z) ≥ 1

2

γE + h(z0, 0)

γE(1 + ε) + log 2 + h(z0, 0)
ω(Ω, E, z) +O

(
1

|z|

)
,

since the denominator γE(1+ε)+log 2+h(z0, 0) is bounded below away from 0 by (17).
Appeling again to (17) we obtain that, for R > R0(ε),

γE + h(z0, 0)

γE(1 + ε) + log 2 + h(z0, 0)
≥ 1

2

and so

ω(Ω̃, B, z) ≥ 1

4
ω(Ω, E, z) +O

(
1

|z|

)
.

Letting z →∞ completes the proof of a) in the lemma.

Proof of b). Assume that ξ0 = 0 and let U = {|z| < R}. The Green function g = gU
of U is

g(w, ξ) = log

∣∣∣∣∣
1− w

R
ξ
R

w
R −

ξ
R

∣∣∣∣∣ .

Let gB be the Green function of U\B and gE the Green function of U\E. We claim
that

gB(z, ξ) = g(z, ξ)−
∫

∂B
g(w, ξ) dω(U\B,w, z), z, ξ ∈ U\B. (19)

On one hand, the right hand side φ(z, ξ) is a harmonic function of z except for z = ξ
where it has a logarithmic pole. On the other hand, if z tends to a point in ∂(U \B)
then φ(z, ξ) tends to 0, owing to the fact that

∫
∂B g(w, ξ) dω(U\B,w, z) is the solution

of the Dirichlet problem in U \B with boundary values g(z, ξ) with ξ fixed.
Analogously one obtains

gE(z, ξ) = g(z, ξ)−
∫

∂E
g(w, ξ) dω(U\E,w, z), z, ξ ∈ U\E. (20)

The goal is to prove the inequality

∂gB
∂n

(z, ξ) ≥ ∂gE
∂n

(z, ξ), |z| = R

2
, ξ ∈ ∂U, (21)

which follows from

gB(z, ξ) ≥ gE(z, ξ), |z| = R

2
,

3

4
R ≤ |ξ| < R. (22)

Since gB(z, ξ) = gE(z, ξ), |ξ| = R, then, by the maximum principle, it is enough to
show (22) for |ξ| = 3

4R.
We start by proving

log

(
4

3

)
− C

R
≤ g(w, ξ) ≤ log

(
4

3

)
+
C

R
, |w| ≤ 1, |ξ| = 3

4
R, (23)

18



where C is a positive constant and R is sufficiently large. We have

g(w, ξ) = log

(
4

3

)
+ g(w, ξ)− g(0, ξ) = log

(
4

3

)
+ log

∣∣∣∣1−
wξ

R2

∣∣∣∣− log

∣∣∣∣1−
w

ξ

∣∣∣∣ .

The absolute value of each of the last two terms is less than or equal to C/R for some
constant C and (23) follows.

Inserting (23) into (19) and (20) we get

gB(z, ξ) ≥ g(z, ξ)−
(

log

(
4

3

)
+
C

R

)
ω(U\B,B, z), |z| = R

2
, |ξ| = 3

4
R,

gE(z, ξ) ≤ g(z, ξ)−
(

log

(
4

3

)
− C

R

)
ω(U\E,E, z), |z| = R

2
, |ξ| = 3

4
R.

Clearly (22) is a consequence of the two preceding inequalities and the following
claim.

Claim. For R large enough one has
(

log

(
4

3

)
+
C

R

)
ω(U\B,B, z) ≤

(
log

(
4

3

)
− C

R

)
ω(U\E,E, z), |z| = R

2
.

We postpone the proof of the Claim and we proceed to complete the argument for
Lemma 1.

Consider a subset A of ∂Ω\RQ. We want to prove

ω(A, z) ≤ ω̃(A, z), |z| = R

2
, (24)

where ω(A, z) stands for ω(Ω, A, z) and ω̃(A, z) for ω(Ω̃, A, z). Take a point z0 with
|z0| = R

2 such that

sup
|z|=R/2

ω(A, z)

ω̃(A, z)
=
ω(A, z0)

ω̃(A, z0)
.

Assume, to get a contradiction, that ω(A,z0)
ω̃(A,z0) = λ > 1. Then

λω̃(A, z)− ω(A, z) = λ− 1 > 0, z ∈ A,
and

λω̃(A, z)− ω(A, z) ≥ 0, |z| = R

2
.

The maximum principle yields

λω̃(A, z)− ω(A, z) > 0, z ∈ ∂U.
Since ω(A, ξ) is a harmonic function on U \E vanishing on ∂E and, similarly, ω̃(A, ξ)
is a harmonic function on U \B vanishing on ∂B, we get, by (21),

0 = λω̃(A, z0)− ω(A, z0)

=
1

2π

∫

∂U

∂gB
∂n

(z0, ξ)λ ω̃(A, ξ) ds(ξ)− 1

2π

∫

∂U

∂gE
∂n

(z0, ξ)ω(A, ξ) ds(ξ)

≥ 1

2π

∫

∂U

∂gB
∂n

(z0, ξ) (λω̃(A, ξ)− ω(A, ξ)) ds(ξ) > 0,

which is a contradiction. Then (24) holds.
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B

A

z0

By (24) and the maximum principle, ω(A, z) ≤ ω̃(A, z) for z ∈ Ω and |z| ≥ R
2 , and

letting |z| → ∞, item b) of Lemma 1 follows.

Proof of the Claim. Recall that we are assuming `(Q) = 1, so that for all compact
sets K, Cap(E) = Cap(K ∩Q) ≤ 1/

√
2 and hence γE ≥ log

√
2 > 0.

Moreover
γB = γE(1 + ε) + log 2 > γE .

Let r = r(B) be the radius of B. The function

log

(
R

|z|

)
1

log(R/r)
, z ∈ U \B,

is harmonic on U \ B, vanishes on |z| = R and is 1 on |z| = r. Thus it is precisely
ω(U\B,B, z). Since − log r(B) = γB we have

ω(U\B,B, z) = log

(
R

|z|

)
1

logR+ γB
, z ∈ U \B. (25)

We turn now our attention on ω(U\E,E, z). Consider the function

f(z) =

∫

E
log

R

|z − w| dµE(w)
1

logR+ γE
z ∈ U \ E.

Since
∫
E log 1

|z−w| dµE(w) = γE for z ∈ E, except for a set of zero logarithmic capacity,

f(z) = 1, z ∈ E, except for a set of zero logarithmic capacity.
If w ∈ E, z ∈ ∂U one has |z − w| = R+O(1) and so

log
R

|z − w| = − log

(
1− R− |z − w|

R

)
= − log(1 +O(1/R)) = O(1/R)

and

log
|z − w|
R

= − log

(
1− |z − w| −R|z − w|

)
= − log (1 +O(1/R)) = O(1/R).

Since f(z) = 1, z ∈ E, we conclude that

|f(z)| ≤ O(1/R)

logR+ γE
, z ∈ ∂U,
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so that the function

f̃(z) = f(z)− C/R

logR+ γE

satisfies f̃(z) ≤ 1, z ∈ E, and f̃(z) ≤ 0, z ∈ ∂U, for an appropriate large constant C.
It follows that

f̃(z) ≤ ω(U\E,E, z), z ∈ U \ E.
To estimate this harmonic measure we write

ω(U\E,E, z) ≥ −C
R(logR+ γE)

+
1

logR+ γE

∫

E

(
log

R

|z − w| − log
R

|z|

)
dµE(w)

+
1

logR+ γE
log

R

|z| = T1 + T2 + T3.

By (25)

T3 =
1

logR+ γB
log

R

|z| +

(
1

logR+ γE
− 1

logR+ γB

)
log

R

|z| = ω(U\B,B, z) + T4.

For the term T4 we have

T4 =
γB − γE

(logR+ γE)(logR+ γB)
log

R

|z| ≥
εγE + log 2

(logR+ 2γE + log 2)2
,

provided ε < 1, because γB ≤ 2γE + log 2.
For the term T2 we have

|T2| ≤
1

logR+ γE

∫

E

∣∣∣∣log
|z − w|
|z|

∣∣∣∣ dµE(ω)

with

log
|z − w|
|z| = log

(
1 +
|z − w| − |z|

|z|

)
= log(1 +O(1/R)) = O(1/R)

and the same estimate also holds for log |z|
|z−w| . Hence

|T2| ≤
C

R(logR+ γE)
.

Since |T1| obviously satisfies the same estimate, we conclude that

ω(U\E,E, z) ≥ ω(U\B,B, z) +
εγE + log 2

(logR+ 2γE + log 2)2
− C

R(logR+ γE)
, (26)

for some positive constant C.

Recall that the claim is
(

log

(
4

3

)
+
C

R

)
ω(U\B,B, z) ≤

(
log

(
4

3

)
− C

R

)
ω(U\E,E, z), |z| = R

2
.
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From now to the end of the proof of the claim z denotes a point satisfying |z| = R
2 .

By (26) we get, for R ≥ R0(ε),

ω(U \ E,E, z) ≥ ω(U \B,B, z) + C
εγE

(logR+ γE)2
.

It is sufficient to show
(

log

(
4

3

)
+
C

R

)
ω(U \B,B, z) ≤

(
log

(
4

3

)
− C

R

)(
ω(U \B,B, z) + C

εγE
(logR+ γE)2

)

or

Cω(U \B,B, z)
R

≤ −C
R
ω(U \B,B, z) +

(
log

(
4

3

)
− C

R

)
C

εγE
(logR+ γE)2

,

which amounts to, for R ≥ R0(ε),

ω(U \B,B, z)
R

≤ C εγE
(logR+ γE)2

.

By (25), for |z| = R/2, we have

ω(U \B,B, z) =
2

logR+ γB
=

2

logR+ (1 + ε)γE + log 2
≤ 2

logR+ γE
.

Then, for R ≥ R0(ε), we get

ω(U \B,B, z)
R

≤ 2

R(logR+ γE)
≤ C εγE

(logR+ γE)2
,

where the last inequality is equivalent to

2(logR+ γE) ≤ C RεγE ,
which is clearly true for R large enough, because γE ≥ log

√
2.

7.2 Proof of Lemma 3

We note that in the statement of Lemma 3 one has to understand that no curve Γj lies
inside another curve Γk; in other words, the bounded connected components of C \Γj ,
1 ≤ j ≤ N, are disjoint. Also, replacing K by {g ≤ ε} for small ε > 0, we can assume
Ω is a finitely connected domain with smooth boundary.

Recall that we can write the Green function g as

g(z) = log |z|+ γK + h0(z), (27)

where

h0(z) =
a1

z
+
ā1

z̄
+
a2

z2
+
ā2

z̄2
+ · · ·

is harmonic and satisfies h0(∞) = 0.

Let {ξk} be the set of critical points of g that lie outside Γ. First of all we note
that there is only a finite number of these critical points. Indeed, the ξk’s are the zeros
of ∂g, which is a holomorphic function on Ω = C∗ \ K vanishing at infinity. Hence
the critical points can accumulate only on K and so outside Γ there are only finitely
many, say ξ1, . . . , ξL.
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Γ1
Γ2

Γ3

ξ1

ξ2

ξL

n

−n

n
−n

∂Br
n

We want to show the equality

1

2π

∫

Γ

∂g

∂n
log |∇g| ds =

L∑

k=1

g(ξk) +

N∑

j=1

cj
1

2π

∫

Γj

∂

∂n
log |∇g| ds+ γK .

Let Br be the disc centered at the origin of radius r big enough to contain the unit
disc and all the critical points of g. Green’s formula gives

− 1

2π

∫

Γ

∂g

∂n
log |∇g| ds+

1

2π

∫

∂Br

∂g

∂n
log |∇g| ds

= − 1

2π

∫

Γ
g
∂

∂n
log |∇g| ds+

1

2π

∫

∂Br

g
∂

∂n
log |∇g| ds−

L∑

k=1

g(ξk),

where we used that ∆ log |∂g| = 2π
∑L

k=1 δξk . Equivalently

1

2π

∫

Γ

∂g

∂n
log |∇g| ds =

L∑

k=1

g(ξk) +

N∑

j=1

cj
1

2π

∫

Γj

∂

∂n
log |∇g| ds

+
1

2π

∫

∂Br

(
∂g

∂n
log |∇g| − g ∂

∂n
log |∇g|

)
ds

and we need to prove

lim
r→∞

1

2π

∫

∂Br

(
∂g

∂n
log |∇g| − g ∂

∂n
log |∇g|

)
ds = γK . (28)

On ∂Br the normal derivative ∂
∂n is the partial derivative ∂

∂r . By (27)

∂g

∂r
(z) =

1

r
+

∂

∂r
h0(z) =

1

r
+O

(
1

r2

)
, |z| = r,
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and similarly

∇g(z) = ∇ log |z|+∇h0(z) =
1

z̄
+O

(
1

|z|2
)
, |z| = r.

Thus

log |∇g(z)| = log
1

r
+O

(
1

r

)

and
∂

∂r
log |∇g(z)| = −1

r
+O

(
1

r2

)
.

The integral in (28) becomes comparable to

1

2π

∫

∂Br

(
1

r
log

1

r
+ (log r + h0 + γK)

1

r

)
ds+O

(
1

r

)
=(h0 + γK) +O

(
1

r

)
,

which tends to γK as r →∞, because h0(r)→ 0.

The next step is to prove the identities

1

2π

∫

Γj

∂

∂n
log |∇g| ds = −1, j = 1, 2, . . . , N.

Since ∇g = 2∂̄,

1

2π

∫

Γj

∂

∂n
log |∇g| ds =

1

2π

∫

Γj

∂

∂n
log |∂̄g| ds

=
1

2π

∫

Γj

〈2∂̄ log |∂̄g|, n〉 ds =
1

2π

∫

Γj

〈
∂̄2g

∂̄g
, n

〉
ds

= Re

(
1

2π

∫

Γj

∂2g

∂g
n ds

)
= Re

(
1

2πi

∫

Γj

∂2g

∂g
dz

)

=
1

2π
Var argΓj

(∂g) =
1

2π
Var argΓj

(∇g) = −1.

Therefore

1

2π

∫

Γ

∂g

∂n
log |∇g| ds =

L∑

k=1

g(ξk)−
N∑

j=1

cj + γK

and the proof of the lemma is reduced to

N∑

j=1

cj ≤
L∑

k=1

g(ξk) + γK + log 2. (29)

Let µK be equilibrium measure of K. Then

g(z) = γK +

∫

K
log |z − w| dµK(w),
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and so, recalling that Γ ⊂ {|z| < 1},

g(z) ≤ γK + log 2, |z| < 1. (30)

Now we make a remark. Let γ be a Jordan curve which is contained in a level set
of g and that surrounds a number β of connected components of K. Then the number
of critical points of g inside γ is β − 1.

ξ2

ξ1

γ

ξ3

D

To see this, let D stand for the domain bounded by γ and K; then ∇g is orthogonal
to the boundary of D and when we travel along ∂D the argument of ∇g increases
by 2π over γ and decreases by 2π over the boundary of each component of K. So the
total variation of arg(∂g) on ∂D is (β − 1) 2π and, by the argument principle, ∂g has
β − 1 zeros in D.

Take now γ containing all critical points of g and K. Then the total number of
critical points of g is the number of components of K minus 1. Assuming that Γj
contains βj components of K, j = 1, . . . , N , we know that the number of critical
points inside γj is βj − 1 and so the number of critical points outside Γ is N − 1.
Replacing in (29) the number L of critical points outside Γ by N − 1, the inequality
to be proven is

N∑

j=1

cj ≤
N−1∑

k=1

g(ξk) + γK + log 2. (31)

To show (31) let us assume that the constants cj are different and ordered so that
c1 < c2 < · · · < cN . We would like to understand how the N−1 critical points outside Γ
appear.
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. . .

Γ2

Γ3

ξ1

g =
c3

g = c4
g = c4

Γ1

g =
c
2

Γ3

ξ2

g = c4

Γ2

ξ1

g =
c3

Γ1

g =
c
2

The critical points of g appear when two components of a level set of g touch.
The critical point may have a multiplicity if more than two components coincide at
a point; in this case, the multiplicity is, by the argument principle, the number of
components that are joining minus one. Assume, for instance, that two components
of {z : g(z) = c} intersect at ξ1 and c is the least number with this property. On one
hand, ∇g(ξ1) = 0, since otherwise {z : g(z) = c} would be a smooth curve around ξ1,
which is not the case. On the other hand, the domain bounded by {z : g(z) = c}
contains two Γj , which must be Γ1 and Γ2. Thus g(ξ1) ≥ c2. If there were three
components of {z : g(z) = c} which join at ξ1, then Γ1, Γ2 and Γ3 would be inside the
domain bounded by {z : g(z) = c}. Hence g(ξ1) ≥ c3. Arguing inductively in this way
we finally obtain that the N − 1 critical points of g outside Γ satisfy

N−1∑

k=1

g(ξk) ≥
N∑

j=2

cj .

Since c1 = g(τ) for some τ , (30) gives c1 ≤ γK + log 2 and (31) follows.
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7.3 Proof of Lemma 4

Let µ be a Frostman measure for E with respect to the measure function h(r) = r1+ε;
that is, µ satisfies

µ(E) ≈Mh(E) and µ(B(z, r)) ≤ r1+ε, z ∈ C, r > 0.

The logarithmic potential of µ at a point z ∈ E is

Uµ(z) =

∫

E
log

1

|z − w| dµ(w) =

∫ ∞

0
µ

{
w : log

1

|z − w| > t

}
dt

≤
∫ τ

0
µ(E) dt+

∫ ∞

τ
e−t(1+ε) dt = τµ(E) +

e−τ(1+ε)

1 + ε
.

The value of τ which makes minimal the above expression is τ(1+ε) = − logµ(E) and
thus

Uµ(z) ≤ µ(E)

1 + ε

(
1 + log

1

µ(E)

)
, z ∈ C,

which gives, after normalization of µ, the estimate of the Robin constant

γE ≤
1

1 + ε

(
1 + log

1

µ(E)

)
.

Therefore
Cap(E) = e−γE ≥ C µ(E)1/1+ε.
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