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ABSTRACT. In this paper, we study the asymptotic (large time) behavior of a selection-mutation-competition
model for a population structured with respect to a phenotypic trait when the rate of mutation is very small.
We assume that the reproduction is asexual, and that the mutations can be described by a linear integral
operator. We are interested in the interplay between the time variable ¢ and the rate € of mutations. We
show that depending on a > 0, the limit € — 0 with ¢ = ¢~ can lead to population number densities which
are either Gaussian-like (when « is small) or Cauchy-like (when « is large).

1. INTRODUCTION

1.1. Selection-mutation-competition models. The phenotypic diversity of a species impacts its ability
to evolve. In particular, the importance of the variance of the population along a phenotypic trait is illustrated
by the fundamental theorem of natural selection [16], and the breeder’s equation [23]: the evolution speed
of a population along a one dimensional fitness gradient (or under artificial selection) is proportional to the
variance of the initial population. Recently, the phenotypic variance of populations has also come to light as
an important element to describe the evolutionary dynamics of ecosystems (where many interacting species
are considered) [30, 4, 29].

Over the last decade, the issue of Evolutionary Rescue emerged as an important question [3, 10, 18] (see
also the seminal work of Luria and Delbriick [24]), and led to a new interest in the phenotypic distribution of
populations, beyond phenotypic variance. Evolutionary Rescue is concerned with a population living in an
environment that changes suddenly. The population will survive either if some individuals in the population
carry an unusual trait that turns out to be successful in the new environment, or if new mutants able to
survive in the new environment appear before the population goes extinct (see [26] for a discussion on the
relative effect of de novo mutations and standing variance in Evolutionary Rescue). In any case, the fate of
the population will not be decided by the properties of the bulk of its density, but rather by the properties of
the tail of the initial distribution of the individuals, close to the favourable traits for the new environment.
A first example of such problems comes from emerging diseases [17]: Animal infections sometimes are able
to infect humans. This phenomenon, called zoonose, is the source of many human epidemics: HIV, SARS,
Ebola, MERS-CoV, etc. A zoonose may happen if a pathogen that reaches a human has the unusual property
of being adapted to this new human host. A second example comes from the emergence of microbes resistant
to an antimicrobial drug that is suddenly spread in the environment of the microbe. This second phenomenon
can easily be tested experimentally [3, 27], and has major public health implications [9].

Most papers devoted to the genetic diversity of populations structured by a continuous phenotypic trait
describe the properties of mutation-selection equilibria. It is however also interesting to describe the genetic
diversity of populations that are not at equilibrium (transient dynamics): pathogen populations for instance
are often in transient situations, either invading a new host, or being eliminated by the immune system. We
refer to [19] for a review on transient dynamics in ecology. For asexual populations structured by a continuous
phenotypic trait, several models exist, corresponding to different biological assumptions [13]. If the mutations
are modeled by a diffusion, the steady populations (for a model close to (1), but where mutations are
modelled by a Laplacian) are Gaussian distributions [21, 7]. Furthermore, [1, 12] have considered some
transient dynamics for this model. In the model that we will consider (see (1)), the mutations are modelled
by a non-local term. It was shown in [6] (see also [7]) that mutation-selection equilibria are then Cauchy
profiles (under some assumptions), and this result has been extended to more general mutation kernels in [§],
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provided that the mutation rate is small enough. Finally, let us notice that the case of sexual populations
is rather different, since recombinations by themselves can imply that a mutation-recombination equilibrium
exists, even without selection. We refer to the infinitesimal model [5], and to [28] for some studies on the
phenotypic distribution of sexual species in a context close to the one presented here for asexual populations.

In this article, we consider a population consisting of individuals structured by a quantitative phenotypic
trait @ € I (I open interval of R containing 0), and denote by f := f(¢,z) > 0 its density. Here, the trait «
is fully inherited by the offspring (if no mutation occurs), so that x is indeed rather a breeding value than a
phenotypic trait (see [25]). We assume that individuals reproduce with a rate 1, and die at a rate

2
x —l—/jf(t,y)dy.

This means that individuals with trait = 0 are those who are best adapted to their environment, and
that the fitness decreases like a parabola around this optimal trait (this is expected in the surroundings of
a trait of maximal fitness). It also means that the strength of the competition modeled by the logistic term
is identical for all traits. When an individual of trait @ € I gives birth, we assume that the offspring will
have the trait & with probability 1 — ¢, and a different trait «’ with probability ¢ € (0,1). ¢ is then the
probability that a mutation affects the phenotypic trait of the offspring. We can now define the growth rate
of the population of trait x (that is the difference between the rate of births without mutation, minus the
death rate) as

re(t,x) = 1—£—$2—/1f(t,y)dy.

When a mutation affects the trait of the offspring, we assume that the trait z’ of the mutated offspring is
drawn from a law over the set of phenotypes I C R with a density « := «(z) € L*(I). The function v then
satisfies

() >0, /1 (@) dz =1,

(we assume moreover in some of the mathematical statements that + is bounded, C*!, with bounded derivative
and that it is strictly positive on I). The main assumption here is that the law of the trait of a mutated
offspring does not depend on the trait of its parent. This classical assumption, known as house of cards is
not the most realistic, but it can be justified when the mutation rate is small [7] (see also [8]). All in all, we
end up with the following equation:

" P = o) fulta) o) [ L)

This paper is devoted to the study of the asymptotic behaviour of the solutions of equation (1) when € is
small and t large and it is organized as follows. In the rest of Section 1 the main results are quoted, first
in an informal way, and then as rigourous statements. Section 2 contains the proof of Proposition 1.1 and
Theorem 1.2, and finally, in Section 3, Theorem 1.3 is proved.

1.2. Asymptotic study of the model. When we consider the solutions of (1), two particular profiles
naturally appear:

e A Cauchy profile: For a given mutation rate € > 0 small enough, one expects that f.(¢,z) will
converge, as t goes to infinity, to the unique steady-state of (1), which is the following Cauchy profile

£7(x) Zc (o0)
Z.(0) — (1 — &) + a2’
where 7. (c0) is such that [, fo(oo,z) dz = Z.(c0). This steady-state of (1) is the so-called mutation-

selection equilibrium of the House of cards model (1), which has been introduced in [6] (we also refer
to [7] for a broader presentation of existing results).

(2) fe(oo, ) =

e A Gaussian profile: If ¢ = 0, the solution of (1) can be written as

(3) fot,z) = f(0,2) e Jo To(s) dstita®
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where Zy(t) := |, ; fo(t,x) dx, so that a Gaussian-like behavior (with respect to ) naturally appears
in this case. Surprisingly, we are not aware of any reference to this property in the population
genetics literature.

We will show that, as suggested by the above arguments, we can describe the phenotypic distribution
of the population, that is  — f.(t,z), when either ¢ > 1 (large time for a given mutation rate £ > 0),
or 0 < ¢ « 1 (small mutation rate, for a given time interval ¢ € [0,7]). Before providing the precise
statements of our results (see Subsection 1.3), we will briefly describe them here, and illustrate them with
numerical simulations. The numerical simulations presented in Fig. 1 and Fig. 2 are obtained thanks to a
finite difference scheme (explicit Runge-Kutta in time), and we illustrate our result with a single simulation

of (1) with e = 1072, I = [-3/2,3/2], y(z) = ﬁeiﬁ%ﬁ and f-(0,x) = I'y(e,xz — 1) (see the definition of T'y
in eq. (4) below). The initial condition corresponds to a population at the mutation-selection equilibrium
which environment suddenly changes (the optimal trait originally in © = 1 moves to = 0 at ¢ = 0). This
example is guided by the Evolutionary Rescue experiments described in Subsection 1.1, where the sudden

change is obtained by the addition of e.g. salt or antibiotic to a bacterial culture.

We describe two phases of the dynamics of the population:

e Large time: Cauchy profile. We show that f.(¢,z) is asymptotically (when the mutation rate € > 0
is small) close to

£7(0)
4 r U e
(4) 2(5,7) ~v(0)272 €2 + 22’

provided t > ¢~*. The population is then a time-independent Cauchy distribution for large times.
This theoretical result is coherent with numerical results: we see in Fig. 1 that f.(¢,-) is well described
by Iz(e, ), as soon as t > 10°, which is confirmed by the value of || f(¢,-) — T2(e, )| L1 (s) for ¢ > 10°
given by Fig. 2.

e Short time: Gaussian profile. We also show that f.(¢,z) is asymptotically (when the mutation rate
e > 0 is small) close to
f(oa ‘T) \/i —z2t
(5) Fl(ta & LE) - f(O, O) f[ e_mz d.]?e )
provided 1 < t < ¢~2/3. The population has then a Gaussian-type distribution for short (but not
too short) times. This theoretical result is coherent with numerical simulations: we see in Fig. 1
that f.(¢,-) is well described by T'y(t,¢,-) for ¢t € [102,10%], which is confirmed by the value of
| fe(t,-) = Tale, )| Lr(r) for t € [102,10%] given by Fig. 2.

Another way to look at these results is to consider ¢ > 0 and € > 0 as two parameters, and to see the
approximations presented above as approximations of f. (¢, -) for some set of parameters: fe(t,) ~c—0 I2(e, )
for (t,e) € {(£,8);t > &%}, while f.(t,-) ~e_o [i(t,e,:) for (t,e) € {(£,&);1 < T <« £2/3}. We have
represented these sets in Fig 3.

As described in the Subsection 1.1, the phenotypic distribution of species is involved in many ecological
and epidemiological problematics. Our study is a general analysis of this problem and we do not have a
particular application in mind. An interesting and (to our knowledge) new feature described by our study
is that the tails of the trait distribution in a population can change drastically between ”short times”, that
is 1 < t < e2/3 and ”large times”, that is t > e~*: the distribution is initially close to a Gaussian
distribution, with small tails, and then converges to a thick tailed Cauchy distribution. This result could
have significant consequences for evolutionary rescue: the tails of the distribution then play an important
role. Quantifying the effect of this property of the tails of the distributions would however require further
work, in particular on the impact of stochasticity (the number of pathogen is typically large, but finite). The
plasticity of the pathogen (see [11]) may also play an important role.

1.3. Main (rigorous) statements. Here we state the two main theorems of the paper, together with a
proposition asserting the well-posedness of the equation that we consider.

We start with the issue of well-posedness:
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FicUrRE 1. The different graphs correspond to different time points, from ¢ = 0 to
t = 175000, of the same simulation of (1) for ¢ = 1072 (see in the text for a complete
description). In each of these plots, the blue (resp. red, black) line represents x — fe(¢, )
(resp. x +— T'1(t,e,2), x — I'a(e, z)). Note that in this figure, the scales of both axis change
from one graph to the other, to accommodate with the dynamics of the solution f(¢,).



1e+1

1e+0

distances

162 L L L L
Te+1 1e+2 1e+3 le+4 1e+5

t

FIGURE 2. Simulation of (1) with ¢ = 1072 (see in the text for a complete description).
The red line represents || f(t,-) — T'1(t,¢,-)||z1 (1), while the black line represents || f(t,-) —
La(e, )llpr -
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FIGURE 3. Representation of the set {(¢,£);f > 7%} (in blue), where the approximation
f=(t,-) ~c_0 Ta(,-) holds provided that ¢ > 0 is small enough; and of the set {(%,£);1 <
t < €72/3} (in red), where the approximation f.(t,-) ~c_o T'i(t,€,-) holds provided that
€ > 0 is small enough.

Proposition 1.1. We consider the interval I (I =]a,b[, —00 < a < b < +00). We assume that v is
continuous, bounded and strictly positive on I, and that fI v(z)dx = 1. We consider an initial datum f

which is nonnegative, non identically 0, and integrable on I. Finally we take € €]0,1/2].

Then the initial value problem (1) (with f(0,-) = fo) admits a unique nonnegative (global in time) mild

solution in C(Ry; LY(I)).

Then we turn to the two statements which are relative to the asymptotic behavior when ¢ — 0 and

t — +o0.

Theorem 1.2. Under the assumptions of Proposition 1.1, and assuming moreover that 7y has textcolorreda
bounded derivative on I, there exist positive constants K, K and K (independent of €) such that the mild
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solution f of (1) satisfies (fort>0)

£7(0)

sz(t,x)fW

—R o ~ 1
< Kss%( e~ Ket + Keln <)
LY(I) c
Theorem 1.3. Under the assumptions of Proposition 1.1, and assuming moreover that a and b are finite,
fo e Whee(I), fo(0) > 0 and [, fo(z)dx < 1, there exists a constant C > 0 (independent of ) such that the

mild solution f of (1) satisfies (fort > 4)

£(0,2)vEe "

(6) f(0,0) [, e~ v dy

x> f(t,x) —

1 5
<O —==+etz ) et
<ofrer)

LY(I)

A careful check of the proof shows that the constant C appearing in (6) only depends on |a —b|, some upper
bounds on ||v]|L~ and || fo|lw1.e, and a lower bound on fo(0).

Note first that, as previously stated in the introduction, if we consider times ¢ which are large enough,
for example t = e747% with § > 0, then, since (—? Ine — £727?) is asymptotically equivalent to —e=27°,
Theorem 1.2 ensures that

1
(e (1)),
L'(1) €

so that the Cauchy profile is indeed asymptotically reached for very large times.

£7(0)

—4-5 N
T fE ) - S 1 a2

The interpretation of Theorem 1.3 is a little more intricate, since it concerns intermediate times. For
example, it implies the following description of the population’s phenotypic diversity during transitory times,

that is times ¢ satisfying 1 < ¢ < £~ 5: There exists C' > 0 such that for £ > 0 and € > 0 small enough (in

such a way that the interval [/9_2, K3e 3} is not empty, that is ¢ < k%),

£(0,2)Vte=="t

5 < Ck.
£(0,0) Jev" dy

Li(1)

fo(tvx)_

Vt € {572,,%%5*%} ,

For example, if t = ¢~'/2, then

(0, 2)VEe ™™t
£(0,0) [yevdy

<O/t =t V2
LY(I)

x— f(t,x) —

Note finally that these results hold for models which are slightly more general than equation (1). In fact,
in both theorems one can assume that the competition term is a weighted population instead of the total
population number. In Theorem 1.3, one could also assume that the mutation kernel depends on the parents
trait.

2. PROOF OF PROPOSITION 1.1 AND THEOREM 1.2

We start here the proofs of Proposition 1.1 and of Theorem 1.2. We recall that I =]a,b], —co < a <
0 < b < oo, and 7 := y(x) is a bounded, continuous, strictly positive function, such that vy(z) > 0 and
J; v(x) dz = 1. For the proof of Theorem 1.2, we will also assume that it has a bounded derivative on I.

We begin with the study of the linear operator associated to eq. (1).
6



2.1. Spectrum of the linear operator. Let us define
(7) (AJW$%=(1—@f@W—ﬁf@ﬂ+€%$X/f@Nw
I
as the operator corresponding to the linear part in eq. (1).
We begin with a basic lemma which enables to define the semigroup generated by this operator.
Lemma 2.1. The linear operator A., defined on L' (I) and with domain D(A.) = {f € L*(I) : [; 2* |f(z)| do <
oo}, generates an irreducible positive CO-semigroup (denoted from now on by T.(t)).

Proof. The multiplication linear operator (A%f)(x) := (1 — &) f(z) — 22 f(x) is the generator of a positive
CP-semigroup. Since 7 is strictly positive, A. — AY is a positive bounded perturbation whose only invariant
closed ideals are 0 and the whole space L*(I). So T:(t) is irreducible (see [14], Corollary 9.22). O

Next, we present a proposition which gives information about the spectrum of A..

Proposition 2.2. The linear operator A. has only one eigenvalue. It is a strictly dominant algebraically
simple eigenvalue A\; > 1 — e and a pole of the resolvent, with corresponding normalized positive eigenvector

- ey()
Velz) = - (1—c—a2)

Moreover, for € small enough, A\; < 1.
The rest of the spectrum of the linear operator A, is equal to the interval J = [min(1—e—a?, 1—e—b%),1—¢].

Proof. In the sequel, the norm || || is the L' norm on I. Let us first show that any A belonglng to the set
J = Range(1 — & — 22) belongs to the spectrum of A.. In order to do this, for A = 1 —e — 22,29 € I, let

us define f,(z) = 2 (X[:v07wo+ 11(%) = X[zy— L ) (T )) for n such that [zg — +,29 + ] C I. We then have

Ifnll = 1 and ||(A: — Md) fn] = QfIOJr |22 — 23|dx — 0. So (min(1 —e —a?,1 —¢e —b%),1 —¢] is contained

in the spectrum of A.. The claim follows from the fact that the spectrum is a closed set.

On the other hand, notice that (for xg € I), 1—e—12 is not an eigenvalue, since the potential corresponding

eigenfunction — 7( )2 is not an integrable function on I (remember that « does not vanish).

Let us now compute the resolvent operator of A., that is, let us try to solve the equation
(8) Af =\ =ge Li(D).
For A ¢ J, defining p := [, f(y) dy, (8) gives
ey(@)p — g()
9 =
) f@) =

Integrating, we get

(10) (1—E/A 1_6_ dm) /A 1_5_x2)dx

and A belongs to the resolvent set unless the factor of p on the left hand side vanishes. Therefore o(A) =
JUu{reC:e [, v+ dr = 1}.

1 e— xz)

Since for any real number X > 1 — ¢, the function F.(\) = ¢ [; % dx is continuous, strictly
decreasing, and satisfies limy_,1_c F-(A) = 400 (recall that v(0) > 0) and limy_, 4o F-(A) = 0, we see that
there is a unique real solution of F.(A) =1 in (1 —€,00). We denote it by A.

Taking g(z) = 0 in (8), we see that A, is an eigenvalue with corresponding normalized strictly positive
eigenvector

ev(x
0o = (x) -
Ae — (1 —e—2a?)
Taking g = ¥, and A\ = A, we see that the left hand side in (10) vanishes, whereas the right hand side is
strictly negative, so that A.f — A f = 1. has no solution and hence ). is algebraically simple.



Indeed, it also follows from (10) that the range of A. — A. Id coincides with the kernel of the linear form
defined on L'(I) by the L> function m (which is the eigenvector corresponding to the eigenvalue

Ae of the adjoint operator A*) and hence it is a closed subspace of L!(I). Therefore, ). is a pole of the
resolvent (see Theorem A.3.3 of [14]). Furthermore, since

F.(1)= 5/ ’y(x)2 dx = / Lbdm =0,
7€ +x I 1 + z
NG
we see that F.(1) < 1 for € small enough, and hence A, < 1.
Substituting A by a 4 bi in the characteristic equation

(11) 1+E/I(1_;_(2)2_)\)dx_0,

v(x)

we have that the imaginary part is —eb [ ; m dx. Since y(x) > 0, there are no non real solutions of

(11). O
Remark 2.1. Note that lim._,o A\. = 1.

We now write an expansion of the eigenvalue A..

Proposition 2.3. Let us assume that v has a bounded derivative on I. Let A be the dominant eigenvalue
of the operator A.. Then

|Ae = (1 =) = 7(0)*7%e*| = Ocso (63 In i)

Proof. Let us consider the change of variable = v,z where v, = /A — (1 —¢). We have

1_5/; (Aa_(;@_ﬁ))dm_e/jw **/%

Then
b
O] = [ [ 3 a0
b
< | SF 2 de - 3R |+ | fy AR o

+ #
< Ao [37° 75 + 201V lloove J* 1 d,
Ve

A

where we have used
[7(vez) = ¥(0)] < min ([|v]lec, 17" lloovel21) »
and have denoted A := 2l= and B := min(|al, b, A).

_ BA™
Since
oo dz
Wil [, Tz = bl arctan (75) < .
and
A
ve A2
2 e [ g e = Il (14 25 ),
we obtain
4|7l A?
(12) ve = O] < ev (= 4 m (1425 )).

8



which implies

o (vom = (L= 4 yma+ 29))

€

4”'7’”00 A?
< < — .
1/65<»y(0)7r+1/€ ( B + Y looIn [ 1+ V2

Since
4||’VHOO A? =0
we have
0
(13) ¥(0)re < v, <29(0)7e

for € small enough.
Therefore, using (13) in (12) we get

4]l 0o 4A2 1
2 2

Finally, by (13) and (14),

(14)

1
IAe — (1 — &) —7(0)*72%e?| = |v. +7(0)7e] |ve — v(0)me| < 37(0)7Ce® In (5)
(|

2.2. Proof of Proposition 1.1. Let us define A, = A. — M.Id and let T.(t) = e *<'T.(t) be the semigroup
generated by A.. We now rewrite equation (1) as

(15) 2T = s+ (A [ femay) st

We look for solutions of (15) (with positive initial condition fo € L'(I)) which can be written as f(t,z) =
h(t)(T.(t) fo)(z), with h := h(t) a real valued function of time such that h(0) = 1. Substituting in (15), it
follows that f is indeed a solution of eq. (1) if h(t) satisfies the following initial value problem for an ordinary
differential equation:

(16) B (1) = (Ae—h(t) /1 (Te(t) fo) (z) dx)h(t), h(0) = 1.

Then h satisfies the integral equation

h(t) =1+ /O t ()\5 — h(s) /1 (T f0> (z) dx) h(s)ds,

from which the following identity follows

t
BOT0f = To0fo-+ [ Tt =) (= 106) [ (2(6)0) (e }H(6)T.(5) s,
0 I
i.e., f(t,z) is a solution of the variations of constants equation.
On the other hand, the nonlinear part of the right hand side of (15) is a locally Lipschitz function of

f € LY(I). From this uniqueness follows, whereas global existence and nonnegativity are clear from (16).
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2.3. Asymptotic behavior of the nonlinear equation. Let us start this subsection with a proposition
ensuring in a quantitative way the convergence of the solution towards a nontrivial steady state:

Proposition 2.4. Under the assumptions of Theorem 1.2, for e > 0 small enough, and any p. < (v(0)7e)?,
there exists a constant C. > 0 (depending on fo and €) such that

”f(tv ) - A 1/’8“[,1(1) <C. eTret,

Furthermore, taking p. = %5 = w, the following more explicit (in terms of dependence w.r.t €)

estimate holds

—act

i
”f(at) _)‘6¢6|‘L1(1) SKeee 2,
where K,K > 0 depend on fy but not on ¢.

The rest of this subsection will be devoted to proving Proposition 2.4 taking advantage of the special form
of the solution, f(t) = h(t)T-(t)fo, as written in the proof of Proposition 1.1. In order to do so, we will also
use some lemmas (Lemmas 2.5-2.10 which are stated below).

Let us start with one in which some properties of the spectrum of A, = A, — A\.Id are used to study the
asymptotic behavior of the semigroup Tg(t) generated by A..

Lemma 2.5. a) The essential growth bound of the semigroup generated by AL s Wess(T) = 1—e— M.
b) The growth bound of the semigroup generated by A, is wo(T:) =0.

Proof. a) A. is a compact (one rank) perturbation of A%f := (1 — ¢ — 22 — \.)f. Then wess (TE) =
Wess (TEO) where T0(t) is the semigroup generated by A2 (see [2]).

Since flg is a multiplication operator, wess (TEO) =1—¢ — A; and the result follows.

b) By Proposition 2.2, the spectral bound of A, is 0 and the spectral mapping theorem holds for any

positive C®—semigroup on L' (see [14]).
(|

Let us now write, for a positive non identically zero fo, (~s( )) fo(z) = cpbe(x) + v(t, x) where 9. (z)

is the elgenvector corresponding to the eigenvalue 0 of A,, and s, e () is the spectral projection of f; on
the kernel of A, (Note that cfo > 0 since fy is positive and A, is the generator of an irreducible positive
semigroup). We also define () := [, v( ;v(t, ) dr. The following lemma gives the asymptotic behavior of cy,:

Lemma 2.6. Let us assume that fy is a positive integrable function on I. Then there exist positive constants
K1, K» (independent of ¢ but depending on fo) such that Ky e* < cgy < Ka. Moreover, lim._yo cg, = 0.

Proof. Recall that ¢y, = (¢7, fo) where ¢} is the eigenvector of the adjoint operator A} corresponding to
the eigenvalue A., normalized such that (¢}, 1.) = 1. Since

(=)
o = (5 i ()\g—(;—e—£2))2 dm)
< Ae — (1 —e—2a?) ’

-1

we see that

Jo(z)
fI )\57(10 e—x2) dx
dx

Cfo = @

Ef[ (ka—(f—s—mz))Q

Let us start by bounding the denominator from above. Using that, by Proposition 2.3, for ¢ small enough,
2

Ae—(1—¢)> M, we obtain the bound

v(z)
) Oe—(1 o PN esup, ¥(z) Jg ((7(0)ﬂ€)2+ )2 dz
(17)

= sup, vy(x) W\/(EWV =: %

10



Similarly, since for € small enough, \. — (1 — &) < 2(y(0)7e)?, we have

o d K.
(18) 5/ 7(@) 5 dr > ¢ min 'y(x)/ < 5 > —2‘3,
1 (Ae = (1—e—1?)) [~zo,@0] —zo (2(7(0)me)? + 22) €
where x is any positive value in I. For the numerator we have, on the one hand,
2 fo(x) e
< -
(19) c /, X — (1—c—2?) dv < /, CTOLSLINE fo(z) dz,

where the right hand side tends to 0 when € goes to 0 by an easy application of the Lebesgue dominated
. . 2
convergence theorem (note that the integrand is bounded above by CIORE fo(x)).

On the other hand, notice that there exists an interval J C I which does not contain 0 such that
fJ fo(x)dz > 0. Then, since

Jo(z) Jo(x)
/I)\Ef(lfsfﬁ) dxz/,ksf(lfefo) dx

lim fo(z) / fo(z)

=0 1 Ae —(1—5—m2

and

there exists a constant K4 > 0 such that

(20) /1 - ({Oi) > K

By (18) and(19),

‘ 2flz\—f€w2 2flk—f€w2)d‘rs_%>0
fo = €3f () dx - K
I A.—(1—e—z2)
and by (17) and (20), and e small enough,
K.
Cfo = 7;1 =: K1£2.
€2
This completes the proof. O

Remark 2.2. If fy(x) is bounded below by a positive number ¢ in a neighbourhood (—d,6) of 0, then the
lower estimate can be improved using that

/(S —f  dr= 2aurctan O Yo 7
_s k22 + 2277k ke k’

Indeed, for € small enough

T fo(z
efix —(1(5) yde = eJ; 2(7(0)(;(5))2“2 dx
§ € 54>O+
2 s momma T Bor
So in this case, for € small enough,
fo = \/EILE)O)& =: Ke
82

for some constant K independent of e.

The next two lemmas enable to estimate ¢(t) (defined immediately before the statement of Lemma 2.6).
In the first one, the dependence w.r.t. € is not explicit.

Lemma 2.7. For ¢ small enough and any p. < (7(0)me)? there exists K. > 0 such that |p(t)] < |jv(t,-)| <
Keem P | fol-

11



Proof. Since, by Lemma 2.5, wess(Ae) < wo(Ae), we can apply Theorem 9.11 in [14], and get the estimate
[t )l = I T=(8) fo = erotell < Kee ™[I foll ¥ < Ae = (1 =)

Proposition 2.3 gives then the statement. O
We now give an estimate of the dependence of K. on ¢, provided that p. is chosen far enough from its
limit value. More precisely, we choose p. = %1_5) =: F.

Lemma 2.8. For e small enough, there exists a constant K independent of € and of fy such that
’ Ts(t)fo — Cf, wa

Proof. Since the proof of this result is quite technical, we delay it to the end of this section (subsection
2.5). O

<Kete =t foll.

We now turn to the study of the scalar function h(t). Notice that (16) can be written as

(21) W) = (A = (cpy +9®) hO) h(B),  h(0) = 1.

The next two lemmas are devoted to the analysis of the asymptotic behavior of A(t). In the first one, the
dependence w.r.t. € of the constants is not explicit.

Lemma 2.9. For e > 0 small enough and any p. < (7(0)me)2, there exists a positive constant C. > 0 such

that ‘h(t) — 2= < C.eret,
0

Proof. The solution of (21) is explicitly given by

eret 1

h(t) = = .
L+ [y (cpy +(s) € ds e At 4 5o (1 — e Xet) e et [To(s) eXes ds
Then
2| = 1 _ 1
‘h(t) o e—AEt+C)\L£(1767>\5t)+ef)\5t [ p(s)eres ds CAon
B ‘/\760 e_AEt(lf%)Jre_’\ft fot L,o(s)eAES ds|
B emAettem et [((cpt+p(s))eres ds
< éee—p5t7
where for the last inequality we have used that the denominator is a positive continuous function bounded
below (it takes the value 1 for ¢ = 0 and its limit is C)\ﬂ when ¢ goes to infinity). We also used the following

estimate for the numerator: since, by Lemma 2.7, |p(s)| < K. e 75| fo||, then

‘e"\st(l -3)+ et [Tp(s)eretds| < et (‘1 — o

€

_ Kellfoll Ke | foll ,—pet
Ae—pe + Ae—pe €

IN

2K et fo.
O

In order to give an estimate of the dependence of C. wr.t. €, we need to bound the denominator more

precisely and to take a value of p. separated of its limit value. As in Lemma 2.8, we choose p. = # =:
Qe

5
Lemma 2.10. For e > 0 small enough, there exist constants K7 and Ks (independent of €) such that

’h(t) _ 2

Cfo

Ky agt

< Kge =2 e 2

12



Proof. Using Lemma 2.7 and the fact that the second term is positive we see that

e At g Aet fot(cfo +@(s))er*ds > et + max (0, cpy (1 — e Aet) — Kse_pat)

(22)
> e*)\gta
for any t. such that
(23) cpy (1 — e rete) — K emPete > g7 Aete,

(Notice that the left hand side in (23) is an increasing function of ¢.). This indeed happens if K. e rets < %

and (1 + cg,) e~ <= < %2 Since the second condition is weaker than the first one for £ small enough, (23)
Ae

holds whenever t. is such that e P<ts < ;‘%, ie., e et < (;Ifé’s) " and € > 0 is sufficiently small. So,
Ae
(;If(“ ) " is also a lower bound in (22), and we finally have

Ae

> [ Ln )7
= 2K

Using the bound on the numerator given in the proof of Lemma 2.9, the previous estimate, and using also
Lemma 2.8, Lemma 2.6 and Proposition 2.3, we obtain

t
e At ¢ e_AEt/ (¢t 4+ p(s))e™*%ds
0

—pet
‘h(t) _ c)\TZ S QKEff JJ‘OH
(s#) "
< 2KseTte " ILfol
— ( K1€2 )KGE
(24) 2Kpe=%
2K _% _4_% _act
= 2K5 (Tl) 9 2 e 2 ||f0||
< [(85767}§7 6_%.

Finally, a standard application of the triangular inequality and Lemmas 2.6, 2.7 and 2.9 give

1) = Acel@) < [ne) = 22| | Tt fo]| + 22 |Tet)fo = e @)
(25) < Coem?! (Ky+ Koe ! | fol|) + iz Ko Pe!
< C.eret,

Using Lemmas 2.8 and 2.10 in the second inequality of (25), the last statement of Proposition 2.4 follows.

2.4. Proof of Theorem 1.2. By the triangular inequality,

[ #t) - G|

L(D) < ||f(t, ) - )\e¢E||L1(I)

Aethe — e7(0)

+ ’ GO+

13
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Hence by Proposition 2.3 and Proposition 2.4, we only need to estimate the last term, for which we have

H Mgy ()
Ae—(1—=g)+-2  (y(0)me)? + -2
e(Ae — 1)y
<[
e(y —(0))
(7(0)7e)? + -2

Let us bound the three terms. For the first one we have, by Proposition 2.3,

L)
&y ey

Ae—=(1—=g)+-2  (y(0)me)? + -2

"

L(I) L(I)

“Ie

L

E(Ae_l)')’
pr (R

edx

< i ___edx
>~ (>\5 1)||’7H00 R MJFIz

LY(I)

= (= Dhllez = 0).

For the second one, by Proposition 2.3 and (17),

1

£y B £y
Ae—(1—=e)+-2  (y(0)me)? + -2

LY(I)

< |(7(0)me)? = (he — (176))|€|Iv||oo/R (( © jlj 2>2
% +x

= [(1(0)m)? ~ (e — (1 —))| 2 =0 (5111 i) |

vlloo
[7 oo ?

17 loo / 7]l
2 | 0t dr 42 bl
L(1) 6/o GOz +22 T 0 O+
A? il ~¥(0)me
NooIn [ 1+ —— PRRAILS
ellv'l H( + (W(O)w5)2> + ~(0)r arctan( 1 )

O (Eln1> .
€

2.5. Proof of Lemma 2.8. Let us consider the linear initial value problem

W) = Acult,x) = (ac(x) = Ae) ult,x) +v(z) [y ult,y)dy,

For the third one, similarly to the proof of Proposition 2.3, denoting by A := e

| o=
()= + 2

IN

(26)
u(0,z) = uo(x),

where a.(z) := 1 — ¢ — 2% Let us recall that s(A.) = 0 and ¢ [, v (x 3o @y o = 1 (see Proposition 2.2).
Applying the Laplace transform with respect to t to the previous equatlon we obtain the identity

pLluf(p, 2) — uo(2) = (as(z) — A:) Llu](p, ) + £ 7v(z) /I»C[U](u,y) dy,
that is

uo(z)
(21) £lulne) = 0 I el d

Integrating (with respect to x), we obtain
__uwo(@ __uo(®)
/E[u](u .”L') dr — I p+rc—ac(x) dx N I itre—ac (@) dx
I

_ey(@) y(z)
f[ e —ac(x) dx 6[}, f[ (Ae—ae(2))(p+Are—ac(x)) dx
14
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where we have used, for the second equality, ¢ || i ﬁ% = 1. Substituting in (27), we get

(28) L) = — 2@ e 4 ()
| it A = ae(@) o f; ey de (B A ae(@)

This Laplace transform is analytic for Re p > 0 (note that A, — a.(x) is positive and tends to zero when ¢
tends to zero). Then, for s > 0, we know, by the inversion theorem, that

1 s+i00
t,r) = — L L) et dp.
uta) = g [ L) e dy
Using the theorem of residues, we can shift the integration path to the left in order to obtain, for any
"e(l—e—A.,0),

u(t,z) = Res,—o (E[u](u, ac)e“t> + L /: o Llu)(u, x)e'" du,

27TZ /oo
where
Res; o (ﬁ[u](u,x)e’“) = limy o pLlul(p, x)
. Ji g s da ()
= lim, o < puo(@) 4 M VTR E) 1z
FEP\pAemec@) ) ey e PP ee@)
= (2) = cuo Ye(z)

let us recall that _ @) g (=) =t )

(let us recall that . (x) = Re-a. (@) and f(z) = Ae—(l—e—a?) )-

Thus, we obtain that, for ' € (1 —e — A, 0),

[t "
(20) ) = cuela) 4 o [ L + im0
T
[, —uo(e)de
We now define g. (i) := T , so that we can write
nl @Ay
+ : s'+iT s’ el
% _;o Lu](s" + i, m)e( it gy = %uo(az)e tffooo TS e cymaes dr
s't 0O _ge(s'+iT)e'™!

(30) + a7 '\ f—oo s'+ e —ac(z)+iT dr

= ef(AifaE(a:))tuo(x)

es't ge (s'+iT)e’™
+ f 0o s'+Ac—ac(x)+iT dT’

where we used the estimate s’ + A\. — a-(z) > 0 and the identity f ~ aTir _ dr = 2me= (for o > 0).

We now would like to find a bound for H—7r es't = - % dTH

We see that
't ge (s’ +iT)e' ™ 4 0 go(s'+ir)elT
L R e s N B O O o e
(31)
_ ,t . 00 gs(s’+i7')e”t
= € Sup, ffoo s'+Ae—ac(x)+iT dT‘
and
oo ga(s'Jri‘r)eiﬂ 0o |ge (8" +iT)]
‘ o W‘”‘ < e e AT
(32)
00 |ge (s"447)]
< S a4



since |s" + Ae —ac(z) +i7| > |s' + Ae — (1 — ) +i7|.
Let us then find an upper bound for g.(s’ 4 i7). For the numerator of g.(s' + i7) we can estimate

/ _ uo(2) de| < _uolls '

18 +im+ A —as(x) |s" + i1 + Ae — (1 — &)

We now find a lower bound for the denominator of g.(s’ + i7). We use the elementary estimate |z| >
max(|Rez|, [Imz|) and we start with the real part.

7(z) _ V@) S Ae—ac(x)
’Reff O a @ (i T Ae—as (@) dm’ = ‘f, Co—a. @) TP —ac (@) 00 ’

y(x s'+Ae—ac(x)
- fI Ae—ac(2)) |8'+iT+Ae—ac ()| dx

_ v(z) d
Jr (e —ae (@) (' +Ae—ac () + 5y ) “

> v (z)

- fI (AEO—(1—ao)+z2)(AEO—(1—80)+w2+;—§)
z2y(x)

= g —(1—20) 422 ((heg—(I—20)F22)72+72) dx

= F(r),
where in the last inequality we used the estimates s + Ac — a-(z) < A\ —ac(x), s + Ac — (1 —¢) > 0. We
also used that, since A, — (1 — ¢) is strictly positive and tends to zero when ¢ goes to zero, there exists
such that Ve < g we have A\, — (1 —&9) > A — (1 —¢).
In a similar way, for the imaginary part,

(=) - ot
Im f] ()\Efas(m))(57+iT+)‘570‘5(m)) dl“ ’f] . zas(ﬂ? (s'+Ae—ac(z))?+72 dx‘
— (z) dx
‘ |fI ()\Efai(x))((sur)\gfaa(x))br-ﬂ)
S ()
= ‘T| f[ ()\EO_(1_80)+I2)((AEO—(1—80)+w2)2+T2)
= G(T).
Defining H (7) := max(F(7),G(7)) we see that
ez vereen)
i (s 7)< TR el
(33) |9=(s" +i7)| < |s' +iT|H () ’

and then, using (31), (32) and (33)
+o0 / ; iTt
ot [t

oo S A —ac(x) +iT
Foo dr
V2 +72|s it + A — (1 —¢)|2H(7T)
Now, since F' and G are strictly positive continuous functions, F'(0) > 0 and 7G(7) tends to a positive
limit when 7 goes to oo, there exists a constant C' > 0 (independent of ¢) such that H(7) > 14% Choosing
s' = =5, where a. = A\ — (1 — €), we can write

o0 / : Tt +o0
o't ge(s' +iT)e / +7)
d < d
T (e /_oo s+ A —ae(x) +ir THOO - C 2)% lluolly

e~ 8
- (g+a€>||uo||1-

oo

<ett [|uoll1-

‘»Jk M‘Q
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Finally, going back to (29) and using (30), we end up with

1 4 2 _act 4 _aet
||u(t,-) —cuO’LbEH < (1+ ﬁ (ag—l—as)> e 2 ||u0||1 < Kse¢ de—73

|uol|1-

3. PROOF OF THEOREM 1.3

We start here the proof of Theorem 1.3. From now on, C will designate a strictly positive constant

depending only on some upper bounds on ||v|| e, || fo|lw1.s, on a lower bound on fy, and on |b—a| (assumed
to be finite in this theorem).

Thanks to the variation of the constant formula, the solution f of (1) satisfies:

ft,z) = f(0,z)et=e) =[5 [i f(s) dyds

t P t
+€/ <’Y(x)/f(s,y) dy) e(1—e=a?)(t=s)= [ [; flo) dydo g
0 I
— f(07 x) e(lfsfaﬂ) t— [y Z(s) ds

t
(34) e / (@) T(s)ei-e- =)=~ [ TV do g
0

1(t):= /f(tyy) dy.
T
Obtaining a precise estimate on ¢ — e(1-9)(t=)=[[Z(0)d7 ig the cornerstone of the proof of Theorem 1.3.

3.1. Preliminary estimates. If we sum (34) along x € R, we get, for ¢t > 0:

() = (/f(O,:c)ewztdx> e(1=2)t=[3 Z(s) ds
I

t
_|_5/ <//,_y(x)f(87y)ez2(ts) dxdy) 6(175)(t75)7f5tl'(0)d0' ds
0 I1JI

21(t) (1—ey— [t T(s)a "22(5:t = 8) (1_ey—s)— [t T(o)d
35 = —=e oSS Lo | 2 — e 8= ) Hlo)dr g
(35) i Vi
where
2l = Vi [ 1000 e, wa(0.1) = V7 [ 4@ fope " dedy
I rJrI
If we integrate our equation w.r.t. x, we get

0T
G0 = T00-c=10)~ [Fra)do e [ [o@iendody

It)(1—e—=Z())+eZ(t)
Z(t)(1=1I()),

which implies, since Z(0) < 1, that

(36) 0<I(t) <1
Thanks to (35), (36) and the nonnegativity of z;, 22, one gets

IAIA

21(8) (1—eyt— [t Z(s) ds
37 NV (1—e)t— [y Z(s) ds < O,
(37) e <

while for some constants C, C' > 0,

at) = /If(()ji> e da

1 ¢ P 1
— et >
C/c'f<0’\/i> dx_C ’

17



for t > 1. Note that here we used a lower bound on f(0,-) around x = 0 (we have assumed that f(0,0) >0
and that f(0,-) is continuous). Thanks to this lower bound, (37) becomes

(38) e(lfs)tffot Z(s)ds <C \/E

Thanks to (38) and (36), we can estimate the second term of (35) as follows:

t
z2(s,t — 5) e(1=e) t=[3 I(0) do jes+ [ (Z(0)~1) d
t p— € TaNT 77 0 o S 0 O'd
w(t) | 2= s
\/ t eCas
< Cevt|z|lre —ds
= H 2||L /0 m
t —Ces
(39) < ca\/ﬂ\anLweCft/ © " ds < Cet||za) e €€
0o Vs

In order to estimate | 22|/, we proceed as follows:

22(s,7) = /I/Iv(;) F(s,y) e dudy

CZ(s) /6712 dx < C.
T

IN

This estimate combined with (39) implies that w(t) satisfies
(40) 0<w(t)<Cetefcl.

Since f(0,-) € W1°°(I), we can estimate (for ¢ > 0)

() = /I<f(0,0)+/0ﬂg‘£(072) dz> e dx
(41) = £(0,0) /1 e da + A(t),
where
A@)] < 0 z)dz e dx < —/|a?|efz dz
C’
(42) < 7

3.2. Estimate for ¢(=9)'=/o Z()ds Thanks to (35) (and the definition of A and w: see (41) and (39)
respectively), we see that, for ¢ > 1,

(43) 7ty = 1O e F A0 jaoni-pzmas |y,
Vit
so that
t
s 1 d s
Jo Z(s)ds  _ Jo Z(s)ds Jg Z(o) do
e e —|—/1 Is (e )(s) ds

__»L-Q
= efol I(S) ds + /t f(070) f[e dxe(l—e)s dS
1 Vs

(44) +/1t ):(/?e(ls)sd$+/1t (s)edo TV do g,

18



We will now estimate each of the terms on the right hand side of (44). We start by estimating the third
term on the right hand side, thanks to (42) and an integration by parts:

t t 1—e)s
/Me(l_s)sds C'/ ™ ds
1 B} 1 s
e(1—5):5 t e(1—5)3
< C|— ——d
: [(1@#/1 1-2)s? }

C |:€(1—s)t e(l—e)s:|

IN

< + ¢t max
1—¢

t s€ll,f] 82
2C
45 < I _0-er
(45) - (1—6)756

provided that ¢ > 4 (this last assumption ensures, remembering that 0 < ¢ < 1/2, that max,cp ¢ e(ls_:)s =
(1—e)t
e = )
We now estimate the second term on the right hand side of (44), using an integration by parts:

/t f(()’O) f[ € dxe(lfe)s ds
1 Vs

5 e(175)15 el—e t e(175)5
= f(0,0 e " dx — + / ds) ,
f )</[ ) ((1—5)\5 1—e )i 2(1—¢g)s?/?
and then, applying an estimate similar to the one used to obtain (45), we get, provided that t > 4,

t (1—e)s t (1—e)s 1
e e
46 0< | — _ds< ds < (1=e)t
(46) —/1 2(1— )53/ 3—/1 21—9)s =1 —e2t”

Finally, we estimate the last term of the right hand side of (44), thanks to estimates (40) and (36), and for
t>1:

IN

¢
OS/ w(s)edo T 47 g
1

t
/|w(8)‘e”IHL°°(R+)SdS
1

t

< CE/ seC%% e® ds

1

te(1+CE)t
47 < Ce——,
(47) - c 1+Ce

where we have used s <t to obtain the last inequality.
Combining these estimates, estimate (44) becomes:

7I2
GJiT(s)ds—(1—e)t _ £(0,0) [ye™ da

N, gt £(0,0) [, e dx o
e 1—e)t— [y Z(s)ds _
(49) ( Hed ( (1_;)\/% +u(t)> :

where, thanks to (44), (45), (46) and (47

~—

, for t > 4,

=+ Q

(50) Youm<c (1 + etecff) .
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i (I—e)t—[foI(s)ds _ ____Vt .
3.3. Estimate for ‘e Jo 70.0) I, = dr’. Thanks to (49),

(=)= f§ Z(s)ds _ Vit
f<07 0) f] e~ dx
([ £0,0) [ e da 17 Vi
(51) = ( (1 — E)\/E + N(t)> f(O, O) f[ o2 dp
- Vi 1 p(t) Vi !
" ~ f(0,0) fyem" do <1 —< " f(0,0) [ d:c) il

We notice that thanks to estimate (50),

(0,0) [, e da
2 )

(53) £(0,0) /Ie*f* do + (1 — e)p(t)Ve > f

as soon as t > 4. Under the same assumption, we directly get from (50) that

1
(54) (t)] gc<t+at60”>.
Using the bounds (53) and (54), we can show that as soon as t > 4,

( 1 n p(t)Vi >_ 4| = —££(0,0) [, e dz — (1—e)u(t)Vi
1—e  f(0,0) f[;e**dx f(0,0) [;e=**dz+ (1 —e)u(t)Vt

1 3
(55) < C <\/£ + et ecgt) ,

so that identity (52) leads to the bound (for ¢ > 4)

1

e(lfe)tffot I(s)ds _ ﬁ
f(0,0) [, e~ dx

Notice also, as this is going to be useful further on, that for s > 4, thanks to (48) and (54),

f(0,0) [, e dr
(L—e)s

(56) <C(1+et?e’ ).

e]; I(oc)do—(1—e)s __ f(O’O) f[ € dx
s

(57)

IN
Q
7N

® |

+

™

®

)

Q
m
»
~

3.4. Conclusion of the proof of Theorem 1.3. In this last part of the proof, we systematically consider
times t > 4. We estimate

£(0,2) VEe ™™t

x> f(t,x) — —
f(0,0) f[e v dy LY (I)
—x2t
<l|z— f(t,z)— f(O,x)2e
f00) e dy u(t)
(1—e) vt LY(I)
P 2
(58) iy SO@et  fO02) VEe
0,0) f;ev2d v
% +ﬂ(t) f(0,0) f[ € dy L1(I)
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Let us start by estimating the second term of the right hand side of (58), thanks to estimate (55):

f(0,2)e —ot £(0,2)Vte !

(0,0) [, e—v2 dy ©£(0,0) [, e v dy
Tl v SO0

(0, 2) Ve
= Hm 70,0 Jie 7y

Ly(1)
1 pt)Vt B
(15+f(0,0) f[ey2dy> -1

LY(I)
1

1Ol vE | (1 O
= f(0,0) [;e v dy <1—5+f(070) fle—yzdy> L /I d
(59) <C (\/E+st2 eC“>.

We now rewrite the first term of the right hand side of (58), using formula (34) and (49):

£(0,z)e= "
£(0,0) f;e=v? dy
(1-e)vt + u(t) L(I)

t
voe [ ([r@rsm ) emertiensizow g,
0 I LY(I)

t
< Ce / / I(S)e—xQ(t—s)e(l—e)t—fJ Z(o) daefos Z(o)do—(1—¢)s dsdz,

= f(t,x) —

and then, thanks to (36), (56) and (57),

£(0,z)e "t

£(0,0 -v2 g
: ()1%}5)6\/% c )

x> f(t,x) —

LY(I)

4
< C'E/ </ez2(ts) dx) < vi — + 14 ¢t? 6C€t> ds
o \Jr 0) [;e " dx
t 2 (0,0 —2* g 1
—|—CE/ (/e—z (t—s)dx> )fl x+—+gseces
4 I Vs 8

< Vit
£(0,0) fl e~ dx

SC&‘\L/ (\/f+1+5t260”)

+C€/ m(\lf—kase ) (\/+1+5t2 C”) ds.

+1+5t260”> ds

We estimate

t Ces t

se ds

/ ; ds < teCEt/ < C’t%ecet,
4 — S

:
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and

(60)

whe

The

then
O —x3t
v f(t,z) — — L)
FOO Jrerdy 4y
(175)\/% LI(I)

1 3
< Ce 1++5t2ecst>
1+

+Ce (1 + at%ecst> (\/£+ 1+et? ecst)
<C <s + eVt + % + (st% + 22 4 %3 + 5315%) ecst>
<C (z—:\/i—k 5t%ecgt) ,

re we have used the fact that et < Ce“s*. Thanks to (59) and (60), (58) becomes:
F(0,2)/te*"t ( 1 Ke; t)
Tz f(t,z) — <C(——=+evttetzefct).
Mo =500 feray),,, =\

<[ —=+4etz)eet
(75+t!)

orem 1.3 follows from this estimate.

Note that as stated in the comments of the theorem, if we assume that ¢ € [%, 5%6*%], then (6) becomes

and

0 fe—o’t 2 1
e f(t,x) - f(g (’)x)\[e_yzd < C(f-ﬂrmec'“ss),
f( ) )f]e Y L)
if furthermore € < k < 1, then
F(0,2) Vie o™
z— f(t,x) — < Ck&k.
M= 500 fevay),
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