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Abstract. In the field of Supervised Machine Learning, accurate evaluation of classification
models is crucial for assessing their performance and guiding model selection. In this article, we
delve into the domain of ordinal classification. Traditional metrics fail to capture the inherent
ordinal structure of data, and new performance metrics have to be considered. First, we present
an existing metric for ordinal classification based on a cost-sensitive approach and simplify its
calculation. We extend the results to classification by intervals, where the length of the intervals,
not only their order, assumes significance. We offer a comprehensive evaluation framework for
this scenario. Additionally, the article addresses the challenge of classification with unbounded
rightmost intervals, which further enhances the applicability of the proposed metrics.
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1 Introduction

In the context of supervised machine learning (ML), it is not uncommon to face a classi-
fication problem where the target variable is obtained by discretization of a continuous
variable into intervals, or the binning of a discrete variable. For example, consider the
case where we pretend to predict the length of stay of a patient in the ICU of a hos-
pital, assigning one of the following categories: short (1-2 days), moderate (3-7 days),
long (8-14 days) or extremely long (more than 14 days). Or the goal is to predict the
number of relapses for a patient with recurrent disease grouped into: none, one, two, or
more than two. Naturally, discretization or binning always entails an undesirable loss
of information, although since we use a classifier as a predictive model, this drawback
is compensated by avoiding assumptions about other types of predictive models such
as regression, for which it is essential to diagnose model assumptions.

At this point, the dilemma of which performance metric to employ for measuring classi-
fication quality emerges, given that it is an ordinal classification task with the additional
particularity that the classes are intervals. On the one hand, incorporating information
about the length of the intervals in the definition of the metric violates the basic concept
of ordinal classification, according to which the intervals that determine the classes have
not meaning in themselves [10]. On the other hand, this is precisely what fascinates us
since it is what makes the problem new and intriguing at the same time. As a result,
the context in which we move sets a new paradigm in ordinal classification in which
the lengths of the intervals that define the classes not only can, but must, play a de-
terminant role in the building of the behavior metric. To the best of our knowledge, no



attempt has been undertaken in the literature to carry out such an approximation. It is
to fill this gap that in this work we delve into the construction of a metric to evaluate
the performance of supervised MLL methods when the classification is ordinal by inter-
vals. We will construct the new metric from a metric for standard ordinal classification
(without intervals).

Ordinal classification

(Standard) Ordinal classification is a multiclass classification task where instances are
classified into groups that have an inherent natural ordering. Without loss of generality,
we can assume that the classes 1, ..., r are in this order, and this implies that we assume
as more serious the error of classifying an instance of class i as belonging to class 7 + 2
or ¢ — 2 than as belonging to class ¢ + 1 or ¢ — 1, respectively.

We denote by C' = (Cj;)i j=1,..r & general confusion matrix obtained from any validation
procedure by a supervised ML algorithm of classification, where Cj; is the number of
instances in the test dataset that belong to class j and have been assigned to class @
by the classifier. Also denote by N = 77, >°" | Cj; the total number of instances in
the test dataset, and by n; = >_._, C;; the number of instances in the test dataset
belonging to class j, for j = 1,...,r, with N = Z;Zl n;. We assume that n; > 0 for
any j = 1,...,r (otherwise, the class would be removed and we would be left with
the remaining r — 1 classes). Also denote by yi,...,yn and 91,..., Yy, respectively,
the observed and predicted classes of any of the N instances in the test dataset (then,
U, U €{1,...,r}forall k=1,... N).

Despite its practical applications, as for example for rating product reviews in senti-
mental analysis and opinion mining [9], ordinal classification has been less developed
to date than multiclass classification in general. Nevertheless, there are different per-
formance metrics (evaluation measures) known in the literature that allow comparing
classifiers when the class variable is ordinal, and we will recall some of them in Section
2.

State-of-the-art

The authors of [2] address the problem of imbalance, when certain classes are consid-
erably more common than others, in the context of performance measures for ordinal
classification (also known as ordinal regression). In this case, using a metric designed for
balanced datasets may result in a situation in which a classifier that assigns always the
majority class outperforms highly sophisticated classification systems. To overcome this
problem, they introduce macro-averaged versions of the most common ordinal classifi-
cation measures, which are more resilient to imbalance and equivalent to the standard
versions when the datasets are balanced.

The same problem has been considered by [12], proposing a solution based on weighted
agreement measures, such as Cohen’s k, Scott’s m, Gwet and Brennan-Prediger, where
the weighting schemes considered are linear, quadratic, ordinal, radical and bipolar



weights, concluding from the experimental phase with real datasets that Cohen’s xk and
Scott’s m with quadratic weights perform better than the other considered metrics.
The lack of adaptability to imbalance is not the only issue that the standard metrics for
ordinal classification exhibit. In fact, as evidenced by [4], where an alternative measure
that prevents this flaws is proposed, some of them, such as MAE and its derivatives, have
the disadvantage of being dependent on the numbers chosen to represent the classes,
whereas Kendall’s 7, outperforms this problem at the price of losing information about
the absolute predictions. As a result, this metric is better suited for assessing preference
learning than ordinal classification.

The authors of the papers [5, 6] introduce two new measures for ordinal classification:
the maximum and the minimum of mean absolute error of all the classes, which take
into account the per-class distribution of patterns as well as the magnitude of the error,
and they propose using the first of them, jointly with the mean absolute error, as a pair
of metrics to drive a multi-objective evolutionary algorithm, since they are competitive
objectives.

Scope of the work and organization of the paper

We take the following course of action: we select a metric for ordinal classification that
follows a cost-sensitive approach and is introduced in [8]. Indeed, the authors of [§]
introduced the Total Misclassification Cost (TC), and in order to bound it to [0, 1],
they divide it by its maximum value, which is determined by an optimization problem.
To begin, in Section 2 we sketch the usual metrics for standard ordinal classification
and recall the concept of the Total misclassification Cost (TC) from [8]. In Section 3
we find the maximum of TC analytically, and thereby define the Standardized Total
misclassification Cost (STC) as TC divided by its maximum, which is as a modified
version of the metric in [8]. Secondly, in Section 4 we adapt STC metric to the scenario
when the classes are intervals, which is the ultimate goal of this work, and investigate
some of its properties. Unlike standard ordinal classification, where only the order
counts, each class is allocated a length, and the length of the classes play a role in this
layout.

Another issue is that the rightmost interval is often unbounded, meaning it cannot be
assigned a preset length. This poses a serious challenge in the task of developing the
metric, as it will unavoidably be dependent on the lengths of the intervals. In Section 5
we provide a reasoned solution to this question, together with a toy example illustrating
its application and a general result at the theoretical level. Finally, Section 6 is devoted
to a general discussion and some closing words.

2 Metrics for standard ordinal classification

Evaluation metrics differ in how they handle the classification mistakes. In this chapter,
we recall the mainstream evaluation measures usually considered for ordinal classifica-
tion, which are based on the confusion matrix. This includes a cost-sensitive measure
that will be used to define the STC metric in Section 3.



Mainstream metrics based on the confusion matrix

— Error Rate: Simply the fraction of incorrect predictions (that is, 1—Accuracy). It has
the disadvantage that all errors are treated equally and therefore does not penalize
classifiers who make flagrant errors. However, we will also consider this metric as a
reference. The formula is:

T N
Zi:l Cii —1_ > Liye=p0)
N N

and ranges between 0 and 1, the first corresponding to perfect classification.

— Mean Absolute Error (MAE): The literature in several studies concludes that MAE

is one of the best performance metrics in ordered classification. For example, in
[7] the authors experimentally show that for the unbalanced dataset studied, MSE
(Mean Squared Error) and MAE perform the best, but while MSE is better in
situations where the severity of the errors is more important, MAE shows to be
better in situations where the tolerance for small errors is lower. This is despite the
fact that neither of these measures is truly ordinal by design. In [3] the authors use
MAE as performance metric for monotonic ordinal classification, in order to show
the usefulness of selecting the training set to obtain more accurate and efficient
models.
This metric penalizes errors (wrongly classifying an item in a category that is far
from the correct one) proportionally to the distance between the categories, so the
lower the metric value, the better the performance of the classifier. Its definition is
the following:

Error Rate =1 —

T N

1 o 1 .

MAE = — Y " Cyli—jl =~ > |ve— il (1)

N £ N

2,7=1 /=1

— Measures related to MAE: There are some measures for ordinal classification that
are variations of MAE, such as:

o Weighted Average of Mean Absolute Error (AMAE): If the class sizes are un-

balanced (typical in most situations in healthcare applications, for example),

computing a weighted average of MAE across all classes is more robust than
MAE itself. Its definition is:

1 T
AMAE = - MAE; h
LS MAE,. where

j=1
r N
1 . 1 R
MAE; = — > Cili—jl= - > Lymgy lye — Gl (2)
J =1 J =1

1 T
(note that MAE = N Z n; MAE;).
j=1
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o Mazimum of Mean Absolute Error (MMAE) ([5]): Also useful if class sizes are

unbalanced, the maximum of MAE across the classes is defined by:

MMAE = max MAE;
j=1,...r
(Analogously, the Minimum of Mean Absolute Error mMAE can be defined by
mMAE = min,;_; ., MAE;.)

The problem with MAE and its variants is that they assume that all classes are
equidistant, which does not have to be true when performing an ordinal classification
task. For example, classification on a scale
very bad, bad, acceptable, good or very good

is consequence of a subjective appreciation that will hardly correspond to equidistant
numerical values. Works using these metrics, explicitly or implicitly assume that
“misclassification costs are always proportional to the absolute difference between
the actual and the predicted label” ([11], expressis verbis). But this assumption goes
against the basic principle of meaninglessness of the numerical values in ordinal
classification, beyond their ordering ([1]).

Association metrics

Other metrics for standard ordinal classification are association metrics that are based
in the agreement between two raters who classify the instances into ordered categories.
One of the most used is Kendall’s correlation coefficient: to avoid the influence of
arbitrary class labels, we can use a metric which is independent of the range that
each class represents, and simply assesses the order relation between observed and
predicted class labels. This correlation coefficient is a measure of the ordinal association
(relationship between rankings) between observed and predicted classes. Its definition

1S:

N —~
Z Yem Yem
m=1
Ty —
N N
\/( > %%) ( > %%)
£,m=1 l,m=1
with
+1 ifye > ym +1 if g > G
Yem =94 0 fy =y, and Ym=4q 0 if §r=9n
=1 ity <ym =1 g <gm
Alternatively, Kendall’s correlation coefficient can be written as:
Con — Dis

Ty =

\/(Con + Dis — Tobs) (Con + Dis — Tpred) 7
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where Con is the number of concordant pairs, that is, pairs (¢,m) € N x N such
that Yem Ve, = +1; Dis is the number of discordant pairs, that is, pairs such that
Yem Yem = —1; Tobs is the number of tied pairs in the observed class membership,
that is, such that v, = 0; and Tpred the number of tied pairs in the predicted class
membership, that is, 7, = 0.

7, € [—1, +1] and the interpretation is as follows: the higher the Kendall’s correla-
tion coefficient metric value, the better the classifier performance, with the maximum
T, = +1 corresponding to no misclassification errors at all, and 7, = —1 to a negative
association or perfect inversion between observed and predicted classes.

A metric that follows a cost-sensitive approach

In [8] a new cost-sensitive metric is introduced, named Total misclassification Cost
(TC). The proposed measure accounts for inherent ordinal data structure, the total
misclassification cost of a classifier, and the unbalanced class distribution, and shows
good performance in identifying the best ordinal classifier with some real datasets and
simulation studies. Its definition is:

1 T T

=1 i=1

where S
n N —n;
iy = =28 LT (whichis > 1if i £ ).
n; n;
Compare with the definition of MAE (1), in which ~;; is just 1, independently of ¢ and
J

j-)

The rationale behind this definition is as follows: this measure uses information from
the class distribution and domain knowledge about the ordinal class structure, and is
the sum of the misclassification costs for any class 7 = 1,...,r. Indeed, for instances
that are actually of class j, the misclassification cost takes into account not only the
distance between predicted class ¢ and the true class labels, |i — j| (the higher, the
higher cost), but the size of the classes, in the sense that the smaller the size of the
class i, or of the class j, the higher the cost. That is, this measure penalizes more
cases of misclassification when assigning a small class than of a large one, and penalizes
more misclassification when assigning from a small class than from a large one. This is
captured in (3) by 7;;, which is defined as the inverse of the probability of misclassifying
an object in class ¢ given that the object is of class j and has been misclassified, if the
classification is done randomly (i.e: a label with a class has been assigned, with the label
chosen randomly from the available labels). This means that, if ¢ # j, then v;; = 1/p;;
with
pij = P(an object of class j is classified in class i/
the object of class j is misclassified)

_ P(an object of class j is classified in class i) ~ n;/N  ny
P(the object of class j is misclassified) (N —n;)/N N —n;’




Remark 1. We can introduce the cost matrix M = (m;;); j=1,.,» by

Yij [t — J|
= 4

mij

that is, m;; is the cost associated to misclassify an instance belonging to class j in class
i. When is the cost matrix M symmetric? M is symmetric if for all ¢ # j, vi; = Vji,
which is equivalent to say that

ng ng
E — = E —<:>n¢:nj,
n; Tn;

k#ig ' k#ig Y

that is, matrix M is symmetric if and only if there is a perfect balance between classes
in the sense that n, = n; for all 4,5 = 1,...,r (that is, n; = N/r forall i = 1,...,7).
With this notation,

1,5=1

where ® denotes the element-wise (Hadamard) or Schur matrix product.

Remark 2. Note that in [8], the definition of TC has not N dividing. We added it in
our definition by analogy with the metric MAE.

3 The STC metric

We assume that r, the number of classes, and nq, ..., n,, the number of cases in the test
set that belong to any of the classes, are fixed. Then, we introduce a new standardized
total cost based on TC in the interval [0, 1]. Instead of solving an optimization problem
as in [8], we consider the (finite) set of matrices:

S ={A = (aij)ij=1,., matrix r x r such that a;; € N (including 0) and

r

Zaij:nj,jzl,...,r}

=1

(when needed, we specify in the notation the dependence on r and ny, ..., n,) with the
equivalence relation ~ defined by:

A, B € S belong to the same class (A~ B) if TC(A)=TC(B)

(where TC is defined by (3) and we use the notation TC(C') to make explicit the
dependence on matrix C' when needed). The set of the equivalence classes of & with

this relation is the quotient set denoted by S/ ~, where we can define a total ordering
=< by: for [A], [B] € §/ ~,

[A] < [B] <= TC(A) < TC(B)
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(where we use [A] to denote the equivalence class of a generic matrix A € S, that is,
Al ={M €S : M ~ A}). Then, since S/ ~ is finite (because S is finite; indeed,
for any column of a matrix A € S, say column j, there is a finite number of ways to
accommodate n; among the r positions in the column), and being a totally ordered set
with <, there exists a (unique) maximum of (8 [ ~, = ), say class S,,q,. Let us define

TChaz = TC(Amaz) (5)

being A, any matrix representing the class S,q., that is, such that [A,,.:] = Spae- By
definition, the value TC(A,,4,) is uniquely defined and therefore, TC,,,, is well defined
and only depends on quantities ny, ..., n,, and not on the confusion matrix itself, and
saved us having to solve an optimization problem. Then, for any confusion matrix C,

TC(C) < TCoas

Definition 1. If C' = (Cyj); j=1,. » s the confusion matriz associated at a given classi-
fier, we define the corresponding Standardized Total misclassification Cost metric
as a performance measure for ordinal classification, by

TC
Tcmax

STC = e [0, 1],
where TCap is defined by (5). Then, STC is the proportion of TC,,,. that represents
TC.

Let us see that we can obtain an explicit expression for TC,,,, in general, which can
be specified in particular cases. In what follows, we will use the following notation: for
any j = 1,...,r fixed,

(6)

- 0=l
K w

that is, fixed j, 7; is the class that maximizes the cost associated to misclassify in that
class an instance that belongs to class j.

Proposition 1. For any r > 1, fixed the number of classes and their sizes,

1 < _ n; (N —mn;), .
TCmax:N;Kj7 Wltthzghj_jl

ij
where i; is defined by (6).
Remark 3. Note that although ¢; could not be unique, K is well defined.

Proof. By definition, TC,,,, will be the value of TC corresponding to the worst situ-
ation, which is that for any class 7 = 1,...,r, all the n; instances belonging to that
class have been misclassified in the class with the highest cost, that is, in class 4;. In
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other words, TC,,4; = TC(Anqz) for the following matrix representing the class Sz
Amaz = (a45)ij=1,..» given by:

0 ifi#i

n; ifi =1,

forany j=1,...,r, aij:{

Therefore,

1 & , —n; .
maw:ﬁz il — Zny ]|2]_]|' O

3.1 The binary case r = 2

Proposition 2. In the binary case,
TChaz=1.

Proof. If r =2, N =nq +ns, 11 = 2 and i, = 1. Then,

Ny Ny Ny Ny ng Ny My Ny ny + No
Sy =1 s 2 i — 2 4+ === =1. U
Nmﬁl‘ NmJQ’ Nny, Nng N

TCmax =

3.2 The perfectly balanced case n; = N/r for j =1,...,r

Proposition 3. In the perfectly balanced case,

TC,. — (r—1)2+(r—1)(r—h)h

2 r ’
where
b r/2 if T is even,
|7/2] +1 if ris odd.
Therefore,
—1)(3r—2
(r )i ! ) if r is even,
TCTI’LCL$ -
—1)?
@4r> (3r+1) ifrisodd.

Proof. Since nj = N/r for j =1,...,r, we have that

1 ifj=h+1,...,r

e

. , r ifj=1,...,h,
i :argzgiaxrw—ﬂ =
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Note that, if r is odd, we can define 7;, = 1 instead of i;, = r and this does not change
the following calculations. Then, we can write

 ~N-N/r NJr . S
Tcmam—; N N/T’ ‘Zj_ g _j’
h T r—1 r—
(- Y- =" (T iy z)
7j=1 j=h+1 i=r—h i=h
r—1

r(r—1) _(r—1)2 (r — 1( —h)h
. ((r—h)h—i— 5 )— 5 +

where we have used that the sum of the n consecutive positive integers between a and
b, both included, is “TH’ n. O

Observe that, in the perfect balanced case,

0O ... 0 N/r...N/r
0 ...0 0 ... 0
Apae = : : : :
0 ...0 0 ... 0
N/r...N/r 0 0 0
oot 7 Sotamms

As above, if 7 is odd, the first block could be composed by A — 1 columns (and the
second by r — h + 1 columns, respectively) without causing any change in the value of
TCraz-

Corollary 1. In the perfectly balanced case,

>1 iofr>2,

and TC,qe 1S a strictly increasing function of r.

Proof. By Proposition 2, TC,,,, = 1 if r = 2. On the other hand, it is sufficient to prove
that for any k& > 1, if we denote by TC,,,4.(7) the value of TC,,,, when the number of
classes is r, then we have that

TCraz (2k) < TChraz (2k + 1) < TCpae(2k + 2)
and this is a mere verification, since the first inequality is equivalent to see that

(2k-1BEK -2 _2k+1-12B@2k+1)+1)
1 12k +1)
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which in turn is equivalent to
(4> —1) 3k —1) <4k B3k +2) <= 12k* +3k—1>0,

which is trivially true for £ > 1.
As for the second inequality, it is

2k+1-123BQ2k+1)+1  (Qk+2-1)32k+2)-2)
42k +1) = 4

which is equivalent to
4 < (2k+1)? <=2 <2k +1,

which is true for all k, finishing the proof. 0

4 Adapting STC metric to classification by intervals

Assume now that the classes 1,..., r are the subindexes of intervals I, ..., I, such
that I; = [a;, b;) with a; < b; and ay = by_y for k = 2,...,r. Then, we are assuming
that they are ordered, in the sense that

Veel,,ycl;, ifi<jthenz<uy.

As distance between intervals we will use the Hausdorff distance, although other dis-
tances could also be considered. The Hausdorff distance between intervals I; and I; is
defined by:

d(1i, I;) = max{|a; —al, [b; = bil} (7)

We also introduce the idea of “density” of a given interval, as the number of instances
of the test set belonging to that interval, divided by its length, that is, the “density” of
interval I;, © = 1,...,r is defined by

i

4.1 Definiton of metric S/T\C

We substitute the number of instances belonging to a interval by its “density” in the
definition of the ;; terms of the TC metric. Now, we are ready to introduce the interval-
version of the cost-sensitive TC introduced in (3) for standard multi-class classification.
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Definition 2. If C = (Cjj)ij=1,.r s the confusion matriz associated with a given
classifier, and the ordered classes are intervals I, ..., I,., we define the Interval-Total
misclassification Cost metric as a performance measure for ordinal classification by
intervals, by

Zk#] k

= 1 -~ .
TC = N Z Cij Vij d(1s, 1) with  7;j = >1 (ifi#j) (9)

ij=1

where the distances d(I;, I;) between the intervals are given by (7), and “densities” 9,
are defined by (8).

The variable 7;; can be written as 7;; =

Note that if all the intervals have the same length, say L, therefore TC = L x TC.
Indeed, in this case, 7;; = 7;; for any 4,5 = 1,...,r, and d(I;, I;) = L|i — j|, and then,

L ¢ L
=¥ ZCijfy,;j]z—ﬂ:LXTC.

ij=1
Remark /4. In this context, the cost-matrix is M= (Mij)ij=1,. r, defined by
Mij = =
and then,
TC = Z Cymy; = sum(C ® M)
ij=1

When is the cost matrix M symmetric? M is symmetric if for all ¢ # j, 4;; = 7;;, which
is equivalent to say that
) 0
Z - -k = 51 = 5]‘,

ki, 0i ki, &

that is, M is symmetric in case of perfectly homogeneous density of the intervals. In
this case, if we denote by 0 the common value of ¢;, i = 1,...,r, then, § = n;/¢; for all
1 or, equivalently, n; = § ;. That is, matrix M is symmetric if and only if the number
of instances belonging to any interval is proportional to the length of the interval. We
name this case the perfectly proportional case.

Analogously to Section 3, we can prove the following result:

Proposition 4. For any r > 1, fived the intervals I; = |a;, b;), 7 = 1,...,r, with
ap = bp_1 fork =2,...,r, and the number of instances of the dataset belonging to them,
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ni,..., N, respectively, then TC reaches the mazimum 'famaw in the set of confusion
matrices S, which is

Zk;éj Or

)

— 1 ~ RPN
TConus = ; K;, with K; =n; d(Iy, 1)

where ZA] is defined by

In the particular binary case, the following result provides the expression of f\Cmax.

Proposition 5. In the binary case,

ﬁ]mw = max(ly, ls) .
Proof. If r =2, N =nq 4+ no, i1 = 2 and i3 = 1. Moreover,
d(I, Iy) = d(I, I) = max(as — a1, by — by) = max(¢y, ls)
(since ag = by). Then,

~ 0.
K1 =Nnq 5—2d(12, Il) =N max(@l, 82),

2

and by symmetry, Ky = ny max(¢y, ¢5). Finally,

—~ 1
TCrrgr = N (n1 + n2) max (€, £3) = max(ly, £3) . O

Analogous to ordinal classification without intervals, we can define the following mea-
sure:

Definition 3. If C' = (Cjj)i j=1,..r is the confusion matriz associated at a given classi-
fier, we introduce the corresponding Interval-Standardized Total misclassification
Cost metric as a performance measure for ordinal classification by intervals, defined

by

. TC
STC = % o, 1],
Tcmax

where TC is introduced in Definition 2 and TACmax i Proposition 4.
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4.2 Properties of STC

STC verifies the properties of a norm over the set of » x r matrices, fixed r > 2,

M = {A = (ajj)ij=1,.,r matrix r X r such that a;; € N (including 0)} ,

-----

except the Triangle inequality or Subbaditivity. However, the Positive definiteness pro-
perty is replaced by the Mazimal agreement. Indeed,

) @(A) > 0 for all A € M (Non-negativity).
This property holds by definition.

. S/T\C(/i A) = mST/\C(A) for all K > 0 and A € M (Homogeneity).
This is consequence of the fact that if A € &7, then kA € S, .|
matches in the two spaces, and T/E(/ﬁ A) = HT/‘C(A).

o S/T\C(A) = 0 & A is diagonal (Mazimal agreement).
This property holds by definition. Moreover, we have that if A € S,

° S/T\C(A) =1& A€ S (Minimal agreement).

We follow [1] in the consideration of desirable properties that a metric should satisfy,
in relation to STC.

e Property 1 (Scale invariance)

The metric is invariant if we change the scale of the units in which the original data
1S grven.

Proof. Let denote by f the function of a change of scale, that is, a linear function
of the form f(z) = cx 4+ d with ¢ > 0. Denote by STC its value with the data in
the new units, after applying the change of scale f. We will see easily that

STC = STC .
Indeed, since ¢ > 0 the change of scale is monotonically increasing, and the intervals
after the change of scale are I7,..., I with I} = [f(a), f(b;)) = [ca; + d, cb; +d),

with length £ = f(b;) — f(a;) = ¢(b; — a;) = c¥;. The Hausdorff distance between
intervals IJ and I7 is:

d(I7, I7) = max{|f(a;) — f(a;)|, [f(b;) — f(bi)[}
= |c| max{[a; — ail, |b; — bi|} = cd(I;, I;)

and the densities after the change of scale are 0; = 7 = %, and then, ;" = 7,
(we use an asterisk to denote the quantities after the scale change). With this, for a

given confusion matrix A = (a;;)ij=1..r,

o 1 « U 1 e o~

i,j=1 i,j=1
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On the other hand, for any j =1,...,r,

~ d(ly, I7) 2 ALy, 1)

fj" = arg max ——p—to = arg max o —o L =
and s s s s
S k#j %k . k#j “k =
K7 = n; = d( o I3) :n](s—jcd(_fi;, I;) =cK;

giving that TC, = ¥ 21 K G = ¢ TCppae. Finally, then,

IS TC(A)  ¢TC(A) —
STC'(A) = %*( ) _<TCW _grewy. o
T

max

Property 2 (Monotonicity)

Changing predictions farther from the true category (with the same density) should
result in an increase in the metric.

Proof. Indeed, if we change the prediction of an item of a fixed class jy from iy # jo
to ko # jo such that

d(Ikm ]jo) > d(]io, Ijo) while 5k0 = 51‘(),

then my, ;, > My, j, and TC increases in

—

Yig j
Mg jo — Mg jo = ]({;0 (d(Ixy, Iy) — d(Liy, 1;,)) >0

—_— D

(note that ¥i, 7o = Yk jo)-

Property 3 (Imbalance)

Distancing items from (respectively, to) a low-density class has more effect on the
metric than distancing items from (respectively, to) a high-density class.

Proof. Indeed, if we consider classes jo and j;, with 6, < ¢;,, which is the effect to
misclassify an item of any of these classes to class iy, assuming that d(;,, I;,) =
d(I;,, 1;,)? (denote these distances by A).

The effect in TC of misclassify an item of class jy (respect., of class j;) into class ig
is an increase of quantity:

1 1
Mig 5o = N%ojo d(Ii()» ]jo) (respeCt-a Miy 51 = N%oﬁ d(]iov [j1))
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and the difference is:
A /\) é 5j1 - 5jo >

Mg jo — Mg j; = N (ry’iojo — Yioj1) = N 5.
io

As a consequence, TC increases more if the misclassified item belongs to class jg
than if it belongs to class j;.

If, instead, we consider classes iy and ¢;, with §;, < J;,, which is the effect to
misclassify an item of a class j to any of these classes, assuming that d(f;,, I;,) =
d(1;, I;)) = A? The effect in TC of misclassify an item of class jy into class ig

1)
(respect., into class ;) is an increase of quantity:

1 1

Mig jo = N%o]’o d<[107 [ ) (respect., Miy jo = Nﬂ d([hv [ ))
and the difference is:
A ——
Mg jo — My jo = N (%0]0 %1]0 = Z 516 By ) >0.
k#jo i

This is, in this case it is also fulfilled that TC increases more if the item is misclas-
sified in class ig than in class iy . ]

5 What length to assign to the rightmost interval?

As was said in the introduction, a problem occurs when binning a discrete variable
or discretizing a continuous variable since frequently the rightmost interval is uncon-
strained, which means it cannot be assigned a preset length. To use the STC measure
described in Section 4, however, this interval must have a length defined in advance.
How can this issue be solved?

A initial naive approximation may be to take the maximum of the observations in the
given database as the upper limit of the interval. Nothing, however, prevents this sample
limit from being surpassed in the future. Furthermore, this approach has a concerning
lack of definition, such that one might take the greatest value plus one unit, or plus
two, and so on.

After ruling out the first approximation as unsatisfactory, we investigated an alternative
strategy based on two pillars. The first is the simple but powerful notion of decoupling
the calculation of the number of observations in the rightmost interval from its length.
That is, regardless of the length we assign it to compute the metric STC the number
of observations in the interval will be the same, equal to all those that exceed its set
lower limit. The second pillar is the concept of determining the length of the rightmost
interval, given the lengths of the other intervals are known, in such a way that TC,4s 18
minimized. This is backed by the rationale that minimizing/T\Cmm would maximize the
impact of a confusion matrix improvement/worsening on STC, enhancing its capacity
to discern differences among classifiers. Let us provide an example to illustrate this.



17

A toy example

Classifiers A and B give the following confusion matrices for the same validation dataset
with N = 15 instances, which are classified into » = 3 intervals, I, I, and I3 with
corresponding lengths ¢; = ¢, = 1 and /3 = x, undetermined. The validation set is
perfectly balanced, with ny = ny = n3 = 5 instances in each interval.

observed observed
I 1 I 2 I 3 1 1 1 2 1 3
3 2 1 3 2 2
Cy= 2 2 2 Cp = 2 2 1
0 1 2 0 1 2

We are going to calculate the STC metric for both matrices. First, we calculate TC
using (9). Indeed,

3
TC(C) = Z Cymy; = sum(C ® M)

ij=1

where M = (Mij)ij=1,.3 and m; = %ﬁi’[j), with d(I, I) = 1,d(L, I3) = 1+

max(1,x), d(ls, I3) = max(l,z), and 6; = ny = 5,09 = ng = 5, 03 = ng/x = 5/x.
iy O
0;

Using that 7;; = we have that matrix M is

1 0 141 2 (1+ max(1,x))
M:1_5 141 0 2 max(1, z) :
(14 2) (14 max(1,z)) (14 z) max(1,x) 0

—~ — 1 4
TC(Cy) = sum(Cy © M) = T (6 + - + (7 + ) max(1,2)),

—~ —~ —~ 2

and therefore, rfa(OB) — rfa(CA) = 2/15, which is independent of z. Since S/T\C(C) =
TC(C)

, with rﬁ]mm independent of the values of matrix C, given the column sums are

fixed, it is obvious that the value /Qf x that minimizes f[/‘\Cmax at the same time maximizes
the relative difference between TC(Cy) and TC(Cp).

By Proposition 6 below we obtain that in this example, the value of  that minimizes
TCpaz is 7 = 1/v/2 and TC e (7) = (2v/2+7)/3. Then, we assign a length of 7 = 1/1/2
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to interval I3 for the purposes of computing the metric, and

TC(Ca) & (6+ 2+ (7+7) max(1,7)) T3+ 5

STC(Ca) = ﬁmam - 2\/g+7 205
. TC TC(C 2 8743
STO(Cy) = W) _ TG T35 T+ v

TCm(lw TCmaw 205

/\ _ s
and STC(Cp) — STC(Cx) = 14205/5 ~ 0.0407. With any other value of x, the difference

between the two would be less.

The general perfectly balanced r = 3 case

The following result, whose proof is in Appendix A, states the length of the rightmost
interval that minimizes TC,,,, in a particular case that, precisely, we have used in
the toy example. This particular case fully covers the situation of having r = 3 inter-
vals, in the perfectly balanced setting where the number of cases in each interval is
the same. Although it is a particular scenario, the balanced case is of great interest in
practice since one of the most used methods for the discretization of continuous vari-
ables, if not the most, consists of dividing into intervals in such a way the number of
cases in each interval be the same, used by default in the functions that implement
the discretization algorithms in R (it is the case of method="frequency" in function
arules::discretize, and of method="quantile" in function bnlearn: :discretize).

Proposition 6. If r = 3, {1 = 1 and ly = L > 0 known, and if ny = ny = ns, the
value of x = €3 that minimizes TC, 4. 1S given by:

Vi LS, and TCna(®) = § (24/5 +2L +4+ 1)

o) 1< L<B and TCpu(®) = VI +1+3L+3+ 1)
LOWS-1) e lavs o p <345 g TC, (8) = £ (VB + 1) L4+ V547
2 2 2 6
VL if 35 < L, and TCppup(#) = L (2VL + L +3).

Note that taking ¢; as a reference, L is the ratio ¢5/¢;, and that the Proposition 6
provides the optimal value for x = ¢3/¢; in function of L. Figure 1 is a visual illustration

of the result, which states that for large values of L (greater than 3+T‘£ ~ 2.62), T is

VL.

6 Conclusions

In this article, we address the task of accurate evaluation of classification models in
the domain of Supervised Machine Learning. Specifically, we focus on the challenges
posed by ordinal and interval classification, as well as the consideration of unbounded
rightmost intervals.
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1
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0.0 0.2 04 06 0.8 1.0 1.2

0.0 0.5 1.0 15 20 0 2 4 6 8 10
Fig. 1. Plot of & as function of L, for L € [0, 2] (left) and L € [0, 10] (right).

First, we identify the limitations of traditional metrics in capturing the inherent ordinal
structure of data in ordinal classification. To overcome this, we recall an existing metric
based on a cost-sensitive approach and offer a simplified calculation method.

We extend our results to the case where the classification is made by intervals. We
recognize that, in addition to the order, the length of intervals plays an important
role. We define a new metric, based on the one for standard ordinal classification, and
investigate some of its properties.

Furthermore, we address the challenge of classification with unbounded rightmost inter-
vals. By incorporating this consideration into our metrics, we enhance their applicability
and provide a more robust evaluation framework that aligns with the complexities of
practical classification tasks.

Moving forward, our research opens avenues for further exploration, such as investi-
gating the scalability and robustness of the proposed metrics on larger datasets and
exploring their applicability in specific domains.
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Appendix A: Proof of Proposition 6

To find the value of x that minimizes ﬁ]mam we use its expression, as given in Propo-
sition 4, that is,

)
——d(I-, 1))

5

3
_ 1 N R
TCrazx = % jE:l Kj, with Kj =n

and n denotes the common number of instances at any

~ d(1y, I;
where ¢; = arg max, ( g’ )
—19, ,

interval (n =n;, 1 = 1,2,3). Note that
d(ly, Is) =max(1, L), d(ls, I3) =max(L, x), d(Iy, I3) = L+ max(1, x)
so a first division in cases will be according to the value of max(1, L).

Case a) L <1 (then, d(I;, I5) = max(1, L) =1).

~ d(Iy, I
If j =1, 4 = arg max M. Taking into account that
=123 4,
oL, 1) L if =2
¢, 11 .
O L L(L+1) ifo<z<1l
d £(L+ L,x))=4" fo=3
¢ Z (L +max(1, z)) {%(:H—L) £ 1 i
we have that
~ ]2 ifo<z<
11 = . L
3 lfl'>L—+1.
Then,
s n D if0<z< 2
Ry=n=2d(l; )= dn(e+ D)UY if gk <o <1
“ n% ifl<ux.
Analogously,
~ 1 if < ~
= Ho<esl = Jviso.
3 ifxr>1
and
~ _ 144 if0<z<1
Kg—nZk_i’g kd(f;z,b): n(l+3) 1 >
oz ne(x+1) ifz>1,
e Zk:1,25k d(I ) n—(Lzly o<z <1
=n i) = .
’ 05 i) 73 n(m—i—L)@ ifz>1.
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Finally,
1 ((L+1) 1
N I T+ L+4+ 1) if0<z<
TCmazzg—nZ =i+ e+ 420444+ 1) if Ly <a<1
3=l A+ D2+ A+ e +2L+1) ifax>1.

Note that ”fémax is a function of x independent of n, which is continuous for x > 0,
and piecewise differentiable. Its minimum at each interval of definition is given by:

%(L—l—?)—l—%) reachedati:—LH, lfO<I§L<LH
min TC,,4.(z) = %(2\/%+2L+4+%) reachedatj:,/LH, 1fL—+1<x<1
2(L+3+ 1) reached at 2 =1, if x > 1.

1 [L+1 1 2 1
Since 3 (2 % +2L+4+ L) 3 (L + 3+ Z) holds always, we have that

— 1 L+1 1
min TC,p. () = 3 (2\/%—1—2[1—1—44— L) and is reached at 7 = ,/LLH.

Case b) L > 1 (then, d([;, I;) = max(1, L) = L).

d(ly, I
If j =1, zlzarg maxwwith

=123  0p
i, L) £ if ¢ = 2
£y 11 .
v_{ 2(L+1) ifo<az<l |
o E(L+max(1’x>):{z(x+L) if o> 1 He=s

and therefore, distinguishing when L? < z (L +1) if x < 1, and when L? < z (x + L) if
x > 1, we have that

1f0<3:<LJrl
if x>

fFl<L <5 4=

2
3 L+1
ST ~ J2 ifo<z<Li(Vh-1)
2 = . L
3 ifz>L(V5-1).
. - Zk:Q,Bk’
Then, using that K7 =n 5 d(I, I) we have that
11
( nL% 1fO<x<L+1
If1<L§1+2‘/5, K, = n(x—l—L)% 1fL—+1<m<1
n @t ite>1

L
n [ =tk if0<x§§(\/5—1)

If L > 15 K= ;
2 ' n @2 ife>L(V5-1).




With the same approach, we can get that

: nL(1+21) if0o<z<l1
~ 1 f0<z<l1 ~ )
iy = . : Ky=qnL(z+1) ifl<z<L
3 itx>1 )
ne(x+1) ifz>1L,
( ~ < L
fl<L<5 4= boif0<esn
2 ifz>5
2 if0<z<L(L—1)
s <2 =41 #L(L-1)<z<-L
2 1fx>ﬁ
(I L > 2, h=2 VY&>0
( (1 (L2 ifo<z<1
Fl<L<B8 Ky={n(L+1)= ifl<a< i
(n(L+1)x if v >
(nL(L+1) if0<z<L(L-1)
8« <2 Ky={n(L+1)=k #L(L-1) <2< L
(n(L+1)x if v > 7
~ L(L+1 if0<z<L
If L > 2, R,= InbL+D if0<zs
L n(L+1)z ifx>L.

3
—_~ 1 A~
Then, using that TC,,,, = I E K, we obtain the following:
n
=1

Case b.1) 1< L <

TCma:v =

1+v5

2
(L(L+ )i+ BL+2+1)) if0<z< 2
! %m+§+(3L+3+%)) if 25 <2<
! §+®+L+§x+@L+D) ifl<z<L
LA+ ha?+(@+Ha+@L+1) fl<e<ily
\% (1+%)m2+(4+L)x+L> if 2> 75,
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which is a continuous function of z > 0 independent of n and piecewise differentiable.

Its minimum at each interval of definition is given by:
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(5( L+2+7) reachedatfv—LH, 1f0<31:<LJrl
N VI FT1+3L+3+1) reached at & = L, if £5 <z <1
min TC, . (7) = %(2L—|—2+ ) reached at 2 =1, if 1 <2 <L
%(L2+7L—|—2) reached at 7 =L, it L <z < 375
\g(L g (L2+L—1) reachedatf:%, 1fx>L T

and comparing the above values with each other, we obtain that in case b.1),

minﬁ]mm( )= g(2\/L—|— +3L+3+ L) which is reached at & = \/L%l

Case b.2) 128 < [ <2

(L(LL+D)L+L(L+3)) if0<z<1
! Lx+L—2+L(L+3)> ifl<z<Li(/5-1)
o %%+(L+2):c+L(L+3)) ifL(V6—1)<z<L(L-1)
L P TP )x+(3L+1)> ifL(L—1)<z<L
L1 +1)a2 +(4—|—%)x+(2L+1)) if L <2< L
\% (1+%)x2+(4+L)x+L> if v > 7,

which again is a continuous function of x > 0 independent of n and piecewise differen-
tiable, whose minimum at each interval of definition is given by:

(2L (L +2) reached at T =1, if 0 < 2 < 1

%((\/_+1)L+\/5+7) reached at & = £ (v5—1), if 1 <2 < L(L—1)
min'ﬁjmm(aj): ZL(L*+1) reached atx:L(L—l), ifL(L-1)<z<L

s(L24+7L+2) reached at:z::L, ifL<x<

§(LL1)2 (L2+L—1) reached at = = L o ifr >

Comparing the above values with each other, we obtain that, in case b. 2)

—~ L
min TC,0. () = g((\/g—i- 1)L ++V5+ 7) and it is reached at & = L(V5-1).

Case b.3) L > 2

LL+1)i+L(L+3)  i0<z<]

Lo+ 24+ 1(L+3)) ifl<z<Ll(v/5-1)
CH(L+2)e+L(L+3)) fL(E-1)<a<L
(1+1)2®+ A+ L)z+L) ifz>L,

Tcmam =

Wl Wl Wi~ Wl




25

which is continuous as function of x > 0, independent of n, and piecewise differentiable,
whose minimum at each interval of definition is given by:

min ﬁ]max(:v) =

(QL (L+2) reached at & =1, o<z <1
é 1)L ) ati=L(V5-1),if2< [ <35
g (V5 +1) L+ V5+7) at & 2(‘( )’;ﬁ =2 fl<a<i(VE-1)
L(2vVL+ L+3) at =L, if L > 32
% \/_+1 L+\/_+7) reachedati"zé(\/g—l), if%(\/g—l)<x§L
|25 (L +3) reached at & = L, ifex>1L.

Comparing the above values with each other in case b.3),if 2 < L < 3*‘[ we obtain the

—~ L
same as in case b.2): min TC, 4, (z) = 5 ((\/S +1)L++V5+ 7) and it is reached at & =

—~ L
% (v/5—1), while, if L > 3+2‘/5, we obtain instead that min TC,,.,(z) = 3 (2 VL+ L+ 3),
which is reached at & = /L. O



