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On the isoperimetric and Hurwitz inequalities

Julià Cuf́ı and Agust́ı Reventós1

Abstract

In this paper we provide lower bounds for both the isoperimetric deficit ∆ = L2 − 4πF ,
where F is the area enclosed by a convex curve of length L, and the Hurwitz’s deficit π|Fe|−∆,
Fe being the algebraic area enclosed by the evolute of the curve. These bounds involve some
geometrical invariants related to the curve.

1 Introduction

Let K be a plane convex set of area F with boundary C = ∂K of length L. As it is well known,
the isoperimetric inequality states

F ≤ L2

4π
,

with equality only for discs.
Hurwitz, in his paper about the use of Fourier series in some geometrical problems [3] (see

also [2]), besides the isoperimetric inequality, proves the following inequality, which is a sort of
reverse isoperimetric inequality,

L2

4π
≤ F +

1

4
|Fe|, (1)

where Fe is the algebraic area enclosed by the evolute of C. Equality holds when C is parallel
to an astroid or a circle.

Recall that the evolute of a plane curve is the locus of its centers of curvature or, equivalently,
the envelope of all the normals to this curve (i.e., the tangents to the evolute are the normals
to the curve).

Introducing the isoperimetric deficit ∆ = L2−4πF the above two inequalities can be written
as

0 ≤ ∆ ≤ π|Fe|.
In this note we provide lower bounds for both ∆ and π|Fe| −∆. These bounds involve some

geometrical quantities that we describe below.
The pedal curve of a plane curve C with respect to a fixed point O is the locus of points

X so that the line OX is perpendicular to the tangent to C passing through X. The Steiner
point of a plane convex set K, or the curvature centroid of K, is the center of mass of ∂K with
respect to the density function that assigns to each point of ∂K its curvature.

Let A denote the area enclosed by the pedal curve of C = ∂K with respect to the Steiner
point of K. In Theorem 3.1 it is proved that

∆ ≥ 3π(A− F ). (2)

1Work partially supported by grants MTM2012-36378 and MTM2012-34834 (MEC).
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So, the quantity 3π(A − F ) is a lower estimate of the isoperimetric deficit. Since A ≥ F , this
inequality implies the isoperimetric one. Corollary 3.3 shows that equality holds in (2) for circles
and curves which are parallel to an astroid.

The next estimate depends on the quantity Ω defined by

Ω =

∫
sin3 ω dP, (3)

where ω is the angle between the tangent lines to C from P , and the integral is extended to the
exterior of C. We say that ω is the viewing angle to C from P .

In Theorem 4.1 we prove that

π|Fe| −∆ ≥ 40

9

(
π(A− F )− 8Ω + 6L2

)
. (4)

Since the right hand side is non negative, this inequality implies Hurwitz’s result (1). Corollary
4.3 shows that equality holds in (4) for convex bodies K which are the Minkowski sum of a disc
or the interior of a curve parallel to an astroid plus the interior of an hyocyclid of three cusps.

Finally in Proposition 5.1 it is shown that for convex curves C parallel to an astroid the
evolute of C is similar, with ratio 2, to this astroid.

2 Preliminaries

Support function

A straight line G in the plane is determined by the angle φ that the direction perpendicular to
G makes with the positive x-axis and the distance p = p(φ) of G from the origin. The equation
of G then takes the form

x cosφ+ y sinφ− p = 0. (5)

Equation (5), when p = p(φ) varies with φ, is the equation of a family of lines. If we assume
that the 2π-periodic function p(φ) is differentiable, the envelope of the family is obtained from
(5) and the derivative of its left-hand side, as follows:

−x sinφ+ y cosφ− p′ = 0, p′ = dp/dφ. (6)

From (5) and (6) we arrive at a parametric representation of the envelope of the lines (5):

x = p cosφ− p′ sinφ, y = p sinφ+ p′ cosφ.

If the envelope is the boundary ∂K of a convex set K and the origin is an interior point of K,
then p(φ) is called the support function of K (or the support function of the convex curve ∂K).

Since dx = −(p+ p′′) sinφdφ and dy = (p+ p′′) cosφdφ (we here assume that the function
p is of class C2), arclength measure on ∂K is given by

ds =
√
dx2 + dy2 = |p+ p′′| dφ (7)

and the radius of curvature ρ by

ρ =
ds

dφ
= |p+ p′′|.
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It is well known (see for instance [4], page 3) that a necessary and sufficient condition for a
periodic function p to be the support function of a convex set K is that p+ p′′ > 0. Finally, it
follows from (7) that the length of a closed convex curve that has support function p of class
C2 is given by

L =

∫ 2π

0

p dφ. (8)

The area of the convex set K is expressed in terms of the support function by

F =
1

2

∫

∂K

pds =
1

2

∫ 2π

0

p(p+ p′′) dφ =
1

2

∫ 2π

0

p2 dφ− 1

2

∫ 2π

0

p′2 dφ. (9)

For any curve C given by (x(φ), y(φ)), convex or not, we will say that p(φ) is the generalized
support function of C when

x(φ) = p(φ) cos(φ)− p′(φ) sin(φ),

y(φ) = p(φ) sin(φ) + p′(φ) cos(φ).

Note that p(φ) is not necessarily a distance, as it happens when we define the support function
of a convex set. In fact, |p(φ)| is the distance from the origin to the tangent to C at the point
(x(φ), y(φ)).

It is easy to see that the generalized support function pe(φ) of the evolute of C = ∂K is
pe(φ) = −p′(φ+ π/2), where p(φ) is the support function of C, see [1]. Hence, assuming p(φ) is
a C3-function, the algebraic area Fe enclosed by the evolute of C is given by

Fe =
1

2

∫ 2π

0

p′(p′ + p′′′) dφ =
1

2

∫ 2π

0

p′2 dφ− 1

2

∫ 2π

0

p′′2 dφ.

Steiner point

The Steiner point of a convex set K of the Euclidean plane is defined by

S(K) =
1

π

∫ 2π

0

(cosφ, sinφ)p(φ)dφ,

where p(φ) is the support function of ∂K (see [2]).
Thus, if

p(φ) = a0 +
∑

n≥1
an cosnφ+ bn sinnφ,

is the Fourier series of the 2π-periodic function p(φ), the Steiner point is

S(K) = (a1, b1).

The Stiener point of K is also known as the curvature centroid of K because under appro-
priate smothness conditions it is the center of mass of ∂K with respect to the density function
that assigns to each point of ∂K its curvature.

The relation between the support function p(φ) of a convex set K and the support function
q(φ) of the same convex set but with respect to a new reference with origin at the point (a, b),
and axes parallel to the previous x and y-axes, is given by

q(φ) = p(φ)− a cosφ− b sinφ.

Hence, taking the Steiner point as a new origin, we have

q(φ) = a0 +
∑

n≥2
an cosnφ+ bn sinnφ.
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Pedal curve

If the curve C is given in cartesian coordinates as the envelope of the lines x cosφ+y sinφ−p(φ) =
0, then the pedal curve P = P(φ) of C with respect to the origin, is given by

P(φ) = (p(φ) cosφ, p(φ) sinφ),

or, in polar coordinates, by r = p(φ).
In particular, if C is closed, the area enclosed by P is

A =
1

2

∫ 2π

0

p2 dφ. (10)

If F is the area enclosed by C, we obviously have A ≥ F with equality if and only if C is a
circle.

3 A lower bound for the isoperimetric deficit

We proceed now to provide a lower bound for the isoperimetric deficit.

Theorem 3.1 Let K be a convex set of area F with boundary C = ∂K of class C2 and length
L. Let A be the area enclosed by the pedal curve of C with respect to the Steiner point S(K).
Then

∆ ≥ 3π(A− F ), (11)

where ∆ = L2 − 4πF is the isoperimetric deficit.

Proof. Let p(φ) be the support function of C, with respect to an orthonormal reference with
origin in the Steiner point, and axes parallel to the x and y-axes.

We know that the Fourier series of p(φ), is

p(φ) = a0 +
∑

n≥2
an cosnφ+ bn sinnφ.

By Parseval’s identity we have

1

2π

∫ 2π

0

p2 dφ = a20 +
1

2

∑

n≥2
(a2n + b2n), (12)

and similar expressions for p′ and p′′. Concretely we have

∫ 2π

0

p′2 dφ = π
∑

n≥2
n2(a2n + b2n),

∫ 2π

0

p′′2 dφ = π
∑

n≥2
n4(a2n + b2n). (13)

Hence, the isoperimetric deficit ∆ = L2 − 4πF , according to (8) and (9), is given by

∆ =

(∫ 2π

0

p dφ

)2

− 2π

∫ 2π

0

p2 dφ+ 2π

∫ 2π

0

p′2 dφ

= 2π2
∑

n≥2
(n2 − 1)(a2n + b2n) ≥ 3π2

2

∑

n≥2
n2(a2n + b2n) =

3π

2

∫ 2π

0

p′2 dφ.

But it follows from (9) and (10) that

1

2

∫ 2π

0

p′2 dφ =
1

2

∫ 2π

0

p2 dφ− F = A− F,
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and hence

∆ ≥ 3π(A− F ). �

The above proof shows that ∆ = 0 if and only if p(φ) = a0, that is, when C is a circle.

Now we study the case of equality in (11). It is clear from the proof that ∆ = 3π(A− F ) if
and only if

p(φ) = a0 + a2 cos 2φ+ b2 sin 2φ.

In order to characterize the curves with this support function we recall that the parametric
equations of the astroid (a 4-cusped hypocycloid) are

x(φ) = 2a sin3(φ),

y(φ) = 2a cos3(φ),

for some constant a ∈ R+, with 0 ≤ φ ≤ 2π. From this it is easy to see that the generalized
support function p(φ) of the astroid is p(φ) = a sin(2φ), where φ is the angle between the normal
(−y′(φ), x′(φ)) and the positive x-axis.

This implies that the curves with generalized support function given by

q(φ) = b+ p(φ) = b+ a sin(2φ),

where b ∈ R, are parallel to an astroid. The distance between these curves and the astroid is
|b|.

We have the following result.

Proposition 3.2 Let
p(φ) = a0 + a2 cos(2φ) + b2 sin(2φ)

be the support function of a closed convex curve C of length L, with a22 + b22 6= 0. Then the
interior parallel curve to C at distance L/2π is an astroid.

Proof. We make the change of variable u = φ− φ0 + π
4 , where

tan 2φ0 =
b2
a2
.

We obtain
p(u) = a0 + a sin 2u

where a =
√
a22 + b22. Hence the given curve is parallel to an astroid at distance |a0|. By the

condition of convexity, p + p′′ > 0, and a0 is positive. Since L =
∫ 2π

0
p(φ) dφ = 2πa0, the

proposition is proved. �

Corollary 3.3 Equality in Theorem 3.1 holds if and only if C is a circle or a curve parallel to
an astroid.

Proof. We have seen that equality holds when

p(φ) = a0 + a2 cos 2φ+ b2 sin 2φ.

If a2 = b2 = 0, p(φ) = a0 is the support function of a circle. If a22 + b22 6= 0, the result follows
directly from Proposition 3.2. �

Remark 3.4 As it is well known (see for instance [4], page 8) the area Fr enclosed by the
interior parallel at distance r to a closed curve is given by

Fr = F − Lr + πr2
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where L and F are respectively the length and the area corresponding to the given curve.
In particular, if r = L/2π, we get

FL/2π = F − L2

4π
,

or, equivalently

FL/2π = − ∆

4π
.

This means that the isoperimetric inequality ∆ ≥ 0 is equivalent to FL/2π ≤ 0, a fact that
suggests a more geometric proof of the isoperimetric inequality, by showing that in the process
of collapsing, the curve reverses orientation. Moreover, FL/2π = 0 holds only for a circle.

Remark 3.5 Combining Theorem 3.1 with Hurwitz’s inequality (1) we have the estimate

A− F ≤ 1

3
|Fe|, (14)

with equality for curves parallel to an astroid or circles.

4 A lower bound for the Hurwitz’s deficit

We proceed now to find a lower bound for the Hurwit’s deficit π|Fe| −∆.

If
p(φ) = a0 +

∑

n≥1
an cosnφ+ bn sinnφ,

is the Fourier series of the support function of a convex curve C, it is easy to see that the
quantities a2n + b2n, for n ≥ 2, are invariants of this curve under the group of movements of the
plane. We shall use the following geometrical interpretation of a22 + b22, due to Hurwitz, [3]:

Ω :=

∫
sin3 ω dP =

3

4
L2 +

π2

4
(a22 + b22), (15)

where ω is the viewing angle of C from P , and the integral is extended to the exterior of C.

Theorem 4.1 Let K be a convex set of area F with boundary C = ∂K of class C3 and length L,
and let A be the area enclosed by the pedal curve of C with respect to the Steiner point S(K). Let
Fe be the algebraic area enclosed by the evolute of C and denote ∆ = L2−4πF the isoperimetric
deficit. Then

π|Fe| −∆ ≥ 40

9

(
π(A− F )− 8Ω + 6L2

)
(16)

where Ω is defined in (3).

Proof. Recall that the area of the evolute in terms of the support function is given by

|Fe| =
1

2

∫ 2π

0

p′′2 dφ− 1

2

∫ 2π

0

p′2 dφ.
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If p(φ) is taken with respect to the Steiner point S(K) then, using equalities (8), (9), (12)
and (13), we have

π|Fe| −∆ = −
(∫ 2π

0

p dφ

)2

+ 2π

∫ 2π

0

p2 dφ− 2π

∫ 2π

0

p′2 dφ+
π

2

∫ 2π

0

p′′2 dφ

− π

2

∫ 2π

0

p′2 dφ.

= 2π2
∑

n≥2
(1− n2)(a2n + b2n) +

π2

2

∑

n≥2
(n4 − n2)(a2n + b2n)

= 2π2
∑

n≥2
(1− n2 +

n4 − n2
4

)(a2n + b2n) =
π2

2

∑

n≥3
(n4 − 5n2 + 4)(a2n + b2n).

We observe now that, for n ≥ 3, we have n4 − 5n2 + 4 ≥ 40
9 n

2, with equality only for n = 3.
Therefore

π|Fe| −∆ ≥ 20π2

9

∑

n≥3
n2(a2n + b2n) =

20π2

9

∑

n≥2
n2(a2n + b2n)− 20π2

9
4(a22 + b22) ≥ 0,

which can be written as

π|Fe| −∆ ≥ 40π

9

(
1

2

∫ 2π

0

p′2 dφ− 1

2

∫ 2π

0

p2 dφ+
1

2

∫ 2π

0

p2 dφ

)
− 80π2

9
(a22 + b22)

=
40π

9
(A− F )− 80π2

9
(a22 + b22) ≥ 0.

Replacing a22 + b22 by its value from (15) one gets the desired result. �
The proof above shows that

π(A− F )− 8Ω + 6L2 ≥ 0,

and so inequality (16) implies Hurwitz’s inequality ∆ ≤ π|Fe|. Moreover ∆ = π|Fe| holds if and
only if the support function p(φ) is of the form

p(φ) = a0 + a2 cos(2φ) + b2 sin(2φ),

and so, by Proposition 3.2, C must be parallel to an astroid or a circle.

Now we will analyze when equality holds in (16). For this we recall that the parametric
equations of an hypocycloid of three cusps, with respect to a suitable orthogonal system, are

x(t) = −2a cos t− a cos 2t

y(t) = −2a sin t+ a sin 2t

with a ∈ R, t ∈ [0, 2π].
The relationship between the parameter t and the angle φ(t) between the normal vector

(−y′(t), x′(t)) and the positive x-axis is

φ(t) = α(t)− π

2
,

where α(t) denotes the angle between the tangent vector (x′(t), y′t) and the positive x-axis.
Hence

tanφ(t) = − cotα(t) =
sin t+ sin 2t

cos t− cos 2t
= cot

t

2
.
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Thus

t = π − 2φ(t).

On the other hand, the generalized support function p(φ) of the hypocycloid must verify

(
x(φ)
y(φ)

)
=

(
cosφ − sinφ
sinφ cosφ

)(
p(φ)
p′(φ)

)
,

so

(
p(φ)
p′(φ)

)
=

(
cosφ sinφ
− sinφ cosφ

)(
−2a cos(π − 2φ)− a cos 2(π − 2φ)
−2a sin(π − 2φ) + a sin 2(π − 2φ)

)
.

Then

p(φ) = a cos(3φ).

Proposition 4.2 Let
p(φ) = a3 cos 3φ+ b3 sin 3φ

be the generalized support function of a closed curve C, with a23+b23 6= 0. Then C is a hypocycloid
of three cusps.

Proof. We make the change of variable given by u = φ− ψ0

3
, where

tanψ0 =
b3
a3
.

Then
p(u) = a cos(3u),

where a =
a3

cosψ0
, and the proposition follows. �

Corollary 4.3 Equality in Theorem 4.1 holds if and only if K is the Minkowski sum of two
bodies K1 and K2,

K1 +K2 = {x+ y; x ∈ K1, y ∈ K2},
where K1 is a disk or the interior of a curve parallel to an astroid, and K2 is the interior of an
hypocycloid of three cusps.

Proof. It is clear from the proof of Theorem 4.1 that equality holds if and only if the support
function is of the form

p(φ) = a0 + a2 cos 2φ+ b2 sin 2φ+ a3 cos 3φ+ b3 sin 3φ.

If we put p1(φ) = a0 + a2 cos 2φ + b2 sin 2φ and p2(φ) = a3 cos 3φ + b3 sin 3φ, we have
p(φ) = p1(φ)+p2(φ) and so K is the Minkowski’s sum of the bodies K1 and K2 with generalized
support functions p1(φ) and p2(φ) respectively.

We know, by Proposition 3.2, that K1 is the interior of a curve parallel to an astroid or a
circle and, by Proposition 4.2, K2 is the interior of a hypocycloid. �

Remark 4.4 Combining Theorems 3.1 and 4.1 one gets the inequality

A− F ≤ 9

67
|Fe|+

80

67π
(4Ω− 3L2),

stronger than (14), with equality for curves described in Corollary 4.3.
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Remark 4.5 Another interesting relation between the enclosed area, the length and the viewing
angle ω of a curve C from a point P , also due to Hurwitz (cf. [3]), is

∫
(ω − sinω)dP =

L2

2
− πF,

where the integral is extended at the exterior of C.
Since 6(ω − sinω) ≥ sin3 ω for 0 ≤ ω ≤ π, we get the noteworthy inequalities:

Ω ≤ 3L2 − 6πF,

and by (15),

a22 + b22 ≤
9

π2
L2 − 24

π
F,

which gives a bound for the invariant a22 + b22.

5 Parallel curves to an astroid and evolutes

We have seen the role played by the convex curves considered in Proposition 3.2. For such a
curve C we show now the relationship between the astroid parallel to C and the evolute of C.

Proposition 5.1 Let
p(φ) = a0 + a2 cos(2φ) + b2 sin(2φ)

be the support function of a closed convex curve C of length L. Then the evolute of C and the
interior parallel curve to Cat distance L/2π, are similar with ratio 2.

Proof. We shall see that there is a similarity, composition of a rotation with an homothecy,
applying the parallel curve on the evolute. We may assume, by Proposition 3.2, p(φ) = a0 +
c sin(2φ). The generalized support function of the parallel curve to C at distance L/2π = a0 is
q(t) = c sin(2φ) and the corresponding one to the evolute of C is

pe(φ) = −p′(φ+
π

2
) = 2c cos(2φ).

The generalized support function of the rotated 3π/4 parallel curve is

p̃(φ) = q(φ− 3π

4
) = c cos(2φ).

Hence this rotated curve is homothetic, with ratio 2, to the evolute. �
In particular, the area of the evolute of such a curve is four times the area of the parallel

curve at distance L/2π. Moreover, since Hurwitz’s inequality is equivalent to

4|FL/2π| − |Fe| ≤ 0,

the curves for which the area of the evolute is four times the area of the parallel curve at distance
L/2π, are exactly the curves parallel to an astroid or circles.

Next figure shows the convex curve C with support function p(φ) = 5 + sin(2φ), its parallel
interior curve at distance L/2π = 5, and the evolute of C.
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Parallel curve (black) and evolute (red).
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