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ABSTRACT BIVARIANT CUNTZ SEMIGROUPS

RAMON ANTOINE, FRANCESC PERERA, AND HANNES THIEL

Abstract. We show that abstract Cuntz semigroups form a closed symmetric
monoidal category. Thus, given Cuntz semigroups S and T , there is another
Cuntz semigroup JS, T K playing the role of morphisms from S to T . Applied to
C∗-algebras A and B, the semigroup JCu(A),Cu(B)K should be considered as
the target in analogues of the UCT for bivariant theories of Cuntz semigroups.

Abstract bivariant Cuntz semigroups are computable in a number of inter-
esting cases. We explore its behaviour under the tensor product with the Cuntz
semigroup of strongly self-absorbing C∗-algebras and the Jacelon-Razak alge-
bra. We also show that order-zero maps between C∗-algebras naturally define
elements in the respective bivariant Cuntz semigroup.

1. Introduction

The Cuntz semigroup Cu(A) of a C∗-algebra A is an invariant that plays an
important role in the structure theory of C∗-algebras and the related Elliott classi-
fication program. It is defined analogously to the Murray-von Neumann semigroup,
V (A), by using equivalence classes of positive elements instead of projections; see
[Cun78]. In general, however, the semigroup Cu(A) contains much more informa-
tion than V (A), and it is therefore also more difficult to compute.

The Cuntz semigroup has been successfully used in the classification program,
both in the simple and nonsimple setting. For example, Toms constructed two
simple AH-algebras that have the same Elliott invariants, but which are nevertheless
not isomorphic, a fact that is detected by the Cuntz semigroup; see [Tom08]. On
the other hand, Robert classified (not necessarily simple) inductive limits of one-
dimensional NCCW-complexes with trivial K1-group using the Cuntz semigroup;
see [Rob12].

The connection of the Cuntz semigroup with the Elliott invariant has been ex-
plored in a number of instances; see for instance [PT07], [BPT08] and [Tik11]. In
fact, for the class of simple, unital, nuclear C∗-algebras that are Z-stable (that
is, that tensorially absorb the Jiang-Su algebra Z), the Elliott invariant and the
Cuntz semigroup together with the K1-group determine one another functorially;
see [ADPS14]. When dropping the assumption of Z-stability, it is not known
whether the Elliott invariant together with the Cuntz semigroup provides a com-
plete invariant for classification of simple, unital, nuclear C∗-algebras.

It is therefore very interesting to study the structural properties of the Cuntz
semigroup of a C∗-algebra. This study was initiated by Coward, Elliott and
Ivanescu in [CEI08], who introduced a category Cu and showed that the assignment
A 7→ Cu(A) is a sequentially continuous functor from C∗-algebras to Cu. The ob-
jects of Cu are called abstract Cuntz semigroups or Cu-semigroups. Working in this
category allows one to provide elegant algebraic proofs for structural properties of
C∗-algebras.
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A systematic study of the category Cu was undertaken in [APT14]. One of the
main results obtained is that Cu has a natural structure as symmetric monoidal
category (see Paragraph 2.14 for more details). This means, in particular, that Cu
admits tensor products and that there is a bifunctor

⊗ : Cu× Cu → Cu

which is (up to natural isomorphisms) associative, symmetric, and has a unit object,
namely the semigroup N = {0, 1, 2, . . . ,∞}. The basic properties of this construc-
tion were studied in [APT14], relating in particular Cu(A⊗B) with Cu(A)⊗Cu(B)
for certain classes of C∗-algebras.

Following the line of thought above, it is very natural to ask whether Cu is
also a closed category. This problem was left open in [APT14, Chapter 9]. Given
Cu-semigroups S and T , the question is if there exists a Cu-semigroup JS, T K that
plays the role of morphisms from S to T . In category theory, this is expressed by
requiring that the functor JT, K is adjoint to the functor ⊗ T , which means that
for any other Cu-semigroup P we have a natural bijection

Cu
(
S, JT, P K

) ∼= Cu
(
S ⊗ T, P

)
,

where Cu( , ) denotes the set of morphisms in the category Cu. The morphisms
in Cu, also called Cu-morphisms, are order-preserving monoid maps that preserve
suprema of increasing sequences and that preserve the so-called way-below relation;
see Definition 2.4.

One of the main objectives of this paper is to construct the Cu-semigroup JS, T K
and to study its basic properties. We call JS, T K an abstract bivariant Cuntz semi-
group or a bivariant Cu-semigroup. The construction defines a bifunctor

J , K : Cu× Cu → Cu,

referred to as the internal-hom bifunctor; see, for example, [Kel05].
An important motivation for our construction is to find an analogue of the uni-

versal coefficient theorem (UCT) for Cuntz semigroups. Recall that a separable
C∗-algebra A is said to satisfy the UCT if for every separable C∗-algebra B there
is a short exact sequence

0 →
⊕

i=0,1

Ext
(
Ki(A),Ki(B)

)
→ KK0(A,B) →

⊕

i=0,1

Hom
(
Ki(A),Ki(B)

)
→ 0.

We refer to [Bla98, Chapter 23] for details.
The near goal is then to replace KK0(A,B) by a suitable bivariant version of the

Cuntz semigroup (for example, along the lines of [BTZ16]), and the Hom-functor in
the category of abelian groups by the internal-hom functor JCu(A),Cu(B)K alluded
to above. In this direction, the construction developed in [BTZ16] uses certain
equivalence classes of completely positive contractive (abbreviated c.p.c.) order-
zero maps between C∗-algebras, denoted here as cpc⊥(A,B). In Section 8, we show
that every c.p.c. order-zero map ϕ : A→ B defines an element Cu(ϕ) in the abstract
bivariant Cuntz semigroup JCu(A),Cu(B)K.

The construction of bivariant Cu-semigroups resorts to the use of a more general
class of maps than just Cu-morphisms. A generalized Cu-morphism is defined as
an order-preserving monoid map that preserves suprema of increasing sequences
(but not necessarily the way-below relation); see Definition 2.4. We denote the set
of such maps by Cu[S, T ]. Since every Cu-morphism is also a generalized Cu-mor-
phism, we have an inclusion Cu(S, T ) ⊆ Cu[S, T ].

When equipped with poinwise order and addition, Cu[S, T ] has a natural struc-
ture as a partially ordered monoid, but it is in general not a Cu-semigroup. Simi-
larly, Cu(S, T ) is usually not a Cu-semigroup. The solution is to consider paths in
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Cu[S, T ], that is, rationally indexed maps Q ∩ (0, 1) → Cu[S, T ] that are ‘rapidly
increasing’ in a certain sense. Equipped with a suitable equivalence relation, these
paths define the desired Cu-semigroup JS, T K.

This procedure can be carried out in a much more general setting. In Section 4
we introduce a category Q of partially ordered semigroups that, roughly speaking,
is a weakening of the category Cu, in that the way-below relation is replaced by
a possibly different binary relation (called auxiliary relation). We show that Cu
is a full subcategory of Q; see Proposition 4.4. The path construction we have
delineated above yields a covariant functor

τ : Q → Cu,

that turns out to be right adjoint to the natural inclusion functor; see Theorem 4.12.
We refer to this functor as the τ-construction. This result has numerous advantages.
Besides making clearer arguments of the results in the present paper available than
going via a direct argument, it allows to transport many categorical properties from
Q to Cu. Some of these constructions will be explored in [APT17]. In our setting,
the functor applied to the semigroup of generalized Cu-morphisms Cu[S, T ] yields
the internal-hom of S and T . In other words, for Cu-semigroups S and T , we define

JS, T K := τ(Cu[S, T ]);

see Definition 5.3.
We illustrate our results by computing a number of examples, that include the

(Cuntz semigroups of the) Jiang-Su algebra Z, the Jacelon-Razak algebraW , UHF-
algebras of infinite type, and purely infinite simple C∗-algebras. Interestingly,
JCu(W),Cu(W)K is isomorphic to the Cuntz semigroup of a II1-factor.

The fact that Cu is a closed category automatically adds additional features well
known to category theory. For example, one obtains a composition product given
in the form of a Cu-morphism:

◦ : JT, P K ⊗ JS, T K → JS, P K.
In the case where S = T = P , the above composition product equips JS, SK with
the structure of a (not necessarily commutative) Cu-semiring.

Although the said features can be derived from general principles, in our setting
they become concrete, and this is very useful in applications. In this direction, and
bearing in mind that JS, T K is a semigroup built out of paths of morphisms from S
to T , the composition product can be realized as the composition of paths. Another
important example is the evaluation map which, for Cu-semigroups S and T is a
Cu-morphism eS,T : JS, T K⊗S → T such that eS,T (x⊗ s) can be interpreted as the
evaluation of x ∈ JS, T K at s ∈ S. We therefore also write x(s) := eS,T (x⊗ s). The
evaluation map can be used to concretize the adjunction between the internal-hom
bifunctor and the tensor product.

Likewise, the tensor product of generalized Cu-morphisms induces an external
tensor product

⊠ : JS1, T1K ⊗ JS2, T2K → JS1 ⊗ S2, T1 ⊗ T2K,
which is associative and, like in KK-Theory, compatible with the composition
product. This means that, for elements xk ∈ JSk, TkK and yk ∈ JTk, PkK (for
k = 1, 2), we have

(y2 ⊠ y1) ◦ (x2 ⊠ x1) = (y2 ◦ x2)⊠ (y1 ◦ x1).
We also deepen our study of Cu-semirings and their semimodules. Recall that, as
shown in [APT14, Chapter 7], the Cuntz semigroup of a strongly self-absorbing
C∗-algebra has a natural product giving it the structure of a Cu-semiring.
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A particular instance of the composition product setting arises when we study
the semiring JS, SK. Any Cu-semigroup S becomes an JS, SK-semibimodule. This
can also be extended to the more general situation where T has a left R-action (for
a Cu-semiring R with compact unit) and S is an arbitrary Cu-semigroup to obtain
that JS, T K has a left R-action as well.

For any Cu-semiring R, the internal-hom construction makes it possible to define
a left regular representation-like map πR : R→ JR,RK, which is always multiplica-
tive (and unital in case the unit of R is a compact element).

Recall that a Cu-semiring R is solid in case the multiplication defines an iso-
morphism between R⊗ R and R (see [APT14, Chapter 7]). This terminology was
inspired by that of solid rings, and reflects the situation of strongly self-absorbing
C∗-algebras, in the sense that the Cuntz semigroup of any strongly self-absorbing
C∗-algebra satisfying the UCT is solid.

Under mild assumptions (namely, the so-called axioms (O5) and (O6)), all solid
Cu-semirings were classified in [APT14, Theorem 8.3.3]. We show that a Cu-
semiring R satisfying (O5) and (O6) is solid if and only if the evaluation map
eR,R : JR,RK ⊗ R → R is an isomorphism. The question of whether this holds
without assuming (O5) or (O6) remains open (Question 7.26).

We finally specialise to C∗-algebras and show that a c.p.c. order-zeromap ϕ : A→
B between C∗-algebras A and B naturally defines an element Cu(ϕ) in the bivari-
ant Cu-semigroup JCu(A),Cu(B)K; see Theorem 8.3 and Definition 8.4. We then
analyse the induced map

cpc⊥(A,B) → JCu(A),Cu(B)K,
and show it is surjective in a number of cases; namely for a UHF-algebra of infinite
type, the Jiang-Su algebra, or the Jacelon-Razak algebra W ; see Example 8.9.
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2. Preliminaries

Throughout, K denotes the C∗-algebra of compact operators on a separable,
infinite-dimensional Hilbert space. Given a C∗-algebra A, we let A+ denote the
positive elements in A.

2.1. The category Cu of abstract Cuntz semigroups. In this subsection, we
recall the definition of the category Cu of abstract Cuntz semigroups as introduced
by Coward, Elliott and Ivanescu in [CEI08].
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2.1. Let us first recall the basic theory of the category PoM of positively ordered
monoids. We refer to [APT14, Appendix B.2] for details.

A positively ordered monoid is a commutative semigroup M , written additively
with zero element 0, together with a partial order ≤ such that a ≤ b implies that
a + c ≤ b + c for all a, b, c ∈ M , and such that 0 ≤ a for all a ∈ M . We let
PoM denote the category whose objects are positively ordered monoids, and whose
morphisms are maps preserving addition, order and the zero element.

Let M,N and P be positively ordered monoids. We denote the set of PoM-
morphisms from M to N by PoM(M,N). A map ϕ : M × N → P is called a
PoM-bimorphism if it is a PoM-morphism in each variable, that is, for each m ∈M
the map N → P given by n 7→ ϕ(m,n) is a PoM-morphism, and analogously in the
first variable. We denote the collection of such maps by BiPoM(M × N,P ). We
equip both PoM(M,N) and BiPoM(M ×N,P ) with pointwise order and addition,
which gives them a natural structure as positively ordered monoids.

Given positively ordered monoids M and N , there exists a positively ordered
monoid M ⊗PoM N and a PoM-bimorphism ω : M × N → M ⊗PoM N with the
following universal property: For every positively ordered monoid P , the assignment
that maps a PoM-morphism α : M⊗PoMN → P to the PoM-bimorphism α◦ω : M×
N → P is a bijection between the following (bi)morphism sets

PoM
(
M ⊗PoM N,P

) ∼= BiPoM
(
M ×N,P

)
,

which moreover respects the structure of the (bi)morphism sets as positively ordered
monoids. We call M ⊗PoM N together with ω the tensor product of M and N (in
the category PoM).

Recall that a set Λ with a binary relation ≺ is called upward directed if for all
λ1, λ2 ∈ Λ there exists λ ∈ Λ such that λ1, λ2 ≺ λ.

Following [GHK+03, Definition I-1.11, p.57], we define auxiliary relations on
partially ordered sets and monoids:

Definition 2.2. Let X be a partially ordered set. An auxiliary relation on X is a
binary relation ≺ on X satisfying the following conditions for all x, x′, y, y′ ∈ X :

(1) If x ≺ y then x ≤ y.
(2) If x′ ≤ x ≺ y ≤ y′ then x′ ≺ y′.

If X is also a monoid, then an auxiliary relation ≺ on X is said to be additive if it
satisfies the following conditions for all x, x1, x2, y1, y2 ∈ X :

(3) We have 0 ≺ x.
(4) If x1 ≺ y1 and x2 ≺ y2, then x1 + x2 ≺ y1 + y2.

An important example of an auxiliary relation is the so called way-below rela-
tion, which has its origins in domain theory (see [GHK+03]). We recall below its
sequential version, which is the one used to define abstract Cuntz semigroups.

Definition 2.3. Let X be a partially ordered set, and let x, y ∈ X . We say that
x is way-below y, or that x is compactly contained in y, in symbols x ≪ y, if
whenever (zn)n is an increasing sequence in X for which the supremum exists and
which satisfies y ≤ supn zn, then there exists k ∈ N with x ≤ zk. We say that x is
compact if x≪ x. We let Xc denote the set of compact elements in X .

The following definition is due to Coward, Elliott and Ivanescu in [CEI08]. See
also [APT14, Definition 3.1.2].

Definition 2.4. A Cu-semigroup, also called abstract Cuntz semigroup, is a posi-
tively ordered semigroup S that satisfies the following axioms (O1)-(O4):

(O1) Every increasing sequence (an)n in S has a supremum supn an in S.
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(O2) For every element a ∈ S there exists a sequence (an)n in S with an ≪ an+1

for all n ∈ N, and such that a = supn an.
(O3) If a′ ≪ a and b′ ≪ b for a′, b′, a, b ∈ S, then a′ + b′ ≪ a+ b.
(O4) If (an)n and (bn)n are increasing sequences in S, then supn(an + bn) =

supn an + supn bn.

Given Cu-semigroups S and T , a Cu-morphism from S to T is a map f : S →
T that preserves addition, order, the zero element, the way-below relation and
suprema of increasing sequences. A generalized Cu-morphism is a Cu-morphism
that is not required to preserve the way-below relation. We denote the set of Cu-
morphisms by Cu(S, T ); and we denote the set of generalized Cu-morphisms by
Cu[S, T ].

We let Cu be the category whose objects are Cu-semigroups and whose mor-
phisms are Cu-morphisms.

Remark 2.5. Let S be a Cu-semigroup. Note that 0 ≪ a for all a ∈ S. Thus,
(O3) ensures that ≪ is an additive auxiliary relation on S.

2.6. Let A be a C∗-algebra, and let a, b ∈ (A ⊗ K)+. We say that a is Cuntz
subequivalent to b, denoted a - b, if there is a sequence (xn)n in A ⊗ K such that
a = limn xnbx

∗
n. We say that a and b are Cuntz equivalent, written a ∼ b, provided

a - b and b - a. The set of equivalence classes

Cu(A) = (A⊗K)+/∼
is called the (completed) Cuntz semigroup of A. One defines an addition on Cu(A)
by setting [a] + [b] := [( a 0

0 b )] for a, b ∈ (A ⊗ K)+. (One uses that there is an
isomorphism M2(K) ∼= K, and that the definition does not depend on the choice
of isomorphism.) The class of 0 ∈ (A⊗ K)+ is a zero element for Cu(A), giving it
the structure of a commutative monoid. One defines an order on Cu(A) by setting
[a] ≤ [b] whenever a - b. This gives Cu(A) the structure of a positively ordered
monoid.

Theorem 2.7 ([CEI08]). For every C∗-algebra A, the positively ordered monoid
Cu(A) is a Cu-semigroup. Furthermore, if B is another C∗-algebra, then a ∗-ho-
momorphism ϕ : A→ B induces a Cu-morphism Cu(ϕ) : Cu(A) → Cu(B) by

Cu(ϕ)([a]) := [ϕ(a)],

for a ∈ (A ⊗ K)+. This defines a functor from the category of C∗-algebras with
∗-homomorphisms to the category Cu.

Remark 2.8. Let A be a C∗-algebra. In order to show that (O2) holds for Cu(A)
one proves that, for every a ∈ (A ⊗ K)+ and ε > 0 we have [(a − ε)+] ≪ [a],
and that moreover [a] = supε>0[(a − ε)+]. One can then derive from this that the
sequence ([(a− 1/n)+])n satisfies the required properties in (O2).

This suggests the possibility of formally strengthening (O2) for every Cu-semi-
group S in the following way: Given a ∈ S, there exists a (0, 1)-indexed chain of
elements (aλ)λ∈(0,1) with the property that a = supλ aλ, and aλ′ ≪ aλ whenever
λ′ < λ. Next, we show that this property holds for all Cu-semigroups.

Lemma 2.9. Let S be a set equipped with a transitive binary relation ≺ that satisfies
the following condition:

(*) For each a ∈ S there exists a sequence (an)n in S such that an ≺ an+1 ≺ a
for all n; and such that whenever a′ ∈ S satisfies a′ ≺ a then there exists
n0 with a′ ≺ an0 .

Then, for every a ∈ S, there exists a chain (aλ)λ∈(0,1)∩Q such that aλ′ ≺ aλ when-
ever λ′, λ ∈ (0, 1) ∩ Q satisfy λ′ < λ, and such that for every a′ ∈ S with a′ ≺ a
there exists µ ∈ (0, 1) ∩Q with a′ ≺ aµ.
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Proof. Note that condition (*) implies the following: Whenever b1, b2, b ∈ S satisfy
b1, b2 ≺ b, then there exists b3 ∈ S with b1, b2 ≺ b3 ≺ b. This property, which we
will refer to as the interpolation property, will be used throughout.

Given a ∈ S, first use (*) to fix an increasing sequence 0 ≺ a1 ≺ a2 ≺ · · · ≺ a
which is cofinal in a≺ := {b | b ≺ a}. (This means that, if a′ ∈ S satisfies a′ ≺ a,
then there is k ∈ N with a′ ≺ ak.)

Use the interpolation property to find a
(1)
1 such that a1 ≺ a

(1)
1 ≺ a and consider

the chain 0 ≺ a
(1)
1 ≺ a. Now use the interpolation property to refine the above

chain as

0 ≺ a
(1)
1 ≺ a

= = =

0 ≺ a
(2)
1 ≺ a

(2)
2 ≺ a

(2)
3 ≺ a ,

in such a way that moreover a2 ≺ a
(2)
3 . We now proceed inductively, and thus

suppose we have constructed a chain 0 ≺ a
(n)
1 ≺ · · · ≺ a

(n)
2n−1 ≺ a with an ≺ a

(n)
2n−1.

Use the interpolation property to construct a new chain

0 ≺ a
(n+1)
1 ≺ · · · ≺ a

(n+1)
2n+1−1 ≺ a

such that

0 ≺ a
(n+1)
1 ≺ a

(n)
1 , a

(n)
i ≺ a

(n+1)
2i+1 ≺ a

(n)
i+1, a

(n+1)
2i = a

(n)
i , a

(n)
2n−1 ≺ a

(n+1)
2n+1−1 ≺ a,

and such that moreover an+1 ≺ a
(n+1)
2n+1−1. This latter condition will ensure that the

set of elements thus constructed is cofinal in a≺.
The index set I := {(n, i) | 1 ≤ n, 1 ≤ i ≤ 2n − 1} can be totally ordered by

setting (n, i) ≤ (m, j) provided i2−n ≤ j2−m. It now follows from the construction

above that a
(n)
i ≺ a

(m)
j whenever (n, i) ≤ (m, j).

The set I is order-isomorphic to the dyadic rationals in (0, 1). In fact, I is a
countably infinite, totally ordered, dense set with no minimal nor maximal element.
(Here, dense means that whenever x < y in I there exists z ∈ I such that x < z <
y.) By a classical result of G. Cantor (see, for example, [Roi90, Theorem 27]), there
is only one such set, up to order-isomorphism. We can therefore choose an order-

preserving bijection ψ : I → (0, 1)∩Q and, setting aλ = a
(n)
i whenever ψ((n, i)) = λ,

the desired conclusion follows. �

Proposition 2.10. Let S be a Cu-semigroup, and let a ∈ S. Then, there exists
a family (aλ)λ∈(0,1] in S with a1 = a; such that aλ′ ≪ aλ whenever λ′, λ ∈ (0, 1]
satisfy λ′ < λ; and such that aλ = supλ′<λ aλ′ for every λ ∈ (0, 1].

Proof. Consider S equipped with the transitive relation ≪. Then (O2) ensures
that condition (*) in Lemma 2.9 is fulfilled with ≪ in place of ≺. Hence, given
a ∈ S we can apply Lemma 2.9 to choose a ≪-increasing chain (āλ)λ∈(0,1)∩Q with
a = supλ āλ. For each λ ∈ (0, 1], define aλ := sup{āλ′ : λ′ < λ}. It is now easy to
see that the chain (aλ)λ∈(0,1] satisfies the conclusion. �

Let S be a Cu-semigroup, and let a be an element in S. We say that a is soft
if for every a′ ∈ S with a′ ≪ a we have a′ <s a, that is, there exists k ∈ N with
(k + 1)a′ ≤ ka; see [APT14, Definition 5.3.1]. We denote the set of soft elements
in S by Ssoft. Further, we set S×

soft := Ssoft \ {0}.
The following result will be used later (in Section 7).

Lemma 2.11. Let S and T be Cu-semigroups, let ϕ : S → T be a generalized
Cu-morphism, and let a ∈ S be a soft element. Then ϕ(a) is soft.
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Proof. To verify that ϕ(a) is soft, let x ∈ T satisfy x ≪ ϕ(a). Using that ϕ
preserves suprema of increasing sequences, we can choose a′ ∈ S with a′ ≪ a and
x ≤ ϕ(a′). (Indeed, applying (O2) in S, chose a ≪-increasing sequence (an)n in S
with supremum a. Then ϕ(a) = supn ϕ(an), whence there is n with x ≤ ϕ(an).)
Since a is soft, we can chose k ∈ N such that (k + 1)a′ ≤ ka. Then

(k + 1)x ≤ (k + 1)ϕ(a′) = ϕ((k + 1)a′) ≤ ϕ(ka) = kϕ(a),

which shows that x <s ϕ(a), as desired. �

2.12. Given a C∗-algebra A, it is known that Cu(A) satisfies two additional ax-
ioms besides (O1)–(O4). The first one is usually referred to the axiom of almost
algebraic order or axiom (O5), first considered in [RW10, Lemma 7.1] (and later
also in [ORT11, Corollary 4.16] and [Rob13, 2.1]). The version we use here is a
strengthening of the original formulation, introduced in [APT14, Definition 4.1]:

We say that a Cu-semigroup S satisfies (O5) if, for every a′, a, b′, b, c ∈ S that
satisfy a+ b ≤ c, a′ ≪ a, b′ ≪ b, there is x ∈ S with a′ + x ≤ c ≤ a+ x and b′ ≤ x.

The second axiom is known as the axiom of almost Riesz decomposition or axiom
(O6), and was introduced in [Rob13]:

We say that a Cu-semigroup S satisfies (O6) if, for every a′, a, b, c ∈ S satisfying
a′ ≪ a ≤ b+ c, there exist b′, c′ ∈ S such that a′ ≤ b′ + c′, b′ ≤ a, b and c′ ≤ a, c.

2.2. Closed, monoidal categories. In this subsection, we recall the basic notions
from the theory of closed, monoidal categories. For details we refer to [Kel05] and
[Mac71]. See also [APT14, Appendix A].

2.13. Recall that a monoidal category V consists of: a category V0 (which we
assume is locally small), a bifunctor ⊗ : V0 × V0 → V0 (covariant in each variable)
and a unit object I in V0 such that, whenever X,Y, Z are objects in V0, there are
natural isomorphisms

(X ⊗ Y )⊗ Z ∼= X ⊗ (Y ⊗ Z), and X ⊗ I ∼= X, and I ⊗X ∼= X,

that are subject to certain coherence axioms. An object or morphism in V means
an object or morphism in V0, respectively. In concrete examples, such as the cate-
gories PoM and Cu, we will use the same notation for a monoidal category and its
underlying category.

A monoidal category V is called symmetric provided that for each pair of objects
X and Y there is a natural isomorphism X ⊗ Y ∼= Y ⊗X .

In many concrete examples of monoidal categories, the tensor product of two
objects X and Y is the object X ⊗ Y (unique up to natural isomorphism) that
linearizes bilinear maps from X ×Y . This is formalized by considering a functorial
association of bimorphisms Bimor(X × Y, Z) (covariant in Z, and contravariant in
X and Y ) such that X⊗Y represents the functor Bimor(X×Y, ), that is, for each
Z there is a natural bijection

Bimor
(
X × Y, Z

) ∼= Mor
(
X ⊗ Y, Z

)
.

One instance of this is the monoidal structure in the category Cu of abstract
Cuntz semigroups, as introduced in [APT14]. We recall details in Subsection 2.3.

Another example is the category PoM of positively ordered monoids. There is a
natural notion of bimorphisms in PoM, and the tensor product in PoM has the cor-
responding universal property of linearizing such bimorphisms; see Paragraph 2.1.

2.14. A monoidal category V is said to be closed provided that for each object Y ,
the functor −⊗Y : V0 → V0 has a right adjoint, that we will denote by JY,−K. Thus,
in a closed monoidal category, for all objects X,Y, Z, there is a natural bijection

V0

(
X ⊗ Y, Z

) ∼= V0

(
X, JY, ZK

)
,
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where V0( , ) denotes the morphisms between two objects X and Y .
Let V be a monoidal category with unit object I. An enriched category C over

V consists of: a collection of objects in C; an object C(X,Y ) in V , for each pair
of objects X and Y in C (playing the role of the morphisms in C from X to Y );
a V-morphism jX : I → C(X,X), called the identity on X , for each object X in C
(playing the role of the identity morphism on X); and for each triple X , Y and Z
of objects in C, a V-morphism

C(Y, Z)⊗ C(X,Y ) → C(X,Z),
that plays the role of a composition law and is subject to certain coherence axioms;
see [Kel05, Section 1.2] for details.

It follows from general category theory that every closed symmetric monoidal
category V can be enriched over itself. Let us recall some details. Given two objects
X and Y in V , the object JX,Y K in V plays the role of the morphisms from X to
Y . Given an object X , the identity on X (for the enrichment) is defined as the
V-morphism jX : I → JX,XK that corresponds to the ‘usual’ identity morphism
idX ∈ V0

(
X,X

)
under the following natural bijections

V0

(
I, JX,XK

) ∼= V0

(
I ⊗X,X

) ∼= V0

(
X,X

)
.

It is easiest to construct the composition map by using the evaluation maps.
Given objects X and Y , the evaluation (or counit) map is defined as the V-
morphism eYX : JX,Y K ⊗ X → Y that corresponds to the identity morphism in
V0(JX,Y K, JX,Y K) under the natural bijection

V0

(
JX,Y K ⊗X,Y

) ∼= V0

(
JX,Y K, JX,Y K

)
.

Then, given objects X , Y and Z, the composition

JY, ZK ⊗ JX,Y K → JX,ZK
is defined as the V-morphism that corresponds to the composition

JY, ZK ⊗ JX,Y K ⊗X
idJY,ZK ⊗ eYX−−−−−−−−→ JY, ZK ⊗ Z

eZY−−→ Z

under the natural bijection

V0

(
JY, ZK ⊗ JX,Y K, JX,ZK

) ∼= V0

(
JY, ZK ⊗ JX,Y K ⊗X,Z

)
.

The natural question of whether the monoidal category Cu is closed was left open
in [APT14, Problem 2]. One of the objectives of this paper is to show that this is
indeed the case by applying the τ -construction that will be developed in Section 3
to a suitable semigroup of morphisms in the category Cu; see Definition 5.3 and
Theorem 5.11.

2.3. Tensor products in Cu. In this subsection we recall the construction of
tensor products of Cu-semigroups as introduced in [APT14]. We first recall the
notion of Cu-bimorphisms.

Definition 2.15 ([APT14, Definition 6.3.1]). Let S, T and P be Cu-semigroups,
and let ϕ : S × T → P be a PoM-bimorphism. We say that ϕ is a Cu-bimorphism
if it satisfies the following conditions:

(1) We have that supk ϕ(ak, bk) = ϕ(supk ak, supk bk), for every increasing se-
quences (ak)k in S and (bk)k in T .

(2) If a′, a ∈ S and b′, b ∈ T satisfy a′ ≪ a and b′ ≪ b, then ϕ(a′, b′) ≪ ϕ(a, b).

We denote the set of Cu-bimorphisms by BiCu(S × T,R).
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Given Cu-semigroups S, T and P , we equip BiCu(S×T,R) with pointwise order
and addition, giving it the structure of a positively ordered monoid. Similarly,
we consider the set of Cu-morphisms between two Cu-semigroups as a positively
ordered monoid with the pointwise order and addition.

Theorem 2.16 ([APT14, Theorem 6.3.3]). Let S and T be Cu-semigroups. Then
there exists a Cu-semigroup S ⊗ T and a Cu-bimorphism ω : S × T → S ⊗ T such
that for every Cu-semigroup P the following universal properties hold:

(1) For every Cu-bimorphism ϕ : S × T → P there exists a (unique) Cu-
morphism ϕ̃ : S ⊗ T → P such that ϕ = ϕ̃ ◦ ω.

(2) If α1, α2 : S ⊗ T → P are Cu-morphisms, then α1 ≤ α2 if and only if
α1 ◦ ω ≤ α2 ◦ ω.

Thus, for every Cu-semigroup P , the assignment that sends a Cu-morphism α : S⊗
T → P to the Cu-bimorphism α ◦ω : S×T → P defines a natural bijection between
the following (bi)morphism sets

Cu
(
S ⊗ T, P

) ∼= BiCu
(
S × T, P

)
,

Moreover, this bijection respects the structure of the (bi)morphism sets as positively
ordered monoids.

2.17. Let S and T be Cu-semigroups, and consider the universal Cu-bimorphism
ω : S×T → S⊗T from Theorem 2.16. Given s ∈ S and t ∈ T , we set s⊗t := ω(s, t).
We call s⊗ t a simple tensor.

The tensor product in Cu is functorial in each variable: If ϕ1 : S1 → T1 and
ϕ2 : S2 → T2 are Cu-morphisms, then there is a unique Cu-morphism ϕ1⊗ϕ2 : S1⊗
S2 → T1⊗T2 with the property that (ϕ1⊗ϕ2)(a1⊗a2) = ϕ1(a1)⊗ϕ2(a2) for every
a1 ∈ S1 and a2 ∈ S2.

Thus, the tensor product in Cu defines a bifunctor ⊗ : Cu × Cu → Cu. The
Cu-semigroup N = {0, 1, 2, . . . ,∞} (with usual addition and order) is a unit object,
that is, for every Cu-semigroup S there are canonical isomorphisms S ⊗ N ∼= S
and N ⊗ S ∼= S. Further, for every Cu-semigroups S, T and P , there are natural
isomorphisms

S ⊗ (T ⊗ P ) ∼= (S ⊗ T )⊗ P and S ⊗ T ∼= T ⊗ S.

It follows that Cu is a symmetric, monoidal category; see also [APT14, 6.3.7].

3. The Path Construction

In this section we introduce a functorial construction from a category of monoids
with a transitive relation to the category Cu. This construction, when restricted
to the category Q introduced in Section 4 (a category that contains Cu) is a core-
flection for the natural inclusion from Cu.

Definition 3.1. A P-semigroup is a pair (S,≺), where S is a commutative monoid
and where ≺ is a transitive relation on S, such that:

(1) We have 0 ≺ a for all a ∈ S.
(2) If a1, a2, b1, b2 ∈ S satisfy a1 ≺ b1 and a2 ≺ b2, then a1 + a2 ≺ b1 + b2.

We often supress the reference to the relation and denote a P-semigroup (S,≺)
simply by S.

A P-morphism is a monoid morphism that preserves the relation. Given P-
semigroups (S,≺) and (T,≺), we denote the collection of all P-morphisms by
P((S,≺), (T,≺)), or simply by P(S, T ). We let P be the category whose objects
are P-semigroups and whose morphisms are P-morphisms.
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Remark 3.2. Conditions (1) and (2) of Definition 3.1 are the same as the condi-
tions from Definition 2.2 for an auxiliary relation to be additive.

Definition 3.3. Let I = (I,≺) be a set with an upward directed transitive relation
≺. Let S = (S,≺) be a P-semigroup. An I-path (or simply a path) in S is a map
f : I → S such that f(λ′) ≺ f(λ) whenever λ′, λ ∈ I satisfy λ′ ≺ λ. We set

P (I, S) :=
{
f : I → S such that f is a path in S

}
.

Given two paths f and g, we define their sum f + g by setting (f + g)(λ) :=
f(λ) + g(λ) for all λ ∈ I. Let 0 ∈ P (I, S) denote the path that satisfies 0(λ) = 0
for all λ ∈ I.

We define a binary relation - on P (I, S) by setting f - g for two paths f and
g if and only if for every λ ∈ I there exists µ ∈ I such that f(λ) ≺ g(µ). Finally
we antisymmetrize the relation - by setting f ∼ g if and only if f - g and g - f .

Given s ∈ S and f ∈ P (I, S), we write s ≺ f if s ≺ f(λ) for all λ ∈ I; and we
write f ≺ s provided f(λ) ≺ s for all λ ∈ I.

The proof of the following result is straightforward and therefore omitted.

Lemma 3.4. Let I be a set with an upward directed transitive relation, and let S
be a P-semigroup. Then the addition and the zero element defined in Definition 3.3
give P (I, S) the structure of a commutative monoid. Moreover, the relation - on
P (I, S) is transitive, reflexive and satisfies:

(1) For every f ∈ P (I, S) we have 0 - f .
(2) If f1, f2, g1, g2 ∈ P (I, S) satisfy f1 - g1 and f2 - g2, then f1+f2 - g1+g2.

Further, ∼ is an equivalence relation on P (I, S).

Definition 3.5. Let I be a set with an upward directed transitive relation, and let S
be a P-semigroup. Let ∼ be the equivalence relation on P (I, S) from Definition 3.3.
We define

τI(S) := P (I, S)/∼.

Given a path f in S, its equivalence class in τI(S) is denoted by [f ].
We define 0 ∈ τI(S) as the equivalence class of the zero-path. We define + and

≤ on τI(S) by setting [f ] + [g] := [f + g], and by setting [f ] ≤ [g] provided f - g.

The following results follows immediately from Lemma 3.4.

Proposition 3.6. Let I be a set with an upward directed transitive relation, and
let S be a P-semigroup. Then the addition, the zero element, and the order defined
in Definition 3.5 give τI(S) the structure of a positively ordered monoid.

Remarks 3.7. (1) We call the construction of τI(S) the τ-construction or path
construction. We call I the path type.

(2) Given a P-semigroup S, the path construction τI(S) depends heavily on the
choice of I. For instance, using the most simple case I = ({0},≤), we obtain

τ{0}(S) ≃
{
a ∈ S : a ≺ a

}
.

For I = (N, <), one can show that τI(S) is the (sequential) round ideal completion
of S as considered for instance in [APT14, Proposition 3.1.6].

We will not pursue this general constructions further. Rather, motivated by the
results in Lemma 2.9 and Proposition 2.10, we will focus on the concrete case where
the path type is taken to be

(
Q ∩ (0, 1), <

)
.

Notation 3.8. We set IQ :=
(
Q ∩ (0, 1), <

)
. Given a P-semigroup S, we denote

P (IQ, S) and τIQ(S) by P (S) and τ(S), respectively. If we want to stress the
auxiliary relation on S, we also write P (S,≺) and τ(S,≺).

Thinking of IQ as an ordered index set, we will often denote a path in S as an
indexed family (aλ)λ∈IQ .
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Given a P-semigroup S, we show in Theorem 3.15 that τ(S) is a Cu-semigroup
when equipped with the order and addition in Definition 3.5. We split the proof
into several lemmas.

Recall from Definition 3.3 that, given paths f and g in S, and given λ ∈ IQ, we
write f(λ) ≺ g (respectively, f ≺ g(λ)) if f(λ) ≺ g(µ) (respectively, f(µ) ≺ g(λ))
for every µ ∈ IQ.

Lemma 3.9. Let S = (S,≺) be a P-semigroup, let f be a path in S, and let λ′, λ ∈
IQ satisfy λ′ < λ. Then there exists a path h in S such that f(λ′) ≺ h ≺ f(λ).

Proof. Define h : IQ → S by

h(γ) := f
(
γλ+ (1− γ)λ′

)
,

for γ ∈ IQ. Then h is a path satisfying f(λ′) ≺ h ≺ f(λ), as desired. �

Lemma 3.10. Let S = (S,≺) be a P-semigroup. Given a sequence (fn)n≥1 of
paths in S, and given a sequence (an)n≥1 in S such that

0 ≺ f1 ≺ a1 ≺ f2 ≺ a2 ≺ f3 ≺ a3 · · · ,
there exists a path h in S such that h( n

n+1 ) = an for all n ≥ 1.

Proof. Define h : IQ → S as follows:

h(λ) :=

{
fn(λ), if λ ∈ (n−1

n , n
n+1 )

an, if λ = n
n+1

.

It is easy to see that h is a path and that h( n
n+1 ) = an, as desired. �

Lemma 3.11. Let S be a P-semigroup, and let ([fn])n≥1 be an increasing sequence
in τ(S). Then there exists a strictly increasing sequence (λm)m≥1 in IQ and a path
f in S such that the following conditions hold:

(1) We have supm λm = 1.
(2) We have fn(λm) ≺ fl(λl), whenever n,m < l.
(3) We have f( n

n+1 ) = fn(λn) for all n ≥ 1.

Moreover, if f is a path in S for which there exists a strictly increasing sequence
(λm)m≥1 in IQ satisfying conditions (1), (2) and (3) above, then [f ] = supn[fn] in
τ(S). In particular, τ(S) satisfies (O1).

Proof. The proof is divided in two parts.
We inductively find λm ∈ IQ and hm ∈ P (S) for m ≥ 1 such that:

(a) λm−1 < λm and m
m+1 ≤ λm, for all m; and

(b) fn(λm−1) ≺ hm ≺ fm(λm), for all n < m.

Set λ1 := 1
2 , and define the path h1 by h1(λ) = f1(

λ
2 ). Note that 0 ≺ h1 ≺ f1(λ1).

Assume we have chosen λn and hn for all n < m. For each k = 1, . . . ,m − 1,
using that fk - fm, we choose λm,k ∈ IQ such that fk(λm−1) ≺ fm(λm,k). Let
λ′m be the maximum of λm,1, . . . , λm,m−1,

m
m+1 . Choose λm ∈ IQ with λ′m < λm.

Using Lemma 3.9, we choose a path hm with fm(λ′m) ≺ hm ≺ fm(λm).
Note that in particular we have the following relations:

0 ≺ h1 ≺ f1(λ1) ≺ h2 ≺ f2(λ2) ≺ h3 ≺ f3(λ3) ≺ h4 · · ·
Applying Lemma 3.10, we choose f ∈ P (S) with f( n

n+1 ) = fn(λn) for all n ≥ 1.

Then it is easy to check that the sequence (λm)m and the path f satisfy condi-
tions (1), (2) and (3).

For the second part of the proof, let (λm)m≥1 be a strictly increasing sequence
in IQ, and let f ∈ P (S) satisfy (1), (2) and (3). We show that [f ] = supn[fn] in
τ(S).
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We first show that [fn] ≤ [f ] for each n ≥ 1. Fix n ≥ 1. To verify that fn - f ,
let λ be an element in IQ. Use (1) to choose m with n < m and λ < λm. Using that
fn is a path at the first step, using condition (2) at the second step, and using (3)
at the last step, we obtain that

fn(λ) ≺ fn(λm) ≺ fm+1(λm+1) = f(m+1
m+2 ).

Hence fn - f , as desired.
Conversely, let g ∈ P (S) satisfy fn - g for all n ≥ 1. To show that f - g, take

λ ∈ IQ. Choose m such that λ < m
m+1 . Since fm - g, there exists µ ∈ IQ such that

fm(λm) ≺ g(µ). Using this at the last step, using that f is a path at the first step,
and using condition (3) at the second step, we get

f(λ) ≺ f( m
m+1) = fm(λm) ≺ g(µ).

This shows that f - g, as desired. �
Definition 3.12. Let S be a P-semigroup, let f ∈ P (S), and let ε ∈ IQ. We define
fε : IQ → S by

fε(λ) :=

{
f(λ− ε), if λ > ε

0, otherwise
.

We will refer to fε as the ε-cut down of f .

Remark 3.13. It is easy to see that fε is a path in S. If t is a real number,
we write t+ for max{0, t}. Then, under the convention that f(0) = 0, we have
fε(λ) = f((λ− ε)+) for all λ ∈ IQ.

Lemma 3.14. Let S be a P-semigroup, and let f ∈ P (S). Then [fε] ≪ [fε′ ] in
τ(S), for every ε′, ε ∈ IQ with ε′ < ε. Moreover, we have [f ] = supε∈IQ [fε] in τ(S).

In particular, τ(S) satisfies (O2).

Proof. It is routine to check that [f ] = supε[fε]. Given ε′, ε ∈ IQ with ε′ < ε, note
that fε = (fε′)ε−ε′ . Thus it is enough to show that [fε] ≪ [f ] for every ε > 0.

Fix ε > 0. To show that [fε] ≪ [f ], let ([gn])n be an increasing sequence in
τ(S) with [f ] ≤ supn[gn]. By Lemma 3.11, there exists a path h ∈ P (S) and an
increasing sequence (λn)n in IQ such that [h] = supn[gn], and such that h( m

m+1 ) =

gm(λm) for all m ≥ 1.
Choose m0 ≥ 1 with 1

m0
< ε. Since f - h, there exists µ ∈ IQ satisfying

f(1− 1
m0

) ≺ h(µ). Choose m1 ≥ 1 such that µ < m1

m1+1 . Let us show that fε - gm1 .

For every λ ∈ IQ, we have λ− ε < 1− 1
m0

. Therefore, using that f and h are paths

at the second and fourth step, respectively, and using that f(1− 1
m0

) ≺ h(µ) at the
third step, we obtain that

fε(λ) = f
(
(λ− ε)+

)
≺ f(1− 1

m0
) ≺ h(µ) ≺ h( m1

m1+1 ) = gm1(λm1),

for every λ ∈ IQ. This proves that [fε] ≤ [gm1 ], as desired. �
Theorem 3.15. Let S be a P-semigroup. Then τ(S) is a Cu-semigroup.

Proof. By Proposition 3.6, Lemma 3.11 and Lemma 3.14, τ(S) is a positively or-
dered monoid that satisfies axioms (O1) and (O2). It remains to show that τ(S)
satisfies (O3) and (O4).

To verify (O3), let [f ′], [f ], [g′], [g] ∈ τ(S) satisfy [f ′] ≪ [f ] and [g′] ≪ [g]. Using
that [f ] = supε[fε], we can choose ε1 ∈ IQ such that [f ′] ≤ [fε1 ]. Similarly we
choose ε2 for [g]. Set ε := min{ε1, ε2}. We then have [f ′] ≤ [fε] and [g′] ≤ [gε].
Using that fε+gε = (f +g)ε at the third step, and using Lemma 3.14 at the fourth
step, we deduce that

[f ′] + [g′] ≤ [fε] + [gε] = [fε + gε] = [(f + g)ε] ≪ [f + g] = [f ] + [g],
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which implies that [f ′] + [g′] ≪ [f ] + [g], as desired.
To prove (O4), let ([fn])n and ([gn])n be two increasing sequences in τ(S). It

is clear that supn([fn] + [gn]) ≤ supn[fn] + supn[gn]. Let us prove the converse
inequality.

By Lemma 3.11, there exist f, g ∈ P (S) and increasing sequences (λm)m and
(µm)m in IQ such that [f ] = supn[fn] and [g] = supn[gn], and such that f( m

m+1 ) =

fm(λm) and g( m
m+1 ) = gm(µm) for all m ∈ N. Given λ ∈ IQ, choose m ∈ N with

λ < m
m+1 . Choose λ̃ ∈ IQ such that λm, µm < λ̃. We deduce that

f(λ) + g(λ) ≺ (f + g)( m
m+1 ) = fm(λm) + gm(µm) ≺ fm(λ̃) + gm(λ̃).

It follows that [f ] + [g] ≤ supn([fn] + [gn]), as desired. This verifies (O4) and
completes the proof. �

The following result provides a useful criterion for compact containment in τ(S).

Lemma 3.16. Let S be a P-semigroup, and let f ′, f be elements in P (S). Then
[f ′] ≪ [f ] in τ(S) if and only if there exists µ ∈ IQ such that f ′ ≺ f(µ).

Proof. Assume that [f ′] ≪ [f ]. Since [f ] = supε[fε], there exists δ ∈ IQ such that
[f ′] ≤ [fδ]. Let us show that µ = 1−δ has the desired properties, that is, f ′ ≺ f(µ).
Given λ ∈ IQ, there is µ′ ∈ IQ with f ′(λ) ≺ fδ(µ

′). Using that (µ′−δ)+ < 1−δ = µ
at the last step, we deduce that

f ′(λ) ≺ fδ(µ
′) = f

(
(µ′ − δ)+

)
≺ f(µ),

as desired.
Conversely, suppose that there exists µ ∈ IQ with f ′ ≺ f(µ). Then, for every µ′

with µ < µ′ < 1 we have [f ′] ≤ [f1−µ′ ] ≪ [f ], as desired. �

Lemma 3.17. Let S and T be P-semigroups, and let α : S → T be a P-morphism.
Then, for every f ∈ P (S), the map α ◦ f : IQ → T belongs to P (T ). Moreover, the
induced map τ(α) : τ(S) → τ(T ) given by

τ(α)([f ]) := [α ◦ f ],
for f ∈ P (S), is a well-defined Cu-morphism.

Proof. Given f ∈ P (S), it is easy to see that α◦f belongs to P (T ). Moreover, given
f, g ∈ P (S) with f - g we have α ◦ f - α ◦ g. This shows that τ(α) is well-defined
and order-preserving. It is also easy to see that τ(α) preserves addition and the
the zero element.

To show that τ(α) preserves the way-below relation, let f ′, f ∈ P (S) satisfy
[f ′] ≪ [f ] in τ(S). By Lemma 3.16, there is µ ∈ IQ with f ′ ≺ f(µ). Since α is a
P-morphism, we obtain that α ◦ f ′ ≺ (α ◦ f)(µ). A second usage of Lemma 3.16
implies that [α ◦ f ′] ≪ [α ◦ f ], as desired.

To show that τ(α) preserves suprema of increasing sequences, let ([fn])n be such
a sequence in τ(S). By Lemma 3.11, there exist f ∈ P (S) and a strictly increasing
sequence (λm)m in IQ such that the following conditions are satisfied:

(1) We have supm λm = 1.
(2) We have fn(λm) ≺ fl(λl), whenever n,m < l.
(3) We have f( n

n+1 ) = fn(λn) for all n ≥ 1.

Further, for every f ∈ P (S) satisfying these conditions, we have [f ] = supn[fn].
To show that [α◦f ] = supn[α◦fn], we verify that the path α◦f and the sequence

(λm)m satisfy the analogs of the above conditions with respect to the sequence
(α ◦ fn)n. Condition (1) is unchanged. To verify the analog of condition (2), let
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n,m < l. Since α is a P-morphism, we have (α ◦ fn)(λm) ≺ (α ◦ fl)(λl), as desired.
The analog of (3) holds, since

(α ◦ f)( n
n+1 ) = (α ◦ fn)(λn),

for every n ≥ 1. Thus, the path α ◦ f satisfies conditions (1), (2) and (3) for the
sequence (α◦fn)n, which implies that [α◦f ] = supn[α◦fn]. Using this in the third
step, we deduce that

τ(α)(sup
n
[fn]) = τ(α)([f ]) = [α ◦ f ] = sup

n
[α ◦ fn] = sup

n
τ(α)([fn]),

as desired. Altogether, we have that τ(α) is a Cu-morphism. �

Proposition 3.18. The τ-construction defines a covariant functor τ : P → Cu by
sending a P-semigroup S to the Cu-semigroup τ(S) (see Theorem 3.15), and by
sending a P-morphism α : S → T to the Cu-morphism τ(α) : τ(S) → τ(T ) (see
Lemma 3.17).

Proof. It follow easily from the construction that τ(idS) = idτ(S) for every P-
semigroup S. It is also straightforward to check that τ(α ◦ β) = τ(α) ◦ τ(β) for
every pair of composable P-morphisms α and β. This shows that the τ -construction
defines a covariant functor, as claimed. �

Although the τ -construction is a useful tool to derive Cu-semigroups from such
simple objects as P-semigroups, the next example shows that without additional
care the τ -construction may just produce a trivial object.

Example 3.19. Consider N = {0, 1, 2 . . .} with the usual structure as a monoid.
We define ≺ on N by setting k ≺ l if k < l or k = l = 0. It is easy to check that
(N,≺) is a P-semigroup, and that the only path in P (N,≺) is the constant path
with value 0. It follows that τ(N,≺) ∼= {0}.

4. The category Q
The category P introduced in the previous section, though useful in certain

situations to construct Cu-semigroups from semigroups with very little structure,
is too general to provide a nice categorical relation from P to Cu. In this section we
introduce a subcategory of P , which we denote by Q, where Cu can be embedded
as a full subcategory, and in such a way that the restriction of the τ -construction
from Section 3 defines a coreflection Q → Cu; see Theorem 4.12. In Subsection 4.2,
we introduce the notion of internal-hom in the category Q, which will be needed
for the corresponding construction in Cu.

4.1. The coreflection τ : Q → Cu. Recall the definition of an additive auxiliary
relation from Definition 2.2.

Definition 4.1. A Q-semigroup is a positively ordered monoid S together with an
additive, auxiliary relation ≺ on S such that the following conditions are satisfied:

(O1) Every increasing sequence (an)n in S has a supremum supn an in S.
(O4) If (an)n and (bn)n are increasing sequences in S, then supn(an + bn) =

supn an + supn bn.

We often drop the reference to the auxiliary relation and simply call S a Q-
semigroup.

Given Q-semigroups S and T , a Q-morphism from S to T is a map S → T that
preserves addition, order, the zero element, the auxiliary relation and suprema of
increasing sequences. We denote the set of Q-morphisms by Q(S, T ). A generalized
Q-morphism is a map that preserves addition, order, the zero element and suprema
of increasing sequences. We denote the set of generalized Q-morphisms by Q[S, T ].
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We let Q be the category whose objects are Q-semigroups and whose morphisms
are Q-morphisms.

Remarks 4.2. (1) Axioms (O1) and (O4) in Definition 4.1 are the same as in
Definition 2.4. Note that a generalized Q-morphism is a Q-morphism if and only if
it preserves the auxiliary relation. Moreover, generalizedQ-morphisms are precisely
the Scott continuous P-morphisms. (See for example [GHK+03, Proposition II-2.1,
p.157].)

(2) Let S, T be Q-semigroups. The sets Q[S, T ] and Q(S, T ) of (generalized)
Q-morphism are positively ordered monoids, when equipped with the pointwise
addition and order. It is easy to see that Q[S, T ] satisfies (O1) and (O4). In
Definition 4.17 we will define an auxiliary relation on Q[S, T ] giving it the structure
of a Q-semigroup; see Proposition 4.18.

4.3. We define a functor ι : Cu → Q as follows: Given a Cu-semigroup S, the
(sequential) way-below relation ≪ is an additive auxiliary relation on S. It follows
that (S,≪) is a Q-semigroup, and we let ι map S to (S,≪).

Further, given Cu-semigroups S and T , a map ϕ : S → T is a Cu-morphism if
and only if ϕ : (S,≪) → (T,≪) is a Q-morphism. We let ι map a Cu-morphism
to itself, considered as a Q-morphism. It is easy to see that this defines a functor
from Cu to Q.

From our considerations, we clearly have:

Proposition 4.4. The functor ι : Cu → Q from Paragraph 4.3 embeds Cu as a full
subcategory of Q.

Every Q-semigroup can be considered as a P-semigroup by forgetting its partial
order. Therefore, if S is a Q-semigroup with auxiliary relation ≺, then a path in S
is a map f : IQ → S such that f(λ′) ≺ f(λ) whenever λ′, λ ∈ IQ satisfy λ′ < λ; see
Definition 3.3 and Notation 3.8. Recall that P (S) denotes the set of paths in S.

Definition 4.5. Let S be a Q-semigroup, and let f ∈ P (S). We define the endpoint
of f , denoted by f(1), as f(1) := supλ∈IQ f(λ).

Proposition 4.6. Let S be a Q-semigroup, and let f, g ∈ P (S). Then:

(1) We have (f + g)(1) = f(1) + g(1) in S.
(2) If f - g, then f(1) ≤ g(1) in S.
(3) If [f ] ≪ [g] in τ(S), then f(1) ≺ g(1).
(4) If ([fn])n is an increasing sequence in τ(S) and [f ] = supn[fn], then f(1) =

supn fn(1) in S.

Proof. (1): This is a consequence of the fact that S satisfies (O4).
(2): Given λ ∈ IQ, using that f - g, there is µ ∈ IQ with f(λ) ≺ g(µ) ≤ g(1).

Taking the supremum over λ, we obtain that f(1) ≤ g(1).
(3): Assuming [f ] ≪ [g], we use Lemma 3.16 to choose µ ∈ IQ with f ≺ g(µ).

Then f(1) ≤ g(µ) ≺ g(1).
(4): Let ([fn])n be an increasing sequence in τ(S), and let [f ] = supn[fn]. By

(2), the endpoint of a path only depends on its equivalence class with respect to
the relation ∼ from Definition 3.3.

By Lemma 3.11, there are f ′ ∈ P (S) and an increasing sequence (λm)m in IQ
such that supm λm = 1 and [f ′] = supn[fn], and such that f ′( n

n+1 ) = fn(λn) for all

n ∈ N. Using that f ′ ∼ f at the first step, and using the above property of f ′ at
the fourth step we obtain that

f(1) = f ′(1) = sup
λ∈IQ

f ′(λ) = sup
n
f ′( n

n+1 ) = sup
n
fn(λn) ≤ sup

n
fn(1).
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For each n, we have fn - f and therefore fn(1) ≤ f(1) by (2). It follows that
supn fn(1) ≤ f(1), and therefore f(1) = supn fn(1), as desired. �

By Proposition 4.6, the endpoint of a path only depends on the equivalence class
in τ(S). Therefore, the following definition makes sense.

Definition 4.7. Let S be a Q-semigroup. We define a map ϕS : τ(S) → S by

ϕS([f ]) := f(1),

for all f ∈ P (S). We refer to ϕS as the endpoint map.

Proposition 4.8. Let S be a Q-semigroup. Then the endpoint map ϕS : τ(S) → S
is a well-defined Q-morphism (when considering τ(S) as a Q-morphism via the
inclusion functor ι from Paragraph 4.3.)

Moreover, the endpoint map is natural in the sense that α ◦ ϕS = ϕT ◦ τ(α) for
every Q-morphism α : S → T between Q-semigroups S and T . This means that the
following diagram commutes:

τ(S)
ϕS //

τ(α)

��

S

α

��
τ(T ) ϕT

// T

Proof. It follows directly from Proposition 4.6 that ϕS is a well-defined Q-mor-
phism. To show the commutativity of the diagram, let f ∈ P (S). Using that α
preserves suprema of increasing sequences at the second step, we deduce that

α (ϕS([f ])) = α

(
sup
λ∈IQ

f(λ)

)
= sup

λ∈IQ
α(f(λ)) = ϕT ([α ◦ f ]) = ϕT (τ(α)([f ])),

as desired. �
Remark 4.9. The naturality of the endpoint map as formulated in Proposition 4.8
means precisely that the Q-morphisms ϕS , for S ranging over the objects inQ, form
the components of a natural transformation from ι◦ τ to the identity functor on Q.

In general, the endpoint map is neither surjective nor injective; see Examples 4.13
and 4.14. We now show that ϕS is an order-isomorphism if (and only if) S is a
Cu-semigroup.

Proposition 4.10. Let S be a Cu-semigroup, considered as a Q-semigroup (S,≪).
Then the endpoint map ϕS : τ(S,≪) → S is an order-isomorphism.

Proof. We first prove that ϕS is an order-embedding. Let [f ], [g] ∈ τ(S,≪) satisfy
ϕS([f ]) ≤ ϕS([g]). Then, by definition, supµ f(µ) ≤ supµ g(µ). To show that f - g,

let λ ∈ IQ. Choose λ̃ ∈ IQ with λ < λ̃. We deduce that

f(λ) ≪ f(λ̃) ≤ sup
µ
f(µ) ≤ sup

µ
g(µ).

Therefore, there exists µ ∈ IQ such that f(λ) ≤ g(µ). Choose µ̃ ∈ IQ with µ < µ̃.
Then f(λ) ≪ g(µ̃). This implies that f - g and thus [f ] ≤ [g], as desired.

To show that ϕS is surjective, let s ∈ S. Choose a ≪-increasing chain (sλ)λ∈(0,1)

as in Proposition 2.10. In particular, we have s = supλ sλ, and sλ′ ≪ sλ whenever
λ′, λ ∈ IQ satisfy λ′ < λ. Thus, if we define f : IQ → S by f(λ) := sλ, for λ ∈ IQ,
then f belongs to P (S,≪). By construction, ϕS([f ]) = s, as desired.

�
Given Q-semigroups S and T , recall that we equip the set of Q-morphisms

Q(S, T ) with pointwise order and addition; see Remarks 4.2.
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Proposition 4.11. Let T be a Cu-semigroup, let S be a Q-semigroup, and let
ϕS : τ(S) → S be the endpoint map from Definition 4.7. Then:

(1) For every Q-morphism α : T → S there exists a Cu-morphism ᾱ : T → τ(S)
such that ϕS ◦ ᾱ = α.

(2) We have ϕS ◦β ≤ ϕS ◦γ if and only if β ≤ γ, for any pair of Cu-morphisms
β, γ : T → τ(S).

Statement (1) means that for every α one can find ᾱ making the following diagram
commute:

τ(S)
ϕS // S

T.

ᾱ

aa❉
❉
❉
❉

α

OO

Proof. To show (1), let α be given. Since T is a Cu-semigroup, it follows from
Proposition 4.10 that ϕT : τ(T,≪) → T is an order-isomorphism. Set ᾱ := τ(α) ◦
ϕ−1
T , which is clearly a Cu-morphism. By Proposition 4.8, we have ϕS ◦ τ(α) =
α ◦ ϕT . It follows that ϕS ◦ ᾱ = α. The maps are shown in the following diagram:

τ(S)
ϕS // S

τ(T,≪)

τ(α)

OO

ϕT

// T.

α

OO

ᾱ

VV

❩❯
❋

✸
✲

To show (2), let β, γ : T → τ(S) be Cu-morphisms. It is clear that β ≤ γ implies
that ϕS ◦ β ≤ ϕS ◦ γ. Thus let us assume that ϕS ◦ β ≤ ϕS ◦ γ.

To show that β ≤ γ, let t ∈ T . Using that T satisfies (O2), choose a ≪-increasing
sequence (tn)n in T with supremum t. Fix n, and choose paths fn, gn, g ∈ P (S)
with β(tn) = [fn], and γ(tn) = [gn], and γ(t) = [g]. Since γ preserves the way-
below relation, we have [gn] ≪ [g] in τ(S). By Lemma 3.16, we can choose µ ∈ IQ
such that gn(λ) ≺ g(µ) for all λ ∈ IQ. Passing to the supremum over λ, we obtain
that gn(1) ≤ g(µ). Using this at the last step, and using the assumption that
ϕS ◦ β ≤ ϕS ◦ γ at the second step, we deduce that

fn(λ) ≤ fn(1) = ϕS(β(tn)) ≤ ϕS(γ(tn)) = gn(1) ≤ g(µ),

for every λ ∈ IQ. By definition, we have that fn - g, and hence β(tn) ≤ γ(t).
Using that β preserves suprema of increasing sequences at the second step, and

using the above observation β(tn) ≤ γ(t) for each n at the last step, we deduce that

β(t) = β

(
sup
n
tn

)
= sup

n
β(tn) ≤ γ(t),

as desired. �

Theorem 4.12. The category Cu is a coreflective, full subcategory of Q; the
functor τ : Q → Cu is a right adjoint to the inclusion functor ι : Cu → Q from
Paragraph 4.3.

More precisely, let S be a Q-semigroup, let ϕS : τ(S) → S be the endpoint map
from Definition 4.7, and let T be a Cu-semigroup. Then the assignment that sends
a Cu-morphism β : T → τ(S) to the Q-morphism ϕS ◦ β defines a natural bijection
between the following morphism sets:

Cu
(
T, τ(S)

) ∼= Q(T, S).

Moreover, this bijection respects the structure of the bimoprhism sets as positively
ordered monoids.
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Proof. Let us denote the assignment from the statement by Φ: Cu(T, τ(S)) →
Q(T, S). Then Φ is well-defined since ϕS is a Q-morphism by Proposition 4.8.
Statement (1) in Proposition 4.11 means exactly that Φ is surjective. Further,
statement (2) in Proposition 4.11 shows that Φ is an order-embedding. Thus, Φ
is an order-isomorphism, and in particular bijective. This shows that τ is right
adjoint to ι, as desired. �

We now consider examples of Q-semigroups and their associated endpoint maps.
The first example is analogous to Example 3.19 and shows that the τ -construction
applied to Q-semigroups may be trivial.

In Example 4.14 we introduce two important Cu-semigroups that are obtained
by using the τ -construction. We denote these Cu-semigroups by M1 and M∞ since
they turn out to be the Cuntz semigroups of II1- and II∞-factors, respectively; see
Proposition 4.16. These are also examples where the endpoint map is not injective.

Example 4.13. In general, the endpoint map is not surjective. Consider for exam-
ple N = {0, 1, 2, . . . ,∞} with auxiliary relation ≺ given by k ≺ l if and only if k < l
or k = l = 0. As in Example 3.19, we obtain that the only path in (N,≺) is the
constant path with value 0. It follows that τ(N,≺) = {0}, and thus the endpoint
map of this example is clearly not surjective.

Example 4.14. Consider P := [0,∞], with its usual structure as a positively
ordered monoid. We define two relations ≺1 and ≺∞ on S as follows: given a, b ∈ S
we set a ≺1 b if and only if a < ∞ and a ≤ b; and we set a ≺∞ b if and only if
a ≤ b. It is easy to check that (P,≺1) and (P,≺∞) are Q-semigroups. We set

M1 := τ
(
P,≺1

)
, and M∞ := τ

(
P,≺∞

)
.

Let us compute the precise structure of M1 and M∞. For the most part, the
argument is the same in both cases, and we use ≺∗ to stand for either ≺1 ar ≺∞.
Recall that a path in P (P,≺∗) is a ≺∗-increasing map f : IQ → P. Given a path f ,
we let f(1) denote the endpoint, that is, f(1) = supλ∈IQ f(λ); see Definition 4.5.

Let f, g be elements in P (P,≺∗). If f - g, then f(1) ≤ g(1), by Proposition 4.6
(2). Conversely, if f(1) < g(1), then it is easy to deduce that f - g. However, if
f(1) = g(1) then we do not necessarily have f ∼ g. For example, the paths f and g
given by f(λ) = λ and g(λ) = 1 have the same endpoint but we do not have g - f .

It is clear though that the equivalence class of a path only depends on its defi-
nition in (1 − ε, 1) ∩ IQ, for some ε > 0. Therefore, all eventually constant paths
with the same endpoint are equivalent and they majorize any path with the same
endpoint. Furthermore, it is clear that two paths with equal endpoint which are
not eventually constant are in fact equivalent.

Thus, for every a ∈ (0,∞) there are exactly two equivalence classes of paths
with endpoint a: the classes [f ′

a] and [fa] with f
′
a and fa given by f ′

a(λ) = λa and
fa(λ) = a, for λ ∈ IQ.

The endpoints 0 and ∞ are particular: The only path with endpoint 0 is the
constant path f0 with value 0. So far, there was no difference between the case of
auxiliary relation ≺1 or ≺∞.

The only difference appears now for paths with endpoint ∞. There is no ≺1-
increasing path that is (eventually) constant with value ∞. Therefore, all paths in
P (P,≺1) with endpoint ∞ are equivalent to f ′

∞ given by f ′
∞(λ) = 1

1−λ . On the

other hand, P (P,≺∞) also contains the constant path f∞ with value ∞. We obtain
that

M1 =
{
[f0], [f

′
a], [fa], [f

′
∞] : a ∈ (0,∞)

}
, and M∞ =M1 ∪

{
[f∞]

}
.
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Thus, the only difference between M1 and M∞ is that M∞ contains an additional
infinite element. It is easy to see that the natural map M1 → M∞ is an additive
order-embedding. Therefore, it is enough to describe the order and addition in
M∞. We have [f0] ≤ [f ′

a] ≤ [fa] ≤ [f ′
∞] ≤ [f∞] for every a ∈ (0,∞). Further, it is

easy to see that for every a, b ∈ (0,∞) we have [f ′
a] ≤ [fb] if and only if a ≤ b; and

we have [fa] ≤ [f ′
b] if and only if a < b. We have [f ′

∞] < [f∞].
It is straightforward to check that the addition in M∞ is given by

[fa] + [fb] = [fa+b], and [f ′
a] + [fb] = [f ′

a] + [f ′
b] = [f ′

a+b],

for a ∈ [0,∞] and b ∈ [0,∞). We have that [f ′
∞] + [f∞] = [f∞].

Abusing notation, we use a′ and a to denote the classes of f ′
a and fa in M∞,

that is, we set a′ := [f ′
a] and a := [fa], for a ∈ (0,∞]. Further, we use 0 to denote

the classes of f0.
The compact elements in M1 are 0 and a for a ∈ (0,∞). The soft elements in

M1 are 0 and a′ for a ∈ (0,∞]. The additional element ∞ in M∞ is both soft and
compact.

The endpoint map M1 → P is not injective since it sends both [fa] and [f ′
a] to

a, for every a ∈ (0,∞). Analogously, the endpoint map M∞ → P is not injective
either.

Remark 4.15. The Cu-semigroups M1 and M∞ from Example 4.14 are massive
objects in the sense that they contain uncountably many compact elements and
are therefore not countably-based. (A Cu-semigroup S is countably-based if there
exists a countable subset B ⊆ S such that every element of S is the supremum of
an increasing sequence from B. Every such B must contain all compact elements
of S; see [APT14, Remarks 3.1.3].)

By [APT14, Proposition 3.2.3], the Cuntz semigroup of a separable C∗-algebra
is countably-based. This shows that M1 and M∞ can not be realized as Cuntz
semigroups of separable C∗-algebras.

Proposition 4.16. We have Cu(M) ∼= M1 for every II1-factor M ; and we have
Cu(N) ∼=M∞ for every II∞-factor N .

Proof. Let M be a II1-factor M , let τ : M+ → [0, 1] denote its unique tracial state,
and let τ̃ : (M ⊗ K)+ → [0,∞] denote the unique extension to a tracial weight
on the stabilization. Given projections p, q ∈ (M ⊗ K)+ we have p - q if and
only if τ̃ (p) ≤ τ̃(q). Moreover, for every t ∈ [0,∞), there exists a projection
p ∈ (M ⊗K)+ with τ̃ (p) = t. It follows that the Murray-von Neumann semigroup
V (M) is isomorphic to [0,∞), with the usual structure as a positively ordered
monoid.

Recall that an interval in a positively ordered monoid is a nonempty, upward
directed, order-hereditary subset. An interval is called countably-generated if it con-
tains a countable cofinal subset. By [ABP11, Theorem 6.4], the Cuntz semigroup of
a σ-unital C∗-algebraA with real rank zero can be computed as Cu(A) ∼= Λσ(V (A)),
the set of countably-generated intervals in V (A), with the natural addition and or-
der given by set inclusion. By [BP91, Proposition 1.3], every von Neumann algebra
has real rank zero.

It is easy to see that the (countably-generated) intervals of [0,∞) are given as:
I0 := {0}; I ′a := [0, a) and Ia := [0, a], for a ∈ (0,∞); and I ′∞ := [0,∞). We obtain
an order-isomorphism Λσ([0,∞)) ∼= M1 by mapping Ia to [fa], for a ∈ [0,∞), and
by mapping I ′a to [f ′

a], for a ∈ (0,∞]. Together, we obtain order-isomorphisms:

Cu(M) ∼= Λσ(V (M)) ∼= Λσ([0,∞)) ∼=M1.

Let N be a II∞-factor. The argument runs analogous to the II1-case, with the
difference that N contains infinite projections. One obtains that V (N) ∼= [0,∞]. It
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follows that
Cu(N) ∼= Λσ(V (N)) ∼= Λσ([0,∞]) ∼=M∞,

as desired. �

4.2. The internal hom in Q.

Definition 4.17. Let S and T be Q-semigroups. We define a binary relation
≺ on the set of generalized Q-morphisms Q[S, T ] by setting ϕ ≺ ψ if and only
ϕ(a′) ≺ ψ(a) for all a′, a ∈ S with a′ ≺ a.

Proposition 4.18. Let S and T be Q-semigroups. Then the relation ≺ on Q[S, T ],
as defined in Definition 4.17, is an auxiliary relation. Moreover, (Q[S, T ],≺) is a
Q-semigroup.

Proof. Since addition and order in Q[S, T ] are defined pointwise, it is easy to verify
that Q[S, T ] is a positively ordered monoid. Given an increasing sequence (ϕn)n in
Q[S, T ], let ϕ : S → T be the pointwise supremum, that is, ϕ(s) := supn ϕn(s), for
s ∈ S. Then clearly ϕ is a generalized Q-morphism and supn ϕn = ϕ in Q[S, T ].
Thus, Q[S, T ] satisfies (O1). It is also clear that taking suprema is compatible with
addition and hence Q[S, T ] also satisfies (O4).

Next, note that ≺ is an auxiliary relation on Q[S, T ]. To show that ≺ is additive,
let ϕ′, ϕ, ψ′, ψ ∈ Q[S, T ] satisfy ϕ′ ≺ ϕ and ψ′ ≺ ψ. Given s′, s ∈ S with s′ ≺ s, we
use that the auxiliary relation in T is additive at the second step to deduce that

(ϕ′ + ψ′)(s′) = ϕ′(s′) + ψ′(s′) ≺ ϕ(s) + ψ(s) = (ϕ+ ψ)(s).

Hence, ϕ′ + ψ′ ≺ ϕ+ ψ, as desired. Therefore, (Q[S, T ],≺) is a Q-semigroup. �

Next, we define bimorphisms in the category Q analogous to the definition of
Cu-bimorphisms; see Definition 2.15. Recall the definition of PoM-bimorphisms
from Paragraph 2.1.

Definition 4.19. Let S, T and P be Q-semigroups, and let ϕ : S × T → P be a
PoM-bimorphism. We say that ϕ is a Q-bimorphism if it satisfies the following
conditions:

(1) We have that supk ϕ(ak, bk) = ϕ(supk ak, supk bk), for every increasing se-
quences (ak)k in S and (bk)k in T .

(2) If a′, a ∈ S and b′, b ∈ T satisfy a′ ≺ a and b′ ≺ b, then ϕ(a′, b′) ≺ ϕ(a, b).

We denote the set of Q-bimorphisms by BiQ(S × T, P ).

Given Q-semigroups S, T and P , we equip BiQ(S × T, P ) with pointwise order
and addition, giving it the structure of a positively ordered monoid. Similarly, we
consider the set of Q-morphisms between two Q-semigroups as a positively ordered
monoid with the pointwise order and addition.

The proof of the following result follows straightforward from the definition of
Q-bimorphisms and is therefore omitted.

Lemma 4.20. Let S, T and P be Q-semigroups, and let ϕ : S × T → P be a Q-
bimorphism. For each a ∈ S, define ϕa : T → P by ϕa(b) = ϕ(a, b). Then ϕs

belongs to Q[T, P ]. Moreover, if a′, a ∈ S satisfy a′ ≺ a, then ϕa′ ≺ ϕa.

Notation 4.21. Let S, T and P be Q-semigroups, and let ϕ : S × T → P be
a Q-bimorphism. Using Lemma 4.20 we may define a map ϕ̃ : S → Q[T, P ] by
ϕ̃(a) = ϕa, for a ∈ S, which belongs to Q(S,Q[T, P ]).

Theorem 4.22. Let S, T and P be Q-semigroups. Then:

(1) For every Q-morphism α : S → Q[T, P ] there exists a Q-bimorphism ϕ : S×
T → P such that α = ϕ̃.
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(2) If ϕ, ψ : S × T → P are Q-bimorphisms, then ϕ ≤ ψ if and only if ϕ̃ ≤ ψ̃.

Thus, the assignment Φ that sends a Q-bimorphism ϕ : S × T → P to the
Q-morphism ϕ̃ : S → Q[T, P ] defines a natural bijection between the following
(bi)morphism sets:

BiQ
(
S × T, P

) ∼= Q
(
S,Q[T, P ]

)
.

Moreover, this bijection respects the structure of the (bi)moprhism sets as positively
ordered monoids.

Proof. To verify (1), let α : S → Q[T, P ] be a Q-morphism. Define ϕ : S×T → P by
ϕ(s, t) = α(s)(t). It is straightforward to check that ϕ is a Q-bimorphism satisfying
α = ϕ̃, as desired.

Statement (2) is also easily verified. It follows that Φ is an order-isomorphism,
and hence a bijection. It is also clear that Φ is additive and preserves the zero
element. �
Lemma 4.23. Let S1, S2 and T be Q-semigroups, and let α : S1 → S2 be a (general-
ized) Q-morphism. Then the map α∗ : Q[S2, T ] → Q[S1, T ] given by α∗(f) := f ◦α,
for f ∈ Q[S2, T ], is a (generalized) Q-morphism.

Analogously, given Q-semigroups S, T1 and T2, and given a (generalized) Q-
morphism β : T1 → T2, the map β∗ : Q[S, T1] → Q[S, T2] defined by β∗(f) := β ◦ f ,
for f ∈ Q[S, T1], is a (generalized) Q-morphism.

Proof. It is straightforward to check that α∗ and β∗ are generalized Q-morphisms.
Assume that α is a Q-morphism. To show that α∗ preserves the auxiliary relation,
let f1, f2 ∈ Q[S2, T ] satisfy f1 ≺ f2. To show that α∗(f1) ≺ α∗(f2), let a′, a ∈ S
satisfy a′ ≺ a. Since α preserves the auxiliary relation, we have α(a′) ≺ α(a). Using
that f1 ≺ f2 at the second step, we deduce that

α∗(f1)(a
′) = f1(α(a

′)) ≺ f2(α(a)) = α∗(f2)(a),

as desired. Analogously, one shows that β∗ preserves the auxiliary relation whenever
β does. �
4.24. Let T be aQ-semigroup. We letQ[ , T ] : Q → Q be the contravariant functor
that sends a Q-semigroup S to the Q-semigroupQ[S, T ] (see Proposition 4.18), and
that sends a Q-morphism α : S1 → S2 to the Q-morphism α∗ : Q[S2, T ] → Q[S1, T ]
as in Lemma 4.23.

Analogously, we obtain a covariant functor Q[S, ] : Q → Q for every Q-semi-
group S. Thus, we obtain a bifunctor

Q[ , ] : Q×Q → Q.
Remark 4.25. Given Q-semigroups S and T , one can construct a Q-semigroup
S ⊗Q T together with a Q-bimorphism ω : S × T → S ⊗ T that have the same
universal properties as the tensor product in Cu. One can then show that Q is a
closed, symmetric monoidal category, with Q[ , ] as internal-hom bifunctor. We
omit the details since for our purpose it is not necessary to show that Q is a
monoidal category.

5. Abstract bivariant Cuntz semigroups

In this section, we use the τ -construction developed in Sections 3 and 4 to prove
that Cu is a closed symmetric monoidal category. Thus, given Cu-semigroups S
and T , we construct a Cu-semigroup JS, T K, playing the role of the set of morphisms
from S to T , such that this ‘internal-hom’ is adjoint to the tensor product. This
means that, given another Cu-semigroup P , there is a natural bijection between
the morphism sets

Cu
(
S, JT, P K

) ∼= Cu
(
S ⊗ T, P

)
,
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as shown in Theorem 5.10. We will call JS, T K the bivariant Cu-semigroup, or the
abstract bivariant Cuntz semigroup of S and T . The Cu-morphisms S → T actually
correspond to compact elements in JS, T K.

In Subsection 5.2, we compute the first examples of bivariant Cu-semigroups.
We also study the situation for algebraic Cu-semigroups; see Subsection 5.3.

(Recall that a Cu-semigroup S is called algebraic if every element is the supremum
of an increasing sequence of compact elements.) Although, in general, it is neither
necessary nor sufficient that S and T are algebraic in order that JS, T K is algebraic,
the full subcategory of Cu consisting of algebraic Cu-semigroups is also a closed,
symmetric, monoidal category.

In Subsection 5.4, we analyse bivariant Cu-semigroups of ideals and quotients.
More concretely, given an ideal J of T , we show that JS, JK is naturally identified
with an ideal in JS, T K. Similarly, given an ideal J of S, we can identify JS/J, T K
with an ideal in JS, T K. We provide examples to the effect that the ideal structure
of the abstract bivariant Cu-semigroup JS, T K does not only depend on the ideal
structure of S and T .

5.1. Construction of abstract bivariant Cuntz semigroups. Recall that a
generalized Cu-morphism between Cu-semigroups S and T is a map that preserves
order, addition, the zero element, and suprema of increasing sequences, and thus
it is not necessarily a Cu-morphism; see Definition 2.4. In the language of domain
theory, a generalized Cu-morphism is a monoid morphism that is sequentially Scott
continuous (see [GHK+03, Section II.2, p.157ff]). We denote the set of generalized
Cu-morphisms S → T by Cu[S, T ], and we equip it with the pointwise order and
addition, giving it a natural structure as a positively ordered monoid.

Recall from Paragraph 4.3 that there is functor ι : Cu → Q that embeds Cu
is a full subcategory of Q. This is given by considering a Cu-semigroup S as a
Q-semigroup for the auxiliary relation ≪.

In Definition 4.17 we introduced an auxiliary relation on the set of generalized
Q-morphisms, giving itself the structure of a Q-semigroup; see Proposition 4.18.
Let us transfer this definition to the setting of Cu-semigroups.

Definition 5.1. Let S and T be Cu-semigroups. We define a binary relation ≺
on the set of generalized Cu-morphisms Cu[S, T ] by setting ϕ ≺ ψ if and only
ϕ(a′) ≪ ψ(a) for all a′, a ∈ S with a′ ≪ a.

Remarks 5.2. (1) The auxiliary relation ≺ on the set of generalized Cu-morphisms
was already considered in [APT14, 6.2.6].

(2) Every Cu-morphism is also a generalized Cu-morphism, and we therefore
consider Cu(S, T ) as a subset of Cu[S, T ]. For ϕ ∈ Cu[S, T ], we have ϕ ≺ ϕ if and
only if ϕ is a Cu-morphism.

It follows from Proposition 4.18 that ≺ is an auxiliary relation on Cu[S, T ] and
that (Cu[S, T ],≺) is a Q-semigroup. We may therefore apply the τ -construction.

Definition 5.3. Let S and T be Cu-semigroups. We define the internal hom from
S to T as the Cu-semigroup

JS, T K := τ
(
Cu[S, T ],≺

)
.

We call JS, T K the bivariant Cu-semigroup, or the abstract bivariant Cuntz semi-
group of S and T .

Remark 5.4. Recall that a path in Cu[S, T ] is a map f : IQ → Cu[S, T ] such that
f(λ′) ≺ f(λ) whenever λ′, λ ∈ IQ satisfy λ′ < λ. We often denote f(λ) by fλ and
we denote the path by f = (fλ)λ.



24 RAMON ANTOINE, FRANCESC PERERA, AND HANNES THIEL

By definition then, the elements of JS, T K are equivalence classes of paths in the
Q-semigroup (Cu[S, T ],≺).

5.5. Let we show that the internal-hom in Cu is functorial in both variables: con-
travariant in the first and covariant in the second variable.

Let T be a Cu-semigroup. Considering T as aQ-semigroup, we have a contravari-
ant functor Q[ , T ] : Q → Q as in Paragraph 4.24. Precomposing with the inclusion
ι : Cu → Q from Paragraph 4.3 and postcomposing with the functor τ : Q → Cu,
we obtain a functor J , T K : Cu → Cu.

Given Cu-semigroups S1 and S2, and a Cu-morphism α : S1 → S2, we use α∗ to
denote the induced Cu-morphism JS2, T K → JS1, T K. Thus, if we consider α as a Q-
morphism and if we let α∗

Q : Q[S2, T ] → Q[S1, T ] denote the induced Q-morphism
from Lemma 4.23, then α∗ is given as α∗ := τ(α∗

Q).
Analogously, given a Cu-semigroup S, we define the functor JS, K : Cu → Cu as

the composition of the functors ι, the functor Q[S, ] from Paragraph 4.24 and τ .
Given Cu-semigroups T1 and T2, and a Cu-morphism β : T1 → T2, we use β∗

to denote the induced Cu-morphism JS, T1K → JS, T2K. If we consider β as a Q-
morphism and if we let βQ

∗ : Q[S, T1] → Q[S, T2] denote the induced Q-morphism
from Lemma 4.23, then β∗ is given as β∗ := τ(βQ

∗ ).
Thus, the internal-hom in the category Cu is a bifunctor

J , K : Cu× Cu → Cu.

In Subsection 6.3 below we will generalize these basic functoriality properties by
describing a composition product JT, P K ⊗ JS, T K → JS, P K.

Next, we transfer the concept of the endpoint map from Definition 4.7 to the
setting of bivariant Cu-semigroups. To simplify notation, we write σS,T for ϕCu[S,T ],
the endpoint map associated to the Q-semigroup Cu[S, T ]. The next definition
makes this precise.

Definition 5.6. Let S and T be Cu-semigroups. We let σS,T : JS, T K → Cu[S, T ]
be defined by

σS,T ([f ])(a) = sup
λ∈IQ

fλ(a),

for a path f = (fλ)λ in Cu[S, T ] and a ∈ S. We refer to σS,T as the endpoint map.

Lemma 5.7. Let S, T and P be Cu-semigroups, and let α : S → JT, P K be a Cu-
morphism. Let σT,P : JT, P K → Cu[T, P ] be the endpoint map from Definition 5.6.
Define ᾱ : S × T → P by

ᾱ(a, b) = σT,P (α(a))(b),

for a ∈ S and b ∈ T . Then ᾱ is a Cu-bimorphism.

Proof. We write σ for σT,P . To show that ᾱ is a generalized Cu-morphism in the
first variable, let b ∈ T . Since α and σ are both additive and order preserving, we
conclude that ᾱ( , b) = σ(α( ))(b) is additive and order preserving as well. To show
that ᾱ( , b) preserves suprema of increasing sequences, let (an)n be an increasing
sequence in S. Set a := supn an. Since both α and σ preserve suprema of increasing
sequences, we obtain that

σ(α(a)) = sup
n
σ(α(an)),

in Cu[T, P ]. Since the supremum of an increasing sequence in Cu[T, P ] is the
pointwise supremum, we get that ᾱ(a, b) = supn ᾱ(an, b), as desired.

For each a ∈ S, we have ᾱ(a, ) = σ(α(a)), which is an element in Cu[T, P ].
Therefore, ᾱ is a generalized Cu-morphism in the second variable.
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Lastly, to show that ᾱ preserves the joint way-below relation, let a′, a ∈ S
and b′, b ∈ T satisfy a′ ≪ a and b′ ≪ b. Since α is a Cu-morphism we have
α(a′) ≪ α(a). Using that σ is a Q-morphism, it follows that σ(α(a′)) ≺ σ(α(a)).
Therefore, applying the definition of the auxiliary relation ≺ at the second step, we
obtain that

ᾱ(a′, b′) = σ(α(a′))(b′) ≪ σ(α(a))(b) = ᾱ(a, b),

as desired. �

We omit the straightforward proof of the following result.

Lemma 5.8. Let S, T and P be Cu-semigroups, and let ϕ : S × T → P be a
map. Then ϕ is a Cu-bimorphism if and only if ϕ, considered as a map between
Q-semigroups, is a Q-bimorphism. Thus, we have a canonical bijection

BiQ(S × T, P ) ∼= BiCu(S × T, P ).

Moreover, this bijection respects the structure of the bimoprhism sets as positively
ordered monoids.

Lemma 5.9. Let S, T and P be Cu-semigroups. Then the assignment that sends
a Cu-morphism α : S → JT, P K to the Cu-bimorphism α̃ : S × T → P given in
Lemma 5.7 defines a natural bijection:

Cu
(
S, JT, P K

) ∼= BiCu
(
S × T, P

)
.

Moreover, this bijection respects the structure of the moprhism sets as positively
ordered monoids.

Proof. By definition, we have Cu
(
S, JT, P K

)
= Cu

(
S, τ(Q[T, P ])

)
. Further, we have

natural bijections, respecting the structure as positively ordered monoids, using
Theorem 4.12 at the first step, using Theorem 4.22 at the second step, and using
Lemma 5.8 at the last step:

Cu
(
S, τ(Q[T, P ])

) ∼= Q
(
S,Q[T, P ]

) ∼= BiQ
(
S × T, P

) ∼= BiCu
(
S × T, P

)
.

It is straightforward to check that the composition of these bijections identifies a
Cu-morphism α with the Cu-bimorphism α̃ as defined in Lemma 5.7. �

Theorem 5.10. Let S, T and P be Cu-semigroups. Then there are natural bijec-
tions

Cu
(
S, JT, P K

) ∼= BiCu
(
S × T, P

) ∼= Cu
(
S ⊗ T, P

)
.

Moreover, these bijection respects the structure of the (bi)moprhism sets as posi-
tively ordered monoids.

The first bijection is given by assigning to a Cu-morphism α : S → JT, P K the
Cu-bimorphism α̃ : S × T → P as in Lemma 5.7, that is, α̃(a, b) = σT,P (α(a))(b),
for (a, b) ∈ S × T . The second bijection is given by assigning to a Cu-morphism
β : S⊗T → P the Cu-bimorphism S×T → P , (a, b) 7→ β(a⊗ b), for (a, b) ∈ S×T .
Proof. The first bijection is obtained from Lemma 5.9. The second bijection follows
from Theorem 2.16. It is also shown in these results that the bijections respect the
structure of the (bi)morphism sets as positively ordered monoids. �

Let T be a Cu-semigroup. We consider the functor ⊗ T : Cu → Cu given by
tensoring with T . It follows from Theorem 5.10 that the functor JT, K is a right
adjoint of ⊗T . By definition, this shows that the monoidal category Cu is closed,
and we obtain the following result:

Theorem 5.11. The category Cu of abstract Cuntz semigroups is a closed, sym-
metric, monoidal category.
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Every closed symmetric monoidal category is enriched over itself, as noted in
Paragraph 2.14. Let us make this precise for the category Cu. (See Section 6 for
further details.) Given Cu-semigroups S and T , the Cu-semigroup JS, T K plays
the role of morphisms from S to T . First, we show that Cu-morphisms S → T
correspond to compact elements in JS, T K.
Proposition 5.12. Let S and T be Cu-semigroups. Then there is a natural bijec-
tion between Cu-morphisms S → T and compact elements in JS, T K:

JS, T Kc ∼= Cu(S, T ).

A Cu-morphism ϕ : S → T is associated with the class in JS, T K of the constant path
with value ϕ. Conversely, given a compact element in JS, T K represented by a path
(ϕλ)λ, then for λ close enough to 1 the map ϕλ is a Cu-morphism and independent
of λ.

Proof. It is straightforward to verify that the described associations are well-defined
and inverses of each other. Alternatively, note that for every Cu-semigroup P , there
is a natural identification of Pc with Cu(N, P ), by associating to a Cu-morphism
ϕ : N → P the compact element ϕ(1). Using this fact at the first step, using
Theorem 5.10 at the second step, and using the isomorphism N ⊗ S ∼= S at the
third step, we obtain that

JS, T Kc ∼= Cu
(
N, JS, T K

) ∼= Cu
(
N⊗ S, T

) ∼= Cu(S, T ),

as desired. �
In particular, the identity Cu-morphism idS : S → S naturally corresponds to

a compact element in JS, SK, also denoted by idS . Further, idS also naturally
corresponds to a Cu-morphism jS : N → JS, SK, which is the identity of S for the
enrichment of Cu over itself.

Given Cu-semigroups S and T , recall that the counit map, or evaluation map
is the Cu-morphism eST : JS, T K ⊗ S → T that corresponds to idJS,T K under the

identification Cu
(
JS, T K, JS, T K

) ∼= Cu
(
JS, T K ⊗ S, T

)
.

Given Cu-semigroups S, T and P , consider the following Cu-morphism:

(JT, P K ⊗ JS, T K)⊗ S
∼=−→ JT, P K ⊗ (JS, T K ⊗ S)

id⊗ eST−−−−→ JT, P K ⊗ T
eTP−−→ P.

Under the identification Cu
(
JT, P K ⊗ JS, T K, JS, P K

) ∼= Cu
(
JT, P K ⊗ JS, T K ⊗ S, P

)
,

the above Cu-morphism corresponds to a Cu-morphism

◦ : JT, P K ⊗ JS, T K → JS, P K,
that we will call the composition product. The composition product implements the
composition of morphisms when viewing the category Cu as enriched over itself.
(See Section 6 for further details.) We obtain:

Theorem 5.13. The category Cu of abstract Cuntz semigroups is enriched over
itself.

5.2. First examples. In this subsection, we compute several examples of bivariant
Cu-semigroups JS, T K. We mostly consider the case that S and T are the Cuntz
semigroups of the Jacelon-Razak algebra W , of the Jiang-Su algebra Z, of a UHF-
algebra of infinite type, or of the Cuntz algebra O2.

Recall that P denotes the semigroup [0,∞] with the usual order and addition.
It is known that P ∼= Cu(W), the Cuntz semigroup of the Jacelon-Razak algebra
W introduced in [Jac13] (see [Rob13]). The product of real numbers extends to a
natural product on [0,∞] giving P the structure of a solid Cu-semiring; see [APT14,
Definition 7.1.5, Example 7.1.7], and also Subsection 7.3. The Cu-semiring P and
its Cu-semimodules were studied in [APT14, Section 7.5].
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Let M1 be defined as in Example 4.14. By Proposition 4.16, M1 is the Cuntz
semigroup of a II1-factor M .

Proposition 5.14. There is a natural isomorphism JP,PK ∼=M1.

Proof. We show that the Q-semigroup (Cu[P,P],≺) is isomorphic to (P,≺1), where
≺1 is the auxiliary relation defined in Example 4.14. Applying the τ -construction,
and using the arguments in Example 4.14 at the last step, we then obtain

JP,PK = τ
(
Cu[P,P],≺

) ∼= τ
(
P,≺1

)
=M1.

Since P is a solid Cu-semiring, every generalized Cu-morphism P → P is au-
tomatically P-linear; see Proposition 7.24, and [APT14, Proposition 7.1.6]. Thus,
given a generalized Cu-morphism ϕ : P → P, we have ϕ(x) = ϕ(1)x for all x ∈ P.
This allows us to identify Cu[P,P] with P by ϕ 7→ ϕ(1) and this is easily seen to be
an additive order-isomorphism. To conclude the argument, we need to show that
under this identification, the auxiliary relation ≺ on Cu[P,P] corresponds to the
auxiliary relation ≺1 on P as defined in Example 4.14.

Let ϕ, ψ ∈ Cu[P,P]. Clearly ϕ ≺ ψ implies ϕ(1) ≤ ψ(1). Moreover, if ϕ(1) =
ψ(1) = ∞, then ϕ ⊀ ψ, since ϕ(1) = ∞ 6≪ ∞ = ψ(2) while 1 ≪ 2. Thus, ϕ ≺ ψ
implies ϕ(1) ≺1 ψ(1). Conversely, assume that ϕ(1) ≺1 ψ(1). By definition, ϕ(1)
is finite, and ϕ(1) ≤ ψ(1). To show that ϕ ≺ ψ, let s, t ∈ P satisfy s ≪ t. Using
that ϕ(1) is finite at the second step, we deduce that

ϕ(s) = ϕ(1)s≪ ϕ(1)t ≤ ψ(1)t = ψ(t),

as desired. �

We let Z be the disjoint union N ⊔ (0,∞], with elements in N being compact,
and with elements in (0,∞) being soft. It is known that Z is isomorphic to the
Cuntz semigroup of the Jiang-Su algebra Z introduced in [JS99] (see [PT07] and
also [BT07]). We next recall some details.

To distinguish elements in both parts, we write a′ (with a prime symbol) for the
soft element of value a. For example, the compact one, denoted 1, corresponds the
class of the unit in Z; and the soft one, denoted 1′, corresponds to the class of a
positive element x in Z that has spectrum [0, 1] and with limn→∞ τ(x1/n) = 1, for
the unique trace τ on Z.

Order and addition are the usual inside the components N and (0,∞] of Z. Given
a ∈ N and b′ ∈ (0,∞], we have a + b′ = (a + b)′ (the soft part is absorbing), and
we have a ≤ b′ if and only a′ < b′, and we have a ≥ b′ if and only if a′ ≥ b′.

We have a natural commutative product in Z, extending the natural products
in the components N and (0,∞], and such that 0a = 0 for every a ∈ Z, and such
that ab′ = (ab)′ for a ∈ N>0 and b′ ∈ (0,∞). Note that 1 (the compact one) is a
unit for this semiring, but 1′ is not. Indeed, we have 1′1 = 1′.

This gives Z the structure of a solid Cu-semiring. The Cu-semiring Z and its
Cu-semimodules were studied in [APT14, Section 7.3].

Given a supernatural number q satisfying q = q2 6= 1, we let N[ 1q ] denote the set

of nonnegative rational numbers whose denominators divide q, with usual addition.
Let Rq = N[ 1q ]⊔ (0,∞], with elements in N[ 1q ] being compact, and with elements in

(0,∞] being soft. The interplay of addition and order with the two components of
Rq is analogous to the situation for Z. If we now let Mq denote the UHF-algebra
of type q, then it is known that Cu(Mq) ∼= Rq.

Analogous to the case for Z, we can define a commutative multiplication on
Rq, giving it the structure of a solid Cu-semiring. The Cu-semiring Rq and its
Cu-semimodules were studied in [APT14, Section 7.4].
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We exclude zero as a supernatural number. However, 1 is supernatural number
that agrees with its square. It is consistent to let R1 denote the Cuntz semigroup
of the Jiang-Su algebra Z. Thus, we set R1 := Z, which simplifies the statement
of Proposition 5.15 below.

Given supernatural numbers p and q satisfying p = p2 and q = q2, we have
Rp ⊗ Rq

∼= Rpq. In particular, Z ⊗ Rp = R1 ⊗ Rp
∼= Rp. Moreover, if we let

Q = Q+ ⊔ (0,∞], then Q is isomorphic to the Cuntz semigroup of the universal
UHF-algebra (whose K0-group is isomorphic to the rational numbers). We have
Q⊗Rp

∼= Q.

Proposition 5.15. Let p and q be supernatural numbers with p = p2 and q = q2.
If p divides q, then JRp, RqK ∼= Rq. If p does not divide q, then Cu(Rp, Rq) = {0}
and JRp, RqK ∼= P.

Proof. First, assume that p divides q. Then Rp
∼= Rp ⊗ Rp and Rq

∼= Rq ⊗
Rp. Let ϕ : Rp → Rq be a generalized Cu-morphism. It follows from [APT14,
Proposition 7.1.6] that ϕ is Rp-linear. Thus, ϕ is determined by the image of the
unit. Moreover, for every a ∈ Rq, there is a generalized Cu-morphism ϕ : Rp →
Rq with ϕ(1) = a, given by ϕ(t) = ta for t ∈ Rp. Thus, there is a bijection
Cu[Rp, Rq] ∼= Rq given by identifying ϕ with ϕ(1). It is straightforward to check
that under this identification, the relation ≺ on Cu[Rp, Rq] corresponds precisely
to the way-below relation on Rq. It follows that

JRp, RqK = τ
(
Cu[Rp, Rq],≺

) ∼= τ
(
Rq,≪

) ∼= Rq,

as desired.
Assume now that p does not divide q. Let r be a prime number dividing p but

not q. Every element of Rp is divisible by arbitrary powers of r.
On the other hand, we claim that only the soft elements of Rq are divisible by

arbitrary powers of r. Indeed, every element of Rq is either compact or nonzero
and soft. Moreover, the sum of a nonzero soft element with any other element in
Rq is soft. Thus, if x ∈ Rq is compact, and if x = ky for some k ∈ N and y ∈ Rq,
then y is necessarily compact. Thus, if a compact element of Rq is divisible in Rq

then it is also divisible in the monoid of compact elements of Rq, which we identify
with N[ 1q ]. However, since r does not divide q, the only element in N[ 1q ] that is

divisible by arbitrary powers of r is the zero element, which is soft.
It follows that every generalized Cu-morphism Rp → Rq has its image contained

in the soft part of Rq.
In particular, if ϕ : Rp → Rq is a Cu-morphism, then every compact element of

Rp is sent to zero by ϕ. Using that Rp is simple, it follows that ϕ is the zero map.
Thus, Cu(Rp, Rq) = {0}, as desired.

We identify P with the soft part of Rp, and similarly for Rq. Let ϕ : Rp → Rq

be a generalized Cu-morphism. We have seen that ϕ(1) belongs to P = (Rq)soft.

Moreover, for every a ∈ P there is a generalized Cu-morphism ϕ : Rp → P ⊆ Rq with

ϕ(1) = a, given by ϕ(t) = ta for t ∈ Rp. Thus, there is a bijection Cu[Rp, Rq] ∼= P
given by identifying ϕ with ϕ(1). It is straightforward to check that under this
identification, the relation ≺ on Cu[Rp, Rq] corresponds to the way-below relation

on P. As above, it follows that

JRp, RqK = τ
(
Cu[Rp, Rq],≺

) ∼= τ
(
P,≪

) ∼= P,

as desired. �

Example 5.16. Recall that Z and Q are isomorphic to the Cuntz semigroups of the
Jiang-Su algebra and the universal UHF-algebra, respectively. By Proposition 5.15,
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there are natural isomorphisms

JZ,ZK ∼= Z and JQ,QK ∼= Q.

More generally, there are natural isomorphisms

JZ,RqK ∼= Rq and JRq, QK ∼= Q,

for every supernatural number q with q = q2,

Example 5.17. Let q be a supernatural number with q = q2. Then there are
natural isomorphisms

JRq,PK ∼= P and JP, RqK ∼=M1,

which can be proved similarly as Proposition 5.15 and Proposition 5.14. In partic-
ular, we have JZ,PK ∼= P and JP, ZK ∼=M1.

Given k ∈ N, we set Ek := {0, 1, . . . , k,∞}, equipped with the natural order and
addition as a subset of N, with the convention that a+ b = ∞ whenever a+ b > k
in N. With the obvious multiplication, Ek is a solid Cu-semiring (see, e.g. [APT14,
Example 8.1.2]). Note that E0 = {0,∞} is the Cuntz semigroup of the Cuntz
algebra O2 (or of any other simple, purely infinite C∗-algebra). The Cu-semiring
E0 = {0,∞} and its Cu-semimodules were studied in [APT14, Section 7.2].

Proposition 5.18. Let k, l be natural numbers. Let ⌈ l+1
k+1⌉ denote the smallest

natural number larger than or equal to l+1
k+1 . Then JEk, ElK is isomorphic to the

sub-Cu-semigroup {0, ⌈ l+1
k+1⌉, . . . , l,∞} of El.

Proof. Let ϕ : Ek → El be a generalized Cu-morphism. Then ϕ is determined by
the image of 1, which can be zero or any element a ∈ El such that (k + 1)a = ∞.
Thus, for every a ≥ l+1

k+1 there is a unique generalized Cu-morphism Ek → El given
by x 7→ ax. Moreover, each such a map preserves the way-below relation and is
therefore a Cu-morphism. The desired result follows. �
Example 5.19. It follows from Proposition 5.18 that there is a natural isomor-
phism

J{0,∞}, {0,∞}K ∼= {0,∞},
and more generally JEk, EkK ∼= Ek for every k ∈ N.

Recall the definition of axiom (O5) (almost algebraic order) from Paragraph 2.12.
Note that Ek satisfies (O5) for every k ∈ N. On the other hand, JEk, ElK does not
satisfy (O5) whenever l > k > 1. For example, in JE2, E3K = {0, 2, 3,∞} we have
2 ≪ 2 ≤ 3, yet there is no element x with 2 + x = 3. This shows that (O5) does
not pass to abstract bivariant Cuntz semigroups.

Probably, (O6) (almost Riesz decomposition) does not pass to bivariant Cu-sem-
igroups either, but we are currently not aware of any example.

5.3. Algebraic Cu-semigroups.

5.20. Recall that a Cu-semigroup S is algebraic if the subset Sc of compact elements
is sup-dense in S, that is, if every element in S is the supremum of an increasing
sequence of compact elements. We always endow Sc with the addition and partial
order inherited from S, giving it the structure of a positively ordered monoid.

A natural source of algebraic semigroups comes from C∗-algebras of real rank
zero. More concretely, the Cuntz semigroup of a C∗-algebra with real rank zero is
always algebraic. Conversely, if a C∗-algebra A has stable rank one and Cu(A) is
algebraic, then A has real rank zero; see [CEI08]. Another natural source comes
from positively ordered monoids. Specifically, given any positively ordered monoid
M , then its Cu-completion γ(M,≤) as constructed in [APT14, Proposition 3.1.6]
(see also [APT14, 5.5.3]) is always an algebraic Cu-semigroup.



30 RAMON ANTOINE, FRANCESC PERERA, AND HANNES THIEL

By [APT14, Proposition 5.5.5], there is an equivalence of the following categories:
the category PoM of positively ordered monoids, and the full subcategory of Cu,
consisting of algebraic Cu-semigroups. This means in particular that there is a
natural bijection Cu(S, T ) ∼= PoM(Sc, Tc), whenever S and T are algebraic Cu-
semigroups.

It is natural to ask whether JS, T K is an algebraic Cu-semigroup whenever S and
T are. In general, this is not the case. Consider for examples the Cuntz semigroups
R2∞ and R3∞ of the UHF-algebras of type 2∞ and 3∞, respectively. Note that R2∞

and R3∞ are algebraic. However, by Proposition 5.15 we have JR2∞ , R3∞K ∼= P,
which is not algebraic.

Conversely, if JS, T K is algebraic, then it need not follow that S or T is alge-
braic. Indeed, while P is not algebraic, we showed in Proposition 5.14 that JP,PK
is isomorphic to the algebraic Cu-semigroup M1 from Example 4.14.

Thus, the natural problem to determine when an abstract bivariant Cuntz semi-
group is algebraic has probably no simple answer.

Let Cualg denote the full subcategory of Cu whose objects are algebraic Cu-
semigroups. The tensor product of two algebraic Cu-semigroups is again alge-
braic, as shown in [APT14, Corollary 6.4.8]. Thus, Cualg has a natural symmetric,
monoidal structure.

Theorem 5.21. The category Cualg is closed. Given algebraic Cu-semigroups S
and T , the internal-hom of S and T in Cualg is the algebraic Cu-semigroup JS, T Kalg
given as the Cu-completion of the positively ordered monoid Cu(S,T):

JS, T Kalg = γ
(
Cu(S, T )

)
.

Proof. Let S, T and R be algebraic Cu-semigroup. Then R ⊗ S is also algebraic,
with (R⊗S)c ∼= Rc⊗PoMSc, the latter tensor product being the one in the category
of partially ordered monoids; see [APT14, Proposition 6.4.7 and Corollary 6.4.8].
We deduce that there are natural bijections

Cu
(
R⊗ S, T

) ∼= PoM
(
Rc ⊗ Sc, Tc

) ∼= PoM
(
Rc,PoM(Sc, Tc)

)

∼= PoM
(
Rc,Cu(S, T )

) ∼= Cu
(
R, γ(Cu(S, T ))

)
.

Thus, the functor ⊗ S : Cualg → Cualg has a right adjoint given by the functor
γ(Cu(S, )) : Cualg → Cualg, as desired. �

5.4. Bivariant Cuntz semigroups of ideals and quotients. Let T be a Cu-
semigroup, and let S ⊆ T be a submonoid. We call S a sub-Cu-semigroup of T if S
is a Cu-semigroup for the partial order inherited from T and such that the inclusion
S → T is a Cu-morphism. It is easy to see that S is a sub-Cu-semigroup of T if
and only if S is closed under passing to suprema of increasing sequences and if the
way-below relation in S and T agree.

Lemma 5.22. Let S and T be Cu-semigroups, and let T ′ ⊆ T be a sub-Cu-sem-
igroup. Then the inclusion ι : T ′ → T induces an order-embedding ι∗ : JS, T ′K →
JS, T K.
Proof. Let f = (fλ)λ be a path in Cu[S, T ′]. Then f̃ = (ι◦fλ)λ is a path in Cu[S, T ].

It follows from Paragraph 5.5 that ι∗([f ]) = [̃f ].
To show that ι∗ is an order-embedding, let x, y ∈ JS, T ′K with ι∗(x) ≤ ι∗(y).

Choose paths f and g in Cu[S, T ′] representing x and y, respectively. We have
(ι◦fλ)λ - (ι◦gλ)λ. Thus, for every λ ∈ IQ, there is µ ∈ IQ such that ι◦fλ ≺ ι◦gµ.
Using that T ′ ⊆ T is a sub-Cu-semigroup, for such λ and µ we deduce that fλ ≺ gµ.
(We use that for a′, a ∈ T ′ we have a′ ≪ a in T ′ if and only if ι(a′) ≪ ι(a) in T .)
It follows that f - g, and hence x ≤ y, as desired. �
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Recall that J ⊆ S is called an ideal (of S) if J is a submonoid of S that is closed
under passing to suprema of increasing sequences and that is downward-hereditary
(if a, b ∈ S satisfy a ≤ b and b ∈ J , then a ∈ J). We write J ⊳ S to mean that J
is an ideal of S. Note that every ideal is in particular a sub-Cu-semigroup. (See
[APT14, Section 5.1] for an account on ideals and quotients.)

Proposition 5.23. Let S and T be Cu-semigroups, and let J be an ideal of T . Let
ι : J → T denote the inclusion map. Then the induced Cu-morphism ι∗ : JS, JK →
JS, T K is an order-embedding that identifies JS, JK with an ideal of JS, T K. Moreover,
x ∈ JS, T K belongs to JS, JK if and only if for some (equivalently, for every) path
(fλ)λ representing x, each fλ takes image in J .

Proof. By Lemma 5.22, ι∗ is an order-embedding. It follows that ι∗ identifies JS, JK
with a submonoid of JS, T K that is closed under passing to suprema of increasing
sequences.

Let x ∈ JS, T K be represented by a path f = (fλ)λ in Cu[S, T ]. If each fλ takes
values in J , then we can consider f as a path in Cu[S, J ] whose class is an element
x′ ∈ JS, JK satisfying ι∗(x′) = x. Conversely, assume that x belongs to JS, JK. Then
there is a path g = (gµ)µ in Cu[S, J ] with ι∗([g]) = x. Let λ ∈ IQ. Since f - g,
we can choose µ ∈ IQ with fλ ≺ gµ. Since gµ takes values in J , and since J is
downward-hereditary, it follows that fλ takes values in J , as desired.

A similar argument shows that JS, JK is downward-hereditary in JS, T K. �
5.24. Given S, let us study whether the functor JS, K : Cu → Cu is exact. More
precisely, let J ⊳ T be an ideal, with inclusion map ι : J → T and with quotient
map π : T → T/J . This induces the following Cu-morphisms:

JS, JK ι∗−→ JS, T K π∗−→ JS, T/JK.
By Proposition 5.23, ι∗ identifies JS, JK with an ideal in JS, T K. Since π ◦ ι is the
zero map, so is π∗ ◦ ι∗. Thus, π∗ vanishes on the ideal JS, JK ⊳ JS, T K. It follows
that π∗ induces a Cu-morphism

π̂∗ : JS, T K/JS, JK → JS, T/JK.
Problem 5.25. Study the order-theoretic properties of the Cu-morphism π̂∗ from
Paragraph 5.24. In particular, when is π̂∗ an order-embedding, when is it surjective?

We are currently not aware of any example for S and J ⊳ T such that the map
π̂∗ : JS, T K/JS, JK → JS, T/JK is not an isomorphism.

Remark 5.26. There are several possible concepts of projectivity for objects in
Cu. One could say that a Cu-semigroup S is projective, if for every Cu-semigroup
T and every ideal J ⊳ T , with induced quotient map π : T → T/J , and for every
Cu-morphism ϕ : S → T/J , there exists a Cu-morphism ϕ̃ : S → T (called a lift)
such that ϕ = π ◦ ϕ̃. However, this concept seems very restrictive, since not even
N is projective in this sense.

A more promising approach is to say that S is projective, if for every T and every
ideal J ⊳ T , with induced quotient map π : T → T/J , and for every x ∈ JS, T/JK,
there exists x̃ ∈ JS, T K such that x = π ◦ x̃. This means precisely that the map
π̂∗ : JS, T K/JS, JK → JS, T/JK from Paragraph 5.24 is surjective for every J ⊳ T .

In this sense, N is projective. More generally, one can show that the product∏
I N is projective. The theory of products and, more generally, limits in Cu is

developed in [APT17]. It follows that there are many projective objects in Cu,
meaning that for every Cu-semigroup T there is a projective Cu-semigroup P and
a surjective Cu-morphism P → T . This could be the starting point to develop a
theory of projective resolutions and derived functors, in particular an ext-functor
in Cu. We will not pursue this line of thought here.



32 RAMON ANTOINE, FRANCESC PERERA, AND HANNES THIEL

5.27. Let J be an ideal of T , and assume that J has a largest element zJ . (Every
simple and every countably-based Cu-semigroup has a largest element. For Cuntz
semigroups of C∗-algebras this is connected to the question whether the C∗-algebra
contains a full element. See [APT14, Section 5.1] for more details.) Then, every
element a ∈ T/J has a largest preimage in T , given as x + zJ for any choice of
preimage x. Let ω : T/J → T be the map that sends an element in T/J to its
largest preimage in T . It is straightforward to check that ω is a generalized Cu-
morphism. (However, in general, it does not preserve the way-below relation.) It is
a natural question, closely related to Problem 5.25, to determine whether ω is the
endpoint of a path in Cu[T/J, T ].

The following result and its proof are analogous to Proposition 5.23.

Proposition 5.28. Let S and T be Cu-semigroups, let J ⊳S, and let π : S → S/J
denote the quotient map. Then the induced Cu-morphism π∗ : JS/J, T K → JS, T K
is an order-embedding that identifies JS/J, T K with an ideal in JS, T K. Moreover,
x ∈ JS, T K belongs to JS/J, T K if and only if for some (equivalently, for every) path
(fλ)λ representing x, each fλ vanishes on J .

5.29. By Propositions 5.23 and 5.28, ideals in S and T naturally induce ideals in
JS, T K. More precisely, if J ⊳ S and K ⊳ T , we can identify JS/J,KK with an ideal
in JS, T K. Let Lat(P ) denote the ideal lattice of a Cu-semigroup P . We therefore
obtain a map

Lat(S)op × Lat(T ) → Lat(JS, T K).
However, this map need not be injective. For example, consider S = Z and

T = N ⊕ Z with the ideal J = 0 ⊕ Z. Note that every generalized Cu-morphism
Z → N⊕ Z necessarily takes values in the ideal 0⊕ Z. It follows that in this case
JS, JK = JS, T K.

The following example shows that the above map is also not surjective in general.
In fact, the example shows that there exists a simple Cu-semigroup S such that
JS, SK is not simple.

Example 5.30. Let S := [0, 1] ∪ {∞}, considered with order and addition as a
subset of P, with the convention that a+ b = ∞ whenever a+ b > 1 in P. It is easy
to check that S is a simple Cu-semigroup.

Given t ∈ {0} ∪ [1,∞], let ϕt : S → S be the map given by ϕt(a) := ta, where
ta is given by the usual multiplication in P applying the above convention that an
element is ∞ as soon as it is larger than 1. Then ϕt is a generalized Cu-morphism.
One can show that every generalized Cu-morphism S → S is of this form. We
deduce that Cu[S, S] is isomorphic to {0}∪ [1,∞], identifying ≺ with ≤. It follows
that

JS, SK = τ
(
Cu[S, S],≺

) ∼= τ
(
{0} ∪ [1,∞],≤

) ∼= {0} ⊔ [1,∞] ⊔ (1,∞],

which is a disjoint union of compact elements corresponding to {0} ∪ [1,∞] and
nonzero soft elements corresponding to (1,∞]. (Similar to the decomposition of Z
and Rq.)

In particular, JS, SK contains a compact infinite element ∞, and a noncompact
infinite element ∞′. The set J := {x : x ≤ ∞′} is an ideal in JS, SK. We have
∞ /∈ J , which shows that JS, SK is not simple.

Problem 5.31. Characterize when JS, T K is simple. In particular, given simple Cu-
semigroups S and T , give necessary and sufficient criteria for JS, T K to be simple.
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6. Concretization of categorical constructions for Cu

In this section, we give concrete pictures of general constructions in closed, sym-
metric, monoidal categories for the category Cu. This will be used in the next
section. In Subsection 6.1 we study unit and counit maps, which are natural Cu-
morphisms

dS,T : S → JT, S ⊗ T K and eS,T : JS, T K ⊗ S → T,

respectively. In the particular case that T = N, and after applying the isomorphism
S⊗N ∼= S, the unit map dS,N takes the form S → JN, SK and is denoted by iS . We

will see that iS is a natural isomorphism between S and JN, SK.
In Subsection 6.2 we generalize the tensor product of Cu-morphisms (as defined

in Paragraph 2.17) by introducing the external tensor product map

⊠ : JS1, T1K ⊗ JS2, T2K → JS1 ⊗ S2, T1 ⊗ T2K.
In Subsection 6.3, we study the composition product, which is the generalization

of the composition of morphisms in a category to a notion of composition between
internal-hom objects in a closed category; see the comments after Proposition 5.12.
We then show that the external tensor product and the composition product are
compatible; see Proposition 6.22.

In Subsection 6.4, we show how the unit and counit maps, the tensor and the
composition product can be used to give concrete formulas for the correspondence

Cu
(
S, JT, P K

) ∼= Cu
(
S ⊗ T, P

)
,

proved in Theorem 5.10; see Proposition 6.23.
We also study functorial properties of the endpoint map, and of the unit and

counit maps. Finally, similar to KK-theory for C∗-algebras, we have a general
form of the product that simultaneously generalizes the composition product and
the external tensor product; see Paragraph 6.30.

6.1. Unit and counit.

Definition 6.1. Given Cu-semigroups S and T , we define the unit map as the
Cu-morphism dS,T : S → JT, S ⊗ T K that under the identification

Cu
(
S, JT, S ⊗ T K

) ∼= Cu
(
S ⊗ T, S ⊗ T

)

corresponds to the identity map on S ⊗ T .

Proposition 6.2. Let S and T be Cu-semigroups, and let s ∈ S. Let (sλ)λ∈IQ be a
path in (S,≪) with endpoint s. Then for each λ ∈ IQ, the map sλ ⊗ : T → S⊗T ,
sending t ∈ T to sλ ⊗ t, is a generalized Cu-morphism. Moreover, (sλ ⊗ )λ∈IQ is

a path in (Cu[T, S ⊗ T ],≺), and we have dT
S (s) = [(sλ ⊗ )λ].

Proof. The map ω : S × T → S ⊗ T , given by ω(a, b) = a⊗ b, is a Cu-bimorphism.
This implies that a ⊗ : T → S ⊗ T is a generalized Cu-morphism for each a ∈
S. Moreover, using that ω preserves the joint way-below relation, we obtain that
a′ ⊗ ≺ a⊗ for a′, a ∈ S satisfying a′ ≪ a. In particular, if (aλ)λ∈IQ is a path in
S, then (aλ ⊗ )λ∈IQ is a path in (Cu[T, S ⊗ T ],≺). We define α : S → JT, S ⊗ T K
by sending a ∈ S to [(aλ ⊗ )λ] for some choice of path (aλ)λ in S with endpoint
a. It is straightforward to check that α is a well-defined Cu-morphism.

Let us show that α = dS,T . Consider the bijections

Cu
(
S, JT, S ⊗ T K

) ∼= BiCu
(
S × T, S ⊗ T

) ∼= Cu
(
S ⊗ T, S ⊗ T

)

from Theorem 5.10. Under the first bijection, α corresponds to the Cu-bimorphism
ᾱ given by

ᾱ(a, b) = σT,S⊗T (α(a))(b),
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for a ∈ S and b ∈ T , where σT,S⊗T is the endpoint map. We compute

ᾱ(a, b) = σT,S⊗T (α(a))(b) = sup
λ∈IQ

(aλ ⊗ )(b) = sup
λ∈IQ

(aλ ⊗ b) = a⊗ b,

for every path (aλ)λ with endpoint a ∈ S, and every b ∈ T . It follows that ᾱ
corresponds to idS⊗T under the second bijection. By definition of dS,T , this show
that α = dS,T , as desired. �
Notation 6.3. Given Cu-semigroups S, T and P , and a Cu-bimorphism α : S ×
T → P , we shall often use the notation ᾱ : S → JT, P K to refer to the Cu-morphism
that corresponds to α under the identification in Theorem 5.10.

Corollary 6.4. Let S and T be Cu-semigroups. Then the composition

σT,S⊗T ◦ dS,T : S
dS,T−−−→ JT, S ⊗ T K σT,S⊗T−−−−−→ Cu[T, S ⊗ T ].

satisfies (σT,S⊗T ◦ dS,T (s) = s⊗ , for every s ∈ S. In particular

(σT,S⊗T ◦ dS,T (s)(t) = s⊗ t,

for s ∈ S and t ∈ T .

Proof. Let s ∈ S and t ∈ T . Choose a path (sλ)λ in S with endpoint s. Then
dS,T (s) = [(sλ ⊗ )λ] by Proposition 6.2. The supremum of the maps sλ ⊗ in
Cu[S, T ⊗ S] is the map s⊗ . Thus, (σT, S ⊗ T ◦ dS,T (s) = s⊗ , as desired. �
Definition 6.5. Given Cu-semigroups S and T , recall that the counit map (also
called the evaluation map) is defined as the Cu-morphism eS, T : JS, T K ⊗ S → T
that under the identification

Cu
(
JS, T K ⊗ S, T

) ∼= Cu
(
JS, T K, JS, T K

)

corresponds to the identity map on JS, T K. (See Paragraph 2.14 and the comments
after Proposition 5.12.) Given x ∈ JS, T K and s ∈ S, we denote eS,T (x⊗ s) by x(s).
Proposition 6.6. Let S and T be Cu-semigroups, let x ∈ JS, T K, and let s ∈ S.
Then eS,T (x⊗ s) = σS,T (x)(s). Thus, if f = (fλ)λ is a path in Cu[S, T ], then

[f ](s) = eS,T ([f ] ⊗ s) = sup
λ<1

fλ(s).

Proof. Consider the bijections

Cu
(
JS, T K, JS, T K

) ∼= BiCu
(
JS, T K × S, T

) ∼= Cu
(
JS, T K ⊗ S, T

)

from Theorem 5.10. To simplify notation, we denote the identity map on JS, T K by
id. Under the first bijection, id corresponds to the Cu-bimorphism īd satisfying

īd(y, b) = σS,T (id(y))(b),

for all y ∈ JS, T K and b ∈ S. We obtain that

eS,T (x ⊗ s) = īd(x, s) = σS,T (id(x))(s) = σS,T (x)(s),

as desired. �
Remark 6.7. Let ϕ : S → T be a Cu-morphism, and let s ∈ S. Considering ϕ as
an element of JS, T K, the notation ϕ(s) for eS,T (ϕ⊗ s) is consistent with the usual
notation of ϕ(s) for the evaluation of ϕ at s.

Lemma 6.8. Let S be a Cu-semigroup. Let ev1 : Cu[N, S] → S be given by ev1(f) =
f(1) for f ∈ Cu[N, S]. Then ev1 is an isomorphism of Q-semigroups. That is, ev1
is an additive order-isomorphism and we have f ≺ g if and only if ev1(f) ≪ ev1(g),
for f, g ∈ Cu[N, S].

It follows that (Cu[N, S],≺) is a Cu-semigroup (naturally isomorphic to S via
ev1). Moreover, the endpoint map σN,S : JN, SK → Cu[N, S] from Definition 5.6 is
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an isomorphism. We obtain a commutative diagram of Cu-semigroups and isomor-
phisms:

JN, SK = τ
(
Cu[N, S]

)
∼=

σN,S //

∼=τ(ev1)

��

Cu[N, S]

∼= ev1

��
τ(S)

∼=
ϕS

// S

Proof. It is straightforward to prove that ev1 is an isomorphism of Q-semigroups.
By Proposition 4.10, the endpoint map of a Cu-semigroup is an isomorphism.
Thus, the endpoint maps ϕS and ϕCu[N,S] are isomorphisms. By definition, σN,S =

ϕCu[N,S]. Since ev1 is an isomorphism, so is τ(ev1). By Proposition 4.8 the endpoint

map is natural, which implies that the diagram is commutative. �

Definition 6.9. Given a Cu-semigroup S, we let iS : S → JN, SK be the Cu-mor-
phism that under the identification

Cu
(
S, JN, SK

) ∼= Cu
(
S ⊗ N, S

)

corresponds to the natural isomorphism rS : S ⊗ N → S.

We leave the proof of the following result to the reader.

Proposition 6.10. Let S be a Cu-semigroup. Then the map iS : S → JN, SK from
Definition 6.9 is an isomorphism. The inverse of iS is ev1 ◦σN,S, where ev1 is

evaluation at 1 as in Lemma 6.8, and where σN,S : JN, SK → Cu[N, S] denotes the

endpoint map from Definition 5.6. Moreover, we have iS = (rS)∗ ◦ dS,N.
6.2. External tensor product.

6.11. Let Sk and Tk be Cu-semigroups, and let ϕk : Sk → Tk be (generalized) Cu-
morphisms, for k = 1, 2. Recall from Paragraph 2.17 that the map ϕ1 × ϕ2 : S1 ×
S2 → T1 ⊗ T2, defined by

(ϕ1 × ϕ2)(s1, s2) := f1(s1)⊗ f2(s2),

for s1 ∈ S1 and s2 ∈ S2, is (generalized) Cu-bimorphism. We denote the induced
(generalized) Cu-morphism by ϕ1 ⊗ ϕ2 : S1 ⊗ S2 → T1 ⊗ T2 and we call the map
ϕ1 ⊗ ϕ2, as customary, the tensor product of ϕ1 and ϕ2.

Next, we generalize this construction and define an external tensor product be-
tween elements of internal-homs.

Definition 6.12. Given Cu-semigroups S1, S2, T1 and T2, we define the external
tensor product map ⊠ : JS1, T1K⊗ JS2, T2K → JS1⊗S2, T1⊗T2K as the Cu-morphism
that under the identification

Cu
(
JS1, T1K ⊗ JS2, T2K, JS1 ⊗ S2, T1 ⊗ T2K

)

∼= Cu
(
JS1, T1K ⊗ JS2, T2K ⊗ S1 ⊗ S2, T1 ⊗ T2

)
,

corresponds to the composition

(eS1,T1 ⊗ eS2,T2) ◦ (idJS1,T1K ⊗σ ⊗ idS2),

where σ : JS2, T2K ⊗ S1 → S1 ⊗ JS2, T2K denotes the flip isomorphism.
Given x1 ∈ JS1, T1K and x2 ∈ JS2, T2K, we denote the image of x1⊗x2 under this

map by x1 ⊠ x2, and we call it the external tensor product of x1 and x2.

Remark 6.13. Let ϕ1 : S1 → T1 and ϕ2 : S2 → T2 be Cu-morphisms. Using
Proposition 5.12, we identify ϕ1 with a compact element in JS1, T1K, and similarly
for ϕ2. It is easy to see that the element ϕ1 ⊠ ϕ2 from Definition 6.12 agrees with
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the compact element in JS1⊗S2, T1⊗T2K that is identified with the tensor product
map ϕ1 ⊗ ϕ2 : S1 ⊗ S2 → T1 ⊗ T2 from Paragraph 6.11.

Notice that there is a certain ambiguity with the notation ϕ1⊗ϕ2, in that it may
refer to a Cu-morphism (identified with a compact element in JS1 ⊗ S2, T1 ⊗ T2K),
and also to an element in JS1, T1K⊗ JS2, T2K. However, the precise meaning will be
clear from the context.

Proposition 6.14. Let S1, S2, T1 and T2 be Cu-semigroups, and let f = (fλ)λ and
g = (gλ)λ be paths in Cu[S1, T1] and Cu[S2, T2], respectively. For each λ, consider
the generalized Cu-morphism fλ ⊗ gλ : S1 ⊗ S2 → T1 ⊗ T2. Then (fλ ⊗ gλ)λ is a
path in Cu[S1 ⊗ S2, T1 ⊗ T2] and we have

[f ]⊠ [g] = [(fλ ⊗ gλ)λ].

Proof. To show that (fλ ⊗ gλ)λ is a path, let λ′, λ ∈ IQ satisfy λ′ < λ. To show
that fλ′ ⊗ gλ′ ≺ fλ ⊗ gλ, let t

′, t ∈ S1 ⊗ S2 satisfy t′ ≪ t. By properties of the
tensor product in Cu, we can choose n ∈ N, elements a′k, ak ∈ S1 and b′k, bk ∈ S2

satisfying a′k ≪ ak and b′k ≪ bk for k = 1, . . . , n, and such that

t′ ≤
n∑

k=1

a′k ⊗ b′k, and

n∑

k=1

ak ⊗ bk ≤ t.

We have fλ′ ≺ fλ and gλ′ ≺ gλ, and therefore fλ′(a′k) ≪ fλ(ak) and gλ′(b′k) ≪
gλ(bk) for k = 1, . . . , n. Using this at the third step we deduce that

(fλ′ ⊗ gλ′)(t′) ≤ (fλ′ ⊗ gλ′)

(
n∑

k=1

a′k ⊗ b′k

)

=

n∑

k=1

fλ′(a′k)⊗ gλ′(b′k)

≪
n∑

k=1

fλ(ak)⊗ gλ(bk)

= (fλ ⊗ gλ)

(
n∑

k=1

ak ⊗ bk

)
≤ (fλ ⊗ gλ)(t),

as desired.
Thus, given paths p = (pλ)λ and q = (qλ)λ in Cu[S1, T1] and Cu[S2, T2], respec-

tively, then (pλ ⊗ qλ)λ is a path in Cu[S1 ⊗ S2, T1 ⊗ T2]. Moreover, it is tedious
but straightforward to check that the map JS1, T1K× JS2, T2K → JS1 ⊗ S2, T1 ⊗ T2K
that sends a pair ([p] ⊗ [q]) to [(pλ ⊠ qλ)λ] is a well-defined Cu-bimorphism. We
let α : JS1, T1K ⊗ JS2, T2K → JS1 ⊗ S2, T1 ⊗ T2K be the induced Cu-morphism.

To show that [f ]⊠[g] = [(fλ⊗gλ)λ], we will prove that the external tensor product
⊠ and the map α correspond to the same Cu-morphism under the bijection

Cu
(
JS1, T1K ⊗ JS2, T2K, JS1 ⊗ S2, T1 ⊗ T2K

)

∼= Cu
(
JS1, T1K ⊗ JS2, T2K ⊗ S1 ⊗ S2, T1 ⊗ T2

)

from Theorem 5.10.
Let p = (pλ)λ and q = (qλ)λ be paths in Cu[S1, T1] and Cu[S2, T2], respectively,

and let si be elements in Si, for i = 1, 2. By definition of ⊠ (see Definition 6.12
and Notation 6.3), we have

⊠̄([p]⊗ [q]⊗ s1 ⊗ s2) = [p](s1)⊗ [q](s2) = p1(s1)⊗ q1(s2).
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Using Theorem 5.10 at the first step, we obtain that

ᾱ([p]⊗ [q]⊗ s1 ⊗ s2) = σS1⊗S2,T1⊗T2(α([p]⊗ [q]))(s1 ⊗ s2)

= σS1⊗S2,T1⊗T2([(pλ ⊗ qλ)λ])(s1 ⊗ s2)

= (p1 ⊗ q1)(s1 ⊗ s2) = p1(s1)⊗ q1(s2).

It follows that ⊠ = α and therefore

[f ]⊠ [g] = ⊠([f ]⊗ [g]) = α([f ]⊗ [g]) = [(fλ ⊗ gλ)λ],

as desired. �

The following result shows that the external tensor product is associative.

Proposition 6.15. Let S1, S2, T1, T2, P1 and P2 be Cu-semigroups, let x ∈ JS1, S2K,
y ∈ JT1, T2K, and let z ∈ JP1, P2K. For k = 1, 2, we identify (Sk ⊗ Tk) ⊗ Pk with
Sk ⊗ (Tk ⊗ Pk) using the natural isomorphism from the monoidal structure of Cu
(see Paragraph 2.17). Then

(x⊠ y)⊠ z = x⊠ (y ⊠ z).

Proof. Given f ∈ Cu[S1, S2], g ∈ Cu[T1, T2] and h ∈ Cu[P1, P2], it is straightfor-
ward to check that

(f ⊗ g)⊗ h = f ⊗ (g ⊗ h),

as generalized Cu-morphisms S1 ⊗ T1 ⊗ P1 → S2 ⊗ T2 ⊗ P2. The result follows by
applying Proposition 6.14. �

Problem 6.16. Study the order-theoretic properties of the external tensor product
map ⊠ : JS1, T1K ⊗ JS2, T2K → JS1 ⊗ S2, T1 ⊗ T2K. In particular, when is this map
an order-embedding, when is it surjective?

6.3. Composition product.

Definition 6.17. Given Cu-semigroups S, T and P , we define the composition
product

◦ : JT, P K ⊗ JS, T K → JS, P K
as the Cu-morphism that under the identification

Cu
(
JT, P K ⊗ JS, T K, JS, P K

) ∼= Cu
(
JT, P K ⊗ JS, T K ⊗ S, P

)

corresponds to the composition eT,P ◦(idJT,P K ⊗ eS,T ). Given x ∈ JS, T K and y ∈
JT, P K, we denote the image of y ⊗ x under the composition product by y ◦ x.

Given x ∈ JS, T K, we let x∗ : JT, P K → JS, P K be given by x∗(y) := y ◦ x for
y ∈ JT, P K. Analogously, given y ∈ JT, P K, we let y∗ : JS, T K → JS, P K be given by
y∗(x) := y ◦ x for x ∈ JS, T K.
Proposition 6.18. Let S, T and P be Cu-semigroups, and let f = (fλ)λ and
g = (gλ)λ be paths in Cu[S, T ] and Cu[T, P ], respectively. For each λ, consider the
generalized Cu-morphism gλ ◦ fλ : S → P . Then (gλ ◦ fλ)λ is a path in Cu[S, P ]
and

[g] ◦ [f ] = [(gλ ◦ fλ)λ].
Proof. It is easy to check that (gλ ◦ fλ)λ is a path. Moreover, it is tedious but
straightforward to check that the map JT, P K × JS, T K → JS, P K that sends a pair
([p], [q]) to [(qλ◦pλ)λ] is a well-defined Cu-bimorphism. We let α : JT, P K⊗JS, T K →
JS, P K be the induced Cu-morphism.

To show that [g] ◦ [f ] = [(gλ ⊗ fλ)λ], we will prove that the composition product
◦ and the map α correspond to the same Cu-morphism under the bijection

Cu
(
JT, P K ⊗ JS, T K, JS, P K

) ∼= Cu
(
JT, P K ⊗ JS, T K ⊗ S, P

)



38 RAMON ANTOINE, FRANCESC PERERA, AND HANNES THIEL

from Theorem 5.10.
Let p = (pλ)λ and q = (qλ)λ be paths in Cu[S, T ] and Cu[T, P ], respectively,

and let s ∈ S. Set p1 := sup
λ<1

pλ and q1 := sup
λ<1

qλ. By definition, we have

◦̄([q] ⊗ [p]⊗ s) = eT,P ◦(idJT,P K ⊗ eS,T )([q] ⊗ [p]⊗ s)

= eT,P ([q]⊗ eS,T ([p]⊗ s))

= eT,P ([q]⊗ p1(s))

= q1(p1(s)).

On the other hand, using Theorem 5.10 at the first step, we obtain that

ᾱ([q]⊗ [p]⊗ s) = σS,P (α([q] ⊗ [p]))(s)

= σS,P ([(qλ ◦ pλ)λ])(s)
= (q1 ◦ p1)(s)
= q1(p1(s)).

It follows that ◦ = α and therefore

[g] ◦ [f ] = ◦([g]⊗ [f ]) = α([g]⊗ [f ]) = [(gλ ⊗ fλ)λ],

as desired. �

Note that, in Proposition 6.18, the composition product of two Cu-morphisms,
viewed as compact elements in the internal-hom set, is the usual composition of
morphisms as maps.

The following result shows that the composition product is associative and that
the identity element idS ∈ Cu(S, S) ⊆ JS, SK acts as a unit for the composition
product (as expected). It follows that JS, SK and JT, T K are (not necessarily com-
mutative) Cu-semirings and that JS, T K has a natural left JS, SK- and right JT, T K-
semimodule structure; see Propositions 7.1 and 7.7 in the next section.

Proposition 6.19. Let S, T, P and Q be Cu-semigroups, let x ∈ JS, T K, y ∈ JT, P K,
and let z ∈ JP,QK. Then

(z ◦ y) ◦ x = z ◦ (y ◦ x).
Further, for the identity Cu-morphisms idS ∈ Cu(S, S) and idT ∈ Cu(T, T ), we
have

idT ◦x = x = x ◦ idS .

Proof. Given f ∈ Cu[S, T ], g ∈ Cu[T, P ] and h ∈ Cu[P,Q], it is straightforward to
check that

(h ◦ g) ◦ f = h ◦ (g ◦ f),
in Cu[S,Q]. The result follows by applying Proposition 6.18. The statement about
the composition with idS and idT follows also directly from Proposition 6.18. �

Next we show that the composition product is compatible with the evaluation
map in the expected way. It will follow later that the evaluation map eSS : JS, SK ⊗
S → S defines a natural left JS, SK-semimodule structure on S; see Proposition 7.3.

Lemma 6.20. Let S, T and P be Cu-semigroups, let x ∈ JS, T K, and let y ∈ JT, P K.
Then

σS,P (y ◦ x) = σT,P (y) ◦ σS,T (x).



ABSTRACT BIVARIANT CUNTZ SEMIGROUPS 39

Proof. Let f = (fλ)λ be a path in Cu[S, T ] representing x, and let g = (gλ)λ
be a path in Cu[T, P ] representing y. Let s ∈ S. By Proposition 6.18, we have
y ◦ x = [(gλ ◦ fλ)λ]. Using this at the first step, we obtain that

σS,P (y ◦ x)(s) = sup
λ∈IQ

(gλ ◦ fλ)(s) = sup
µ∈IQ

gµ

(
sup
λ∈IQ

fλ(s)

)
= σT,P (y) (σS,T (x)(s)) ,

as desired. �

By combining Lemma 6.20 with Proposition 6.6, we obtain:

Proposition 6.21. Let S, T and P be Cu-semigroups, let x ∈ JS, T K, let y ∈ JT, P K,
and let s ∈ S. Then

(y ◦ x)(s) = y(x(s)).

Moreover, for the identity Cu-morphism idS ∈ Cu(S, S), we have idS(s) = s.

The following result shows that the external tensor product and the composition
product commute.

Proposition 6.22. Let S1, S2, T1 and T2 be Cu-semigroups. Given xk ∈ JSk, TkK
and yk ∈ JTk, PkK for k = 1, 2, we have

(y2 ⊠ y1) ◦ (x2 ⊠ x1) = (y2 ◦ x2)⊠ (y1 ◦ x1).

Proof. Let f (k) = (f
(k)
λ )λ be a path in Cu[Sk, Tk] representing xk, for k = 1, 2, and

let g(k) = (g
(k)
λ )λ be a path in Cu[Tk, Pk] representing yk, for k = 1, 2. Given λ, it

is straightforward to check that

(g
(2)
λ ⊗ g

(1)
λ ) ◦ (f (2)

λ ⊗ f
(1)
λ ) = (g

(2)
λ ◦ f (2)

λ )⊗ (g
(1)
λ ◦ f (1)

λ ).

Using this at the second step, and using Proposition 6.14 and Proposition 6.18 at
the first and last step, we obtain that

(y2 ⊠ y1) ◦ (x2 ⊠ x1) =
[(
(g

(2)
λ ⊗ g

(1)
λ ) ◦ (f (2)

λ ⊗ f
(1)
λ )
)
λ

]

=
[(
(g

(2)
λ ◦ f (2)

λ )⊗ (g
(1)
λ ◦ f (1)

λ )
)
λ

]

= (y2 ◦ x2)⊠ (y1 ◦ x1),
as desired. �

6.4. Implementation of the adjunction using unit and counit.

Proposition 6.23. Let S, T and P be Cu-semigroups. Then the bijection

Cu
(
S, JT, P K

) ∼= Cu
(
S ⊗ T, P

)

from Theorem 5.10 identifies a Cu-morphism f : S → JT, P K with

eT,P ◦(f ⊗ idT ) : S ⊗ T
f⊗idT−−−−→ JT, P K ⊗ T

eT,P−−−→ P.

Conversely, a Cu-morphism g : S ⊗ T → P is identified with

g∗ ◦ dS,T : S
dS,T−−−→ JT, S ⊗ T K g∗−→ JT, P K.

In particular, we have

f = (eT,P ◦(f ⊗ idT ))∗ ◦ dS,T , and g = eT,P ◦((g∗ ◦ dS,T )⊗ idT ).

Proof. Let f : S → JT, P K be a Cu-morphism. Under the natural bijection from
Theorem 5.10, f corresponds to the Cu-morphism f̄ : S ⊗ T → P with

f̄(s⊗ t) = σT
P (f(s))(t),
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for a simple tensor s⊗ t ∈ S ⊗ T . On the other hand, we have

(eT,P ◦(f ⊗ idT ))(s ⊗ t) = eT,P (f(s)⊗ t) = σT,P (f(s))(t),

for a simple tensor s ⊗ t ∈ S ⊗ T . Thus f̄ and eT,P ◦(f ⊗ idT ) agree on simple
tensors, and consequently f̄ = eT,P ◦(f ⊗ idT ), as desired.

Let g : S ⊗ T → P be a Cu-morphism. Set α := g∗ ◦ dS,T . Under the natural
bijection from Theorem 5.10, α corresponds to the Cu-morphism ᾱ : S ⊗ T → P
with

ᾱ(s⊗ t) = σT,P (α(s))(t),

for a simple tensor s ⊗ t ∈ S ⊗ T . It is straightforward to verify that σT,P ◦
g∗ = g∗ ◦ σT,S⊗T . (See Proposition 6.25.) Using this at the third step, and using
Corollary 6.4 at the fourth step, we deduce that

ᾱ(s⊗ t) = σT,P (α(s))(t) = (σT,P ◦ g∗ ◦ dS,T )(s)(t)
= (g∗ ◦ σT,S⊗P ◦ dS,T )(s)(t) = g(s⊗ t),

for every simple tensor s⊗ t ∈ S ⊗ T . Thus, ᾱ = g, as desired. �

Applying the previous result to the identity morphisms, we obtain:

Corollary 6.24. Let S and T be Cu-semigroups. Then

idJS,T K = (eTS )∗ ◦ dSJS,T K, and idS⊗T = eS⊗T
T ◦(dTS ⊗ idT ).

6.5. Functorial properties. Next, we study the functorial properties of the end-
point map, the unit map, and the counit map.

Proposition 6.25. Let S, S′, T and T ′ be Cu-semigroups, let x ∈ JS, T K, and let
f : T → T ′ and g : S′ → S be Cu-morphisms. Then

σS,T ′ ◦ f∗ = f∗ ◦ σS,T , and σS,T ◦ g∗ = g∗ ◦ σS′,T ,

which means that the following diagrams commute:

JS, T K f∗ //

σS,T

��

JS, T ′K
σS,T ′

��

JS′, T K g∗
//

σS′,T

��

JS, T K
σS,T

��
Cu[S, T ]

f∗ // Cu[S, T ′] Cu[S′, T ]
g∗
// Cu[S, T ].

Proof. This follows from the definition of the abstract bivariant Cu-semigroup (see
Definition 5.3) and the naturality of the endpoint map (see Proposition 4.8). �

The proofs of the following results are straightforward and left to the reader.

Proposition 6.26. Let S1, S2 and T be Cu-semigroups, and let f : S1 → S2 be a
Cu-morphism. Then

dS2,T ◦f = (f ⊗ idT )∗ ◦ dS1,T ,

which means that the left diagram below commutes.
Analogously, if S, T1 and T2 are Cu-semigroups, and if g : T1 → T2 is a Cu-mor-

phism, then

g ◦ eS,T1 = eS,T2 ◦(g∗ ⊗ idS),

which means that the right diagram below commutes.

S1

dS1,T //

f

��

JT, S1 ⊗ T K
(f⊗idT )∗
��

JS, T1K ⊗ S
eS,T1 //

g∗⊗idS

��

T1

g

��
S2

dS2,T

// JT, S2 ⊗ T K JS, T2K ⊗ S eS,T2

// T2.
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6.6. General form of unit and product. Given Cu-semigroups S and T , we
consider the unit map dS,T : S → JT, S⊗T K from Definition 6.1. Next, we introduce
a more general form of the unit map.

Definition 6.27. Let S, T and T ′ be Cu-semigroups. We define the general left unit
map S ⊗ JT ′, T K → JT ′, S ⊗ T K as the Cu-morphism that under the identification

Cu
(
S ⊗ JT ′, T K, JT ′, S ⊗ T K

) ∼= Cu
(
S ⊗ JT ′, T K ⊗ T ′, S ⊗ T

)

corresponds to the map idS ⊗ eT ′,T . Given a ∈ S and x ∈ JT ′, T K, we denote the
image of a⊗ x under this map by ax.

Analogously, we define the general right unit map JT ′, T K ⊗ S → JT ′, T ⊗ SK as
the Cu-morphism that under the identification

Cu
(
JT ′, T K⊗ S, JT ′, T ⊗ SK

) ∼= Cu
(
JT ′, T K ⊗ S ⊗ T ′, T ⊗ S

)

corresponds to the map (eT ′,T ⊗ idS) ◦ (idJT ′,T K ⊗σ), where σ denotes the flip iso-
morphism. Given a ∈ S and x ∈ JT ′, T K, we denote the image of x⊗ a under this
map by xa.

We leave the proofs of the following results to the reader.

Proposition 6.28. Let S, T and T ′ be Cu-semigroups, let a be an element in S,
and let x be an element in JT ′, T K. Let iS : S → JN, SK be the isomorphism from
Definition 6.9, and let lT ′ : N ⊗ T ′ → T ′ and rT ′ : T ′ ⊗ N → T ′ be the natural
Cu-isomorphism. Then

ax = (iS(a)⊗ x) ◦ l−1
T ′ = dS,T (a) ◦ x = (idS ⊗x) ◦ dS,T ′(a).

and analogously xa = (x ⊗ iS(a)) ◦ r−1
T ′ . Further, for the unit map dS,T : S →

JT, S ⊗ T K, we have dS,T (a) = a(idT ) for every a ∈ S.

Lemma 6.29. Let S, T, T ′ and T ′′ be Cu-semigroups. Given x ∈ JT, T ′K, y ∈
JT ′, T ′′K, and a ∈ S, we have

a(y ◦ x) = (idS ⊗y) ◦ ax = ay ◦ x, and (y ◦ x)a = (idS ⊗y) ◦ xa = ya ◦ x,
in JT, S ⊗ T ′′K and JT, T ′′ ⊗ SK, respectively.

Given another Cu-semigroup S′ and a′ ∈ S′, we have

a′(ax) = a′⊗ax, and (xa)a′ = xa⊗a′ ,

in JT, S′ ⊗ S ⊗ T ′K and JT, T ′ ⊗ S ⊗ S′K, respectively.
6.30. As in KK-theory, one can define a ‘general form of the product’ which
generalizes both the composition product and the external tensor product; see
[Bla98, Section 18.9, p.180f].

Let P , S1, S2, T1 and T2 be Cu-semigroups. We let

⊠P : JS1 ⊗ P, T1K ⊗ JS2, P ⊗ T2K → JS1 ⊗ S2, T1 ⊗ T2K,
be the Cu-morphism that under the identification

Cu
(
JS1 ⊗ P, T1K ⊗ JS2, P ⊗ T2K, JS1 ⊗ S2, T1 ⊗ T2K

)

∼= Cu
(
JS1 ⊗ P, T1K ⊗ JS2, P ⊗ T2K ⊗ S1 ⊗ S2, T1 ⊗ T2

)

corresponds to the composition

(eS1⊗P,T1 ⊗ idT2) ◦ (idJS1⊗P,T1K ⊗ eS2,P⊗T2) ◦ (idJS1⊗P,T1K ⊗σJS2,P⊗T2K,S1
⊗ idS2),

where σJS2,P⊗T2K,S1
denotes the flip isomorphism.

Given x ∈ JS1 ⊗ P, T1K and y ∈ JS2, P ⊗ T2K, we have

x⊠P y = (x⊠ idT2) ◦ (idS1 ⊠y).
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Specializing to the case P = N, we obtain the external tensor product, after
applying the usual isomorphisms S1 ⊗ N ∼= S1 and N⊗ T2 ∼= T2.

Specializing to the case T2 = S1 = N, we obtain the composition product, after
applying the natural isomorphisms N⊗ P ∼= P ∼= P ⊗ N.

Remark 6.31. The order of the product in KK-theory is reversed from the one
used here for the category Cu, that is, given C∗-algebras A,B and D, the product
in KK-theory is as a bilinear map

KK(A,D)×KK(D,B) → KK(A,B);

see [Bla98, Section 18.1, p166] and [JT91, Before Lemma 2.2.9, p.73].
We have mainly two reasons for our choice of ordering for the composition prod-

uct in the category Cu: First, the composition product extends the usual composi-
tion of Cu-morphisms and our choice is compatible with the standard notation for
composition of maps. Second, our ordering agrees with that of the composition law
of internal-homs in closed categories; see [Kel05, Section 1.6, p.15].

7. Cu-semirings and Cu-semimodules

In Subsection 7.1, we first recall the definitions of Cu-semirings and of left and
right Cu-semimodules. Given a Cu-semigroup S, the abstract bivariant Cuntz
semigroup JS, SK has a natural Cu-semiring structure; see Proposition 7.1. In
Example 7.9 we will see that JS, SK is noncommutative in general.

The evaluation map eS,S : JS, SK⊗S → S defines a natural left JS, SK-semimodule
structure on S; see Proposition 7.3. Given a Cu-semigroup R with compact unit
and a Cu-semigroup T with left R-action, for every Cu-semigroup S the bivariant
Cu-semigroup JS, T K has a natural left R-action; see Proposition 7.6. It follows
that JS, T K has a natural left action by the Cu-semiring JT, T K, and a compatible
right JS, SK-action; see Proposition 7.7.

In Subsection 7.2, we study the connection between a Cu-semiring R and the
associated Cu-semiring JR,RK. We show that there is a natural multiplicative Cu-
morphism πR : R → JR,RK that is an order-embedding; see Definition 7.10 and
Theorem 7.13 and Proposition 7.17. If the unit of R is compact, then πR is unital.
Thus, R naturally is a (unital) sub-Cu-semiring of JR,RK.

In Subsection 7.3, we study the situation for solid Cu-semirings. We first show
that a (not necessarily commutative) Cu-semiring R is solid whenever the map
µ : R ⊗ R → R (induced by the multiplication in R) is injective; see Lemma 7.20.
In Theorem 7.25, we relate the property of R being solid with other natural prop-
erties of Cu-semirings. In particular, a Cu-semiring R with compact unit is solid
if and only if the evaluation map eR,R : JR,RK ⊗ R → R is an isomorphism; see
Remark 7.27.

If R is a solid Cu-semiring with compact unit, and if T is an R-stable Cu-semi-
group, then JR ⊗ S, T K ∼= JS, T K for any S; see Proposition 7.30. In particular, we
have JR, T K ∼= T for every R-stable Cu-semigroup T ; see Corollary 7.31.

7.1. The Cu-semiring JS, SK and the Cu-semibimodule JS, T K. A (unital) Cu-
semiring is a Cu-semigroup R together with a Cu-bimorphism R×R→ R, denoted
by (r1, r2) 7→ r1r2, and a distinguished element 1 ∈ R, called the unit of R, such
that r1(r2r3) = (r1r2)r3 and r1 = r = 1r for all r, r1, r2, r3 ∈ R. This concept was
introduced and studied in [APT14, Chapter 7], where it is further assumed that
the product in R be commutative. We will not make this assumption here.

We often let µ : R ⊗ R → R denote the Cu-morphism induced by the multipli-
cation in a Cu-semiring R.
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Proposition 7.1. Let S be a Cu-semigroup. Then JS, SK is a Cu-semiring with
product given by the composition product ◦ : JS, SK⊗ JS, SK → JS, SK, and with unit
element given by the identity map idS ∈ JS, SK.
Proof. It follows directly from Proposition 6.19 that the composition product on
JS, SK is associative, and that idS is a unit element for JS, SK. �
Remark 7.2. Let S be a Cu-semigroup. The identity map idS : S → S is a Cu-
morphism. Therefore, the unit of the Cu-semiring JS, SK is compact.

In Example 7.9, we will see that JS, SK is noncommutative in general.

Given a Cu-semiring R, a left Cu-semimodule over R is a Cu-semigroup S to-
gether with a Cu-bimorphim R× S → S, denoted by (r, a) 7→ ra, such that for all
r1, r2 ∈ R and a ∈ S, we have (r1r2)a = r1(r2a) and 1a = a. We also say that S has
a left action on R if S is a left Cu-semimodule over R. Right Cu-semimodules are
defined analogously. If R1 and R2 are Cu-semirings, we say that a Cu-semigroup S
is a (R1, R2)-Cu-semibimodule if it has a left R1-action and a right R2-action that
satisfy r1(ar2) = (r1a)r2 for all r1 ∈ R1, r2 ∈ R2 and a ∈ S.

We refer the reader to [APT14, Chapter 7] for a discussion on commutative
Cu-semirings and their Cu-semimodules.

Proposition 7.3. Let S be a Cu-semigroup. Then eS,S : JS, SK ⊗ S → S defines a
left action of JS, SK on S.

Proof. It follows directly from Proposition 6.21 that the action of JS, SK on S is
associative and that idS acts as a unit. �

Assume that R is a Cu-semiring with a compact unit. Next, we show that a left
action of R on a Cu-semigroup T induces a left action of R on JS, T K, for every
Cu-semigroup S.

7.4. Let R be a Cu-semiring with multiplication given by µ : R⊗R→ R, let T be
a Cu-semigroup with a left R-action α : R⊗ T → T , and let S be a Cu-semigroup.
Consider the general left unit map R ⊗ JS, T K → JS,R ⊗ T K from Definition 6.27.
Postcomposing with α∗ : JS,R ⊗ T K → JS, T K we obtain a Cu-morphism that we
denote by αS :

αS : R⊗ JS, T K → JS,R ⊗ T K α∗−−→ JS, T K.
Let r ∈ R and x ∈ JS, T K. We denote αS(r⊗x) by rx. Applying Proposition 6.28

at the third step, we have

rx = αS(r ⊗ x) = α∗ ◦ (rx) = α∗ ◦ dR,T (r) ◦ x.
Lemma 7.5. We retain the notation from Paragraph 7.4. Let r ∈ R, and let
f = (fλ)λ be a path in Cu[S, T ]. Choose a path (rλ)λ in R with endpoint r. For
each λ, let rλfλ : S → T be given by s 7→ rλfλ(s). Then (rλfλ)λ is a path in
Cu[S, T ] and

r[f ] = [(rλfλ)λ].

Proof. Using the equation at the end of Paragraph 7.4 at the first step, using
Proposition 6.2 at the second step, and using Proposition 6.18 at the third step, we
deduce that

r[f ] = α∗ ◦ dR,T (r) ◦ [f ] = α∗ ◦ [(rλ ⊗ )λ] ◦ [(fλ)λ]
= α∗ ◦ [(rλ ⊗ fλ( ))λ] = [(rλfλ)λ],

as desired. �
Proposition 7.6. Let R be a Cu-semiring with compact unit, let S be a Cu-semi-
group, and let T be a Cu-semigroup with a left R-action α : R⊗ T → T . Then the
map αS : R⊗ JS, T K → JS, T K from Paragraph 7.4 defines a left R-action on JS, T K.
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Proof. Let r, r′ ∈ R and x ∈ JS, T K. Choose a path f = (fλ)λ in Cu[S, T ] repre-
senting x. Choose paths (rλ)λ and (r′λ)λ in R with endpoints r and r′, respectively.
Then (rλr

′
λ)λ is a path in R with endpoint rr′. Using Lemma 7.5 at the first, third

and last step, we deduce that

(rr′)x = [((rλr
′
λ)fλ)λ] = [(rλ(r

′
λfλ))λ] = r[(r′λfλ)λ] = r(r′x),

as desired.
Let 1 denote the unit element of R. For every f ∈ Cu[S, T ], we have 1f = f .

Since 1 is compact, the constant function with value 1 is a path in R with endpoint
1. Using Lemma 7.5 at the first step, we deduce that

1x = [(1fλ)λ] = [(fλ)λ] = x,

as desired. �

Proposition 7.7. Let S and T be Cu-semigroups. Then the composition prod-
uct ◦ : JT, T K ⊗ JS, T K → JS, T K defines a left action of the Cu-semiring JT, T K on
JS, T K. Analogously, we obtain a right action of JS, SK on JS, T K. These actions
are compatible and thus JS, T K is a (JT, T K, JS, SK)-Cu-semibimodule.

Proof. This follows directly from the associativity of the composition product; see
Proposition 6.19. �

Remark 7.8. Let S and T be Cu-semigroups. By Proposition 7.3, the evaluation
map eT,T : JT, T K ⊗ T → T from Definition 6.5 defines a left action of JT, T K on T .
By Proposition 7.6, this induces a left action of JT, T K on JS, T K. This action agrees
with that from Proposition 7.7.

Example 7.9. Given k ∈ N, we let Nk
denote the Cuntz semigroup of the C∗-al-

gebra Ck. We think of an element v ∈ Nk
as a tuple (v1, . . . , vk)

T with k entries

in N. We let e(1), . . . , e(k) denote the ‘standard basis vectors’ of Nk
, such that

v =
∑k

i=1 vie
(i).

Let k, l ∈ N. Let us show that JNk
,NlK can be identified with Ml,k(N), the

l × k-matrices with entries in N, with order and addition defined entrywise. Thus,

as a Cu-semigroup, JNk
,NlK is isomorphic to Nkl

. However, the presentation as
matrices allows to expatiate the composition product.

First, let ϕ : Nk → Nl
be a generalized Cu-morphism. For each j ∈ {1, . . . , k},

we consider the vector ϕ(e(j)) in Nl
and we let x1,j , . . . , xl,j denote its coefficients.

This defines a matrix x = (xi,j)i,j with l× k entries in N. It is then readily verfied
that the coefficients of ϕ(v) are obtained by multiplication of the matrix x with the
vector of coefficients of v. We identify ϕ with the associated matrix x in Ml,k(N).

Let ϕ, ψ : Nk → Nl
be generalized Cu-morphisms with associated matrixes x and

y in Ml,k(N). It is straightforward to check that ϕ ≺ ψ if and only if xi,j is finite

and xi,j ≤ yi,j for each i, j. It follows that JNk
,NlK can be identified with Ml,k(N),

with addition and order defined entrywise.
Given k, l,m ∈ N, consider the composition product

JNl
,NmK ⊗ JNk

,NlK → JNk
,NmK.

After identifying JNk
,NlK with Ml,k(N), identifying JNl

,NmK with Mm,l(N), and
identifying JNk

,NmK with Mm,k(N), the composition product is given as a map

Mm,l(N)⊗Ml,k(N) →Mm,k(N).
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It is straightforward to check that this map is induced by matrix multiplication.

In particular, the Cu-semiring JNk
,NkK can be identified with Mk,k(N). Thus, for

k ≥ 2, the Cu-semiring JNk
,NkK is not commutative.

The left action of the Cu-semiring JNl
,NlK = Ml,l(N) on the Cu-semigroup

JNk
,NlK = Ml,k(N) is given by matrix multiplication, and similarly for the right

action of JNk
,NkK =Mk,k(N).

7.2. The embedding of a Cu-semiring R in JR,RK. Given a Cu-semiring R,
recall that µ : R ⊗ R → R denotes the Cu-morphism induced by multiplication in
R.

Definition 7.10. Given a Cu-semiring R, we let πR : R → JR,RK be the Cu-mor-
phism that corresponds to µ under the identification

Cu
(
R, JR,RK

) ∼= Cu
(
R ⊗R,R

)
.

Remark 7.11. The Cu-morphism πR plays the role of the left regular representa-
tion. In a similar way, one might define an analogue of the right regular represen-
tation as the Cu-morphism π̄R : R → JR,RK corresponding to µσ, where σ is the
flip automorphism.

Lemma 7.12. We have πR = µ∗ ◦ dR,R and eR,R ◦(πR ⊗ idR) = µ.

Proof. The first equality follows from Proposition 6.23. By Proposition 6.26, we
have eR,R ◦(µ∗⊗idR) = µ◦eR,R⊗R. Further, we have eR,R⊗R ◦(dR,R ⊗ idR) = idR⊗R

by Corollary 6.24 that . Using these equations at the second and third step, we
deduce that

eR,R ◦(πR ⊗ idR) = eR,R ◦((µ∗ ◦ dR,R)⊗ idR)

= eR,R ◦(µ∗ ⊗ idR) ◦ (dR,R ⊗ idR)

= µ ◦ eR,R⊗R ◦(dR,R ⊗ idR)

= µ,

as desired. �
Theorem 7.13. Let R be a Cu-semiring. Then the map πR : R → JR,RK from
Definition 7.10 is multiplicative. If the unit element of R is compact, then πR is
unital.

Proof. Let M : JR,RK⊗ JR,RK → JR,RK denote the composition map. We need to
show that M ◦ (πR ⊗ πR) = πR ◦ µ.

Given r and s ∈ R, choose paths r = (rλ)λ and s = (sλ) in (R,≪) with
endpoints r and s, respectively. For each λ, let fλ : R → R and gλ : R → R be the
generalized Cu-morphism given by left multiplication with rλ and sλ, respectively.
By Proposition 6.2, we have dR,R(r) = [(rλ ⊗ )λ], where rλ ⊗ : R → R⊗R is the
map sending t ∈ R to rλ⊗t. We also have µ◦(rλ⊗ ) = fλ. Since πR = µ∗◦dR,R by
Lemma 7.12, it follows that πR(r) = [(fλ)λ]. Likewise, we deduce πR(s) = [(gλ)λ].
By Proposition 6.18, we obtain M(πR(r)⊗ πR(s)) = [(fλ ◦ gλ)λ].

As the product in R is associative, the composition fλ ◦ gλ is the generalized
Cu-morphism hλ defined by left multiplication with rλsλ. Notice that (rλsλ)λ is
a path in (R,≪) with endpoint rs. Therefore, πR(rs) = [(hλ)λ]. Altogether, this
implies

M(πR(r)⊗ πR(s)) = [(fλ ◦ gλ)λ] = [(hλ)λ] = πR(µ(r ⊗ s)),

as desired.
To show the second statement, let us assume that the unit 1R of R is compact.

Then the constant function with value 1R is a path in (R,≪) with endpoint 1R.
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Then it follows easily as in the first part of the proof that πR(1R) = [(idR)λ] =
idR. �
Definition 7.14. Given a Cu-semiringR, we let εR : JR,RK → R be the generalized
Cu-morphism given by

εR([f ]) = sup
λ
fλ(1),

for a path f = (fλ)λ in Cu[R,R].

Remark 7.15. Let σR,R : JR,RK → Cu[R,R] denote the endpoint map as intro-
duced in Definition 5.6, and let 1 denote the unit of R. Then εR(x) = σR,R(x)(1)
for every x ∈ JR,RK.
Lemma 7.16. We have εR ◦ πR = idR.

Proof. Let r be an element in R. Proceeding as in Theorem 7.13 we know that,
if (rλ)λ is a path in (R,≪) with endpoint r and fλ : R → R is given by left
multiplication by rλ, then πR(r) = [(fλ)λ]. Given r ∈ R, we deduce that

εR(πR(r)) = εR((fλ)λ) = sup
λ
fλ(1) = sup

λ
(rλ1) = r,

as desired. �
Proposition 7.17. Let R be a Cu-semiring. Then πR : R → JR,RK is a multi-
plicative order-embedding. Thus, in a natural way, R is a sub-semiring of JR,RK.
If the unit of R is compact, then R is even a unital sub-semiring of JR,RK. (One
could call this a sub-Cu-semiring.)

Proof. By Lemma 7.16, we have εR ◦ πR = idR, which implies that πR is an order-
embedding. By Theorem 7.13, πR is a (unital) multiplicative Cu-morphism. �

Recall that P = [0,∞] is isomorphic to the Cuntz semigroup of the Jacelon-
Razak algebra. The usual multiplication of real numbers extends to P. This gives
P the structure of a commutative Cu-semiring.

Example 7.18. Recall that M1 denotes the Cuntz semigroup of a II1-factor; see
Example 4.14 and Proposition 4.16. Note that M1 is the disjoint union of compact
elements [0,∞) and nonzero soft elements (0,∞]. We identify P = [0,∞] with the
sub-Cu-semigroup of soft elements in M1. We define a Cu-morphism ̺ : M1 → P ⊆
M1 by fixing all soft elements and by sending a compact to the soft element of the
same value.

We define a product on M1 as follows: We equip the compact part [0,∞) with
the usual multiplication of real numbers, and similarly for the product in (0,∞].
The product of any element with 0 is 0. Given a nonzero compact element a and a
nonzero soft element b, their product is defined as the soft element ab := ̺(a)b.

This gives M1 the structure of a commutative Cu-semiring. Moreover, we may
identify P with the (nonunital) sub-Cu-semiring of soft elements in M1. The map
̺ : M1 → P is multiplicative. One can show that the map πM1 : M1 → JM1,M1K is
an isomorphism.

Example 7.19. We have JP,PK ∼= M1. The map πP : P → JP,PK embeds P as the
sub-Cu-semiring of soft elements in M1. In particular, πP is not unital.

Proof. We have JP,PK ∼=M1 by Proposition 5.14. By Proposition 7.17, πP is a mul-

tiplicative order-embedding. Note that every element of P is soft. By Lemma 2.11,
a generalized Cu-morphism maps soft elements to soft elements. Thus, the image
of πP is contained in the soft elements of M1. It easily follows that πP identifies P
with the soft elements in M1. Since the unit of M1 is compact, it also follows that
πP is not unital. �
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7.3. Solid Cu-semirings. Throughout this subsection, R denotes a (not neces-
sarily commutative) Cu-semiring, with multiplication given by the Cu-morphism
µ : R⊗R → R.

Recall from [APT14, Definition 7.1.5] that R is said to be solid if µ : R⊗R → R
is an isomorphism. In [APT14], all Cu-semirings were required to be commutative,
and thus a solid Cu-semiring was assumed to be commutative. Next, we show that
this assumption is not necessary since a Cu-semiring is automatically commutative
as soon as µ is injective.

Lemma 7.20. Let R be a (not necessarily commutative) Cu-semiring such that
µ : R⊗R→ R is injective. Then R is commutative and µ is an isomorphism (and
consequently R is solid.)

Proof. To show that R is commutative, let a, b ∈ R. We have

µ(1⊗ a) = a = µ(a⊗ 1),

and therefore 1 ⊗ a = a ⊗ 1 in R ⊗ R. Consider the shuffle Cu-morphism α : R ⊗
R⊗R→ R⊗R⊗R that satisfies α(x⊗ y⊗ z) = y⊗ x⊗ z for every x, y, z ∈ R. It
follows that

1⊗ b⊗ a = α(b ⊗ 1⊗ a) = α(b⊗ a⊗ 1) = a⊗ b⊗ 1

in R ⊗R ⊗R. By the associativity of the product in R, this implies that ba = ab,
as desired.

Thus, if µ is injective, then R is commutative and 1 ⊗ a = a ⊗ 1 in R ⊗ R, for
every a ∈ R. Using [APT14, Proposition 7.1.6], this implies that R is solid. �

7.21. Let R be a solid Cu-semiring, and let S be a Cu-semigroup. It was shown in
[APT14, Corollary 7.1.8] that any two R-actions on S agree. (Since R is commuta-
tive, we need not distinguish between left and right R-actions.) Thus, S either has
a (unique) R-action, or it does not admit any R-action. Thus, having an R-action
is a property rather than an additional structure for S, which justifies the following
definition.

Definition 7.22. Let R be a solid Cu-semiring, and let S be a Cu-semigroup. We
say that S is R-stable if S has an R-action.

Remark 7.23. In [APT14], we said that S ‘has R-multiplication’ if it has an R-
action. Given a solid ring R, it was shown [APT14, Theorem 7.1.12] that S is
R-stable if and only if S ∼= R⊗ S.

Recall that a C∗-algebra A is said to be Z-stable if A ∼= Z⊗A, and similarly one
defines being UHF-stable and O∞-stable. Thus, the terminology of being ‘R-stable’
for Cu-semigroups is analogous to the terminology used for C∗-algebras.

The following fact about solid Cu-semirings will be used in the sequel.

Proposition 7.24 ([APT14, Proposition 7.1.6]). Let R be a solid Cu-semiring,
and let S and T be R-stable Cu-semigroups. Then every generalized Cu-morphism
ϕ : S → T is automatically R-linear, that is, we have ϕ(ra) = rϕ(a) for all r ∈ R
and a ∈ S.

Theorem 7.25. Given a Cu-semiring R, consider the following statements:

(1) R is solid, that is, µ : R⊗R → R is an isomorphism.
(2) The map eR,R : JR,RK ⊗R → R is an isomorphism.
(3) The map πR ⊗ idR : R⊗R → JR,RK ⊗R is an isomorphism.
(4) The map πR : R→ JR,RK is an isomorphism.
(5) The map εR : JR,RK → R is an isomorphism.
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Then the following implications hold:

(1) ⇐ (2) ⇒ (3) ⇐ (4) ⇔ (5).

Further, if R satisfies (1) and (3), then it satisfies (2). The Cu-semiring P sat-
isfies (1),(2) and (3), but not (4); see Example 7.19. The Cu-semiring M1 from
Example 4.14 satisfies (3) and (4) but neither (1) nor (2); see Example 7.18.

Proof. By Lemma 7.16, we have εR◦πR = idR. It follows that εR is an isomorphism
if and only if πR is, which shows the equivalence of (4) and (5). We also deduce
that

(εR ⊗ idR) ◦ (πR ⊗ idR) = idR ⊗ idR .

Therefore, the map πR ⊗ idR is always an order-embedding. It is obvious that (4)
implies (3).

To show that (2) implies (1), assume that eR,R is an isomorphism. Then the
composition eR,R ◦(πR ⊗ idR) is an order-embedding. By Lemma 7.12, we have
eR,R ◦(πR ⊗ idR) = µ, which shows that µ is an order-embedding. By Lemma 7.20,
this implies that R is solid.

Using again that eR,R ◦(πR⊗idR) = µ, if any two of the three maps eR,R, πR⊗idR
and µ are isomorphisms, then so is the third. This shows that (2) implies (3), and
that the combination of (1) and (3) implies (2). �

Question 7.26. Given a solid Cu-semiring R, is the evaluation map eR,R : JR,RK⊗
R → R an isomorphism?

Remark 7.27. Let R be a solid Cu-semiring. The answer to Question 7.26 is ‘yes’
in the following cases:

(1) If the unit of R is compact; see Remark 7.32 below.
(2) If R satisfies (O5) and (O6). This follows from the classification of solid

Cu-semirings with (O5) obtained in [APT14, Theorem 8.3.13] which shows
that each such Cu-semiring is either isomorphic to P or has a compact unit.
In either case, Question 7.26 has a positive answer.

In particular, a Cu-semiring R with compact unit is solid if and only if the
evaluation map eR,R : JR,RK ⊗R → R is an isomorphism.

Theorem 7.28. Let R be a solid Cu-semiring with compact unit, and let S and T
be Cu-semigroups. Assume that T is R-stable. Then JS, T K is R-stable, and hence
JS, T K ∼= R⊗ JS, T K.
Proof. Since the unit of R is compact, it follows from Proposition 7.6 that JS, T K
has a left R-action. Since R is solid, this implies that JS, T K is R-stable. �

Lemma 7.29. Let R be a solid Cu-semiring, let S and T be Cu-semigroups, and
let f, g : R ⊗ S → T be a generalized Cu-morphisms. Assume that T is R-stable.
Then f ≤ g if and only if f(1⊗ a) ≤ g(1⊗ a) for all a ∈ S.

If the unit of R is compact, then f ≺ g if and only if f(1 ⊗ a′) ≪ g(1 ⊗ a) for
all a′, a ∈ S with a′ ≪ a.

Proof. The forward implications are obvious. To show the converse of the first
statement, assume that f(1 ⊗ a) ≤ g(1 ⊗ a) for all a ∈ S. To verify f ≤ g, it is
enough to show that f(r ⊗ a) ≤ g(r ⊗ a) for all r ∈ R and a ∈ S. Note that R⊗ S
and T are R-stable. Since R is solid, every generalized Cu-morphism between R-
stable Cu-semigroups is automatically R-linear; see Proposition 7.24. Thus, given
r ∈ R and a ∈ S, we obtain

f(r ⊗ a) = f(r(1 ⊗ a)) = rf(1⊗ a) ≤ rg(1 ⊗ a) = g(r ⊗ a),

as desired.
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To show the converse of the second statement, assume that f(1⊗ a′) ≪ g(1⊗ a)
for all a′, a ∈ S with a′ ≪ a. To verify f ≺ g, it is enough to show that f(r′⊗a′) ≪
g(r ⊗ a) for all r′, r ∈ R and a′, a ∈ S with r′ ≪ r and a′ ≪ a. Given such
r′, r, a′ and a, we use at the second step that multiplication in R preserves the joint
way-below relation, to deduce

f(r′ ⊗ a′) = r′f(1⊗ a′) ≪ rg(1 ⊗ a) = g(r ⊗ a),

as desired. �
Proposition 7.30. Let R be a solid Cu-semiring with compact unit, and let S and
T be Cu-semigroups. Assume that T is R-stable. Let α : S → R⊗S be the Cu-mor-
phism given by α(a) = 1 ⊗ a, for a ∈ S. Then the induced map α∗ : JR ⊗ S, T K →
JS, T K is an isomorphism.

Proof. Consider the map α∗
Q : Cu[R ⊗ S, T ] → Cu[S, T ] given by sending a gener-

alized Cu-morphism f : R ⊗ S → T to the generalized Cu-morphism α∗
Q(f) given

by
α∗
Q(f)(a) = f(1⊗ a),

for a ∈ S. It follows from Lemma 7.29 that α∗
Q is an isomorphism of Q-semigroups.

Since α∗ is obtained by applying the functor τ to α∗
Q (see Paragraph 5.5), it

follows that α∗ is an isomorphism, as desired. �
Corollary 7.31. Let R be a solid Cu-semiring with compact unit, and let T be an
R-stable Cu-semigroup. Then there is a natural isomorphism JR, T K ∼= T .

Proof. Applying Proposition 7.30 for S := N, we obtain JR, T K ∼= JN, T K. By
Proposition 6.10, we have a natural isomorphism JN, T K ∼= T . �
Remark 7.32. Let R be a solid Cu-semiring with compact unit. Since R is R-
stable itself, it follows from Corollary 7.31 that JR,RK ∼= R. It follows that the
evaluation map eR,R : JR,RK ⊗R → R is an isomorphism.

For the solid Cu-semiring P, we have seen in Proposition 5.14 that JP,PK ∼=M1 ≇
P. This shows that Proposition 7.30 and Corollary 7.31 cannot be generalized to
solid Cu-semirings without compact unit.

8. Applications to C∗-algebras

Given C∗-algebras A and B, recall that a map ϕ : A → B is called completely
positive contractive (abbreviated c.p.c.) if it is linear, contractive and for each n ∈ N
the amplification to n× n-matrices ϕ ⊗ id : A⊗Mn → B ⊗Mn is positive. Every
c.p.c. map ϕ : A→ B induces a contractive, positive map ϕ⊗ id : A⊗K → B ⊗K.

Two elements a and b in a C∗-algebra are called orthogonal, denoted a ⊥ b, if
ab = a∗b = ab∗ = a∗b∗ = 0. If a and b are self-adjoint, then a ⊥ b if and only
if ab = 0. A c.p.c. map ϕ is said to have order-zero if for all a, b ∈ A we have
that a ⊥ b implies ϕ(a) ⊥ ϕ(b). We denote the set of c.p.c. order-zero maps by
cpc⊥(A,B).

The concept of c.p.c. order-zero maps was studied by Winter and Zacharias,
[WZ09], who also gave a useful structure theorem for such maps. We present their
result in a slightly different way.

Theorem 8.1 (Winter and Zacharias, [WZ09, Theorem 3.3]). Let A and B be
C∗-algebras, and let ϕ : A→ B be a c.p.c. order-zero map. Set C := C∗(ϕ(A)), the
sub-C∗-algebra of B generated by the image of ϕ. Then there exist a unital ∗-ho-
momorphism πϕ : Ã → M(C), from the minimal unitization of A to the multiplier
algebra of C, such that

ϕ(ab) = ϕ(a)πϕ(b) = πϕ(a)ϕ(b),
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for all a, b ∈ Ã.
In particular, the element h := ϕ(1Ã) is contractive, positive, it commutes with

the image of πϕ, and we have ϕ(a) = hπϕ(a) = πϕ(a)h for all a ∈ A.

This structure theorem has many interesting applications. For instance, it im-
plies that c.p.c. order-zero maps induce generalized Cu-morphisms. Let us recall
some details. Let ϕ : A → B be a c.p.c. order-zero map. Then the amplification
ϕ⊗ id : A⊗K → B⊗K is a c.p.c. order-zero map as well; see [WZ09, Corollary 4.3].
Define Cu[ϕ] : Cu(A) → Cu(B) by

Cu[ϕ]([a]) := [(ϕ⊗ id)(a)],

for a ∈ (A ⊗ K)+. Then Cu[ϕ] is a generalized Cu-morphism; see [WZ09, Corol-
lary 4.5] and [APT14, 2.2.7, 3.2.5]. We thus obtain a natural map

cpc⊥(A,B) → Cu[Cu(A),Cu(B)].

Below, we will show that this map factors through JCu(A),Cu(B)K.
8.2. The theorem of Winter and Zacharias also allows us to define functional cal-
culus for order-zero maps: Let ϕ : A → B be a c.p.c. order-zero map. Choose C,
πϕ and h as in Theorem 8.1. Given a continuous function f : [0, 1] → [0, 1] with
f(0) = 0, we define f(ϕ) : A → B by f(ϕ)(a) := f(h)πϕ(a) for a ∈ A; see [WZ09,
Corollary 4.2].

In particular, this allows us to define ‘cut-downs’ of c.p.c. order-zero maps: Given
ε > 0, we may apply the function ( − ε)+ to ϕ. To simplify notation, we set
ϕε := (ϕ− ε)+. Thus, for a ∈ A we have

ϕε(a) = (h− ε)+πϕ(a).

Theorem 8.3. Let A and B be C∗-algebras, and let ϕ : A → B be a c.p.c. order-
zero map. For each ε > 0, let fε : Cu(A) → Cu(B) be the generalized Cu-morphism
induced by the c.p.c. order-zero map ϕε : A → B. Then f = (f1−λ)λ is a path
in Cu[Cu(A),Cu(B)]. Moreover, the endpoint of f is Cu[ϕ], the generalized Cu-
morphism induced by ϕ.

Proof. We have already observed that every fε is a generalized Cu-morphism. To
verify that (f1−λ)λ is a path, we need to show that fε′ ≺ fε for ε′ > ε > 0. Since
fε+δ = (fε)δ, it is enough to show the following:

Claim: We have fε ≺ f . To show the claim, let a, b ∈ (A ⊗ K)+ such that
[a] ≪ [b] in Cu(A). Recall that two positive elements x and y in a C∗-algebra
satisfy [x] ≪ [y] if and only if there exists δ > 0 with [x] ≤ [(y − δ)+]. Thus, we
can choose δ > 0 such that [a] ≤ [(b − δ)+]. Note that if x and y are commuting
positive elements in a C∗-algebra, then (x− ε)+(y − δ)+ ≤ (xy − εδ)+. Using this
at the last step, we deduce that

ϕε(a) - ϕε((b− δ)+) = (h− ε)+πϕ((b− δ)+)

= (h− ε)+(πϕ(b)− δ)+ ≤ (hπϕ(b)− εδ)+ = (ϕ(b) − εδ)+,

which implies that

fε([a]) = [ϕε(a)] ≪ [ϕ(b)] = f([b]),

as desired. This proves the claim and shows that f is a path.
Let f be the generalized Cu-morphism induced by ϕ. To show that the endpoint

of f is f , let a ∈ (A⊗K)+. We have

lim
λ→1

ϕ1−λ(a) = lim
ε→0

ϕε(a) = lim
ε→0

(h− ε)+πϕ(a) = hπϕ(a) = ϕ(a).

This implies that supλ<1 fλ([a]) = f([a]) in Cu(A), as desired. �
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Definition 8.4. Let A and B be C∗-algebras, and let ϕ : A→ B be a c.p.c. order-
zero map. We let Cu(ϕ) be the element in JCu(A),Cu(B)K that is the class of the
path (Cu[ϕ1−λ])λ as constructed in Theorem 8.3.

Remark 8.5. Let ϕ : A → B be a ∗-homomorphism. In the definition of the
functor Cu: C∗ → Cu we denoted Cu(ϕ) as the Cu-morphism Cu(A) → Cu(B)
given by Cu(ϕ)([a]) = [(ϕ⊗ id)(a)] for a ∈ (A⊗K)+.

On the other hand, in Definition 8.4 we defined Cu(ϕ) as the class of the path
(Cu[ϕ1−λ])λ as constructed in Theorem 8.3. Given ε > 0, it is easy to verify that
ϕε = (1 − ε)+ϕ. It follows that Cu[ϕε] = Cu[ϕ] for ε ∈ [0, 1). Thus, the path
(Cu[ϕ1−λ])λ is constant with value Cu[ϕ].

We identify a Cu-morphism f : Cu(A) → Cu(B) with the compact element in
JCu(A),Cu(B)K given by the constant path with value f ; see Proposition 5.12. It
follows that the notation Cu(ϕ) for a ∗-homomorphism ϕ is unambiguous.

8.6. The functor C∗ → Cu defines a map

Cu: Hom(A,B) → Cu(Cu(A),Cu(B)).

By Definition 8.4 we obtain a well-defined map

cpc⊥(A,B) → JCu(A),Cu(B)K.
As noticed in Remark 8.5, these assignemnts are compatible, which means that the
following diagram commutes:

cpc⊥(A,B)
Cu // JCu(A),Cu(B)K

Hom(A,B)
Cu //?�

OO

Cu(Cu(A),Cu(B))
?�

OO

Problem 8.7. Study the properties of the map cpc⊥(A,B) → JCu(A),Cu(B)K. In
particular, when is this map surjective?

Example 8.8. Recall that W denotes the Jacelon-Razak algebra. We know that
Cu(W) ∼= P. By Proposition 5.14, we have JP,PK ∼= M1, and recall that M1 =
[0,∞) ⊔ (0,∞]. We claim that the map

cpc⊥(W ,W) → JCu(W),Cu(W)K ∼= JP,PK ∼=M1

is surjective.
The idea is to choose a unital, simple, AF-algebra A with unique tracial state

and a suitable element x ∈ (A⊗K)+ and consider the map W → W ⊗A, given by
y 7→ y ⊗ x, followed by a ∗-isomorphism W ⊗A ∼= W .

Let A be a unital, simple AF-algebra with unique tracial state. We claim that
W ⊗ A ∼= W . By construction, W is an inductive limit of the building blocks
considered by Razak in [Raz02]. Since A is an AF-algebra, W ⊗A is an inductive
limit of Razak building blocks as well. Since A is simple and has a unique tracial
state, W and W ⊗ A have the same invariant used for the classification [Raz02,
Theorem 1.1], which gives the desired ∗-isomorphism W ⊗A ∼= W .

Given a ∈M1, let us define a c.p.c. order-zero map W → W corresponding to a.
We distinguish two cases:

Case 1: Assume that a is nonzero and soft. Let U denote the universal UHF-
algebra. We have Cu(U) ∼= Q+ ⊔ (0,∞]. We consider a as a soft element in
Cu(U)soft = [0,∞]. Choose xa ∈ (U ⊗ K)+ with Cuntz class a. (For example, let
xa be a positive element with spectrum [0, 1] - ensuring that its Cuntz class is soft
- and such that for the unique normalized extended trace τ : (U ⊗K)+ → [0,∞] we

have limn→∞ τ(x
1/n
a ) = a.)
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Consider the map ϕa : W → W⊗U given by ϕa(y) = y⊗xa for y ∈ W . It is easy
to see that ϕa is a c.p.c. order-zero map. Let ψ : W ⊗U → W be an isomorphism.
Then ψ ◦ ϕa is a c.p.c. order-zero map W → W with the desired properties.

Case 2: Assume that a is compact. We claim that there exists a unital, simple
AF-algebra A with unique normalized trace τ : (A⊗K)+ → [0,∞] and a projection
pa ∈ (A⊗K)+ with τ(pa) = a. Indeed, if a is rational, then we can take A = U . If a
is irrational, then we use that Z+aZ is a dimension group for the order and addition
inherited as a subgroup of R. Moreover, Z+ aZ has a unique normalized state. It
follows that there is a unique unital AF-algebra A such that (K0(A),K0(A)+, [1])
is isomorphic to (Z + aZ, (Z + aZ) ∩ [0,∞), 1). By construction, there exists a
projection pa ∈ A⊗K with τ(pa) = a.

Define ϕa : W → W ⊗ A by ϕa(y) = y ⊗ pa for y ∈ W . Then ϕa is a ∗-ho-
momorphism. Postcomposing with a ∗-isomorphism W ⊗ Rθ

∼= W , we obtain a
∗-homomorphism W → W with the desired properties.

Example 8.9. With similar methods as in Example 8.8, one can show that the
map cpc⊥(A,B) → JCu(A),Cu(B)K is surjective whenever A and B are any of the
following C∗-algebras: a UHF-algebra of infinite type, the Jiang-Su algebra, the
Jacelon-Razak algebra W .

Remark 8.10. In [BTZ16, Definition 2.27], Bosa, Tornetta and Zacharias intro-
duced a bivariant Cuntz semigroup, denoted WW (A,B), as suitable equivalence
classes of c.p.c. order-zero maps A⊗K → B ⊗K. It would be interesting to study
if the map from Problem 8.7 factors through WW (A,B), that is, if the following
diagram can be completed to be commutative:

cpc⊥(A,B) //

��

JCu(A),Cu(B)K

WW (A,B)

66♠♠♠♠♠♠

.

Observe that, in order for this to be satisfied, one needs to show that, given ϕ and
ψ in cpc⊥(A,B) such that ϕ - ψ in the sense of [BTZ16] then, for ǫ > 0, there is
δ > 0 such that Cu[ϕ1−ǫ] ≺ Cu[ψ1−δ].
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