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THE TORSION INDEX OF A p-COMPACT GROUP

JAUME AGUADÉ

1. Introduction and statement of results

The torsion index of a compact connected Lie group was defined by Grothendieck in
1958 ([10]) and has been investigated by several authors ([14], [6], [15], etc.). Recently,
the computation of the torsion indices of all simply connected compact Lie groups
has been completed (see [16]). Since we are going to work at a single prime p, instead
of the torsion index of a Lie group G we want to consider its p-primary part tp(G).
We summarize the properties of tp(G) which are relevant to the present work in the
following proposition (Zp denotes the ring of p-adic integers).

Theorem 1.1. Let p be a prime and let G be a compact connected Lie group with a
maximal torus T and corresponding Weyl group W . The positive integer tp(G) has
the following properties:

(TI1) If A is a finite abelian p-subgroup of G, then A has a subgroup of index dividing
tp(G) which is contained in a conjugate of T .

(TI2) tp(G) kills the kernel and the cokernel of the homomorphism

H∗(BG; Zp) → H∗(BT ; Zp)
W .

(TI3) H∗(G/T ; Zp) is torsion free and concentrated in even degrees ≤ N = dim(G)−
rank(G), with HN(G/T ; Zp) ∼= Zp. Then, tp(G) is the order of the cokernel of
HN(BT ; Zp) → HN(G/T ; Zp).

(TI4) If p is not a torsion prime for G, then tp(G) = 1.

Notice that the property (TI3) can be taken as a definition of the (p-primary)
torsion index tp(G). The other properties are well known and can be found in [15]
which provides proofs or references for all of them. Actually, the properties above
are usually stated using H∗(−; Z) and t(G) =

∏
p tp(G) instead of H∗(−; Zp) and

tp(G) but it is easy to see that both formulations are indeed equivalent. For property
(TI2) one should notice that H∗(BT ; Zp)

W = H∗(BT ; Z)W ⊗ Zp. This follows from
exactness of −⊗Zp and the fact that the elements invariant under W can be viewed
as the kernel of the homomorphism ⊕g∈W (1− g).

The purpose of this paper is to extend the theorem above to connected p-compact
groups ([8]) and to compute the torsion indices in all cases. We prove:

Theorem 1.2. Let p be a prime and let X be a connected p-compact group with
maximal torus T and corresponding Weyl group W . There is an integer tp(X) such
that
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(1) The properties (TI1), (TI2), (TI3), (TI4) in theorem 1.1 hold after replacing
G with X.

(2) If X is exotic, then tp(X) = 1 for p odd and t2(X) = 2.

Here we use the work exotic with the same meaning as in [1]: A p-compact group
X is exotic if the associated pseudoreflection representation of the Weyl group of X
over the p-adic field is irreducible and does not come from a reflection group over Z.

Section 2 deals with the (easier) odd prime case and we show that if we define
tp(X) = 1 for any exotic X then properties (TI1), (TI2), (TI3), (TI4) hold true.
The hardest part consist in computing the torsion index of the only exotic 2-compact
group that we (following [12]) denote G3 (other authors denote it as DI(4)). We
need a comprehensive review of the cohomology of G3 and BG3 (section 3) and
some computations on the cohomology of the exotic homogeneous space G3/ Spin(7)
(section 4) before we can prove that t2(G3) = 2. Finally, we prove theorem 1.2 in
section 6.

2. The odd prime case

The classification theorem for p-compact groups ([2]), tells us that any connected
p-compact group X splits uniquely as a product X ∼= G∧

p ×X1 where G is a compact
connected Lie group and X1 is a product of exotic p-compact groups. Notice that
the splitting is as p-compact groups and not just as spaces. This splitting implies
that it is enough to prove theorem 1.2 for each exotic p-compact group, since it is
already known to be true for the (p-completions of) compact connected Lie groups.
Let us discus this in some more detail. If theorem 1.2 holds for the p-compact groups
X1 and X2, let X = X1 × X2 and let us define tp(X) = tp(X1) tp(X2). We need to
check that properties (TI1) to (TI4) hold for X if they hold for X1 and X2. (TI4) is
trivial and (TI3) is straightforward. To prove (TI2) let us observe that the kernel of
γ : H∗(BX; Zp) → H∗(BT ; Zp)

W is equal to the torsion elements in H∗(BX; Zp). If
X is of Lie type, this is well known (cf. [9]). If X is exotic and p = 2 (i.e. X = G3)
then this is assertion 4 in [12] and if p is odd, this is proven in [1]. Then, it is clear that
tp(X1) tp(X2) kills the kernel of γ. It is obvious that tp(X1) tp(X2) kills the cokernel
of γ as well. Finally, (TI1) follows easily since we can use the theory of kernels of
homomorphisms between p-compact groups which is developed in [8], section 7.

Let us assume now p odd and let X be an exotic p-compact group. These objects
are very well understood. In particular, they satisfy the following properties (see
[1]). Let T and W denote a maximal torus of X and the corresponding Weyl group,
respectively. Then,

(1) X is simply connected and center free and H∗(X; Zp) is torsion free.
(2) The natural map BT → BX induces an isomorphism

H∗(BX; Zp) ∼= H∗(BT ; Zp)
W .

In particular, H∗(BX; Zp) is concentrated in even degrees.
(3) H∗(X/T ; Zp) is a free Zp-module concentrated in even degrees. Moreover (see

[13], th. 7.5.1) H∗(X/T ; Zp)⊗Q is a Poincaré duality algebra with fundamental
class in degree dim(X)−rank(X). Actually, as a W -module, H∗(X/T ; Zp)⊗Q
coincides with the regular representation of W .
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We also need another property of p-compact groups (which holds also for p = 2)
that follows from the work in [5].

(4) If X is any p-compact group such that H∗(BX; Fp) is concentrated in even
degrees, then any finite abelian p-subgroup of X is conjugated to a subgroup
of the maximal torus of X. In particular, this holds for any product of exotic
p-compact groups for p odd.

Theorem 1.2 for p odd follows immediately from all these properties of p-compact
groups. �

3. The 2-compact group G3 and its maximal torus

In this section we recollect several properties of G3 that we need in the forthcoming
sections. We state these properties without proof because either they can be found
in the papers [7], [12], [4], [11] or they follow from straightforward computations that
are left to the reader.

As it is well known, G3 is an exotic connected 2-compact group of rank three whose
Weyl group W is the reflection group number 24 in the Shephard-Todd list of finite
complex reflection groups. Its existence was stablished by Dwyer and Wilkerson in
[7]. We remind that some authors call this 2-compact group DI(4) but we follow the
notation used in [12]. As an abstract group, W is isomorphic to Z/2Z×GL3(F2) and
for a maximal torus T of G3, there is a basis {ε1, ε2, ε3} of H2(BT ; Z2) such that the
action of W on H∗(BT ; Z2) is given by the pseudoreflections

s1 =

−1 −ᾱ 1
0 1 0
0 0 1

 , s2 =

 1 0 0
−α −1 1
0 0 1

 , s3 =

1 0 0
0 1 0
1 1 −1

 .

where α, ᾱ ∈ Z2 are the roots of x2 − x + 2 chosen in such a way that α is odd and
ᾱ is even.

G3 has Spin(7) as a 2-compact subgroup of maximal rank. This means that there
is a map φ : B Spin(7)∧2 → BG3 whose homotopical fibre is F2-finite. It is natural to
denote this fibre by G3/ Spin(7). The restriction of φ to a maximal torus of Spin(7)
is a maximal torus of G3.

There is a subgroup V ⊂ Spin(7) (explicitly described in [7]) which is an elementary
abelian 2-group of rank four and such that the homomorphisms

H∗(BG3; F2)
φ∗−→ H∗(B Spin(7); F2)

k∗−→ H∗(BV ; F2) ∼= F2[V
∗]

are monomorphisms. Moreover, the image of (φk)∗ coincides with the rank four
Dickson algebra which is the algebra of invariants of H∗(BV ; F2) under the action
of the full linear group GL(V ∗), and the image of k∗ coincides with the algebra of
invariants H∗(BV ; F2)

H where H ⊂ GL(V ∗) can be described, in some appropriate
basis of V ∗, as the set of matrices with first row equal to (1, 0, 0, 0). These algebras
of invariants are well known (also as algebras over the Steenrod algebra) and we have
isomorphisms (subscripts denote degrees)

H∗(BG3; F2) ∼= F2[c8, c12, c14, c15],

H∗(B Spin(7); F2) ∼= F2[d4, d6, d7, d8],
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where the generators ci and di can be explicitly described. In particular, we can
see that φ∗ is given by φ∗(c8) = d2

4 + d8, φ∗(c12) = d2
6 + d4d8, φ∗(c14) = d2

7 + d6d8,
φ∗(c15) = d7d8. Sq1 vanishes on d4, d7, d8, while Sq1(d6) = d7.

As said before, a maximal torus T of Spin(7) is also a maximal torus of G3. We
have maps

BT∧2
i−→ B Spin(7)∧2

φ−→ BG3

and we can see the Weyl group W1 of Spin(7) as a subgroup of W , namely W1 =
〈s1, s2, s1s3s2s1s2s3s1〉. It is known that the homomorphism

i∗ : H∗(B Spin(7); Z2) → H∗(BT ; Z2)
W1

is surjective and its kernel coincides with the ideal of torsion elements. The integral
invariants of W1 are computed in [4]. They turn out to form a polynomial algebra on
generators of degrees 4, 8, 12:

H∗(BT ; Z2)
W1 ∼= Z2[u4, u8, u12].

Choosing an appropriate basis {x1, x2, A} of H2(BT ; Z2), these generators are

u4 = (1/2)(x2
1 + x2

2 + x2
3)

u8 = (1/16)(x4
1 + x4

2 + x4
3 − 2x2

1x
2
2 − 2x2

1x
2
3 − 2x2

2x
2
3)

u12 = x2
1x

2
2x

2
3

where we have used the notation x3 = 2A− x1 − x2 and one can check that in spite
of the denominators, these polynomials belong to Z2[x1, x2, A].

The generators u4, u8 and u12 have a rather simple form as polynomials on x1, x2, A,
but this basis of H2(BT ; Z2) dos not coincide with the basis {ε1, ε2, ε3} that we have
used to describe the action of W on H∗(BT ; Z2). The basis change is given by the
matrix 0 −ᾱ/2 −(1 + α)/2

1 0 −(1 + α)/2
0 ᾱ α

 ∈ GL3(Z2).

Using this matrix we can express the generators u4, u8, u12 as polynomials in ε1, ε2, ε3

and so we have an explicit description of the homomorphism

Z2[u4, u8, u12] = H∗(B Spin(7); Z2)/Torsion → H∗(BT ; Z2) = Z2[ε1, ε2, ε3].

Finally, we want to use this to describe the homomorphism

F2[d4, d6, d7, d8] = H∗(B Spin(7); F2)
i∗−→ H∗(BT ; F2) = F2[ε1, ε2, ε3].

In the Bockstein spectral sequence for B Spin(7) we have E2 = E∞ = F2[d̄4, d̄8, d̄2
6]

and the surjection

j : H∗(B Spin(7); Z2)/Torsion → E∞
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is given by j(u4) = d̄4, j(u8) = d̄8, j(u12) = d̄2
6. From this it is straightforward to

perform the computations that yield

i∗(d4) = ε2
1 + ε1ε2 + ε2

2

i∗(d6) = Sq2i∗(d4) = ε2
1ε2 + ε1ε

2
2

i∗(d7) = 0

i∗(d8) = ε1ε2ε3(ε1 + ε2 + ε3) + ε2
3(ε1 + ε2 + ε3)

2.

4. The exotic homogeneous space G3/ Spin(7)

In this section we want to investigate the cohomology of the exotic homogeneous
space G3/ Spin(7). The computations presented here are probably known to experts,
but it may be worthwhile to work them out here in some detail.

Let us consider the fibration G3/ Spin(7)
ρ−→ B Spin(7)∧2 → BG3 and let V ⊂

Spin(7) denote the elementary abelian 2-group of rang 4 considered in the preceding
section. To simplify the notation, let us write S = H∗(BV ; F2). Then, we have
H∗(B Spin(7); F2) = SH and H∗(BG3; F2) = SG for G = GL4(F2).

The computation of H∗(G3/ Spin(7); F2) is best worked out with the Eilenberg-
Moore spectral sequence

TorH∗(BG3;F2)(H
∗(B Spin(7); F2), F2) ⇒ H∗(G3/ Spin(7); F2).

Here the key observation is that H∗(B Spin(7); F2) = SH is a free module over
H∗(BG3; F2) = SG because of the following classic argument. S is an integral exten-
sion of SG, hence SH is also an integral extension of SG and, since SH is a finitely
generated algebra, we obtain that SH is a finitely generated SG-module. But both SH

and SG are polynomial algebras and we can apply [3] v 5.5 or [13] 6.7.1 to conclude
that SH is SG-free.

Hence the Eilenberg-Moore spectral sequence collapses to an isomorphism

H∗(G3/ Spin(7); F2) ∼= F2[d̄4, d̄6, d̄7]
/
(d̄6

2
+ d̄4

3
, d̄7

2
+ d̄4

2
d̄6, d̄4

2
d̄7)

where d̄4, d̄6, d̄7 are the images of d4, d6, d7 ∈ H∗(B Spin(7); F2), respectively. It is
rather easy to completely work out the algebra structure of H∗(G3/ Spin(7); F2). We
obtain the following.

(1) The Poincaré series of H∗(G3/ Spin(7); F2) is

1 + t4 + t6 + t7 + t8 + t10 + t11 + t12 + t13 + t14 + t16 + t17 + t18 + t20 + t24

and the Euler characteristic is 7 = [H : W ].
(2) An additive basis for H∗(G3/ Spin(7); F2) is given by{

d̄4
i
, i = 0, . . . , 6, d̄6, d̄7, d̄4d̄6, d̄4d̄7, d̄6d̄7, d̄4

2
d̄6, d̄4d̄6d̄7, d̄4

3
d̄6

}
.

(3) H∗(G3/ Spin(7); F2) is a Poincaré duality algebra with top class d̄4
6

(see [13]
6.5).

(4) The Bockstein spectral sequence of H∗(G3/ Spin(7); F2) collapses after the
second term, i.e. H∗(G3/ Spin(7); Z2) has only torsion of order 2. We have

H∗(G3/ Spin(7); Z2)
/
Torsion ∼= Z2[ā]/ā7
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and

H∗(G3/ Spin(7); Z2) ∼= Z2[ā, c̄]
/
(ā7, c̄3, ā2c̄, 2c̄).

In particular, the top class in H∗(G3/ Spin(7); Z2) is d̄4
6

in dimension 24 and
it is in the image of

φ∗ : H∗(B Spin(7); Z2) → H∗(G3/ Spin(7); Z2).

5. The torsion index of G3

To compute the torsion index of the 2-compact group G3 we need a lemma on
Poincaré duality in fibrations. I’m grateful to Aniceto Murillo for some helpful con-
versations on this subject. For this lemma we use the following notation. Let O
denote the ring of integers or the ring of p-adic integers. Cohomology is taken with
coefficients in O and we assume that all spaces are of finite type over O. We say that
η ∈ Hn(X) is an orientation class if H i(X) = 0 for i > n, Hn(X) ∼= O, and η is a
generator of Hn(X).

Lemma 5.1. Let F
j−→ E

π−→ B be a fibration of 1-connected spaces and assume that
ηF ∈ Hm(F ) and ηB ∈ Hn(B) are orientation classes. Assume α ∈ Hm(E) is such
that j∗(α) = ληF for some λ 6= 0. Then there is an orientation class ηE for E such
that α · π∗(ηB) = ληE.

Proof. This follows easily from the cohomology spectral sequence of the fibration

F
j−→ E

π−→ B. First of all, it is clear that H i(E) = 0 for i > n + m while Hn+m(E) =
En,m
∞ = En,m

2
∼= O. Recall that the cohomology spectral sequence is multiplicative

in the sense that (up to some signs which would not play any role here) the product
in E2 induced by the products in H∗(B) and H∗(F ) yields a product in each Er,
2 ≤ r ≤ ∞, in such a way that the product in E∞ is compatible with the product in
H∗(E).

At the E2 level we have that ηE := ηF·ηB is a generator of En,m
2 = En,m

∞ = Hn+m(E).
The hypothesis j∗(α) = ληF , λ 6= 0 implies that α has filtration zero in Hm(E) and
its image in E0,m

∞ is ληF . Then, ληE = (ληF ) · [ηB] holds in E∞ where [ηB] denotes
the image of ηB in En,0

∞ . Since Ei,m+n−i
∞ = 0 for i 6= n, we deduce ληE = α · π∗(ηB) as

desired. �

Now we can proceed to the computation of the torsion index of G3 or, to be more
precise, to the computation of the order of the cokernel of k∗ : H42(BT ; Z2) →
H42(G3/T ; Z2). We consider the diagram

(Spin(7)/T )∧2
j−−−→ G3/T

π−−−→ G3/ Spin(7)

k

y φ

y
(BT )∧2

i−−−→ (B Spin(7))∧2

Spin(7)/T is a compact orientable differentiable manifold of dimension 18 and we
can choose an orientation class η ∈ H18(Spin(7)/T ; Z2). The torsion indices of the
Lie groups Spin(n) have been computed by Totaro for all values of n ([15]) and it



THE TORSION INDEX OF A p-COMPACT GROUP 7

turns out that the torsion index of Spin(7) is equal to 2. This means that there is
ω ∈ H∗(BT ; Z) such that f ∗(ω) = 2η for the natural map f : Spin(7)/T → BT .

The computations in the preceding section show that there is an orientation class
ρ ∈ H24(G3/ Spin(7); Z2) which is in the image of φ∗. Let ρ = φ∗(γ). We can
apply now the lemma above to the fibration Spin(7)/T → G3/T → G3/ Spin(7) with
α = k∗(ω) and deduce that there is an orientation class θ ∈ H42(G3/T ; Z2) such that
k∗(ω · i∗(γ)) = 2 θ. This implies that the torsion index of G3 divides 2.

Next, we prove that the torsion index of G3 cannot be equal to 1. It is enough to
prove that the homomorphism H42(BT ; F2) → H42(G3/T ; F2) is equal to zero. Let
us consider the F2-spectral sequence of the fibration G3 → G3/T → BT∧2 . We have
that

H∗(G3; F2) ∼= F2[x7]/x
2
7 ⊗ E(x11, x13)

Sq4(x7) = x11, Sq2(x11) = x13, Sq1(y13) = x2
7.

Hence, the generators x7, x11, x13, x
2
7 are transgressive to c8, c12, c14, 0 respectively.

Here we denote by c8, c12, c14 the images in H∗(BT ; F2) of the generators c8, c12, c14 ∈
H∗(BG3; F2). Recall that in section 3 we have computed these elements as explicit
polynomials in some basis {ε1, ε2, ε3} of H2(BT ; F2).

In the E2-term of the spectral sequence of G3 → G3/T → BT∧2 , let us consider
the row containing x2

7. All elements in this row are permanent cycles and the only
boundaries are the elements of the form x2

7q with q in the ideal of F2[ε1, ε2, ε3] generated
by c8, c12, c14. If we compute the quotient algebra F2[ε1, ε2, ε3]/(c8, c12, c14) (using any
choice of a computer algebra software) we see that it is a graded algebra with Poincaré
series equal to

1 + 3t2 + 6t4 + 10t6 + 14t8 + 18t10 + 21t12 + 22t14+

21t16 + 18t18 + 14t20 + 10t22 + 6t24 + 3t26 + t28.

and so in particular there is an element q ∈ H28(BT ; F2) which does not belong to
the ideal (c8, c12, c14). Hence, the element x2

7q in the E2-term of the spectral sequence
survives to a non trivial element in H42(G3/T ; F2) which cannot be in the image of
H∗(BT ; F2). This finishes the proof of

Theorem 5.2. The cokernel of H42(BT ; Z2) → H42(G3/T ; Z2) has order two.

6. Proof of theorem 1.2

In section 2 we saw that it is enough to prove theorem 1.2 for each exotic p-compact
group and we also saw that theorem 1.2 is true for all odd primes. Since it is known
([2]) that the only exotic 2-compact group is G3, the only thing that remains to be
proved is that G3 satisfies the properties (TI1) to (TI4) with t2(G3) = 2.

(TI4) is void and (TI3) is just theorem 5.2 plus some facts about G3/T which were
proven in [2]. In [12] it is proven that the torsion elements in H∗(BG3; Z2) are of
order two and the homomorphism H∗(BG3; Z2) → H∗(BT ; Z2)

W is surjective. This
implies immediately that (TI2) holds. It is well known that G3 has up to conjugation
only one maximal elementary abelian 2-subgroup. It has rank four and is the group
that we have denoted by V in section 3. Since V has a subgroup of rank three which
injects into a maximal torus of G3, we have (TI1) and the proof is complete. �
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Acad. Sci. Paris Ser. I. Math. 315 (1992), 1131–1138.
[15] B. Totaro, The torsion index of the spin groups, Duke Math. J. 129 (2005), 249–290.
[16] B. Totaro, The torsion index of E8 and other groups, Duke Math. J. 129 (2005), 219–248.
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