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Abstract

This paper continues the study, initiated in the works [MOV] and [MOPV],
of the problem of controlling the maximal singular integral T* f by the sin-
gular integral T'f. Here T is a smooth homogeneous Calderén-Zygmund sin-
gular integral operator of convolution type. We consider two forms of con-
trol, namely, in the weighted LP(w) norm and via pointwise estimates of T* f
by M(Tf) or M%(Tf), where M is the Hardy-Littlewood maximal operator
and M? = M o M its iteration. The novelty with respect to the aforemen-
tioned works, lies in the fact that here p is different from 2 and the LP space
is weighted.

1 Introduction

Let T be a smooth homogeneous Calderén-Zygmund singular integral operator on R"
with kernel
Q(x)

[

K(x) =

z e R\ {0}, (1)

where €2 is a homogeneous function of degree 0 whose restriction to the unit sphere
S™=1ig C and satisfies the cancellation property

/_1 Qz)do(x) =0,

o being the normalized surface measure in S"~!. Thus, T'f is the principal value
convolution operator

Tf(a) = pv. [ fa = 9)K(y)dy = iy 7f(a), )

where T° f is the truncated operator at level e defined by

= [ e nKm



For f € LP, 1 < p < oo, the limit in (2) exits for almost all z. One says that the
operator T is even (or odd) if the kernel (1) is even (or odd), that is, if Q(—x) = Q(x),
x € R"\ {0} (or Q(—z) = —Q(z), z € R"\ {0}). Let T* be the maximal singular
integral
T f(x) =sup |T°f(x)], =€ R".
e>0

In this paper we consider the problem of characterizing those smooth Calderén-
Zygmund operators for which one can control T* f by T'f in the weighted LP norm

1T fllerw) < ClITfllirw), [ e LP(w), and w € Ay, (3)

where A, is the Muckenhoupt class of weights (see below for the definition). A
stronger way of saying that 7™ is controlled by 7' is the pointwise inequality

" f(z) < C(M*(Tf)(x), © € R, s € {12}, (4)

where M denotes the Hardy-Littlewood maximal operator and M? = M o M its
iteration. For the case p = 2 and w = 1, the relationship between (3) and (4)
has been studied in [MOV] for even kernels and in [MOPYV] for odd kernels (see
also [MV]). We will prove that, for any 1 < p < oo and w € A,, the class of
operators satisfying (3) coincides with the family of operators obtained for p = 2
and w = 1, thus giving an affirmative answer to Question 1 of [MOV, p. 1480]. Our
main result states that for smooth Calderén-Zygmund operators, inequality (4) (with
s depending on the parity of the kernel) is equivalent to (3) and also is equivalent
to an algebraic condition involving the expansion of §2 in spherical harmonics.

Now we need to introduce some notation. The homogeneous function €2, like any
square-integrable function in S"~! with zero integral, has an expansion in spherical
harmonics of the form

o

Q(z) = ij(x), ze S, (5)

where P; is a homogeneous harmonic polynomial of degree j. For the case of even
operators in the above sum we only have the even terms P,; and for the odd case
we only have the polynomials of odd degree P;;. In any case, when €2 is infinitely
differentiable on the unit sphere one has that, for each positive integer M,

> MIP oo < oo, (6)
7j=1
where the supremum norm is taken on S"~!. When Q is of the form

Q<x>=f3§,?, r € R\ {0},

with P a homogeneous harmonic polynomial of degree d > 1, one says that T is
a higher order Riesz transform. If the homogeneous polynomial P is not required
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to be harmonic, but has still zero integral on the unit sphere, then we call T a
polynomial operator.

Let’s recall the definition of Muckenhoupt weights. Let w be a non negative
locally integrable function, and 1 < p < co. Then w € A, if and only if there exits
a constant C' such that for all cubes Q C R

(@) G@l) " =e

The important fact worth noting is that Calderén-Zygmund operators and the
Hardy-Littlewood maximal operator are bounded on LP(w), when 1 < p < oo and
w belongs to A,. See [Du, Chapter 7] or [Gr2, Chapter 9] to get more information
on weights.

Now we state our result. We start with the case of even operators.

Theorem 1. Let T be an even smooth homogeneous Calderdon-Zygmund operator
with kernel (1). Then the following are equivalent:

(a)
T*f(z) < CM(Tf)(x), = €R"

(b) If p € (1,00) and w € A,, then

||T*f||Lp(w) < CHTfHLp(w), for all f € LP(w).

(c) Assume that the expansion (5) of  in spherical harmonics is

o
Q(x) =Y Po(x), Py #0.
Jj=Jo
Then, for each j there exists a homogeneous polynomial Q2;—2j, of degree 2j—23y

such that Py; = Paj,Q2j—2j, and Z;‘;jo Y2;Q2j—25, (§) # 0, £ € S"1. Here for a
positive integer k we have set

I(%

e o

Ve =1 T2

(d)
17" flloo < CIIT S, for all f € H'(R™).

Recall that ||g|[1..o denotes the weak L' norm of g and H'(R™) is the Hardy
space. Calderén-Zygmund operators act on H'. (For instance, see [Du, Chapter 6],
[Gr2, Chapter 7] for more information on the Hardy space.)

To get the above result for odd kernels we will replace the Hardy-Littlewood
maximal operator in (a) by its iteration.



Theorem 2. Let T be an odd smooth homogeneous Calderon-Zygmund operator
with kernel (1). Then the following are equivalent:

(a)
T*f(z) < CM*(Tf)(x), = €R"

(b) If p € (1,00) and w € A, then

T flleowy < CTflliow),  for all f € LP(w).

(c) Assume that the expansion (5) of £ in spherical harmonics is

Qz) = Pryjua(x), Prjors #0,

J=Jjo

Then, for each j there exists a homogeneous polynomial QQ2;_2j, of degree 2j—2j,
SUCh that P2j+1 = P2j0+1Q2j,2]’0 CL’/ld Z;')o:jo 72j+1Q2j72j0 (f) 7é O, f & Sn717 ’U)Zth
Yoj+1 as in (7).

Clearly, both in Theorem 1 as in Theorem 2, the condition (a) implies (b) is
a consequence of the boundedness of the Hardy-Littlewood maximal operator on
weighted L? spaces. The proof of (¢) implies (a) in Theorem 1 is proved in [MOV]
and the same implication in Theorem 2 is proved in [MOPV]. So the only task to be
done is to show that (b) implies (¢) in both theorems (and (d) = (¢) in Theorem 1).
One of the crucial points in the proof of the implication (b) = (c) for the case p = 2
and w = 1 in [MOV] and [MOPV] is to use Plancherel Theorem to get a pointwise
inequality to work with it. For p # 2 we will get the corresponding pointwise
inequality using properties of the Fourier transform of the kernels as LP multipliers.

In Section 2 we introduce LP Fourier multipliers and some tools to control their
norm (see Lemma 1). Section 3 is devoted to the proof of (b) = (¢), for polynomial
operators. The general case is discussed in Section 4.

As usual, the letter C' will denote a constant, which may be different at each
occurrence and which is independent of the relevant variables under consideration.

2 Multipliers

Recall that, given 1 < p < oo, one denotes by M, (R") the space of all bounded
functions m on R™ such that the operator

T’m(f) - (f m)V’ f € 87

is bounded on LP(R™) (or is initially defined in a dense subspace of LP(R™) and has a
bounded extension on the whole space). As usual, S denotes the space of Schwartz
functions, f is the Fourier transform of f and fV the inverse Fourier transform.
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The norm of m in M, (R") is defined as the norm of the bounded linear operator
T, : LP(R") — LP(R™). Elements of the space M,(R") are called L? (Fourier)
multipliers. Similarly, we speak of L”(w) multipliers. It is well known that Ma, the
set of all L? multipliers, is L and that M;(R") is the set of Fourier transforms
of finite Borel measures on R™. The basic theory on multipliers may be found for
example in the monographs [Du], [Grl].

Let 0 < ¢ < 1 be an smooth function such that ¢(¢) = 1if [¢] < 5, and ¢(§) =0
if [€] > 1. Given & € R", we define ¢5(§) = qﬁ(%). Consider m € L such
that m is continuous in some neighbourhood of &, with m(&,) = 0. It is clear, by
Plancherel Theorem, that the norm of me¢s in My approaches zero when § — 0. We
ask if the same result holds when m is an LP multiplier. Adding some regularity
to m we get a positive answer.

Lemma 1. Let {§ € R", 0 < 0 < 0y and m € M, NC"(B(&,dy)) with m(&) =
Let ¢ € C*(R™), 0 < ¢ <1 such that ¢(§) =1 if [¢| < %, and (&) =0 if |£] >
Set ¢s5(€) = gb(%) and let T,y be the operator with multiplier mes.

0.
1.

1. Ifwe Ay, 1 <p<oo, then ||Tme||Lr@)—»Lr@w) — 0, when § — 0.
2. | Ty |1 1100 —> 0, when § — 0.
3. || Tomesl |12 —> 0, when 6 — 0.

To prove Lemma 1, we use the next theorem due to Kurtz and Wheeden. Fol-
lowing [KW], we say that a function m belongs to the class M(s, 1) if

1/s
Mg, := SUp (Rsla|_”/ \D"‘m(m)]sda:> < +oo, forall |a| <1, (8)
R>0 R<|z|<2R

where s is a real number greater or equal to 1, [ a positive integer and o =
(o, ..., 0a,) a multiindex of nonnegative integers.

Theorem 3 ([KW, p. 344]). Let 1 < s <2 and m € M(s,n).

1. If 1 <p < oo and w € Ay, then there exists a constant C', independent of f,
such that

T fllrw) < ClIflLrw)-

2. There exists a constant C, independent of f and X\, such that
n C
{o € R" T f(2)] > A} < Sl flle, A>0.

3. There exists a constant C, independent of f, such that

TSl < Cllf] -



Analyzing the proof we check that, in all cases, the constant C', which appears
in the statements I, 2 and & of the previous Theorem, depends linearly on the
constant m,,, defined at (8). We also remark that when w = 1 the proof can be
adapted to the case H' — L!, so we get statement & which is not explicitly written
in [KW].

Proof of Lemma 1. Using Theorem 3 we only need to prove that the multiplier mg;
is in M (s,n) for some 1 < s < 2, and the constant m;,, tends to 0 if § tends to 0.

Assume that & # 0 and that 0 < §y is small enough. For |a| < n, using Leibniz
rule one has

R>0

1/s
. (Rwln / 1D# (mess) ©)]" ds)
R>0 {R<|€¢|<2R}NB(&0,0)

B 1/s
<Cl&|l=3 < /B o \D“(mfba)(é)lsdf)

< g2 ( 5 (2) (g) (g) / M|Da-ﬁ<m><§>Dﬁ<¢5><s>rsdg)l/s.

Bi<ai, 1<i<n

1/s
sup (Rw'—” / |Da<m¢5><£>18ds)
R<|€|<2R

Now we will get a bound for each term in the above sum. In order to get it, we
consider different cases. In all the cases we will use that for any multiindex o we have
|D*¢s(&)| < ﬁ and that the modulus of continuity of m, denoted by w(m, &, ),
satisfies w(m, &, d) < C9.

Case 1. |a| = n.
For 8 = « one has that

/ | D" (m)(€) D (¢5)(€)]° d€ = [m(&)I°[D*(¢5)(§)I° d&
B(£0,0) B(&0,9)

< O folm, &, 56"

S Cas—&-n—ns

and this term tends to 0 as ¢ tends to 0 taking 1 < s < 5. For the remaining
terms, that is a # 3, we have

[ @ e erds < O
B(&0,0)

— on—slsl
S Cas«#nfns’



where the derivatives of m are bounded by a constant, and the last inequality holds
when ¢ is small enough. So, if 1 < s < -4, this term goes to 0 as ¢ goes to 0.

Case 2. |a| =k <n.

For |B| = |a|, using the boundedness of the modulus of continuity of m we have
[ oD@ = [ jm@rIDt s
B(£0,9) B(£0,9)
1 s SN
< C%]w(m, 507 6)‘ 0
— C(SS—HL_kS
S Cds—&-n—ns

and this term, again, goes to 0 as d goes to 0, whenever 1 < s < -5
Finally, if || < |a|, one gets the same bound

1
[ @D en(de < 0o
B(&0,9)
= Cgm*V
S Cds—&-n—ns.
When & = 0 one has
1/s
sop (e [ (prman ()
R<|¢|<2R

R>0

1/s
= sup (Rso‘ln/ ]Da(m¢5)(§)|5d§) :
R<|¢|<2R

6>R>0

Observe that for |a] > 0, D%®s lives on {0/2 < |¢] < d}. Then, similar calculations
complete the proof. Ol

To prove the first case of Lemma 1 there is another argument due to J. Duoan-
dikoetxea. We thank him for providing us the following lemma. In fact, it is only
necessary to assume that the multiplier m is continuous.

Lemma 2. Let § € R, 0 < § < dp, 1 < ¢ <2 and m € M,;NC(B(&,d)) with
m(&) = 0. Set ¢5(&) as above and let T4, be the operator with multiplier meps.

(a) For any p € (¢,2) we have

HTm¢5HL;’7%LP — 0, when § — 0.

(b) Let w e A, withp € (¢,2) and let s > 1 such that w® € A,. If m is an LP(w®)
multiplier, then

||Tm¢5HLP(w)—>LP(w) — O, when 6 — 0.



Remark 1. Clearly, a similar result holds when 2 < p < q.

Proof. We first observe that ||Tne;|z212 = ||mds|lw = €(6) and (§) — 0 as § — 0
since m is continuous in &. On the other hand, |[m¢;||sm, < [|¢§]|llmlm, =
C|lm||m,, where C'is a constant independent of §. That is, for all § > 0

[ Tones flla < MI[flg-

Then, applying the Riesz-Thorin theorem (e.g. [Grl, p. 34]), for any p € (¢,2)

(L= 12;9—1-%) we have

Tongs fllp < M)’ 11f 1l = 1D f1lp, (9)

where £1(6) — 0 as § — 0 and (a) is proved. For proving (b), since w® € A, and
¢s is a cutoff smooth function, note that

| Tongs fllLr sy < CNfllzews)s (10)

where one can check that C' is a constant independent of §. Finally, from (9)
and (10), applying the interpolation theorem with change of measure of Stein-Weiss
(e.g. [BeL, p. 115]), we get

| Tongs fll o) < CV2e1(6) 2| Fll o

as desired. O

3 The polynomial case

As we remarked in the Introduction, to have a complete proof of Theorems 1 and
2 only remains to prove that (b) implies (¢) (and (d) implies (¢) in Theorem 1).
Our procedure to get the above implications follows essentially the arguments used
in [MOV] and [MOPV]. The main difficulty to overcome is that for p # 2, we cannot
apply Plancherel Theorem and we replace it by a Fourier multiplier argument.

We begin with the proof of (b) implies (¢) in Theorem 1 for the case w = 1.
Then we show how to adapt this proof to the case with weights, to the case of odd
operators and to the case of weak L'. Thus, we assume that 7" is an even polynomial
operator with kernel

Q(SL’) Pg(l’) P4(£17> PQN(.T)
K(z) — — 0
(z) zfr [zt |z |z [2NFn x #0,

where P; is a homogeneous harmonic polynomial of degree 2j. Each term has the
multiplier (see [St, p. 73])

Py;(z) \" P5;(§)
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Then,
P R (E) = Efﬁi, ¢ 40,

where () is the homogeneous polynomial of degree 2N defined by

Q(x) = Y2 Pa(2)[]* 72 4 - 4oy Poj() "™ 4+ 4 yan Pan ().

We want to obtain a convenient expression for the function K (z)xgn 5, the kernel K
off the unit ball B (see (12)). To find it, we need a simple technical lemma which
we state without proof.

Lemma 3 ([MOV, p. 1435]). Assume that ¢ is a radial function of the form

¢(2) = er(le))xa(@) + ea(l2)xnz (@),

where 1 is continuously differentiable on [0,1) and ps on (1,00). Let L be a second
order linear differential operator with constant coefficients. Then the distribution L
satisfies

Lo = Lo(x)xs(x) + Lo(x) Xpm (),

provided @1, ©}, w2 and @ extend continuously to the point 1 and the two conditions

p1(1) = @2(1),  #i(1) = ¢5(1)
are satisfied.

Consider the differential operator Q(9) defined by the polynomial Q(z) above
and let E be the standard fundamental solution of the N-th power AN of the
Laplacian. Then Q(9)E = p.v. K(z), which may be verified by taking the Fourier
transform of both sides. The concrete expression of E(z) = |z|*""(a(n, N) +
b(n, N)log |z|?) (e.g. [MOV, p. 1464]) is not important now, just note that it is a
radial function. Consider the function

p(x) = B(x)xpmp(@) + (Ao + Ayfz + - + Aoy |z xs(2),

where B is the open ball of radius 1 centered at origin and the constants Ag, Ay, ...,
Ayn_1 are chosen as follows. Since (z) is radial, the same is true for Alyp if
j is a positive integer. Thus, in order to apply N times Lemma 3, one needs

2N conditions, which (uniquely) determine Ag, Ay, ..., Aoy_1. Therefore, for some
constants oy, o, ..., N_1,
AV = (ag + ar|z)? + - an |2 P YD) yp(x) = b(a), (11)

where the last identity is the definition of b. Let’s remark that b is a bounded function
supported in the unit ball and it only depends on N and not on the kernel K. Since

p=ExAVp,
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taking derivatives of both sides we obtain
Q) =Q)E x ANp =p~v. K(x)*b=T(b).
On the other hand, applying Lemma 3,
Q)¢ = K(z)xanp(x) + Q) (Ao + Ar]z* + - - + Ay 1|2V 2) (2) x5(2).

We write
S(x) := —Q(9)(Ag + Ar|x[* 4 - + Aoy ||V 72) (),
and we get
K(z)xgmp(z) = T(b)(x) + S(z)x5(7). (12)
Let’s remark that S will be null when @ is a harmonic polynomial (see [MOV,
p. 1437]). Consequently

TYf =T(b)  f + Sxp * f.

Our assumption is the L? estimate between T and T. Since the truncated opera-
tor T at level 1 is obviously dominated by T, we have

I1SxE * fllp < T fllp + 176 = £l
< NT*fllp + 1o+ Tl

(13)
< CITflp + 116l
= CIT S,
that is, for any f € LP
15X * fllp < Cllp-v. K * fllp. (14)

If p = 2, we can use Plancherel and this L? inequality translates into a pointwise
inequality between the Fourier multipliers:

5va(6)] < Clpv K (©) = gfﬁi, €40, (15)

If p # 2 we must resort to Fourier multipliers to get (15). We observe that the

multipliers we are dealing with, Sxz and m , are in C*\ {0} and in M,,. Let
& # 0, we write

SxB(€) = Sx(6)(&) + Er(€)  with  Ey(€) = Sxz(€) — Sxa(&)

pv. K(€) = pv. K(&) + Eo(€) with  Ey(€) = pv. K(€) — pv. K(&)

and so
Ipv. K % fll, < [pv. K& 1 fllp + 1T f 1l (16)
15x5 * Fllp = 15x8E) 1 flp = 1T £llp, (17)
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where T, denotes the operator with multiplier E; (i = 1,2). Using (17), (14)
and (16) consecutively, we get

15X 1 fllp = I Te: flly < 1Sx5 * fll»
< Cp-v. K= f],

< C(lp-v. K& N fllp + 1T flp)
and therefore

T tlly 1Tl
e 1Al

Now, choosing appropriate functions in (18) we obtain the pointwise inequality.
Let ¢5(&) = qﬁ(%) as in Lemma 1 and define g5 € S(R") by g5(¢) = ¢5(£). Then
Te;95 = Tr;(925%9s) = T, 4,5(9gs), because ¢pgs = 1 on the support of ¢5. Changing f
by gs in (18) we have

r%<§o>|sc(|p/v7<<§o>\+ ) &40 (18)

[Sxs(&)| < C (|m<,50)| o | Tegsll r|TE1¢2595\rp)
[lgsll» 19511

< C (I3 K (&)l + [ Tragusll v + [ Trrgnsll s )

Applying Lemma 1 to the multipliers F; we prove that the two last terms tend
to zero as J tends to zero. So, for w = 1, we get (15) and from here we would follow
the arguments in [MOV, p. 1457].

For the weighted case we must be careful with the inequalities in (13). In general,
the inequality ||f * F||rw) < C|f|1]|F || tr(w) is not satisfied. That is, we can not
control ||bx T f||1r() by a constant times ||b][1||7 f||Lr(). However, in the even case
b is a bounded function supported in the unit ball and so

-t =| [ se—nTiea| < canr e

Moreover
10T fllze@w) < CNTfllrew),

because w € A,. So, ||[Sx * f||rrw) < C|lp.v. K * f||1r(w) and proceeding as above,
we would get (15).

The proof of (b) implies (¢) in Theorem 2 can be handled in much the same
way. The only significant difference, because now the polynomial is odd, lies on the
function b in (12), which is not supported in the unit ball but it is a BMO function
satisfying the decay |b(z)| < C|z|™"7 ! if |x| > 2 (see [MOPV, section 4]). In any
case, b € L' and the set of inequalities (13) remains valid for the case w = 1.
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On the other hand, for any w in the Muckenhoupt class we write, arguing as in
[MOPV, p. 3675],

6TH@=| [ (0 =) = o) TS0) dy\
lz—y[<2
T b0 Ty [ e =)l Tl dy
|lz—y|<2 |lz—y|>2
— [+ I+ III,
where bp(p2) = |B(0,2)]7! fB(O 5 b - To estimate the local term I we use the gen-

eralized Holder’s inequality and the pointwise equivalence My oq 1) f(2) = M? f(x)
(IP)) to get
1] < ClibllsmolI T fllgog 1), w2y < CMP(Tf)(2).

Notice that bp(g,2) is a dimensional constant. Hence
(1] < CM(T f)(x).
Finally, from the decay of b we obtain
Tf(y)l

11| < C S

dy < CM(T'f)(x),

lz—y|>2 |IIJ -

by using a standard argument which consists in estimating the integral on the annuli
{2F < |z — y| < 2"}, Therefore

|(b# Tf)(x)] < CMX(Tf)(2). (19)

So, we obtain
1% T fllrw) < CIT fllzrw),

because w € A,. Then, ||Sxp * f||Lrw) < C|lp-v. K * f||1r() and we get (15).

It remains to prove that (d) implies (¢) in Theorem 1. To get this implication
we need to precise some properties of the functions gs that we explain below. First
of all, note that gs(z) = ¢™0§"g(dz) where § = ¢. So it is clear that the norms
llgsllx = |lg]l1 and [|gs|l1.00 = ||g]l1,00 dOo not depend on the parameter 6 > 0. When
§ < |&l, since [ gs(z)dz = ¢5(0) = 0 and g5 € S(R™), we have that g; € H".
But, some computations are required to check that ||gs||n < C with constant C
independent of §.

Lemma 4. When 0 < 6 < &, ||gsllzr < C with constant C independent of 9.

Proof. We have gs(z) = e™¢"g(éx) with ¢ € S(R") and [ gs = 0. Set F§(z) =
XB0,s-)(r) and, for j > 1, Ff(x) = XB(0,276-1)(%) — XB02-16-1)(2). Note that
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Z; “o I F?%(x) = 1. Consider the atomic decomposition of gs

g5(x) =) (gs(x) — ¢ )+ Z ¢} + A} F} (@) = d5 1 )y ()]

=0
= Zaj(x) + ZA6
=0 =0
- S 9:F} [ os(Fg + -+ F))

, so that [ af(x)dr =

fF(s,dg:Oandd?H: f 7
J A%(z) dz = 0. Note that a is supported in the ball B(0,276~") and A? is supported
in B(O 21“5 b.

Since g € S(R™) we have (1 + |2|"™1)|g(z)| < C. Then

195 (2) F} ()] = 6" |g(02)|Fj () < 6" sup [g(2)| < C (f) 2 = |<OO§5>|

|Z|N2J

and therefore
C277
~ [B(0,276-1)]

[ 95F}
JE}

On the other hand, [ gs(F + -+ + Ff) = f\w\>2j5‘1 gs(x) dz, because [ gs = 0,
and so -

|51 =

& f|z\>2j5 1 95(z) dx < f\z\zzj l9(2)| d= < 277
o JF T B0, 24157 T [B(0, 276 |
Consequently
C C
lallen < o5 and (4]l < o
Therefore, for all § € (0,|&]), ||gs|lzm < C as we claimed. O

Finally, for functions f in H!, and again using (12), we have

1SXE * fllioo < 21T fllr0 + 70 * fll1.00)
< CUIT" fllveo + 16+ T f[]1)
< CIT e+ ol T 111)
=ClTfll = Cllp-v. K+ flhs-

Taking &, # 0 and using the same notation as before, we have

Ip-v. K flly < [pv. K(&)[|[f]l + [T fl1,
1 —
158 * fllee 2 515xB (&) I fll1oo = [1TE: fll10c
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and consequently

= — I1£1Ix Te flli 1 Tey fll100
S C v. K J
x5 (60)] < ('pv O e T 1lhee

Replacing f by gs and using the properties of g5 (that is, ||gs|l1 = |lgll1, |gs/l1.00 =
lg]l1.00 and Lemma 4) we obtain

), b0 40

— — T T .
|SXB(€O)’ < C’(!p.v. K(§0)| Hg5||1 || E2¢>2595H1 + H E1¢2§g5||1, )
HgaHloo l1951/1,00 1951]1,00
C<|p/V\f((§0)| Hng ||TE2¢'25||H1HL1H95HH1 + ||TE1¢25||L1HL1¢°°||95||1>
B Hngoo 195111,00 11951[1,00

< C(Ipv- K (&) 4+ [ Teatus I + [T 111 )

and therefore, applying Lemma 1 on the right hand side of this inequality, we get

1Sx5(60)] < Clpv. K(&)| & #0

as desired.

4 The general case

In our procedure for the polynomial case, the function b has been crucial. It provides
a convenient way to express the function K (x)XRn\g, where K is the kernel of
the operator T. As we mentioned before, b only depends on the degree of the
homogeneous polynomial and on the space R™. In the even case 2N (see (11)),
b = by is the restriction to the unit ball of some polynomial of degree 2N — 2. In
the odd case 2N + 1, boy 1 is a BMO function with certain decay at infinity. Until
now, we did not need to pay attention to the size of the parameters appearing in
the definition of b because the degree of the polynomial (either 2N or 2N + 1) was
fixed. In this section we require a control of the L', L> or BMO norms of b, as well
as its decay at infinity. We summarize all we need in next lemma.

Lemma 5. There exists a constant C' depending only on n such that
(i) bon( SO and - [honia(§) C, € €R™.
(i) ||ban]|Lepy < C(2N)*2  and  ||[Vbon||reo(p) < C(2N)?"H,
(iii) |bon+illpvo < C2N +1)*  and  |lbanii [z < C(2N + 1)*"
(iv) If x| >2  then |bani1(z)| < C(2N + 1)27|x| L.

14



Proof. Parts (i), (ii) and (i) are proved in [MOV, Lemma 8] and [MOPV, Lem-
ma 5]. It only remains to prove (iv).

Recall that o denotes the normalized surface measure in S"~!, and let A4, ..., hy
be an orthonormal basis of the subspace of L?(do) consisting of all homogeneous
harmonic polynomials of degree 2N + 1. As it is well known, d ~ (2N + 1)"72. As
in the proof of Lemma 6 in [MOV] we have h? +--- + h2 =d, on S""!. Set

1
72N+1\/g

and let S; be the higher order Riesz transform with kernel K;(z) = H;(x)/|z[*N 1+,
The Fourier multiplier of S7 is

H;(z) = hj(x), = eR",

1 h;(€)? "
d |£]|4N+2’ 0#Le R,
and thus
d
> 8?7 = Identity . (20)
j=1

We use again (12), but now the second term at the right hand side vanishes
because each h; is harmonic (see [MOV], p. 1437). We get

K;j(z) xgmp(@) = Sj(ban+1)(z), z€R", 1<j<d,
and so by (20)

b1 = ZS (K@) xamp(@)) - (21)

Therefore we set

Zdisa( ?) X () = ZS*S ijsjmjmmx))

j=1
d

— b0~ 308 (K (2) xo ()

j=1

where ¢y is the Dirac delta at the origin. If |z| > 2, then

S;(K;(y) xs(y))(x) = lim ’ (@ = y)K; () dy
=l [ =) = K@) ) dy.

15



In this situation,

)
Kyte = ) = Kol < OL (I (2N + 1)+ 19 10),

hence

Hill(2N +1 Hl| H:lls
135,0) xol)o)] < L= VDl [ L
[ i<t [yl

where the supremum norms are taken on S" 1. Clearly

h;

Vd

For the estimate of the gradient of H; we use the inequality [St, p. 276]

1

V2N+1

<
0o J2N+1

1Hjllee = ~ (2N +1)"2.

IVHjlloe < C (2N + 1) || Hj 2,

where the L? norm is taken with respect to do. Since the h; are an orthonormal
system,
1 (2N +1)"/2

Vdyany 2N+ 1)n=2/2
Gathering the above inequalities we get, when |z| > 2,

(2N + 1)"+2
155(K;5(y) xB(y)(2)] < CWT
and finally
(2N +1)m*2 (2N +1)*"
lbony1(2)| < Cme < CW7
as claimed. 0
Now, the kernel of the operator T'f = p.v. K x f is of the type K(z) = ?x(ﬁ)

being Q a C*(S™1) homogeneous function of degree 0, with vanishing integral on

the sphere. Then, Q(z) = Z‘El Pljglg‘f) with P,; homogeneous harmonic polynomials

of degree 2j when T is an even operator, and (z) ;.;o Pﬁ”;ﬂf with Pyjq

homogeneous harmonic polynomials of degree 25+ 1 When T is an odd operator. The
strategy consists in passing to the polynomial case by looking at a partial sum of the
series above. Set, for cach N > 1, Ky(z) = 22 where Qy(z) = 3N Pas®) (op

\:Jc|" ) j:l ‘xlzJ
Qy(z) = Z;V 0 P‘ij‘;ﬂf) in the odd case), and let Ty be the operator with kernel K.

We begin by considering (b) implies (¢) in Theorem 1 when w = 1, that is, 7" is
even and our hypothesis is ||T*f]|, < C|Tfl,, f € LP(R™). In this setting, the

difficulty is that there is no obvious way of obtaining the inequality

1T fllp < Cl TN fllp, € LP(RY). (22)

16



Instead, we try to get (22) with ||Ty f]|, replaced by ||7f]|, in the right hand side
plus an additional term which becomes small as N tends to co. We start by writing

TNl < 1T fllp + 177 F = T}fop
Pyj(x
<OITSlp+ 1) 7

| |2]+HXB pr
>N

(23)

By (12), and since every P; is harmonic, there exists a bounded function by;
supported on B such that

Pyj(x) Pyj(x)
‘x‘23+nXB «(z) = p.v. |z[27n * 02;-

By Lemma 5 (i) , we have that ||by;||,1 < C’||b2j||Loo(B) < C(25)?"2, and thus

Pyj(x
|| Z ’ |]2]+n fHP = || Z |2]+n * f”P
J>N >N
Pyj(x
<>l z yj23+n oo [|b2g * [l
>N
Pyj(x
< ZH, ,JQWHLMLPH%H [[fllp (24)
J>N
P2J -\ 2n+4-2
<Olfll D | 2J+,LHLMLP(2J)
= Il
< CYIfllp (I Pajllse + 1V Pojlloc) (2)*F2.
>N

The last inequality follows from a well-known estimate for Calderén-Zygmund op-
erators (e.g. [Grl, Theorem 4.3.3]). On the other hand,

Kn(z)xpmp () = Tn(ban) (@) + Sy (2)x5(2)

and then
Tanf =pv. Ky *boy * f+ Snxas * f-

So, for each f € LP(R"), using (23) and (24), we have the L? inequality

1SnxE * fllp < I Txfllp + [[p-v. Ky # baw * fl,

¢ (IITpr + 11l D (1Pl + 11V Pajlloc) (20)*F2 + [[pov. Koy o * f||p> :

>N

We emphasize that the corresponding multipliers %, m and p.v. m boy =
p.v. Knbyn are in C*\ {0} and in M,,. Therefore, proceeding as in the polynomial

17



case, and applying Lemma 1 we obtain the pointwise estimate for £ # 0
[Snxs(8)] SC(IP-V. K(@©)+|(p.v. Ky - sz)(§)|+Z(IIP2jlloo+!IVPleloo)(Qj)Q””)
>N

SCQW(({)] + \pﬁN(f)] + Z(HP2J‘Hoo + HVPZJ,HOO)@j)QnH) 7

j>N
where in the last step we have used Lemma 5 (7), that is, ]b;;(é)] < C, for £ € R™

The idea is now to take limits, as IV goes to oo, in the preceding inequality. By the
definition of Ky and (6), the term on the right-hand side converges to C' ]m (€)].
The next task is to clarify how the left-hand side converges, but at this point we
proceed as in [MOV, p. 1463] and we get the desired result.

This argument, which has been explained for the even case and w = 1, is also
valid for the other cases, after taking into account the particular details listed below.

To get (b) implies (¢) in Theorem 1 for any w € A,, we would use
b2 # fllzo@) < Clibgsllzoe ) |M fllzow) < C25)" [ fllzrw)

to obtain the inequality analogous to (24).
In order to obtain (d) implies (c) in Theorem 1, note that if ¢; > 0 and 3 72| ¢; =

L, then || gl < z(:;lngjulm. We have

P,
HZ‘ , e =11 by

% boj * fll1,00

‘2]+n
>N
(z) * b
_Z] [p-v ‘Qj_m * byj o fl1,00
>N
Pyj(x
<> 7 |§J+n|lLlaleoo||sz * flh
j>N
Pyj(x
<> 7 |]gj+n||L1»L1v<><>||sz“1’|f||1
J>N
<C P2J 9.7)2n+2
1£1> 2 |2]+nllu%w( 7)
J>N
<Ol DU Posllse + 1V Pajlloe) (20)>",
j>N
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and therefore, for all functions f € H'(R"),

1SvXB * fllieo < 2(1Tx fll100 + PV, Ky * b2N * fll1,00)
PQJ

<A(IT fllse+1D " ‘Qﬁn X5 * fll1.00) +2D-v. Ky % bon % f1.00)
j>N
CUT Al + £l D 1Psjlloe + 1V Pajlloo) (25) >+
>N

+ |lp-v. Ky *ban * f|l1.00)-

Again, using Lemma 1, Lemma 4 and Lemma 5, we obtain, for £ # 0,

[Svxs(§)] < C (\p-V- K]+ pv. Kn(©)l+ (I Paylloe + \!VngHoo)(Zj)2”+4>
J>N
as desired.
The implication (b) = (¢) in Theorem 2 can be adapted as follows. T is odd and
the functions by 41 are in BMO. By Lemma 5, we have ||bgj11]0c < C, ||b2j11]/BM0O <

C(2j + 1)?" and ||baj41]l2 < C(25 + 1)*". Moreover, |by;1(z)] < C(25 + 1)*|z|™*
if |z| > 2. Then, proceeding in the same way as in the proof of (19), we get

1B241 % fllore) < C(25 + 1| fll o)
and so, the inequality analogous to (24) follows.
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